drm/i915: Remove redundant deletion of obj->gpu_write_list
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 int
72 i915_gem_check_is_wedged(struct drm_device *dev)
73 {
74 struct drm_i915_private *dev_priv = dev->dev_private;
75 struct completion *x = &dev_priv->error_completion;
76 unsigned long flags;
77 int ret;
78
79 if (!atomic_read(&dev_priv->mm.wedged))
80 return 0;
81
82 ret = wait_for_completion_interruptible(x);
83 if (ret)
84 return ret;
85
86 /* Success, we reset the GPU! */
87 if (!atomic_read(&dev_priv->mm.wedged))
88 return 0;
89
90 /* GPU is hung, bump the completion count to account for
91 * the token we just consumed so that we never hit zero and
92 * end up waiting upon a subsequent completion event that
93 * will never happen.
94 */
95 spin_lock_irqsave(&x->wait.lock, flags);
96 x->done++;
97 spin_unlock_irqrestore(&x->wait.lock, flags);
98 return -EIO;
99 }
100
101 static int i915_mutex_lock_interruptible(struct drm_device *dev)
102 {
103 struct drm_i915_private *dev_priv = dev->dev_private;
104 int ret;
105
106 ret = i915_gem_check_is_wedged(dev);
107 if (ret)
108 return ret;
109
110 ret = mutex_lock_interruptible(&dev->struct_mutex);
111 if (ret)
112 return ret;
113
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 mutex_unlock(&dev->struct_mutex);
116 return -EAGAIN;
117 }
118
119 WARN_ON(i915_verify_lists(dev));
120 return 0;
121 }
122
123 static inline bool
124 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
125 {
126 return obj_priv->gtt_space &&
127 !obj_priv->active &&
128 obj_priv->pin_count == 0;
129 }
130
131 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
132 unsigned long end)
133 {
134 drm_i915_private_t *dev_priv = dev->dev_private;
135
136 if (start >= end ||
137 (start & (PAGE_SIZE - 1)) != 0 ||
138 (end & (PAGE_SIZE - 1)) != 0) {
139 return -EINVAL;
140 }
141
142 drm_mm_init(&dev_priv->mm.gtt_space, start,
143 end - start);
144
145 dev->gtt_total = (uint32_t) (end - start);
146
147 return 0;
148 }
149
150 int
151 i915_gem_init_ioctl(struct drm_device *dev, void *data,
152 struct drm_file *file_priv)
153 {
154 struct drm_i915_gem_init *args = data;
155 int ret;
156
157 mutex_lock(&dev->struct_mutex);
158 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
159 mutex_unlock(&dev->struct_mutex);
160
161 return ret;
162 }
163
164 int
165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 struct drm_file *file_priv)
167 {
168 struct drm_i915_gem_get_aperture *args = data;
169
170 if (!(dev->driver->driver_features & DRIVER_GEM))
171 return -ENODEV;
172
173 args->aper_size = dev->gtt_total;
174 args->aper_available_size = (args->aper_size -
175 atomic_read(&dev->pin_memory));
176
177 return 0;
178 }
179
180
181 /**
182 * Creates a new mm object and returns a handle to it.
183 */
184 int
185 i915_gem_create_ioctl(struct drm_device *dev, void *data,
186 struct drm_file *file_priv)
187 {
188 struct drm_i915_gem_create *args = data;
189 struct drm_gem_object *obj;
190 int ret;
191 u32 handle;
192
193 args->size = roundup(args->size, PAGE_SIZE);
194
195 /* Allocate the new object */
196 obj = i915_gem_alloc_object(dev, args->size);
197 if (obj == NULL)
198 return -ENOMEM;
199
200 ret = drm_gem_handle_create(file_priv, obj, &handle);
201 if (ret) {
202 drm_gem_object_unreference_unlocked(obj);
203 return ret;
204 }
205
206 /* Sink the floating reference from kref_init(handlecount) */
207 drm_gem_object_handle_unreference_unlocked(obj);
208
209 args->handle = handle;
210 return 0;
211 }
212
213 static inline int
214 fast_shmem_read(struct page **pages,
215 loff_t page_base, int page_offset,
216 char __user *data,
217 int length)
218 {
219 char __iomem *vaddr;
220 int unwritten;
221
222 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
223 if (vaddr == NULL)
224 return -ENOMEM;
225 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
226 kunmap_atomic(vaddr, KM_USER0);
227
228 if (unwritten)
229 return -EFAULT;
230
231 return 0;
232 }
233
234 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
235 {
236 drm_i915_private_t *dev_priv = obj->dev->dev_private;
237 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
238
239 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
240 obj_priv->tiling_mode != I915_TILING_NONE;
241 }
242
243 static inline void
244 slow_shmem_copy(struct page *dst_page,
245 int dst_offset,
246 struct page *src_page,
247 int src_offset,
248 int length)
249 {
250 char *dst_vaddr, *src_vaddr;
251
252 dst_vaddr = kmap(dst_page);
253 src_vaddr = kmap(src_page);
254
255 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
256
257 kunmap(src_page);
258 kunmap(dst_page);
259 }
260
261 static inline void
262 slow_shmem_bit17_copy(struct page *gpu_page,
263 int gpu_offset,
264 struct page *cpu_page,
265 int cpu_offset,
266 int length,
267 int is_read)
268 {
269 char *gpu_vaddr, *cpu_vaddr;
270
271 /* Use the unswizzled path if this page isn't affected. */
272 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
273 if (is_read)
274 return slow_shmem_copy(cpu_page, cpu_offset,
275 gpu_page, gpu_offset, length);
276 else
277 return slow_shmem_copy(gpu_page, gpu_offset,
278 cpu_page, cpu_offset, length);
279 }
280
281 gpu_vaddr = kmap(gpu_page);
282 cpu_vaddr = kmap(cpu_page);
283
284 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
285 * XORing with the other bits (A9 for Y, A9 and A10 for X)
286 */
287 while (length > 0) {
288 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289 int this_length = min(cacheline_end - gpu_offset, length);
290 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292 if (is_read) {
293 memcpy(cpu_vaddr + cpu_offset,
294 gpu_vaddr + swizzled_gpu_offset,
295 this_length);
296 } else {
297 memcpy(gpu_vaddr + swizzled_gpu_offset,
298 cpu_vaddr + cpu_offset,
299 this_length);
300 }
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 kunmap(cpu_page);
307 kunmap(gpu_page);
308 }
309
310 /**
311 * This is the fast shmem pread path, which attempts to copy_from_user directly
312 * from the backing pages of the object to the user's address space. On a
313 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
314 */
315 static int
316 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
317 struct drm_i915_gem_pread *args,
318 struct drm_file *file_priv)
319 {
320 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
321 ssize_t remain;
322 loff_t offset, page_base;
323 char __user *user_data;
324 int page_offset, page_length;
325 int ret;
326
327 user_data = (char __user *) (uintptr_t) args->data_ptr;
328 remain = args->size;
329
330 ret = i915_mutex_lock_interruptible(dev);
331 if (ret)
332 return ret;
333
334 ret = i915_gem_object_get_pages(obj, 0);
335 if (ret != 0)
336 goto fail_unlock;
337
338 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
339 args->size);
340 if (ret != 0)
341 goto fail_put_pages;
342
343 obj_priv = to_intel_bo(obj);
344 offset = args->offset;
345
346 while (remain > 0) {
347 /* Operation in this page
348 *
349 * page_base = page offset within aperture
350 * page_offset = offset within page
351 * page_length = bytes to copy for this page
352 */
353 page_base = (offset & ~(PAGE_SIZE-1));
354 page_offset = offset & (PAGE_SIZE-1);
355 page_length = remain;
356 if ((page_offset + remain) > PAGE_SIZE)
357 page_length = PAGE_SIZE - page_offset;
358
359 ret = fast_shmem_read(obj_priv->pages,
360 page_base, page_offset,
361 user_data, page_length);
362 if (ret)
363 goto fail_put_pages;
364
365 remain -= page_length;
366 user_data += page_length;
367 offset += page_length;
368 }
369
370 fail_put_pages:
371 i915_gem_object_put_pages(obj);
372 fail_unlock:
373 mutex_unlock(&dev->struct_mutex);
374
375 return ret;
376 }
377
378 static int
379 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
380 {
381 int ret;
382
383 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
384
385 /* If we've insufficient memory to map in the pages, attempt
386 * to make some space by throwing out some old buffers.
387 */
388 if (ret == -ENOMEM) {
389 struct drm_device *dev = obj->dev;
390
391 ret = i915_gem_evict_something(dev, obj->size,
392 i915_gem_get_gtt_alignment(obj));
393 if (ret)
394 return ret;
395
396 ret = i915_gem_object_get_pages(obj, 0);
397 }
398
399 return ret;
400 }
401
402 /**
403 * This is the fallback shmem pread path, which allocates temporary storage
404 * in kernel space to copy_to_user into outside of the struct_mutex, so we
405 * can copy out of the object's backing pages while holding the struct mutex
406 * and not take page faults.
407 */
408 static int
409 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
410 struct drm_i915_gem_pread *args,
411 struct drm_file *file_priv)
412 {
413 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
414 struct mm_struct *mm = current->mm;
415 struct page **user_pages;
416 ssize_t remain;
417 loff_t offset, pinned_pages, i;
418 loff_t first_data_page, last_data_page, num_pages;
419 int shmem_page_index, shmem_page_offset;
420 int data_page_index, data_page_offset;
421 int page_length;
422 int ret;
423 uint64_t data_ptr = args->data_ptr;
424 int do_bit17_swizzling;
425
426 remain = args->size;
427
428 /* Pin the user pages containing the data. We can't fault while
429 * holding the struct mutex, yet we want to hold it while
430 * dereferencing the user data.
431 */
432 first_data_page = data_ptr / PAGE_SIZE;
433 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
434 num_pages = last_data_page - first_data_page + 1;
435
436 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
437 if (user_pages == NULL)
438 return -ENOMEM;
439
440 down_read(&mm->mmap_sem);
441 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
442 num_pages, 1, 0, user_pages, NULL);
443 up_read(&mm->mmap_sem);
444 if (pinned_pages < num_pages) {
445 ret = -EFAULT;
446 goto fail_put_user_pages;
447 }
448
449 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
450
451 ret = i915_mutex_lock_interruptible(dev);
452 if (ret)
453 goto fail_put_user_pages;
454
455 ret = i915_gem_object_get_pages_or_evict(obj);
456 if (ret)
457 goto fail_unlock;
458
459 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
460 args->size);
461 if (ret != 0)
462 goto fail_put_pages;
463
464 obj_priv = to_intel_bo(obj);
465 offset = args->offset;
466
467 while (remain > 0) {
468 /* Operation in this page
469 *
470 * shmem_page_index = page number within shmem file
471 * shmem_page_offset = offset within page in shmem file
472 * data_page_index = page number in get_user_pages return
473 * data_page_offset = offset with data_page_index page.
474 * page_length = bytes to copy for this page
475 */
476 shmem_page_index = offset / PAGE_SIZE;
477 shmem_page_offset = offset & ~PAGE_MASK;
478 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
479 data_page_offset = data_ptr & ~PAGE_MASK;
480
481 page_length = remain;
482 if ((shmem_page_offset + page_length) > PAGE_SIZE)
483 page_length = PAGE_SIZE - shmem_page_offset;
484 if ((data_page_offset + page_length) > PAGE_SIZE)
485 page_length = PAGE_SIZE - data_page_offset;
486
487 if (do_bit17_swizzling) {
488 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
489 shmem_page_offset,
490 user_pages[data_page_index],
491 data_page_offset,
492 page_length,
493 1);
494 } else {
495 slow_shmem_copy(user_pages[data_page_index],
496 data_page_offset,
497 obj_priv->pages[shmem_page_index],
498 shmem_page_offset,
499 page_length);
500 }
501
502 remain -= page_length;
503 data_ptr += page_length;
504 offset += page_length;
505 }
506
507 fail_put_pages:
508 i915_gem_object_put_pages(obj);
509 fail_unlock:
510 mutex_unlock(&dev->struct_mutex);
511 fail_put_user_pages:
512 for (i = 0; i < pinned_pages; i++) {
513 SetPageDirty(user_pages[i]);
514 page_cache_release(user_pages[i]);
515 }
516 drm_free_large(user_pages);
517
518 return ret;
519 }
520
521 /**
522 * Reads data from the object referenced by handle.
523 *
524 * On error, the contents of *data are undefined.
525 */
526 int
527 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
528 struct drm_file *file_priv)
529 {
530 struct drm_i915_gem_pread *args = data;
531 struct drm_gem_object *obj;
532 struct drm_i915_gem_object *obj_priv;
533 int ret;
534
535 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
536 if (obj == NULL)
537 return -ENOENT;
538 obj_priv = to_intel_bo(obj);
539
540 /* Bounds check source.
541 *
542 * XXX: This could use review for overflow issues...
543 */
544 if (args->offset > obj->size || args->size > obj->size ||
545 args->offset + args->size > obj->size) {
546 drm_gem_object_unreference_unlocked(obj);
547 return -EINVAL;
548 }
549
550 if (i915_gem_object_needs_bit17_swizzle(obj)) {
551 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
552 } else {
553 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
554 if (ret != 0)
555 ret = i915_gem_shmem_pread_slow(dev, obj, args,
556 file_priv);
557 }
558
559 drm_gem_object_unreference_unlocked(obj);
560
561 return ret;
562 }
563
564 /* This is the fast write path which cannot handle
565 * page faults in the source data
566 */
567
568 static inline int
569 fast_user_write(struct io_mapping *mapping,
570 loff_t page_base, int page_offset,
571 char __user *user_data,
572 int length)
573 {
574 char *vaddr_atomic;
575 unsigned long unwritten;
576
577 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
578 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
579 user_data, length);
580 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
581 if (unwritten)
582 return -EFAULT;
583 return 0;
584 }
585
586 /* Here's the write path which can sleep for
587 * page faults
588 */
589
590 static inline void
591 slow_kernel_write(struct io_mapping *mapping,
592 loff_t gtt_base, int gtt_offset,
593 struct page *user_page, int user_offset,
594 int length)
595 {
596 char __iomem *dst_vaddr;
597 char *src_vaddr;
598
599 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
600 src_vaddr = kmap(user_page);
601
602 memcpy_toio(dst_vaddr + gtt_offset,
603 src_vaddr + user_offset,
604 length);
605
606 kunmap(user_page);
607 io_mapping_unmap(dst_vaddr);
608 }
609
610 static inline int
611 fast_shmem_write(struct page **pages,
612 loff_t page_base, int page_offset,
613 char __user *data,
614 int length)
615 {
616 char __iomem *vaddr;
617 unsigned long unwritten;
618
619 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
620 if (vaddr == NULL)
621 return -ENOMEM;
622 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
623 kunmap_atomic(vaddr, KM_USER0);
624
625 if (unwritten)
626 return -EFAULT;
627 return 0;
628 }
629
630 /**
631 * This is the fast pwrite path, where we copy the data directly from the
632 * user into the GTT, uncached.
633 */
634 static int
635 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
636 struct drm_i915_gem_pwrite *args,
637 struct drm_file *file_priv)
638 {
639 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
640 drm_i915_private_t *dev_priv = dev->dev_private;
641 ssize_t remain;
642 loff_t offset, page_base;
643 char __user *user_data;
644 int page_offset, page_length;
645 int ret;
646
647 user_data = (char __user *) (uintptr_t) args->data_ptr;
648 remain = args->size;
649 if (!access_ok(VERIFY_READ, user_data, remain))
650 return -EFAULT;
651
652 ret = i915_mutex_lock_interruptible(dev);
653 if (ret)
654 return ret;
655
656 ret = i915_gem_object_pin(obj, 0);
657 if (ret) {
658 mutex_unlock(&dev->struct_mutex);
659 return ret;
660 }
661 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
662 if (ret)
663 goto fail;
664
665 obj_priv = to_intel_bo(obj);
666 offset = obj_priv->gtt_offset + args->offset;
667
668 while (remain > 0) {
669 /* Operation in this page
670 *
671 * page_base = page offset within aperture
672 * page_offset = offset within page
673 * page_length = bytes to copy for this page
674 */
675 page_base = (offset & ~(PAGE_SIZE-1));
676 page_offset = offset & (PAGE_SIZE-1);
677 page_length = remain;
678 if ((page_offset + remain) > PAGE_SIZE)
679 page_length = PAGE_SIZE - page_offset;
680
681 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
682 page_offset, user_data, page_length);
683
684 /* If we get a fault while copying data, then (presumably) our
685 * source page isn't available. Return the error and we'll
686 * retry in the slow path.
687 */
688 if (ret)
689 goto fail;
690
691 remain -= page_length;
692 user_data += page_length;
693 offset += page_length;
694 }
695
696 fail:
697 i915_gem_object_unpin(obj);
698 mutex_unlock(&dev->struct_mutex);
699
700 return ret;
701 }
702
703 /**
704 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
705 * the memory and maps it using kmap_atomic for copying.
706 *
707 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
708 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
709 */
710 static int
711 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
712 struct drm_i915_gem_pwrite *args,
713 struct drm_file *file_priv)
714 {
715 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
716 drm_i915_private_t *dev_priv = dev->dev_private;
717 ssize_t remain;
718 loff_t gtt_page_base, offset;
719 loff_t first_data_page, last_data_page, num_pages;
720 loff_t pinned_pages, i;
721 struct page **user_pages;
722 struct mm_struct *mm = current->mm;
723 int gtt_page_offset, data_page_offset, data_page_index, page_length;
724 int ret;
725 uint64_t data_ptr = args->data_ptr;
726
727 remain = args->size;
728
729 /* Pin the user pages containing the data. We can't fault while
730 * holding the struct mutex, and all of the pwrite implementations
731 * want to hold it while dereferencing the user data.
732 */
733 first_data_page = data_ptr / PAGE_SIZE;
734 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
735 num_pages = last_data_page - first_data_page + 1;
736
737 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
738 if (user_pages == NULL)
739 return -ENOMEM;
740
741 down_read(&mm->mmap_sem);
742 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
743 num_pages, 0, 0, user_pages, NULL);
744 up_read(&mm->mmap_sem);
745 if (pinned_pages < num_pages) {
746 ret = -EFAULT;
747 goto out_unpin_pages;
748 }
749
750 ret = i915_mutex_lock_interruptible(dev);
751 if (ret)
752 goto out_unpin_pages;
753
754 ret = i915_gem_object_pin(obj, 0);
755 if (ret)
756 goto out_unlock;
757
758 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
759 if (ret)
760 goto out_unpin_object;
761
762 obj_priv = to_intel_bo(obj);
763 offset = obj_priv->gtt_offset + args->offset;
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
768 * gtt_page_base = page offset within aperture
769 * gtt_page_offset = offset within page in aperture
770 * data_page_index = page number in get_user_pages return
771 * data_page_offset = offset with data_page_index page.
