Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
56 struct shrink_control *sc);
57 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static int i915_gem_shrinker_oom(struct notifier_block *nb,
60 unsigned long event,
61 void *ptr);
62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63
64 static bool cpu_cache_is_coherent(struct drm_device *dev,
65 enum i915_cache_level level)
66 {
67 return HAS_LLC(dev) || level != I915_CACHE_NONE;
68 }
69
70 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
71 {
72 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
73 return true;
74
75 return obj->pin_display;
76 }
77
78 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
79 {
80 if (obj->tiling_mode)
81 i915_gem_release_mmap(obj);
82
83 /* As we do not have an associated fence register, we will force
84 * a tiling change if we ever need to acquire one.
85 */
86 obj->fence_dirty = false;
87 obj->fence_reg = I915_FENCE_REG_NONE;
88 }
89
90 /* some bookkeeping */
91 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count++;
96 dev_priv->mm.object_memory += size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
101 size_t size)
102 {
103 spin_lock(&dev_priv->mm.object_stat_lock);
104 dev_priv->mm.object_count--;
105 dev_priv->mm.object_memory -= size;
106 spin_unlock(&dev_priv->mm.object_stat_lock);
107 }
108
109 static int
110 i915_gem_wait_for_error(struct i915_gpu_error *error)
111 {
112 int ret;
113
114 #define EXIT_COND (!i915_reset_in_progress(error) || \
115 i915_terminally_wedged(error))
116 if (EXIT_COND)
117 return 0;
118
119 /*
120 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
121 * userspace. If it takes that long something really bad is going on and
122 * we should simply try to bail out and fail as gracefully as possible.
123 */
124 ret = wait_event_interruptible_timeout(error->reset_queue,
125 EXIT_COND,
126 10*HZ);
127 if (ret == 0) {
128 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
129 return -EIO;
130 } else if (ret < 0) {
131 return ret;
132 }
133 #undef EXIT_COND
134
135 return 0;
136 }
137
138 int i915_mutex_lock_interruptible(struct drm_device *dev)
139 {
140 struct drm_i915_private *dev_priv = dev->dev_private;
141 int ret;
142
143 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
144 if (ret)
145 return ret;
146
147 ret = mutex_lock_interruptible(&dev->struct_mutex);
148 if (ret)
149 return ret;
150
151 WARN_ON(i915_verify_lists(dev));
152 return 0;
153 }
154
155 int
156 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
157 struct drm_file *file)
158 {
159 struct drm_i915_private *dev_priv = dev->dev_private;
160 struct drm_i915_gem_get_aperture *args = data;
161 struct drm_i915_gem_object *obj;
162 size_t pinned;
163
164 pinned = 0;
165 mutex_lock(&dev->struct_mutex);
166 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
167 if (i915_gem_obj_is_pinned(obj))
168 pinned += i915_gem_obj_ggtt_size(obj);
169 mutex_unlock(&dev->struct_mutex);
170
171 args->aper_size = dev_priv->gtt.base.total;
172 args->aper_available_size = args->aper_size - pinned;
173
174 return 0;
175 }
176
177 static int
178 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
179 {
180 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
181 char *vaddr = obj->phys_handle->vaddr;
182 struct sg_table *st;
183 struct scatterlist *sg;
184 int i;
185
186 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
187 return -EINVAL;
188
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
194 if (IS_ERR(page))
195 return PTR_ERR(page);
196
197 src = kmap_atomic(page);
198 memcpy(vaddr, src, PAGE_SIZE);
199 drm_clflush_virt_range(vaddr, PAGE_SIZE);
200 kunmap_atomic(src);
201
202 page_cache_release(page);
203 vaddr += PAGE_SIZE;
204 }
205
206 i915_gem_chipset_flush(obj->base.dev);
207
208 st = kmalloc(sizeof(*st), GFP_KERNEL);
209 if (st == NULL)
210 return -ENOMEM;
211
212 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
213 kfree(st);
214 return -ENOMEM;
215 }
216
217 sg = st->sgl;
218 sg->offset = 0;
219 sg->length = obj->base.size;
220
221 sg_dma_address(sg) = obj->phys_handle->busaddr;
222 sg_dma_len(sg) = obj->base.size;
223
224 obj->pages = st;
225 obj->has_dma_mapping = true;
226 return 0;
227 }
228
229 static void
230 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
231 {
232 int ret;
233
234 BUG_ON(obj->madv == __I915_MADV_PURGED);
235
236 ret = i915_gem_object_set_to_cpu_domain(obj, true);
237 if (ret) {
238 /* In the event of a disaster, abandon all caches and
239 * hope for the best.
240 */
241 WARN_ON(ret != -EIO);
242 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
243 }
244
245 if (obj->madv == I915_MADV_DONTNEED)
246 obj->dirty = 0;
247
248 if (obj->dirty) {
249 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
250 char *vaddr = obj->phys_handle->vaddr;
251 int i;
252
253 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
254 struct page *page;
255 char *dst;
256
257 page = shmem_read_mapping_page(mapping, i);
258 if (IS_ERR(page))
259 continue;
260
261 dst = kmap_atomic(page);
262 drm_clflush_virt_range(vaddr, PAGE_SIZE);
263 memcpy(dst, vaddr, PAGE_SIZE);
264 kunmap_atomic(dst);
265
266 set_page_dirty(page);
267 if (obj->madv == I915_MADV_WILLNEED)
268 mark_page_accessed(page);
269 page_cache_release(page);
270 vaddr += PAGE_SIZE;
271 }
272 obj->dirty = 0;
273 }
274
275 sg_free_table(obj->pages);
276 kfree(obj->pages);
277
278 obj->has_dma_mapping = false;
279 }
280
281 static void
282 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
283 {
284 drm_pci_free(obj->base.dev, obj->phys_handle);
285 }
286
287 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
288 .get_pages = i915_gem_object_get_pages_phys,
289 .put_pages = i915_gem_object_put_pages_phys,
290 .release = i915_gem_object_release_phys,
291 };
292
293 static int
294 drop_pages(struct drm_i915_gem_object *obj)
295 {
296 struct i915_vma *vma, *next;
297 int ret;
298
299 drm_gem_object_reference(&obj->base);
300 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
301 if (i915_vma_unbind(vma))
302 break;
303
304 ret = i915_gem_object_put_pages(obj);
305 drm_gem_object_unreference(&obj->base);
306
307 return ret;
308 }
309
310 int
311 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
312 int align)
313 {
314 drm_dma_handle_t *phys;
315 int ret;
316
317 if (obj->phys_handle) {
318 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
319 return -EBUSY;
320
321 return 0;
322 }
323
324 if (obj->madv != I915_MADV_WILLNEED)
325 return -EFAULT;
326
327 if (obj->base.filp == NULL)
328 return -EINVAL;
329
330 ret = drop_pages(obj);
331 if (ret)
332 return ret;
333
334 /* create a new object */
335 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
336 if (!phys)
337 return -ENOMEM;
338
339 obj->phys_handle = phys;
340 obj->ops = &i915_gem_phys_ops;
341
342 return i915_gem_object_get_pages(obj);
343 }
344
345 static int
346 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
347 struct drm_i915_gem_pwrite *args,
348 struct drm_file *file_priv)
349 {
350 struct drm_device *dev = obj->base.dev;
351 void *vaddr = obj->phys_handle->vaddr + args->offset;
352 char __user *user_data = to_user_ptr(args->data_ptr);
353 int ret;
354
355 /* We manually control the domain here and pretend that it
356 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
357 */
358 ret = i915_gem_object_wait_rendering(obj, false);
359 if (ret)
360 return ret;
361
362 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
363 unsigned long unwritten;
364
365 /* The physical object once assigned is fixed for the lifetime
366 * of the obj, so we can safely drop the lock and continue
367 * to access vaddr.
368 */
369 mutex_unlock(&dev->struct_mutex);
370 unwritten = copy_from_user(vaddr, user_data, args->size);
371 mutex_lock(&dev->struct_mutex);
372 if (unwritten)
373 return -EFAULT;
374 }
375
376 drm_clflush_virt_range(vaddr, args->size);
377 i915_gem_chipset_flush(dev);
378 return 0;
379 }
380
381 void *i915_gem_object_alloc(struct drm_device *dev)
382 {
383 struct drm_i915_private *dev_priv = dev->dev_private;
384 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
385 }
386
387 void i915_gem_object_free(struct drm_i915_gem_object *obj)
388 {
389 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
390 kmem_cache_free(dev_priv->slab, obj);
391 }
392
393 static int
394 i915_gem_create(struct drm_file *file,
395 struct drm_device *dev,
396 uint64_t size,
397 uint32_t *handle_p)
398 {
399 struct drm_i915_gem_object *obj;
400 int ret;
401 u32 handle;
402
403 size = roundup(size, PAGE_SIZE);
404 if (size == 0)
405 return -EINVAL;
406
407 /* Allocate the new object */
408 obj = i915_gem_alloc_object(dev, size);
409 if (obj == NULL)
410 return -ENOMEM;
411
412 ret = drm_gem_handle_create(file, &obj->base, &handle);
413 /* drop reference from allocate - handle holds it now */
414 drm_gem_object_unreference_unlocked(&obj->base);
415 if (ret)
416 return ret;
417
418 *handle_p = handle;
419 return 0;
420 }
421
422 int
423 i915_gem_dumb_create(struct drm_file *file,
424 struct drm_device *dev,
425 struct drm_mode_create_dumb *args)
426 {
427 /* have to work out size/pitch and return them */
428 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
429 args->size = args->pitch * args->height;
430 return i915_gem_create(file, dev,
431 args->size, &args->handle);
432 }
433
434 /**
435 * Creates a new mm object and returns a handle to it.
436 */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440 {
441 struct drm_i915_gem_create *args = data;
442
443 return i915_gem_create(file, dev,
444 args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451 {
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
476 int length)
477 {
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497 }
498
499 /*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506 {
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (!obj->base.filp)
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524
525 i915_gem_object_retire(obj);
526 }
527
528 ret = i915_gem_object_get_pages(obj);
529 if (ret)
530 return ret;
531
532 i915_gem_object_pin_pages(obj);
533
534 return ret;
535 }
536
537 /* Per-page copy function for the shmem pread fastpath.
538 * Flushes invalid cachelines before reading the target if
539 * needs_clflush is set. */
540 static int
541 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545 char *vaddr;
546 int ret;
547
548 if (unlikely(page_do_bit17_swizzling))
549 return -EINVAL;
550
551 vaddr = kmap_atomic(page);
552 if (needs_clflush)
553 drm_clflush_virt_range(vaddr + shmem_page_offset,
554 page_length);
555 ret = __copy_to_user_inatomic(user_data,
556 vaddr + shmem_page_offset,
557 page_length);
558 kunmap_atomic(vaddr);
559
560 return ret ? -EFAULT : 0;
561 }
562
563 static void
564 shmem_clflush_swizzled_range(char *addr, unsigned long length,
565 bool swizzled)
566 {
567 if (unlikely(swizzled)) {
568 unsigned long start = (unsigned long) addr;
569 unsigned long end = (unsigned long) addr + length;
570
571 /* For swizzling simply ensure that we always flush both
572 * channels. Lame, but simple and it works. Swizzled
573 * pwrite/pread is far from a hotpath - current userspace
574 * doesn't use it at all. */
575 start = round_down(start, 128);
576 end = round_up(end, 128);
577
578 drm_clflush_virt_range((void *)start, end - start);
579 } else {
580 drm_clflush_virt_range(addr, length);
581 }
582
583 }
584
585 /* Only difference to the fast-path function is that this can handle bit17
586 * and uses non-atomic copy and kmap functions. */
587 static int
588 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
589 char __user *user_data,
590 bool page_do_bit17_swizzling, bool needs_clflush)
591 {
592 char *vaddr;
593 int ret;
594
595 vaddr = kmap(page);
596 if (needs_clflush)
597 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
598 page_length,
599 page_do_bit17_swizzling);
600
601 if (page_do_bit17_swizzling)
602 ret = __copy_to_user_swizzled(user_data,
603 vaddr, shmem_page_offset,
604 page_length);
605 else
606 ret = __copy_to_user(user_data,
607 vaddr + shmem_page_offset,
608 page_length);
609 kunmap(page);
610
611 return ret ? - EFAULT : 0;
612 }
613
614 static int
615 i915_gem_shmem_pread(struct drm_device *dev,
616 struct drm_i915_gem_object *obj,
617 struct drm_i915_gem_pread *args,
618 struct drm_file *file)
619 {
620 char __user *user_data;
621 ssize_t remain;
622 loff_t offset;
623 int shmem_page_offset, page_length, ret = 0;
624 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
625 int prefaulted = 0;
626 int needs_clflush = 0;
627 struct sg_page_iter sg_iter;
628
629 user_data = to_user_ptr(args->data_ptr);
630 remain = args->size;
631
632 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
633
634 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
635 if (ret)
636 return ret;
637
638 offset = args->offset;
639
640 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
641 offset >> PAGE_SHIFT) {
642 struct page *page = sg_page_iter_page(&sg_iter);
643
644 if (remain <= 0)
645 break;
646
647 /* Operation in this page
648 *
649 * shmem_page_offset = offset within page in shmem file
650 * page_length = bytes to copy for this page
651 */
652 shmem_page_offset = offset_in_page(offset);
653 page_length = remain;
654 if ((shmem_page_offset + page_length) > PAGE_SIZE)
655 page_length = PAGE_SIZE - shmem_page_offset;
656
657 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
658 (page_to_phys(page) & (1 << 17)) != 0;
659
660 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
661 user_data, page_do_bit17_swizzling,
662 needs_clflush);
663 if (ret == 0)
664 goto next_page;
665
666 mutex_unlock(&dev->struct_mutex);
667
668 if (likely(!i915.prefault_disable) && !prefaulted) {
669 ret = fault_in_multipages_writeable(user_data, remain);
670 /* Userspace is tricking us, but we've already clobbered
671 * its pages with the prefault and promised to write the
672 * data up to the first fault. Hence ignore any errors
673 * and just continue. */
674 (void)ret;
675 prefaulted = 1;
676 }
677
678 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
679 user_data, page_do_bit17_swizzling,
680 needs_clflush);
681
682 mutex_lock(&dev->struct_mutex);
683
684 if (ret)
685 goto out;
686
687 next_page:
688 remain -= page_length;
689 user_data += page_length;
690 offset += page_length;
691 }
692
693 out:
694 i915_gem_object_unpin_pages(obj);
695
696 return ret;
697 }
698
699 /**
700 * Reads data from the object referenced by handle.
701 *
702 * On error, the contents of *data are undefined.
703 */
704 int
705 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
706 struct drm_file *file)
707 {
708 struct drm_i915_gem_pread *args = data;
709 struct drm_i915_gem_object *obj;
710 int ret = 0;
711
712 if (args->size == 0)
713 return 0;
714
715 if (!access_ok(VERIFY_WRITE,
716 to_user_ptr(args->data_ptr),
717 args->size))
718 return -EFAULT;
719
720 ret = i915_mutex_lock_interruptible(dev);
721 if (ret)
722 return ret;
723
724 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
725 if (&obj->base == NULL) {
726 ret = -ENOENT;
727 goto unlock;
728 }
729
730 /* Bounds check source. */
731 if (args->offset > obj->base.size ||
732 args->size > obj->base.size - args->offset) {
733 ret = -EINVAL;
734 goto out;
735 }
736
737 /* prime objects have no backing filp to GEM pread/pwrite
738 * pages from.
739 */
740 if (!obj->base.filp) {
741 ret = -EINVAL;
742 goto out;
743 }
744
745 trace_i915_gem_object_pread(obj, args->offset, args->size);
746
747 ret = i915_gem_shmem_pread(dev, obj, args, file);
748
749 out:
750 drm_gem_object_unreference(&obj->base);
751 unlock:
752 mutex_unlock(&dev->struct_mutex);
753 return ret;
754 }
755
756 /* This is the fast write path which cannot handle
757 * page faults in the source data
758 */
759
760 static inline int
761 fast_user_write(struct io_mapping *mapping,
762 loff_t page_base, int page_offset,
763 char __user *user_data,
764 int length)
765 {
766 void __iomem *vaddr_atomic;
767 void *vaddr;
768 unsigned long unwritten;
769
770 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
771 /* We can use the cpu mem copy function because this is X86. */
772 vaddr = (void __force*)vaddr_atomic + page_offset;
773 unwritten = __copy_from_user_inatomic_nocache(vaddr,
774 user_data, length);
775 io_mapping_unmap_atomic(vaddr_atomic);
776 return unwritten;
777 }
778
779 /**
780 * This is the fast pwrite path, where we copy the data directly from the
781 * user into the GTT, uncached.
782 */
783 static int
784 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
785 struct drm_i915_gem_object *obj,
786 struct drm_i915_gem_pwrite *args,
787 struct drm_file *file)
788 {
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 ssize_t remain;
791 loff_t offset, page_base;
792 char __user *user_data;
793 int page_offset, page_length, ret;
794
795 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
796 if (ret)
797 goto out;
798
799 ret = i915_gem_object_set_to_gtt_domain(obj, true);
800 if (ret)
801 goto out_unpin;
802
803 ret = i915_gem_object_put_fence(obj);
804 if (ret)
805 goto out_unpin;
806
807 user_data = to_user_ptr(args->data_ptr);
808 remain = args->size;
809
810 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
811
812 while (remain > 0) {
813 /* Operation in this page
814 *
815 * page_base = page offset within aperture
816 * page_offset = offset within page
817 * page_length = bytes to copy for this page
818 */
819 page_base = offset & PAGE_MASK;
820 page_offset = offset_in_page(offset);
821 page_length = remain;
822 if ((page_offset + remain) > PAGE_SIZE)
823 page_length = PAGE_SIZE - page_offset;
824
825 /* If we get a fault while copying data, then (presumably) our
826 * source page isn't available. Return the error and we'll
827 * retry in the slow path.
