drm/i915/bdw: Clean up execlist queue items in retire_work
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 static int
212 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
213 {
214 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
215 char *vaddr = obj->phys_handle->vaddr;
216 struct sg_table *st;
217 struct scatterlist *sg;
218 int i;
219
220 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
221 return -EINVAL;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page;
225 char *src;
226
227 page = shmem_read_mapping_page(mapping, i);
228 if (IS_ERR(page))
229 return PTR_ERR(page);
230
231 src = kmap_atomic(page);
232 memcpy(vaddr, src, PAGE_SIZE);
233 drm_clflush_virt_range(vaddr, PAGE_SIZE);
234 kunmap_atomic(src);
235
236 page_cache_release(page);
237 vaddr += PAGE_SIZE;
238 }
239
240 i915_gem_chipset_flush(obj->base.dev);
241
242 st = kmalloc(sizeof(*st), GFP_KERNEL);
243 if (st == NULL)
244 return -ENOMEM;
245
246 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
247 kfree(st);
248 return -ENOMEM;
249 }
250
251 sg = st->sgl;
252 sg->offset = 0;
253 sg->length = obj->base.size;
254
255 sg_dma_address(sg) = obj->phys_handle->busaddr;
256 sg_dma_len(sg) = obj->base.size;
257
258 obj->pages = st;
259 obj->has_dma_mapping = true;
260 return 0;
261 }
262
263 static void
264 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
265 {
266 int ret;
267
268 BUG_ON(obj->madv == __I915_MADV_PURGED);
269
270 ret = i915_gem_object_set_to_cpu_domain(obj, true);
271 if (ret) {
272 /* In the event of a disaster, abandon all caches and
273 * hope for the best.
274 */
275 WARN_ON(ret != -EIO);
276 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
277 }
278
279 if (obj->madv == I915_MADV_DONTNEED)
280 obj->dirty = 0;
281
282 if (obj->dirty) {
283 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
284 char *vaddr = obj->phys_handle->vaddr;
285 int i;
286
287 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
288 struct page *page;
289 char *dst;
290
291 page = shmem_read_mapping_page(mapping, i);
292 if (IS_ERR(page))
293 continue;
294
295 dst = kmap_atomic(page);
296 drm_clflush_virt_range(vaddr, PAGE_SIZE);
297 memcpy(dst, vaddr, PAGE_SIZE);
298 kunmap_atomic(dst);
299
300 set_page_dirty(page);
301 if (obj->madv == I915_MADV_WILLNEED)
302 mark_page_accessed(page);
303 page_cache_release(page);
304 vaddr += PAGE_SIZE;
305 }
306 obj->dirty = 0;
307 }
308
309 sg_free_table(obj->pages);
310 kfree(obj->pages);
311
312 obj->has_dma_mapping = false;
313 }
314
315 static void
316 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
317 {
318 drm_pci_free(obj->base.dev, obj->phys_handle);
319 }
320
321 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
322 .get_pages = i915_gem_object_get_pages_phys,
323 .put_pages = i915_gem_object_put_pages_phys,
324 .release = i915_gem_object_release_phys,
325 };
326
327 static int
328 drop_pages(struct drm_i915_gem_object *obj)
329 {
330 struct i915_vma *vma, *next;
331 int ret;
332
333 drm_gem_object_reference(&obj->base);
334 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
335 if (i915_vma_unbind(vma))
336 break;
337
338 ret = i915_gem_object_put_pages(obj);
339 drm_gem_object_unreference(&obj->base);
340
341 return ret;
342 }
343
344 int
345 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
346 int align)
347 {
348 drm_dma_handle_t *phys;
349 int ret;
350
351 if (obj->phys_handle) {
352 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
353 return -EBUSY;
354
355 return 0;
356 }
357
358 if (obj->madv != I915_MADV_WILLNEED)
359 return -EFAULT;
360
361 if (obj->base.filp == NULL)
362 return -EINVAL;
363
364 ret = drop_pages(obj);
365 if (ret)
366 return ret;
367
368 /* create a new object */
369 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
370 if (!phys)
371 return -ENOMEM;
372
373 obj->phys_handle = phys;
374 obj->ops = &i915_gem_phys_ops;
375
376 return i915_gem_object_get_pages(obj);
377 }
378
379 static int
380 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
381 struct drm_i915_gem_pwrite *args,
382 struct drm_file *file_priv)
383 {
384 struct drm_device *dev = obj->base.dev;
385 void *vaddr = obj->phys_handle->vaddr + args->offset;
386 char __user *user_data = to_user_ptr(args->data_ptr);
387 int ret;
388
389 /* We manually control the domain here and pretend that it
390 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
391 */
392 ret = i915_gem_object_wait_rendering(obj, false);
393 if (ret)
394 return ret;
395
396 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
397 unsigned long unwritten;
398
399 /* The physical object once assigned is fixed for the lifetime
400 * of the obj, so we can safely drop the lock and continue
401 * to access vaddr.
402 */
403 mutex_unlock(&dev->struct_mutex);
404 unwritten = copy_from_user(vaddr, user_data, args->size);
405 mutex_lock(&dev->struct_mutex);
406 if (unwritten)
407 return -EFAULT;
408 }
409
410 drm_clflush_virt_range(vaddr, args->size);
411 i915_gem_chipset_flush(dev);
412 return 0;
413 }
414
415 void *i915_gem_object_alloc(struct drm_device *dev)
416 {
417 struct drm_i915_private *dev_priv = dev->dev_private;
418 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
419 }
420
421 void i915_gem_object_free(struct drm_i915_gem_object *obj)
422 {
423 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
424 kmem_cache_free(dev_priv->slab, obj);
425 }
426
427 static int
428 i915_gem_create(struct drm_file *file,
429 struct drm_device *dev,
430 uint64_t size,
431 uint32_t *handle_p)
432 {
433 struct drm_i915_gem_object *obj;
434 int ret;
435 u32 handle;
436
437 size = roundup(size, PAGE_SIZE);
438 if (size == 0)
439 return -EINVAL;
440
441 /* Allocate the new object */
442 obj = i915_gem_alloc_object(dev, size);
443 if (obj == NULL)
444 return -ENOMEM;
445
446 ret = drm_gem_handle_create(file, &obj->base, &handle);
447 /* drop reference from allocate - handle holds it now */
448 drm_gem_object_unreference_unlocked(&obj->base);
449 if (ret)
450 return ret;
451
452 *handle_p = handle;
453 return 0;
454 }
455
456 int
457 i915_gem_dumb_create(struct drm_file *file,
458 struct drm_device *dev,
459 struct drm_mode_create_dumb *args)
460 {
461 /* have to work out size/pitch and return them */
462 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
463 args->size = args->pitch * args->height;
464 return i915_gem_create(file, dev,
465 args->size, &args->handle);
466 }
467
468 /**
469 * Creates a new mm object and returns a handle to it.
470 */
471 int
472 i915_gem_create_ioctl(struct drm_device *dev, void *data,
473 struct drm_file *file)
474 {
475 struct drm_i915_gem_create *args = data;
476
477 return i915_gem_create(file, dev,
478 args->size, &args->handle);
479 }
480
481 static inline int
482 __copy_to_user_swizzled(char __user *cpu_vaddr,
483 const char *gpu_vaddr, int gpu_offset,
484 int length)
485 {
486 int ret, cpu_offset = 0;
487
488 while (length > 0) {
489 int cacheline_end = ALIGN(gpu_offset + 1, 64);
490 int this_length = min(cacheline_end - gpu_offset, length);
491 int swizzled_gpu_offset = gpu_offset ^ 64;
492
493 ret = __copy_to_user(cpu_vaddr + cpu_offset,
494 gpu_vaddr + swizzled_gpu_offset,
495 this_length);
496 if (ret)
497 return ret + length;
498
499 cpu_offset += this_length;
500 gpu_offset += this_length;
501 length -= this_length;
502 }
503
504 return 0;
505 }
506
507 static inline int
508 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
509 const char __user *cpu_vaddr,
510 int length)
511 {
512 int ret, cpu_offset = 0;
513
514 while (length > 0) {
515 int cacheline_end = ALIGN(gpu_offset + 1, 64);
516 int this_length = min(cacheline_end - gpu_offset, length);
517 int swizzled_gpu_offset = gpu_offset ^ 64;
518
519 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
520 cpu_vaddr + cpu_offset,
521 this_length);
522 if (ret)
523 return ret + length;
524
525 cpu_offset += this_length;
526 gpu_offset += this_length;
527 length -= this_length;
528 }
529
530 return 0;
531 }
532
533 /*
534 * Pins the specified object's pages and synchronizes the object with
535 * GPU accesses. Sets needs_clflush to non-zero if the caller should
536 * flush the object from the CPU cache.
537 */
538 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
539 int *needs_clflush)
540 {
541 int ret;
542
543 *needs_clflush = 0;
544
545 if (!obj->base.filp)
546 return -EINVAL;
547
548 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
549 /* If we're not in the cpu read domain, set ourself into the gtt
550 * read domain and manually flush cachelines (if required). This
551 * optimizes for the case when the gpu will dirty the data
552 * anyway again before the next pread happens. */
553 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
554 obj->cache_level);
555 ret = i915_gem_object_wait_rendering(obj, true);
556 if (ret)
557 return ret;
558
559 i915_gem_object_retire(obj);
560 }
561
562 ret = i915_gem_object_get_pages(obj);
563 if (ret)
564 return ret;
565
566 i915_gem_object_pin_pages(obj);
567
568 return ret;
569 }
570
571 /* Per-page copy function for the shmem pread fastpath.
572 * Flushes invalid cachelines before reading the target if
573 * needs_clflush is set. */
574 static int
575 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
576 char __user *user_data,
577 bool page_do_bit17_swizzling, bool needs_clflush)
578 {
579 char *vaddr;
580 int ret;
581
582 if (unlikely(page_do_bit17_swizzling))
583 return -EINVAL;
584
585 vaddr = kmap_atomic(page);
586 if (needs_clflush)
587 drm_clflush_virt_range(vaddr + shmem_page_offset,
588 page_length);
589 ret = __copy_to_user_inatomic(user_data,
590 vaddr + shmem_page_offset,
591 page_length);
592 kunmap_atomic(vaddr);
593
594 return ret ? -EFAULT : 0;
595 }
596
597 static void
598 shmem_clflush_swizzled_range(char *addr, unsigned long length,
599 bool swizzled)
600 {
601 if (unlikely(swizzled)) {
602 unsigned long start = (unsigned long) addr;
603 unsigned long end = (unsigned long) addr + length;
604
605 /* For swizzling simply ensure that we always flush both
606 * channels. Lame, but simple and it works. Swizzled
607 * pwrite/pread is far from a hotpath - current userspace
608 * doesn't use it at all. */
609 start = round_down(start, 128);
610 end = round_up(end, 128);
611
612 drm_clflush_virt_range((void *)start, end - start);
613 } else {
614 drm_clflush_virt_range(addr, length);
615 }
616
617 }
618
619 /* Only difference to the fast-path function is that this can handle bit17
620 * and uses non-atomic copy and kmap functions. */
621 static int
622 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
623 char __user *user_data,
624 bool page_do_bit17_swizzling, bool needs_clflush)
625 {
626 char *vaddr;
627 int ret;
628
629 vaddr = kmap(page);
630 if (needs_clflush)
631 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
632 page_length,
633 page_do_bit17_swizzling);
634
635 if (page_do_bit17_swizzling)
636 ret = __copy_to_user_swizzled(user_data,
637 vaddr, shmem_page_offset,
638 page_length);
639 else
640 ret = __copy_to_user(user_data,
641 vaddr + shmem_page_offset,
642 page_length);
643 kunmap(page);
644
645 return ret ? - EFAULT : 0;
646 }
647
648 static int
649 i915_gem_shmem_pread(struct drm_device *dev,
650 struct drm_i915_gem_object *obj,
651 struct drm_i915_gem_pread *args,
652 struct drm_file *file)
653 {
654 char __user *user_data;
655 ssize_t remain;
656 loff_t offset;
657 int shmem_page_offset, page_length, ret = 0;
658 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
659 int prefaulted = 0;
660 int needs_clflush = 0;
661 struct sg_page_iter sg_iter;
662
663 user_data = to_user_ptr(args->data_ptr);
664 remain = args->size;
665
666 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
667
668 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
669 if (ret)
670 return ret;
671
672 offset = args->offset;
673
674 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
675 offset >> PAGE_SHIFT) {
676 struct page *page = sg_page_iter_page(&sg_iter);
677
678 if (remain <= 0)
679 break;
680
681 /* Operation in this page
682 *
683 * shmem_page_offset = offset within page in shmem file
684 * page_length = bytes to copy for this page
685 */
686 shmem_page_offset = offset_in_page(offset);
687 page_length = remain;
688 if ((shmem_page_offset + page_length) > PAGE_SIZE)
689 page_length = PAGE_SIZE - shmem_page_offset;
690
691 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
692 (page_to_phys(page) & (1 << 17)) != 0;
693
694 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
695 user_data, page_do_bit17_swizzling,
696 needs_clflush);
697 if (ret == 0)
698 goto next_page;
699
700 mutex_unlock(&dev->struct_mutex);
701
702 if (likely(!i915.prefault_disable) && !prefaulted) {
703 ret = fault_in_multipages_writeable(user_data, remain);
704 /* Userspace is tricking us, but we've already clobbered
705 * its pages with the prefault and promised to write the
706 * data up to the first fault. Hence ignore any errors
707 * and just continue. */
708 (void)ret;
709 prefaulted = 1;
710 }
711
712 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
713 user_data, page_do_bit17_swizzling,
714 needs_clflush);
715
716 mutex_lock(&dev->struct_mutex);
717
718 if (ret)
719 goto out;
720
721 next_page:
722 remain -= page_length;
723 user_data += page_length;
724 offset += page_length;
725 }
726
727 out:
728 i915_gem_object_unpin_pages(obj);
729
730 return ret;
731 }
732
733 /**
734 * Reads data from the object referenced by handle.
735 *
736 * On error, the contents of *data are undefined.
737 */
738 int
739 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
740 struct drm_file *file)
741 {
742 struct drm_i915_gem_pread *args = data;
743 struct drm_i915_gem_object *obj;
744 int ret = 0;
745
746 if (args->size == 0)
747 return 0;
748
749 if (!access_ok(VERIFY_WRITE,
750 to_user_ptr(args->data_ptr),
751 args->size))
752 return -EFAULT;
753
754 ret = i915_mutex_lock_interruptible(dev);
755 if (ret)
756 return ret;
757
758 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
759 if (&obj->base == NULL) {
760 ret = -ENOENT;
761 goto unlock;
762 }
763
764 /* Bounds check source. */
765 if (args->offset > obj->base.size ||
766 args->size > obj->base.size - args->offset) {
767 ret = -EINVAL;
768 goto out;
769 }
770
771 /* prime objects have no backing filp to GEM pread/pwrite
772 * pages from.
773 */
774 if (!obj->base.filp) {
775 ret = -EINVAL;
776 goto out;
777 }
778
779 trace_i915_gem_object_pread(obj, args->offset, args->size);
780
781 ret = i915_gem_shmem_pread(dev, obj, args, file);
782
783 out:
784 drm_gem_object_unreference(&obj->base);
785 unlock:
786 mutex_unlock(&dev->struct_mutex);
787 return ret;
788 }
789
790 /* This is the fast write path which cannot handle
791 * page faults in the source data
792 */
793
794 static inline int
795 fast_user_write(struct io_mapping *mapping,
796 loff_t page_base, int page_offset,
797 char __user *user_data,
798 int length)
799 {
800 void __iomem *vaddr_atomic;
801 void *vaddr;
802 unsigned long unwritten;
803
804 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
805 /* We can use the cpu mem copy function because this is X86. */
806 vaddr = (void __force*)vaddr_atomic + page_offset;
807 unwritten = __copy_from_user_inatomic_nocache(vaddr,
808 user_data, length);
809 io_mapping_unmap_atomic(vaddr_atomic);
810 return unwritten;
811 }
812
813 /**
814 * This is the fast pwrite path, where we copy the data directly from the
815 * user into the GTT, uncached.
816 */
817 static int
818 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
819 struct drm_i915_gem_object *obj,
820 struct drm_i915_gem_pwrite *args,
821 struct drm_file *file)
822 {
823 struct drm_i915_private *dev_priv = dev->dev_private;
824 ssize_t remain;
825 loff_t offset, page_base;
826 char __user *user_data;
827 int page_offset, page_length, ret;
828
829 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
830 if (ret)
831 goto out;
832
833 ret = i915_gem_object_set_to_gtt_domain(obj, true);
834 if (ret)
835 goto out_unpin;
836
837 ret = i915_gem_object_put_fence(obj);
838 if (ret)
839 goto out_unpin;
840
841 user_data = to_user_ptr(args->data_ptr);
842 remain = args->size;
843
844 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
845
846 while (remain > 0) {
847 /* Operation in this page
848 *
849 * page_base = page offset within aperture
850 * page_offset = offset within page
851 * page_length = bytes to copy for this page
852 */
853 page_base = offset & PAGE_MASK;
854 page_offset = offset_in_page(offset);
855 page_length = remain;
856 if ((page_offset + remain) > PAGE_SIZE)
857 page_length = PAGE_SIZE - page_offset;
858
859 /* If we get a fault while copying data, then (presumably) our
860 * source page isn't available. Return the error and we'll
861 * retry in the slow path.
862 */
863 if (fast_user_write(dev_priv->gtt.mappable, page_base,
864 page_offset, user_data, page_length)) {
865 ret = -EFAULT;
866 goto out_unpin;
867 }
868
869 remain -= page_length;
870 user_data += page_length;
871 offset += page_length;
872 }
873
874 out_unpin:
875 i915_gem_object_ggtt_unpin(obj);
876 out:
877 return ret;
878 }
879
880 /* Per-page copy function for the shmem pwrite fastpath.