772 * page_length = bytes to copy for this page
773 */
774 gtt_page_base = offset & PAGE_MASK;
775 gtt_page_offset = offset & ~PAGE_MASK;
776 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
777 data_page_offset = data_ptr & ~PAGE_MASK;
778
779 page_length = remain;
780 if ((gtt_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - gtt_page_offset;
782 if ((data_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - data_page_offset;
784
785 slow_kernel_write(dev_priv->mm.gtt_mapping,
786 gtt_page_base, gtt_page_offset,
787 user_pages[data_page_index],
788 data_page_offset,
789 page_length);
790
791 remain -= page_length;
792 offset += page_length;
793 data_ptr += page_length;
794 }
795
796 out_unpin_object:
797 i915_gem_object_unpin(obj);
798 out_unlock:
799 mutex_unlock(&dev->struct_mutex);
800 out_unpin_pages:
801 for (i = 0; i < pinned_pages; i++)
802 page_cache_release(user_pages[i]);
803 drm_free_large(user_pages);
804
805 return ret;
806 }
807
808 /**
809 * This is the fast shmem pwrite path, which attempts to directly
810 * copy_from_user into the kmapped pages backing the object.
811 */
812 static int
813 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816 {
817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
818 ssize_t remain;
819 loff_t offset, page_base;
820 char __user *user_data;
821 int page_offset, page_length;
822 int ret;
823
824 user_data = (char __user *) (uintptr_t) args->data_ptr;
825 remain = args->size;
826
827 ret = i915_mutex_lock_interruptible(dev);
828 if (ret)
829 return ret;
830
831 ret = i915_gem_object_get_pages(obj, 0);
832 if (ret != 0)
833 goto fail_unlock;
834
835 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
836 if (ret != 0)
837 goto fail_put_pages;
838
839 obj_priv = to_intel_bo(obj);
840 offset = args->offset;
841 obj_priv->dirty = 1;
842
843 while (remain > 0) {
844 /* Operation in this page
845 *
846 * page_base = page offset within aperture
847 * page_offset = offset within page
848 * page_length = bytes to copy for this page
849 */
850 page_base = (offset & ~(PAGE_SIZE-1));
851 page_offset = offset & (PAGE_SIZE-1);
852 page_length = remain;
853 if ((page_offset + remain) > PAGE_SIZE)
854 page_length = PAGE_SIZE - page_offset;
855
856 ret = fast_shmem_write(obj_priv->pages,
857 page_base, page_offset,
858 user_data, page_length);
859 if (ret)
860 goto fail_put_pages;
861
862 remain -= page_length;
863 user_data += page_length;
864 offset += page_length;
865 }
866
867 fail_put_pages:
868 i915_gem_object_put_pages(obj);
869 fail_unlock:
870 mutex_unlock(&dev->struct_mutex);
871
872 return ret;
873 }
874
875 /**
876 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
877 * the memory and maps it using kmap_atomic for copying.
878 *
879 * This avoids taking mmap_sem for faulting on the user's address while the
880 * struct_mutex is held.
881 */
882 static int
883 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
884 struct drm_i915_gem_pwrite *args,
885 struct drm_file *file_priv)
886 {
887 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
888 struct mm_struct *mm = current->mm;
889 struct page **user_pages;
890 ssize_t remain;
891 loff_t offset, pinned_pages, i;
892 loff_t first_data_page, last_data_page, num_pages;
893 int shmem_page_index, shmem_page_offset;
894 int data_page_index, data_page_offset;
895 int page_length;
896 int ret;
897 uint64_t data_ptr = args->data_ptr;
898 int do_bit17_swizzling;
899
900 remain = args->size;
901
902 /* Pin the user pages containing the data. We can't fault while
903 * holding the struct mutex, and all of the pwrite implementations
904 * want to hold it while dereferencing the user data.
905 */
906 first_data_page = data_ptr / PAGE_SIZE;
907 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
908 num_pages = last_data_page - first_data_page + 1;
909
910 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
911 if (user_pages == NULL)
912 return -ENOMEM;
913
914 down_read(&mm->mmap_sem);
915 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
916 num_pages, 0, 0, user_pages, NULL);
917 up_read(&mm->mmap_sem);
918 if (pinned_pages < num_pages) {
919 ret = -EFAULT;
920 goto fail_put_user_pages;
921 }
922
923 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
924
925 ret = i915_mutex_lock_interruptible(dev);
926 if (ret)
927 goto fail_put_user_pages;
928
929 ret = i915_gem_object_get_pages_or_evict(obj);
930 if (ret)
931 goto fail_unlock;
932
933 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
934 if (ret != 0)
935 goto fail_put_pages;
936
937 obj_priv = to_intel_bo(obj);
938 offset = args->offset;
939 obj_priv->dirty = 1;
940
941 while (remain > 0) {
942 /* Operation in this page
943 *
944 * shmem_page_index = page number within shmem file
945 * shmem_page_offset = offset within page in shmem file
946 * data_page_index = page number in get_user_pages return
947 * data_page_offset = offset with data_page_index page.
948 * page_length = bytes to copy for this page
949 */
950 shmem_page_index = offset / PAGE_SIZE;
951 shmem_page_offset = offset & ~PAGE_MASK;
952 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
953 data_page_offset = data_ptr & ~PAGE_MASK;
954
955 page_length = remain;
956 if ((shmem_page_offset + page_length) > PAGE_SIZE)
957 page_length = PAGE_SIZE - shmem_page_offset;
958 if ((data_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - data_page_offset;
960
961 if (do_bit17_swizzling) {
962 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
963 shmem_page_offset,
964 user_pages[data_page_index],
965 data_page_offset,
966 page_length,
967 0);
968 } else {
969 slow_shmem_copy(obj_priv->pages[shmem_page_index],
970 shmem_page_offset,
971 user_pages[data_page_index],
972 data_page_offset,
973 page_length);
974 }
975
976 remain -= page_length;
977 data_ptr += page_length;
978 offset += page_length;
979 }
980
981 fail_put_pages:
982 i915_gem_object_put_pages(obj);
983 fail_unlock:
984 mutex_unlock(&dev->struct_mutex);
985 fail_put_user_pages:
986 for (i = 0; i < pinned_pages; i++)
987 page_cache_release(user_pages[i]);
988 drm_free_large(user_pages);
989
990 return ret;
991 }
992
993 /**
994 * Writes data to the object referenced by handle.
995 *
996 * On error, the contents of the buffer that were to be modified are undefined.
997 */
998 int
999 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1000 struct drm_file *file_priv)
1001 {
1002 struct drm_i915_gem_pwrite *args = data;
1003 struct drm_gem_object *obj;
1004 struct drm_i915_gem_object *obj_priv;
1005 int ret = 0;
1006
1007 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008 if (obj == NULL)
1009 return -ENOENT;
1010 obj_priv = to_intel_bo(obj);
1011
1012 /* Bounds check destination.
1013 *
1014 * XXX: This could use review for overflow issues...
1015 */
1016 if (args->offset > obj->size || args->size > obj->size ||
1017 args->offset + args->size > obj->size) {
1018 drm_gem_object_unreference_unlocked(obj);
1019 return -EINVAL;
1020 }
1021
1022 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1023 * it would end up going through the fenced access, and we'll get
1024 * different detiling behavior between reading and writing.
1025 * pread/pwrite currently are reading and writing from the CPU
1026 * perspective, requiring manual detiling by the client.
1027 */
1028 if (obj_priv->phys_obj)
1029 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
1030 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1031 obj_priv->gtt_space &&
1032 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1033 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
1034 if (ret == -EFAULT) {
1035 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
1036 file_priv);
1037 }
1038 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1039 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1040 } else {
1041 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1042 if (ret == -EFAULT) {
1043 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1044 file_priv);
1045 }
1046 }
1047
1048 #if WATCH_PWRITE
1049 if (ret)
1050 DRM_INFO("pwrite failed %d\n", ret);
1051 #endif
1052
1053 drm_gem_object_unreference_unlocked(obj);
1054
1055 return ret;
1056 }
1057
1058 /**
1059 * Called when user space prepares to use an object with the CPU, either
1060 * through the mmap ioctl's mapping or a GTT mapping.
1061 */
1062 int
1063 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1064 struct drm_file *file_priv)
1065 {
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 struct drm_i915_gem_set_domain *args = data;
1068 struct drm_gem_object *obj;
1069 struct drm_i915_gem_object *obj_priv;
1070 uint32_t read_domains = args->read_domains;
1071 uint32_t write_domain = args->write_domain;
1072 int ret;
1073
1074 if (!(dev->driver->driver_features & DRIVER_GEM))
1075 return -ENODEV;
1076
1077 /* Only handle setting domains to types used by the CPU. */
1078 if (write_domain & I915_GEM_GPU_DOMAINS)
1079 return -EINVAL;
1080
1081 if (read_domains & I915_GEM_GPU_DOMAINS)
1082 return -EINVAL;
1083
1084 /* Having something in the write domain implies it's in the read
1085 * domain, and only that read domain. Enforce that in the request.
1086 */
1087 if (write_domain != 0 && read_domains != write_domain)
1088 return -EINVAL;
1089
1090 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091 if (obj == NULL)
1092 return -ENOENT;
1093 obj_priv = to_intel_bo(obj);
1094
1095 ret = i915_mutex_lock_interruptible(dev);
1096 if (ret) {
1097 drm_gem_object_unreference_unlocked(obj);
1098 return ret;
1099 }
1100
1101 intel_mark_busy(dev, obj);
1102
1103 if (read_domains & I915_GEM_DOMAIN_GTT) {
1104 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1105
1106 /* Update the LRU on the fence for the CPU access that's
1107 * about to occur.
1108 */
1109 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1110 struct drm_i915_fence_reg *reg =
1111 &dev_priv->fence_regs[obj_priv->fence_reg];
1112 list_move_tail(&reg->lru_list,
1113 &dev_priv->mm.fence_list);
1114 }
1115
1116 /* Silently promote "you're not bound, there was nothing to do"
1117 * to success, since the client was just asking us to
1118 * make sure everything was done.
1119 */
1120 if (ret == -EINVAL)
1121 ret = 0;
1122 } else {
1123 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1124 }
1125
1126 /* Maintain LRU order of "inactive" objects */
1127 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1128 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1129
1130 drm_gem_object_unreference(obj);
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1133 }
1134
1135 /**
1136 * Called when user space has done writes to this buffer
1137 */
1138 int
1139 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1140 struct drm_file *file_priv)
1141 {
1142 struct drm_i915_gem_sw_finish *args = data;
1143 struct drm_gem_object *obj;
1144 int ret = 0;
1145
1146 if (!(dev->driver->driver_features & DRIVER_GEM))
1147 return -ENODEV;
1148
1149 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1150 if (obj == NULL)
1151 return -ENOENT;
1152
1153 ret = i915_mutex_lock_interruptible(dev);
1154 if (ret) {
1155 drm_gem_object_unreference_unlocked(obj);
1156 return ret;
1157 }
1158
1159 /* Pinned buffers may be scanout, so flush the cache */
1160 if (to_intel_bo(obj)->pin_count)
1161 i915_gem_object_flush_cpu_write_domain(obj);
1162
1163 drm_gem_object_unreference(obj);
1164 mutex_unlock(&dev->struct_mutex);
1165 return ret;
1166 }
1167
1168 /**
1169 * Maps the contents of an object, returning the address it is mapped
1170 * into.
1171 *
1172 * While the mapping holds a reference on the contents of the object, it doesn't
1173 * imply a ref on the object itself.
1174 */
1175 int
1176 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file_priv)
1178 {
1179 struct drm_i915_gem_mmap *args = data;
1180 struct drm_gem_object *obj;
1181 loff_t offset;
1182 unsigned long addr;
1183
1184 if (!(dev->driver->driver_features & DRIVER_GEM))
1185 return -ENODEV;
1186
1187 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1188 if (obj == NULL)
1189 return -ENOENT;
1190
1191 offset = args->offset;
1192
1193 down_write(&current->mm->mmap_sem);
1194 addr = do_mmap(obj->filp, 0, args->size,
1195 PROT_READ | PROT_WRITE, MAP_SHARED,
1196 args->offset);
1197 up_write(&current->mm->mmap_sem);
1198 drm_gem_object_unreference_unlocked(obj);
1199 if (IS_ERR((void *)addr))
1200 return addr;
1201
1202 args->addr_ptr = (uint64_t) addr;
1203
1204 return 0;
1205 }
1206
1207 /**
1208 * i915_gem_fault - fault a page into the GTT
1209 * vma: VMA in question
1210 * vmf: fault info
1211 *
1212 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1213 * from userspace. The fault handler takes care of binding the object to
1214 * the GTT (if needed), allocating and programming a fence register (again,
1215 * only if needed based on whether the old reg is still valid or the object
1216 * is tiled) and inserting a new PTE into the faulting process.
1217 *
1218 * Note that the faulting process may involve evicting existing objects
1219 * from the GTT and/or fence registers to make room. So performance may
1220 * suffer if the GTT working set is large or there are few fence registers
1221 * left.
1222 */
1223 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1224 {
1225 struct drm_gem_object *obj = vma->vm_private_data;
1226 struct drm_device *dev = obj->dev;
1227 drm_i915_private_t *dev_priv = dev->dev_private;
1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1229 pgoff_t page_offset;
1230 unsigned long pfn;
1231 int ret = 0;
1232 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1233
1234 /* We don't use vmf->pgoff since that has the fake offset */
1235 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1236 PAGE_SHIFT;
1237
1238 /* Now bind it into the GTT if needed */
1239 mutex_lock(&dev->struct_mutex);
1240 if (!obj_priv->gtt_space) {
1241 ret = i915_gem_object_bind_to_gtt(obj, 0);
1242 if (ret)
1243 goto unlock;
1244
1245 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1246 if (ret)
1247 goto unlock;
1248 }
1249
1250 /* Need a new fence register? */
1251 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1252 ret = i915_gem_object_get_fence_reg(obj, true);
1253 if (ret)
1254 goto unlock;
1255 }
1256
1257 if (i915_gem_object_is_inactive(obj_priv))
1258 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1259
1260 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1261 page_offset;
1262
1263 /* Finally, remap it using the new GTT offset */
1264 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1265 unlock:
1266 mutex_unlock(&dev->struct_mutex);
1267
1268 switch (ret) {
1269 case 0:
1270 case -ERESTARTSYS:
1271 return VM_FAULT_NOPAGE;
1272 case -ENOMEM:
1273 case -EAGAIN:
1274 return VM_FAULT_OOM;
1275 default:
1276 return VM_FAULT_SIGBUS;
1277 }
1278 }
1279
1280 /**
1281 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1282 * @obj: obj in question
1283 *
1284 * GEM memory mapping works by handing back to userspace a fake mmap offset
1285 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1286 * up the object based on the offset and sets up the various memory mapping
1287 * structures.
1288 *
1289 * This routine allocates and attaches a fake offset for @obj.
1290 */
1291 static int
1292 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1293 {
1294 struct drm_device *dev = obj->dev;
1295 struct drm_gem_mm *mm = dev->mm_private;
1296 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1297 struct drm_map_list *list;
1298 struct drm_local_map *map;
1299 int ret = 0;
1300
1301 /* Set the object up for mmap'ing */
1302 list = &obj->map_list;
1303 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1304 if (!list->map)
1305 return -ENOMEM;
1306
1307 map = list->map;
1308 map->type = _DRM_GEM;
1309 map->size = obj->size;
1310 map->handle = obj;
1311
1312 /* Get a DRM GEM mmap offset allocated... */
1313 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1314 obj->size / PAGE_SIZE, 0, 0);
1315 if (!list->file_offset_node) {
1316 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1317 ret = -ENOSPC;
1318 goto out_free_list;
1319 }
1320
1321 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1322 obj->size / PAGE_SIZE, 0);
1323 if (!list->file_offset_node) {
1324 ret = -ENOMEM;
1325 goto out_free_list;
1326 }
1327
1328 list->hash.key = list->file_offset_node->start;
1329 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1330 if (ret) {
1331 DRM_ERROR("failed to add to map hash\n");
1332 goto out_free_mm;
1333 }
1334
1335 /* By now we should be all set, any drm_mmap request on the offset
1336 * below will get to our mmap & fault handler */
1337 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1338
1339 return 0;
1340
1341 out_free_mm:
1342 drm_mm_put_block(list->file_offset_node);
1343 out_free_list:
1344 kfree(list->map);
1345
1346 return ret;
1347 }
1348
1349 /**
1350 * i915_gem_release_mmap - remove physical page mappings
1351 * @obj: obj in question
1352 *
1353 * Preserve the reservation of the mmapping with the DRM core code, but
1354 * relinquish ownership of the pages back to the system.
1355 *
1356 * It is vital that we remove the page mapping if we have mapped a tiled
1357 * object through the GTT and then lose the fence register due to
1358 * resource pressure. Similarly if the object has been moved out of the
1359 * aperture, than pages mapped into userspace must be revoked. Removing the
1360 * mapping will then trigger a page fault on the next user access, allowing
1361 * fixup by i915_gem_fault().
1362 */
1363 void
1364 i915_gem_release_mmap(struct drm_gem_object *obj)
1365 {
1366 struct drm_device *dev = obj->dev;
1367 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1368
1369 if (dev->dev_mapping)
1370 unmap_mapping_range(dev->dev_mapping,
1371 obj_priv->mmap_offset, obj->size, 1);
1372 }
1373
1374 static void
1375 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1376 {
1377 struct drm_device *dev = obj->dev;
1378 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1379 struct drm_gem_mm *mm = dev->mm_private;
1380 struct drm_map_list *list;
1381
1382 list = &obj->map_list;
1383 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1384
1385 if (list->file_offset_node) {
1386 drm_mm_put_block(list->file_offset_node);
1387 list->file_offset_node = NULL;
1388 }
1389
1390 if (list->map) {
1391 kfree(list->map);
1392 list->map = NULL;
1393 }
1394
1395 obj_priv->mmap_offset = 0;
1396 }
1397
1398 /**
1399 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1400 * @obj: object to check
1401 *
1402 * Return the required GTT alignment for an object, taking into account
1403 * potential fence register mapping if needed.
1404 */
1405 static uint32_t
1406 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1407 {
1408 struct drm_device *dev = obj->dev;
1409 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1410 int start, i;
1411
1412 /*
1413 * Minimum alignment is 4k (GTT page size), but might be greater
1414 * if a fence register is needed for the object.
1415 */
1416 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1417 return 4096;
1418
1419 /*
1420 * Previous chips need to be aligned to the size of the smallest
1421 * fence register that can contain the object.