828 */
829 if (fast_user_write(dev_priv->gtt.mappable, page_base,
830 page_offset, user_data, page_length)) {
831 ret = -EFAULT;
832 goto out_unpin;
833 }
834
835 remain -= page_length;
836 user_data += page_length;
837 offset += page_length;
838 }
839
840 out_unpin:
841 i915_gem_object_ggtt_unpin(obj);
842 out:
843 return ret;
844 }
845
846 /* Per-page copy function for the shmem pwrite fastpath.
847 * Flushes invalid cachelines before writing to the target if
848 * needs_clflush_before is set and flushes out any written cachelines after
849 * writing if needs_clflush is set. */
850 static int
851 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
852 char __user *user_data,
853 bool page_do_bit17_swizzling,
854 bool needs_clflush_before,
855 bool needs_clflush_after)
856 {
857 char *vaddr;
858 int ret;
859
860 if (unlikely(page_do_bit17_swizzling))
861 return -EINVAL;
862
863 vaddr = kmap_atomic(page);
864 if (needs_clflush_before)
865 drm_clflush_virt_range(vaddr + shmem_page_offset,
866 page_length);
867 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
868 user_data, page_length);
869 if (needs_clflush_after)
870 drm_clflush_virt_range(vaddr + shmem_page_offset,
871 page_length);
872 kunmap_atomic(vaddr);
873
874 return ret ? -EFAULT : 0;
875 }
876
877 /* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling,
883 bool needs_clflush_before,
884 bool needs_clflush_after)
885 {
886 char *vaddr;
887 int ret;
888
889 vaddr = kmap(page);
890 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
891 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
892 page_length,
893 page_do_bit17_swizzling);
894 if (page_do_bit17_swizzling)
895 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
896 user_data,
897 page_length);
898 else
899 ret = __copy_from_user(vaddr + shmem_page_offset,
900 user_data,
901 page_length);
902 if (needs_clflush_after)
903 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
904 page_length,
905 page_do_bit17_swizzling);
906 kunmap(page);
907
908 return ret ? -EFAULT : 0;
909 }
910
911 static int
912 i915_gem_shmem_pwrite(struct drm_device *dev,
913 struct drm_i915_gem_object *obj,
914 struct drm_i915_gem_pwrite *args,
915 struct drm_file *file)
916 {
917 ssize_t remain;
918 loff_t offset;
919 char __user *user_data;
920 int shmem_page_offset, page_length, ret = 0;
921 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
922 int hit_slowpath = 0;
923 int needs_clflush_after = 0;
924 int needs_clflush_before = 0;
925 struct sg_page_iter sg_iter;
926
927 user_data = to_user_ptr(args->data_ptr);
928 remain = args->size;
929
930 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
931
932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
933 /* If we're not in the cpu write domain, set ourself into the gtt
934 * write domain and manually flush cachelines (if required). This
935 * optimizes for the case when the gpu will use the data
936 * right away and we therefore have to clflush anyway. */
937 needs_clflush_after = cpu_write_needs_clflush(obj);
938 ret = i915_gem_object_wait_rendering(obj, false);
939 if (ret)
940 return ret;
941
942 i915_gem_object_retire(obj);
943 }
944 /* Same trick applies to invalidate partially written cachelines read
945 * before writing. */
946 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
947 needs_clflush_before =
948 !cpu_cache_is_coherent(dev, obj->cache_level);
949
950 ret = i915_gem_object_get_pages(obj);
951 if (ret)
952 return ret;
953
954 i915_gem_object_pin_pages(obj);
955
956 offset = args->offset;
957 obj->dirty = 1;
958
959 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
960 offset >> PAGE_SHIFT) {
961 struct page *page = sg_page_iter_page(&sg_iter);
962 int partial_cacheline_write;
963
964 if (remain <= 0)
965 break;
966
967 /* Operation in this page
968 *
969 * shmem_page_offset = offset within page in shmem file
970 * page_length = bytes to copy for this page
971 */
972 shmem_page_offset = offset_in_page(offset);
973
974 page_length = remain;
975 if ((shmem_page_offset + page_length) > PAGE_SIZE)
976 page_length = PAGE_SIZE - shmem_page_offset;
977
978 /* If we don't overwrite a cacheline completely we need to be
979 * careful to have up-to-date data by first clflushing. Don't
980 * overcomplicate things and flush the entire patch. */
981 partial_cacheline_write = needs_clflush_before &&
982 ((shmem_page_offset | page_length)
983 & (boot_cpu_data.x86_clflush_size - 1));
984
985 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
986 (page_to_phys(page) & (1 << 17)) != 0;
987
988 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
989 user_data, page_do_bit17_swizzling,
990 partial_cacheline_write,
991 needs_clflush_after);
992 if (ret == 0)
993 goto next_page;
994
995 hit_slowpath = 1;
996 mutex_unlock(&dev->struct_mutex);
997 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001
1002 mutex_lock(&dev->struct_mutex);
1003
1004 if (ret)
1005 goto out;
1006
1007 next_page:
1008 remain -= page_length;
1009 user_data += page_length;
1010 offset += page_length;
1011 }
1012
1013 out:
1014 i915_gem_object_unpin_pages(obj);
1015
1016 if (hit_slowpath) {
1017 /*
1018 * Fixup: Flush cpu caches in case we didn't flush the dirty
1019 * cachelines in-line while writing and the object moved
1020 * out of the cpu write domain while we've dropped the lock.
1021 */
1022 if (!needs_clflush_after &&
1023 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1024 if (i915_gem_clflush_object(obj, obj->pin_display))
1025 i915_gem_chipset_flush(dev);
1026 }
1027 }
1028
1029 if (needs_clflush_after)
1030 i915_gem_chipset_flush(dev);
1031
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 int ret;
1159
1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161
1162 ret = 0;
1163 if (req == req->ring->outstanding_lazy_request)
1164 ret = i915_add_request(req->ring);
1165
1166 return ret;
1167 }
1168
1169 static void fake_irq(unsigned long data)
1170 {
1171 wake_up_process((struct task_struct *)data);
1172 }
1173
1174 static bool missed_irq(struct drm_i915_private *dev_priv,
1175 struct intel_engine_cs *ring)
1176 {
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178 }
1179
1180 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1181 {
1182 if (file_priv == NULL)
1183 return true;
1184
1185 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1186 }
1187
1188 /**
1189 * __i915_wait_request - wait until execution of request has finished
1190 * @req: duh!
1191 * @reset_counter: reset sequence associated with the given request
1192 * @interruptible: do an interruptible wait (normally yes)
1193 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1194 *
1195 * Note: It is of utmost importance that the passed in seqno and reset_counter
1196 * values have been read by the caller in an smp safe manner. Where read-side
1197 * locks are involved, it is sufficient to read the reset_counter before
1198 * unlocking the lock that protects the seqno. For lockless tricks, the
1199 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1200 * inserted.
1201 *
1202 * Returns 0 if the request was found within the alloted time. Else returns the
1203 * errno with remaining time filled in timeout argument.
1204 */
1205 int __i915_wait_request(struct drm_i915_gem_request *req,
1206 unsigned reset_counter,
1207 bool interruptible,
1208 s64 *timeout,
1209 struct drm_i915_file_private *file_priv)
1210 {
1211 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1212 struct drm_device *dev = ring->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 const bool irq_test_in_progress =
1215 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1216 DEFINE_WAIT(wait);
1217 unsigned long timeout_expire;
1218 s64 before, now;
1219 int ret;
1220
1221 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1222
1223 if (i915_gem_request_completed(req, true))
1224 return 0;
1225
1226 timeout_expire = timeout ?
1227 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1228
1229 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1230 gen6_rps_boost(dev_priv);
1231 if (file_priv)
1232 mod_delayed_work(dev_priv->wq,
1233 &file_priv->mm.idle_work,
1234 msecs_to_jiffies(100));
1235 }
1236
1237 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1238 return -ENODEV;
1239
1240 /* Record current time in case interrupted by signal, or wedged */
1241 trace_i915_gem_request_wait_begin(req);
1242 before = ktime_get_raw_ns();
1243 for (;;) {
1244 struct timer_list timer;
1245
1246 prepare_to_wait(&ring->irq_queue, &wait,
1247 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1248
1249 /* We need to check whether any gpu reset happened in between
1250 * the caller grabbing the seqno and now ... */
1251 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1252 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1253 * is truely gone. */
1254 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1255 if (ret == 0)
1256 ret = -EAGAIN;
1257 break;
1258 }
1259
1260 if (i915_gem_request_completed(req, false)) {
1261 ret = 0;
1262 break;
1263 }
1264
1265 if (interruptible && signal_pending(current)) {
1266 ret = -ERESTARTSYS;
1267 break;
1268 }
1269
1270 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1271 ret = -ETIME;
1272 break;
1273 }
1274
1275 timer.function = NULL;
1276 if (timeout || missed_irq(dev_priv, ring)) {
1277 unsigned long expire;
1278
1279 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1280 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1281 mod_timer(&timer, expire);
1282 }
1283
1284 io_schedule();
1285
1286 if (timer.function) {
1287 del_singleshot_timer_sync(&timer);
1288 destroy_timer_on_stack(&timer);
1289 }
1290 }
1291 now = ktime_get_raw_ns();
1292 trace_i915_gem_request_wait_end(req);
1293
1294 if (!irq_test_in_progress)
1295 ring->irq_put(ring);
1296
1297 finish_wait(&ring->irq_queue, &wait);
1298
1299 if (timeout) {
1300 s64 tres = *timeout - (now - before);
1301
1302 *timeout = tres < 0 ? 0 : tres;
1303
1304 /*
1305 * Apparently ktime isn't accurate enough and occasionally has a
1306 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1307 * things up to make the test happy. We allow up to 1 jiffy.
1308 *
1309 * This is a regrssion from the timespec->ktime conversion.
1310 */
1311 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1312 *timeout = 0;
1313 }
1314
1315 return ret;
1316 }
1317
1318 /**
1319 * Waits for a request to be signaled, and cleans up the
1320 * request and object lists appropriately for that event.
1321 */
1322 int
1323 i915_wait_request(struct drm_i915_gem_request *req)
1324 {
1325 struct drm_device *dev;
1326 struct drm_i915_private *dev_priv;
1327 bool interruptible;
1328 unsigned reset_counter;
1329 int ret;
1330
1331 BUG_ON(req == NULL);
1332
1333 dev = req->ring->dev;
1334 dev_priv = dev->dev_private;
1335 interruptible = dev_priv->mm.interruptible;
1336
1337 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1338
1339 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1340 if (ret)
1341 return ret;
1342
1343 ret = i915_gem_check_olr(req);
1344 if (ret)
1345 return ret;
1346
1347 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1348 i915_gem_request_reference(req);
1349 ret = __i915_wait_request(req, reset_counter,
1350 interruptible, NULL, NULL);
1351 i915_gem_request_unreference(req);
1352 return ret;
1353 }
1354
1355 static int
1356 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1357 {
1358 if (!obj->active)
1359 return 0;
1360
1361 /* Manually manage the write flush as we may have not yet
1362 * retired the buffer.
1363 *
1364 * Note that the last_write_req is always the earlier of
1365 * the two (read/write) requests, so if we haved successfully waited,
1366 * we know we have passed the last write.
1367 */
1368 i915_gem_request_assign(&obj->last_write_req, NULL);
1369
1370 return 0;
1371 }
1372
1373 /**
1374 * Ensures that all rendering to the object has completed and the object is
1375 * safe to unbind from the GTT or access from the CPU.
1376 */
1377 static __must_check int
1378 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1379 bool readonly)
1380 {
1381 struct drm_i915_gem_request *req;
1382 int ret;
1383
1384 req = readonly ? obj->last_write_req : obj->last_read_req;
1385 if (!req)
1386 return 0;
1387
1388 ret = i915_wait_request(req);
1389 if (ret)
1390 return ret;
1391
1392 return i915_gem_object_wait_rendering__tail(obj);
1393 }
1394
1395 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1396 * as the object state may change during this call.
1397 */
1398 static __must_check int
1399 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1400 struct drm_i915_file_private *file_priv,
1401 bool readonly)
1402 {
1403 struct drm_i915_gem_request *req;
1404 struct drm_device *dev = obj->base.dev;
1405 struct drm_i915_private *dev_priv = dev->dev_private;
1406 unsigned reset_counter;
1407 int ret;
1408
1409 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1410 BUG_ON(!dev_priv->mm.interruptible);
1411
1412 req = readonly ? obj->last_write_req : obj->last_read_req;
1413 if (!req)
1414 return 0;
1415
1416 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1417 if (ret)
1418 return ret;
1419
1420 ret = i915_gem_check_olr(req);
1421 if (ret)
1422 return ret;
1423
1424 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1425 i915_gem_request_reference(req);
1426 mutex_unlock(&dev->struct_mutex);
1427 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1428 mutex_lock(&dev->struct_mutex);
1429 i915_gem_request_unreference(req);
1430 if (ret)
1431 return ret;
1432
1433 return i915_gem_object_wait_rendering__tail(obj);
1434 }
1435
1436 /**
1437 * Called when user space prepares to use an object with the CPU, either
1438 * through the mmap ioctl's mapping or a GTT mapping.
1439 */
1440 int
1441 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1442 struct drm_file *file)
1443 {
1444 struct drm_i915_gem_set_domain *args = data;
1445 struct drm_i915_gem_object *obj;
1446 uint32_t read_domains = args->read_domains;
1447 uint32_t write_domain = args->write_domain;
1448 int ret;
1449
1450 /* Only handle setting domains to types used by the CPU. */
1451 if (write_domain & I915_GEM_GPU_DOMAINS)
1452 return -EINVAL;
1453
1454 if (read_domains & I915_GEM_GPU_DOMAINS)
1455 return -EINVAL;
1456
1457 /* Having something in the write domain implies it's in the read
1458 * domain, and only that read domain. Enforce that in the request.
1459 */
1460 if (write_domain != 0 && read_domains != write_domain)
1461 return -EINVAL;
1462
1463 ret = i915_mutex_lock_interruptible(dev);
1464 if (ret)
1465 return ret;
1466
1467 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1468 if (&obj->base == NULL) {
1469 ret = -ENOENT;
1470 goto unlock;
1471 }
1472
1473 /* Try to flush the object off the GPU without holding the lock.
1474 * We will repeat the flush holding the lock in the normal manner
1475 * to catch cases where we are gazumped.
1476 */
1477 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1478 file->driver_priv,
1479 !write_domain);
1480 if (ret)
1481 goto unref;
1482
1483 if (read_domains & I915_GEM_DOMAIN_GTT)
1484 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1485 else
1486 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1487
1488 unref:
1489 drm_gem_object_unreference(&obj->base);
1490 unlock:
1491 mutex_unlock(&dev->struct_mutex);
1492 return ret;
1493 }
1494
1495 /**
1496 * Called when user space has done writes to this buffer
1497 */
1498 int
1499 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1500 struct drm_file *file)
1501 {
1502 struct drm_i915_gem_sw_finish *args = data;
1503 struct drm_i915_gem_object *obj;
1504 int ret = 0;
1505
1506 ret = i915_mutex_lock_interruptible(dev);
1507 if (ret)
1508 return ret;
1509
1510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1511 if (&obj->base == NULL) {
1512 ret = -ENOENT;
1513 goto unlock;
1514 }
1515
1516 /* Pinned buffers may be scanout, so flush the cache */
1517 if (obj->pin_display)
1518 i915_gem_object_flush_cpu_write_domain(obj);
1519
1520 drm_gem_object_unreference(&obj->base);
1521 unlock:
1522 mutex_unlock(&dev->struct_mutex);
1523 return ret;
1524 }
1525
1526 /**
1527 * Maps the contents of an object, returning the address it is mapped
1528 * into.
1529 *
1530 * While the mapping holds a reference on the contents of the object, it doesn't
1531 * imply a ref on the object itself.
1532 *
1533 * IMPORTANT:
1534 *
1535 * DRM driver writers who look a this function as an example for how to do GEM
1536 * mmap support, please don't implement mmap support like here. The modern way
1537 * to implement DRM mmap support is with an mmap offset ioctl (like
1538 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539 * That way debug tooling like valgrind will understand what's going on, hiding
1540 * the mmap call in a driver private ioctl will break that. The i915 driver only
1541 * does cpu mmaps this way because we didn't know better.
1542 */
1543 int
1544 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1545 struct drm_file *file)
1546 {
1547 struct drm_i915_gem_mmap *args = data;
1548 struct drm_gem_object *obj;
1549 unsigned long addr;
1550
1551 if (args->flags & ~(I915_MMAP_WC))
1552 return -EINVAL;
1553
1554 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1555 return -ENODEV;
1556
1557 obj = drm_gem_object_lookup(dev, file, args->handle);
1558 if (obj == NULL)
1559 return -ENOENT;
1560
1561 /* prime objects have no backing filp to GEM mmap
1562 * pages from.
1563 */
1564 if (!obj->filp) {
1565 drm_gem_object_unreference_unlocked(obj);
1566 return -EINVAL;
1567 }
1568
1569 addr = vm_mmap(obj->filp, 0, args->size,
1570 PROT_READ | PROT_WRITE, MAP_SHARED,
1571 args->offset);
1572 if (args->flags & I915_MMAP_WC) {
1573 struct mm_struct *mm = current->mm;
1574 struct vm_area_struct *vma;
1575
1576 down_write(&mm->mmap_sem);
1577 vma = find_vma(mm, addr);
1578 if (vma)
1579 vma->vm_page_prot =
1580 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1581 else
1582 addr = -ENOMEM;
1583 up_write(&mm->mmap_sem);
1584 }
1585 drm_gem_object_unreference_unlocked(obj);
1586 if (IS_ERR((void *)addr))
1587 return addr;
1588
1589 args->addr_ptr = (uint64_t) addr;
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * i915_gem_fault - fault a page into the GTT
1596 * vma: VMA in question
1597 * vmf: fault info
1598 *
1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600 * from userspace. The fault handler takes care of binding the object to
1601 * the GTT (if needed), allocating and programming a fence register (again,
1602 * only if needed based on whether the old reg is still valid or the object
1603 * is tiled) and inserting a new PTE into the faulting process.