881 * Flushes invalid cachelines before writing to the target if
882 * needs_clflush_before is set and flushes out any written cachelines after
883 * writing if needs_clflush is set. */
884 static int
885 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
886 char __user *user_data,
887 bool page_do_bit17_swizzling,
888 bool needs_clflush_before,
889 bool needs_clflush_after)
890 {
891 char *vaddr;
892 int ret;
893
894 if (unlikely(page_do_bit17_swizzling))
895 return -EINVAL;
896
897 vaddr = kmap_atomic(page);
898 if (needs_clflush_before)
899 drm_clflush_virt_range(vaddr + shmem_page_offset,
900 page_length);
901 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
902 user_data, page_length);
903 if (needs_clflush_after)
904 drm_clflush_virt_range(vaddr + shmem_page_offset,
905 page_length);
906 kunmap_atomic(vaddr);
907
908 return ret ? -EFAULT : 0;
909 }
910
911 /* Only difference to the fast-path function is that this can handle bit17
912 * and uses non-atomic copy and kmap functions. */
913 static int
914 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
915 char __user *user_data,
916 bool page_do_bit17_swizzling,
917 bool needs_clflush_before,
918 bool needs_clflush_after)
919 {
920 char *vaddr;
921 int ret;
922
923 vaddr = kmap(page);
924 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
925 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
926 page_length,
927 page_do_bit17_swizzling);
928 if (page_do_bit17_swizzling)
929 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
930 user_data,
931 page_length);
932 else
933 ret = __copy_from_user(vaddr + shmem_page_offset,
934 user_data,
935 page_length);
936 if (needs_clflush_after)
937 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
938 page_length,
939 page_do_bit17_swizzling);
940 kunmap(page);
941
942 return ret ? -EFAULT : 0;
943 }
944
945 static int
946 i915_gem_shmem_pwrite(struct drm_device *dev,
947 struct drm_i915_gem_object *obj,
948 struct drm_i915_gem_pwrite *args,
949 struct drm_file *file)
950 {
951 ssize_t remain;
952 loff_t offset;
953 char __user *user_data;
954 int shmem_page_offset, page_length, ret = 0;
955 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
956 int hit_slowpath = 0;
957 int needs_clflush_after = 0;
958 int needs_clflush_before = 0;
959 struct sg_page_iter sg_iter;
960
961 user_data = to_user_ptr(args->data_ptr);
962 remain = args->size;
963
964 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
965
966 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
967 /* If we're not in the cpu write domain, set ourself into the gtt
968 * write domain and manually flush cachelines (if required). This
969 * optimizes for the case when the gpu will use the data
970 * right away and we therefore have to clflush anyway. */
971 needs_clflush_after = cpu_write_needs_clflush(obj);
972 ret = i915_gem_object_wait_rendering(obj, false);
973 if (ret)
974 return ret;
975
976 i915_gem_object_retire(obj);
977 }
978 /* Same trick applies to invalidate partially written cachelines read
979 * before writing. */
980 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
981 needs_clflush_before =
982 !cpu_cache_is_coherent(dev, obj->cache_level);
983
984 ret = i915_gem_object_get_pages(obj);
985 if (ret)
986 return ret;
987
988 i915_gem_object_pin_pages(obj);
989
990 offset = args->offset;
991 obj->dirty = 1;
992
993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
994 offset >> PAGE_SHIFT) {
995 struct page *page = sg_page_iter_page(&sg_iter);
996 int partial_cacheline_write;
997
998 if (remain <= 0)
999 break;
1000
1001 /* Operation in this page
1002 *
1003 * shmem_page_offset = offset within page in shmem file
1004 * page_length = bytes to copy for this page
1005 */
1006 shmem_page_offset = offset_in_page(offset);
1007
1008 page_length = remain;
1009 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1010 page_length = PAGE_SIZE - shmem_page_offset;
1011
1012 /* If we don't overwrite a cacheline completely we need to be
1013 * careful to have up-to-date data by first clflushing. Don't
1014 * overcomplicate things and flush the entire patch. */
1015 partial_cacheline_write = needs_clflush_before &&
1016 ((shmem_page_offset | page_length)
1017 & (boot_cpu_data.x86_clflush_size - 1));
1018
1019 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1020 (page_to_phys(page) & (1 << 17)) != 0;
1021
1022 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1023 user_data, page_do_bit17_swizzling,
1024 partial_cacheline_write,
1025 needs_clflush_after);
1026 if (ret == 0)
1027 goto next_page;
1028
1029 hit_slowpath = 1;
1030 mutex_unlock(&dev->struct_mutex);
1031 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1032 user_data, page_do_bit17_swizzling,
1033 partial_cacheline_write,
1034 needs_clflush_after);
1035
1036 mutex_lock(&dev->struct_mutex);
1037
1038 if (ret)
1039 goto out;
1040
1041 next_page:
1042 remain -= page_length;
1043 user_data += page_length;
1044 offset += page_length;
1045 }
1046
1047 out:
1048 i915_gem_object_unpin_pages(obj);
1049
1050 if (hit_slowpath) {
1051 /*
1052 * Fixup: Flush cpu caches in case we didn't flush the dirty
1053 * cachelines in-line while writing and the object moved
1054 * out of the cpu write domain while we've dropped the lock.
1055 */
1056 if (!needs_clflush_after &&
1057 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1058 if (i915_gem_clflush_object(obj, obj->pin_display))
1059 i915_gem_chipset_flush(dev);
1060 }
1061 }
1062
1063 if (needs_clflush_after)
1064 i915_gem_chipset_flush(dev);
1065
1066 return ret;
1067 }
1068
1069 /**
1070 * Writes data to the object referenced by handle.
1071 *
1072 * On error, the contents of the buffer that were to be modified are undefined.
1073 */
1074 int
1075 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1076 struct drm_file *file)
1077 {
1078 struct drm_i915_gem_pwrite *args = data;
1079 struct drm_i915_gem_object *obj;
1080 int ret;
1081
1082 if (args->size == 0)
1083 return 0;
1084
1085 if (!access_ok(VERIFY_READ,
1086 to_user_ptr(args->data_ptr),
1087 args->size))
1088 return -EFAULT;
1089
1090 if (likely(!i915.prefault_disable)) {
1091 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1092 args->size);
1093 if (ret)
1094 return -EFAULT;
1095 }
1096
1097 ret = i915_mutex_lock_interruptible(dev);
1098 if (ret)
1099 return ret;
1100
1101 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1102 if (&obj->base == NULL) {
1103 ret = -ENOENT;
1104 goto unlock;
1105 }
1106
1107 /* Bounds check destination. */
1108 if (args->offset > obj->base.size ||
1109 args->size > obj->base.size - args->offset) {
1110 ret = -EINVAL;
1111 goto out;
1112 }
1113
1114 /* prime objects have no backing filp to GEM pread/pwrite
1115 * pages from.
1116 */
1117 if (!obj->base.filp) {
1118 ret = -EINVAL;
1119 goto out;
1120 }
1121
1122 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1123
1124 ret = -EFAULT;
1125 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1126 * it would end up going through the fenced access, and we'll get
1127 * different detiling behavior between reading and writing.
1128 * pread/pwrite currently are reading and writing from the CPU
1129 * perspective, requiring manual detiling by the client.
1130 */
1131 if (obj->tiling_mode == I915_TILING_NONE &&
1132 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1133 cpu_write_needs_clflush(obj)) {
1134 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1135 /* Note that the gtt paths might fail with non-page-backed user
1136 * pointers (e.g. gtt mappings when moving data between
1137 * textures). Fallback to the shmem path in that case. */
1138 }
1139
1140 if (ret == -EFAULT || ret == -ENOSPC) {
1141 if (obj->phys_handle)
1142 ret = i915_gem_phys_pwrite(obj, args, file);
1143 else
1144 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1145 }
1146
1147 out:
1148 drm_gem_object_unreference(&obj->base);
1149 unlock:
1150 mutex_unlock(&dev->struct_mutex);
1151 return ret;
1152 }
1153
1154 int
1155 i915_gem_check_wedge(struct i915_gpu_error *error,
1156 bool interruptible)
1157 {
1158 if (i915_reset_in_progress(error)) {
1159 /* Non-interruptible callers can't handle -EAGAIN, hence return
1160 * -EIO unconditionally for these. */
1161 if (!interruptible)
1162 return -EIO;
1163
1164 /* Recovery complete, but the reset failed ... */
1165 if (i915_terminally_wedged(error))
1166 return -EIO;
1167
1168 /*
1169 * Check if GPU Reset is in progress - we need intel_ring_begin
1170 * to work properly to reinit the hw state while the gpu is
1171 * still marked as reset-in-progress. Handle this with a flag.
1172 */
1173 if (!error->reload_in_reset)
1174 return -EAGAIN;
1175 }
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * Compare seqno against outstanding lazy request. Emit a request if they are
1182 * equal.
1183 */
1184 int
1185 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1186 {
1187 int ret;
1188
1189 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1190
1191 ret = 0;
1192 if (seqno == ring->outstanding_lazy_seqno)
1193 ret = i915_add_request(ring, NULL);
1194
1195 return ret;
1196 }
1197
1198 static void fake_irq(unsigned long data)
1199 {
1200 wake_up_process((struct task_struct *)data);
1201 }
1202
1203 static bool missed_irq(struct drm_i915_private *dev_priv,
1204 struct intel_engine_cs *ring)
1205 {
1206 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1207 }
1208
1209 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1210 {
1211 if (file_priv == NULL)
1212 return true;
1213
1214 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1215 }
1216
1217 /**
1218 * __i915_wait_seqno - wait until execution of seqno has finished
1219 * @ring: the ring expected to report seqno
1220 * @seqno: duh!
1221 * @reset_counter: reset sequence associated with the given seqno
1222 * @interruptible: do an interruptible wait (normally yes)
1223 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1224 *
1225 * Note: It is of utmost importance that the passed in seqno and reset_counter
1226 * values have been read by the caller in an smp safe manner. Where read-side
1227 * locks are involved, it is sufficient to read the reset_counter before
1228 * unlocking the lock that protects the seqno. For lockless tricks, the
1229 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1230 * inserted.
1231 *
1232 * Returns 0 if the seqno was found within the alloted time. Else returns the
1233 * errno with remaining time filled in timeout argument.
1234 */
1235 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1236 unsigned reset_counter,
1237 bool interruptible,
1238 s64 *timeout,
1239 struct drm_i915_file_private *file_priv)
1240 {
1241 struct drm_device *dev = ring->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 const bool irq_test_in_progress =
1244 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1245 DEFINE_WAIT(wait);
1246 unsigned long timeout_expire;
1247 s64 before, now;
1248 int ret;
1249
1250 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1251
1252 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1253 return 0;
1254
1255 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1256
1257 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1258 gen6_rps_boost(dev_priv);
1259 if (file_priv)
1260 mod_delayed_work(dev_priv->wq,
1261 &file_priv->mm.idle_work,
1262 msecs_to_jiffies(100));
1263 }
1264
1265 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1266 return -ENODEV;
1267
1268 /* Record current time in case interrupted by signal, or wedged */
1269 trace_i915_gem_request_wait_begin(ring, seqno);
1270 before = ktime_get_raw_ns();
1271 for (;;) {
1272 struct timer_list timer;
1273
1274 prepare_to_wait(&ring->irq_queue, &wait,
1275 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1276
1277 /* We need to check whether any gpu reset happened in between
1278 * the caller grabbing the seqno and now ... */
1279 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1280 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1281 * is truely gone. */
1282 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1283 if (ret == 0)
1284 ret = -EAGAIN;
1285 break;
1286 }
1287
1288 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1289 ret = 0;
1290 break;
1291 }
1292
1293 if (interruptible && signal_pending(current)) {
1294 ret = -ERESTARTSYS;
1295 break;
1296 }
1297
1298 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1299 ret = -ETIME;
1300 break;
1301 }
1302
1303 timer.function = NULL;
1304 if (timeout || missed_irq(dev_priv, ring)) {
1305 unsigned long expire;
1306
1307 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1308 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1309 mod_timer(&timer, expire);
1310 }
1311
1312 io_schedule();
1313
1314 if (timer.function) {
1315 del_singleshot_timer_sync(&timer);
1316 destroy_timer_on_stack(&timer);
1317 }
1318 }
1319 now = ktime_get_raw_ns();
1320 trace_i915_gem_request_wait_end(ring, seqno);
1321
1322 if (!irq_test_in_progress)
1323 ring->irq_put(ring);
1324
1325 finish_wait(&ring->irq_queue, &wait);
1326
1327 if (timeout) {
1328 s64 tres = *timeout - (now - before);
1329
1330 *timeout = tres < 0 ? 0 : tres;
1331 }
1332
1333 return ret;
1334 }
1335
1336 /**
1337 * Waits for a sequence number to be signaled, and cleans up the
1338 * request and object lists appropriately for that event.
1339 */
1340 int
1341 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1342 {
1343 struct drm_device *dev = ring->dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 bool interruptible = dev_priv->mm.interruptible;
1346 unsigned reset_counter;
1347 int ret;
1348
1349 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1350 BUG_ON(seqno == 0);
1351
1352 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1353 if (ret)
1354 return ret;
1355
1356 ret = i915_gem_check_olr(ring, seqno);
1357 if (ret)
1358 return ret;
1359
1360 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1361 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1362 NULL, NULL);
1363 }
1364
1365 static int
1366 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1367 {
1368 if (!obj->active)
1369 return 0;
1370
1371 /* Manually manage the write flush as we may have not yet
1372 * retired the buffer.
1373 *
1374 * Note that the last_write_seqno is always the earlier of
1375 * the two (read/write) seqno, so if we haved successfully waited,
1376 * we know we have passed the last write.
1377 */
1378 obj->last_write_seqno = 0;
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * Ensures that all rendering to the object has completed and the object is
1385 * safe to unbind from the GTT or access from the CPU.
1386 */
1387 static __must_check int
1388 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1389 bool readonly)
1390 {
1391 struct intel_engine_cs *ring = obj->ring;
1392 u32 seqno;
1393 int ret;
1394
1395 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1396 if (seqno == 0)
1397 return 0;
1398
1399 ret = i915_wait_seqno(ring, seqno);
1400 if (ret)
1401 return ret;
1402
1403 return i915_gem_object_wait_rendering__tail(obj);
1404 }
1405
1406 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1407 * as the object state may change during this call.
1408 */
1409 static __must_check int
1410 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1411 struct drm_i915_file_private *file_priv,
1412 bool readonly)
1413 {
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 struct intel_engine_cs *ring = obj->ring;
1417 unsigned reset_counter;
1418 u32 seqno;
1419 int ret;
1420
1421 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1422 BUG_ON(!dev_priv->mm.interruptible);
1423
1424 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1425 if (seqno == 0)
1426 return 0;
1427
1428 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1429 if (ret)
1430 return ret;
1431
1432 ret = i915_gem_check_olr(ring, seqno);
1433 if (ret)
1434 return ret;
1435
1436 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1437 mutex_unlock(&dev->struct_mutex);
1438 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1439 file_priv);
1440 mutex_lock(&dev->struct_mutex);
1441 if (ret)
1442 return ret;
1443
1444 return i915_gem_object_wait_rendering__tail(obj);
1445 }
1446
1447 /**
1448 * Called when user space prepares to use an object with the CPU, either
1449 * through the mmap ioctl's mapping or a GTT mapping.
1450 */
1451 int
1452 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1453 struct drm_file *file)
1454 {
1455 struct drm_i915_gem_set_domain *args = data;
1456 struct drm_i915_gem_object *obj;
1457 uint32_t read_domains = args->read_domains;
1458 uint32_t write_domain = args->write_domain;
1459 int ret;
1460
1461 /* Only handle setting domains to types used by the CPU. */
1462 if (write_domain & I915_GEM_GPU_DOMAINS)
1463 return -EINVAL;
1464
1465 if (read_domains & I915_GEM_GPU_DOMAINS)
1466 return -EINVAL;
1467
1468 /* Having something in the write domain implies it's in the read
1469 * domain, and only that read domain. Enforce that in the request.
1470 */
1471 if (write_domain != 0 && read_domains != write_domain)
1472 return -EINVAL;
1473
1474 ret = i915_mutex_lock_interruptible(dev);
1475 if (ret)
1476 return ret;
1477
1478 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1479 if (&obj->base == NULL) {
1480 ret = -ENOENT;
1481 goto unlock;
1482 }
1483
1484 /* Try to flush the object off the GPU without holding the lock.
1485 * We will repeat the flush holding the lock in the normal manner
1486 * to catch cases where we are gazumped.
1487 */
1488 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1489 file->driver_priv,
1490 !write_domain);
1491 if (ret)
1492 goto unref;
1493
1494 if (read_domains & I915_GEM_DOMAIN_GTT) {
1495 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1496
1497 /* Silently promote "you're not bound, there was nothing to do"
1498 * to success, since the client was just asking us to
1499 * make sure everything was done.
1500 */
1501 if (ret == -EINVAL)
1502 ret = 0;
1503 } else {
1504 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1505 }
1506
1507 unref:
1508 drm_gem_object_unreference(&obj->base);
1509 unlock:
1510 mutex_unlock(&dev->struct_mutex);
1511 return ret;
1512 }
1513
1514 /**
1515 * Called when user space has done writes to this buffer
1516 */
1517 int
1518 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1519 struct drm_file *file)
1520 {
1521 struct drm_i915_gem_sw_finish *args = data;
1522 struct drm_i915_gem_object *obj;
1523 int ret = 0;
1524
1525 ret = i915_mutex_lock_interruptible(dev);
1526 if (ret)
1527 return ret;
1528
1529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1530 if (&obj->base == NULL) {
1531 ret = -ENOENT;
1532 goto unlock;
1533 }
1534
1535 /* Pinned buffers may be scanout, so flush the cache */
1536 if (obj->pin_display)
1537 i915_gem_object_flush_cpu_write_domain(obj, true);
1538
1539 drm_gem_object_unreference(&obj->base);
1540 unlock:
1541 mutex_unlock(&dev->struct_mutex);
1542 return ret;
1543 }
1544
1545 /**
1546 * Maps the contents of an object, returning the address it is mapped
1547 * into.
1548 *
1549 * While the mapping holds a reference on the contents of the object, it doesn't
1550 * imply a ref on the object itself.