1422 */
1423 if (INTEL_INFO(dev)->gen == 3)
1424 start = 1024*1024;
1425 else
1426 start = 512*1024;
1427
1428 for (i = start; i < obj->size; i <<= 1)
1429 ;
1430
1431 return i;
1432 }
1433
1434 /**
1435 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1436 * @dev: DRM device
1437 * @data: GTT mapping ioctl data
1438 * @file_priv: GEM object info
1439 *
1440 * Simply returns the fake offset to userspace so it can mmap it.
1441 * The mmap call will end up in drm_gem_mmap(), which will set things
1442 * up so we can get faults in the handler above.
1443 *
1444 * The fault handler will take care of binding the object into the GTT
1445 * (since it may have been evicted to make room for something), allocating
1446 * a fence register, and mapping the appropriate aperture address into
1447 * userspace.
1448 */
1449 int
1450 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1451 struct drm_file *file_priv)
1452 {
1453 struct drm_i915_gem_mmap_gtt *args = data;
1454 struct drm_gem_object *obj;
1455 struct drm_i915_gem_object *obj_priv;
1456 int ret;
1457
1458 if (!(dev->driver->driver_features & DRIVER_GEM))
1459 return -ENODEV;
1460
1461 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1462 if (obj == NULL)
1463 return -ENOENT;
1464
1465 ret = i915_mutex_lock_interruptible(dev);
1466 if (ret) {
1467 drm_gem_object_unreference_unlocked(obj);
1468 return ret;
1469 }
1470
1471 obj_priv = to_intel_bo(obj);
1472
1473 if (obj_priv->madv != I915_MADV_WILLNEED) {
1474 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1475 drm_gem_object_unreference(obj);
1476 mutex_unlock(&dev->struct_mutex);
1477 return -EINVAL;
1478 }
1479
1480
1481 if (!obj_priv->mmap_offset) {
1482 ret = i915_gem_create_mmap_offset(obj);
1483 if (ret) {
1484 drm_gem_object_unreference(obj);
1485 mutex_unlock(&dev->struct_mutex);
1486 return ret;
1487 }
1488 }
1489
1490 args->offset = obj_priv->mmap_offset;
1491
1492 /*
1493 * Pull it into the GTT so that we have a page list (makes the
1494 * initial fault faster and any subsequent flushing possible).
1495 */
1496 if (!obj_priv->agp_mem) {
1497 ret = i915_gem_object_bind_to_gtt(obj, 0);
1498 if (ret) {
1499 drm_gem_object_unreference(obj);
1500 mutex_unlock(&dev->struct_mutex);
1501 return ret;
1502 }
1503 }
1504
1505 drm_gem_object_unreference(obj);
1506 mutex_unlock(&dev->struct_mutex);
1507
1508 return 0;
1509 }
1510
1511 static void
1512 i915_gem_object_put_pages(struct drm_gem_object *obj)
1513 {
1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1515 int page_count = obj->size / PAGE_SIZE;
1516 int i;
1517
1518 BUG_ON(obj_priv->pages_refcount == 0);
1519 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1520
1521 if (--obj_priv->pages_refcount != 0)
1522 return;
1523
1524 if (obj_priv->tiling_mode != I915_TILING_NONE)
1525 i915_gem_object_save_bit_17_swizzle(obj);
1526
1527 if (obj_priv->madv == I915_MADV_DONTNEED)
1528 obj_priv->dirty = 0;
1529
1530 for (i = 0; i < page_count; i++) {
1531 if (obj_priv->dirty)
1532 set_page_dirty(obj_priv->pages[i]);
1533
1534 if (obj_priv->madv == I915_MADV_WILLNEED)
1535 mark_page_accessed(obj_priv->pages[i]);
1536
1537 page_cache_release(obj_priv->pages[i]);
1538 }
1539 obj_priv->dirty = 0;
1540
1541 drm_free_large(obj_priv->pages);
1542 obj_priv->pages = NULL;
1543 }
1544
1545 static uint32_t
1546 i915_gem_next_request_seqno(struct drm_device *dev,
1547 struct intel_ring_buffer *ring)
1548 {
1549 drm_i915_private_t *dev_priv = dev->dev_private;
1550
1551 ring->outstanding_lazy_request = true;
1552 return dev_priv->next_seqno;
1553 }
1554
1555 static void
1556 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1557 struct intel_ring_buffer *ring)
1558 {
1559 struct drm_device *dev = obj->dev;
1560 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1561 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1562
1563 BUG_ON(ring == NULL);
1564 obj_priv->ring = ring;
1565
1566 /* Add a reference if we're newly entering the active list. */
1567 if (!obj_priv->active) {
1568 drm_gem_object_reference(obj);
1569 obj_priv->active = 1;
1570 }
1571
1572 /* Move from whatever list we were on to the tail of execution. */
1573 list_move_tail(&obj_priv->list, &ring->active_list);
1574 obj_priv->last_rendering_seqno = seqno;
1575 }
1576
1577 static void
1578 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1579 {
1580 struct drm_device *dev = obj->dev;
1581 drm_i915_private_t *dev_priv = dev->dev_private;
1582 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1583
1584 BUG_ON(!obj_priv->active);
1585 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1586 obj_priv->last_rendering_seqno = 0;
1587 }
1588
1589 /* Immediately discard the backing storage */
1590 static void
1591 i915_gem_object_truncate(struct drm_gem_object *obj)
1592 {
1593 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1594 struct inode *inode;
1595
1596 /* Our goal here is to return as much of the memory as
1597 * is possible back to the system as we are called from OOM.
1598 * To do this we must instruct the shmfs to drop all of its
1599 * backing pages, *now*. Here we mirror the actions taken
1600 * when by shmem_delete_inode() to release the backing store.
1601 */
1602 inode = obj->filp->f_path.dentry->d_inode;
1603 truncate_inode_pages(inode->i_mapping, 0);
1604 if (inode->i_op->truncate_range)
1605 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1606
1607 obj_priv->madv = __I915_MADV_PURGED;
1608 }
1609
1610 static inline int
1611 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1612 {
1613 return obj_priv->madv == I915_MADV_DONTNEED;
1614 }
1615
1616 static void
1617 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1618 {
1619 struct drm_device *dev = obj->dev;
1620 drm_i915_private_t *dev_priv = dev->dev_private;
1621 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1622
1623 if (obj_priv->pin_count != 0)
1624 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1625 else
1626 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1627
1628 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1629
1630 obj_priv->last_rendering_seqno = 0;
1631 obj_priv->ring = NULL;
1632 if (obj_priv->active) {
1633 obj_priv->active = 0;
1634 drm_gem_object_unreference(obj);
1635 }
1636 WARN_ON(i915_verify_lists(dev));
1637 }
1638
1639 static void
1640 i915_gem_process_flushing_list(struct drm_device *dev,
1641 uint32_t flush_domains,
1642 struct intel_ring_buffer *ring)
1643 {
1644 drm_i915_private_t *dev_priv = dev->dev_private;
1645 struct drm_i915_gem_object *obj_priv, *next;
1646
1647 list_for_each_entry_safe(obj_priv, next,
1648 &dev_priv->mm.gpu_write_list,
1649 gpu_write_list) {
1650 struct drm_gem_object *obj = &obj_priv->base;
1651
1652 if (obj->write_domain & flush_domains &&
1653 obj_priv->ring == ring) {
1654 uint32_t old_write_domain = obj->write_domain;
1655
1656 obj->write_domain = 0;
1657 list_del_init(&obj_priv->gpu_write_list);
1658 i915_gem_object_move_to_active(obj, ring);
1659
1660 /* update the fence lru list */
1661 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1662 struct drm_i915_fence_reg *reg =
1663 &dev_priv->fence_regs[obj_priv->fence_reg];
1664 list_move_tail(&reg->lru_list,
1665 &dev_priv->mm.fence_list);
1666 }
1667
1668 trace_i915_gem_object_change_domain(obj,
1669 obj->read_domains,
1670 old_write_domain);
1671 }
1672 }
1673 }
1674
1675 uint32_t
1676 i915_add_request(struct drm_device *dev,
1677 struct drm_file *file,
1678 struct drm_i915_gem_request *request,
1679 struct intel_ring_buffer *ring)
1680 {
1681 drm_i915_private_t *dev_priv = dev->dev_private;
1682 struct drm_i915_file_private *file_priv = NULL;
1683 uint32_t seqno;
1684 int was_empty;
1685
1686 if (file != NULL)
1687 file_priv = file->driver_priv;
1688
1689 if (request == NULL) {
1690 request = kzalloc(sizeof(*request), GFP_KERNEL);
1691 if (request == NULL)
1692 return 0;
1693 }
1694
1695 seqno = ring->add_request(dev, ring, 0);
1696 ring->outstanding_lazy_request = false;
1697
1698 request->seqno = seqno;
1699 request->ring = ring;
1700 request->emitted_jiffies = jiffies;
1701 was_empty = list_empty(&ring->request_list);
1702 list_add_tail(&request->list, &ring->request_list);
1703
1704 if (file_priv) {
1705 spin_lock(&file_priv->mm.lock);
1706 request->file_priv = file_priv;
1707 list_add_tail(&request->client_list,
1708 &file_priv->mm.request_list);
1709 spin_unlock(&file_priv->mm.lock);
1710 }
1711
1712 if (!dev_priv->mm.suspended) {
1713 mod_timer(&dev_priv->hangcheck_timer,
1714 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1715 if (was_empty)
1716 queue_delayed_work(dev_priv->wq,
1717 &dev_priv->mm.retire_work, HZ);
1718 }
1719 return seqno;
1720 }
1721
1722 /**
1723 * Command execution barrier
1724 *
1725 * Ensures that all commands in the ring are finished
1726 * before signalling the CPU
1727 */
1728 static void
1729 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1730 {
1731 uint32_t flush_domains = 0;
1732
1733 /* The sampler always gets flushed on i965 (sigh) */
1734 if (INTEL_INFO(dev)->gen >= 4)
1735 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1736
1737 ring->flush(dev, ring,
1738 I915_GEM_DOMAIN_COMMAND, flush_domains);
1739 }
1740
1741 static inline void
1742 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1743 {
1744 struct drm_i915_file_private *file_priv = request->file_priv;
1745
1746 if (!file_priv)
1747 return;
1748
1749 spin_lock(&file_priv->mm.lock);
1750 list_del(&request->client_list);
1751 request->file_priv = NULL;
1752 spin_unlock(&file_priv->mm.lock);
1753 }
1754
1755 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1756 struct intel_ring_buffer *ring)
1757 {
1758 while (!list_empty(&ring->request_list)) {
1759 struct drm_i915_gem_request *request;
1760
1761 request = list_first_entry(&ring->request_list,
1762 struct drm_i915_gem_request,
1763 list);
1764
1765 list_del(&request->list);
1766 i915_gem_request_remove_from_client(request);
1767 kfree(request);
1768 }
1769
1770 while (!list_empty(&ring->active_list)) {
1771 struct drm_i915_gem_object *obj_priv;
1772
1773 obj_priv = list_first_entry(&ring->active_list,
1774 struct drm_i915_gem_object,
1775 list);
1776
1777 obj_priv->base.write_domain = 0;
1778 list_del_init(&obj_priv->gpu_write_list);
1779 i915_gem_object_move_to_inactive(&obj_priv->base);
1780 }
1781 }
1782
1783 void i915_gem_reset_lists(struct drm_device *dev)
1784 {
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786 struct drm_i915_gem_object *obj_priv;
1787
1788 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1789 if (HAS_BSD(dev))
1790 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1791
1792 /* Remove anything from the flushing lists. The GPU cache is likely
1793 * to be lost on reset along with the data, so simply move the
1794 * lost bo to the inactive list.
1795 */
1796 while (!list_empty(&dev_priv->mm.flushing_list)) {
1797 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1798 struct drm_i915_gem_object,
1799 list);
1800
1801 obj_priv->base.write_domain = 0;
1802 list_del_init(&obj_priv->gpu_write_list);
1803 i915_gem_object_move_to_inactive(&obj_priv->base);
1804 }
1805
1806 /* Move everything out of the GPU domains to ensure we do any
1807 * necessary invalidation upon reuse.
1808 */
1809 list_for_each_entry(obj_priv,
1810 &dev_priv->mm.inactive_list,
1811 list)
1812 {
1813 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1814 }
1815 }
1816
1817 /**
1818 * This function clears the request list as sequence numbers are passed.
1819 */
1820 static void
1821 i915_gem_retire_requests_ring(struct drm_device *dev,
1822 struct intel_ring_buffer *ring)
1823 {
1824 drm_i915_private_t *dev_priv = dev->dev_private;
1825 uint32_t seqno;
1826
1827 if (!ring->status_page.page_addr ||
1828 list_empty(&ring->request_list))
1829 return;
1830
1831 WARN_ON(i915_verify_lists(dev));
1832
1833 seqno = ring->get_seqno(dev, ring);
1834 while (!list_empty(&ring->request_list)) {
1835 struct drm_i915_gem_request *request;
1836
1837 request = list_first_entry(&ring->request_list,
1838 struct drm_i915_gem_request,
1839 list);
1840
1841 if (!i915_seqno_passed(seqno, request->seqno))
1842 break;
1843
1844 trace_i915_gem_request_retire(dev, request->seqno);
1845
1846 list_del(&request->list);
1847 i915_gem_request_remove_from_client(request);
1848 kfree(request);
1849 }
1850
1851 /* Move any buffers on the active list that are no longer referenced
1852 * by the ringbuffer to the flushing/inactive lists as appropriate.
1853 */
1854 while (!list_empty(&ring->active_list)) {
1855 struct drm_gem_object *obj;
1856 struct drm_i915_gem_object *obj_priv;
1857
1858 obj_priv = list_first_entry(&ring->active_list,
1859 struct drm_i915_gem_object,
1860 list);
1861
1862 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1863 break;
1864
1865 obj = &obj_priv->base;
1866 if (obj->write_domain != 0)
1867 i915_gem_object_move_to_flushing(obj);
1868 else
1869 i915_gem_object_move_to_inactive(obj);
1870 }
1871
1872 if (unlikely (dev_priv->trace_irq_seqno &&
1873 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1874 ring->user_irq_put(dev, ring);
1875 dev_priv->trace_irq_seqno = 0;
1876 }
1877
1878 WARN_ON(i915_verify_lists(dev));
1879 }
1880
1881 void
1882 i915_gem_retire_requests(struct drm_device *dev)
1883 {
1884 drm_i915_private_t *dev_priv = dev->dev_private;
1885
1886 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1887 struct drm_i915_gem_object *obj_priv, *tmp;
1888
1889 /* We must be careful that during unbind() we do not
1890 * accidentally infinitely recurse into retire requests.
1891 * Currently:
1892 * retire -> free -> unbind -> wait -> retire_ring
1893 */
1894 list_for_each_entry_safe(obj_priv, tmp,
1895 &dev_priv->mm.deferred_free_list,
1896 list)
1897 i915_gem_free_object_tail(&obj_priv->base);
1898 }
1899
1900 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1901 if (HAS_BSD(dev))
1902 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1903 }
1904
1905 static void
1906 i915_gem_retire_work_handler(struct work_struct *work)
1907 {
1908 drm_i915_private_t *dev_priv;
1909 struct drm_device *dev;
1910
1911 dev_priv = container_of(work, drm_i915_private_t,
1912 mm.retire_work.work);
1913 dev = dev_priv->dev;
1914
1915 /* Come back later if the device is busy... */
1916 if (!mutex_trylock(&dev->struct_mutex)) {
1917 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1918 return;
1919 }
1920
1921 i915_gem_retire_requests(dev);
1922
1923 if (!dev_priv->mm.suspended &&
1924 (!list_empty(&dev_priv->render_ring.request_list) ||
1925 (HAS_BSD(dev) &&
1926 !list_empty(&dev_priv->bsd_ring.request_list))))
1927 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1928 mutex_unlock(&dev->struct_mutex);
1929 }
1930
1931 int
1932 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1933 bool interruptible, struct intel_ring_buffer *ring)
1934 {
1935 drm_i915_private_t *dev_priv = dev->dev_private;
1936 u32 ier;
1937 int ret = 0;
1938
1939 BUG_ON(seqno == 0);
1940
1941 if (atomic_read(&dev_priv->mm.wedged))
1942 return -EAGAIN;
1943
1944 if (ring->outstanding_lazy_request) {
1945 seqno = i915_add_request(dev, NULL, NULL, ring);
1946 if (seqno == 0)
1947 return -ENOMEM;
1948 }
1949 BUG_ON(seqno == dev_priv->next_seqno);
1950
1951 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1952 if (HAS_PCH_SPLIT(dev))
1953 ier = I915_READ(DEIER) | I915_READ(GTIER);
1954 else
1955 ier = I915_READ(IER);
1956 if (!ier) {
1957 DRM_ERROR("something (likely vbetool) disabled "
1958 "interrupts, re-enabling\n");
1959 i915_driver_irq_preinstall(dev);
1960 i915_driver_irq_postinstall(dev);
1961 }
1962
1963 trace_i915_gem_request_wait_begin(dev, seqno);
1964
1965 ring->waiting_gem_seqno = seqno;
1966 ring->user_irq_get(dev, ring);
1967 if (interruptible)
1968 ret = wait_event_interruptible(ring->irq_queue,
1969 i915_seqno_passed(
1970 ring->get_seqno(dev, ring), seqno)
1971 || atomic_read(&dev_priv->mm.wedged));
1972 else
1973 wait_event(ring->irq_queue,
1974 i915_seqno_passed(
1975 ring->get_seqno(dev, ring), seqno)
1976 || atomic_read(&dev_priv->mm.wedged));
1977
1978 ring->user_irq_put(dev, ring);
1979 ring->waiting_gem_seqno = 0;
1980
1981 trace_i915_gem_request_wait_end(dev, seqno);
1982 }
1983 if (atomic_read(&dev_priv->mm.wedged))
1984 ret = -EAGAIN;
1985
1986 if (ret && ret != -ERESTARTSYS)
1987 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1988 __func__, ret, seqno, ring->get_seqno(dev, ring),
1989 dev_priv->next_seqno);
1990
1991 /* Directly dispatch request retiring. While we have the work queue
1992 * to handle this, the waiter on a request often wants an associated
1993 * buffer to have made it to the inactive list, and we would need
1994 * a separate wait queue to handle that.
1995 */
1996 if (ret == 0)
1997 i915_gem_retire_requests_ring(dev, ring);
1998
1999 return ret;
2000 }
2001
2002 /**
2003 * Waits for a sequence number to be signaled, and cleans up the
2004 * request and object lists appropriately for that event.