1604 *
1605 * Note that the faulting process may involve evicting existing objects
1606 * from the GTT and/or fence registers to make room. So performance may
1607 * suffer if the GTT working set is large or there are few fence registers
1608 * left.
1609 */
1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 struct drm_device *dev = obj->base.dev;
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 pgoff_t page_offset;
1616 unsigned long pfn;
1617 int ret = 0;
1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619
1620 intel_runtime_pm_get(dev_priv);
1621
1622 /* We don't use vmf->pgoff since that has the fake offset */
1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 PAGE_SHIFT;
1625
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 goto out;
1629
1630 trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
1632 /* Try to flush the object off the GPU first without holding the lock.
1633 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 * repeat the flush holding the lock in the normal manner to catch cases
1635 * where we are gazumped.
1636 */
1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 if (ret)
1639 goto unlock;
1640
1641 /* Access to snoopable pages through the GTT is incoherent. */
1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643 ret = -EFAULT;
1644 goto unlock;
1645 }
1646
1647 /* Now bind it into the GTT if needed */
1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649 if (ret)
1650 goto unlock;
1651
1652 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 if (ret)
1654 goto unpin;
1655
1656 ret = i915_gem_object_get_fence(obj);
1657 if (ret)
1658 goto unpin;
1659
1660 /* Finally, remap it using the new GTT offset */
1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 pfn >>= PAGE_SHIFT;
1663
1664 if (!obj->fault_mappable) {
1665 unsigned long size = min_t(unsigned long,
1666 vma->vm_end - vma->vm_start,
1667 obj->base.size);
1668 int i;
1669
1670 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 pfn + i);
1674 if (ret)
1675 break;
1676 }
1677
1678 obj->fault_mappable = true;
1679 } else
1680 ret = vm_insert_pfn(vma,
1681 (unsigned long)vmf->virtual_address,
1682 pfn + page_offset);
1683 unpin:
1684 i915_gem_object_ggtt_unpin(obj);
1685 unlock:
1686 mutex_unlock(&dev->struct_mutex);
1687 out:
1688 switch (ret) {
1689 case -EIO:
1690 /*
1691 * We eat errors when the gpu is terminally wedged to avoid
1692 * userspace unduly crashing (gl has no provisions for mmaps to
1693 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 * and so needs to be reported.
1695 */
1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697 ret = VM_FAULT_SIGBUS;
1698 break;
1699 }
1700 case -EAGAIN:
1701 /*
1702 * EAGAIN means the gpu is hung and we'll wait for the error
1703 * handler to reset everything when re-faulting in
1704 * i915_mutex_lock_interruptible.
1705 */
1706 case 0:
1707 case -ERESTARTSYS:
1708 case -EINTR:
1709 case -EBUSY:
1710 /*
1711 * EBUSY is ok: this just means that another thread
1712 * already did the job.
1713 */
1714 ret = VM_FAULT_NOPAGE;
1715 break;
1716 case -ENOMEM:
1717 ret = VM_FAULT_OOM;
1718 break;
1719 case -ENOSPC:
1720 case -EFAULT:
1721 ret = VM_FAULT_SIGBUS;
1722 break;
1723 default:
1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 }
1728
1729 intel_runtime_pm_put(dev_priv);
1730 return ret;
1731 }
1732
1733 /**
1734 * i915_gem_release_mmap - remove physical page mappings
1735 * @obj: obj in question
1736 *
1737 * Preserve the reservation of the mmapping with the DRM core code, but
1738 * relinquish ownership of the pages back to the system.
1739 *
1740 * It is vital that we remove the page mapping if we have mapped a tiled
1741 * object through the GTT and then lose the fence register due to
1742 * resource pressure. Similarly if the object has been moved out of the
1743 * aperture, than pages mapped into userspace must be revoked. Removing the
1744 * mapping will then trigger a page fault on the next user access, allowing
1745 * fixup by i915_gem_fault().
1746 */
1747 void
1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749 {
1750 if (!obj->fault_mappable)
1751 return;
1752
1753 drm_vma_node_unmap(&obj->base.vma_node,
1754 obj->base.dev->anon_inode->i_mapping);
1755 obj->fault_mappable = false;
1756 }
1757
1758 void
1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760 {
1761 struct drm_i915_gem_object *obj;
1762
1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 i915_gem_release_mmap(obj);
1765 }
1766
1767 uint32_t
1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769 {
1770 uint32_t gtt_size;
1771
1772 if (INTEL_INFO(dev)->gen >= 4 ||
1773 tiling_mode == I915_TILING_NONE)
1774 return size;
1775
1776 /* Previous chips need a power-of-two fence region when tiling */
1777 if (INTEL_INFO(dev)->gen == 3)
1778 gtt_size = 1024*1024;
1779 else
1780 gtt_size = 512*1024;
1781
1782 while (gtt_size < size)
1783 gtt_size <<= 1;
1784
1785 return gtt_size;
1786 }
1787
1788 /**
1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790 * @obj: object to check
1791 *
1792 * Return the required GTT alignment for an object, taking into account
1793 * potential fence register mapping.
1794 */
1795 uint32_t
1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 int tiling_mode, bool fenced)
1798 {
1799 /*
1800 * Minimum alignment is 4k (GTT page size), but might be greater
1801 * if a fence register is needed for the object.
1802 */
1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804 tiling_mode == I915_TILING_NONE)
1805 return 4096;
1806
1807 /*
1808 * Previous chips need to be aligned to the size of the smallest
1809 * fence register that can contain the object.
1810 */
1811 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 }
1813
1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815 {
1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 int ret;
1818
1819 if (drm_vma_node_has_offset(&obj->base.vma_node))
1820 return 0;
1821
1822 dev_priv->mm.shrinker_no_lock_stealing = true;
1823
1824 ret = drm_gem_create_mmap_offset(&obj->base);
1825 if (ret != -ENOSPC)
1826 goto out;
1827
1828 /* Badly fragmented mmap space? The only way we can recover
1829 * space is by destroying unwanted objects. We can't randomly release
1830 * mmap_offsets as userspace expects them to be persistent for the
1831 * lifetime of the objects. The closest we can is to release the
1832 * offsets on purgeable objects by truncating it and marking it purged,
1833 * which prevents userspace from ever using that object again.
1834 */
1835 i915_gem_shrink(dev_priv,
1836 obj->base.size >> PAGE_SHIFT,
1837 I915_SHRINK_BOUND |
1838 I915_SHRINK_UNBOUND |
1839 I915_SHRINK_PURGEABLE);
1840 ret = drm_gem_create_mmap_offset(&obj->base);
1841 if (ret != -ENOSPC)
1842 goto out;
1843
1844 i915_gem_shrink_all(dev_priv);
1845 ret = drm_gem_create_mmap_offset(&obj->base);
1846 out:
1847 dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849 return ret;
1850 }
1851
1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853 {
1854 drm_gem_free_mmap_offset(&obj->base);
1855 }
1856
1857 int
1858 i915_gem_mmap_gtt(struct drm_file *file,
1859 struct drm_device *dev,
1860 uint32_t handle,
1861 uint64_t *offset)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 struct drm_i915_gem_object *obj;
1865 int ret;
1866
1867 ret = i915_mutex_lock_interruptible(dev);
1868 if (ret)
1869 return ret;
1870
1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872 if (&obj->base == NULL) {
1873 ret = -ENOENT;
1874 goto unlock;
1875 }
1876
1877 if (obj->base.size > dev_priv->gtt.mappable_end) {
1878 ret = -E2BIG;
1879 goto out;
1880 }
1881
1882 if (obj->madv != I915_MADV_WILLNEED) {
1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884 ret = -EFAULT;
1885 goto out;
1886 }
1887
1888 ret = i915_gem_object_create_mmap_offset(obj);
1889 if (ret)
1890 goto out;
1891
1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893
1894 out:
1895 drm_gem_object_unreference(&obj->base);
1896 unlock:
1897 mutex_unlock(&dev->struct_mutex);
1898 return ret;
1899 }
1900
1901 /**
1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903 * @dev: DRM device
1904 * @data: GTT mapping ioctl data
1905 * @file: GEM object info
1906 *
1907 * Simply returns the fake offset to userspace so it can mmap it.
1908 * The mmap call will end up in drm_gem_mmap(), which will set things
1909 * up so we can get faults in the handler above.
1910 *
1911 * The fault handler will take care of binding the object into the GTT
1912 * (since it may have been evicted to make room for something), allocating
1913 * a fence register, and mapping the appropriate aperture address into
1914 * userspace.
1915 */
1916 int
1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 struct drm_file *file)
1919 {
1920 struct drm_i915_gem_mmap_gtt *args = data;
1921
1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 }
1924
1925 static inline int
1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927 {
1928 return obj->madv == I915_MADV_DONTNEED;
1929 }
1930
1931 /* Immediately discard the backing storage */
1932 static void
1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934 {
1935 i915_gem_object_free_mmap_offset(obj);
1936
1937 if (obj->base.filp == NULL)
1938 return;
1939
1940 /* Our goal here is to return as much of the memory as
1941 * is possible back to the system as we are called from OOM.
1942 * To do this we must instruct the shmfs to drop all of its
1943 * backing pages, *now*.
1944 */
1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1946 obj->madv = __I915_MADV_PURGED;
1947 }
1948
1949 /* Try to discard unwanted pages */
1950 static void
1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1952 {
1953 struct address_space *mapping;
1954
1955 switch (obj->madv) {
1956 case I915_MADV_DONTNEED:
1957 i915_gem_object_truncate(obj);
1958 case __I915_MADV_PURGED:
1959 return;
1960 }
1961
1962 if (obj->base.filp == NULL)
1963 return;
1964
1965 mapping = file_inode(obj->base.filp)->i_mapping,
1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 }
1968
1969 static void
1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971 {
1972 struct sg_page_iter sg_iter;
1973 int ret;
1974
1975 BUG_ON(obj->madv == __I915_MADV_PURGED);
1976
1977 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 if (ret) {
1979 /* In the event of a disaster, abandon all caches and
1980 * hope for the best.
1981 */
1982 WARN_ON(ret != -EIO);
1983 i915_gem_clflush_object(obj, true);
1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 }
1986
1987 if (i915_gem_object_needs_bit17_swizzle(obj))
1988 i915_gem_object_save_bit_17_swizzle(obj);
1989
1990 if (obj->madv == I915_MADV_DONTNEED)
1991 obj->dirty = 0;
1992
1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994 struct page *page = sg_page_iter_page(&sg_iter);
1995
1996 if (obj->dirty)
1997 set_page_dirty(page);
1998
1999 if (obj->madv == I915_MADV_WILLNEED)
2000 mark_page_accessed(page);
2001
2002 page_cache_release(page);
2003 }
2004 obj->dirty = 0;
2005
2006 sg_free_table(obj->pages);
2007 kfree(obj->pages);
2008 }
2009
2010 int
2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012 {
2013 const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2015 if (obj->pages == NULL)
2016 return 0;
2017
2018 if (obj->pages_pin_count)
2019 return -EBUSY;
2020
2021 BUG_ON(i915_gem_obj_bound_any(obj));
2022
2023 /* ->put_pages might need to allocate memory for the bit17 swizzle
2024 * array, hence protect them from being reaped by removing them from gtt
2025 * lists early. */
2026 list_del(&obj->global_list);
2027
2028 ops->put_pages(obj);
2029 obj->pages = NULL;
2030
2031 i915_gem_object_invalidate(obj);
2032
2033 return 0;
2034 }
2035
2036 unsigned long
2037 i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 long target, unsigned flags)
2039 {
2040 const struct {
2041 struct list_head *list;
2042 unsigned int bit;
2043 } phases[] = {
2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 { NULL, 0 },
2047 }, *phase;
2048 unsigned long count = 0;
2049
2050 /*
2051 * As we may completely rewrite the (un)bound list whilst unbinding
2052 * (due to retiring requests) we have to strictly process only
2053 * one element of the list at the time, and recheck the list
2054 * on every iteration.
2055 *
2056 * In particular, we must hold a reference whilst removing the
2057 * object as we may end up waiting for and/or retiring the objects.
2058 * This might release the final reference (held by the active list)
2059 * and result in the object being freed from under us. This is
2060 * similar to the precautions the eviction code must take whilst
2061 * removing objects.
2062 *
2063 * Also note that although these lists do not hold a reference to
2064 * the object we can safely grab one here: The final object
2065 * unreferencing and the bound_list are both protected by the
2066 * dev->struct_mutex and so we won't ever be able to observe an
2067 * object on the bound_list with a reference count equals 0.
2068 */
2069 for (phase = phases; phase->list; phase++) {
2070 struct list_head still_in_list;
2071
2072 if ((flags & phase->bit) == 0)
2073 continue;
2074
2075 INIT_LIST_HEAD(&still_in_list);
2076 while (count < target && !list_empty(phase->list)) {
2077 struct drm_i915_gem_object *obj;
2078 struct i915_vma *vma, *v;
2079
2080 obj = list_first_entry(phase->list,
2081 typeof(*obj), global_list);
2082 list_move_tail(&obj->global_list, &still_in_list);
2083
2084 if (flags & I915_SHRINK_PURGEABLE &&
2085 !i915_gem_object_is_purgeable(obj))
2086 continue;
2087
2088 drm_gem_object_reference(&obj->base);
2089
2090 /* For the unbound phase, this should be a no-op! */
2091 list_for_each_entry_safe(vma, v,
2092 &obj->vma_list, vma_link)
2093 if (i915_vma_unbind(vma))
2094 break;
2095
2096 if (i915_gem_object_put_pages(obj) == 0)
2097 count += obj->base.size >> PAGE_SHIFT;
2098
2099 drm_gem_object_unreference(&obj->base);
2100 }
2101 list_splice(&still_in_list, phase->list);
2102 }
2103
2104 return count;
2105 }
2106
2107 static unsigned long
2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109 {
2110 i915_gem_evict_everything(dev_priv->dev);
2111 return i915_gem_shrink(dev_priv, LONG_MAX,
2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2113 }
2114
2115 static int
2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117 {
2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119 int page_count, i;
2120 struct address_space *mapping;
2121 struct sg_table *st;
2122 struct scatterlist *sg;
2123 struct sg_page_iter sg_iter;
2124 struct page *page;
2125 unsigned long last_pfn = 0; /* suppress gcc warning */
2126 gfp_t gfp;
2127
2128 /* Assert that the object is not currently in any GPU domain. As it
2129 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 * a GPU cache
2131 */
2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
2135 st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 if (st == NULL)
2137 return -ENOMEM;
2138
2139 page_count = obj->base.size / PAGE_SIZE;
2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2141 kfree(st);
2142 return -ENOMEM;
2143 }
2144
2145 /* Get the list of pages out of our struct file. They'll be pinned
2146 * at this point until we release them.
2147 *
2148 * Fail silently without starting the shrinker
2149 */
2150 mapping = file_inode(obj->base.filp)->i_mapping;
2151 gfp = mapping_gfp_mask(mapping);
2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2153 gfp &= ~(__GFP_IO | __GFP_WAIT);
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
2171 i915_gem_shrink_all(dev_priv);
2172 page = shmem_read_mapping_page(mapping, i);
2173 if (IS_ERR(page))
2174 goto err_pages;
2175 }
2176 #ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183 #endif
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196 }
2197 #ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199 #endif
2200 sg_mark_end(sg);
2201 obj->pages = st;
2202
2203 if (i915_gem_object_needs_bit17_swizzle(obj))
2204 i915_gem_object_do_bit_17_swizzle(obj);
2205
2206 if (obj->tiling_mode != I915_TILING_NONE &&
2207 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2208 i915_gem_object_pin_pages(obj);
2209
2210 return 0;
2211
2212 err_pages:
2213 sg_mark_end(sg);
2214 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2215 page_cache_release(sg_page_iter_page(&sg_iter));
2216 sg_free_table(st);
2217 kfree(st);
2218
2219 /* shmemfs first checks if there is enough memory to allocate the page
2220 * and reports ENOSPC should there be insufficient, along with the usual
2221 * ENOMEM for a genuine allocation failure.
2222 *
2223 * We use ENOSPC in our driver to mean that we have run out of aperture
2224 * space and so want to translate the error from shmemfs back to our
2225 * usual understanding of ENOMEM.
2226 */
2227 if (PTR_ERR(page) == -ENOSPC)
2228 return -ENOMEM;
2229 else
2230 return PTR_ERR(page);
2231 }
2232
2233 /* Ensure that the associated pages are gathered from the backing storage
2234 * and pinned into our object. i915_gem_object_get_pages() may be called
2235 * multiple times before they are released by a single call to
2236 * i915_gem_object_put_pages() - once the pages are no longer referenced
2237 * either as a result of memory pressure (reaping pages under the shrinker)
2238 * or as the object is itself released.