1551 *
1552 * IMPORTANT:
1553 *
1554 * DRM driver writers who look a this function as an example for how to do GEM
1555 * mmap support, please don't implement mmap support like here. The modern way
1556 * to implement DRM mmap support is with an mmap offset ioctl (like
1557 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1558 * That way debug tooling like valgrind will understand what's going on, hiding
1559 * the mmap call in a driver private ioctl will break that. The i915 driver only
1560 * does cpu mmaps this way because we didn't know better.
1561 */
1562 int
1563 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1564 struct drm_file *file)
1565 {
1566 struct drm_i915_gem_mmap *args = data;
1567 struct drm_gem_object *obj;
1568 unsigned long addr;
1569
1570 obj = drm_gem_object_lookup(dev, file, args->handle);
1571 if (obj == NULL)
1572 return -ENOENT;
1573
1574 /* prime objects have no backing filp to GEM mmap
1575 * pages from.
1576 */
1577 if (!obj->filp) {
1578 drm_gem_object_unreference_unlocked(obj);
1579 return -EINVAL;
1580 }
1581
1582 addr = vm_mmap(obj->filp, 0, args->size,
1583 PROT_READ | PROT_WRITE, MAP_SHARED,
1584 args->offset);
1585 drm_gem_object_unreference_unlocked(obj);
1586 if (IS_ERR((void *)addr))
1587 return addr;
1588
1589 args->addr_ptr = (uint64_t) addr;
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * i915_gem_fault - fault a page into the GTT
1596 * vma: VMA in question
1597 * vmf: fault info
1598 *
1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600 * from userspace. The fault handler takes care of binding the object to
1601 * the GTT (if needed), allocating and programming a fence register (again,
1602 * only if needed based on whether the old reg is still valid or the object
1603 * is tiled) and inserting a new PTE into the faulting process.
1604 *
1605 * Note that the faulting process may involve evicting existing objects
1606 * from the GTT and/or fence registers to make room. So performance may
1607 * suffer if the GTT working set is large or there are few fence registers
1608 * left.
1609 */
1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 struct drm_device *dev = obj->base.dev;
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 pgoff_t page_offset;
1616 unsigned long pfn;
1617 int ret = 0;
1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619
1620 intel_runtime_pm_get(dev_priv);
1621
1622 /* We don't use vmf->pgoff since that has the fake offset */
1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 PAGE_SHIFT;
1625
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 goto out;
1629
1630 trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
1632 /* Try to flush the object off the GPU first without holding the lock.
1633 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 * repeat the flush holding the lock in the normal manner to catch cases
1635 * where we are gazumped.
1636 */
1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 if (ret)
1639 goto unlock;
1640
1641 /* Access to snoopable pages through the GTT is incoherent. */
1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643 ret = -EFAULT;
1644 goto unlock;
1645 }
1646
1647 /* Now bind it into the GTT if needed */
1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649 if (ret)
1650 goto unlock;
1651
1652 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 if (ret)
1654 goto unpin;
1655
1656 ret = i915_gem_object_get_fence(obj);
1657 if (ret)
1658 goto unpin;
1659
1660 /* Finally, remap it using the new GTT offset */
1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 pfn >>= PAGE_SHIFT;
1663
1664 if (!obj->fault_mappable) {
1665 unsigned long size = min_t(unsigned long,
1666 vma->vm_end - vma->vm_start,
1667 obj->base.size);
1668 int i;
1669
1670 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 pfn + i);
1674 if (ret)
1675 break;
1676 }
1677
1678 obj->fault_mappable = true;
1679 } else
1680 ret = vm_insert_pfn(vma,
1681 (unsigned long)vmf->virtual_address,
1682 pfn + page_offset);
1683 unpin:
1684 i915_gem_object_ggtt_unpin(obj);
1685 unlock:
1686 mutex_unlock(&dev->struct_mutex);
1687 out:
1688 switch (ret) {
1689 case -EIO:
1690 /*
1691 * We eat errors when the gpu is terminally wedged to avoid
1692 * userspace unduly crashing (gl has no provisions for mmaps to
1693 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 * and so needs to be reported.
1695 */
1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697 ret = VM_FAULT_SIGBUS;
1698 break;
1699 }
1700 case -EAGAIN:
1701 /*
1702 * EAGAIN means the gpu is hung and we'll wait for the error
1703 * handler to reset everything when re-faulting in
1704 * i915_mutex_lock_interruptible.
1705 */
1706 case 0:
1707 case -ERESTARTSYS:
1708 case -EINTR:
1709 case -EBUSY:
1710 /*
1711 * EBUSY is ok: this just means that another thread
1712 * already did the job.
1713 */
1714 ret = VM_FAULT_NOPAGE;
1715 break;
1716 case -ENOMEM:
1717 ret = VM_FAULT_OOM;
1718 break;
1719 case -ENOSPC:
1720 case -EFAULT:
1721 ret = VM_FAULT_SIGBUS;
1722 break;
1723 default:
1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 }
1728
1729 intel_runtime_pm_put(dev_priv);
1730 return ret;
1731 }
1732
1733 /**
1734 * i915_gem_release_mmap - remove physical page mappings
1735 * @obj: obj in question
1736 *
1737 * Preserve the reservation of the mmapping with the DRM core code, but
1738 * relinquish ownership of the pages back to the system.
1739 *
1740 * It is vital that we remove the page mapping if we have mapped a tiled
1741 * object through the GTT and then lose the fence register due to
1742 * resource pressure. Similarly if the object has been moved out of the
1743 * aperture, than pages mapped into userspace must be revoked. Removing the
1744 * mapping will then trigger a page fault on the next user access, allowing
1745 * fixup by i915_gem_fault().
1746 */
1747 void
1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749 {
1750 if (!obj->fault_mappable)
1751 return;
1752
1753 drm_vma_node_unmap(&obj->base.vma_node,
1754 obj->base.dev->anon_inode->i_mapping);
1755 obj->fault_mappable = false;
1756 }
1757
1758 void
1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760 {
1761 struct drm_i915_gem_object *obj;
1762
1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 i915_gem_release_mmap(obj);
1765 }
1766
1767 uint32_t
1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769 {
1770 uint32_t gtt_size;
1771
1772 if (INTEL_INFO(dev)->gen >= 4 ||
1773 tiling_mode == I915_TILING_NONE)
1774 return size;
1775
1776 /* Previous chips need a power-of-two fence region when tiling */
1777 if (INTEL_INFO(dev)->gen == 3)
1778 gtt_size = 1024*1024;
1779 else
1780 gtt_size = 512*1024;
1781
1782 while (gtt_size < size)
1783 gtt_size <<= 1;
1784
1785 return gtt_size;
1786 }
1787
1788 /**
1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790 * @obj: object to check
1791 *
1792 * Return the required GTT alignment for an object, taking into account
1793 * potential fence register mapping.
1794 */
1795 uint32_t
1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 int tiling_mode, bool fenced)
1798 {
1799 /*
1800 * Minimum alignment is 4k (GTT page size), but might be greater
1801 * if a fence register is needed for the object.
1802 */
1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804 tiling_mode == I915_TILING_NONE)
1805 return 4096;
1806
1807 /*
1808 * Previous chips need to be aligned to the size of the smallest
1809 * fence register that can contain the object.
1810 */
1811 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 }
1813
1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815 {
1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 int ret;
1818
1819 if (drm_vma_node_has_offset(&obj->base.vma_node))
1820 return 0;
1821
1822 dev_priv->mm.shrinker_no_lock_stealing = true;
1823
1824 ret = drm_gem_create_mmap_offset(&obj->base);
1825 if (ret != -ENOSPC)
1826 goto out;
1827
1828 /* Badly fragmented mmap space? The only way we can recover
1829 * space is by destroying unwanted objects. We can't randomly release
1830 * mmap_offsets as userspace expects them to be persistent for the
1831 * lifetime of the objects. The closest we can is to release the
1832 * offsets on purgeable objects by truncating it and marking it purged,
1833 * which prevents userspace from ever using that object again.
1834 */
1835 i915_gem_shrink(dev_priv,
1836 obj->base.size >> PAGE_SHIFT,
1837 I915_SHRINK_BOUND |
1838 I915_SHRINK_UNBOUND |
1839 I915_SHRINK_PURGEABLE);
1840 ret = drm_gem_create_mmap_offset(&obj->base);
1841 if (ret != -ENOSPC)
1842 goto out;
1843
1844 i915_gem_shrink_all(dev_priv);
1845 ret = drm_gem_create_mmap_offset(&obj->base);
1846 out:
1847 dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849 return ret;
1850 }
1851
1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853 {
1854 drm_gem_free_mmap_offset(&obj->base);
1855 }
1856
1857 int
1858 i915_gem_mmap_gtt(struct drm_file *file,
1859 struct drm_device *dev,
1860 uint32_t handle,
1861 uint64_t *offset)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 struct drm_i915_gem_object *obj;
1865 int ret;
1866
1867 ret = i915_mutex_lock_interruptible(dev);
1868 if (ret)
1869 return ret;
1870
1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872 if (&obj->base == NULL) {
1873 ret = -ENOENT;
1874 goto unlock;
1875 }
1876
1877 if (obj->base.size > dev_priv->gtt.mappable_end) {
1878 ret = -E2BIG;
1879 goto out;
1880 }
1881
1882 if (obj->madv != I915_MADV_WILLNEED) {
1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884 ret = -EFAULT;
1885 goto out;
1886 }
1887
1888 ret = i915_gem_object_create_mmap_offset(obj);
1889 if (ret)
1890 goto out;
1891
1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893
1894 out:
1895 drm_gem_object_unreference(&obj->base);
1896 unlock:
1897 mutex_unlock(&dev->struct_mutex);
1898 return ret;
1899 }
1900
1901 /**
1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903 * @dev: DRM device
1904 * @data: GTT mapping ioctl data
1905 * @file: GEM object info
1906 *
1907 * Simply returns the fake offset to userspace so it can mmap it.
1908 * The mmap call will end up in drm_gem_mmap(), which will set things
1909 * up so we can get faults in the handler above.
1910 *
1911 * The fault handler will take care of binding the object into the GTT
1912 * (since it may have been evicted to make room for something), allocating
1913 * a fence register, and mapping the appropriate aperture address into
1914 * userspace.
1915 */
1916 int
1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 struct drm_file *file)
1919 {
1920 struct drm_i915_gem_mmap_gtt *args = data;
1921
1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 }
1924
1925 static inline int
1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927 {
1928 return obj->madv == I915_MADV_DONTNEED;
1929 }
1930
1931 /* Immediately discard the backing storage */
1932 static void
1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934 {
1935 i915_gem_object_free_mmap_offset(obj);
1936
1937 if (obj->base.filp == NULL)
1938 return;
1939
1940 /* Our goal here is to return as much of the memory as
1941 * is possible back to the system as we are called from OOM.
1942 * To do this we must instruct the shmfs to drop all of its
1943 * backing pages, *now*.
1944 */
1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1946 obj->madv = __I915_MADV_PURGED;
1947 }
1948
1949 /* Try to discard unwanted pages */
1950 static void
1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1952 {
1953 struct address_space *mapping;
1954
1955 switch (obj->madv) {
1956 case I915_MADV_DONTNEED:
1957 i915_gem_object_truncate(obj);
1958 case __I915_MADV_PURGED:
1959 return;
1960 }
1961
1962 if (obj->base.filp == NULL)
1963 return;
1964
1965 mapping = file_inode(obj->base.filp)->i_mapping,
1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 }
1968
1969 static void
1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971 {
1972 struct sg_page_iter sg_iter;
1973 int ret;
1974
1975 BUG_ON(obj->madv == __I915_MADV_PURGED);
1976
1977 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 if (ret) {
1979 /* In the event of a disaster, abandon all caches and
1980 * hope for the best.
1981 */
1982 WARN_ON(ret != -EIO);
1983 i915_gem_clflush_object(obj, true);
1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 }
1986
1987 if (i915_gem_object_needs_bit17_swizzle(obj))
1988 i915_gem_object_save_bit_17_swizzle(obj);
1989
1990 if (obj->madv == I915_MADV_DONTNEED)
1991 obj->dirty = 0;
1992
1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994 struct page *page = sg_page_iter_page(&sg_iter);
1995
1996 if (obj->dirty)
1997 set_page_dirty(page);
1998
1999 if (obj->madv == I915_MADV_WILLNEED)
2000 mark_page_accessed(page);
2001
2002 page_cache_release(page);
2003 }
2004 obj->dirty = 0;
2005
2006 sg_free_table(obj->pages);
2007 kfree(obj->pages);
2008 }
2009
2010 int
2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012 {
2013 const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2015 if (obj->pages == NULL)
2016 return 0;
2017
2018 if (obj->pages_pin_count)
2019 return -EBUSY;
2020
2021 BUG_ON(i915_gem_obj_bound_any(obj));
2022
2023 /* ->put_pages might need to allocate memory for the bit17 swizzle
2024 * array, hence protect them from being reaped by removing them from gtt
2025 * lists early. */
2026 list_del(&obj->global_list);
2027
2028 ops->put_pages(obj);
2029 obj->pages = NULL;
2030
2031 i915_gem_object_invalidate(obj);
2032
2033 return 0;
2034 }
2035
2036 unsigned long
2037 i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 long target, unsigned flags)
2039 {
2040 const struct {
2041 struct list_head *list;
2042 unsigned int bit;
2043 } phases[] = {
2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 { NULL, 0 },
2047 }, *phase;
2048 unsigned long count = 0;
2049
2050 /*
2051 * As we may completely rewrite the (un)bound list whilst unbinding
2052 * (due to retiring requests) we have to strictly process only
2053 * one element of the list at the time, and recheck the list
2054 * on every iteration.
2055 *
2056 * In particular, we must hold a reference whilst removing the
2057 * object as we may end up waiting for and/or retiring the objects.
2058 * This might release the final reference (held by the active list)
2059 * and result in the object being freed from under us. This is
2060 * similar to the precautions the eviction code must take whilst
2061 * removing objects.
2062 *
2063 * Also note that although these lists do not hold a reference to
2064 * the object we can safely grab one here: The final object
2065 * unreferencing and the bound_list are both protected by the
2066 * dev->struct_mutex and so we won't ever be able to observe an
2067 * object on the bound_list with a reference count equals 0.
2068 */
2069 for (phase = phases; phase->list; phase++) {
2070 struct list_head still_in_list;
2071
2072 if ((flags & phase->bit) == 0)
2073 continue;
2074
2075 INIT_LIST_HEAD(&still_in_list);
2076 while (count < target && !list_empty(phase->list)) {
2077 struct drm_i915_gem_object *obj;
2078 struct i915_vma *vma, *v;
2079
2080 obj = list_first_entry(phase->list,
2081 typeof(*obj), global_list);
2082 list_move_tail(&obj->global_list, &still_in_list);
2083
2084 if (flags & I915_SHRINK_PURGEABLE &&
2085 !i915_gem_object_is_purgeable(obj))
2086 continue;
2087
2088 drm_gem_object_reference(&obj->base);
2089
2090 /* For the unbound phase, this should be a no-op! */
2091 list_for_each_entry_safe(vma, v,
2092 &obj->vma_list, vma_link)
2093 if (i915_vma_unbind(vma))
2094 break;
2095
2096 if (i915_gem_object_put_pages(obj) == 0)
2097 count += obj->base.size >> PAGE_SHIFT;
2098
2099 drm_gem_object_unreference(&obj->base);
2100 }
2101 list_splice(&still_in_list, phase->list);
2102 }
2103
2104 return count;
2105 }
2106
2107 static unsigned long
2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109 {
2110 i915_gem_evict_everything(dev_priv->dev);
2111 return i915_gem_shrink(dev_priv, LONG_MAX,
2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2113 }
2114
2115 static int
2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117 {
2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119 int page_count, i;
2120 struct address_space *mapping;
2121 struct sg_table *st;
2122 struct scatterlist *sg;
2123 struct sg_page_iter sg_iter;
2124 struct page *page;
2125 unsigned long last_pfn = 0; /* suppress gcc warning */
2126 gfp_t gfp;
2127
2128 /* Assert that the object is not currently in any GPU domain. As it
2129 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 * a GPU cache
2131 */
2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
2135 st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 if (st == NULL)
2137 return -ENOMEM;
2138
2139 page_count = obj->base.size / PAGE_SIZE;
2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2141 kfree(st);
2142 return -ENOMEM;
2143 }
2144
2145 /* Get the list of pages out of our struct file. They'll be pinned
2146 * at this point until we release them.
2147 *
2148 * Fail silently without starting the shrinker
2149 */
2150 mapping = file_inode(obj->base.filp)->i_mapping;
2151 gfp = mapping_gfp_mask(mapping);
2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2153 gfp &= ~(__GFP_IO | __GFP_WAIT);
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
2171 i915_gem_shrink_all(dev_priv);
2172 page = shmem_read_mapping_page(mapping, i);
2173 if (IS_ERR(page))
2174 goto err_pages;
2175 }
2176 #ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183 #endif
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196 }
2197 #ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199 #endif
2200 sg_mark_end(sg);
2201 obj->pages = st;
2202
2203 if (i915_gem_object_needs_bit17_swizzle(obj))
2204 i915_gem_object_do_bit_17_swizzle(obj);
2205
2206 return 0;
2207
2208 err_pages:
2209 sg_mark_end(sg);
2210 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2211 page_cache_release(sg_page_iter_page(&sg_iter));
2212 sg_free_table(st);
2213 kfree(st);
2214
2215 /* shmemfs first checks if there is enough memory to allocate the page
2216 * and reports ENOSPC should there be insufficient, along with the usual
2217 * ENOMEM for a genuine allocation failure.
2218 *
2219 * We use ENOSPC in our driver to mean that we have run out of aperture
2220 * space and so want to translate the error from shmemfs back to our
2221 * usual understanding of ENOMEM.
2222 */
2223 if (PTR_ERR(page) == -ENOSPC)
2224 return -ENOMEM;
2225 else
2226 return PTR_ERR(page);
2227 }
2228
2229 /* Ensure that the associated pages are gathered from the backing storage
2230 * and pinned into our object. i915_gem_object_get_pages() may be called
2231 * multiple times before they are released by a single call to
2232 * i915_gem_object_put_pages() - once the pages are no longer referenced
2233 * either as a result of memory pressure (reaping pages under the shrinker)
2234 * or as the object is itself released.