2005 */
2006 static int
2007 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2008 struct intel_ring_buffer *ring)
2009 {
2010 return i915_do_wait_request(dev, seqno, 1, ring);
2011 }
2012
2013 static void
2014 i915_gem_flush_ring(struct drm_device *dev,
2015 struct drm_file *file_priv,
2016 struct intel_ring_buffer *ring,
2017 uint32_t invalidate_domains,
2018 uint32_t flush_domains)
2019 {
2020 ring->flush(dev, ring, invalidate_domains, flush_domains);
2021 i915_gem_process_flushing_list(dev, flush_domains, ring);
2022 }
2023
2024 static void
2025 i915_gem_flush(struct drm_device *dev,
2026 struct drm_file *file_priv,
2027 uint32_t invalidate_domains,
2028 uint32_t flush_domains,
2029 uint32_t flush_rings)
2030 {
2031 drm_i915_private_t *dev_priv = dev->dev_private;
2032
2033 if (flush_domains & I915_GEM_DOMAIN_CPU)
2034 drm_agp_chipset_flush(dev);
2035
2036 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2037 if (flush_rings & RING_RENDER)
2038 i915_gem_flush_ring(dev, file_priv,
2039 &dev_priv->render_ring,
2040 invalidate_domains, flush_domains);
2041 if (flush_rings & RING_BSD)
2042 i915_gem_flush_ring(dev, file_priv,
2043 &dev_priv->bsd_ring,
2044 invalidate_domains, flush_domains);
2045 }
2046 }
2047
2048 /**
2049 * Ensures that all rendering to the object has completed and the object is
2050 * safe to unbind from the GTT or access from the CPU.
2051 */
2052 static int
2053 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2054 bool interruptible)
2055 {
2056 struct drm_device *dev = obj->dev;
2057 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2058 int ret;
2059
2060 /* This function only exists to support waiting for existing rendering,
2061 * not for emitting required flushes.
2062 */
2063 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2064
2065 /* If there is rendering queued on the buffer being evicted, wait for
2066 * it.
2067 */
2068 if (obj_priv->active) {
2069 ret = i915_do_wait_request(dev,
2070 obj_priv->last_rendering_seqno,
2071 interruptible,
2072 obj_priv->ring);
2073 if (ret)
2074 return ret;
2075 }
2076
2077 return 0;
2078 }
2079
2080 /**
2081 * Unbinds an object from the GTT aperture.
2082 */
2083 int
2084 i915_gem_object_unbind(struct drm_gem_object *obj)
2085 {
2086 struct drm_device *dev = obj->dev;
2087 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2088 int ret = 0;
2089
2090 if (obj_priv->gtt_space == NULL)
2091 return 0;
2092
2093 if (obj_priv->pin_count != 0) {
2094 DRM_ERROR("Attempting to unbind pinned buffer\n");
2095 return -EINVAL;
2096 }
2097
2098 /* blow away mappings if mapped through GTT */
2099 i915_gem_release_mmap(obj);
2100
2101 /* Move the object to the CPU domain to ensure that
2102 * any possible CPU writes while it's not in the GTT
2103 * are flushed when we go to remap it. This will
2104 * also ensure that all pending GPU writes are finished
2105 * before we unbind.
2106 */
2107 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2108 if (ret == -ERESTARTSYS)
2109 return ret;
2110 /* Continue on if we fail due to EIO, the GPU is hung so we
2111 * should be safe and we need to cleanup or else we might
2112 * cause memory corruption through use-after-free.
2113 */
2114
2115 /* release the fence reg _after_ flushing */
2116 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2117 i915_gem_clear_fence_reg(obj);
2118
2119 if (obj_priv->agp_mem != NULL) {
2120 drm_unbind_agp(obj_priv->agp_mem);
2121 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2122 obj_priv->agp_mem = NULL;
2123 }
2124
2125 i915_gem_object_put_pages(obj);
2126 BUG_ON(obj_priv->pages_refcount);
2127
2128 if (obj_priv->gtt_space) {
2129 atomic_dec(&dev->gtt_count);
2130 atomic_sub(obj->size, &dev->gtt_memory);
2131
2132 drm_mm_put_block(obj_priv->gtt_space);
2133 obj_priv->gtt_space = NULL;
2134 }
2135
2136 list_del_init(&obj_priv->list);
2137
2138 if (i915_gem_object_is_purgeable(obj_priv))
2139 i915_gem_object_truncate(obj);
2140
2141 trace_i915_gem_object_unbind(obj);
2142
2143 return ret;
2144 }
2145
2146 static int i915_ring_idle(struct drm_device *dev,
2147 struct intel_ring_buffer *ring)
2148 {
2149 i915_gem_flush_ring(dev, NULL, ring,
2150 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2151 return i915_wait_request(dev,
2152 i915_gem_next_request_seqno(dev, ring),
2153 ring);
2154 }
2155
2156 int
2157 i915_gpu_idle(struct drm_device *dev)
2158 {
2159 drm_i915_private_t *dev_priv = dev->dev_private;
2160 bool lists_empty;
2161 int ret;
2162
2163 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2164 list_empty(&dev_priv->render_ring.active_list) &&
2165 (!HAS_BSD(dev) ||
2166 list_empty(&dev_priv->bsd_ring.active_list)));
2167 if (lists_empty)
2168 return 0;
2169
2170 /* Flush everything onto the inactive list. */
2171 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2172 if (ret)
2173 return ret;
2174
2175 if (HAS_BSD(dev)) {
2176 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2177 if (ret)
2178 return ret;
2179 }
2180
2181 return 0;
2182 }
2183
2184 static int
2185 i915_gem_object_get_pages(struct drm_gem_object *obj,
2186 gfp_t gfpmask)
2187 {
2188 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2189 int page_count, i;
2190 struct address_space *mapping;
2191 struct inode *inode;
2192 struct page *page;
2193
2194 BUG_ON(obj_priv->pages_refcount
2195 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2196
2197 if (obj_priv->pages_refcount++ != 0)
2198 return 0;
2199
2200 /* Get the list of pages out of our struct file. They'll be pinned
2201 * at this point until we release them.
2202 */
2203 page_count = obj->size / PAGE_SIZE;
2204 BUG_ON(obj_priv->pages != NULL);
2205 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2206 if (obj_priv->pages == NULL) {
2207 obj_priv->pages_refcount--;
2208 return -ENOMEM;
2209 }
2210
2211 inode = obj->filp->f_path.dentry->d_inode;
2212 mapping = inode->i_mapping;
2213 for (i = 0; i < page_count; i++) {
2214 page = read_cache_page_gfp(mapping, i,
2215 GFP_HIGHUSER |
2216 __GFP_COLD |
2217 __GFP_RECLAIMABLE |
2218 gfpmask);
2219 if (IS_ERR(page))
2220 goto err_pages;
2221
2222 obj_priv->pages[i] = page;
2223 }
2224
2225 if (obj_priv->tiling_mode != I915_TILING_NONE)
2226 i915_gem_object_do_bit_17_swizzle(obj);
2227
2228 return 0;
2229
2230 err_pages:
2231 while (i--)
2232 page_cache_release(obj_priv->pages[i]);
2233
2234 drm_free_large(obj_priv->pages);
2235 obj_priv->pages = NULL;
2236 obj_priv->pages_refcount--;
2237 return PTR_ERR(page);
2238 }
2239
2240 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2241 {
2242 struct drm_gem_object *obj = reg->obj;
2243 struct drm_device *dev = obj->dev;
2244 drm_i915_private_t *dev_priv = dev->dev_private;
2245 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2246 int regnum = obj_priv->fence_reg;
2247 uint64_t val;
2248
2249 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2250 0xfffff000) << 32;
2251 val |= obj_priv->gtt_offset & 0xfffff000;
2252 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2253 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2254
2255 if (obj_priv->tiling_mode == I915_TILING_Y)
2256 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2257 val |= I965_FENCE_REG_VALID;
2258
2259 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2260 }
2261
2262 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2263 {
2264 struct drm_gem_object *obj = reg->obj;
2265 struct drm_device *dev = obj->dev;
2266 drm_i915_private_t *dev_priv = dev->dev_private;
2267 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2268 int regnum = obj_priv->fence_reg;
2269 uint64_t val;
2270
2271 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2272 0xfffff000) << 32;
2273 val |= obj_priv->gtt_offset & 0xfffff000;
2274 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2275 if (obj_priv->tiling_mode == I915_TILING_Y)
2276 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2277 val |= I965_FENCE_REG_VALID;
2278
2279 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2280 }
2281
2282 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2283 {
2284 struct drm_gem_object *obj = reg->obj;
2285 struct drm_device *dev = obj->dev;
2286 drm_i915_private_t *dev_priv = dev->dev_private;
2287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2288 int regnum = obj_priv->fence_reg;
2289 int tile_width;
2290 uint32_t fence_reg, val;
2291 uint32_t pitch_val;
2292
2293 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2294 (obj_priv->gtt_offset & (obj->size - 1))) {
2295 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2296 __func__, obj_priv->gtt_offset, obj->size);
2297 return;
2298 }
2299
2300 if (obj_priv->tiling_mode == I915_TILING_Y &&
2301 HAS_128_BYTE_Y_TILING(dev))
2302 tile_width = 128;
2303 else
2304 tile_width = 512;
2305
2306 /* Note: pitch better be a power of two tile widths */
2307 pitch_val = obj_priv->stride / tile_width;
2308 pitch_val = ffs(pitch_val) - 1;
2309
2310 if (obj_priv->tiling_mode == I915_TILING_Y &&
2311 HAS_128_BYTE_Y_TILING(dev))
2312 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2313 else
2314 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2315
2316 val = obj_priv->gtt_offset;
2317 if (obj_priv->tiling_mode == I915_TILING_Y)
2318 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2319 val |= I915_FENCE_SIZE_BITS(obj->size);
2320 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2321 val |= I830_FENCE_REG_VALID;
2322
2323 if (regnum < 8)
2324 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2325 else
2326 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2327 I915_WRITE(fence_reg, val);
2328 }
2329
2330 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2331 {
2332 struct drm_gem_object *obj = reg->obj;
2333 struct drm_device *dev = obj->dev;
2334 drm_i915_private_t *dev_priv = dev->dev_private;
2335 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2336 int regnum = obj_priv->fence_reg;
2337 uint32_t val;
2338 uint32_t pitch_val;
2339 uint32_t fence_size_bits;
2340
2341 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2342 (obj_priv->gtt_offset & (obj->size - 1))) {
2343 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2344 __func__, obj_priv->gtt_offset);
2345 return;
2346 }
2347
2348 pitch_val = obj_priv->stride / 128;
2349 pitch_val = ffs(pitch_val) - 1;
2350 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2351
2352 val = obj_priv->gtt_offset;
2353 if (obj_priv->tiling_mode == I915_TILING_Y)
2354 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2355 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2356 WARN_ON(fence_size_bits & ~0x00000f00);
2357 val |= fence_size_bits;
2358 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2359 val |= I830_FENCE_REG_VALID;
2360
2361 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2362 }
2363
2364 static int i915_find_fence_reg(struct drm_device *dev,
2365 bool interruptible)
2366 {
2367 struct drm_i915_fence_reg *reg = NULL;
2368 struct drm_i915_gem_object *obj_priv = NULL;
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 struct drm_gem_object *obj = NULL;
2371 int i, avail, ret;
2372
2373 /* First try to find a free reg */
2374 avail = 0;
2375 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2376 reg = &dev_priv->fence_regs[i];
2377 if (!reg->obj)
2378 return i;
2379
2380 obj_priv = to_intel_bo(reg->obj);
2381 if (!obj_priv->pin_count)
2382 avail++;
2383 }
2384
2385 if (avail == 0)
2386 return -ENOSPC;
2387
2388 /* None available, try to steal one or wait for a user to finish */
2389 i = I915_FENCE_REG_NONE;
2390 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2391 lru_list) {
2392 obj = reg->obj;
2393 obj_priv = to_intel_bo(obj);
2394
2395 if (obj_priv->pin_count)
2396 continue;
2397
2398 /* found one! */
2399 i = obj_priv->fence_reg;
2400 break;
2401 }
2402
2403 BUG_ON(i == I915_FENCE_REG_NONE);
2404
2405 /* We only have a reference on obj from the active list. put_fence_reg
2406 * might drop that one, causing a use-after-free in it. So hold a
2407 * private reference to obj like the other callers of put_fence_reg
2408 * (set_tiling ioctl) do. */
2409 drm_gem_object_reference(obj);
2410 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2411 drm_gem_object_unreference(obj);
2412 if (ret != 0)
2413 return ret;
2414
2415 return i;
2416 }
2417
2418 /**
2419 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2420 * @obj: object to map through a fence reg
2421 *
2422 * When mapping objects through the GTT, userspace wants to be able to write
2423 * to them without having to worry about swizzling if the object is tiled.
2424 *
2425 * This function walks the fence regs looking for a free one for @obj,
2426 * stealing one if it can't find any.
2427 *
2428 * It then sets up the reg based on the object's properties: address, pitch
2429 * and tiling format.
2430 */
2431 int
2432 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2433 bool interruptible)
2434 {
2435 struct drm_device *dev = obj->dev;
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2438 struct drm_i915_fence_reg *reg = NULL;
2439 int ret;
2440
2441 /* Just update our place in the LRU if our fence is getting used. */
2442 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2443 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2444 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2445 return 0;
2446 }
2447
2448 switch (obj_priv->tiling_mode) {
2449 case I915_TILING_NONE:
2450 WARN(1, "allocating a fence for non-tiled object?\n");
2451 break;
2452 case I915_TILING_X:
2453 if (!obj_priv->stride)
2454 return -EINVAL;
2455 WARN((obj_priv->stride & (512 - 1)),
2456 "object 0x%08x is X tiled but has non-512B pitch\n",
2457 obj_priv->gtt_offset);
2458 break;
2459 case I915_TILING_Y:
2460 if (!obj_priv->stride)
2461 return -EINVAL;
2462 WARN((obj_priv->stride & (128 - 1)),
2463 "object 0x%08x is Y tiled but has non-128B pitch\n",
2464 obj_priv->gtt_offset);
2465 break;
2466 }
2467
2468 ret = i915_find_fence_reg(dev, interruptible);
2469 if (ret < 0)
2470 return ret;
2471
2472 obj_priv->fence_reg = ret;
2473 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2474 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2475
2476 reg->obj = obj;
2477
2478 switch (INTEL_INFO(dev)->gen) {
2479 case 6:
2480 sandybridge_write_fence_reg(reg);
2481 break;
2482 case 5:
2483 case 4:
2484 i965_write_fence_reg(reg);
2485 break;
2486 case 3:
2487 i915_write_fence_reg(reg);
2488 break;
2489 case 2:
2490 i830_write_fence_reg(reg);
2491 break;
2492 }
2493
2494 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2495 obj_priv->tiling_mode);
2496
2497 return 0;
2498 }
2499
2500 /**
2501 * i915_gem_clear_fence_reg - clear out fence register info
2502 * @obj: object to clear
2503 *
2504 * Zeroes out the fence register itself and clears out the associated
2505 * data structures in dev_priv and obj_priv.
2506 */
2507 static void
2508 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2509 {
2510 struct drm_device *dev = obj->dev;
2511 drm_i915_private_t *dev_priv = dev->dev_private;
2512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2513 struct drm_i915_fence_reg *reg =
2514 &dev_priv->fence_regs[obj_priv->fence_reg];
2515 uint32_t fence_reg;
2516
2517 switch (INTEL_INFO(dev)->gen) {
2518 case 6:
2519 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2520 (obj_priv->fence_reg * 8), 0);
2521 break;
2522 case 5:
2523 case 4:
2524 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2525 break;
2526 case 3:
2527 if (obj_priv->fence_reg >= 8)
2528 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2529 else
2530 case 2:
2531 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2532
2533 I915_WRITE(fence_reg, 0);
2534 break;
2535 }
2536
2537 reg->obj = NULL;
2538 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2539 list_del_init(&reg->lru_list);
2540 }
2541
2542 /**
2543 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2544 * to the buffer to finish, and then resets the fence register.
2545 * @obj: tiled object holding a fence register.
2546 * @bool: whether the wait upon the fence is interruptible
2547 *
2548 * Zeroes out the fence register itself and clears out the associated
2549 * data structures in dev_priv and obj_priv.
2550 */
2551 int
2552 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2553 bool interruptible)
2554 {
2555 struct drm_device *dev = obj->dev;
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2557 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2558 struct drm_i915_fence_reg *reg;
2559
2560 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2561 return 0;
2562
2563 /* If we've changed tiling, GTT-mappings of the object
2564 * need to re-fault to ensure that the correct fence register
2565 * setup is in place.
2566 */
2567 i915_gem_release_mmap(obj);
2568
2569 /* On the i915, GPU access to tiled buffers is via a fence,
2570 * therefore we must wait for any outstanding access to complete
2571 * before clearing the fence.
2572 */
2573 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2574 if (reg->gpu) {
2575 int ret;
2576
2577 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2578 if (ret)
2579 return ret;
2580
2581 ret = i915_gem_object_wait_rendering(obj, interruptible);
2582 if (ret)
2583 return ret;
2584
2585 reg->gpu = false;
2586 }
2587
2588 i915_gem_object_flush_gtt_write_domain(obj);
2589 i915_gem_clear_fence_reg(obj);
2590
2591 return 0;
2592 }
2593
2594 /**
2595 * Finds free space in the GTT aperture and binds the object there.
2596 */
2597 static int
2598 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2599 {
2600 struct drm_device *dev = obj->dev;
2601 drm_i915_private_t *dev_priv = dev->dev_private;
2602 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2603 struct drm_mm_node *free_space;
2604 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2605 int ret;
2606
2607 if (obj_priv->madv != I915_MADV_WILLNEED) {
2608 DRM_ERROR("Attempting to bind a purgeable object\n");
2609 return -EINVAL;
2610 }
2611
2612 if (alignment == 0)
2613 alignment = i915_gem_get_gtt_alignment(obj);
2614 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2615 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2616 return -EINVAL;
2617 }
2618
2619 /* If the object is bigger than the entire aperture, reject it early
2620 * before evicting everything in a vain attempt to find space.
2621 */
2622 if (obj->size > dev->gtt_total) {
2623 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2624 return -E2BIG;
2625 }
2626
2627 search_free:
2628 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2629 obj->size, alignment, 0);
2630 if (free_space != NULL) {
2631 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2632 alignment);
2633 if (obj_priv->gtt_space != NULL)
2634 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2635 }
2636 if (obj_priv->gtt_space == NULL) {
2637 /* If the gtt is empty and we're still having trouble
2638 * fitting our object in, we're out of memory.