2239 */
2240 int
2241 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2242 {
2243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244 const struct drm_i915_gem_object_ops *ops = obj->ops;
2245 int ret;
2246
2247 if (obj->pages)
2248 return 0;
2249
2250 if (obj->madv != I915_MADV_WILLNEED) {
2251 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2252 return -EFAULT;
2253 }
2254
2255 BUG_ON(obj->pages_pin_count);
2256
2257 ret = ops->get_pages(obj);
2258 if (ret)
2259 return ret;
2260
2261 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2262 return 0;
2263 }
2264
2265 static void
2266 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2267 struct intel_engine_cs *ring)
2268 {
2269 struct drm_i915_gem_request *req;
2270 struct intel_engine_cs *old_ring;
2271
2272 BUG_ON(ring == NULL);
2273
2274 req = intel_ring_get_request(ring);
2275 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2276
2277 if (old_ring != ring && obj->last_write_req) {
2278 /* Keep the request relative to the current ring */
2279 i915_gem_request_assign(&obj->last_write_req, req);
2280 }
2281
2282 /* Add a reference if we're newly entering the active list. */
2283 if (!obj->active) {
2284 drm_gem_object_reference(&obj->base);
2285 obj->active = 1;
2286 }
2287
2288 list_move_tail(&obj->ring_list, &ring->active_list);
2289
2290 i915_gem_request_assign(&obj->last_read_req, req);
2291 }
2292
2293 void i915_vma_move_to_active(struct i915_vma *vma,
2294 struct intel_engine_cs *ring)
2295 {
2296 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2297 return i915_gem_object_move_to_active(vma->obj, ring);
2298 }
2299
2300 static void
2301 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2302 {
2303 struct i915_vma *vma;
2304
2305 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2306 BUG_ON(!obj->active);
2307
2308 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2309 if (!list_empty(&vma->mm_list))
2310 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2311 }
2312
2313 intel_fb_obj_flush(obj, true);
2314
2315 list_del_init(&obj->ring_list);
2316
2317 i915_gem_request_assign(&obj->last_read_req, NULL);
2318 i915_gem_request_assign(&obj->last_write_req, NULL);
2319 obj->base.write_domain = 0;
2320
2321 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2322
2323 obj->active = 0;
2324 drm_gem_object_unreference(&obj->base);
2325
2326 WARN_ON(i915_verify_lists(dev));
2327 }
2328
2329 static void
2330 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2331 {
2332 if (obj->last_read_req == NULL)
2333 return;
2334
2335 if (i915_gem_request_completed(obj->last_read_req, true))
2336 i915_gem_object_move_to_inactive(obj);
2337 }
2338
2339 static int
2340 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2341 {
2342 struct drm_i915_private *dev_priv = dev->dev_private;
2343 struct intel_engine_cs *ring;
2344 int ret, i, j;
2345
2346 /* Carefully retire all requests without writing to the rings */
2347 for_each_ring(ring, dev_priv, i) {
2348 ret = intel_ring_idle(ring);
2349 if (ret)
2350 return ret;
2351 }
2352 i915_gem_retire_requests(dev);
2353
2354 /* Finally reset hw state */
2355 for_each_ring(ring, dev_priv, i) {
2356 intel_ring_init_seqno(ring, seqno);
2357
2358 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2359 ring->semaphore.sync_seqno[j] = 0;
2360 }
2361
2362 return 0;
2363 }
2364
2365 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2366 {
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 int ret;
2369
2370 if (seqno == 0)
2371 return -EINVAL;
2372
2373 /* HWS page needs to be set less than what we
2374 * will inject to ring
2375 */
2376 ret = i915_gem_init_seqno(dev, seqno - 1);
2377 if (ret)
2378 return ret;
2379
2380 /* Carefully set the last_seqno value so that wrap
2381 * detection still works
2382 */
2383 dev_priv->next_seqno = seqno;
2384 dev_priv->last_seqno = seqno - 1;
2385 if (dev_priv->last_seqno == 0)
2386 dev_priv->last_seqno--;
2387
2388 return 0;
2389 }
2390
2391 int
2392 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2393 {
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395
2396 /* reserve 0 for non-seqno */
2397 if (dev_priv->next_seqno == 0) {
2398 int ret = i915_gem_init_seqno(dev, 0);
2399 if (ret)
2400 return ret;
2401
2402 dev_priv->next_seqno = 1;
2403 }
2404
2405 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2406 return 0;
2407 }
2408
2409 int __i915_add_request(struct intel_engine_cs *ring,
2410 struct drm_file *file,
2411 struct drm_i915_gem_object *obj)
2412 {
2413 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414 struct drm_i915_gem_request *request;
2415 struct intel_ringbuffer *ringbuf;
2416 u32 request_start;
2417 int ret;
2418
2419 request = ring->outstanding_lazy_request;
2420 if (WARN_ON(request == NULL))
2421 return -ENOMEM;
2422
2423 if (i915.enable_execlists) {
2424 ringbuf = request->ctx->engine[ring->id].ringbuf;
2425 } else
2426 ringbuf = ring->buffer;
2427
2428 request_start = intel_ring_get_tail(ringbuf);
2429 /*
2430 * Emit any outstanding flushes - execbuf can fail to emit the flush
2431 * after having emitted the batchbuffer command. Hence we need to fix
2432 * things up similar to emitting the lazy request. The difference here
2433 * is that the flush _must_ happen before the next request, no matter
2434 * what.
2435 */
2436 if (i915.enable_execlists) {
2437 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2438 if (ret)
2439 return ret;
2440 } else {
2441 ret = intel_ring_flush_all_caches(ring);
2442 if (ret)
2443 return ret;
2444 }
2445
2446 /* Record the position of the start of the request so that
2447 * should we detect the updated seqno part-way through the
2448 * GPU processing the request, we never over-estimate the
2449 * position of the head.
2450 */
2451 request->postfix = intel_ring_get_tail(ringbuf);
2452
2453 if (i915.enable_execlists) {
2454 ret = ring->emit_request(ringbuf, request);
2455 if (ret)
2456 return ret;
2457 } else {
2458 ret = ring->add_request(ring);
2459 if (ret)
2460 return ret;
2461 }
2462
2463 request->head = request_start;
2464 request->tail = intel_ring_get_tail(ringbuf);
2465
2466 /* Whilst this request exists, batch_obj will be on the
2467 * active_list, and so will hold the active reference. Only when this
2468 * request is retired will the the batch_obj be moved onto the
2469 * inactive_list and lose its active reference. Hence we do not need
2470 * to explicitly hold another reference here.
2471 */
2472 request->batch_obj = obj;
2473
2474 if (!i915.enable_execlists) {
2475 /* Hold a reference to the current context so that we can inspect
2476 * it later in case a hangcheck error event fires.
2477 */
2478 request->ctx = ring->last_context;
2479 if (request->ctx)
2480 i915_gem_context_reference(request->ctx);
2481 }
2482
2483 request->emitted_jiffies = jiffies;
2484 list_add_tail(&request->list, &ring->request_list);
2485 request->file_priv = NULL;
2486
2487 if (file) {
2488 struct drm_i915_file_private *file_priv = file->driver_priv;
2489
2490 spin_lock(&file_priv->mm.lock);
2491 request->file_priv = file_priv;
2492 list_add_tail(&request->client_list,
2493 &file_priv->mm.request_list);
2494 spin_unlock(&file_priv->mm.lock);
2495 }
2496
2497 trace_i915_gem_request_add(request);
2498 ring->outstanding_lazy_request = NULL;
2499
2500 i915_queue_hangcheck(ring->dev);
2501
2502 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2503 queue_delayed_work(dev_priv->wq,
2504 &dev_priv->mm.retire_work,
2505 round_jiffies_up_relative(HZ));
2506 intel_mark_busy(dev_priv->dev);
2507
2508 return 0;
2509 }
2510
2511 static inline void
2512 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2513 {
2514 struct drm_i915_file_private *file_priv = request->file_priv;
2515
2516 if (!file_priv)
2517 return;
2518
2519 spin_lock(&file_priv->mm.lock);
2520 list_del(&request->client_list);
2521 request->file_priv = NULL;
2522 spin_unlock(&file_priv->mm.lock);
2523 }
2524
2525 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2526 const struct intel_context *ctx)
2527 {
2528 unsigned long elapsed;
2529
2530 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2531
2532 if (ctx->hang_stats.banned)
2533 return true;
2534
2535 if (ctx->hang_stats.ban_period_seconds &&
2536 elapsed <= ctx->hang_stats.ban_period_seconds) {
2537 if (!i915_gem_context_is_default(ctx)) {
2538 DRM_DEBUG("context hanging too fast, banning!\n");
2539 return true;
2540 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2541 if (i915_stop_ring_allow_warn(dev_priv))
2542 DRM_ERROR("gpu hanging too fast, banning!\n");
2543 return true;
2544 }
2545 }
2546
2547 return false;
2548 }
2549
2550 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2551 struct intel_context *ctx,
2552 const bool guilty)
2553 {
2554 struct i915_ctx_hang_stats *hs;
2555
2556 if (WARN_ON(!ctx))
2557 return;
2558
2559 hs = &ctx->hang_stats;
2560
2561 if (guilty) {
2562 hs->banned = i915_context_is_banned(dev_priv, ctx);
2563 hs->batch_active++;
2564 hs->guilty_ts = get_seconds();
2565 } else {
2566 hs->batch_pending++;
2567 }
2568 }
2569
2570 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2571 {
2572 list_del(&request->list);
2573 i915_gem_request_remove_from_client(request);
2574
2575 i915_gem_request_unreference(request);
2576 }
2577
2578 void i915_gem_request_free(struct kref *req_ref)
2579 {
2580 struct drm_i915_gem_request *req = container_of(req_ref,
2581 typeof(*req), ref);
2582 struct intel_context *ctx = req->ctx;
2583
2584 if (ctx) {
2585 if (i915.enable_execlists) {
2586 struct intel_engine_cs *ring = req->ring;
2587
2588 if (ctx != ring->default_context)
2589 intel_lr_context_unpin(ring, ctx);
2590 }
2591
2592 i915_gem_context_unreference(ctx);
2593 }
2594
2595 kfree(req);
2596 }
2597
2598 struct drm_i915_gem_request *
2599 i915_gem_find_active_request(struct intel_engine_cs *ring)
2600 {
2601 struct drm_i915_gem_request *request;
2602
2603 list_for_each_entry(request, &ring->request_list, list) {
2604 if (i915_gem_request_completed(request, false))
2605 continue;
2606
2607 return request;
2608 }
2609
2610 return NULL;
2611 }
2612
2613 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2614 struct intel_engine_cs *ring)
2615 {
2616 struct drm_i915_gem_request *request;
2617 bool ring_hung;
2618
2619 request = i915_gem_find_active_request(ring);
2620
2621 if (request == NULL)
2622 return;
2623
2624 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2625
2626 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2627
2628 list_for_each_entry_continue(request, &ring->request_list, list)
2629 i915_set_reset_status(dev_priv, request->ctx, false);
2630 }
2631
2632 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2633 struct intel_engine_cs *ring)
2634 {
2635 while (!list_empty(&ring->active_list)) {
2636 struct drm_i915_gem_object *obj;
2637
2638 obj = list_first_entry(&ring->active_list,
2639 struct drm_i915_gem_object,
2640 ring_list);
2641
2642 i915_gem_object_move_to_inactive(obj);
2643 }
2644
2645 /*
2646 * Clear the execlists queue up before freeing the requests, as those
2647 * are the ones that keep the context and ringbuffer backing objects
2648 * pinned in place.
2649 */
2650 while (!list_empty(&ring->execlist_queue)) {
2651 struct drm_i915_gem_request *submit_req;
2652
2653 submit_req = list_first_entry(&ring->execlist_queue,
2654 struct drm_i915_gem_request,
2655 execlist_link);
2656 list_del(&submit_req->execlist_link);
2657 intel_runtime_pm_put(dev_priv);
2658
2659 if (submit_req->ctx != ring->default_context)
2660 intel_lr_context_unpin(ring, submit_req->ctx);
2661
2662 i915_gem_request_unreference(submit_req);
2663 }
2664
2665 /*
2666 * We must free the requests after all the corresponding objects have
2667 * been moved off active lists. Which is the same order as the normal
2668 * retire_requests function does. This is important if object hold
2669 * implicit references on things like e.g. ppgtt address spaces through
2670 * the request.
2671 */
2672 while (!list_empty(&ring->request_list)) {
2673 struct drm_i915_gem_request *request;
2674
2675 request = list_first_entry(&ring->request_list,
2676 struct drm_i915_gem_request,
2677 list);
2678
2679 i915_gem_free_request(request);
2680 }
2681
2682 /* This may not have been flushed before the reset, so clean it now */
2683 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2684 }
2685
2686 void i915_gem_restore_fences(struct drm_device *dev)
2687 {
2688 struct drm_i915_private *dev_priv = dev->dev_private;
2689 int i;
2690
2691 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2692 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2693
2694 /*
2695 * Commit delayed tiling changes if we have an object still
2696 * attached to the fence, otherwise just clear the fence.
2697 */
2698 if (reg->obj) {
2699 i915_gem_object_update_fence(reg->obj, reg,
2700 reg->obj->tiling_mode);
2701 } else {
2702 i915_gem_write_fence(dev, i, NULL);
2703 }
2704 }
2705 }
2706
2707 void i915_gem_reset(struct drm_device *dev)
2708 {
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 struct intel_engine_cs *ring;
2711 int i;
2712
2713 /*
2714 * Before we free the objects from the requests, we need to inspect
2715 * them for finding the guilty party. As the requests only borrow
2716 * their reference to the objects, the inspection must be done first.
2717 */
2718 for_each_ring(ring, dev_priv, i)
2719 i915_gem_reset_ring_status(dev_priv, ring);
2720
2721 for_each_ring(ring, dev_priv, i)
2722 i915_gem_reset_ring_cleanup(dev_priv, ring);
2723
2724 i915_gem_context_reset(dev);
2725
2726 i915_gem_restore_fences(dev);
2727 }
2728
2729 /**
2730 * This function clears the request list as sequence numbers are passed.
2731 */
2732 void
2733 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2734 {
2735 if (list_empty(&ring->request_list))
2736 return;
2737
2738 WARN_ON(i915_verify_lists(ring->dev));
2739
2740 /* Retire requests first as we use it above for the early return.
2741 * If we retire requests last, we may use a later seqno and so clear
2742 * the requests lists without clearing the active list, leading to
2743 * confusion.
2744 */
2745 while (!list_empty(&ring->request_list)) {
2746 struct drm_i915_gem_request *request;
2747 struct intel_ringbuffer *ringbuf;
2748
2749 request = list_first_entry(&ring->request_list,
2750 struct drm_i915_gem_request,
2751 list);
2752
2753 if (!i915_gem_request_completed(request, true))
2754 break;
2755
2756 trace_i915_gem_request_retire(request);
2757
2758 /* This is one of the few common intersection points
2759 * between legacy ringbuffer submission and execlists:
2760 * we need to tell them apart in order to find the correct
2761 * ringbuffer to which the request belongs to.
2762 */
2763 if (i915.enable_execlists) {
2764 struct intel_context *ctx = request->ctx;
2765 ringbuf = ctx->engine[ring->id].ringbuf;
2766 } else
2767 ringbuf = ring->buffer;
2768
2769 /* We know the GPU must have read the request to have
2770 * sent us the seqno + interrupt, so use the position
2771 * of tail of the request to update the last known position
2772 * of the GPU head.
2773 */
2774 ringbuf->last_retired_head = request->postfix;
2775
2776 i915_gem_free_request(request);
2777 }
2778
2779 /* Move any buffers on the active list that are no longer referenced
2780 * by the ringbuffer to the flushing/inactive lists as appropriate,
2781 * before we free the context associated with the requests.
2782 */
2783 while (!list_empty(&ring->active_list)) {
2784 struct drm_i915_gem_object *obj;
2785
2786 obj = list_first_entry(&ring->active_list,
2787 struct drm_i915_gem_object,
2788 ring_list);
2789
2790 if (!i915_gem_request_completed(obj->last_read_req, true))
2791 break;
2792
2793 i915_gem_object_move_to_inactive(obj);
2794 }
2795
2796 if (unlikely(ring->trace_irq_req &&
2797 i915_gem_request_completed(ring->trace_irq_req, true))) {
2798 ring->irq_put(ring);
2799 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2800 }
2801
2802 WARN_ON(i915_verify_lists(ring->dev));
2803 }
2804
2805 bool
2806 i915_gem_retire_requests(struct drm_device *dev)
2807 {
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 struct intel_engine_cs *ring;
2810 bool idle = true;
2811 int i;
2812
2813 for_each_ring(ring, dev_priv, i) {
2814 i915_gem_retire_requests_ring(ring);
2815 idle &= list_empty(&ring->request_list);
2816 if (i915.enable_execlists) {
2817 unsigned long flags;
2818
2819 spin_lock_irqsave(&ring->execlist_lock, flags);
2820 idle &= list_empty(&ring->execlist_queue);
2821 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2822
2823 intel_execlists_retire_requests(ring);
2824 }
2825 }
2826
2827 if (idle)
2828 mod_delayed_work(dev_priv->wq,
2829 &dev_priv->mm.idle_work,
2830 msecs_to_jiffies(100));
2831
2832 return idle;
2833 }
2834
2835 static void
2836 i915_gem_retire_work_handler(struct work_struct *work)
2837 {
2838 struct drm_i915_private *dev_priv =
2839 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2840 struct drm_device *dev = dev_priv->dev;
2841 bool idle;
2842
2843 /* Come back later if the device is busy... */
2844 idle = false;
2845 if (mutex_trylock(&dev->struct_mutex)) {
2846 idle = i915_gem_retire_requests(dev);
2847 mutex_unlock(&dev->struct_mutex);
2848 }
2849 if (!idle)
2850 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2851 round_jiffies_up_relative(HZ));
2852 }
2853
2854 static void
2855 i915_gem_idle_work_handler(struct work_struct *work)
2856 {
2857 struct drm_i915_private *dev_priv =
2858 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2859
2860 intel_mark_idle(dev_priv->dev);
2861 }
2862
2863 /**
2864 * Ensures that an object will eventually get non-busy by flushing any required
2865 * write domains, emitting any outstanding lazy request and retiring and
2866 * completed requests.