2235 */
2236 int
2237 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2238 {
2239 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2240 const struct drm_i915_gem_object_ops *ops = obj->ops;
2241 int ret;
2242
2243 if (obj->pages)
2244 return 0;
2245
2246 if (obj->madv != I915_MADV_WILLNEED) {
2247 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2248 return -EFAULT;
2249 }
2250
2251 BUG_ON(obj->pages_pin_count);
2252
2253 ret = ops->get_pages(obj);
2254 if (ret)
2255 return ret;
2256
2257 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2258 return 0;
2259 }
2260
2261 static void
2262 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2263 struct intel_engine_cs *ring)
2264 {
2265 u32 seqno = intel_ring_get_seqno(ring);
2266
2267 BUG_ON(ring == NULL);
2268 if (obj->ring != ring && obj->last_write_seqno) {
2269 /* Keep the seqno relative to the current ring */
2270 obj->last_write_seqno = seqno;
2271 }
2272 obj->ring = ring;
2273
2274 /* Add a reference if we're newly entering the active list. */
2275 if (!obj->active) {
2276 drm_gem_object_reference(&obj->base);
2277 obj->active = 1;
2278 }
2279
2280 list_move_tail(&obj->ring_list, &ring->active_list);
2281
2282 obj->last_read_seqno = seqno;
2283 }
2284
2285 void i915_vma_move_to_active(struct i915_vma *vma,
2286 struct intel_engine_cs *ring)
2287 {
2288 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2289 return i915_gem_object_move_to_active(vma->obj, ring);
2290 }
2291
2292 static void
2293 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2294 {
2295 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2296 struct i915_address_space *vm;
2297 struct i915_vma *vma;
2298
2299 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2300 BUG_ON(!obj->active);
2301
2302 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2303 vma = i915_gem_obj_to_vma(obj, vm);
2304 if (vma && !list_empty(&vma->mm_list))
2305 list_move_tail(&vma->mm_list, &vm->inactive_list);
2306 }
2307
2308 intel_fb_obj_flush(obj, true);
2309
2310 list_del_init(&obj->ring_list);
2311 obj->ring = NULL;
2312
2313 obj->last_read_seqno = 0;
2314 obj->last_write_seqno = 0;
2315 obj->base.write_domain = 0;
2316
2317 obj->last_fenced_seqno = 0;
2318
2319 obj->active = 0;
2320 drm_gem_object_unreference(&obj->base);
2321
2322 WARN_ON(i915_verify_lists(dev));
2323 }
2324
2325 static void
2326 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2327 {
2328 struct intel_engine_cs *ring = obj->ring;
2329
2330 if (ring == NULL)
2331 return;
2332
2333 if (i915_seqno_passed(ring->get_seqno(ring, true),
2334 obj->last_read_seqno))
2335 i915_gem_object_move_to_inactive(obj);
2336 }
2337
2338 static int
2339 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2340 {
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct intel_engine_cs *ring;
2343 int ret, i, j;
2344
2345 /* Carefully retire all requests without writing to the rings */
2346 for_each_ring(ring, dev_priv, i) {
2347 ret = intel_ring_idle(ring);
2348 if (ret)
2349 return ret;
2350 }
2351 i915_gem_retire_requests(dev);
2352
2353 /* Finally reset hw state */
2354 for_each_ring(ring, dev_priv, i) {
2355 intel_ring_init_seqno(ring, seqno);
2356
2357 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2358 ring->semaphore.sync_seqno[j] = 0;
2359 }
2360
2361 return 0;
2362 }
2363
2364 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2365 {
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 int ret;
2368
2369 if (seqno == 0)
2370 return -EINVAL;
2371
2372 /* HWS page needs to be set less than what we
2373 * will inject to ring
2374 */
2375 ret = i915_gem_init_seqno(dev, seqno - 1);
2376 if (ret)
2377 return ret;
2378
2379 /* Carefully set the last_seqno value so that wrap
2380 * detection still works
2381 */
2382 dev_priv->next_seqno = seqno;
2383 dev_priv->last_seqno = seqno - 1;
2384 if (dev_priv->last_seqno == 0)
2385 dev_priv->last_seqno--;
2386
2387 return 0;
2388 }
2389
2390 int
2391 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2392 {
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394
2395 /* reserve 0 for non-seqno */
2396 if (dev_priv->next_seqno == 0) {
2397 int ret = i915_gem_init_seqno(dev, 0);
2398 if (ret)
2399 return ret;
2400
2401 dev_priv->next_seqno = 1;
2402 }
2403
2404 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2405 return 0;
2406 }
2407
2408 int __i915_add_request(struct intel_engine_cs *ring,
2409 struct drm_file *file,
2410 struct drm_i915_gem_object *obj,
2411 u32 *out_seqno)
2412 {
2413 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414 struct drm_i915_gem_request *request;
2415 struct intel_ringbuffer *ringbuf;
2416 u32 request_ring_position, request_start;
2417 int ret;
2418
2419 request = ring->preallocated_lazy_request;
2420 if (WARN_ON(request == NULL))
2421 return -ENOMEM;
2422
2423 if (i915.enable_execlists) {
2424 struct intel_context *ctx = request->ctx;
2425 ringbuf = ctx->engine[ring->id].ringbuf;
2426 } else
2427 ringbuf = ring->buffer;
2428
2429 request_start = intel_ring_get_tail(ringbuf);
2430 /*
2431 * Emit any outstanding flushes - execbuf can fail to emit the flush
2432 * after having emitted the batchbuffer command. Hence we need to fix
2433 * things up similar to emitting the lazy request. The difference here
2434 * is that the flush _must_ happen before the next request, no matter
2435 * what.
2436 */
2437 if (i915.enable_execlists) {
2438 ret = logical_ring_flush_all_caches(ringbuf);
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = intel_ring_flush_all_caches(ring);
2443 if (ret)
2444 return ret;
2445 }
2446
2447 /* Record the position of the start of the request so that
2448 * should we detect the updated seqno part-way through the
2449 * GPU processing the request, we never over-estimate the
2450 * position of the head.
2451 */
2452 request_ring_position = intel_ring_get_tail(ringbuf);
2453
2454 if (i915.enable_execlists) {
2455 ret = ring->emit_request(ringbuf);
2456 if (ret)
2457 return ret;
2458 } else {
2459 ret = ring->add_request(ring);
2460 if (ret)
2461 return ret;
2462 }
2463
2464 request->seqno = intel_ring_get_seqno(ring);
2465 request->ring = ring;
2466 request->head = request_start;
2467 request->tail = request_ring_position;
2468
2469 /* Whilst this request exists, batch_obj will be on the
2470 * active_list, and so will hold the active reference. Only when this
2471 * request is retired will the the batch_obj be moved onto the
2472 * inactive_list and lose its active reference. Hence we do not need
2473 * to explicitly hold another reference here.
2474 */
2475 request->batch_obj = obj;
2476
2477 if (!i915.enable_execlists) {
2478 /* Hold a reference to the current context so that we can inspect
2479 * it later in case a hangcheck error event fires.
2480 */
2481 request->ctx = ring->last_context;
2482 if (request->ctx)
2483 i915_gem_context_reference(request->ctx);
2484 }
2485
2486 request->emitted_jiffies = jiffies;
2487 list_add_tail(&request->list, &ring->request_list);
2488 request->file_priv = NULL;
2489
2490 if (file) {
2491 struct drm_i915_file_private *file_priv = file->driver_priv;
2492
2493 spin_lock(&file_priv->mm.lock);
2494 request->file_priv = file_priv;
2495 list_add_tail(&request->client_list,
2496 &file_priv->mm.request_list);
2497 spin_unlock(&file_priv->mm.lock);
2498 }
2499
2500 trace_i915_gem_request_add(ring, request->seqno);
2501 ring->outstanding_lazy_seqno = 0;
2502 ring->preallocated_lazy_request = NULL;
2503
2504 if (!dev_priv->ums.mm_suspended) {
2505 i915_queue_hangcheck(ring->dev);
2506
2507 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2508 queue_delayed_work(dev_priv->wq,
2509 &dev_priv->mm.retire_work,
2510 round_jiffies_up_relative(HZ));
2511 intel_mark_busy(dev_priv->dev);
2512 }
2513
2514 if (out_seqno)
2515 *out_seqno = request->seqno;
2516 return 0;
2517 }
2518
2519 static inline void
2520 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2521 {
2522 struct drm_i915_file_private *file_priv = request->file_priv;
2523
2524 if (!file_priv)
2525 return;
2526
2527 spin_lock(&file_priv->mm.lock);
2528 list_del(&request->client_list);
2529 request->file_priv = NULL;
2530 spin_unlock(&file_priv->mm.lock);
2531 }
2532
2533 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2534 const struct intel_context *ctx)
2535 {
2536 unsigned long elapsed;
2537
2538 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2539
2540 if (ctx->hang_stats.banned)
2541 return true;
2542
2543 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2544 if (!i915_gem_context_is_default(ctx)) {
2545 DRM_DEBUG("context hanging too fast, banning!\n");
2546 return true;
2547 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2548 if (i915_stop_ring_allow_warn(dev_priv))
2549 DRM_ERROR("gpu hanging too fast, banning!\n");
2550 return true;
2551 }
2552 }
2553
2554 return false;
2555 }
2556
2557 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2558 struct intel_context *ctx,
2559 const bool guilty)
2560 {
2561 struct i915_ctx_hang_stats *hs;
2562
2563 if (WARN_ON(!ctx))
2564 return;
2565
2566 hs = &ctx->hang_stats;
2567
2568 if (guilty) {
2569 hs->banned = i915_context_is_banned(dev_priv, ctx);
2570 hs->batch_active++;
2571 hs->guilty_ts = get_seconds();
2572 } else {
2573 hs->batch_pending++;
2574 }
2575 }
2576
2577 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2578 {
2579 list_del(&request->list);
2580 i915_gem_request_remove_from_client(request);
2581
2582 if (request->ctx)
2583 i915_gem_context_unreference(request->ctx);
2584
2585 kfree(request);
2586 }
2587
2588 struct drm_i915_gem_request *
2589 i915_gem_find_active_request(struct intel_engine_cs *ring)
2590 {
2591 struct drm_i915_gem_request *request;
2592 u32 completed_seqno;
2593
2594 completed_seqno = ring->get_seqno(ring, false);
2595
2596 list_for_each_entry(request, &ring->request_list, list) {
2597 if (i915_seqno_passed(completed_seqno, request->seqno))
2598 continue;
2599
2600 return request;
2601 }
2602
2603 return NULL;
2604 }
2605
2606 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2607 struct intel_engine_cs *ring)
2608 {
2609 struct drm_i915_gem_request *request;
2610 bool ring_hung;
2611
2612 request = i915_gem_find_active_request(ring);
2613
2614 if (request == NULL)
2615 return;
2616
2617 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2618
2619 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2620
2621 list_for_each_entry_continue(request, &ring->request_list, list)
2622 i915_set_reset_status(dev_priv, request->ctx, false);
2623 }
2624
2625 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2626 struct intel_engine_cs *ring)
2627 {
2628 while (!list_empty(&ring->active_list)) {
2629 struct drm_i915_gem_object *obj;
2630
2631 obj = list_first_entry(&ring->active_list,
2632 struct drm_i915_gem_object,
2633 ring_list);
2634
2635 i915_gem_object_move_to_inactive(obj);
2636 }
2637
2638 /*
2639 * We must free the requests after all the corresponding objects have
2640 * been moved off active lists. Which is the same order as the normal
2641 * retire_requests function does. This is important if object hold
2642 * implicit references on things like e.g. ppgtt address spaces through
2643 * the request.
2644 */
2645 while (!list_empty(&ring->request_list)) {
2646 struct drm_i915_gem_request *request;
2647
2648 request = list_first_entry(&ring->request_list,
2649 struct drm_i915_gem_request,
2650 list);
2651
2652 i915_gem_free_request(request);
2653 }
2654
2655 while (!list_empty(&ring->execlist_queue)) {
2656 struct intel_ctx_submit_request *submit_req;
2657
2658 submit_req = list_first_entry(&ring->execlist_queue,
2659 struct intel_ctx_submit_request,
2660 execlist_link);
2661 list_del(&submit_req->execlist_link);
2662 intel_runtime_pm_put(dev_priv);
2663 i915_gem_context_unreference(submit_req->ctx);
2664 kfree(submit_req);
2665 }
2666
2667 /* These may not have been flush before the reset, do so now */
2668 kfree(ring->preallocated_lazy_request);
2669 ring->preallocated_lazy_request = NULL;
2670 ring->outstanding_lazy_seqno = 0;
2671 }
2672
2673 void i915_gem_restore_fences(struct drm_device *dev)
2674 {
2675 struct drm_i915_private *dev_priv = dev->dev_private;
2676 int i;
2677
2678 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2679 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2680
2681 /*
2682 * Commit delayed tiling changes if we have an object still
2683 * attached to the fence, otherwise just clear the fence.
2684 */
2685 if (reg->obj) {
2686 i915_gem_object_update_fence(reg->obj, reg,
2687 reg->obj->tiling_mode);
2688 } else {
2689 i915_gem_write_fence(dev, i, NULL);
2690 }
2691 }
2692 }
2693
2694 void i915_gem_reset(struct drm_device *dev)
2695 {
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 struct intel_engine_cs *ring;
2698 int i;
2699
2700 /*
2701 * Before we free the objects from the requests, we need to inspect
2702 * them for finding the guilty party. As the requests only borrow
2703 * their reference to the objects, the inspection must be done first.
2704 */
2705 for_each_ring(ring, dev_priv, i)
2706 i915_gem_reset_ring_status(dev_priv, ring);
2707
2708 for_each_ring(ring, dev_priv, i)
2709 i915_gem_reset_ring_cleanup(dev_priv, ring);
2710
2711 i915_gem_context_reset(dev);
2712
2713 i915_gem_restore_fences(dev);
2714 }
2715
2716 /**
2717 * This function clears the request list as sequence numbers are passed.
2718 */
2719 void
2720 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2721 {
2722 uint32_t seqno;
2723
2724 if (list_empty(&ring->request_list))
2725 return;
2726
2727 WARN_ON(i915_verify_lists(ring->dev));
2728
2729 seqno = ring->get_seqno(ring, true);
2730
2731 /* Move any buffers on the active list that are no longer referenced
2732 * by the ringbuffer to the flushing/inactive lists as appropriate,
2733 * before we free the context associated with the requests.
2734 */
2735 while (!list_empty(&ring->active_list)) {
2736 struct drm_i915_gem_object *obj;
2737
2738 obj = list_first_entry(&ring->active_list,
2739 struct drm_i915_gem_object,
2740 ring_list);
2741
2742 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2743 break;
2744
2745 i915_gem_object_move_to_inactive(obj);
2746 }
2747
2748
2749 while (!list_empty(&ring->request_list)) {
2750 struct drm_i915_gem_request *request;
2751 struct intel_ringbuffer *ringbuf;
2752
2753 request = list_first_entry(&ring->request_list,
2754 struct drm_i915_gem_request,
2755 list);
2756
2757 if (!i915_seqno_passed(seqno, request->seqno))
2758 break;
2759
2760 trace_i915_gem_request_retire(ring, request->seqno);
2761
2762 /* This is one of the few common intersection points
2763 * between legacy ringbuffer submission and execlists:
2764 * we need to tell them apart in order to find the correct
2765 * ringbuffer to which the request belongs to.
2766 */
2767 if (i915.enable_execlists) {
2768 struct intel_context *ctx = request->ctx;
2769 ringbuf = ctx->engine[ring->id].ringbuf;
2770 } else
2771 ringbuf = ring->buffer;
2772
2773 /* We know the GPU must have read the request to have
2774 * sent us the seqno + interrupt, so use the position
2775 * of tail of the request to update the last known position
2776 * of the GPU head.
2777 */
2778 ringbuf->last_retired_head = request->tail;
2779
2780 i915_gem_free_request(request);
2781 }
2782
2783 if (unlikely(ring->trace_irq_seqno &&
2784 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2785 ring->irq_put(ring);
2786 ring->trace_irq_seqno = 0;
2787 }
2788
2789 WARN_ON(i915_verify_lists(ring->dev));
2790 }
2791
2792 bool
2793 i915_gem_retire_requests(struct drm_device *dev)
2794 {
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct intel_engine_cs *ring;
2797 bool idle = true;
2798 int i;
2799
2800 for_each_ring(ring, dev_priv, i) {
2801 i915_gem_retire_requests_ring(ring);
2802 idle &= list_empty(&ring->request_list);
2803 if (i915.enable_execlists) {
2804 unsigned long flags;
2805
2806 spin_lock_irqsave(&ring->execlist_lock, flags);
2807 idle &= list_empty(&ring->execlist_queue);
2808 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2809
2810 intel_execlists_retire_requests(ring);
2811 }
2812 }
2813
2814 if (idle)
2815 mod_delayed_work(dev_priv->wq,
2816 &dev_priv->mm.idle_work,
2817 msecs_to_jiffies(100));
2818
2819 return idle;
2820 }
2821
2822 static void
2823 i915_gem_retire_work_handler(struct work_struct *work)
2824 {
2825 struct drm_i915_private *dev_priv =
2826 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2827 struct drm_device *dev = dev_priv->dev;
2828 bool idle;
2829
2830 /* Come back later if the device is busy... */
2831 idle = false;
2832 if (mutex_trylock(&dev->struct_mutex)) {
2833 idle = i915_gem_retire_requests(dev);
2834 mutex_unlock(&dev->struct_mutex);
2835 }
2836 if (!idle)
2837 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2838 round_jiffies_up_relative(HZ));
2839 }
2840
2841 static void
2842 i915_gem_idle_work_handler(struct work_struct *work)
2843 {
2844 struct drm_i915_private *dev_priv =
2845 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2846
2847 intel_mark_idle(dev_priv->dev);
2848 }
2849
2850 /**
2851 * Ensures that an object will eventually get non-busy by flushing any required
2852 * write domains, emitting any outstanding lazy request and retiring and
2853 * completed requests.