2639 */
2640 ret = i915_gem_evict_something(dev, obj->size, alignment);
2641 if (ret)
2642 return ret;
2643
2644 goto search_free;
2645 }
2646
2647 ret = i915_gem_object_get_pages(obj, gfpmask);
2648 if (ret) {
2649 drm_mm_put_block(obj_priv->gtt_space);
2650 obj_priv->gtt_space = NULL;
2651
2652 if (ret == -ENOMEM) {
2653 /* first try to clear up some space from the GTT */
2654 ret = i915_gem_evict_something(dev, obj->size,
2655 alignment);
2656 if (ret) {
2657 /* now try to shrink everyone else */
2658 if (gfpmask) {
2659 gfpmask = 0;
2660 goto search_free;
2661 }
2662
2663 return ret;
2664 }
2665
2666 goto search_free;
2667 }
2668
2669 return ret;
2670 }
2671
2672 /* Create an AGP memory structure pointing at our pages, and bind it
2673 * into the GTT.
2674 */
2675 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2676 obj_priv->pages,
2677 obj->size >> PAGE_SHIFT,
2678 obj_priv->gtt_offset,
2679 obj_priv->agp_type);
2680 if (obj_priv->agp_mem == NULL) {
2681 i915_gem_object_put_pages(obj);
2682 drm_mm_put_block(obj_priv->gtt_space);
2683 obj_priv->gtt_space = NULL;
2684
2685 ret = i915_gem_evict_something(dev, obj->size, alignment);
2686 if (ret)
2687 return ret;
2688
2689 goto search_free;
2690 }
2691 atomic_inc(&dev->gtt_count);
2692 atomic_add(obj->size, &dev->gtt_memory);
2693
2694 /* keep track of bounds object by adding it to the inactive list */
2695 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2696
2697 /* Assert that the object is not currently in any GPU domain. As it
2698 * wasn't in the GTT, there shouldn't be any way it could have been in
2699 * a GPU cache
2700 */
2701 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2702 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2703
2704 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2705
2706 return 0;
2707 }
2708
2709 void
2710 i915_gem_clflush_object(struct drm_gem_object *obj)
2711 {
2712 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2713
2714 /* If we don't have a page list set up, then we're not pinned
2715 * to GPU, and we can ignore the cache flush because it'll happen
2716 * again at bind time.
2717 */
2718 if (obj_priv->pages == NULL)
2719 return;
2720
2721 trace_i915_gem_object_clflush(obj);
2722
2723 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2724 }
2725
2726 /** Flushes any GPU write domain for the object if it's dirty. */
2727 static int
2728 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2729 bool pipelined)
2730 {
2731 struct drm_device *dev = obj->dev;
2732 uint32_t old_write_domain;
2733
2734 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2735 return 0;
2736
2737 /* Queue the GPU write cache flushing we need. */
2738 old_write_domain = obj->write_domain;
2739 i915_gem_flush_ring(dev, NULL,
2740 to_intel_bo(obj)->ring,
2741 0, obj->write_domain);
2742 BUG_ON(obj->write_domain);
2743
2744 trace_i915_gem_object_change_domain(obj,
2745 obj->read_domains,
2746 old_write_domain);
2747
2748 if (pipelined)
2749 return 0;
2750
2751 return i915_gem_object_wait_rendering(obj, true);
2752 }
2753
2754 /** Flushes the GTT write domain for the object if it's dirty. */
2755 static void
2756 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2757 {
2758 uint32_t old_write_domain;
2759
2760 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2761 return;
2762
2763 /* No actual flushing is required for the GTT write domain. Writes
2764 * to it immediately go to main memory as far as we know, so there's
2765 * no chipset flush. It also doesn't land in render cache.
2766 */
2767 old_write_domain = obj->write_domain;
2768 obj->write_domain = 0;
2769
2770 trace_i915_gem_object_change_domain(obj,
2771 obj->read_domains,
2772 old_write_domain);
2773 }
2774
2775 /** Flushes the CPU write domain for the object if it's dirty. */
2776 static void
2777 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2778 {
2779 struct drm_device *dev = obj->dev;
2780 uint32_t old_write_domain;
2781
2782 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2783 return;
2784
2785 i915_gem_clflush_object(obj);
2786 drm_agp_chipset_flush(dev);
2787 old_write_domain = obj->write_domain;
2788 obj->write_domain = 0;
2789
2790 trace_i915_gem_object_change_domain(obj,
2791 obj->read_domains,
2792 old_write_domain);
2793 }
2794
2795 /**
2796 * Moves a single object to the GTT read, and possibly write domain.
2797 *
2798 * This function returns when the move is complete, including waiting on
2799 * flushes to occur.
2800 */
2801 int
2802 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2803 {
2804 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2805 uint32_t old_write_domain, old_read_domains;
2806 int ret;
2807
2808 /* Not valid to be called on unbound objects. */
2809 if (obj_priv->gtt_space == NULL)
2810 return -EINVAL;
2811
2812 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2813 if (ret != 0)
2814 return ret;
2815
2816 i915_gem_object_flush_cpu_write_domain(obj);
2817
2818 if (write) {
2819 ret = i915_gem_object_wait_rendering(obj, true);
2820 if (ret)
2821 return ret;
2822 }
2823
2824 old_write_domain = obj->write_domain;
2825 old_read_domains = obj->read_domains;
2826
2827 /* It should now be out of any other write domains, and we can update
2828 * the domain values for our changes.
2829 */
2830 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2831 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2832 if (write) {
2833 obj->read_domains = I915_GEM_DOMAIN_GTT;
2834 obj->write_domain = I915_GEM_DOMAIN_GTT;
2835 obj_priv->dirty = 1;
2836 }
2837
2838 trace_i915_gem_object_change_domain(obj,
2839 old_read_domains,
2840 old_write_domain);
2841
2842 return 0;
2843 }
2844
2845 /*
2846 * Prepare buffer for display plane. Use uninterruptible for possible flush
2847 * wait, as in modesetting process we're not supposed to be interrupted.
2848 */
2849 int
2850 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2851 bool pipelined)
2852 {
2853 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2854 uint32_t old_read_domains;
2855 int ret;
2856
2857 /* Not valid to be called on unbound objects. */
2858 if (obj_priv->gtt_space == NULL)
2859 return -EINVAL;
2860
2861 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2862 if (ret)
2863 return ret;
2864
2865 /* Currently, we are always called from an non-interruptible context. */
2866 if (!pipelined) {
2867 ret = i915_gem_object_wait_rendering(obj, false);
2868 if (ret)
2869 return ret;
2870 }
2871
2872 i915_gem_object_flush_cpu_write_domain(obj);
2873
2874 old_read_domains = obj->read_domains;
2875 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2876
2877 trace_i915_gem_object_change_domain(obj,
2878 old_read_domains,
2879 obj->write_domain);
2880
2881 return 0;
2882 }
2883
2884 /**
2885 * Moves a single object to the CPU read, and possibly write domain.
2886 *
2887 * This function returns when the move is complete, including waiting on
2888 * flushes to occur.
2889 */
2890 static int
2891 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2892 {
2893 uint32_t old_write_domain, old_read_domains;
2894 int ret;
2895
2896 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2897 if (ret != 0)
2898 return ret;
2899
2900 i915_gem_object_flush_gtt_write_domain(obj);
2901
2902 /* If we have a partially-valid cache of the object in the CPU,
2903 * finish invalidating it and free the per-page flags.
2904 */
2905 i915_gem_object_set_to_full_cpu_read_domain(obj);
2906
2907 if (write) {
2908 ret = i915_gem_object_wait_rendering(obj, true);
2909 if (ret)
2910 return ret;
2911 }
2912
2913 old_write_domain = obj->write_domain;
2914 old_read_domains = obj->read_domains;
2915
2916 /* Flush the CPU cache if it's still invalid. */
2917 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2918 i915_gem_clflush_object(obj);
2919
2920 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2921 }
2922
2923 /* It should now be out of any other write domains, and we can update
2924 * the domain values for our changes.
2925 */
2926 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2927
2928 /* If we're writing through the CPU, then the GPU read domains will
2929 * need to be invalidated at next use.
2930 */
2931 if (write) {
2932 obj->read_domains = I915_GEM_DOMAIN_CPU;
2933 obj->write_domain = I915_GEM_DOMAIN_CPU;
2934 }
2935
2936 trace_i915_gem_object_change_domain(obj,
2937 old_read_domains,
2938 old_write_domain);
2939
2940 return 0;
2941 }
2942
2943 /*
2944 * Set the next domain for the specified object. This
2945 * may not actually perform the necessary flushing/invaliding though,
2946 * as that may want to be batched with other set_domain operations
2947 *
2948 * This is (we hope) the only really tricky part of gem. The goal
2949 * is fairly simple -- track which caches hold bits of the object
2950 * and make sure they remain coherent. A few concrete examples may
2951 * help to explain how it works. For shorthand, we use the notation
2952 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2953 * a pair of read and write domain masks.
2954 *
2955 * Case 1: the batch buffer
2956 *
2957 * 1. Allocated
2958 * 2. Written by CPU
2959 * 3. Mapped to GTT
2960 * 4. Read by GPU
2961 * 5. Unmapped from GTT
2962 * 6. Freed
2963 *
2964 * Let's take these a step at a time
2965 *
2966 * 1. Allocated
2967 * Pages allocated from the kernel may still have
2968 * cache contents, so we set them to (CPU, CPU) always.
2969 * 2. Written by CPU (using pwrite)
2970 * The pwrite function calls set_domain (CPU, CPU) and
2971 * this function does nothing (as nothing changes)
2972 * 3. Mapped by GTT
2973 * This function asserts that the object is not
2974 * currently in any GPU-based read or write domains
2975 * 4. Read by GPU
2976 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2977 * As write_domain is zero, this function adds in the
2978 * current read domains (CPU+COMMAND, 0).
2979 * flush_domains is set to CPU.
2980 * invalidate_domains is set to COMMAND
2981 * clflush is run to get data out of the CPU caches
2982 * then i915_dev_set_domain calls i915_gem_flush to
2983 * emit an MI_FLUSH and drm_agp_chipset_flush
2984 * 5. Unmapped from GTT
2985 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2986 * flush_domains and invalidate_domains end up both zero
2987 * so no flushing/invalidating happens
2988 * 6. Freed
2989 * yay, done
2990 *
2991 * Case 2: The shared render buffer
2992 *
2993 * 1. Allocated
2994 * 2. Mapped to GTT
2995 * 3. Read/written by GPU
2996 * 4. set_domain to (CPU,CPU)
2997 * 5. Read/written by CPU
2998 * 6. Read/written by GPU
2999 *
3000 * 1. Allocated
3001 * Same as last example, (CPU, CPU)
3002 * 2. Mapped to GTT
3003 * Nothing changes (assertions find that it is not in the GPU)
3004 * 3. Read/written by GPU
3005 * execbuffer calls set_domain (RENDER, RENDER)
3006 * flush_domains gets CPU
3007 * invalidate_domains gets GPU
3008 * clflush (obj)
3009 * MI_FLUSH and drm_agp_chipset_flush
3010 * 4. set_domain (CPU, CPU)
3011 * flush_domains gets GPU
3012 * invalidate_domains gets CPU
3013 * wait_rendering (obj) to make sure all drawing is complete.
3014 * This will include an MI_FLUSH to get the data from GPU
3015 * to memory
3016 * clflush (obj) to invalidate the CPU cache
3017 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3018 * 5. Read/written by CPU
3019 * cache lines are loaded and dirtied
3020 * 6. Read written by GPU
3021 * Same as last GPU access
3022 *
3023 * Case 3: The constant buffer
3024 *
3025 * 1. Allocated
3026 * 2. Written by CPU
3027 * 3. Read by GPU
3028 * 4. Updated (written) by CPU again
3029 * 5. Read by GPU
3030 *
3031 * 1. Allocated
3032 * (CPU, CPU)
3033 * 2. Written by CPU
3034 * (CPU, CPU)
3035 * 3. Read by GPU
3036 * (CPU+RENDER, 0)
3037 * flush_domains = CPU
3038 * invalidate_domains = RENDER
3039 * clflush (obj)
3040 * MI_FLUSH
3041 * drm_agp_chipset_flush
3042 * 4. Updated (written) by CPU again
3043 * (CPU, CPU)
3044 * flush_domains = 0 (no previous write domain)
3045 * invalidate_domains = 0 (no new read domains)
3046 * 5. Read by GPU
3047 * (CPU+RENDER, 0)
3048 * flush_domains = CPU
3049 * invalidate_domains = RENDER
3050 * clflush (obj)
3051 * MI_FLUSH
3052 * drm_agp_chipset_flush
3053 */
3054 static void
3055 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3056 {
3057 struct drm_device *dev = obj->dev;
3058 struct drm_i915_private *dev_priv = dev->dev_private;
3059 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3060 uint32_t invalidate_domains = 0;
3061 uint32_t flush_domains = 0;
3062 uint32_t old_read_domains;
3063
3064 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3065 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3066
3067 intel_mark_busy(dev, obj);
3068
3069 /*
3070 * If the object isn't moving to a new write domain,
3071 * let the object stay in multiple read domains
3072 */
3073 if (obj->pending_write_domain == 0)
3074 obj->pending_read_domains |= obj->read_domains;
3075 else
3076 obj_priv->dirty = 1;
3077
3078 /*
3079 * Flush the current write domain if
3080 * the new read domains don't match. Invalidate
3081 * any read domains which differ from the old
3082 * write domain
3083 */
3084 if (obj->write_domain &&
3085 obj->write_domain != obj->pending_read_domains) {
3086 flush_domains |= obj->write_domain;
3087 invalidate_domains |=
3088 obj->pending_read_domains & ~obj->write_domain;
3089 }
3090 /*
3091 * Invalidate any read caches which may have
3092 * stale data. That is, any new read domains.
3093 */
3094 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3095 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3096 i915_gem_clflush_object(obj);
3097
3098 old_read_domains = obj->read_domains;
3099
3100 /* The actual obj->write_domain will be updated with
3101 * pending_write_domain after we emit the accumulated flush for all
3102 * of our domain changes in execbuffers (which clears objects'
3103 * write_domains). So if we have a current write domain that we
3104 * aren't changing, set pending_write_domain to that.
3105 */
3106 if (flush_domains == 0 && obj->pending_write_domain == 0)
3107 obj->pending_write_domain = obj->write_domain;
3108 obj->read_domains = obj->pending_read_domains;
3109
3110 dev->invalidate_domains |= invalidate_domains;
3111 dev->flush_domains |= flush_domains;
3112 if (obj_priv->ring)
3113 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3114
3115 trace_i915_gem_object_change_domain(obj,
3116 old_read_domains,
3117 obj->write_domain);
3118 }
3119
3120 /**
3121 * Moves the object from a partially CPU read to a full one.
3122 *
3123 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3124 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3125 */
3126 static void
3127 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3128 {
3129 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3130
3131 if (!obj_priv->page_cpu_valid)
3132 return;
3133
3134 /* If we're partially in the CPU read domain, finish moving it in.
3135 */
3136 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3137 int i;
3138
3139 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3140 if (obj_priv->page_cpu_valid[i])
3141 continue;
3142 drm_clflush_pages(obj_priv->pages + i, 1);
3143 }
3144 }
3145
3146 /* Free the page_cpu_valid mappings which are now stale, whether
3147 * or not we've got I915_GEM_DOMAIN_CPU.
3148 */
3149 kfree(obj_priv->page_cpu_valid);
3150 obj_priv->page_cpu_valid = NULL;
3151 }
3152
3153 /**
3154 * Set the CPU read domain on a range of the object.
3155 *
3156 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3157 * not entirely valid. The page_cpu_valid member of the object flags which
3158 * pages have been flushed, and will be respected by
3159 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3160 * of the whole object.
3161 *
3162 * This function returns when the move is complete, including waiting on
3163 * flushes to occur.
3164 */
3165 static int
3166 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3167 uint64_t offset, uint64_t size)
3168 {
3169 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3170 uint32_t old_read_domains;
3171 int i, ret;
3172
3173 if (offset == 0 && size == obj->size)
3174 return i915_gem_object_set_to_cpu_domain(obj, 0);
3175
3176 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3177 if (ret != 0)
3178 return ret;
3179 i915_gem_object_flush_gtt_write_domain(obj);
3180
3181 /* If we're already fully in the CPU read domain, we're done. */
3182 if (obj_priv->page_cpu_valid == NULL &&
3183 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3184 return 0;
3185
3186 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3187 * newly adding I915_GEM_DOMAIN_CPU
3188 */
3189 if (obj_priv->page_cpu_valid == NULL) {
3190 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3191 GFP_KERNEL);
3192 if (obj_priv->page_cpu_valid == NULL)
3193 return -ENOMEM;
3194 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3195 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3196
3197 /* Flush the cache on any pages that are still invalid from the CPU's
3198 * perspective.
3199 */
3200 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3201 i++) {
3202 if (obj_priv->page_cpu_valid[i])
3203 continue;
3204
3205 drm_clflush_pages(obj_priv->pages + i, 1);
3206
3207 obj_priv->page_cpu_valid[i] = 1;
3208 }
3209
3210 /* It should now be out of any other write domains, and we can update
3211 * the domain values for our changes.
3212 */
3213 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3214
3215 old_read_domains = obj->read_domains;
3216 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3217
3218 trace_i915_gem_object_change_domain(obj,
3219 old_read_domains,
3220 obj->write_domain);
3221
3222 return 0;
3223 }
3224
3225 /**
3226 * Pin an object to the GTT and evaluate the relocations landing in it.
3227 */
3228 static int
3229 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3230 struct drm_file *file_priv,
3231 struct drm_i915_gem_exec_object2 *entry,
3232 struct drm_i915_gem_relocation_entry *relocs)
3233 {
3234 struct drm_device *dev = obj->dev;
3235 drm_i915_private_t *dev_priv = dev->dev_private;
3236 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3237 int i, ret;
3238 void __iomem *reloc_page;
3239 bool need_fence;
3240
3241 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3242 obj_priv->tiling_mode != I915_TILING_NONE;
3243
3244 /* Check fence reg constraints and rebind if necessary */
3245 if (need_fence &&
3246 !i915_gem_object_fence_offset_ok(obj,
3247 obj_priv->tiling_mode)) {
3248 ret = i915_gem_object_unbind(obj);
3249 if (ret)
3250 return ret;
3251 }
3252
3253 /* Choose the GTT offset for our buffer and put it there. */
3254 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3255 if (ret)
3256 return ret;
3257
3258 /*
3259 * Pre-965 chips need a fence register set up in order to
3260 * properly handle blits to/from tiled surfaces.
3261 */
3262 if (need_fence) {
3263 ret = i915_gem_object_get_fence_reg(obj, true);
3264 if (ret != 0) {
3265 i915_gem_object_unpin(obj);
3266 return ret;
3267 }
3268
3269 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
3270 }
3271
3272 entry->offset = obj_priv->gtt_offset;
3273
3274 /* Apply the relocations, using the GTT aperture to avoid cache
3275 * flushing requirements.