2867 */
2868 static int
2869 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2870 {
2871 struct intel_engine_cs *ring;
2872 int ret;
2873
2874 if (obj->active) {
2875 ring = i915_gem_request_get_ring(obj->last_read_req);
2876
2877 ret = i915_gem_check_olr(obj->last_read_req);
2878 if (ret)
2879 return ret;
2880
2881 i915_gem_retire_requests_ring(ring);
2882 }
2883
2884 return 0;
2885 }
2886
2887 /**
2888 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2889 * @DRM_IOCTL_ARGS: standard ioctl arguments
2890 *
2891 * Returns 0 if successful, else an error is returned with the remaining time in
2892 * the timeout parameter.
2893 * -ETIME: object is still busy after timeout
2894 * -ERESTARTSYS: signal interrupted the wait
2895 * -ENONENT: object doesn't exist
2896 * Also possible, but rare:
2897 * -EAGAIN: GPU wedged
2898 * -ENOMEM: damn
2899 * -ENODEV: Internal IRQ fail
2900 * -E?: The add request failed
2901 *
2902 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2903 * non-zero timeout parameter the wait ioctl will wait for the given number of
2904 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2905 * without holding struct_mutex the object may become re-busied before this
2906 * function completes. A similar but shorter * race condition exists in the busy
2907 * ioctl
2908 */
2909 int
2910 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2911 {
2912 struct drm_i915_private *dev_priv = dev->dev_private;
2913 struct drm_i915_gem_wait *args = data;
2914 struct drm_i915_gem_object *obj;
2915 struct drm_i915_gem_request *req;
2916 unsigned reset_counter;
2917 int ret = 0;
2918
2919 if (args->flags != 0)
2920 return -EINVAL;
2921
2922 ret = i915_mutex_lock_interruptible(dev);
2923 if (ret)
2924 return ret;
2925
2926 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2927 if (&obj->base == NULL) {
2928 mutex_unlock(&dev->struct_mutex);
2929 return -ENOENT;
2930 }
2931
2932 /* Need to make sure the object gets inactive eventually. */
2933 ret = i915_gem_object_flush_active(obj);
2934 if (ret)
2935 goto out;
2936
2937 if (!obj->active || !obj->last_read_req)
2938 goto out;
2939
2940 req = obj->last_read_req;
2941
2942 /* Do this after OLR check to make sure we make forward progress polling
2943 * on this IOCTL with a timeout == 0 (like busy ioctl)
2944 */
2945 if (args->timeout_ns == 0) {
2946 ret = -ETIME;
2947 goto out;
2948 }
2949
2950 drm_gem_object_unreference(&obj->base);
2951 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2952 i915_gem_request_reference(req);
2953 mutex_unlock(&dev->struct_mutex);
2954
2955 ret = __i915_wait_request(req, reset_counter, true,
2956 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2957 file->driver_priv);
2958 mutex_lock(&dev->struct_mutex);
2959 i915_gem_request_unreference(req);
2960 mutex_unlock(&dev->struct_mutex);
2961 return ret;
2962
2963 out:
2964 drm_gem_object_unreference(&obj->base);
2965 mutex_unlock(&dev->struct_mutex);
2966 return ret;
2967 }
2968
2969 /**
2970 * i915_gem_object_sync - sync an object to a ring.
2971 *
2972 * @obj: object which may be in use on another ring.
2973 * @to: ring we wish to use the object on. May be NULL.
2974 *
2975 * This code is meant to abstract object synchronization with the GPU.
2976 * Calling with NULL implies synchronizing the object with the CPU
2977 * rather than a particular GPU ring.
2978 *
2979 * Returns 0 if successful, else propagates up the lower layer error.
2980 */
2981 int
2982 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2983 struct intel_engine_cs *to)
2984 {
2985 struct intel_engine_cs *from;
2986 u32 seqno;
2987 int ret, idx;
2988
2989 from = i915_gem_request_get_ring(obj->last_read_req);
2990
2991 if (from == NULL || to == from)
2992 return 0;
2993
2994 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2995 return i915_gem_object_wait_rendering(obj, false);
2996
2997 idx = intel_ring_sync_index(from, to);
2998
2999 seqno = i915_gem_request_get_seqno(obj->last_read_req);
3000 /* Optimization: Avoid semaphore sync when we are sure we already
3001 * waited for an object with higher seqno */
3002 if (seqno <= from->semaphore.sync_seqno[idx])
3003 return 0;
3004
3005 ret = i915_gem_check_olr(obj->last_read_req);
3006 if (ret)
3007 return ret;
3008
3009 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3010 ret = to->semaphore.sync_to(to, from, seqno);
3011 if (!ret)
3012 /* We use last_read_req because sync_to()
3013 * might have just caused seqno wrap under
3014 * the radar.
3015 */
3016 from->semaphore.sync_seqno[idx] =
3017 i915_gem_request_get_seqno(obj->last_read_req);
3018
3019 return ret;
3020 }
3021
3022 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3023 {
3024 u32 old_write_domain, old_read_domains;
3025
3026 /* Force a pagefault for domain tracking on next user access */
3027 i915_gem_release_mmap(obj);
3028
3029 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3030 return;
3031
3032 /* Wait for any direct GTT access to complete */
3033 mb();
3034
3035 old_read_domains = obj->base.read_domains;
3036 old_write_domain = obj->base.write_domain;
3037
3038 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3039 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3040
3041 trace_i915_gem_object_change_domain(obj,
3042 old_read_domains,
3043 old_write_domain);
3044 }
3045
3046 int i915_vma_unbind(struct i915_vma *vma)
3047 {
3048 struct drm_i915_gem_object *obj = vma->obj;
3049 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3050 int ret;
3051
3052 if (list_empty(&vma->vma_link))
3053 return 0;
3054
3055 if (!drm_mm_node_allocated(&vma->node)) {
3056 i915_gem_vma_destroy(vma);
3057 return 0;
3058 }
3059
3060 if (vma->pin_count)
3061 return -EBUSY;
3062
3063 BUG_ON(obj->pages == NULL);
3064
3065 ret = i915_gem_object_finish_gpu(obj);
3066 if (ret)
3067 return ret;
3068 /* Continue on if we fail due to EIO, the GPU is hung so we
3069 * should be safe and we need to cleanup or else we might
3070 * cause memory corruption through use-after-free.
3071 */
3072
3073 if (i915_is_ggtt(vma->vm) &&
3074 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3075 i915_gem_object_finish_gtt(obj);
3076
3077 /* release the fence reg _after_ flushing */
3078 ret = i915_gem_object_put_fence(obj);
3079 if (ret)
3080 return ret;
3081 }
3082
3083 trace_i915_vma_unbind(vma);
3084
3085 vma->unbind_vma(vma);
3086
3087 list_del_init(&vma->mm_list);
3088 if (i915_is_ggtt(vma->vm)) {
3089 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3090 obj->map_and_fenceable = false;
3091 } else if (vma->ggtt_view.pages) {
3092 sg_free_table(vma->ggtt_view.pages);
3093 kfree(vma->ggtt_view.pages);
3094 vma->ggtt_view.pages = NULL;
3095 }
3096 }
3097
3098 drm_mm_remove_node(&vma->node);
3099 i915_gem_vma_destroy(vma);
3100
3101 /* Since the unbound list is global, only move to that list if
3102 * no more VMAs exist. */
3103 if (list_empty(&obj->vma_list)) {
3104 /* Throw away the active reference before
3105 * moving to the unbound list. */
3106 i915_gem_object_retire(obj);
3107
3108 i915_gem_gtt_finish_object(obj);
3109 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3110 }
3111
3112 /* And finally now the object is completely decoupled from this vma,
3113 * we can drop its hold on the backing storage and allow it to be
3114 * reaped by the shrinker.
3115 */
3116 i915_gem_object_unpin_pages(obj);
3117
3118 return 0;
3119 }
3120
3121 int i915_gpu_idle(struct drm_device *dev)
3122 {
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124 struct intel_engine_cs *ring;
3125 int ret, i;
3126
3127 /* Flush everything onto the inactive list. */
3128 for_each_ring(ring, dev_priv, i) {
3129 if (!i915.enable_execlists) {
3130 ret = i915_switch_context(ring, ring->default_context);
3131 if (ret)
3132 return ret;
3133 }
3134
3135 ret = intel_ring_idle(ring);
3136 if (ret)
3137 return ret;
3138 }
3139
3140 return 0;
3141 }
3142
3143 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3144 struct drm_i915_gem_object *obj)
3145 {
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int fence_reg;
3148 int fence_pitch_shift;
3149
3150 if (INTEL_INFO(dev)->gen >= 6) {
3151 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3152 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3153 } else {
3154 fence_reg = FENCE_REG_965_0;
3155 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3156 }
3157
3158 fence_reg += reg * 8;
3159
3160 /* To w/a incoherency with non-atomic 64-bit register updates,
3161 * we split the 64-bit update into two 32-bit writes. In order
3162 * for a partial fence not to be evaluated between writes, we
3163 * precede the update with write to turn off the fence register,
3164 * and only enable the fence as the last step.
3165 *
3166 * For extra levels of paranoia, we make sure each step lands
3167 * before applying the next step.
3168 */
3169 I915_WRITE(fence_reg, 0);
3170 POSTING_READ(fence_reg);
3171
3172 if (obj) {
3173 u32 size = i915_gem_obj_ggtt_size(obj);
3174 uint64_t val;
3175
3176 /* Adjust fence size to match tiled area */
3177 if (obj->tiling_mode != I915_TILING_NONE) {
3178 uint32_t row_size = obj->stride *
3179 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3180 size = (size / row_size) * row_size;
3181 }
3182
3183 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3184 0xfffff000) << 32;
3185 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3186 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3187 if (obj->tiling_mode == I915_TILING_Y)
3188 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3189 val |= I965_FENCE_REG_VALID;
3190
3191 I915_WRITE(fence_reg + 4, val >> 32);
3192 POSTING_READ(fence_reg + 4);
3193
3194 I915_WRITE(fence_reg + 0, val);
3195 POSTING_READ(fence_reg);
3196 } else {
3197 I915_WRITE(fence_reg + 4, 0);
3198 POSTING_READ(fence_reg + 4);
3199 }
3200 }
3201
3202 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3203 struct drm_i915_gem_object *obj)
3204 {
3205 struct drm_i915_private *dev_priv = dev->dev_private;
3206 u32 val;
3207
3208 if (obj) {
3209 u32 size = i915_gem_obj_ggtt_size(obj);
3210 int pitch_val;
3211 int tile_width;
3212
3213 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3214 (size & -size) != size ||
3215 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3216 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3217 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3218
3219 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3220 tile_width = 128;
3221 else
3222 tile_width = 512;
3223
3224 /* Note: pitch better be a power of two tile widths */
3225 pitch_val = obj->stride / tile_width;
3226 pitch_val = ffs(pitch_val) - 1;
3227
3228 val = i915_gem_obj_ggtt_offset(obj);
3229 if (obj->tiling_mode == I915_TILING_Y)
3230 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3231 val |= I915_FENCE_SIZE_BITS(size);
3232 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3233 val |= I830_FENCE_REG_VALID;
3234 } else
3235 val = 0;
3236
3237 if (reg < 8)
3238 reg = FENCE_REG_830_0 + reg * 4;
3239 else
3240 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3241
3242 I915_WRITE(reg, val);
3243 POSTING_READ(reg);
3244 }
3245
3246 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3247 struct drm_i915_gem_object *obj)
3248 {
3249 struct drm_i915_private *dev_priv = dev->dev_private;
3250 uint32_t val;
3251
3252 if (obj) {
3253 u32 size = i915_gem_obj_ggtt_size(obj);
3254 uint32_t pitch_val;
3255
3256 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3257 (size & -size) != size ||
3258 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3259 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3260 i915_gem_obj_ggtt_offset(obj), size);
3261
3262 pitch_val = obj->stride / 128;
3263 pitch_val = ffs(pitch_val) - 1;
3264
3265 val = i915_gem_obj_ggtt_offset(obj);
3266 if (obj->tiling_mode == I915_TILING_Y)
3267 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3268 val |= I830_FENCE_SIZE_BITS(size);
3269 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3270 val |= I830_FENCE_REG_VALID;
3271 } else
3272 val = 0;
3273
3274 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3275 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3276 }
3277
3278 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3279 {
3280 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3281 }
3282
3283 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3284 struct drm_i915_gem_object *obj)
3285 {
3286 struct drm_i915_private *dev_priv = dev->dev_private;
3287
3288 /* Ensure that all CPU reads are completed before installing a fence
3289 * and all writes before removing the fence.
3290 */
3291 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3292 mb();
3293
3294 WARN(obj && (!obj->stride || !obj->tiling_mode),
3295 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3296 obj->stride, obj->tiling_mode);
3297
3298 if (IS_GEN2(dev))
3299 i830_write_fence_reg(dev, reg, obj);
3300 else if (IS_GEN3(dev))
3301 i915_write_fence_reg(dev, reg, obj);
3302 else if (INTEL_INFO(dev)->gen >= 4)
3303 i965_write_fence_reg(dev, reg, obj);
3304
3305 /* And similarly be paranoid that no direct access to this region
3306 * is reordered to before the fence is installed.
3307 */
3308 if (i915_gem_object_needs_mb(obj))
3309 mb();
3310 }
3311
3312 static inline int fence_number(struct drm_i915_private *dev_priv,
3313 struct drm_i915_fence_reg *fence)
3314 {
3315 return fence - dev_priv->fence_regs;
3316 }
3317
3318 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3319 struct drm_i915_fence_reg *fence,
3320 bool enable)
3321 {
3322 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3323 int reg = fence_number(dev_priv, fence);
3324
3325 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3326
3327 if (enable) {
3328 obj->fence_reg = reg;
3329 fence->obj = obj;
3330 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3331 } else {
3332 obj->fence_reg = I915_FENCE_REG_NONE;
3333 fence->obj = NULL;
3334 list_del_init(&fence->lru_list);
3335 }
3336 obj->fence_dirty = false;
3337 }
3338
3339 static int
3340 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3341 {
3342 if (obj->last_fenced_req) {
3343 int ret = i915_wait_request(obj->last_fenced_req);
3344 if (ret)
3345 return ret;
3346
3347 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3348 }
3349
3350 return 0;
3351 }
3352
3353 int
3354 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3355 {
3356 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3357 struct drm_i915_fence_reg *fence;
3358 int ret;
3359
3360 ret = i915_gem_object_wait_fence(obj);
3361 if (ret)
3362 return ret;
3363
3364 if (obj->fence_reg == I915_FENCE_REG_NONE)
3365 return 0;
3366
3367 fence = &dev_priv->fence_regs[obj->fence_reg];
3368
3369 if (WARN_ON(fence->pin_count))
3370 return -EBUSY;
3371
3372 i915_gem_object_fence_lost(obj);
3373 i915_gem_object_update_fence(obj, fence, false);
3374
3375 return 0;
3376 }
3377
3378 static struct drm_i915_fence_reg *
3379 i915_find_fence_reg(struct drm_device *dev)
3380 {
3381 struct drm_i915_private *dev_priv = dev->dev_private;
3382 struct drm_i915_fence_reg *reg, *avail;
3383 int i;
3384
3385 /* First try to find a free reg */
3386 avail = NULL;
3387 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3388 reg = &dev_priv->fence_regs[i];
3389 if (!reg->obj)
3390 return reg;
3391
3392 if (!reg->pin_count)
3393 avail = reg;
3394 }
3395
3396 if (avail == NULL)
3397 goto deadlock;
3398
3399 /* None available, try to steal one or wait for a user to finish */
3400 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3401 if (reg->pin_count)
3402 continue;
3403
3404 return reg;
3405 }
3406
3407 deadlock:
3408 /* Wait for completion of pending flips which consume fences */
3409 if (intel_has_pending_fb_unpin(dev))
3410 return ERR_PTR(-EAGAIN);
3411
3412 return ERR_PTR(-EDEADLK);
3413 }
3414
3415 /**
3416 * i915_gem_object_get_fence - set up fencing for an object
3417 * @obj: object to map through a fence reg
3418 *
3419 * When mapping objects through the GTT, userspace wants to be able to write
3420 * to them without having to worry about swizzling if the object is tiled.
3421 * This function walks the fence regs looking for a free one for @obj,
3422 * stealing one if it can't find any.
3423 *
3424 * It then sets up the reg based on the object's properties: address, pitch
3425 * and tiling format.
3426 *
3427 * For an untiled surface, this removes any existing fence.
3428 */
3429 int
3430 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3431 {
3432 struct drm_device *dev = obj->base.dev;
3433 struct drm_i915_private *dev_priv = dev->dev_private;
3434 bool enable = obj->tiling_mode != I915_TILING_NONE;
3435 struct drm_i915_fence_reg *reg;
3436 int ret;
3437
3438 /* Have we updated the tiling parameters upon the object and so
3439 * will need to serialise the write to the associated fence register?
3440 */
3441 if (obj->fence_dirty) {
3442 ret = i915_gem_object_wait_fence(obj);
3443 if (ret)
3444 return ret;
3445 }
3446
3447 /* Just update our place in the LRU if our fence is getting reused. */
3448 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3449 reg = &dev_priv->fence_regs[obj->fence_reg];
3450 if (!obj->fence_dirty) {
3451 list_move_tail(&reg->lru_list,
3452 &dev_priv->mm.fence_list);
3453 return 0;
3454 }
3455 } else if (enable) {
3456 if (WARN_ON(!obj->map_and_fenceable))
3457 return -EINVAL;
3458
3459 reg = i915_find_fence_reg(dev);
3460 if (IS_ERR(reg))
3461 return PTR_ERR(reg);
3462
3463 if (reg->obj) {
3464 struct drm_i915_gem_object *old = reg->obj;
3465
3466 ret = i915_gem_object_wait_fence(old);
3467 if (ret)
3468 return ret;
3469
3470 i915_gem_object_fence_lost(old);
3471 }
3472 } else
3473 return 0;
3474
3475 i915_gem_object_update_fence(obj, reg, enable);
3476
3477 return 0;
3478 }
3479
3480 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3481 unsigned long cache_level)
3482 {
3483 struct drm_mm_node *gtt_space = &vma->node;
3484 struct drm_mm_node *other;
3485
3486 /*
3487 * On some machines we have to be careful when putting differing types
3488 * of snoopable memory together to avoid the prefetcher crossing memory
3489 * domains and dying. During vm initialisation, we decide whether or not
3490 * these constraints apply and set the drm_mm.color_adjust
3491 * appropriately.