2854 */
2855 static int
2856 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2857 {
2858 int ret;
2859
2860 if (obj->active) {
2861 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2862 if (ret)
2863 return ret;
2864
2865 i915_gem_retire_requests_ring(obj->ring);
2866 }
2867
2868 return 0;
2869 }
2870
2871 /**
2872 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2873 * @DRM_IOCTL_ARGS: standard ioctl arguments
2874 *
2875 * Returns 0 if successful, else an error is returned with the remaining time in
2876 * the timeout parameter.
2877 * -ETIME: object is still busy after timeout
2878 * -ERESTARTSYS: signal interrupted the wait
2879 * -ENONENT: object doesn't exist
2880 * Also possible, but rare:
2881 * -EAGAIN: GPU wedged
2882 * -ENOMEM: damn
2883 * -ENODEV: Internal IRQ fail
2884 * -E?: The add request failed
2885 *
2886 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2887 * non-zero timeout parameter the wait ioctl will wait for the given number of
2888 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2889 * without holding struct_mutex the object may become re-busied before this
2890 * function completes. A similar but shorter * race condition exists in the busy
2891 * ioctl
2892 */
2893 int
2894 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2895 {
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 struct drm_i915_gem_wait *args = data;
2898 struct drm_i915_gem_object *obj;
2899 struct intel_engine_cs *ring = NULL;
2900 unsigned reset_counter;
2901 u32 seqno = 0;
2902 int ret = 0;
2903
2904 if (args->flags != 0)
2905 return -EINVAL;
2906
2907 ret = i915_mutex_lock_interruptible(dev);
2908 if (ret)
2909 return ret;
2910
2911 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2912 if (&obj->base == NULL) {
2913 mutex_unlock(&dev->struct_mutex);
2914 return -ENOENT;
2915 }
2916
2917 /* Need to make sure the object gets inactive eventually. */
2918 ret = i915_gem_object_flush_active(obj);
2919 if (ret)
2920 goto out;
2921
2922 if (obj->active) {
2923 seqno = obj->last_read_seqno;
2924 ring = obj->ring;
2925 }
2926
2927 if (seqno == 0)
2928 goto out;
2929
2930 /* Do this after OLR check to make sure we make forward progress polling
2931 * on this IOCTL with a timeout <=0 (like busy ioctl)
2932 */
2933 if (args->timeout_ns <= 0) {
2934 ret = -ETIME;
2935 goto out;
2936 }
2937
2938 drm_gem_object_unreference(&obj->base);
2939 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2940 mutex_unlock(&dev->struct_mutex);
2941
2942 return __i915_wait_seqno(ring, seqno, reset_counter, true,
2943 &args->timeout_ns, file->driver_priv);
2944
2945 out:
2946 drm_gem_object_unreference(&obj->base);
2947 mutex_unlock(&dev->struct_mutex);
2948 return ret;
2949 }
2950
2951 /**
2952 * i915_gem_object_sync - sync an object to a ring.
2953 *
2954 * @obj: object which may be in use on another ring.
2955 * @to: ring we wish to use the object on. May be NULL.
2956 *
2957 * This code is meant to abstract object synchronization with the GPU.
2958 * Calling with NULL implies synchronizing the object with the CPU
2959 * rather than a particular GPU ring.
2960 *
2961 * Returns 0 if successful, else propagates up the lower layer error.
2962 */
2963 int
2964 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2965 struct intel_engine_cs *to)
2966 {
2967 struct intel_engine_cs *from = obj->ring;
2968 u32 seqno;
2969 int ret, idx;
2970
2971 if (from == NULL || to == from)
2972 return 0;
2973
2974 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2975 return i915_gem_object_wait_rendering(obj, false);
2976
2977 idx = intel_ring_sync_index(from, to);
2978
2979 seqno = obj->last_read_seqno;
2980 /* Optimization: Avoid semaphore sync when we are sure we already
2981 * waited for an object with higher seqno */
2982 if (seqno <= from->semaphore.sync_seqno[idx])
2983 return 0;
2984
2985 ret = i915_gem_check_olr(obj->ring, seqno);
2986 if (ret)
2987 return ret;
2988
2989 trace_i915_gem_ring_sync_to(from, to, seqno);
2990 ret = to->semaphore.sync_to(to, from, seqno);
2991 if (!ret)
2992 /* We use last_read_seqno because sync_to()
2993 * might have just caused seqno wrap under
2994 * the radar.
2995 */
2996 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2997
2998 return ret;
2999 }
3000
3001 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3002 {
3003 u32 old_write_domain, old_read_domains;
3004
3005 /* Force a pagefault for domain tracking on next user access */
3006 i915_gem_release_mmap(obj);
3007
3008 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3009 return;
3010
3011 /* Wait for any direct GTT access to complete */
3012 mb();
3013
3014 old_read_domains = obj->base.read_domains;
3015 old_write_domain = obj->base.write_domain;
3016
3017 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3018 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3019
3020 trace_i915_gem_object_change_domain(obj,
3021 old_read_domains,
3022 old_write_domain);
3023 }
3024
3025 int i915_vma_unbind(struct i915_vma *vma)
3026 {
3027 struct drm_i915_gem_object *obj = vma->obj;
3028 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3029 int ret;
3030
3031 if (list_empty(&vma->vma_link))
3032 return 0;
3033
3034 if (!drm_mm_node_allocated(&vma->node)) {
3035 i915_gem_vma_destroy(vma);
3036 return 0;
3037 }
3038
3039 if (vma->pin_count)
3040 return -EBUSY;
3041
3042 BUG_ON(obj->pages == NULL);
3043
3044 ret = i915_gem_object_finish_gpu(obj);
3045 if (ret)
3046 return ret;
3047 /* Continue on if we fail due to EIO, the GPU is hung so we
3048 * should be safe and we need to cleanup or else we might
3049 * cause memory corruption through use-after-free.
3050 */
3051
3052 /* Throw away the active reference before moving to the unbound list */
3053 i915_gem_object_retire(obj);
3054
3055 if (i915_is_ggtt(vma->vm)) {
3056 i915_gem_object_finish_gtt(obj);
3057
3058 /* release the fence reg _after_ flushing */
3059 ret = i915_gem_object_put_fence(obj);
3060 if (ret)
3061 return ret;
3062 }
3063
3064 trace_i915_vma_unbind(vma);
3065
3066 vma->unbind_vma(vma);
3067
3068 list_del_init(&vma->mm_list);
3069 if (i915_is_ggtt(vma->vm))
3070 obj->map_and_fenceable = false;
3071
3072 drm_mm_remove_node(&vma->node);
3073 i915_gem_vma_destroy(vma);
3074
3075 /* Since the unbound list is global, only move to that list if
3076 * no more VMAs exist. */
3077 if (list_empty(&obj->vma_list)) {
3078 i915_gem_gtt_finish_object(obj);
3079 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3080 }
3081
3082 /* And finally now the object is completely decoupled from this vma,
3083 * we can drop its hold on the backing storage and allow it to be
3084 * reaped by the shrinker.
3085 */
3086 i915_gem_object_unpin_pages(obj);
3087
3088 return 0;
3089 }
3090
3091 int i915_gpu_idle(struct drm_device *dev)
3092 {
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094 struct intel_engine_cs *ring;
3095 int ret, i;
3096
3097 /* Flush everything onto the inactive list. */
3098 for_each_ring(ring, dev_priv, i) {
3099 if (!i915.enable_execlists) {
3100 ret = i915_switch_context(ring, ring->default_context);
3101 if (ret)
3102 return ret;
3103 }
3104
3105 ret = intel_ring_idle(ring);
3106 if (ret)
3107 return ret;
3108 }
3109
3110 return 0;
3111 }
3112
3113 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3114 struct drm_i915_gem_object *obj)
3115 {
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117 int fence_reg;
3118 int fence_pitch_shift;
3119
3120 if (INTEL_INFO(dev)->gen >= 6) {
3121 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3122 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3123 } else {
3124 fence_reg = FENCE_REG_965_0;
3125 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3126 }
3127
3128 fence_reg += reg * 8;
3129
3130 /* To w/a incoherency with non-atomic 64-bit register updates,
3131 * we split the 64-bit update into two 32-bit writes. In order
3132 * for a partial fence not to be evaluated between writes, we
3133 * precede the update with write to turn off the fence register,
3134 * and only enable the fence as the last step.
3135 *
3136 * For extra levels of paranoia, we make sure each step lands
3137 * before applying the next step.
3138 */
3139 I915_WRITE(fence_reg, 0);
3140 POSTING_READ(fence_reg);
3141
3142 if (obj) {
3143 u32 size = i915_gem_obj_ggtt_size(obj);
3144 uint64_t val;
3145
3146 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3147 0xfffff000) << 32;
3148 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3149 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3150 if (obj->tiling_mode == I915_TILING_Y)
3151 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3152 val |= I965_FENCE_REG_VALID;
3153
3154 I915_WRITE(fence_reg + 4, val >> 32);
3155 POSTING_READ(fence_reg + 4);
3156
3157 I915_WRITE(fence_reg + 0, val);
3158 POSTING_READ(fence_reg);
3159 } else {
3160 I915_WRITE(fence_reg + 4, 0);
3161 POSTING_READ(fence_reg + 4);
3162 }
3163 }
3164
3165 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3166 struct drm_i915_gem_object *obj)
3167 {
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169 u32 val;
3170
3171 if (obj) {
3172 u32 size = i915_gem_obj_ggtt_size(obj);
3173 int pitch_val;
3174 int tile_width;
3175
3176 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3177 (size & -size) != size ||
3178 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3179 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3180 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3181
3182 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3183 tile_width = 128;
3184 else
3185 tile_width = 512;
3186
3187 /* Note: pitch better be a power of two tile widths */
3188 pitch_val = obj->stride / tile_width;
3189 pitch_val = ffs(pitch_val) - 1;
3190
3191 val = i915_gem_obj_ggtt_offset(obj);
3192 if (obj->tiling_mode == I915_TILING_Y)
3193 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3194 val |= I915_FENCE_SIZE_BITS(size);
3195 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3196 val |= I830_FENCE_REG_VALID;
3197 } else
3198 val = 0;
3199
3200 if (reg < 8)
3201 reg = FENCE_REG_830_0 + reg * 4;
3202 else
3203 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3204
3205 I915_WRITE(reg, val);
3206 POSTING_READ(reg);
3207 }
3208
3209 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3210 struct drm_i915_gem_object *obj)
3211 {
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 uint32_t val;
3214
3215 if (obj) {
3216 u32 size = i915_gem_obj_ggtt_size(obj);
3217 uint32_t pitch_val;
3218
3219 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3220 (size & -size) != size ||
3221 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3222 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3223 i915_gem_obj_ggtt_offset(obj), size);
3224
3225 pitch_val = obj->stride / 128;
3226 pitch_val = ffs(pitch_val) - 1;
3227
3228 val = i915_gem_obj_ggtt_offset(obj);
3229 if (obj->tiling_mode == I915_TILING_Y)
3230 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3231 val |= I830_FENCE_SIZE_BITS(size);
3232 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3233 val |= I830_FENCE_REG_VALID;
3234 } else
3235 val = 0;
3236
3237 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3238 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3239 }
3240
3241 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3242 {
3243 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3244 }
3245
3246 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3247 struct drm_i915_gem_object *obj)
3248 {
3249 struct drm_i915_private *dev_priv = dev->dev_private;
3250
3251 /* Ensure that all CPU reads are completed before installing a fence
3252 * and all writes before removing the fence.
3253 */
3254 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3255 mb();
3256
3257 WARN(obj && (!obj->stride || !obj->tiling_mode),
3258 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3259 obj->stride, obj->tiling_mode);
3260
3261 switch (INTEL_INFO(dev)->gen) {
3262 case 9:
3263 case 8:
3264 case 7:
3265 case 6:
3266 case 5:
3267 case 4: i965_write_fence_reg(dev, reg, obj); break;
3268 case 3: i915_write_fence_reg(dev, reg, obj); break;
3269 case 2: i830_write_fence_reg(dev, reg, obj); break;
3270 default: BUG();
3271 }
3272
3273 /* And similarly be paranoid that no direct access to this region
3274 * is reordered to before the fence is installed.
3275 */
3276 if (i915_gem_object_needs_mb(obj))
3277 mb();
3278 }
3279
3280 static inline int fence_number(struct drm_i915_private *dev_priv,
3281 struct drm_i915_fence_reg *fence)
3282 {
3283 return fence - dev_priv->fence_regs;
3284 }
3285
3286 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3287 struct drm_i915_fence_reg *fence,
3288 bool enable)
3289 {
3290 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3291 int reg = fence_number(dev_priv, fence);
3292
3293 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3294
3295 if (enable) {
3296 obj->fence_reg = reg;
3297 fence->obj = obj;
3298 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3299 } else {
3300 obj->fence_reg = I915_FENCE_REG_NONE;
3301 fence->obj = NULL;
3302 list_del_init(&fence->lru_list);
3303 }
3304 obj->fence_dirty = false;
3305 }
3306
3307 static int
3308 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3309 {
3310 if (obj->last_fenced_seqno) {
3311 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3312 if (ret)
3313 return ret;
3314
3315 obj->last_fenced_seqno = 0;
3316 }
3317
3318 return 0;
3319 }
3320
3321 int
3322 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3323 {
3324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3325 struct drm_i915_fence_reg *fence;
3326 int ret;
3327
3328 ret = i915_gem_object_wait_fence(obj);
3329 if (ret)
3330 return ret;
3331
3332 if (obj->fence_reg == I915_FENCE_REG_NONE)
3333 return 0;
3334
3335 fence = &dev_priv->fence_regs[obj->fence_reg];
3336
3337 if (WARN_ON(fence->pin_count))
3338 return -EBUSY;
3339
3340 i915_gem_object_fence_lost(obj);
3341 i915_gem_object_update_fence(obj, fence, false);
3342
3343 return 0;
3344 }
3345
3346 static struct drm_i915_fence_reg *
3347 i915_find_fence_reg(struct drm_device *dev)
3348 {
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350 struct drm_i915_fence_reg *reg, *avail;
3351 int i;
3352
3353 /* First try to find a free reg */
3354 avail = NULL;
3355 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3356 reg = &dev_priv->fence_regs[i];
3357 if (!reg->obj)
3358 return reg;
3359
3360 if (!reg->pin_count)
3361 avail = reg;
3362 }
3363
3364 if (avail == NULL)
3365 goto deadlock;
3366
3367 /* None available, try to steal one or wait for a user to finish */
3368 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3369 if (reg->pin_count)
3370 continue;
3371
3372 return reg;
3373 }
3374
3375 deadlock:
3376 /* Wait for completion of pending flips which consume fences */
3377 if (intel_has_pending_fb_unpin(dev))
3378 return ERR_PTR(-EAGAIN);
3379
3380 return ERR_PTR(-EDEADLK);
3381 }
3382
3383 /**
3384 * i915_gem_object_get_fence - set up fencing for an object
3385 * @obj: object to map through a fence reg
3386 *
3387 * When mapping objects through the GTT, userspace wants to be able to write
3388 * to them without having to worry about swizzling if the object is tiled.
3389 * This function walks the fence regs looking for a free one for @obj,
3390 * stealing one if it can't find any.
3391 *
3392 * It then sets up the reg based on the object's properties: address, pitch
3393 * and tiling format.
3394 *
3395 * For an untiled surface, this removes any existing fence.
3396 */
3397 int
3398 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3399 {
3400 struct drm_device *dev = obj->base.dev;
3401 struct drm_i915_private *dev_priv = dev->dev_private;
3402 bool enable = obj->tiling_mode != I915_TILING_NONE;
3403 struct drm_i915_fence_reg *reg;
3404 int ret;
3405
3406 /* Have we updated the tiling parameters upon the object and so
3407 * will need to serialise the write to the associated fence register?
3408 */
3409 if (obj->fence_dirty) {
3410 ret = i915_gem_object_wait_fence(obj);
3411 if (ret)
3412 return ret;
3413 }
3414
3415 /* Just update our place in the LRU if our fence is getting reused. */
3416 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3417 reg = &dev_priv->fence_regs[obj->fence_reg];
3418 if (!obj->fence_dirty) {
3419 list_move_tail(&reg->lru_list,
3420 &dev_priv->mm.fence_list);
3421 return 0;
3422 }
3423 } else if (enable) {
3424 if (WARN_ON(!obj->map_and_fenceable))
3425 return -EINVAL;
3426
3427 reg = i915_find_fence_reg(dev);
3428 if (IS_ERR(reg))
3429 return PTR_ERR(reg);
3430
3431 if (reg->obj) {
3432 struct drm_i915_gem_object *old = reg->obj;
3433
3434 ret = i915_gem_object_wait_fence(old);
3435 if (ret)
3436 return ret;
3437
3438 i915_gem_object_fence_lost(old);
3439 }
3440 } else
3441 return 0;
3442
3443 i915_gem_object_update_fence(obj, reg, enable);
3444
3445 return 0;
3446 }
3447
3448 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3449 unsigned long cache_level)
3450 {
3451 struct drm_mm_node *gtt_space = &vma->node;
3452 struct drm_mm_node *other;
3453
3454 /*
3455 * On some machines we have to be careful when putting differing types
3456 * of snoopable memory together to avoid the prefetcher crossing memory
3457 * domains and dying. During vm initialisation, we decide whether or not
3458 * these constraints apply and set the drm_mm.color_adjust
3459 * appropriately.
3460 */
3461 if (vma->vm->mm.color_adjust == NULL)
3462 return true;
3463
3464 if (!drm_mm_node_allocated(gtt_space))
3465 return true;
3466
3467 if (list_empty(&gtt_space->node_list))
3468 return true;
3469
3470 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3471 if (other->allocated && !other->hole_follows && other->color != cache_level)
3472 return false;
3473
3474 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3475 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3476 return false;
3477
3478 return true;
3479 }
3480
3481 /**
3482 * Finds free space in the GTT aperture and binds the object there.