3276 */
3277 for (i = 0; i < entry->relocation_count; i++) {
3278 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3279 struct drm_gem_object *target_obj;
3280 struct drm_i915_gem_object *target_obj_priv;
3281 uint32_t reloc_val, reloc_offset;
3282 uint32_t __iomem *reloc_entry;
3283
3284 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3285 reloc->target_handle);
3286 if (target_obj == NULL) {
3287 i915_gem_object_unpin(obj);
3288 return -ENOENT;
3289 }
3290 target_obj_priv = to_intel_bo(target_obj);
3291
3292 #if WATCH_RELOC
3293 DRM_INFO("%s: obj %p offset %08x target %d "
3294 "read %08x write %08x gtt %08x "
3295 "presumed %08x delta %08x\n",
3296 __func__,
3297 obj,
3298 (int) reloc->offset,
3299 (int) reloc->target_handle,
3300 (int) reloc->read_domains,
3301 (int) reloc->write_domain,
3302 (int) target_obj_priv->gtt_offset,
3303 (int) reloc->presumed_offset,
3304 reloc->delta);
3305 #endif
3306
3307 /* The target buffer should have appeared before us in the
3308 * exec_object list, so it should have a GTT space bound by now.
3309 */
3310 if (target_obj_priv->gtt_space == NULL) {
3311 DRM_ERROR("No GTT space found for object %d\n",
3312 reloc->target_handle);
3313 drm_gem_object_unreference(target_obj);
3314 i915_gem_object_unpin(obj);
3315 return -EINVAL;
3316 }
3317
3318 /* Validate that the target is in a valid r/w GPU domain */
3319 if (reloc->write_domain & (reloc->write_domain - 1)) {
3320 DRM_ERROR("reloc with multiple write domains: "
3321 "obj %p target %d offset %d "
3322 "read %08x write %08x",
3323 obj, reloc->target_handle,
3324 (int) reloc->offset,
3325 reloc->read_domains,
3326 reloc->write_domain);
3327 return -EINVAL;
3328 }
3329 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3330 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3331 DRM_ERROR("reloc with read/write CPU domains: "
3332 "obj %p target %d offset %d "
3333 "read %08x write %08x",
3334 obj, reloc->target_handle,
3335 (int) reloc->offset,
3336 reloc->read_domains,
3337 reloc->write_domain);
3338 drm_gem_object_unreference(target_obj);
3339 i915_gem_object_unpin(obj);
3340 return -EINVAL;
3341 }
3342 if (reloc->write_domain && target_obj->pending_write_domain &&
3343 reloc->write_domain != target_obj->pending_write_domain) {
3344 DRM_ERROR("Write domain conflict: "
3345 "obj %p target %d offset %d "
3346 "new %08x old %08x\n",
3347 obj, reloc->target_handle,
3348 (int) reloc->offset,
3349 reloc->write_domain,
3350 target_obj->pending_write_domain);
3351 drm_gem_object_unreference(target_obj);
3352 i915_gem_object_unpin(obj);
3353 return -EINVAL;
3354 }
3355
3356 target_obj->pending_read_domains |= reloc->read_domains;
3357 target_obj->pending_write_domain |= reloc->write_domain;
3358
3359 /* If the relocation already has the right value in it, no
3360 * more work needs to be done.
3361 */
3362 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3363 drm_gem_object_unreference(target_obj);
3364 continue;
3365 }
3366
3367 /* Check that the relocation address is valid... */
3368 if (reloc->offset > obj->size - 4) {
3369 DRM_ERROR("Relocation beyond object bounds: "
3370 "obj %p target %d offset %d size %d.\n",
3371 obj, reloc->target_handle,
3372 (int) reloc->offset, (int) obj->size);
3373 drm_gem_object_unreference(target_obj);
3374 i915_gem_object_unpin(obj);
3375 return -EINVAL;
3376 }
3377 if (reloc->offset & 3) {
3378 DRM_ERROR("Relocation not 4-byte aligned: "
3379 "obj %p target %d offset %d.\n",
3380 obj, reloc->target_handle,
3381 (int) reloc->offset);
3382 drm_gem_object_unreference(target_obj);
3383 i915_gem_object_unpin(obj);
3384 return -EINVAL;
3385 }
3386
3387 /* and points to somewhere within the target object. */
3388 if (reloc->delta >= target_obj->size) {
3389 DRM_ERROR("Relocation beyond target object bounds: "
3390 "obj %p target %d delta %d size %d.\n",
3391 obj, reloc->target_handle,
3392 (int) reloc->delta, (int) target_obj->size);
3393 drm_gem_object_unreference(target_obj);
3394 i915_gem_object_unpin(obj);
3395 return -EINVAL;
3396 }
3397
3398 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3399 if (ret != 0) {
3400 drm_gem_object_unreference(target_obj);
3401 i915_gem_object_unpin(obj);
3402 return -EINVAL;
3403 }
3404
3405 /* Map the page containing the relocation we're going to
3406 * perform.
3407 */
3408 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3409 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3410 (reloc_offset &
3411 ~(PAGE_SIZE - 1)),
3412 KM_USER0);
3413 reloc_entry = (uint32_t __iomem *)(reloc_page +
3414 (reloc_offset & (PAGE_SIZE - 1)));
3415 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3416
3417 writel(reloc_val, reloc_entry);
3418 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3419
3420 /* The updated presumed offset for this entry will be
3421 * copied back out to the user.
3422 */
3423 reloc->presumed_offset = target_obj_priv->gtt_offset;
3424
3425 drm_gem_object_unreference(target_obj);
3426 }
3427
3428 return 0;
3429 }
3430
3431 /* Throttle our rendering by waiting until the ring has completed our requests
3432 * emitted over 20 msec ago.
3433 *
3434 * Note that if we were to use the current jiffies each time around the loop,
3435 * we wouldn't escape the function with any frames outstanding if the time to
3436 * render a frame was over 20ms.
3437 *
3438 * This should get us reasonable parallelism between CPU and GPU but also
3439 * relatively low latency when blocking on a particular request to finish.
3440 */
3441 static int
3442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3443 {
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 struct drm_i915_file_private *file_priv = file->driver_priv;
3446 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3447 struct drm_i915_gem_request *request;
3448 struct intel_ring_buffer *ring = NULL;
3449 u32 seqno = 0;
3450 int ret;
3451
3452 spin_lock(&file_priv->mm.lock);
3453 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3454 if (time_after_eq(request->emitted_jiffies, recent_enough))
3455 break;
3456
3457 ring = request->ring;
3458 seqno = request->seqno;
3459 }
3460 spin_unlock(&file_priv->mm.lock);
3461
3462 if (seqno == 0)
3463 return 0;
3464
3465 ret = 0;
3466 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3467 /* And wait for the seqno passing without holding any locks and
3468 * causing extra latency for others. This is safe as the irq
3469 * generation is designed to be run atomically and so is
3470 * lockless.
3471 */
3472 ring->user_irq_get(dev, ring);
3473 ret = wait_event_interruptible(ring->irq_queue,
3474 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3475 || atomic_read(&dev_priv->mm.wedged));
3476 ring->user_irq_put(dev, ring);
3477
3478 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3479 ret = -EIO;
3480 }
3481
3482 if (ret == 0)
3483 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3484
3485 return ret;
3486 }
3487
3488 static int
3489 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3490 uint32_t buffer_count,
3491 struct drm_i915_gem_relocation_entry **relocs)
3492 {
3493 uint32_t reloc_count = 0, reloc_index = 0, i;
3494 int ret;
3495
3496 *relocs = NULL;
3497 for (i = 0; i < buffer_count; i++) {
3498 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3499 return -EINVAL;
3500 reloc_count += exec_list[i].relocation_count;
3501 }
3502
3503 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3504 if (*relocs == NULL) {
3505 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3506 return -ENOMEM;
3507 }
3508
3509 for (i = 0; i < buffer_count; i++) {
3510 struct drm_i915_gem_relocation_entry __user *user_relocs;
3511
3512 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3513
3514 ret = copy_from_user(&(*relocs)[reloc_index],
3515 user_relocs,
3516 exec_list[i].relocation_count *
3517 sizeof(**relocs));
3518 if (ret != 0) {
3519 drm_free_large(*relocs);
3520 *relocs = NULL;
3521 return -EFAULT;
3522 }
3523
3524 reloc_index += exec_list[i].relocation_count;
3525 }
3526
3527 return 0;
3528 }
3529
3530 static int
3531 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3532 uint32_t buffer_count,
3533 struct drm_i915_gem_relocation_entry *relocs)
3534 {
3535 uint32_t reloc_count = 0, i;
3536 int ret = 0;
3537
3538 if (relocs == NULL)
3539 return 0;
3540
3541 for (i = 0; i < buffer_count; i++) {
3542 struct drm_i915_gem_relocation_entry __user *user_relocs;
3543 int unwritten;
3544
3545 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3546
3547 unwritten = copy_to_user(user_relocs,
3548 &relocs[reloc_count],
3549 exec_list[i].relocation_count *
3550 sizeof(*relocs));
3551
3552 if (unwritten) {
3553 ret = -EFAULT;
3554 goto err;
3555 }
3556
3557 reloc_count += exec_list[i].relocation_count;
3558 }
3559
3560 err:
3561 drm_free_large(relocs);
3562
3563 return ret;
3564 }
3565
3566 static int
3567 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3568 uint64_t exec_offset)
3569 {
3570 uint32_t exec_start, exec_len;
3571
3572 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3573 exec_len = (uint32_t) exec->batch_len;
3574
3575 if ((exec_start | exec_len) & 0x7)
3576 return -EINVAL;
3577
3578 if (!exec_start)
3579 return -EINVAL;
3580
3581 return 0;
3582 }
3583
3584 static int
3585 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3586 struct drm_gem_object **object_list,
3587 int count)
3588 {
3589 drm_i915_private_t *dev_priv = dev->dev_private;
3590 struct drm_i915_gem_object *obj_priv;
3591 DEFINE_WAIT(wait);
3592 int i, ret = 0;
3593
3594 for (;;) {
3595 prepare_to_wait(&dev_priv->pending_flip_queue,
3596 &wait, TASK_INTERRUPTIBLE);
3597 for (i = 0; i < count; i++) {
3598 obj_priv = to_intel_bo(object_list[i]);
3599 if (atomic_read(&obj_priv->pending_flip) > 0)
3600 break;
3601 }
3602 if (i == count)
3603 break;
3604
3605 if (!signal_pending(current)) {
3606 mutex_unlock(&dev->struct_mutex);
3607 schedule();
3608 mutex_lock(&dev->struct_mutex);
3609 continue;
3610 }
3611 ret = -ERESTARTSYS;
3612 break;
3613 }
3614 finish_wait(&dev_priv->pending_flip_queue, &wait);
3615
3616 return ret;
3617 }
3618
3619 static int
3620 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3621 struct drm_file *file_priv,
3622 struct drm_i915_gem_execbuffer2 *args,
3623 struct drm_i915_gem_exec_object2 *exec_list)
3624 {
3625 drm_i915_private_t *dev_priv = dev->dev_private;
3626 struct drm_gem_object **object_list = NULL;
3627 struct drm_gem_object *batch_obj;
3628 struct drm_i915_gem_object *obj_priv;
3629 struct drm_clip_rect *cliprects = NULL;
3630 struct drm_i915_gem_relocation_entry *relocs = NULL;
3631 struct drm_i915_gem_request *request = NULL;
3632 int ret, ret2, i, pinned = 0;
3633 uint64_t exec_offset;
3634 uint32_t reloc_index;
3635 int pin_tries, flips;
3636
3637 struct intel_ring_buffer *ring = NULL;
3638
3639 ret = i915_gem_check_is_wedged(dev);
3640 if (ret)
3641 return ret;
3642
3643 #if WATCH_EXEC
3644 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3645 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3646 #endif
3647 if (args->flags & I915_EXEC_BSD) {
3648 if (!HAS_BSD(dev)) {
3649 DRM_ERROR("execbuf with wrong flag\n");
3650 return -EINVAL;
3651 }
3652 ring = &dev_priv->bsd_ring;
3653 } else {
3654 ring = &dev_priv->render_ring;
3655 }
3656
3657 if (args->buffer_count < 1) {
3658 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3659 return -EINVAL;
3660 }
3661 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3662 if (object_list == NULL) {
3663 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3664 args->buffer_count);
3665 ret = -ENOMEM;
3666 goto pre_mutex_err;
3667 }
3668
3669 if (args->num_cliprects != 0) {
3670 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3671 GFP_KERNEL);
3672 if (cliprects == NULL) {
3673 ret = -ENOMEM;
3674 goto pre_mutex_err;
3675 }
3676
3677 ret = copy_from_user(cliprects,
3678 (struct drm_clip_rect __user *)
3679 (uintptr_t) args->cliprects_ptr,
3680 sizeof(*cliprects) * args->num_cliprects);
3681 if (ret != 0) {
3682 DRM_ERROR("copy %d cliprects failed: %d\n",
3683 args->num_cliprects, ret);
3684 ret = -EFAULT;
3685 goto pre_mutex_err;
3686 }
3687 }
3688
3689 request = kzalloc(sizeof(*request), GFP_KERNEL);
3690 if (request == NULL) {
3691 ret = -ENOMEM;
3692 goto pre_mutex_err;
3693 }
3694
3695 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3696 &relocs);
3697 if (ret != 0)
3698 goto pre_mutex_err;
3699
3700 ret = i915_mutex_lock_interruptible(dev);
3701 if (ret)
3702 goto pre_mutex_err;
3703
3704 if (dev_priv->mm.suspended) {
3705 mutex_unlock(&dev->struct_mutex);
3706 ret = -EBUSY;
3707 goto pre_mutex_err;
3708 }
3709
3710 /* Look up object handles */
3711 flips = 0;
3712 for (i = 0; i < args->buffer_count; i++) {
3713 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3714 exec_list[i].handle);
3715 if (object_list[i] == NULL) {
3716 DRM_ERROR("Invalid object handle %d at index %d\n",
3717 exec_list[i].handle, i);
3718 /* prevent error path from reading uninitialized data */
3719 args->buffer_count = i + 1;
3720 ret = -ENOENT;
3721 goto err;
3722 }
3723
3724 obj_priv = to_intel_bo(object_list[i]);
3725 if (obj_priv->in_execbuffer) {
3726 DRM_ERROR("Object %p appears more than once in object list\n",
3727 object_list[i]);
3728 /* prevent error path from reading uninitialized data */
3729 args->buffer_count = i + 1;
3730 ret = -EINVAL;
3731 goto err;
3732 }
3733 obj_priv->in_execbuffer = true;
3734 flips += atomic_read(&obj_priv->pending_flip);
3735 }
3736
3737 if (flips > 0) {
3738 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3739 args->buffer_count);
3740 if (ret)
3741 goto err;
3742 }
3743
3744 /* Pin and relocate */
3745 for (pin_tries = 0; ; pin_tries++) {
3746 ret = 0;
3747 reloc_index = 0;
3748
3749 for (i = 0; i < args->buffer_count; i++) {
3750 object_list[i]->pending_read_domains = 0;
3751 object_list[i]->pending_write_domain = 0;
3752 ret = i915_gem_object_pin_and_relocate(object_list[i],
3753 file_priv,
3754 &exec_list[i],
3755 &relocs[reloc_index]);
3756 if (ret)
3757 break;
3758 pinned = i + 1;
3759 reloc_index += exec_list[i].relocation_count;
3760 }
3761 /* success */
3762 if (ret == 0)
3763 break;
3764
3765 /* error other than GTT full, or we've already tried again */
3766 if (ret != -ENOSPC || pin_tries >= 1) {
3767 if (ret != -ERESTARTSYS) {
3768 unsigned long long total_size = 0;
3769 int num_fences = 0;
3770 for (i = 0; i < args->buffer_count; i++) {
3771 obj_priv = to_intel_bo(object_list[i]);
3772
3773 total_size += object_list[i]->size;
3774 num_fences +=
3775 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3776 obj_priv->tiling_mode != I915_TILING_NONE;
3777 }
3778 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3779 pinned+1, args->buffer_count,
3780 total_size, num_fences,
3781 ret);
3782 DRM_ERROR("%d objects [%d pinned], "
3783 "%d object bytes [%d pinned], "
3784 "%d/%d gtt bytes\n",
3785 atomic_read(&dev->object_count),
3786 atomic_read(&dev->pin_count),
3787 atomic_read(&dev->object_memory),
3788 atomic_read(&dev->pin_memory),
3789 atomic_read(&dev->gtt_memory),
3790 dev->gtt_total);
3791 }
3792 goto err;
3793 }
3794
3795 /* unpin all of our buffers */
3796 for (i = 0; i < pinned; i++)
3797 i915_gem_object_unpin(object_list[i]);
3798 pinned = 0;
3799
3800 /* evict everyone we can from the aperture */
3801 ret = i915_gem_evict_everything(dev);
3802 if (ret && ret != -ENOSPC)
3803 goto err;
3804 }
3805
3806 /* Set the pending read domains for the batch buffer to COMMAND */
3807 batch_obj = object_list[args->buffer_count-1];
3808 if (batch_obj->pending_write_domain) {
3809 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3810 ret = -EINVAL;
3811 goto err;
3812 }
3813 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3814
3815 /* Sanity check the batch buffer, prior to moving objects */
3816 exec_offset = exec_list[args->buffer_count - 1].offset;
3817 ret = i915_gem_check_execbuffer (args, exec_offset);
3818 if (ret != 0) {
3819 DRM_ERROR("execbuf with invalid offset/length\n");
3820 goto err;
3821 }
3822
3823 /* Zero the global flush/invalidate flags. These
3824 * will be modified as new domains are computed
3825 * for each object
3826 */
3827 dev->invalidate_domains = 0;
3828 dev->flush_domains = 0;
3829 dev_priv->mm.flush_rings = 0;
3830
3831 for (i = 0; i < args->buffer_count; i++) {
3832 struct drm_gem_object *obj = object_list[i];
3833
3834 /* Compute new gpu domains and update invalidate/flush */
3835 i915_gem_object_set_to_gpu_domain(obj);
3836 }
3837
3838 if (dev->invalidate_domains | dev->flush_domains) {
3839 #if WATCH_EXEC
3840 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3841 __func__,
3842 dev->invalidate_domains,
3843 dev->flush_domains);
3844 #endif
3845 i915_gem_flush(dev, file_priv,
3846 dev->invalidate_domains,
3847 dev->flush_domains,
3848 dev_priv->mm.flush_rings);
3849 }
3850
3851 for (i = 0; i < args->buffer_count; i++) {
3852 struct drm_gem_object *obj = object_list[i];
3853 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3854 uint32_t old_write_domain = obj->write_domain;
3855
3856 obj->write_domain = obj->pending_write_domain;
3857 if (obj->write_domain)
3858 list_move_tail(&obj_priv->gpu_write_list,
3859 &dev_priv->mm.gpu_write_list);
3860
3861 trace_i915_gem_object_change_domain(obj,
3862 obj->read_domains,
3863 old_write_domain);
3864 }
3865
3866 #if WATCH_COHERENCY
3867 for (i = 0; i < args->buffer_count; i++) {
3868 i915_gem_object_check_coherency(object_list[i],
3869 exec_list[i].handle);
3870 }
3871 #endif
3872
3873 #if WATCH_EXEC
3874 i915_gem_dump_object(batch_obj,
3875 args->batch_len,
3876 __func__,
3877 ~0);
3878 #endif
3879
3880 /* Exec the batchbuffer */
3881 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3882 cliprects, exec_offset);
3883 if (ret) {
3884 DRM_ERROR("dispatch failed %d\n", ret);
3885 goto err;
3886 }
3887
3888 /*
3889 * Ensure that the commands in the batch buffer are
3890 * finished before the interrupt fires
3891 */
3892 i915_retire_commands(dev, ring);
3893
3894 for (i = 0; i < args->buffer_count; i++) {
3895 struct drm_gem_object *obj = object_list[i];
3896 obj_priv = to_intel_bo(obj);
3897
3898 i915_gem_object_move_to_active(obj, ring);
3899 }
3900
3901 i915_add_request(dev, file_priv, request, ring);
3902 request = NULL;
3903
3904 err:
3905 for (i = 0; i < pinned; i++)
3906 i915_gem_object_unpin(object_list[i]);
3907
3908 for (i = 0; i < args->buffer_count; i++) {
3909 if (object_list[i]) {
3910 obj_priv = to_intel_bo(object_list[i]);
3911 obj_priv->in_execbuffer = false;
3912 }
3913 drm_gem_object_unreference(object_list[i]);
3914 }
3915
3916 mutex_unlock(&dev->struct_mutex);
3917
3918 pre_mutex_err:
3919 /* Copy the updated relocations out regardless of current error
3920 * state. Failure to update the relocs would mean that the next
3921 * time userland calls execbuf, it would do so with presumed offset
3922 * state that didn't match the actual object state.