3492 */
3493 if (vma->vm->mm.color_adjust == NULL)
3494 return true;
3495
3496 if (!drm_mm_node_allocated(gtt_space))
3497 return true;
3498
3499 if (list_empty(&gtt_space->node_list))
3500 return true;
3501
3502 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3503 if (other->allocated && !other->hole_follows && other->color != cache_level)
3504 return false;
3505
3506 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3507 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3508 return false;
3509
3510 return true;
3511 }
3512
3513 /**
3514 * Finds free space in the GTT aperture and binds the object there.
3515 */
3516 static struct i915_vma *
3517 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3518 struct i915_address_space *vm,
3519 unsigned alignment,
3520 uint64_t flags,
3521 const struct i915_ggtt_view *view)
3522 {
3523 struct drm_device *dev = obj->base.dev;
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 u32 size, fence_size, fence_alignment, unfenced_alignment;
3526 unsigned long start =
3527 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3528 unsigned long end =
3529 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3530 struct i915_vma *vma;
3531 int ret;
3532
3533 fence_size = i915_gem_get_gtt_size(dev,
3534 obj->base.size,
3535 obj->tiling_mode);
3536 fence_alignment = i915_gem_get_gtt_alignment(dev,
3537 obj->base.size,
3538 obj->tiling_mode, true);
3539 unfenced_alignment =
3540 i915_gem_get_gtt_alignment(dev,
3541 obj->base.size,
3542 obj->tiling_mode, false);
3543
3544 if (alignment == 0)
3545 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3546 unfenced_alignment;
3547 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3548 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3549 return ERR_PTR(-EINVAL);
3550 }
3551
3552 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3553
3554 /* If the object is bigger than the entire aperture, reject it early
3555 * before evicting everything in a vain attempt to find space.
3556 */
3557 if (obj->base.size > end) {
3558 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3559 obj->base.size,
3560 flags & PIN_MAPPABLE ? "mappable" : "total",
3561 end);
3562 return ERR_PTR(-E2BIG);
3563 }
3564
3565 ret = i915_gem_object_get_pages(obj);
3566 if (ret)
3567 return ERR_PTR(ret);
3568
3569 i915_gem_object_pin_pages(obj);
3570
3571 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3572 if (IS_ERR(vma))
3573 goto err_unpin;
3574
3575 search_free:
3576 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3577 size, alignment,
3578 obj->cache_level,
3579 start, end,
3580 DRM_MM_SEARCH_DEFAULT,
3581 DRM_MM_CREATE_DEFAULT);
3582 if (ret) {
3583 ret = i915_gem_evict_something(dev, vm, size, alignment,
3584 obj->cache_level,
3585 start, end,
3586 flags);
3587 if (ret == 0)
3588 goto search_free;
3589
3590 goto err_free_vma;
3591 }
3592 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3593 ret = -EINVAL;
3594 goto err_remove_node;
3595 }
3596
3597 ret = i915_gem_gtt_prepare_object(obj);
3598 if (ret)
3599 goto err_remove_node;
3600
3601 trace_i915_vma_bind(vma, flags);
3602 ret = i915_vma_bind(vma, obj->cache_level,
3603 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3604 if (ret)
3605 goto err_finish_gtt;
3606
3607 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3608 list_add_tail(&vma->mm_list, &vm->inactive_list);
3609
3610 return vma;
3611
3612 err_finish_gtt:
3613 i915_gem_gtt_finish_object(obj);
3614 err_remove_node:
3615 drm_mm_remove_node(&vma->node);
3616 err_free_vma:
3617 i915_gem_vma_destroy(vma);
3618 vma = ERR_PTR(ret);
3619 err_unpin:
3620 i915_gem_object_unpin_pages(obj);
3621 return vma;
3622 }
3623
3624 bool
3625 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3626 bool force)
3627 {
3628 /* If we don't have a page list set up, then we're not pinned
3629 * to GPU, and we can ignore the cache flush because it'll happen
3630 * again at bind time.
3631 */
3632 if (obj->pages == NULL)
3633 return false;
3634
3635 /*
3636 * Stolen memory is always coherent with the GPU as it is explicitly
3637 * marked as wc by the system, or the system is cache-coherent.
3638 */
3639 if (obj->stolen || obj->phys_handle)
3640 return false;
3641
3642 /* If the GPU is snooping the contents of the CPU cache,
3643 * we do not need to manually clear the CPU cache lines. However,
3644 * the caches are only snooped when the render cache is
3645 * flushed/invalidated. As we always have to emit invalidations
3646 * and flushes when moving into and out of the RENDER domain, correct
3647 * snooping behaviour occurs naturally as the result of our domain
3648 * tracking.
3649 */
3650 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3651 obj->cache_dirty = true;
3652 return false;
3653 }
3654
3655 trace_i915_gem_object_clflush(obj);
3656 drm_clflush_sg(obj->pages);
3657 obj->cache_dirty = false;
3658
3659 return true;
3660 }
3661
3662 /** Flushes the GTT write domain for the object if it's dirty. */
3663 static void
3664 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3665 {
3666 uint32_t old_write_domain;
3667
3668 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3669 return;
3670
3671 /* No actual flushing is required for the GTT write domain. Writes
3672 * to it immediately go to main memory as far as we know, so there's
3673 * no chipset flush. It also doesn't land in render cache.
3674 *
3675 * However, we do have to enforce the order so that all writes through
3676 * the GTT land before any writes to the device, such as updates to
3677 * the GATT itself.
3678 */
3679 wmb();
3680
3681 old_write_domain = obj->base.write_domain;
3682 obj->base.write_domain = 0;
3683
3684 intel_fb_obj_flush(obj, false);
3685
3686 trace_i915_gem_object_change_domain(obj,
3687 obj->base.read_domains,
3688 old_write_domain);
3689 }
3690
3691 /** Flushes the CPU write domain for the object if it's dirty. */
3692 static void
3693 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3694 {
3695 uint32_t old_write_domain;
3696
3697 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3698 return;
3699
3700 if (i915_gem_clflush_object(obj, obj->pin_display))
3701 i915_gem_chipset_flush(obj->base.dev);
3702
3703 old_write_domain = obj->base.write_domain;
3704 obj->base.write_domain = 0;
3705
3706 intel_fb_obj_flush(obj, false);
3707
3708 trace_i915_gem_object_change_domain(obj,
3709 obj->base.read_domains,
3710 old_write_domain);
3711 }
3712
3713 /**
3714 * Moves a single object to the GTT read, and possibly write domain.
3715 *
3716 * This function returns when the move is complete, including waiting on
3717 * flushes to occur.
3718 */
3719 int
3720 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3721 {
3722 uint32_t old_write_domain, old_read_domains;
3723 struct i915_vma *vma;
3724 int ret;
3725
3726 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3727 return 0;
3728
3729 ret = i915_gem_object_wait_rendering(obj, !write);
3730 if (ret)
3731 return ret;
3732
3733 i915_gem_object_retire(obj);
3734
3735 /* Flush and acquire obj->pages so that we are coherent through
3736 * direct access in memory with previous cached writes through
3737 * shmemfs and that our cache domain tracking remains valid.
3738 * For example, if the obj->filp was moved to swap without us
3739 * being notified and releasing the pages, we would mistakenly
3740 * continue to assume that the obj remained out of the CPU cached
3741 * domain.
3742 */
3743 ret = i915_gem_object_get_pages(obj);
3744 if (ret)
3745 return ret;
3746
3747 i915_gem_object_flush_cpu_write_domain(obj);
3748
3749 /* Serialise direct access to this object with the barriers for
3750 * coherent writes from the GPU, by effectively invalidating the
3751 * GTT domain upon first access.
3752 */
3753 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3754 mb();
3755
3756 old_write_domain = obj->base.write_domain;
3757 old_read_domains = obj->base.read_domains;
3758
3759 /* It should now be out of any other write domains, and we can update
3760 * the domain values for our changes.
3761 */
3762 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3763 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3764 if (write) {
3765 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3766 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3767 obj->dirty = 1;
3768 }
3769
3770 if (write)
3771 intel_fb_obj_invalidate(obj, NULL);
3772
3773 trace_i915_gem_object_change_domain(obj,
3774 old_read_domains,
3775 old_write_domain);
3776
3777 /* And bump the LRU for this access */
3778 vma = i915_gem_obj_to_ggtt(obj);
3779 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3780 list_move_tail(&vma->mm_list,
3781 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3782
3783 return 0;
3784 }
3785
3786 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3787 enum i915_cache_level cache_level)
3788 {
3789 struct drm_device *dev = obj->base.dev;
3790 struct i915_vma *vma, *next;
3791 int ret;
3792
3793 if (obj->cache_level == cache_level)
3794 return 0;
3795
3796 if (i915_gem_obj_is_pinned(obj)) {
3797 DRM_DEBUG("can not change the cache level of pinned objects\n");
3798 return -EBUSY;
3799 }
3800
3801 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3802 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3803 ret = i915_vma_unbind(vma);
3804 if (ret)
3805 return ret;
3806 }
3807 }
3808
3809 if (i915_gem_obj_bound_any(obj)) {
3810 ret = i915_gem_object_finish_gpu(obj);
3811 if (ret)
3812 return ret;
3813
3814 i915_gem_object_finish_gtt(obj);
3815
3816 /* Before SandyBridge, you could not use tiling or fence
3817 * registers with snooped memory, so relinquish any fences
3818 * currently pointing to our region in the aperture.
3819 */
3820 if (INTEL_INFO(dev)->gen < 6) {
3821 ret = i915_gem_object_put_fence(obj);
3822 if (ret)
3823 return ret;
3824 }
3825
3826 list_for_each_entry(vma, &obj->vma_list, vma_link)
3827 if (drm_mm_node_allocated(&vma->node)) {
3828 ret = i915_vma_bind(vma, cache_level,
3829 vma->bound & GLOBAL_BIND);
3830 if (ret)
3831 return ret;
3832 }
3833 }
3834
3835 list_for_each_entry(vma, &obj->vma_list, vma_link)
3836 vma->node.color = cache_level;
3837 obj->cache_level = cache_level;
3838
3839 if (obj->cache_dirty &&
3840 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3841 cpu_write_needs_clflush(obj)) {
3842 if (i915_gem_clflush_object(obj, true))
3843 i915_gem_chipset_flush(obj->base.dev);
3844 }
3845
3846 return 0;
3847 }
3848
3849 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3850 struct drm_file *file)
3851 {
3852 struct drm_i915_gem_caching *args = data;
3853 struct drm_i915_gem_object *obj;
3854 int ret;
3855
3856 ret = i915_mutex_lock_interruptible(dev);
3857 if (ret)
3858 return ret;
3859
3860 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3861 if (&obj->base == NULL) {
3862 ret = -ENOENT;
3863 goto unlock;
3864 }
3865
3866 switch (obj->cache_level) {
3867 case I915_CACHE_LLC:
3868 case I915_CACHE_L3_LLC:
3869 args->caching = I915_CACHING_CACHED;
3870 break;
3871
3872 case I915_CACHE_WT:
3873 args->caching = I915_CACHING_DISPLAY;
3874 break;
3875
3876 default:
3877 args->caching = I915_CACHING_NONE;
3878 break;
3879 }
3880
3881 drm_gem_object_unreference(&obj->base);
3882 unlock:
3883 mutex_unlock(&dev->struct_mutex);
3884 return ret;
3885 }
3886
3887 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3888 struct drm_file *file)
3889 {
3890 struct drm_i915_gem_caching *args = data;
3891 struct drm_i915_gem_object *obj;
3892 enum i915_cache_level level;
3893 int ret;
3894
3895 switch (args->caching) {
3896 case I915_CACHING_NONE:
3897 level = I915_CACHE_NONE;
3898 break;
3899 case I915_CACHING_CACHED:
3900 level = I915_CACHE_LLC;
3901 break;
3902 case I915_CACHING_DISPLAY:
3903 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3904 break;
3905 default:
3906 return -EINVAL;
3907 }
3908
3909 ret = i915_mutex_lock_interruptible(dev);
3910 if (ret)
3911 return ret;
3912
3913 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3914 if (&obj->base == NULL) {
3915 ret = -ENOENT;
3916 goto unlock;
3917 }
3918
3919 ret = i915_gem_object_set_cache_level(obj, level);
3920
3921 drm_gem_object_unreference(&obj->base);
3922 unlock:
3923 mutex_unlock(&dev->struct_mutex);
3924 return ret;
3925 }
3926
3927 static bool is_pin_display(struct drm_i915_gem_object *obj)
3928 {
3929 struct i915_vma *vma;
3930
3931 vma = i915_gem_obj_to_ggtt(obj);
3932 if (!vma)
3933 return false;
3934
3935 /* There are 2 sources that pin objects:
3936 * 1. The display engine (scanouts, sprites, cursors);
3937 * 2. Reservations for execbuffer;
3938 *
3939 * We can ignore reservations as we hold the struct_mutex and
3940 * are only called outside of the reservation path.
3941 */
3942 return vma->pin_count;
3943 }
3944
3945 /*
3946 * Prepare buffer for display plane (scanout, cursors, etc).
3947 * Can be called from an uninterruptible phase (modesetting) and allows
3948 * any flushes to be pipelined (for pageflips).
3949 */
3950 int
3951 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3952 u32 alignment,
3953 struct intel_engine_cs *pipelined)
3954 {
3955 u32 old_read_domains, old_write_domain;
3956 bool was_pin_display;
3957 int ret;
3958
3959 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3960 ret = i915_gem_object_sync(obj, pipelined);
3961 if (ret)
3962 return ret;
3963 }
3964
3965 /* Mark the pin_display early so that we account for the
3966 * display coherency whilst setting up the cache domains.
3967 */
3968 was_pin_display = obj->pin_display;
3969 obj->pin_display = true;
3970
3971 /* The display engine is not coherent with the LLC cache on gen6. As
3972 * a result, we make sure that the pinning that is about to occur is
3973 * done with uncached PTEs. This is lowest common denominator for all
3974 * chipsets.
3975 *
3976 * However for gen6+, we could do better by using the GFDT bit instead
3977 * of uncaching, which would allow us to flush all the LLC-cached data
3978 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3979 */
3980 ret = i915_gem_object_set_cache_level(obj,
3981 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3982 if (ret)
3983 goto err_unpin_display;
3984
3985 /* As the user may map the buffer once pinned in the display plane
3986 * (e.g. libkms for the bootup splash), we have to ensure that we
3987 * always use map_and_fenceable for all scanout buffers.
3988 */
3989 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3990 if (ret)
3991 goto err_unpin_display;
3992
3993 i915_gem_object_flush_cpu_write_domain(obj);
3994
3995 old_write_domain = obj->base.write_domain;
3996 old_read_domains = obj->base.read_domains;
3997
3998 /* It should now be out of any other write domains, and we can update
3999 * the domain values for our changes.
4000 */
4001 obj->base.write_domain = 0;
4002 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4003
4004 trace_i915_gem_object_change_domain(obj,
4005 old_read_domains,
4006 old_write_domain);
4007
4008 return 0;
4009
4010 err_unpin_display:
4011 WARN_ON(was_pin_display != is_pin_display(obj));
4012 obj->pin_display = was_pin_display;
4013 return ret;
4014 }
4015
4016 void
4017 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4018 {
4019 i915_gem_object_ggtt_unpin(obj);
4020 obj->pin_display = is_pin_display(obj);
4021 }
4022
4023 int
4024 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4025 {
4026 int ret;
4027
4028 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4029 return 0;
4030
4031 ret = i915_gem_object_wait_rendering(obj, false);
4032 if (ret)
4033 return ret;
4034
4035 /* Ensure that we invalidate the GPU's caches and TLBs. */
4036 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4037 return 0;
4038 }
4039
4040 /**
4041 * Moves a single object to the CPU read, and possibly write domain.
4042 *
4043 * This function returns when the move is complete, including waiting on
4044 * flushes to occur.
4045 */
4046 int
4047 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4048 {
4049 uint32_t old_write_domain, old_read_domains;
4050 int ret;
4051
4052 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4053 return 0;
4054
4055 ret = i915_gem_object_wait_rendering(obj, !write);
4056 if (ret)
4057 return ret;
4058
4059 i915_gem_object_retire(obj);
4060 i915_gem_object_flush_gtt_write_domain(obj);
4061
4062 old_write_domain = obj->base.write_domain;
4063 old_read_domains = obj->base.read_domains;
4064
4065 /* Flush the CPU cache if it's still invalid. */
4066 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4067 i915_gem_clflush_object(obj, false);
4068
4069 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4070 }
4071
4072 /* It should now be out of any other write domains, and we can update
4073 * the domain values for our changes.
4074 */
4075 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4076
4077 /* If we're writing through the CPU, then the GPU read domains will
4078 * need to be invalidated at next use.
4079 */
4080 if (write) {
4081 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4082 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4083 }
4084
4085 if (write)
4086 intel_fb_obj_invalidate(obj, NULL);
4087
4088 trace_i915_gem_object_change_domain(obj,
4089 old_read_domains,
4090 old_write_domain);
4091
4092 return 0;
4093 }
4094
4095 /* Throttle our rendering by waiting until the ring has completed our requests
4096 * emitted over 20 msec ago.