3483 */
3484 static struct i915_vma *
3485 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3486 struct i915_address_space *vm,
3487 unsigned alignment,
3488 uint64_t flags)
3489 {
3490 struct drm_device *dev = obj->base.dev;
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 u32 size, fence_size, fence_alignment, unfenced_alignment;
3493 unsigned long start =
3494 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3495 unsigned long end =
3496 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3497 struct i915_vma *vma;
3498 int ret;
3499
3500 fence_size = i915_gem_get_gtt_size(dev,
3501 obj->base.size,
3502 obj->tiling_mode);
3503 fence_alignment = i915_gem_get_gtt_alignment(dev,
3504 obj->base.size,
3505 obj->tiling_mode, true);
3506 unfenced_alignment =
3507 i915_gem_get_gtt_alignment(dev,
3508 obj->base.size,
3509 obj->tiling_mode, false);
3510
3511 if (alignment == 0)
3512 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3513 unfenced_alignment;
3514 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3515 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3516 return ERR_PTR(-EINVAL);
3517 }
3518
3519 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3520
3521 /* If the object is bigger than the entire aperture, reject it early
3522 * before evicting everything in a vain attempt to find space.
3523 */
3524 if (obj->base.size > end) {
3525 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3526 obj->base.size,
3527 flags & PIN_MAPPABLE ? "mappable" : "total",
3528 end);
3529 return ERR_PTR(-E2BIG);
3530 }
3531
3532 ret = i915_gem_object_get_pages(obj);
3533 if (ret)
3534 return ERR_PTR(ret);
3535
3536 i915_gem_object_pin_pages(obj);
3537
3538 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3539 if (IS_ERR(vma))
3540 goto err_unpin;
3541
3542 search_free:
3543 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3544 size, alignment,
3545 obj->cache_level,
3546 start, end,
3547 DRM_MM_SEARCH_DEFAULT,
3548 DRM_MM_CREATE_DEFAULT);
3549 if (ret) {
3550 ret = i915_gem_evict_something(dev, vm, size, alignment,
3551 obj->cache_level,
3552 start, end,
3553 flags);
3554 if (ret == 0)
3555 goto search_free;
3556
3557 goto err_free_vma;
3558 }
3559 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3560 ret = -EINVAL;
3561 goto err_remove_node;
3562 }
3563
3564 ret = i915_gem_gtt_prepare_object(obj);
3565 if (ret)
3566 goto err_remove_node;
3567
3568 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3569 list_add_tail(&vma->mm_list, &vm->inactive_list);
3570
3571 trace_i915_vma_bind(vma, flags);
3572 vma->bind_vma(vma, obj->cache_level,
3573 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3574
3575 return vma;
3576
3577 err_remove_node:
3578 drm_mm_remove_node(&vma->node);
3579 err_free_vma:
3580 i915_gem_vma_destroy(vma);
3581 vma = ERR_PTR(ret);
3582 err_unpin:
3583 i915_gem_object_unpin_pages(obj);
3584 return vma;
3585 }
3586
3587 bool
3588 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3589 bool force)
3590 {
3591 /* If we don't have a page list set up, then we're not pinned
3592 * to GPU, and we can ignore the cache flush because it'll happen
3593 * again at bind time.
3594 */
3595 if (obj->pages == NULL)
3596 return false;
3597
3598 /*
3599 * Stolen memory is always coherent with the GPU as it is explicitly
3600 * marked as wc by the system, or the system is cache-coherent.
3601 */
3602 if (obj->stolen || obj->phys_handle)
3603 return false;
3604
3605 /* If the GPU is snooping the contents of the CPU cache,
3606 * we do not need to manually clear the CPU cache lines. However,
3607 * the caches are only snooped when the render cache is
3608 * flushed/invalidated. As we always have to emit invalidations
3609 * and flushes when moving into and out of the RENDER domain, correct
3610 * snooping behaviour occurs naturally as the result of our domain
3611 * tracking.
3612 */
3613 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3614 return false;
3615
3616 trace_i915_gem_object_clflush(obj);
3617 drm_clflush_sg(obj->pages);
3618
3619 return true;
3620 }
3621
3622 /** Flushes the GTT write domain for the object if it's dirty. */
3623 static void
3624 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3625 {
3626 uint32_t old_write_domain;
3627
3628 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3629 return;
3630
3631 /* No actual flushing is required for the GTT write domain. Writes
3632 * to it immediately go to main memory as far as we know, so there's
3633 * no chipset flush. It also doesn't land in render cache.
3634 *
3635 * However, we do have to enforce the order so that all writes through
3636 * the GTT land before any writes to the device, such as updates to
3637 * the GATT itself.
3638 */
3639 wmb();
3640
3641 old_write_domain = obj->base.write_domain;
3642 obj->base.write_domain = 0;
3643
3644 intel_fb_obj_flush(obj, false);
3645
3646 trace_i915_gem_object_change_domain(obj,
3647 obj->base.read_domains,
3648 old_write_domain);
3649 }
3650
3651 /** Flushes the CPU write domain for the object if it's dirty. */
3652 static void
3653 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3654 bool force)
3655 {
3656 uint32_t old_write_domain;
3657
3658 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3659 return;
3660
3661 if (i915_gem_clflush_object(obj, force))
3662 i915_gem_chipset_flush(obj->base.dev);
3663
3664 old_write_domain = obj->base.write_domain;
3665 obj->base.write_domain = 0;
3666
3667 intel_fb_obj_flush(obj, false);
3668
3669 trace_i915_gem_object_change_domain(obj,
3670 obj->base.read_domains,
3671 old_write_domain);
3672 }
3673
3674 /**
3675 * Moves a single object to the GTT read, and possibly write domain.
3676 *
3677 * This function returns when the move is complete, including waiting on
3678 * flushes to occur.
3679 */
3680 int
3681 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3682 {
3683 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3684 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3685 uint32_t old_write_domain, old_read_domains;
3686 int ret;
3687
3688 /* Not valid to be called on unbound objects. */
3689 if (vma == NULL)
3690 return -EINVAL;
3691
3692 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3693 return 0;
3694
3695 ret = i915_gem_object_wait_rendering(obj, !write);
3696 if (ret)
3697 return ret;
3698
3699 i915_gem_object_retire(obj);
3700 i915_gem_object_flush_cpu_write_domain(obj, false);
3701
3702 /* Serialise direct access to this object with the barriers for
3703 * coherent writes from the GPU, by effectively invalidating the
3704 * GTT domain upon first access.
3705 */
3706 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3707 mb();
3708
3709 old_write_domain = obj->base.write_domain;
3710 old_read_domains = obj->base.read_domains;
3711
3712 /* It should now be out of any other write domains, and we can update
3713 * the domain values for our changes.
3714 */
3715 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3716 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3717 if (write) {
3718 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3719 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3720 obj->dirty = 1;
3721 }
3722
3723 if (write)
3724 intel_fb_obj_invalidate(obj, NULL);
3725
3726 trace_i915_gem_object_change_domain(obj,
3727 old_read_domains,
3728 old_write_domain);
3729
3730 /* And bump the LRU for this access */
3731 if (i915_gem_object_is_inactive(obj))
3732 list_move_tail(&vma->mm_list,
3733 &dev_priv->gtt.base.inactive_list);
3734
3735 return 0;
3736 }
3737
3738 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3739 enum i915_cache_level cache_level)
3740 {
3741 struct drm_device *dev = obj->base.dev;
3742 struct i915_vma *vma, *next;
3743 int ret;
3744
3745 if (obj->cache_level == cache_level)
3746 return 0;
3747
3748 if (i915_gem_obj_is_pinned(obj)) {
3749 DRM_DEBUG("can not change the cache level of pinned objects\n");
3750 return -EBUSY;
3751 }
3752
3753 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3754 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3755 ret = i915_vma_unbind(vma);
3756 if (ret)
3757 return ret;
3758 }
3759 }
3760
3761 if (i915_gem_obj_bound_any(obj)) {
3762 ret = i915_gem_object_finish_gpu(obj);
3763 if (ret)
3764 return ret;
3765
3766 i915_gem_object_finish_gtt(obj);
3767
3768 /* Before SandyBridge, you could not use tiling or fence
3769 * registers with snooped memory, so relinquish any fences
3770 * currently pointing to our region in the aperture.
3771 */
3772 if (INTEL_INFO(dev)->gen < 6) {
3773 ret = i915_gem_object_put_fence(obj);
3774 if (ret)
3775 return ret;
3776 }
3777
3778 list_for_each_entry(vma, &obj->vma_list, vma_link)
3779 if (drm_mm_node_allocated(&vma->node))
3780 vma->bind_vma(vma, cache_level,
3781 vma->bound & GLOBAL_BIND);
3782 }
3783
3784 list_for_each_entry(vma, &obj->vma_list, vma_link)
3785 vma->node.color = cache_level;
3786 obj->cache_level = cache_level;
3787
3788 if (cpu_write_needs_clflush(obj)) {
3789 u32 old_read_domains, old_write_domain;
3790
3791 /* If we're coming from LLC cached, then we haven't
3792 * actually been tracking whether the data is in the
3793 * CPU cache or not, since we only allow one bit set
3794 * in obj->write_domain and have been skipping the clflushes.
3795 * Just set it to the CPU cache for now.
3796 */
3797 i915_gem_object_retire(obj);
3798 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3799
3800 old_read_domains = obj->base.read_domains;
3801 old_write_domain = obj->base.write_domain;
3802
3803 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3804 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3805
3806 trace_i915_gem_object_change_domain(obj,
3807 old_read_domains,
3808 old_write_domain);
3809 }
3810
3811 return 0;
3812 }
3813
3814 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3815 struct drm_file *file)
3816 {
3817 struct drm_i915_gem_caching *args = data;
3818 struct drm_i915_gem_object *obj;
3819 int ret;
3820
3821 ret = i915_mutex_lock_interruptible(dev);
3822 if (ret)
3823 return ret;
3824
3825 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3826 if (&obj->base == NULL) {
3827 ret = -ENOENT;
3828 goto unlock;
3829 }
3830
3831 switch (obj->cache_level) {
3832 case I915_CACHE_LLC:
3833 case I915_CACHE_L3_LLC:
3834 args->caching = I915_CACHING_CACHED;
3835 break;
3836
3837 case I915_CACHE_WT:
3838 args->caching = I915_CACHING_DISPLAY;
3839 break;
3840
3841 default:
3842 args->caching = I915_CACHING_NONE;
3843 break;
3844 }
3845
3846 drm_gem_object_unreference(&obj->base);
3847 unlock:
3848 mutex_unlock(&dev->struct_mutex);
3849 return ret;
3850 }
3851
3852 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3853 struct drm_file *file)
3854 {
3855 struct drm_i915_gem_caching *args = data;
3856 struct drm_i915_gem_object *obj;
3857 enum i915_cache_level level;
3858 int ret;
3859
3860 switch (args->caching) {
3861 case I915_CACHING_NONE:
3862 level = I915_CACHE_NONE;
3863 break;
3864 case I915_CACHING_CACHED:
3865 level = I915_CACHE_LLC;
3866 break;
3867 case I915_CACHING_DISPLAY:
3868 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3869 break;
3870 default:
3871 return -EINVAL;
3872 }
3873
3874 ret = i915_mutex_lock_interruptible(dev);
3875 if (ret)
3876 return ret;
3877
3878 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3879 if (&obj->base == NULL) {
3880 ret = -ENOENT;
3881 goto unlock;
3882 }
3883
3884 ret = i915_gem_object_set_cache_level(obj, level);
3885
3886 drm_gem_object_unreference(&obj->base);
3887 unlock:
3888 mutex_unlock(&dev->struct_mutex);
3889 return ret;
3890 }
3891
3892 static bool is_pin_display(struct drm_i915_gem_object *obj)
3893 {
3894 struct i915_vma *vma;
3895
3896 vma = i915_gem_obj_to_ggtt(obj);
3897 if (!vma)
3898 return false;
3899
3900 /* There are 3 sources that pin objects:
3901 * 1. The display engine (scanouts, sprites, cursors);
3902 * 2. Reservations for execbuffer;
3903 * 3. The user.
3904 *
3905 * We can ignore reservations as we hold the struct_mutex and
3906 * are only called outside of the reservation path. The user
3907 * can only increment pin_count once, and so if after
3908 * subtracting the potential reference by the user, any pin_count
3909 * remains, it must be due to another use by the display engine.
3910 */
3911 return vma->pin_count - !!obj->user_pin_count;
3912 }
3913
3914 /*
3915 * Prepare buffer for display plane (scanout, cursors, etc).
3916 * Can be called from an uninterruptible phase (modesetting) and allows
3917 * any flushes to be pipelined (for pageflips).
3918 */
3919 int
3920 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3921 u32 alignment,
3922 struct intel_engine_cs *pipelined)
3923 {
3924 u32 old_read_domains, old_write_domain;
3925 bool was_pin_display;
3926 int ret;
3927
3928 if (pipelined != obj->ring) {
3929 ret = i915_gem_object_sync(obj, pipelined);
3930 if (ret)
3931 return ret;
3932 }
3933
3934 /* Mark the pin_display early so that we account for the
3935 * display coherency whilst setting up the cache domains.
3936 */
3937 was_pin_display = obj->pin_display;
3938 obj->pin_display = true;
3939
3940 /* The display engine is not coherent with the LLC cache on gen6. As
3941 * a result, we make sure that the pinning that is about to occur is
3942 * done with uncached PTEs. This is lowest common denominator for all
3943 * chipsets.
3944 *
3945 * However for gen6+, we could do better by using the GFDT bit instead
3946 * of uncaching, which would allow us to flush all the LLC-cached data
3947 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3948 */
3949 ret = i915_gem_object_set_cache_level(obj,
3950 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3951 if (ret)
3952 goto err_unpin_display;
3953
3954 /* As the user may map the buffer once pinned in the display plane
3955 * (e.g. libkms for the bootup splash), we have to ensure that we
3956 * always use map_and_fenceable for all scanout buffers.
3957 */
3958 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3959 if (ret)
3960 goto err_unpin_display;
3961
3962 i915_gem_object_flush_cpu_write_domain(obj, true);
3963
3964 old_write_domain = obj->base.write_domain;
3965 old_read_domains = obj->base.read_domains;
3966
3967 /* It should now be out of any other write domains, and we can update
3968 * the domain values for our changes.
3969 */
3970 obj->base.write_domain = 0;
3971 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3972
3973 trace_i915_gem_object_change_domain(obj,
3974 old_read_domains,
3975 old_write_domain);
3976
3977 return 0;
3978
3979 err_unpin_display:
3980 WARN_ON(was_pin_display != is_pin_display(obj));
3981 obj->pin_display = was_pin_display;
3982 return ret;
3983 }
3984
3985 void
3986 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3987 {
3988 i915_gem_object_ggtt_unpin(obj);
3989 obj->pin_display = is_pin_display(obj);
3990 }
3991
3992 int
3993 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3994 {
3995 int ret;
3996
3997 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3998 return 0;
3999
4000 ret = i915_gem_object_wait_rendering(obj, false);
4001 if (ret)
4002 return ret;
4003
4004 /* Ensure that we invalidate the GPU's caches and TLBs. */
4005 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4006 return 0;
4007 }
4008
4009 /**
4010 * Moves a single object to the CPU read, and possibly write domain.
4011 *
4012 * This function returns when the move is complete, including waiting on
4013 * flushes to occur.
4014 */
4015 int
4016 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4017 {
4018 uint32_t old_write_domain, old_read_domains;
4019 int ret;
4020
4021 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4022 return 0;
4023
4024 ret = i915_gem_object_wait_rendering(obj, !write);
4025 if (ret)
4026 return ret;
4027
4028 i915_gem_object_retire(obj);
4029 i915_gem_object_flush_gtt_write_domain(obj);
4030
4031 old_write_domain = obj->base.write_domain;
4032 old_read_domains = obj->base.read_domains;
4033
4034 /* Flush the CPU cache if it's still invalid. */
4035 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4036 i915_gem_clflush_object(obj, false);
4037
4038 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4039 }
4040
4041 /* It should now be out of any other write domains, and we can update
4042 * the domain values for our changes.
4043 */
4044 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4045
4046 /* If we're writing through the CPU, then the GPU read domains will
4047 * need to be invalidated at next use.
4048 */
4049 if (write) {
4050 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4051 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4052 }
4053
4054 if (write)
4055 intel_fb_obj_invalidate(obj, NULL);
4056
4057 trace_i915_gem_object_change_domain(obj,
4058 old_read_domains,
4059 old_write_domain);
4060
4061 return 0;
4062 }
4063
4064 /* Throttle our rendering by waiting until the ring has completed our requests
4065 * emitted over 20 msec ago.
4066 *
4067 * Note that if we were to use the current jiffies each time around the loop,
4068 * we wouldn't escape the function with any frames outstanding if the time to
4069 * render a frame was over 20ms.
4070 *
4071 * This should get us reasonable parallelism between CPU and GPU but also
4072 * relatively low latency when blocking on a particular request to finish.