3923 */
3924 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3925 relocs);
3926 if (ret2 != 0) {
3927 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3928
3929 if (ret == 0)
3930 ret = ret2;
3931 }
3932
3933 drm_free_large(object_list);
3934 kfree(cliprects);
3935 kfree(request);
3936
3937 return ret;
3938 }
3939
3940 /*
3941 * Legacy execbuffer just creates an exec2 list from the original exec object
3942 * list array and passes it to the real function.
3943 */
3944 int
3945 i915_gem_execbuffer(struct drm_device *dev, void *data,
3946 struct drm_file *file_priv)
3947 {
3948 struct drm_i915_gem_execbuffer *args = data;
3949 struct drm_i915_gem_execbuffer2 exec2;
3950 struct drm_i915_gem_exec_object *exec_list = NULL;
3951 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3952 int ret, i;
3953
3954 #if WATCH_EXEC
3955 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3956 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3957 #endif
3958
3959 if (args->buffer_count < 1) {
3960 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3961 return -EINVAL;
3962 }
3963
3964 /* Copy in the exec list from userland */
3965 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3966 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3967 if (exec_list == NULL || exec2_list == NULL) {
3968 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3969 args->buffer_count);
3970 drm_free_large(exec_list);
3971 drm_free_large(exec2_list);
3972 return -ENOMEM;
3973 }
3974 ret = copy_from_user(exec_list,
3975 (struct drm_i915_relocation_entry __user *)
3976 (uintptr_t) args->buffers_ptr,
3977 sizeof(*exec_list) * args->buffer_count);
3978 if (ret != 0) {
3979 DRM_ERROR("copy %d exec entries failed %d\n",
3980 args->buffer_count, ret);
3981 drm_free_large(exec_list);
3982 drm_free_large(exec2_list);
3983 return -EFAULT;
3984 }
3985
3986 for (i = 0; i < args->buffer_count; i++) {
3987 exec2_list[i].handle = exec_list[i].handle;
3988 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3989 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3990 exec2_list[i].alignment = exec_list[i].alignment;
3991 exec2_list[i].offset = exec_list[i].offset;
3992 if (INTEL_INFO(dev)->gen < 4)
3993 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3994 else
3995 exec2_list[i].flags = 0;
3996 }
3997
3998 exec2.buffers_ptr = args->buffers_ptr;
3999 exec2.buffer_count = args->buffer_count;
4000 exec2.batch_start_offset = args->batch_start_offset;
4001 exec2.batch_len = args->batch_len;
4002 exec2.DR1 = args->DR1;
4003 exec2.DR4 = args->DR4;
4004 exec2.num_cliprects = args->num_cliprects;
4005 exec2.cliprects_ptr = args->cliprects_ptr;
4006 exec2.flags = I915_EXEC_RENDER;
4007
4008 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4009 if (!ret) {
4010 /* Copy the new buffer offsets back to the user's exec list. */
4011 for (i = 0; i < args->buffer_count; i++)
4012 exec_list[i].offset = exec2_list[i].offset;
4013 /* ... and back out to userspace */
4014 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4015 (uintptr_t) args->buffers_ptr,
4016 exec_list,
4017 sizeof(*exec_list) * args->buffer_count);
4018 if (ret) {
4019 ret = -EFAULT;
4020 DRM_ERROR("failed to copy %d exec entries "
4021 "back to user (%d)\n",
4022 args->buffer_count, ret);
4023 }
4024 }
4025
4026 drm_free_large(exec_list);
4027 drm_free_large(exec2_list);
4028 return ret;
4029 }
4030
4031 int
4032 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4033 struct drm_file *file_priv)
4034 {
4035 struct drm_i915_gem_execbuffer2 *args = data;
4036 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4037 int ret;
4038
4039 #if WATCH_EXEC
4040 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4041 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4042 #endif
4043
4044 if (args->buffer_count < 1) {
4045 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4046 return -EINVAL;
4047 }
4048
4049 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4050 if (exec2_list == NULL) {
4051 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4052 args->buffer_count);
4053 return -ENOMEM;
4054 }
4055 ret = copy_from_user(exec2_list,
4056 (struct drm_i915_relocation_entry __user *)
4057 (uintptr_t) args->buffers_ptr,
4058 sizeof(*exec2_list) * args->buffer_count);
4059 if (ret != 0) {
4060 DRM_ERROR("copy %d exec entries failed %d\n",
4061 args->buffer_count, ret);
4062 drm_free_large(exec2_list);
4063 return -EFAULT;
4064 }
4065
4066 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4067 if (!ret) {
4068 /* Copy the new buffer offsets back to the user's exec list. */
4069 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4070 (uintptr_t) args->buffers_ptr,
4071 exec2_list,
4072 sizeof(*exec2_list) * args->buffer_count);
4073 if (ret) {
4074 ret = -EFAULT;
4075 DRM_ERROR("failed to copy %d exec entries "
4076 "back to user (%d)\n",
4077 args->buffer_count, ret);
4078 }
4079 }
4080
4081 drm_free_large(exec2_list);
4082 return ret;
4083 }
4084
4085 int
4086 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4087 {
4088 struct drm_device *dev = obj->dev;
4089 struct drm_i915_private *dev_priv = dev->dev_private;
4090 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4091 int ret;
4092
4093 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4094 WARN_ON(i915_verify_lists(dev));
4095
4096 if (obj_priv->gtt_space != NULL) {
4097 if (alignment == 0)
4098 alignment = i915_gem_get_gtt_alignment(obj);
4099 if (obj_priv->gtt_offset & (alignment - 1)) {
4100 WARN(obj_priv->pin_count,
4101 "bo is already pinned with incorrect alignment:"
4102 " offset=%x, req.alignment=%x\n",
4103 obj_priv->gtt_offset, alignment);
4104 ret = i915_gem_object_unbind(obj);
4105 if (ret)
4106 return ret;
4107 }
4108 }
4109
4110 if (obj_priv->gtt_space == NULL) {
4111 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4112 if (ret)
4113 return ret;
4114 }
4115
4116 obj_priv->pin_count++;
4117
4118 /* If the object is not active and not pending a flush,
4119 * remove it from the inactive list
4120 */
4121 if (obj_priv->pin_count == 1) {
4122 atomic_inc(&dev->pin_count);
4123 atomic_add(obj->size, &dev->pin_memory);
4124 if (!obj_priv->active)
4125 list_move_tail(&obj_priv->list,
4126 &dev_priv->mm.pinned_list);
4127 }
4128
4129 WARN_ON(i915_verify_lists(dev));
4130 return 0;
4131 }
4132
4133 void
4134 i915_gem_object_unpin(struct drm_gem_object *obj)
4135 {
4136 struct drm_device *dev = obj->dev;
4137 drm_i915_private_t *dev_priv = dev->dev_private;
4138 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4139
4140 WARN_ON(i915_verify_lists(dev));
4141 obj_priv->pin_count--;
4142 BUG_ON(obj_priv->pin_count < 0);
4143 BUG_ON(obj_priv->gtt_space == NULL);
4144
4145 /* If the object is no longer pinned, and is
4146 * neither active nor being flushed, then stick it on
4147 * the inactive list
4148 */
4149 if (obj_priv->pin_count == 0) {
4150 if (!obj_priv->active)
4151 list_move_tail(&obj_priv->list,
4152 &dev_priv->mm.inactive_list);
4153 atomic_dec(&dev->pin_count);
4154 atomic_sub(obj->size, &dev->pin_memory);
4155 }
4156 WARN_ON(i915_verify_lists(dev));
4157 }
4158
4159 int
4160 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4161 struct drm_file *file_priv)
4162 {
4163 struct drm_i915_gem_pin *args = data;
4164 struct drm_gem_object *obj;
4165 struct drm_i915_gem_object *obj_priv;
4166 int ret;
4167
4168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4169 if (obj == NULL) {
4170 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4171 args->handle);
4172 return -ENOENT;
4173 }
4174 obj_priv = to_intel_bo(obj);
4175
4176 ret = i915_mutex_lock_interruptible(dev);
4177 if (ret) {
4178 drm_gem_object_unreference_unlocked(obj);
4179 return ret;
4180 }
4181
4182 if (obj_priv->madv != I915_MADV_WILLNEED) {
4183 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4184 drm_gem_object_unreference(obj);
4185 mutex_unlock(&dev->struct_mutex);
4186 return -EINVAL;
4187 }
4188
4189 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4190 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4191 args->handle);
4192 drm_gem_object_unreference(obj);
4193 mutex_unlock(&dev->struct_mutex);
4194 return -EINVAL;
4195 }
4196
4197 obj_priv->user_pin_count++;
4198 obj_priv->pin_filp = file_priv;
4199 if (obj_priv->user_pin_count == 1) {
4200 ret = i915_gem_object_pin(obj, args->alignment);
4201 if (ret != 0) {
4202 drm_gem_object_unreference(obj);
4203 mutex_unlock(&dev->struct_mutex);
4204 return ret;
4205 }
4206 }
4207
4208 /* XXX - flush the CPU caches for pinned objects
4209 * as the X server doesn't manage domains yet
4210 */
4211 i915_gem_object_flush_cpu_write_domain(obj);
4212 args->offset = obj_priv->gtt_offset;
4213 drm_gem_object_unreference(obj);
4214 mutex_unlock(&dev->struct_mutex);
4215
4216 return 0;
4217 }
4218
4219 int
4220 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4221 struct drm_file *file_priv)
4222 {
4223 struct drm_i915_gem_pin *args = data;
4224 struct drm_gem_object *obj;
4225 struct drm_i915_gem_object *obj_priv;
4226 int ret;
4227
4228 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4229 if (obj == NULL) {
4230 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4231 args->handle);
4232 return -ENOENT;
4233 }
4234
4235 obj_priv = to_intel_bo(obj);
4236
4237 ret = i915_mutex_lock_interruptible(dev);
4238 if (ret) {
4239 drm_gem_object_unreference_unlocked(obj);
4240 return ret;
4241 }
4242
4243 if (obj_priv->pin_filp != file_priv) {
4244 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4245 args->handle);
4246 drm_gem_object_unreference(obj);
4247 mutex_unlock(&dev->struct_mutex);
4248 return -EINVAL;
4249 }
4250 obj_priv->user_pin_count--;
4251 if (obj_priv->user_pin_count == 0) {
4252 obj_priv->pin_filp = NULL;
4253 i915_gem_object_unpin(obj);
4254 }
4255
4256 drm_gem_object_unreference(obj);
4257 mutex_unlock(&dev->struct_mutex);
4258 return 0;
4259 }
4260
4261 int
4262 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4263 struct drm_file *file_priv)
4264 {
4265 struct drm_i915_gem_busy *args = data;
4266 struct drm_gem_object *obj;
4267 struct drm_i915_gem_object *obj_priv;
4268 int ret;
4269
4270 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4271 if (obj == NULL) {
4272 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4273 args->handle);
4274 return -ENOENT;
4275 }
4276
4277 ret = i915_mutex_lock_interruptible(dev);
4278 if (ret) {
4279 drm_gem_object_unreference_unlocked(obj);
4280 return ret;
4281 }
4282
4283 /* Count all active objects as busy, even if they are currently not used
4284 * by the gpu. Users of this interface expect objects to eventually
4285 * become non-busy without any further actions, therefore emit any
4286 * necessary flushes here.
4287 */
4288 obj_priv = to_intel_bo(obj);
4289 args->busy = obj_priv->active;
4290 if (args->busy) {
4291 /* Unconditionally flush objects, even when the gpu still uses this
4292 * object. Userspace calling this function indicates that it wants to
4293 * use this buffer rather sooner than later, so issuing the required
4294 * flush earlier is beneficial.
4295 */
4296 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4297 i915_gem_flush_ring(dev, file_priv,
4298 obj_priv->ring,
4299 0, obj->write_domain);
4300
4301 /* Update the active list for the hardware's current position.
4302 * Otherwise this only updates on a delayed timer or when irqs
4303 * are actually unmasked, and our working set ends up being
4304 * larger than required.
4305 */
4306 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4307
4308 args->busy = obj_priv->active;
4309 }
4310
4311 drm_gem_object_unreference(obj);
4312 mutex_unlock(&dev->struct_mutex);
4313 return 0;
4314 }
4315
4316 int
4317 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4318 struct drm_file *file_priv)
4319 {
4320 return i915_gem_ring_throttle(dev, file_priv);
4321 }
4322
4323 int
4324 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4325 struct drm_file *file_priv)
4326 {
4327 struct drm_i915_gem_madvise *args = data;
4328 struct drm_gem_object *obj;
4329 struct drm_i915_gem_object *obj_priv;
4330 int ret;
4331
4332 switch (args->madv) {
4333 case I915_MADV_DONTNEED:
4334 case I915_MADV_WILLNEED:
4335 break;
4336 default:
4337 return -EINVAL;
4338 }
4339
4340 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4341 if (obj == NULL) {
4342 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4343 args->handle);
4344 return -ENOENT;
4345 }
4346 obj_priv = to_intel_bo(obj);
4347
4348 ret = i915_mutex_lock_interruptible(dev);
4349 if (ret) {
4350 drm_gem_object_unreference_unlocked(obj);
4351 return ret;
4352 }
4353
4354 if (obj_priv->pin_count) {
4355 drm_gem_object_unreference(obj);
4356 mutex_unlock(&dev->struct_mutex);
4357
4358 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4359 return -EINVAL;
4360 }
4361
4362 if (obj_priv->madv != __I915_MADV_PURGED)
4363 obj_priv->madv = args->madv;
4364
4365 /* if the object is no longer bound, discard its backing storage */
4366 if (i915_gem_object_is_purgeable(obj_priv) &&
4367 obj_priv->gtt_space == NULL)
4368 i915_gem_object_truncate(obj);
4369
4370 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4371
4372 drm_gem_object_unreference(obj);
4373 mutex_unlock(&dev->struct_mutex);
4374
4375 return 0;
4376 }
4377
4378 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4379 size_t size)
4380 {
4381 struct drm_i915_gem_object *obj;
4382
4383 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4384 if (obj == NULL)
4385 return NULL;
4386
4387 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4388 kfree(obj);
4389 return NULL;
4390 }
4391
4392 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4393 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4394
4395 obj->agp_type = AGP_USER_MEMORY;
4396 obj->base.driver_private = NULL;
4397 obj->fence_reg = I915_FENCE_REG_NONE;
4398 INIT_LIST_HEAD(&obj->list);
4399 INIT_LIST_HEAD(&obj->gpu_write_list);
4400 obj->madv = I915_MADV_WILLNEED;
4401
4402 trace_i915_gem_object_create(&obj->base);
4403
4404 return &obj->base;
4405 }
4406
4407 int i915_gem_init_object(struct drm_gem_object *obj)
4408 {
4409 BUG();
4410
4411 return 0;
4412 }
4413
4414 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4415 {
4416 struct drm_device *dev = obj->dev;
4417 drm_i915_private_t *dev_priv = dev->dev_private;
4418 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4419 int ret;
4420
4421 ret = i915_gem_object_unbind(obj);
4422 if (ret == -ERESTARTSYS) {
4423 list_move(&obj_priv->list,
4424 &dev_priv->mm.deferred_free_list);
4425 return;
4426 }
4427
4428 if (obj_priv->mmap_offset)
4429 i915_gem_free_mmap_offset(obj);
4430
4431 drm_gem_object_release(obj);
4432
4433 kfree(obj_priv->page_cpu_valid);
4434 kfree(obj_priv->bit_17);
4435 kfree(obj_priv);
4436 }
4437
4438 void i915_gem_free_object(struct drm_gem_object *obj)
4439 {
4440 struct drm_device *dev = obj->dev;
4441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4442
4443 trace_i915_gem_object_destroy(obj);
4444
4445 while (obj_priv->pin_count > 0)
4446 i915_gem_object_unpin(obj);
4447
4448 if (obj_priv->phys_obj)
4449 i915_gem_detach_phys_object(dev, obj);
4450
4451 i915_gem_free_object_tail(obj);
4452 }
4453
4454 int
4455 i915_gem_idle(struct drm_device *dev)
4456 {
4457 drm_i915_private_t *dev_priv = dev->dev_private;
4458 int ret;
4459
4460 mutex_lock(&dev->struct_mutex);
4461
4462 if (dev_priv->mm.suspended ||
4463 (dev_priv->render_ring.gem_object == NULL) ||
4464 (HAS_BSD(dev) &&
4465 dev_priv->bsd_ring.gem_object == NULL)) {
4466 mutex_unlock(&dev->struct_mutex);
4467 return 0;
4468 }
4469
4470 ret = i915_gpu_idle(dev);
4471 if (ret) {
4472 mutex_unlock(&dev->struct_mutex);
4473 return ret;
4474 }
4475
4476 /* Under UMS, be paranoid and evict. */
4477 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4478 ret = i915_gem_evict_inactive(dev);
4479 if (ret) {
4480 mutex_unlock(&dev->struct_mutex);
4481 return ret;
4482 }
4483 }
4484
4485 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4486 * We need to replace this with a semaphore, or something.