4097 *
4098 * Note that if we were to use the current jiffies each time around the loop,
4099 * we wouldn't escape the function with any frames outstanding if the time to
4100 * render a frame was over 20ms.
4101 *
4102 * This should get us reasonable parallelism between CPU and GPU but also
4103 * relatively low latency when blocking on a particular request to finish.
4104 */
4105 static int
4106 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4107 {
4108 struct drm_i915_private *dev_priv = dev->dev_private;
4109 struct drm_i915_file_private *file_priv = file->driver_priv;
4110 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4111 struct drm_i915_gem_request *request, *target = NULL;
4112 unsigned reset_counter;
4113 int ret;
4114
4115 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4116 if (ret)
4117 return ret;
4118
4119 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4120 if (ret)
4121 return ret;
4122
4123 spin_lock(&file_priv->mm.lock);
4124 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4125 if (time_after_eq(request->emitted_jiffies, recent_enough))
4126 break;
4127
4128 target = request;
4129 }
4130 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4131 if (target)
4132 i915_gem_request_reference(target);
4133 spin_unlock(&file_priv->mm.lock);
4134
4135 if (target == NULL)
4136 return 0;
4137
4138 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4139 if (ret == 0)
4140 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4141
4142 mutex_lock(&dev->struct_mutex);
4143 i915_gem_request_unreference(target);
4144 mutex_unlock(&dev->struct_mutex);
4145
4146 return ret;
4147 }
4148
4149 static bool
4150 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4151 {
4152 struct drm_i915_gem_object *obj = vma->obj;
4153
4154 if (alignment &&
4155 vma->node.start & (alignment - 1))
4156 return true;
4157
4158 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4159 return true;
4160
4161 if (flags & PIN_OFFSET_BIAS &&
4162 vma->node.start < (flags & PIN_OFFSET_MASK))
4163 return true;
4164
4165 return false;
4166 }
4167
4168 int
4169 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4170 struct i915_address_space *vm,
4171 uint32_t alignment,
4172 uint64_t flags,
4173 const struct i915_ggtt_view *view)
4174 {
4175 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4176 struct i915_vma *vma;
4177 unsigned bound;
4178 int ret;
4179
4180 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4181 return -ENODEV;
4182
4183 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4184 return -EINVAL;
4185
4186 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4187 return -EINVAL;
4188
4189 vma = i915_gem_obj_to_vma_view(obj, vm, view);
4190 if (vma) {
4191 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4192 return -EBUSY;
4193
4194 if (i915_vma_misplaced(vma, alignment, flags)) {
4195 WARN(vma->pin_count,
4196 "bo is already pinned with incorrect alignment:"
4197 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4198 " obj->map_and_fenceable=%d\n",
4199 i915_gem_obj_offset_view(obj, vm, view->type),
4200 alignment,
4201 !!(flags & PIN_MAPPABLE),
4202 obj->map_and_fenceable);
4203 ret = i915_vma_unbind(vma);
4204 if (ret)
4205 return ret;
4206
4207 vma = NULL;
4208 }
4209 }
4210
4211 bound = vma ? vma->bound : 0;
4212 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4213 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4214 flags, view);
4215 if (IS_ERR(vma))
4216 return PTR_ERR(vma);
4217 }
4218
4219 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4220 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4221 if (ret)
4222 return ret;
4223 }
4224
4225 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4226 bool mappable, fenceable;
4227 u32 fence_size, fence_alignment;
4228
4229 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4230 obj->base.size,
4231 obj->tiling_mode);
4232 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4233 obj->base.size,
4234 obj->tiling_mode,
4235 true);
4236
4237 fenceable = (vma->node.size == fence_size &&
4238 (vma->node.start & (fence_alignment - 1)) == 0);
4239
4240 mappable = (vma->node.start + obj->base.size <=
4241 dev_priv->gtt.mappable_end);
4242
4243 obj->map_and_fenceable = mappable && fenceable;
4244 }
4245
4246 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4247
4248 vma->pin_count++;
4249 if (flags & PIN_MAPPABLE)
4250 obj->pin_mappable |= true;
4251
4252 return 0;
4253 }
4254
4255 void
4256 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4257 {
4258 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4259
4260 BUG_ON(!vma);
4261 BUG_ON(vma->pin_count == 0);
4262 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4263
4264 if (--vma->pin_count == 0)
4265 obj->pin_mappable = false;
4266 }
4267
4268 bool
4269 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4270 {
4271 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4272 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4273 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4274
4275 WARN_ON(!ggtt_vma ||
4276 dev_priv->fence_regs[obj->fence_reg].pin_count >
4277 ggtt_vma->pin_count);
4278 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4279 return true;
4280 } else
4281 return false;
4282 }
4283
4284 void
4285 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4286 {
4287 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4288 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4289 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4290 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4291 }
4292 }
4293
4294 int
4295 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4296 struct drm_file *file)
4297 {
4298 struct drm_i915_gem_busy *args = data;
4299 struct drm_i915_gem_object *obj;
4300 int ret;
4301
4302 ret = i915_mutex_lock_interruptible(dev);
4303 if (ret)
4304 return ret;
4305
4306 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4307 if (&obj->base == NULL) {
4308 ret = -ENOENT;
4309 goto unlock;
4310 }
4311
4312 /* Count all active objects as busy, even if they are currently not used
4313 * by the gpu. Users of this interface expect objects to eventually
4314 * become non-busy without any further actions, therefore emit any
4315 * necessary flushes here.
4316 */
4317 ret = i915_gem_object_flush_active(obj);
4318
4319 args->busy = obj->active;
4320 if (obj->last_read_req) {
4321 struct intel_engine_cs *ring;
4322 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4323 ring = i915_gem_request_get_ring(obj->last_read_req);
4324 args->busy |= intel_ring_flag(ring) << 16;
4325 }
4326
4327 drm_gem_object_unreference(&obj->base);
4328 unlock:
4329 mutex_unlock(&dev->struct_mutex);
4330 return ret;
4331 }
4332
4333 int
4334 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4335 struct drm_file *file_priv)
4336 {
4337 return i915_gem_ring_throttle(dev, file_priv);
4338 }
4339
4340 int
4341 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4342 struct drm_file *file_priv)
4343 {
4344 struct drm_i915_private *dev_priv = dev->dev_private;
4345 struct drm_i915_gem_madvise *args = data;
4346 struct drm_i915_gem_object *obj;
4347 int ret;
4348
4349 switch (args->madv) {
4350 case I915_MADV_DONTNEED:
4351 case I915_MADV_WILLNEED:
4352 break;
4353 default:
4354 return -EINVAL;
4355 }
4356
4357 ret = i915_mutex_lock_interruptible(dev);
4358 if (ret)
4359 return ret;
4360
4361 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4362 if (&obj->base == NULL) {
4363 ret = -ENOENT;
4364 goto unlock;
4365 }
4366
4367 if (i915_gem_obj_is_pinned(obj)) {
4368 ret = -EINVAL;
4369 goto out;
4370 }
4371
4372 if (obj->pages &&
4373 obj->tiling_mode != I915_TILING_NONE &&
4374 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4375 if (obj->madv == I915_MADV_WILLNEED)
4376 i915_gem_object_unpin_pages(obj);
4377 if (args->madv == I915_MADV_WILLNEED)
4378 i915_gem_object_pin_pages(obj);
4379 }
4380
4381 if (obj->madv != __I915_MADV_PURGED)
4382 obj->madv = args->madv;
4383
4384 /* if the object is no longer attached, discard its backing storage */
4385 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4386 i915_gem_object_truncate(obj);
4387
4388 args->retained = obj->madv != __I915_MADV_PURGED;
4389
4390 out:
4391 drm_gem_object_unreference(&obj->base);
4392 unlock:
4393 mutex_unlock(&dev->struct_mutex);
4394 return ret;
4395 }
4396
4397 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4398 const struct drm_i915_gem_object_ops *ops)
4399 {
4400 INIT_LIST_HEAD(&obj->global_list);
4401 INIT_LIST_HEAD(&obj->ring_list);
4402 INIT_LIST_HEAD(&obj->obj_exec_link);
4403 INIT_LIST_HEAD(&obj->vma_list);
4404 INIT_LIST_HEAD(&obj->batch_pool_list);
4405
4406 obj->ops = ops;
4407
4408 obj->fence_reg = I915_FENCE_REG_NONE;
4409 obj->madv = I915_MADV_WILLNEED;
4410
4411 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4412 }
4413
4414 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4415 .get_pages = i915_gem_object_get_pages_gtt,
4416 .put_pages = i915_gem_object_put_pages_gtt,
4417 };
4418
4419 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4420 size_t size)
4421 {
4422 struct drm_i915_gem_object *obj;
4423 struct address_space *mapping;
4424 gfp_t mask;
4425
4426 obj = i915_gem_object_alloc(dev);
4427 if (obj == NULL)
4428 return NULL;
4429
4430 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4431 i915_gem_object_free(obj);
4432 return NULL;
4433 }
4434
4435 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4436 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4437 /* 965gm cannot relocate objects above 4GiB. */
4438 mask &= ~__GFP_HIGHMEM;
4439 mask |= __GFP_DMA32;
4440 }
4441
4442 mapping = file_inode(obj->base.filp)->i_mapping;
4443 mapping_set_gfp_mask(mapping, mask);
4444
4445 i915_gem_object_init(obj, &i915_gem_object_ops);
4446
4447 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4448 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4449
4450 if (HAS_LLC(dev)) {
4451 /* On some devices, we can have the GPU use the LLC (the CPU
4452 * cache) for about a 10% performance improvement
4453 * compared to uncached. Graphics requests other than
4454 * display scanout are coherent with the CPU in
4455 * accessing this cache. This means in this mode we
4456 * don't need to clflush on the CPU side, and on the
4457 * GPU side we only need to flush internal caches to
4458 * get data visible to the CPU.
4459 *
4460 * However, we maintain the display planes as UC, and so
4461 * need to rebind when first used as such.
4462 */
4463 obj->cache_level = I915_CACHE_LLC;
4464 } else
4465 obj->cache_level = I915_CACHE_NONE;
4466
4467 trace_i915_gem_object_create(obj);
4468
4469 return obj;
4470 }
4471
4472 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4473 {
4474 /* If we are the last user of the backing storage (be it shmemfs
4475 * pages or stolen etc), we know that the pages are going to be
4476 * immediately released. In this case, we can then skip copying
4477 * back the contents from the GPU.
4478 */
4479
4480 if (obj->madv != I915_MADV_WILLNEED)
4481 return false;
4482
4483 if (obj->base.filp == NULL)
4484 return true;
4485
4486 /* At first glance, this looks racy, but then again so would be
4487 * userspace racing mmap against close. However, the first external
4488 * reference to the filp can only be obtained through the
4489 * i915_gem_mmap_ioctl() which safeguards us against the user
4490 * acquiring such a reference whilst we are in the middle of
4491 * freeing the object.
4492 */
4493 return atomic_long_read(&obj->base.filp->f_count) == 1;
4494 }
4495
4496 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4497 {
4498 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4499 struct drm_device *dev = obj->base.dev;
4500 struct drm_i915_private *dev_priv = dev->dev_private;
4501 struct i915_vma *vma, *next;
4502
4503 intel_runtime_pm_get(dev_priv);
4504
4505 trace_i915_gem_object_destroy(obj);
4506
4507 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4508 int ret;
4509
4510 vma->pin_count = 0;
4511 ret = i915_vma_unbind(vma);
4512 if (WARN_ON(ret == -ERESTARTSYS)) {
4513 bool was_interruptible;
4514
4515 was_interruptible = dev_priv->mm.interruptible;
4516 dev_priv->mm.interruptible = false;
4517
4518 WARN_ON(i915_vma_unbind(vma));
4519
4520 dev_priv->mm.interruptible = was_interruptible;
4521 }
4522 }
4523
4524 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4525 * before progressing. */
4526 if (obj->stolen)
4527 i915_gem_object_unpin_pages(obj);
4528
4529 WARN_ON(obj->frontbuffer_bits);
4530
4531 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4532 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4533 obj->tiling_mode != I915_TILING_NONE)
4534 i915_gem_object_unpin_pages(obj);
4535
4536 if (WARN_ON(obj->pages_pin_count))
4537 obj->pages_pin_count = 0;
4538 if (discard_backing_storage(obj))
4539 obj->madv = I915_MADV_DONTNEED;
4540 i915_gem_object_put_pages(obj);
4541 i915_gem_object_free_mmap_offset(obj);
4542
4543 BUG_ON(obj->pages);
4544
4545 if (obj->base.import_attach)
4546 drm_prime_gem_destroy(&obj->base, NULL);
4547
4548 if (obj->ops->release)
4549 obj->ops->release(obj);
4550
4551 drm_gem_object_release(&obj->base);
4552 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4553
4554 kfree(obj->bit_17);
4555 i915_gem_object_free(obj);
4556
4557 intel_runtime_pm_put(dev_priv);
4558 }
4559
4560 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4561 struct i915_address_space *vm,
4562 const struct i915_ggtt_view *view)
4563 {
4564 struct i915_vma *vma;
4565 list_for_each_entry(vma, &obj->vma_list, vma_link)
4566 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4567 return vma;
4568
4569 return NULL;
4570 }
4571
4572 void i915_gem_vma_destroy(struct i915_vma *vma)
4573 {
4574 struct i915_address_space *vm = NULL;
4575 WARN_ON(vma->node.allocated);
4576
4577 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4578 if (!list_empty(&vma->exec_list))
4579 return;
4580
4581 vm = vma->vm;
4582
4583 if (!i915_is_ggtt(vm))
4584 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4585
4586 list_del(&vma->vma_link);
4587
4588 kfree(vma);
4589 }
4590
4591 static void
4592 i915_gem_stop_ringbuffers(struct drm_device *dev)
4593 {
4594 struct drm_i915_private *dev_priv = dev->dev_private;
4595 struct intel_engine_cs *ring;
4596 int i;
4597
4598 for_each_ring(ring, dev_priv, i)
4599 dev_priv->gt.stop_ring(ring);
4600 }
4601
4602 int
4603 i915_gem_suspend(struct drm_device *dev)
4604 {
4605 struct drm_i915_private *dev_priv = dev->dev_private;
4606 int ret = 0;
4607
4608 mutex_lock(&dev->struct_mutex);
4609 ret = i915_gpu_idle(dev);
4610 if (ret)
4611 goto err;
4612
4613 i915_gem_retire_requests(dev);
4614
4615 /* Under UMS, be paranoid and evict. */
4616 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4617 i915_gem_evict_everything(dev);
4618
4619 i915_gem_stop_ringbuffers(dev);
4620 mutex_unlock(&dev->struct_mutex);
4621
4622 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4623 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4624 flush_delayed_work(&dev_priv->mm.idle_work);
4625
4626 /* Assert that we sucessfully flushed all the work and
4627 * reset the GPU back to its idle, low power state.
4628 */
4629 WARN_ON(dev_priv->mm.busy);
4630
4631 return 0;
4632
4633 err:
4634 mutex_unlock(&dev->struct_mutex);
4635 return ret;
4636 }
4637
4638 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4639 {
4640 struct drm_device *dev = ring->dev;
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4643 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4644 int i, ret;
4645
4646 if (!HAS_L3_DPF(dev) || !remap_info)
4647 return 0;
4648
4649 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4650 if (ret)
4651 return ret;
4652
4653 /*
4654 * Note: We do not worry about the concurrent register cacheline hang
4655 * here because no other code should access these registers other than
4656 * at initialization time.