4073 */
4074 static int
4075 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4076 {
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4078 struct drm_i915_file_private *file_priv = file->driver_priv;
4079 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4080 struct drm_i915_gem_request *request;
4081 struct intel_engine_cs *ring = NULL;
4082 unsigned reset_counter;
4083 u32 seqno = 0;
4084 int ret;
4085
4086 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4087 if (ret)
4088 return ret;
4089
4090 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4091 if (ret)
4092 return ret;
4093
4094 spin_lock(&file_priv->mm.lock);
4095 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4096 if (time_after_eq(request->emitted_jiffies, recent_enough))
4097 break;
4098
4099 ring = request->ring;
4100 seqno = request->seqno;
4101 }
4102 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4103 spin_unlock(&file_priv->mm.lock);
4104
4105 if (seqno == 0)
4106 return 0;
4107
4108 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4109 if (ret == 0)
4110 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4111
4112 return ret;
4113 }
4114
4115 static bool
4116 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4117 {
4118 struct drm_i915_gem_object *obj = vma->obj;
4119
4120 if (alignment &&
4121 vma->node.start & (alignment - 1))
4122 return true;
4123
4124 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4125 return true;
4126
4127 if (flags & PIN_OFFSET_BIAS &&
4128 vma->node.start < (flags & PIN_OFFSET_MASK))
4129 return true;
4130
4131 return false;
4132 }
4133
4134 int
4135 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4136 struct i915_address_space *vm,
4137 uint32_t alignment,
4138 uint64_t flags)
4139 {
4140 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4141 struct i915_vma *vma;
4142 unsigned bound;
4143 int ret;
4144
4145 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4146 return -ENODEV;
4147
4148 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4149 return -EINVAL;
4150
4151 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4152 return -EINVAL;
4153
4154 vma = i915_gem_obj_to_vma(obj, vm);
4155 if (vma) {
4156 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4157 return -EBUSY;
4158
4159 if (i915_vma_misplaced(vma, alignment, flags)) {
4160 WARN(vma->pin_count,
4161 "bo is already pinned with incorrect alignment:"
4162 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4163 " obj->map_and_fenceable=%d\n",
4164 i915_gem_obj_offset(obj, vm), alignment,
4165 !!(flags & PIN_MAPPABLE),
4166 obj->map_and_fenceable);
4167 ret = i915_vma_unbind(vma);
4168 if (ret)
4169 return ret;
4170
4171 vma = NULL;
4172 }
4173 }
4174
4175 bound = vma ? vma->bound : 0;
4176 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4177 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4178 if (IS_ERR(vma))
4179 return PTR_ERR(vma);
4180 }
4181
4182 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4183 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4184
4185 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4186 bool mappable, fenceable;
4187 u32 fence_size, fence_alignment;
4188
4189 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4190 obj->base.size,
4191 obj->tiling_mode);
4192 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4193 obj->base.size,
4194 obj->tiling_mode,
4195 true);
4196
4197 fenceable = (vma->node.size == fence_size &&
4198 (vma->node.start & (fence_alignment - 1)) == 0);
4199
4200 mappable = (vma->node.start + obj->base.size <=
4201 dev_priv->gtt.mappable_end);
4202
4203 obj->map_and_fenceable = mappable && fenceable;
4204 }
4205
4206 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4207
4208 vma->pin_count++;
4209 if (flags & PIN_MAPPABLE)
4210 obj->pin_mappable |= true;
4211
4212 return 0;
4213 }
4214
4215 void
4216 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4217 {
4218 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4219
4220 BUG_ON(!vma);
4221 BUG_ON(vma->pin_count == 0);
4222 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4223
4224 if (--vma->pin_count == 0)
4225 obj->pin_mappable = false;
4226 }
4227
4228 bool
4229 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4230 {
4231 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4232 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4233 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4234
4235 WARN_ON(!ggtt_vma ||
4236 dev_priv->fence_regs[obj->fence_reg].pin_count >
4237 ggtt_vma->pin_count);
4238 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4239 return true;
4240 } else
4241 return false;
4242 }
4243
4244 void
4245 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4246 {
4247 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4248 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4249 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4250 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4251 }
4252 }
4253
4254 int
4255 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4256 struct drm_file *file)
4257 {
4258 struct drm_i915_gem_pin *args = data;
4259 struct drm_i915_gem_object *obj;
4260 int ret;
4261
4262 if (INTEL_INFO(dev)->gen >= 6)
4263 return -ENODEV;
4264
4265 ret = i915_mutex_lock_interruptible(dev);
4266 if (ret)
4267 return ret;
4268
4269 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4270 if (&obj->base == NULL) {
4271 ret = -ENOENT;
4272 goto unlock;
4273 }
4274
4275 if (obj->madv != I915_MADV_WILLNEED) {
4276 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4277 ret = -EFAULT;
4278 goto out;
4279 }
4280
4281 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4282 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4283 args->handle);
4284 ret = -EINVAL;
4285 goto out;
4286 }
4287
4288 if (obj->user_pin_count == ULONG_MAX) {
4289 ret = -EBUSY;
4290 goto out;
4291 }
4292
4293 if (obj->user_pin_count == 0) {
4294 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4295 if (ret)
4296 goto out;
4297 }
4298
4299 obj->user_pin_count++;
4300 obj->pin_filp = file;
4301
4302 args->offset = i915_gem_obj_ggtt_offset(obj);
4303 out:
4304 drm_gem_object_unreference(&obj->base);
4305 unlock:
4306 mutex_unlock(&dev->struct_mutex);
4307 return ret;
4308 }
4309
4310 int
4311 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4312 struct drm_file *file)
4313 {
4314 struct drm_i915_gem_pin *args = data;
4315 struct drm_i915_gem_object *obj;
4316 int ret;
4317
4318 ret = i915_mutex_lock_interruptible(dev);
4319 if (ret)
4320 return ret;
4321
4322 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4323 if (&obj->base == NULL) {
4324 ret = -ENOENT;
4325 goto unlock;
4326 }
4327
4328 if (obj->pin_filp != file) {
4329 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4330 args->handle);
4331 ret = -EINVAL;
4332 goto out;
4333 }
4334 obj->user_pin_count--;
4335 if (obj->user_pin_count == 0) {
4336 obj->pin_filp = NULL;
4337 i915_gem_object_ggtt_unpin(obj);
4338 }
4339
4340 out:
4341 drm_gem_object_unreference(&obj->base);
4342 unlock:
4343 mutex_unlock(&dev->struct_mutex);
4344 return ret;
4345 }
4346
4347 int
4348 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4349 struct drm_file *file)
4350 {
4351 struct drm_i915_gem_busy *args = data;
4352 struct drm_i915_gem_object *obj;
4353 int ret;
4354
4355 ret = i915_mutex_lock_interruptible(dev);
4356 if (ret)
4357 return ret;
4358
4359 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4360 if (&obj->base == NULL) {
4361 ret = -ENOENT;
4362 goto unlock;
4363 }
4364
4365 /* Count all active objects as busy, even if they are currently not used
4366 * by the gpu. Users of this interface expect objects to eventually
4367 * become non-busy without any further actions, therefore emit any
4368 * necessary flushes here.
4369 */
4370 ret = i915_gem_object_flush_active(obj);
4371
4372 args->busy = obj->active;
4373 if (obj->ring) {
4374 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4375 args->busy |= intel_ring_flag(obj->ring) << 16;
4376 }
4377
4378 drm_gem_object_unreference(&obj->base);
4379 unlock:
4380 mutex_unlock(&dev->struct_mutex);
4381 return ret;
4382 }
4383
4384 int
4385 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4386 struct drm_file *file_priv)
4387 {
4388 return i915_gem_ring_throttle(dev, file_priv);
4389 }
4390
4391 int
4392 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4393 struct drm_file *file_priv)
4394 {
4395 struct drm_i915_gem_madvise *args = data;
4396 struct drm_i915_gem_object *obj;
4397 int ret;
4398
4399 switch (args->madv) {
4400 case I915_MADV_DONTNEED:
4401 case I915_MADV_WILLNEED:
4402 break;
4403 default:
4404 return -EINVAL;
4405 }
4406
4407 ret = i915_mutex_lock_interruptible(dev);
4408 if (ret)
4409 return ret;
4410
4411 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4412 if (&obj->base == NULL) {
4413 ret = -ENOENT;
4414 goto unlock;
4415 }
4416
4417 if (i915_gem_obj_is_pinned(obj)) {
4418 ret = -EINVAL;
4419 goto out;
4420 }
4421
4422 if (obj->madv != __I915_MADV_PURGED)
4423 obj->madv = args->madv;
4424
4425 /* if the object is no longer attached, discard its backing storage */
4426 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4427 i915_gem_object_truncate(obj);
4428
4429 args->retained = obj->madv != __I915_MADV_PURGED;
4430
4431 out:
4432 drm_gem_object_unreference(&obj->base);
4433 unlock:
4434 mutex_unlock(&dev->struct_mutex);
4435 return ret;
4436 }
4437
4438 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4439 const struct drm_i915_gem_object_ops *ops)
4440 {
4441 INIT_LIST_HEAD(&obj->global_list);
4442 INIT_LIST_HEAD(&obj->ring_list);
4443 INIT_LIST_HEAD(&obj->obj_exec_link);
4444 INIT_LIST_HEAD(&obj->vma_list);
4445
4446 obj->ops = ops;
4447
4448 obj->fence_reg = I915_FENCE_REG_NONE;
4449 obj->madv = I915_MADV_WILLNEED;
4450
4451 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4452 }
4453
4454 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4455 .get_pages = i915_gem_object_get_pages_gtt,
4456 .put_pages = i915_gem_object_put_pages_gtt,
4457 };
4458
4459 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4460 size_t size)
4461 {
4462 struct drm_i915_gem_object *obj;
4463 struct address_space *mapping;
4464 gfp_t mask;
4465
4466 obj = i915_gem_object_alloc(dev);
4467 if (obj == NULL)
4468 return NULL;
4469
4470 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4471 i915_gem_object_free(obj);
4472 return NULL;
4473 }
4474
4475 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4476 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4477 /* 965gm cannot relocate objects above 4GiB. */
4478 mask &= ~__GFP_HIGHMEM;
4479 mask |= __GFP_DMA32;
4480 }
4481
4482 mapping = file_inode(obj->base.filp)->i_mapping;
4483 mapping_set_gfp_mask(mapping, mask);
4484
4485 i915_gem_object_init(obj, &i915_gem_object_ops);
4486
4487 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4488 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4489
4490 if (HAS_LLC(dev)) {
4491 /* On some devices, we can have the GPU use the LLC (the CPU
4492 * cache) for about a 10% performance improvement
4493 * compared to uncached. Graphics requests other than
4494 * display scanout are coherent with the CPU in
4495 * accessing this cache. This means in this mode we
4496 * don't need to clflush on the CPU side, and on the
4497 * GPU side we only need to flush internal caches to
4498 * get data visible to the CPU.
4499 *
4500 * However, we maintain the display planes as UC, and so
4501 * need to rebind when first used as such.
4502 */
4503 obj->cache_level = I915_CACHE_LLC;
4504 } else
4505 obj->cache_level = I915_CACHE_NONE;
4506
4507 trace_i915_gem_object_create(obj);
4508
4509 return obj;
4510 }
4511
4512 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4513 {
4514 /* If we are the last user of the backing storage (be it shmemfs
4515 * pages or stolen etc), we know that the pages are going to be
4516 * immediately released. In this case, we can then skip copying
4517 * back the contents from the GPU.
4518 */
4519
4520 if (obj->madv != I915_MADV_WILLNEED)
4521 return false;
4522
4523 if (obj->base.filp == NULL)
4524 return true;
4525
4526 /* At first glance, this looks racy, but then again so would be
4527 * userspace racing mmap against close. However, the first external
4528 * reference to the filp can only be obtained through the
4529 * i915_gem_mmap_ioctl() which safeguards us against the user
4530 * acquiring such a reference whilst we are in the middle of
4531 * freeing the object.
4532 */
4533 return atomic_long_read(&obj->base.filp->f_count) == 1;
4534 }
4535
4536 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4537 {
4538 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4539 struct drm_device *dev = obj->base.dev;
4540 struct drm_i915_private *dev_priv = dev->dev_private;
4541 struct i915_vma *vma, *next;
4542
4543 intel_runtime_pm_get(dev_priv);
4544
4545 trace_i915_gem_object_destroy(obj);
4546
4547 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4548 int ret;
4549
4550 vma->pin_count = 0;
4551 ret = i915_vma_unbind(vma);
4552 if (WARN_ON(ret == -ERESTARTSYS)) {
4553 bool was_interruptible;
4554
4555 was_interruptible = dev_priv->mm.interruptible;
4556 dev_priv->mm.interruptible = false;
4557
4558 WARN_ON(i915_vma_unbind(vma));
4559
4560 dev_priv->mm.interruptible = was_interruptible;
4561 }
4562 }
4563
4564 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4565 * before progressing. */
4566 if (obj->stolen)
4567 i915_gem_object_unpin_pages(obj);
4568
4569 WARN_ON(obj->frontbuffer_bits);
4570
4571 if (WARN_ON(obj->pages_pin_count))
4572 obj->pages_pin_count = 0;
4573 if (discard_backing_storage(obj))
4574 obj->madv = I915_MADV_DONTNEED;
4575 i915_gem_object_put_pages(obj);
4576 i915_gem_object_free_mmap_offset(obj);
4577
4578 BUG_ON(obj->pages);
4579
4580 if (obj->base.import_attach)
4581 drm_prime_gem_destroy(&obj->base, NULL);
4582
4583 if (obj->ops->release)
4584 obj->ops->release(obj);
4585
4586 drm_gem_object_release(&obj->base);
4587 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4588
4589 kfree(obj->bit_17);
4590 i915_gem_object_free(obj);
4591
4592 intel_runtime_pm_put(dev_priv);
4593 }
4594
4595 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4596 struct i915_address_space *vm)
4597 {
4598 struct i915_vma *vma;
4599 list_for_each_entry(vma, &obj->vma_list, vma_link)
4600 if (vma->vm == vm)
4601 return vma;
4602
4603 return NULL;
4604 }
4605
4606 void i915_gem_vma_destroy(struct i915_vma *vma)
4607 {
4608 struct i915_address_space *vm = NULL;
4609 WARN_ON(vma->node.allocated);
4610
4611 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4612 if (!list_empty(&vma->exec_list))
4613 return;
4614
4615 vm = vma->vm;
4616
4617 if (!i915_is_ggtt(vm))
4618 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4619
4620 list_del(&vma->vma_link);
4621
4622 kfree(vma);
4623 }
4624
4625 static void
4626 i915_gem_stop_ringbuffers(struct drm_device *dev)
4627 {
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629 struct intel_engine_cs *ring;
4630 int i;
4631
4632 for_each_ring(ring, dev_priv, i)
4633 dev_priv->gt.stop_ring(ring);
4634 }
4635
4636 int
4637 i915_gem_suspend(struct drm_device *dev)
4638 {
4639 struct drm_i915_private *dev_priv = dev->dev_private;
4640 int ret = 0;
4641
4642 mutex_lock(&dev->struct_mutex);
4643 if (dev_priv->ums.mm_suspended)
4644 goto err;
4645
4646 ret = i915_gpu_idle(dev);
4647 if (ret)
4648 goto err;
4649
4650 i915_gem_retire_requests(dev);
4651
4652 /* Under UMS, be paranoid and evict. */
4653 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4654 i915_gem_evict_everything(dev);
4655
4656 i915_kernel_lost_context(dev);
4657 i915_gem_stop_ringbuffers(dev);
4658
4659 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4660 * We need to replace this with a semaphore, or something.
4661 * And not confound ums.mm_suspended!
4662 */
4663 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4664 DRIVER_MODESET);
4665 mutex_unlock(&dev->struct_mutex);
4666
4667 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4668 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4669 flush_delayed_work(&dev_priv->mm.idle_work);
4670
4671 return 0;
4672
4673 err:
4674 mutex_unlock(&dev->struct_mutex);
4675 return ret;
4676 }
4677
4678 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4679 {
4680 struct drm_device *dev = ring->dev;
4681 struct drm_i915_private *dev_priv = dev->dev_private;
4682 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4683 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4684 int i, ret;
4685
4686 if (!HAS_L3_DPF(dev) || !remap_info)
4687 return 0;
4688
4689 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4690 if (ret)
4691 return ret;
4692
4693 /*
4694 * Note: We do not worry about the concurrent register cacheline hang
4695 * here because no other code should access these registers other than
4696 * at initialization time.
4697 */
4698 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4699 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4700 intel_ring_emit(ring, reg_base + i);
4701 intel_ring_emit(ring, remap_info[i/4]);
4702 }
4703
4704 intel_ring_advance(ring);
4705
4706 return ret;
4707 }
4708
4709 void i915_gem_init_swizzling(struct drm_device *dev)
4710 {
4711 struct drm_i915_private *dev_priv = dev->dev_private;
4712
4713 if (INTEL_INFO(dev)->gen < 5 ||
4714 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4715 return;
4716
4717 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4718 DISP_TILE_SURFACE_SWIZZLING);
4719
4720 if (IS_GEN5(dev))
4721 return;
4722
4723 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4724 if (IS_GEN6(dev))
4725 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4726 else if (IS_GEN7(dev))
4727 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4728 else if (IS_GEN8(dev))
4729 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4730 else
4731 BUG();
4732 }
4733
4734 static bool
4735 intel_enable_blt(struct drm_device *dev)
4736 {
4737 if (!HAS_BLT(dev))
4738 return false;
4739
4740 /* The blitter was dysfunctional on early prototypes */
4741 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4742 DRM_INFO("BLT not supported on this pre-production hardware;"
4743 " graphics performance will be degraded.\n");
4744 return false;
4745 }
4746
4747 return true;
4748 }
4749
4750 static void init_unused_ring(struct drm_device *dev, u32 base)
4751 {
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753
4754 I915_WRITE(RING_CTL(base), 0);
4755 I915_WRITE(RING_HEAD(base), 0);
4756 I915_WRITE(RING_TAIL(base), 0);
4757 I915_WRITE(RING_START(base), 0);
4758 }
4759
4760 static void init_unused_rings(struct drm_device *dev)
4761 {
4762 if (IS_I830(dev)) {
4763 init_unused_ring(dev, PRB1_BASE);
4764 init_unused_ring(dev, SRB0_BASE);
4765 init_unused_ring(dev, SRB1_BASE);
4766 init_unused_ring(dev, SRB2_BASE);
4767 init_unused_ring(dev, SRB3_BASE);
4768 } else if (IS_GEN2(dev)) {
4769 init_unused_ring(dev, SRB0_BASE);
4770 init_unused_ring(dev, SRB1_BASE);
4771 } else if (IS_GEN3(dev)) {
4772 init_unused_ring(dev, PRB1_BASE);
4773 init_unused_ring(dev, PRB2_BASE);
4774 }
4775 }
4776
4777 int i915_gem_init_rings(struct drm_device *dev)
4778 {
4779 struct drm_i915_private *dev_priv = dev->dev_private;
4780 int ret;
4781
4782 /*
4783 * At least 830 can leave some of the unused rings
4784 * "active" (ie. head != tail) after resume which
4785 * will prevent c3 entry. Makes sure all unused rings
4786 * are totally idle.