4487 * And not confound mm.suspended!
4488 */
4489 dev_priv->mm.suspended = 1;
4490 del_timer_sync(&dev_priv->hangcheck_timer);
4491
4492 i915_kernel_lost_context(dev);
4493 i915_gem_cleanup_ringbuffer(dev);
4494
4495 mutex_unlock(&dev->struct_mutex);
4496
4497 /* Cancel the retire work handler, which should be idle now. */
4498 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4499
4500 return 0;
4501 }
4502
4503 /*
4504 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4505 * over cache flushing.
4506 */
4507 static int
4508 i915_gem_init_pipe_control(struct drm_device *dev)
4509 {
4510 drm_i915_private_t *dev_priv = dev->dev_private;
4511 struct drm_gem_object *obj;
4512 struct drm_i915_gem_object *obj_priv;
4513 int ret;
4514
4515 obj = i915_gem_alloc_object(dev, 4096);
4516 if (obj == NULL) {
4517 DRM_ERROR("Failed to allocate seqno page\n");
4518 ret = -ENOMEM;
4519 goto err;
4520 }
4521 obj_priv = to_intel_bo(obj);
4522 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4523
4524 ret = i915_gem_object_pin(obj, 4096);
4525 if (ret)
4526 goto err_unref;
4527
4528 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4529 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4530 if (dev_priv->seqno_page == NULL)
4531 goto err_unpin;
4532
4533 dev_priv->seqno_obj = obj;
4534 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4535
4536 return 0;
4537
4538 err_unpin:
4539 i915_gem_object_unpin(obj);
4540 err_unref:
4541 drm_gem_object_unreference(obj);
4542 err:
4543 return ret;
4544 }
4545
4546
4547 static void
4548 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4549 {
4550 drm_i915_private_t *dev_priv = dev->dev_private;
4551 struct drm_gem_object *obj;
4552 struct drm_i915_gem_object *obj_priv;
4553
4554 obj = dev_priv->seqno_obj;
4555 obj_priv = to_intel_bo(obj);
4556 kunmap(obj_priv->pages[0]);
4557 i915_gem_object_unpin(obj);
4558 drm_gem_object_unreference(obj);
4559 dev_priv->seqno_obj = NULL;
4560
4561 dev_priv->seqno_page = NULL;
4562 }
4563
4564 int
4565 i915_gem_init_ringbuffer(struct drm_device *dev)
4566 {
4567 drm_i915_private_t *dev_priv = dev->dev_private;
4568 int ret;
4569
4570 if (HAS_PIPE_CONTROL(dev)) {
4571 ret = i915_gem_init_pipe_control(dev);
4572 if (ret)
4573 return ret;
4574 }
4575
4576 ret = intel_init_render_ring_buffer(dev);
4577 if (ret)
4578 goto cleanup_pipe_control;
4579
4580 if (HAS_BSD(dev)) {
4581 ret = intel_init_bsd_ring_buffer(dev);
4582 if (ret)
4583 goto cleanup_render_ring;
4584 }
4585
4586 dev_priv->next_seqno = 1;
4587
4588 return 0;
4589
4590 cleanup_render_ring:
4591 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4592 cleanup_pipe_control:
4593 if (HAS_PIPE_CONTROL(dev))
4594 i915_gem_cleanup_pipe_control(dev);
4595 return ret;
4596 }
4597
4598 void
4599 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4600 {
4601 drm_i915_private_t *dev_priv = dev->dev_private;
4602
4603 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4604 if (HAS_BSD(dev))
4605 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4606 if (HAS_PIPE_CONTROL(dev))
4607 i915_gem_cleanup_pipe_control(dev);
4608 }
4609
4610 int
4611 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4612 struct drm_file *file_priv)
4613 {
4614 drm_i915_private_t *dev_priv = dev->dev_private;
4615 int ret;
4616
4617 if (drm_core_check_feature(dev, DRIVER_MODESET))
4618 return 0;
4619
4620 if (atomic_read(&dev_priv->mm.wedged)) {
4621 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4622 atomic_set(&dev_priv->mm.wedged, 0);
4623 }
4624
4625 mutex_lock(&dev->struct_mutex);
4626 dev_priv->mm.suspended = 0;
4627
4628 ret = i915_gem_init_ringbuffer(dev);
4629 if (ret != 0) {
4630 mutex_unlock(&dev->struct_mutex);
4631 return ret;
4632 }
4633
4634 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4635 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4636 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4637 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4638 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4639 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4640 mutex_unlock(&dev->struct_mutex);
4641
4642 ret = drm_irq_install(dev);
4643 if (ret)
4644 goto cleanup_ringbuffer;
4645
4646 return 0;
4647
4648 cleanup_ringbuffer:
4649 mutex_lock(&dev->struct_mutex);
4650 i915_gem_cleanup_ringbuffer(dev);
4651 dev_priv->mm.suspended = 1;
4652 mutex_unlock(&dev->struct_mutex);
4653
4654 return ret;
4655 }
4656
4657 int
4658 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4659 struct drm_file *file_priv)
4660 {
4661 if (drm_core_check_feature(dev, DRIVER_MODESET))
4662 return 0;
4663
4664 drm_irq_uninstall(dev);
4665 return i915_gem_idle(dev);
4666 }
4667
4668 void
4669 i915_gem_lastclose(struct drm_device *dev)
4670 {
4671 int ret;
4672
4673 if (drm_core_check_feature(dev, DRIVER_MODESET))
4674 return;
4675
4676 ret = i915_gem_idle(dev);
4677 if (ret)
4678 DRM_ERROR("failed to idle hardware: %d\n", ret);
4679 }
4680
4681 void
4682 i915_gem_load(struct drm_device *dev)
4683 {
4684 int i;
4685 drm_i915_private_t *dev_priv = dev->dev_private;
4686
4687 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4688 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4689 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4690 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4691 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4692 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4693 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4694 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4695 if (HAS_BSD(dev)) {
4696 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4697 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4698 }
4699 for (i = 0; i < 16; i++)
4700 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4701 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4702 i915_gem_retire_work_handler);
4703 init_completion(&dev_priv->error_completion);
4704 spin_lock(&shrink_list_lock);
4705 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4706 spin_unlock(&shrink_list_lock);
4707
4708 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4709 if (IS_GEN3(dev)) {
4710 u32 tmp = I915_READ(MI_ARB_STATE);
4711 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4712 /* arb state is a masked write, so set bit + bit in mask */
4713 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4714 I915_WRITE(MI_ARB_STATE, tmp);
4715 }
4716 }
4717
4718 /* Old X drivers will take 0-2 for front, back, depth buffers */
4719 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4720 dev_priv->fence_reg_start = 3;
4721
4722 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4723 dev_priv->num_fence_regs = 16;
4724 else
4725 dev_priv->num_fence_regs = 8;
4726
4727 /* Initialize fence registers to zero */
4728 switch (INTEL_INFO(dev)->gen) {
4729 case 6:
4730 for (i = 0; i < 16; i++)
4731 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4732 break;
4733 case 5:
4734 case 4:
4735 for (i = 0; i < 16; i++)
4736 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4737 break;
4738 case 3:
4739 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4740 for (i = 0; i < 8; i++)
4741 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4742 case 2:
4743 for (i = 0; i < 8; i++)
4744 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4745 break;
4746 }
4747 i915_gem_detect_bit_6_swizzle(dev);
4748 init_waitqueue_head(&dev_priv->pending_flip_queue);
4749 }
4750
4751 /*
4752 * Create a physically contiguous memory object for this object
4753 * e.g. for cursor + overlay regs
4754 */
4755 static int i915_gem_init_phys_object(struct drm_device *dev,
4756 int id, int size, int align)
4757 {
4758 drm_i915_private_t *dev_priv = dev->dev_private;
4759 struct drm_i915_gem_phys_object *phys_obj;
4760 int ret;
4761
4762 if (dev_priv->mm.phys_objs[id - 1] || !size)
4763 return 0;
4764
4765 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4766 if (!phys_obj)
4767 return -ENOMEM;
4768
4769 phys_obj->id = id;
4770
4771 phys_obj->handle = drm_pci_alloc(dev, size, align);
4772 if (!phys_obj->handle) {
4773 ret = -ENOMEM;
4774 goto kfree_obj;
4775 }
4776 #ifdef CONFIG_X86
4777 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4778 #endif
4779
4780 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4781
4782 return 0;
4783 kfree_obj:
4784 kfree(phys_obj);
4785 return ret;
4786 }
4787
4788 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4789 {
4790 drm_i915_private_t *dev_priv = dev->dev_private;
4791 struct drm_i915_gem_phys_object *phys_obj;
4792
4793 if (!dev_priv->mm.phys_objs[id - 1])
4794 return;
4795
4796 phys_obj = dev_priv->mm.phys_objs[id - 1];
4797 if (phys_obj->cur_obj) {
4798 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4799 }
4800
4801 #ifdef CONFIG_X86
4802 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4803 #endif
4804 drm_pci_free(dev, phys_obj->handle);
4805 kfree(phys_obj);
4806 dev_priv->mm.phys_objs[id - 1] = NULL;
4807 }
4808
4809 void i915_gem_free_all_phys_object(struct drm_device *dev)
4810 {
4811 int i;
4812
4813 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4814 i915_gem_free_phys_object(dev, i);
4815 }
4816
4817 void i915_gem_detach_phys_object(struct drm_device *dev,
4818 struct drm_gem_object *obj)
4819 {
4820 struct drm_i915_gem_object *obj_priv;
4821 int i;
4822 int ret;
4823 int page_count;
4824
4825 obj_priv = to_intel_bo(obj);
4826 if (!obj_priv->phys_obj)
4827 return;
4828
4829 ret = i915_gem_object_get_pages(obj, 0);
4830 if (ret)
4831 goto out;
4832
4833 page_count = obj->size / PAGE_SIZE;
4834
4835 for (i = 0; i < page_count; i++) {
4836 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4837 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4838
4839 memcpy(dst, src, PAGE_SIZE);
4840 kunmap_atomic(dst, KM_USER0);
4841 }
4842 drm_clflush_pages(obj_priv->pages, page_count);
4843 drm_agp_chipset_flush(dev);
4844
4845 i915_gem_object_put_pages(obj);
4846 out:
4847 obj_priv->phys_obj->cur_obj = NULL;
4848 obj_priv->phys_obj = NULL;
4849 }
4850
4851 int
4852 i915_gem_attach_phys_object(struct drm_device *dev,
4853 struct drm_gem_object *obj,
4854 int id,
4855 int align)
4856 {
4857 drm_i915_private_t *dev_priv = dev->dev_private;
4858 struct drm_i915_gem_object *obj_priv;
4859 int ret = 0;
4860 int page_count;
4861 int i;
4862
4863 if (id > I915_MAX_PHYS_OBJECT)
4864 return -EINVAL;
4865
4866 obj_priv = to_intel_bo(obj);
4867
4868 if (obj_priv->phys_obj) {
4869 if (obj_priv->phys_obj->id == id)
4870 return 0;
4871 i915_gem_detach_phys_object(dev, obj);
4872 }
4873
4874 /* create a new object */
4875 if (!dev_priv->mm.phys_objs[id - 1]) {
4876 ret = i915_gem_init_phys_object(dev, id,
4877 obj->size, align);
4878 if (ret) {
4879 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4880 goto out;
4881 }
4882 }
4883
4884 /* bind to the object */
4885 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4886 obj_priv->phys_obj->cur_obj = obj;
4887
4888 ret = i915_gem_object_get_pages(obj, 0);
4889 if (ret) {
4890 DRM_ERROR("failed to get page list\n");
4891 goto out;
4892 }
4893
4894 page_count = obj->size / PAGE_SIZE;
4895
4896 for (i = 0; i < page_count; i++) {
4897 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4898 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4899
4900 memcpy(dst, src, PAGE_SIZE);
4901 kunmap_atomic(src, KM_USER0);
4902 }
4903
4904 i915_gem_object_put_pages(obj);
4905
4906 return 0;
4907 out:
4908 return ret;
4909 }
4910
4911 static int
4912 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4913 struct drm_i915_gem_pwrite *args,
4914 struct drm_file *file_priv)
4915 {
4916 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4917 void *obj_addr;
4918 int ret;
4919 char __user *user_data;
4920
4921 user_data = (char __user *) (uintptr_t) args->data_ptr;
4922 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4923
4924 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4925 ret = copy_from_user(obj_addr, user_data, args->size);
4926 if (ret)
4927 return -EFAULT;
4928
4929 drm_agp_chipset_flush(dev);
4930 return 0;
4931 }
4932
4933 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4934 {
4935 struct drm_i915_file_private *file_priv = file->driver_priv;
4936
4937 /* Clean up our request list when the client is going away, so that
4938 * later retire_requests won't dereference our soon-to-be-gone
4939 * file_priv.
4940 */
4941 spin_lock(&file_priv->mm.lock);
4942 while (!list_empty(&file_priv->mm.request_list)) {
4943 struct drm_i915_gem_request *request;
4944
4945 request = list_first_entry(&file_priv->mm.request_list,
4946 struct drm_i915_gem_request,
4947 client_list);
4948 list_del(&request->client_list);
4949 request->file_priv = NULL;
4950 }
4951 spin_unlock(&file_priv->mm.lock);
4952 }
4953
4954 static int
4955 i915_gpu_is_active(struct drm_device *dev)
4956 {
4957 drm_i915_private_t *dev_priv = dev->dev_private;
4958 int lists_empty;
4959
4960 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4961 list_empty(&dev_priv->render_ring.active_list);
4962 if (HAS_BSD(dev))
4963 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4964
4965 return !lists_empty;
4966 }
4967
4968 static int
4969 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4970 {
4971 drm_i915_private_t *dev_priv, *next_dev;
4972 struct drm_i915_gem_object *obj_priv, *next_obj;
4973 int cnt = 0;
4974 int would_deadlock = 1;
4975
4976 /* "fast-path" to count number of available objects */
4977 if (nr_to_scan == 0) {
4978 spin_lock(&shrink_list_lock);
4979 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4980 struct drm_device *dev = dev_priv->dev;
4981
4982 if (mutex_trylock(&dev->struct_mutex)) {
4983 list_for_each_entry(obj_priv,
4984 &dev_priv->mm.inactive_list,
4985 list)
4986 cnt++;
4987 mutex_unlock(&dev->struct_mutex);
4988 }
4989 }
4990 spin_unlock(&shrink_list_lock);
4991
4992 return (cnt / 100) * sysctl_vfs_cache_pressure;
4993 }
4994
4995 spin_lock(&shrink_list_lock);
4996
4997 rescan:
4998 /* first scan for clean buffers */
4999 list_for_each_entry_safe(dev_priv, next_dev,
5000 &shrink_list, mm.shrink_list) {
5001 struct drm_device *dev = dev_priv->dev;
5002
5003 if (! mutex_trylock(&dev->struct_mutex))
5004 continue;
5005
5006 spin_unlock(&shrink_list_lock);
5007 i915_gem_retire_requests(dev);
5008
5009 list_for_each_entry_safe(obj_priv, next_obj,
5010 &dev_priv->mm.inactive_list,
5011 list) {
5012 if (i915_gem_object_is_purgeable(obj_priv)) {
5013 i915_gem_object_unbind(&obj_priv->base);
5014 if (--nr_to_scan <= 0)
5015 break;
5016 }
5017 }
5018
5019 spin_lock(&shrink_list_lock);
5020 mutex_unlock(&dev->struct_mutex);
5021
5022 would_deadlock = 0;
5023
5024 if (nr_to_scan <= 0)
5025 break;
5026 }
5027
5028 /* second pass, evict/count anything still on the inactive list */
5029 list_for_each_entry_safe(dev_priv, next_dev,
5030 &shrink_list, mm.shrink_list) {
5031 struct drm_device *dev = dev_priv->dev;
5032
5033 if (! mutex_trylock(&dev->struct_mutex))
5034 continue;
5035
5036 spin_unlock(&shrink_list_lock);
5037
5038 list_for_each_entry_safe(obj_priv, next_obj,
5039 &dev_priv->mm.inactive_list,
5040 list) {
5041 if (nr_to_scan > 0) {
5042 i915_gem_object_unbind(&obj_priv->base);
5043 nr_to_scan--;
5044 } else
5045 cnt++;
5046 }
5047
5048 spin_lock(&shrink_list_lock);
5049 mutex_unlock(&dev->struct_mutex);
5050
5051 would_deadlock = 0;
5052 }
5053
5054 if (nr_to_scan) {
5055 int active = 0;
5056
5057 /*
5058 * We are desperate for pages, so as a last resort, wait
5059 * for the GPU to finish and discard whatever we can.
5060 * This has a dramatic impact to reduce the number of
5061 * OOM-killer events whilst running the GPU aggressively.
5062 */
5063 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5064 struct drm_device *dev = dev_priv->dev;
5065
5066 if (!mutex_trylock(&dev->struct_mutex))
5067 continue;
5068
5069 spin_unlock(&shrink_list_lock);
5070
5071 if (i915_gpu_is_active(dev)) {
5072 i915_gpu_idle(dev);
5073 active++;
5074 }
5075
5076 spin_lock(&shrink_list_lock);
5077 mutex_unlock(&dev->struct_mutex);
5078 }
5079
5080 if (active)
5081 goto rescan;
5082 }
5083
5084 spin_unlock(&shrink_list_lock);
5085
5086 if (would_deadlock)
5087 return -1;
5088 else if (cnt > 0)
5089 return (cnt / 100) * sysctl_vfs_cache_pressure;
5090 else
5091 return 0;
5092 }
5093
5094 static struct shrinker shrinker = {
5095 .shrink = i915_gem_shrink,
5096 .seeks = DEFAULT_SEEKS,
5097 };
5098
5099 __init void
5100 i915_gem_shrinker_init(void)
5101 {
5102 register_shrinker(&shrinker);
5103 }
5104
5105 __exit void
5106 i915_gem_shrinker_exit(void)
5107 {
5108 unregister_shrinker(&shrinker);
5109 }
This page took 0.451593 seconds and 5 git commands to generate.