4657 */
4658 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4659 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4660 intel_ring_emit(ring, reg_base + i);
4661 intel_ring_emit(ring, remap_info[i/4]);
4662 }
4663
4664 intel_ring_advance(ring);
4665
4666 return ret;
4667 }
4668
4669 void i915_gem_init_swizzling(struct drm_device *dev)
4670 {
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672
4673 if (INTEL_INFO(dev)->gen < 5 ||
4674 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4675 return;
4676
4677 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4678 DISP_TILE_SURFACE_SWIZZLING);
4679
4680 if (IS_GEN5(dev))
4681 return;
4682
4683 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4684 if (IS_GEN6(dev))
4685 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4686 else if (IS_GEN7(dev))
4687 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4688 else if (IS_GEN8(dev))
4689 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4690 else
4691 BUG();
4692 }
4693
4694 static bool
4695 intel_enable_blt(struct drm_device *dev)
4696 {
4697 if (!HAS_BLT(dev))
4698 return false;
4699
4700 /* The blitter was dysfunctional on early prototypes */
4701 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4702 DRM_INFO("BLT not supported on this pre-production hardware;"
4703 " graphics performance will be degraded.\n");
4704 return false;
4705 }
4706
4707 return true;
4708 }
4709
4710 static void init_unused_ring(struct drm_device *dev, u32 base)
4711 {
4712 struct drm_i915_private *dev_priv = dev->dev_private;
4713
4714 I915_WRITE(RING_CTL(base), 0);
4715 I915_WRITE(RING_HEAD(base), 0);
4716 I915_WRITE(RING_TAIL(base), 0);
4717 I915_WRITE(RING_START(base), 0);
4718 }
4719
4720 static void init_unused_rings(struct drm_device *dev)
4721 {
4722 if (IS_I830(dev)) {
4723 init_unused_ring(dev, PRB1_BASE);
4724 init_unused_ring(dev, SRB0_BASE);
4725 init_unused_ring(dev, SRB1_BASE);
4726 init_unused_ring(dev, SRB2_BASE);
4727 init_unused_ring(dev, SRB3_BASE);
4728 } else if (IS_GEN2(dev)) {
4729 init_unused_ring(dev, SRB0_BASE);
4730 init_unused_ring(dev, SRB1_BASE);
4731 } else if (IS_GEN3(dev)) {
4732 init_unused_ring(dev, PRB1_BASE);
4733 init_unused_ring(dev, PRB2_BASE);
4734 }
4735 }
4736
4737 int i915_gem_init_rings(struct drm_device *dev)
4738 {
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740 int ret;
4741
4742 ret = intel_init_render_ring_buffer(dev);
4743 if (ret)
4744 return ret;
4745
4746 if (HAS_BSD(dev)) {
4747 ret = intel_init_bsd_ring_buffer(dev);
4748 if (ret)
4749 goto cleanup_render_ring;
4750 }
4751
4752 if (intel_enable_blt(dev)) {
4753 ret = intel_init_blt_ring_buffer(dev);
4754 if (ret)
4755 goto cleanup_bsd_ring;
4756 }
4757
4758 if (HAS_VEBOX(dev)) {
4759 ret = intel_init_vebox_ring_buffer(dev);
4760 if (ret)
4761 goto cleanup_blt_ring;
4762 }
4763
4764 if (HAS_BSD2(dev)) {
4765 ret = intel_init_bsd2_ring_buffer(dev);
4766 if (ret)
4767 goto cleanup_vebox_ring;
4768 }
4769
4770 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4771 if (ret)
4772 goto cleanup_bsd2_ring;
4773
4774 return 0;
4775
4776 cleanup_bsd2_ring:
4777 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4778 cleanup_vebox_ring:
4779 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4780 cleanup_blt_ring:
4781 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4782 cleanup_bsd_ring:
4783 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4784 cleanup_render_ring:
4785 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4786
4787 return ret;
4788 }
4789
4790 int
4791 i915_gem_init_hw(struct drm_device *dev)
4792 {
4793 struct drm_i915_private *dev_priv = dev->dev_private;
4794 struct intel_engine_cs *ring;
4795 int ret, i;
4796
4797 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4798 return -EIO;
4799
4800 /* Double layer security blanket, see i915_gem_init() */
4801 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4802
4803 if (dev_priv->ellc_size)
4804 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4805
4806 if (IS_HASWELL(dev))
4807 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4808 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4809
4810 if (HAS_PCH_NOP(dev)) {
4811 if (IS_IVYBRIDGE(dev)) {
4812 u32 temp = I915_READ(GEN7_MSG_CTL);
4813 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4814 I915_WRITE(GEN7_MSG_CTL, temp);
4815 } else if (INTEL_INFO(dev)->gen >= 7) {
4816 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4817 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4818 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4819 }
4820 }
4821
4822 i915_gem_init_swizzling(dev);
4823
4824 /*
4825 * At least 830 can leave some of the unused rings
4826 * "active" (ie. head != tail) after resume which
4827 * will prevent c3 entry. Makes sure all unused rings
4828 * are totally idle.
4829 */
4830 init_unused_rings(dev);
4831
4832 for_each_ring(ring, dev_priv, i) {
4833 ret = ring->init_hw(ring);
4834 if (ret)
4835 goto out;
4836 }
4837
4838 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4839 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4840
4841 ret = i915_ppgtt_init_hw(dev);
4842 if (ret && ret != -EIO) {
4843 DRM_ERROR("PPGTT enable failed %d\n", ret);
4844 i915_gem_cleanup_ringbuffer(dev);
4845 }
4846
4847 ret = i915_gem_context_enable(dev_priv);
4848 if (ret && ret != -EIO) {
4849 DRM_ERROR("Context enable failed %d\n", ret);
4850 i915_gem_cleanup_ringbuffer(dev);
4851
4852 goto out;
4853 }
4854
4855 out:
4856 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4857 return ret;
4858 }
4859
4860 int i915_gem_init(struct drm_device *dev)
4861 {
4862 struct drm_i915_private *dev_priv = dev->dev_private;
4863 int ret;
4864
4865 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4866 i915.enable_execlists);
4867
4868 mutex_lock(&dev->struct_mutex);
4869
4870 if (IS_VALLEYVIEW(dev)) {
4871 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4872 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4873 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4874 VLV_GTLC_ALLOWWAKEACK), 10))
4875 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4876 }
4877
4878 if (!i915.enable_execlists) {
4879 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4880 dev_priv->gt.init_rings = i915_gem_init_rings;
4881 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4882 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4883 } else {
4884 dev_priv->gt.do_execbuf = intel_execlists_submission;
4885 dev_priv->gt.init_rings = intel_logical_rings_init;
4886 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4887 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4888 }
4889
4890 /* This is just a security blanket to placate dragons.
4891 * On some systems, we very sporadically observe that the first TLBs
4892 * used by the CS may be stale, despite us poking the TLB reset. If
4893 * we hold the forcewake during initialisation these problems
4894 * just magically go away.
4895 */
4896 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4897
4898 ret = i915_gem_init_userptr(dev);
4899 if (ret)
4900 goto out_unlock;
4901
4902 i915_gem_init_global_gtt(dev);
4903
4904 ret = i915_gem_context_init(dev);
4905 if (ret)
4906 goto out_unlock;
4907
4908 ret = dev_priv->gt.init_rings(dev);
4909 if (ret)
4910 goto out_unlock;
4911
4912 ret = i915_gem_init_hw(dev);
4913 if (ret == -EIO) {
4914 /* Allow ring initialisation to fail by marking the GPU as
4915 * wedged. But we only want to do this where the GPU is angry,
4916 * for all other failure, such as an allocation failure, bail.
4917 */
4918 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4919 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4920 ret = 0;
4921 }
4922
4923 out_unlock:
4924 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4925 mutex_unlock(&dev->struct_mutex);
4926
4927 return ret;
4928 }
4929
4930 void
4931 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4932 {
4933 struct drm_i915_private *dev_priv = dev->dev_private;
4934 struct intel_engine_cs *ring;
4935 int i;
4936
4937 for_each_ring(ring, dev_priv, i)
4938 dev_priv->gt.cleanup_ring(ring);
4939 }
4940
4941 static void
4942 init_ring_lists(struct intel_engine_cs *ring)
4943 {
4944 INIT_LIST_HEAD(&ring->active_list);
4945 INIT_LIST_HEAD(&ring->request_list);
4946 }
4947
4948 void i915_init_vm(struct drm_i915_private *dev_priv,
4949 struct i915_address_space *vm)
4950 {
4951 if (!i915_is_ggtt(vm))
4952 drm_mm_init(&vm->mm, vm->start, vm->total);
4953 vm->dev = dev_priv->dev;
4954 INIT_LIST_HEAD(&vm->active_list);
4955 INIT_LIST_HEAD(&vm->inactive_list);
4956 INIT_LIST_HEAD(&vm->global_link);
4957 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4958 }
4959
4960 void
4961 i915_gem_load(struct drm_device *dev)
4962 {
4963 struct drm_i915_private *dev_priv = dev->dev_private;
4964 int i;
4965
4966 dev_priv->slab =
4967 kmem_cache_create("i915_gem_object",
4968 sizeof(struct drm_i915_gem_object), 0,
4969 SLAB_HWCACHE_ALIGN,
4970 NULL);
4971
4972 INIT_LIST_HEAD(&dev_priv->vm_list);
4973 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4974
4975 INIT_LIST_HEAD(&dev_priv->context_list);
4976 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4977 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4978 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4979 for (i = 0; i < I915_NUM_RINGS; i++)
4980 init_ring_lists(&dev_priv->ring[i]);
4981 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4982 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4983 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4984 i915_gem_retire_work_handler);
4985 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4986 i915_gem_idle_work_handler);
4987 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4988
4989 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4990 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4991 I915_WRITE(MI_ARB_STATE,
4992 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4993 }
4994
4995 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4996
4997 /* Old X drivers will take 0-2 for front, back, depth buffers */
4998 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4999 dev_priv->fence_reg_start = 3;
5000
5001 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5002 dev_priv->num_fence_regs = 32;
5003 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5004 dev_priv->num_fence_regs = 16;
5005 else
5006 dev_priv->num_fence_regs = 8;
5007
5008 /* Initialize fence registers to zero */
5009 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5010 i915_gem_restore_fences(dev);
5011
5012 i915_gem_detect_bit_6_swizzle(dev);
5013 init_waitqueue_head(&dev_priv->pending_flip_queue);
5014
5015 dev_priv->mm.interruptible = true;
5016
5017 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5018 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5019 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5020 register_shrinker(&dev_priv->mm.shrinker);
5021
5022 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5023 register_oom_notifier(&dev_priv->mm.oom_notifier);
5024
5025 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5026
5027 mutex_init(&dev_priv->fb_tracking.lock);
5028 }
5029
5030 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5031 {
5032 struct drm_i915_file_private *file_priv = file->driver_priv;
5033
5034 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5035
5036 /* Clean up our request list when the client is going away, so that
5037 * later retire_requests won't dereference our soon-to-be-gone
5038 * file_priv.
5039 */
5040 spin_lock(&file_priv->mm.lock);
5041 while (!list_empty(&file_priv->mm.request_list)) {
5042 struct drm_i915_gem_request *request;
5043
5044 request = list_first_entry(&file_priv->mm.request_list,
5045 struct drm_i915_gem_request,
5046 client_list);
5047 list_del(&request->client_list);
5048 request->file_priv = NULL;
5049 }
5050 spin_unlock(&file_priv->mm.lock);
5051 }
5052
5053 static void
5054 i915_gem_file_idle_work_handler(struct work_struct *work)
5055 {
5056 struct drm_i915_file_private *file_priv =
5057 container_of(work, typeof(*file_priv), mm.idle_work.work);
5058
5059 atomic_set(&file_priv->rps_wait_boost, false);
5060 }
5061
5062 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5063 {
5064 struct drm_i915_file_private *file_priv;
5065 int ret;
5066
5067 DRM_DEBUG_DRIVER("\n");
5068
5069 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5070 if (!file_priv)
5071 return -ENOMEM;
5072
5073 file->driver_priv = file_priv;
5074 file_priv->dev_priv = dev->dev_private;
5075 file_priv->file = file;
5076
5077 spin_lock_init(&file_priv->mm.lock);
5078 INIT_LIST_HEAD(&file_priv->mm.request_list);
5079 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5080 i915_gem_file_idle_work_handler);
5081
5082 ret = i915_gem_context_open(dev, file);
5083 if (ret)
5084 kfree(file_priv);
5085
5086 return ret;
5087 }
5088
5089 /**
5090 * i915_gem_track_fb - update frontbuffer tracking
5091 * old: current GEM buffer for the frontbuffer slots
5092 * new: new GEM buffer for the frontbuffer slots
5093 * frontbuffer_bits: bitmask of frontbuffer slots
5094 *
5095 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5096 * from @old and setting them in @new. Both @old and @new can be NULL.
5097 */
5098 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5099 struct drm_i915_gem_object *new,
5100 unsigned frontbuffer_bits)
5101 {
5102 if (old) {
5103 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5104 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5105 old->frontbuffer_bits &= ~frontbuffer_bits;
5106 }
5107
5108 if (new) {
5109 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5110 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5111 new->frontbuffer_bits |= frontbuffer_bits;
5112 }
5113 }
5114
5115 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5116 {
5117 if (!mutex_is_locked(mutex))
5118 return false;
5119
5120 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5121 return mutex->owner == task;
5122 #else
5123 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5124 return false;
5125 #endif
5126 }
5127
5128 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5129 {
5130 if (!mutex_trylock(&dev->struct_mutex)) {
5131 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5132 return false;
5133
5134 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5135 return false;
5136
5137 *unlock = false;
5138 } else
5139 *unlock = true;
5140
5141 return true;
5142 }
5143
5144 static int num_vma_bound(struct drm_i915_gem_object *obj)
5145 {
5146 struct i915_vma *vma;
5147 int count = 0;
5148
5149 list_for_each_entry(vma, &obj->vma_list, vma_link)
5150 if (drm_mm_node_allocated(&vma->node))
5151 count++;
5152
5153 return count;
5154 }
5155
5156 static unsigned long
5157 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5158 {
5159 struct drm_i915_private *dev_priv =
5160 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5161 struct drm_device *dev = dev_priv->dev;
5162 struct drm_i915_gem_object *obj;
5163 unsigned long count;
5164 bool unlock;
5165
5166 if (!i915_gem_shrinker_lock(dev, &unlock))
5167 return 0;
5168
5169 count = 0;
5170 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5171 if (obj->pages_pin_count == 0)
5172 count += obj->base.size >> PAGE_SHIFT;
5173
5174 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5175 if (!i915_gem_obj_is_pinned(obj) &&
5176 obj->pages_pin_count == num_vma_bound(obj))
5177 count += obj->base.size >> PAGE_SHIFT;
5178 }
5179
5180 if (unlock)
5181 mutex_unlock(&dev->struct_mutex);
5182
5183 return count;
5184 }
5185
5186 /* All the new VM stuff */
5187 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5188 struct i915_address_space *vm,
5189 enum i915_ggtt_view_type view)
5190 {
5191 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5192 struct i915_vma *vma;
5193
5194 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5195
5196 list_for_each_entry(vma, &o->vma_list, vma_link) {
5197 if (vma->vm == vm && vma->ggtt_view.type == view)
5198 return vma->node.start;
5199
5200 }
5201 WARN(1, "%s vma for this object not found.\n",
5202 i915_is_ggtt(vm) ? "global" : "ppgtt");
5203 return -1;
5204 }
5205
5206 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5207 struct i915_address_space *vm,
5208 enum i915_ggtt_view_type view)
5209 {
5210 struct i915_vma *vma;
5211
5212 list_for_each_entry(vma, &o->vma_list, vma_link)
5213 if (vma->vm == vm &&
5214 vma->ggtt_view.type == view &&
5215 drm_mm_node_allocated(&vma->node))
5216 return true;
5217
5218 return false;
5219 }
5220
5221 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5222 {
5223 struct i915_vma *vma;
5224
5225 list_for_each_entry(vma, &o->vma_list, vma_link)
5226 if (drm_mm_node_allocated(&vma->node))
5227 return true;
5228
5229 return false;
5230 }
5231
5232 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5233 struct i915_address_space *vm)
5234 {
5235 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5236 struct i915_vma *vma;
5237
5238 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5239
5240 BUG_ON(list_empty(&o->vma_list));
5241
5242 list_for_each_entry(vma, &o->vma_list, vma_link)
5243 if (vma->vm == vm)
5244 return vma->node.size;
5245
5246 return 0;
5247 }
5248
5249 static unsigned long
5250 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5251 {
5252 struct drm_i915_private *dev_priv =
5253 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5254 struct drm_device *dev = dev_priv->dev;
5255 unsigned long freed;
5256 bool unlock;
5257
5258 if (!i915_gem_shrinker_lock(dev, &unlock))
5259 return SHRINK_STOP;
5260
5261 freed = i915_gem_shrink(dev_priv,
5262 sc->nr_to_scan,
5263 I915_SHRINK_BOUND |
5264 I915_SHRINK_UNBOUND |
5265 I915_SHRINK_PURGEABLE);
5266 if (freed < sc->nr_to_scan)
5267 freed += i915_gem_shrink(dev_priv,
5268 sc->nr_to_scan - freed,
5269 I915_SHRINK_BOUND |
5270 I915_SHRINK_UNBOUND);
5271 if (unlock)
5272 mutex_unlock(&dev->struct_mutex);
5273
5274 return freed;
5275 }
5276
5277 static int
5278 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5279 {
5280 struct drm_i915_private *dev_priv =
5281 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5282 struct drm_device *dev = dev_priv->dev;
5283 struct drm_i915_gem_object *obj;
5284 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5285 unsigned long pinned, bound, unbound, freed_pages;
5286 bool was_interruptible;
5287 bool unlock;
5288
5289 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5290 schedule_timeout_killable(1);
5291 if (fatal_signal_pending(current))
5292 return NOTIFY_DONE;
5293 }
5294 if (timeout == 0) {
5295 pr_err("Unable to purge GPU memory due lock contention.\n");
5296 return NOTIFY_DONE;
5297 }
5298
5299 was_interruptible = dev_priv->mm.interruptible;
5300 dev_priv->mm.interruptible = false;
5301
5302 freed_pages = i915_gem_shrink_all(dev_priv);
5303
5304 dev_priv->mm.interruptible = was_interruptible;
5305
5306 /* Because we may be allocating inside our own driver, we cannot
5307 * assert that there are no objects with pinned pages that are not
5308 * being pointed to by hardware.
5309 */
5310 unbound = bound = pinned = 0;
5311 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5312 if (!obj->base.filp) /* not backed by a freeable object */
5313 continue;
5314
5315 if (obj->pages_pin_count)
5316 pinned += obj->base.size;
5317 else
5318 unbound += obj->base.size;
5319 }
5320 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5321 if (!obj->base.filp)
5322 continue;
5323
5324 if (obj->pages_pin_count)
5325 pinned += obj->base.size;
5326 else
5327 bound += obj->base.size;
5328 }
5329
5330 if (unlock)
5331 mutex_unlock(&dev->struct_mutex);
5332
5333 if (freed_pages || unbound || bound)
5334 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5335 freed_pages << PAGE_SHIFT, pinned);
5336 if (unbound || bound)
5337 pr_err("%lu and %lu bytes still available in the "
5338 "bound and unbound GPU page lists.\n",
5339 bound, unbound);
5340
5341 *(unsigned long *)ptr += freed_pages;
5342 return NOTIFY_DONE;
5343 }
5344
5345 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5346 {
5347 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5348 struct i915_vma *vma;
5349
5350 list_for_each_entry(vma, &obj->vma_list, vma_link)
5351 if (vma->vm == ggtt &&
5352 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5353 return vma;
5354
5355 return NULL;
5356 }
This page took 0.284136 seconds and 5 git commands to generate.