4787 */
4788 init_unused_rings(dev);
4789
4790 ret = intel_init_render_ring_buffer(dev);
4791 if (ret)
4792 return ret;
4793
4794 if (HAS_BSD(dev)) {
4795 ret = intel_init_bsd_ring_buffer(dev);
4796 if (ret)
4797 goto cleanup_render_ring;
4798 }
4799
4800 if (intel_enable_blt(dev)) {
4801 ret = intel_init_blt_ring_buffer(dev);
4802 if (ret)
4803 goto cleanup_bsd_ring;
4804 }
4805
4806 if (HAS_VEBOX(dev)) {
4807 ret = intel_init_vebox_ring_buffer(dev);
4808 if (ret)
4809 goto cleanup_blt_ring;
4810 }
4811
4812 if (HAS_BSD2(dev)) {
4813 ret = intel_init_bsd2_ring_buffer(dev);
4814 if (ret)
4815 goto cleanup_vebox_ring;
4816 }
4817
4818 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4819 if (ret)
4820 goto cleanup_bsd2_ring;
4821
4822 return 0;
4823
4824 cleanup_bsd2_ring:
4825 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4826 cleanup_vebox_ring:
4827 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4828 cleanup_blt_ring:
4829 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4830 cleanup_bsd_ring:
4831 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4832 cleanup_render_ring:
4833 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4834
4835 return ret;
4836 }
4837
4838 int
4839 i915_gem_init_hw(struct drm_device *dev)
4840 {
4841 struct drm_i915_private *dev_priv = dev->dev_private;
4842 int ret, i;
4843
4844 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4845 return -EIO;
4846
4847 if (dev_priv->ellc_size)
4848 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4849
4850 if (IS_HASWELL(dev))
4851 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4852 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4853
4854 if (HAS_PCH_NOP(dev)) {
4855 if (IS_IVYBRIDGE(dev)) {
4856 u32 temp = I915_READ(GEN7_MSG_CTL);
4857 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4858 I915_WRITE(GEN7_MSG_CTL, temp);
4859 } else if (INTEL_INFO(dev)->gen >= 7) {
4860 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4861 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4862 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4863 }
4864 }
4865
4866 i915_gem_init_swizzling(dev);
4867
4868 ret = dev_priv->gt.init_rings(dev);
4869 if (ret)
4870 return ret;
4871
4872 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4873 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4874
4875 /*
4876 * XXX: Contexts should only be initialized once. Doing a switch to the
4877 * default context switch however is something we'd like to do after
4878 * reset or thaw (the latter may not actually be necessary for HW, but
4879 * goes with our code better). Context switching requires rings (for
4880 * the do_switch), but before enabling PPGTT. So don't move this.
4881 */
4882 ret = i915_gem_context_enable(dev_priv);
4883 if (ret && ret != -EIO) {
4884 DRM_ERROR("Context enable failed %d\n", ret);
4885 i915_gem_cleanup_ringbuffer(dev);
4886
4887 return ret;
4888 }
4889
4890 ret = i915_ppgtt_init_hw(dev);
4891 if (ret && ret != -EIO) {
4892 DRM_ERROR("PPGTT enable failed %d\n", ret);
4893 i915_gem_cleanup_ringbuffer(dev);
4894 }
4895
4896 return ret;
4897 }
4898
4899 int i915_gem_init(struct drm_device *dev)
4900 {
4901 struct drm_i915_private *dev_priv = dev->dev_private;
4902 int ret;
4903
4904 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4905 i915.enable_execlists);
4906
4907 mutex_lock(&dev->struct_mutex);
4908
4909 if (IS_VALLEYVIEW(dev)) {
4910 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4911 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4912 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4913 VLV_GTLC_ALLOWWAKEACK), 10))
4914 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4915 }
4916
4917 if (!i915.enable_execlists) {
4918 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4919 dev_priv->gt.init_rings = i915_gem_init_rings;
4920 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4921 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4922 } else {
4923 dev_priv->gt.do_execbuf = intel_execlists_submission;
4924 dev_priv->gt.init_rings = intel_logical_rings_init;
4925 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4926 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4927 }
4928
4929 ret = i915_gem_init_userptr(dev);
4930 if (ret) {
4931 mutex_unlock(&dev->struct_mutex);
4932 return ret;
4933 }
4934
4935 i915_gem_init_global_gtt(dev);
4936
4937 ret = i915_gem_context_init(dev);
4938 if (ret) {
4939 mutex_unlock(&dev->struct_mutex);
4940 return ret;
4941 }
4942
4943 ret = i915_gem_init_hw(dev);
4944 if (ret == -EIO) {
4945 /* Allow ring initialisation to fail by marking the GPU as
4946 * wedged. But we only want to do this where the GPU is angry,
4947 * for all other failure, such as an allocation failure, bail.
4948 */
4949 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4950 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4951 ret = 0;
4952 }
4953 mutex_unlock(&dev->struct_mutex);
4954
4955 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4956 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4957 dev_priv->dri1.allow_batchbuffer = 1;
4958 return ret;
4959 }
4960
4961 void
4962 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4963 {
4964 struct drm_i915_private *dev_priv = dev->dev_private;
4965 struct intel_engine_cs *ring;
4966 int i;
4967
4968 for_each_ring(ring, dev_priv, i)
4969 dev_priv->gt.cleanup_ring(ring);
4970 }
4971
4972 int
4973 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4974 struct drm_file *file_priv)
4975 {
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 int ret;
4978
4979 if (drm_core_check_feature(dev, DRIVER_MODESET))
4980 return 0;
4981
4982 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4983 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4984 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4985 }
4986
4987 mutex_lock(&dev->struct_mutex);
4988 dev_priv->ums.mm_suspended = 0;
4989
4990 ret = i915_gem_init_hw(dev);
4991 if (ret != 0) {
4992 mutex_unlock(&dev->struct_mutex);
4993 return ret;
4994 }
4995
4996 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4997
4998 ret = drm_irq_install(dev, dev->pdev->irq);
4999 if (ret)
5000 goto cleanup_ringbuffer;
5001 mutex_unlock(&dev->struct_mutex);
5002
5003 return 0;
5004
5005 cleanup_ringbuffer:
5006 i915_gem_cleanup_ringbuffer(dev);
5007 dev_priv->ums.mm_suspended = 1;
5008 mutex_unlock(&dev->struct_mutex);
5009
5010 return ret;
5011 }
5012
5013 int
5014 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5015 struct drm_file *file_priv)
5016 {
5017 if (drm_core_check_feature(dev, DRIVER_MODESET))
5018 return 0;
5019
5020 mutex_lock(&dev->struct_mutex);
5021 drm_irq_uninstall(dev);
5022 mutex_unlock(&dev->struct_mutex);
5023
5024 return i915_gem_suspend(dev);
5025 }
5026
5027 void
5028 i915_gem_lastclose(struct drm_device *dev)
5029 {
5030 int ret;
5031
5032 if (drm_core_check_feature(dev, DRIVER_MODESET))
5033 return;
5034
5035 ret = i915_gem_suspend(dev);
5036 if (ret)
5037 DRM_ERROR("failed to idle hardware: %d\n", ret);
5038 }
5039
5040 static void
5041 init_ring_lists(struct intel_engine_cs *ring)
5042 {
5043 INIT_LIST_HEAD(&ring->active_list);
5044 INIT_LIST_HEAD(&ring->request_list);
5045 }
5046
5047 void i915_init_vm(struct drm_i915_private *dev_priv,
5048 struct i915_address_space *vm)
5049 {
5050 if (!i915_is_ggtt(vm))
5051 drm_mm_init(&vm->mm, vm->start, vm->total);
5052 vm->dev = dev_priv->dev;
5053 INIT_LIST_HEAD(&vm->active_list);
5054 INIT_LIST_HEAD(&vm->inactive_list);
5055 INIT_LIST_HEAD(&vm->global_link);
5056 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5057 }
5058
5059 void
5060 i915_gem_load(struct drm_device *dev)
5061 {
5062 struct drm_i915_private *dev_priv = dev->dev_private;
5063 int i;
5064
5065 dev_priv->slab =
5066 kmem_cache_create("i915_gem_object",
5067 sizeof(struct drm_i915_gem_object), 0,
5068 SLAB_HWCACHE_ALIGN,
5069 NULL);
5070
5071 INIT_LIST_HEAD(&dev_priv->vm_list);
5072 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5073
5074 INIT_LIST_HEAD(&dev_priv->context_list);
5075 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5076 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5077 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5078 for (i = 0; i < I915_NUM_RINGS; i++)
5079 init_ring_lists(&dev_priv->ring[i]);
5080 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5081 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5082 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5083 i915_gem_retire_work_handler);
5084 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5085 i915_gem_idle_work_handler);
5086 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5087
5088 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5089 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5090 I915_WRITE(MI_ARB_STATE,
5091 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5092 }
5093
5094 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5095
5096 /* Old X drivers will take 0-2 for front, back, depth buffers */
5097 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5098 dev_priv->fence_reg_start = 3;
5099
5100 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5101 dev_priv->num_fence_regs = 32;
5102 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5103 dev_priv->num_fence_regs = 16;
5104 else
5105 dev_priv->num_fence_regs = 8;
5106
5107 /* Initialize fence registers to zero */
5108 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5109 i915_gem_restore_fences(dev);
5110
5111 i915_gem_detect_bit_6_swizzle(dev);
5112 init_waitqueue_head(&dev_priv->pending_flip_queue);
5113
5114 dev_priv->mm.interruptible = true;
5115
5116 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5117 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5118 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5119 register_shrinker(&dev_priv->mm.shrinker);
5120
5121 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5122 register_oom_notifier(&dev_priv->mm.oom_notifier);
5123
5124 mutex_init(&dev_priv->fb_tracking.lock);
5125 }
5126
5127 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5128 {
5129 struct drm_i915_file_private *file_priv = file->driver_priv;
5130
5131 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5132
5133 /* Clean up our request list when the client is going away, so that
5134 * later retire_requests won't dereference our soon-to-be-gone
5135 * file_priv.
5136 */
5137 spin_lock(&file_priv->mm.lock);
5138 while (!list_empty(&file_priv->mm.request_list)) {
5139 struct drm_i915_gem_request *request;
5140
5141 request = list_first_entry(&file_priv->mm.request_list,
5142 struct drm_i915_gem_request,
5143 client_list);
5144 list_del(&request->client_list);
5145 request->file_priv = NULL;
5146 }
5147 spin_unlock(&file_priv->mm.lock);
5148 }
5149
5150 static void
5151 i915_gem_file_idle_work_handler(struct work_struct *work)
5152 {
5153 struct drm_i915_file_private *file_priv =
5154 container_of(work, typeof(*file_priv), mm.idle_work.work);
5155
5156 atomic_set(&file_priv->rps_wait_boost, false);
5157 }
5158
5159 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5160 {
5161 struct drm_i915_file_private *file_priv;
5162 int ret;
5163
5164 DRM_DEBUG_DRIVER("\n");
5165
5166 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5167 if (!file_priv)
5168 return -ENOMEM;
5169
5170 file->driver_priv = file_priv;
5171 file_priv->dev_priv = dev->dev_private;
5172 file_priv->file = file;
5173
5174 spin_lock_init(&file_priv->mm.lock);
5175 INIT_LIST_HEAD(&file_priv->mm.request_list);
5176 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5177 i915_gem_file_idle_work_handler);
5178
5179 ret = i915_gem_context_open(dev, file);
5180 if (ret)
5181 kfree(file_priv);
5182
5183 return ret;
5184 }
5185
5186 /**
5187 * i915_gem_track_fb - update frontbuffer tracking
5188 * old: current GEM buffer for the frontbuffer slots
5189 * new: new GEM buffer for the frontbuffer slots
5190 * frontbuffer_bits: bitmask of frontbuffer slots
5191 *
5192 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5193 * from @old and setting them in @new. Both @old and @new can be NULL.
5194 */
5195 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5196 struct drm_i915_gem_object *new,
5197 unsigned frontbuffer_bits)
5198 {
5199 if (old) {
5200 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5201 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5202 old->frontbuffer_bits &= ~frontbuffer_bits;
5203 }
5204
5205 if (new) {
5206 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5207 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5208 new->frontbuffer_bits |= frontbuffer_bits;
5209 }
5210 }
5211
5212 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5213 {
5214 if (!mutex_is_locked(mutex))
5215 return false;
5216
5217 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5218 return mutex->owner == task;
5219 #else
5220 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5221 return false;
5222 #endif
5223 }
5224
5225 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5226 {
5227 if (!mutex_trylock(&dev->struct_mutex)) {
5228 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5229 return false;
5230
5231 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5232 return false;
5233
5234 *unlock = false;
5235 } else
5236 *unlock = true;
5237
5238 return true;
5239 }
5240
5241 static int num_vma_bound(struct drm_i915_gem_object *obj)
5242 {
5243 struct i915_vma *vma;
5244 int count = 0;
5245
5246 list_for_each_entry(vma, &obj->vma_list, vma_link)
5247 if (drm_mm_node_allocated(&vma->node))
5248 count++;
5249
5250 return count;
5251 }
5252
5253 static unsigned long
5254 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5255 {
5256 struct drm_i915_private *dev_priv =
5257 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5258 struct drm_device *dev = dev_priv->dev;
5259 struct drm_i915_gem_object *obj;
5260 unsigned long count;
5261 bool unlock;
5262
5263 if (!i915_gem_shrinker_lock(dev, &unlock))
5264 return 0;
5265
5266 count = 0;
5267 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5268 if (obj->pages_pin_count == 0)
5269 count += obj->base.size >> PAGE_SHIFT;
5270
5271 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5272 if (!i915_gem_obj_is_pinned(obj) &&
5273 obj->pages_pin_count == num_vma_bound(obj))
5274 count += obj->base.size >> PAGE_SHIFT;
5275 }
5276
5277 if (unlock)
5278 mutex_unlock(&dev->struct_mutex);
5279
5280 return count;
5281 }
5282
5283 /* All the new VM stuff */
5284 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5285 struct i915_address_space *vm)
5286 {
5287 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5288 struct i915_vma *vma;
5289
5290 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5291
5292 list_for_each_entry(vma, &o->vma_list, vma_link) {
5293 if (vma->vm == vm)
5294 return vma->node.start;
5295
5296 }
5297 WARN(1, "%s vma for this object not found.\n",
5298 i915_is_ggtt(vm) ? "global" : "ppgtt");
5299 return -1;
5300 }
5301
5302 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5303 struct i915_address_space *vm)
5304 {
5305 struct i915_vma *vma;
5306
5307 list_for_each_entry(vma, &o->vma_list, vma_link)
5308 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5309 return true;
5310
5311 return false;
5312 }
5313
5314 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5315 {
5316 struct i915_vma *vma;
5317
5318 list_for_each_entry(vma, &o->vma_list, vma_link)
5319 if (drm_mm_node_allocated(&vma->node))
5320 return true;
5321
5322 return false;
5323 }
5324
5325 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5326 struct i915_address_space *vm)
5327 {
5328 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5329 struct i915_vma *vma;
5330
5331 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5332
5333 BUG_ON(list_empty(&o->vma_list));
5334
5335 list_for_each_entry(vma, &o->vma_list, vma_link)
5336 if (vma->vm == vm)
5337 return vma->node.size;
5338
5339 return 0;
5340 }
5341
5342 static unsigned long
5343 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5344 {
5345 struct drm_i915_private *dev_priv =
5346 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5347 struct drm_device *dev = dev_priv->dev;
5348 unsigned long freed;
5349 bool unlock;
5350
5351 if (!i915_gem_shrinker_lock(dev, &unlock))
5352 return SHRINK_STOP;
5353
5354 freed = i915_gem_shrink(dev_priv,
5355 sc->nr_to_scan,
5356 I915_SHRINK_BOUND |
5357 I915_SHRINK_UNBOUND |
5358 I915_SHRINK_PURGEABLE);
5359 if (freed < sc->nr_to_scan)
5360 freed += i915_gem_shrink(dev_priv,
5361 sc->nr_to_scan - freed,
5362 I915_SHRINK_BOUND |
5363 I915_SHRINK_UNBOUND);
5364 if (unlock)
5365 mutex_unlock(&dev->struct_mutex);
5366
5367 return freed;
5368 }
5369
5370 static int
5371 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5372 {
5373 struct drm_i915_private *dev_priv =
5374 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5375 struct drm_device *dev = dev_priv->dev;
5376 struct drm_i915_gem_object *obj;
5377 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5378 unsigned long pinned, bound, unbound, freed_pages;
5379 bool was_interruptible;
5380 bool unlock;
5381
5382 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5383 schedule_timeout_killable(1);
5384 if (fatal_signal_pending(current))
5385 return NOTIFY_DONE;
5386 }
5387 if (timeout == 0) {
5388 pr_err("Unable to purge GPU memory due lock contention.\n");
5389 return NOTIFY_DONE;
5390 }
5391
5392 was_interruptible = dev_priv->mm.interruptible;
5393 dev_priv->mm.interruptible = false;
5394
5395 freed_pages = i915_gem_shrink_all(dev_priv);
5396
5397 dev_priv->mm.interruptible = was_interruptible;
5398
5399 /* Because we may be allocating inside our own driver, we cannot
5400 * assert that there are no objects with pinned pages that are not
5401 * being pointed to by hardware.
5402 */
5403 unbound = bound = pinned = 0;
5404 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5405 if (!obj->base.filp) /* not backed by a freeable object */
5406 continue;
5407
5408 if (obj->pages_pin_count)
5409 pinned += obj->base.size;
5410 else
5411 unbound += obj->base.size;
5412 }
5413 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5414 if (!obj->base.filp)
5415 continue;
5416
5417 if (obj->pages_pin_count)
5418 pinned += obj->base.size;
5419 else
5420 bound += obj->base.size;
5421 }
5422
5423 if (unlock)
5424 mutex_unlock(&dev->struct_mutex);
5425
5426 if (freed_pages || unbound || bound)
5427 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5428 freed_pages << PAGE_SHIFT, pinned);
5429 if (unbound || bound)
5430 pr_err("%lu and %lu bytes still available in the "
5431 "bound and unbound GPU page lists.\n",
5432 bound, unbound);
5433
5434 *(unsigned long *)ptr += freed_pages;
5435 return NOTIFY_DONE;
5436 }
5437
5438 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5439 {
5440 struct i915_vma *vma;
5441
5442 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5443 if (vma->vm != i915_obj_to_ggtt(obj))
5444 return NULL;
5445
5446 return vma;
5447 }
This page took 0.15845 seconds and 5 git commands to generate.