drm/i915: s/cacheing/caching/
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable,
45 bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
71 obj->fence_dirty = false;
72 obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78 {
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85 {
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 unsigned long flags;
96 int ret;
97
98 if (!atomic_read(&dev_priv->mm.wedged))
99 return 0;
100
101 /*
102 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103 * userspace. If it takes that long something really bad is going on and
104 * we should simply try to bail out and fail as gracefully as possible.
105 */
106 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 /* GPU is hung, bump the completion count to account for
116 * the token we just consumed so that we never hit zero and
117 * end up waiting upon a subsequent completion event that
118 * will never happen.
119 */
120 spin_lock_irqsave(&x->wait.lock, flags);
121 x->done++;
122 spin_unlock_irqrestore(&x->wait.lock, flags);
123 }
124 return 0;
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129 int ret;
130
131 ret = i915_gem_wait_for_error(dev);
132 if (ret)
133 return ret;
134
135 ret = mutex_lock_interruptible(&dev->struct_mutex);
136 if (ret)
137 return ret;
138
139 WARN_ON(i915_verify_lists(dev));
140 return 0;
141 }
142
143 static inline bool
144 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145 {
146 return obj->gtt_space && !obj->active;
147 }
148
149 int
150 i915_gem_init_ioctl(struct drm_device *dev, void *data,
151 struct drm_file *file)
152 {
153 struct drm_i915_gem_init *args = data;
154
155 if (drm_core_check_feature(dev, DRIVER_MODESET))
156 return -ENODEV;
157
158 if (args->gtt_start >= args->gtt_end ||
159 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160 return -EINVAL;
161
162 /* GEM with user mode setting was never supported on ilk and later. */
163 if (INTEL_INFO(dev)->gen >= 5)
164 return -ENODEV;
165
166 mutex_lock(&dev->struct_mutex);
167 i915_gem_init_global_gtt(dev, args->gtt_start,
168 args->gtt_end, args->gtt_end);
169 mutex_unlock(&dev->struct_mutex);
170
171 return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176 struct drm_file *file)
177 {
178 struct drm_i915_private *dev_priv = dev->dev_private;
179 struct drm_i915_gem_get_aperture *args = data;
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
182
183 pinned = 0;
184 mutex_lock(&dev->struct_mutex);
185 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186 if (obj->pin_count)
187 pinned += obj->gtt_space->size;
188 mutex_unlock(&dev->struct_mutex);
189
190 args->aper_size = dev_priv->mm.gtt_total;
191 args->aper_available_size = args->aper_size - pinned;
192
193 return 0;
194 }
195
196 static int
197 i915_gem_create(struct drm_file *file,
198 struct drm_device *dev,
199 uint64_t size,
200 uint32_t *handle_p)
201 {
202 struct drm_i915_gem_object *obj;
203 int ret;
204 u32 handle;
205
206 size = roundup(size, PAGE_SIZE);
207 if (size == 0)
208 return -EINVAL;
209
210 /* Allocate the new object */
211 obj = i915_gem_alloc_object(dev, size);
212 if (obj == NULL)
213 return -ENOMEM;
214
215 ret = drm_gem_handle_create(file, &obj->base, &handle);
216 if (ret) {
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219 kfree(obj);
220 return ret;
221 }
222
223 /* drop reference from allocate - handle holds it now */
224 drm_gem_object_unreference(&obj->base);
225 trace_i915_gem_object_create(obj);
226
227 *handle_p = handle;
228 return 0;
229 }
230
231 int
232 i915_gem_dumb_create(struct drm_file *file,
233 struct drm_device *dev,
234 struct drm_mode_create_dumb *args)
235 {
236 /* have to work out size/pitch and return them */
237 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238 args->size = args->pitch * args->height;
239 return i915_gem_create(file, dev,
240 args->size, &args->handle);
241 }
242
243 int i915_gem_dumb_destroy(struct drm_file *file,
244 struct drm_device *dev,
245 uint32_t handle)
246 {
247 return drm_gem_handle_delete(file, handle);
248 }
249
250 /**
251 * Creates a new mm object and returns a handle to it.
252 */
253 int
254 i915_gem_create_ioctl(struct drm_device *dev, void *data,
255 struct drm_file *file)
256 {
257 struct drm_i915_gem_create *args = data;
258
259 return i915_gem_create(file, dev,
260 args->size, &args->handle);
261 }
262
263 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264 {
265 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266
267 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268 obj->tiling_mode != I915_TILING_NONE;
269 }
270
271 static inline int
272 __copy_to_user_swizzled(char __user *cpu_vaddr,
273 const char *gpu_vaddr, int gpu_offset,
274 int length)
275 {
276 int ret, cpu_offset = 0;
277
278 while (length > 0) {
279 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280 int this_length = min(cacheline_end - gpu_offset, length);
281 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284 gpu_vaddr + swizzled_gpu_offset,
285 this_length);
286 if (ret)
287 return ret + length;
288
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
294 return 0;
295 }
296
297 static inline int
298 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299 const char __user *cpu_vaddr,
300 int length)
301 {
302 int ret, cpu_offset = 0;
303
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310 cpu_vaddr + cpu_offset,
311 this_length);
312 if (ret)
313 return ret + length;
314
315 cpu_offset += this_length;
316 gpu_offset += this_length;
317 length -= this_length;
318 }
319
320 return 0;
321 }
322
323 /* Per-page copy function for the shmem pread fastpath.
324 * Flushes invalid cachelines before reading the target if
325 * needs_clflush is set. */
326 static int
327 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328 char __user *user_data,
329 bool page_do_bit17_swizzling, bool needs_clflush)
330 {
331 char *vaddr;
332 int ret;
333
334 if (unlikely(page_do_bit17_swizzling))
335 return -EINVAL;
336
337 vaddr = kmap_atomic(page);
338 if (needs_clflush)
339 drm_clflush_virt_range(vaddr + shmem_page_offset,
340 page_length);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + shmem_page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
346 return ret ? -EFAULT : 0;
347 }
348
349 static void
350 shmem_clflush_swizzled_range(char *addr, unsigned long length,
351 bool swizzled)
352 {
353 if (unlikely(swizzled)) {
354 unsigned long start = (unsigned long) addr;
355 unsigned long end = (unsigned long) addr + length;
356
357 /* For swizzling simply ensure that we always flush both
358 * channels. Lame, but simple and it works. Swizzled
359 * pwrite/pread is far from a hotpath - current userspace
360 * doesn't use it at all. */
361 start = round_down(start, 128);
362 end = round_up(end, 128);
363
364 drm_clflush_virt_range((void *)start, end - start);
365 } else {
366 drm_clflush_virt_range(addr, length);
367 }
368
369 }
370
371 /* Only difference to the fast-path function is that this can handle bit17
372 * and uses non-atomic copy and kmap functions. */
373 static int
374 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378 char *vaddr;
379 int ret;
380
381 vaddr = kmap(page);
382 if (needs_clflush)
383 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384 page_length,
385 page_do_bit17_swizzling);
386
387 if (page_do_bit17_swizzling)
388 ret = __copy_to_user_swizzled(user_data,
389 vaddr, shmem_page_offset,
390 page_length);
391 else
392 ret = __copy_to_user(user_data,
393 vaddr + shmem_page_offset,
394 page_length);
395 kunmap(page);
396
397 return ret ? - EFAULT : 0;
398 }
399
400 static int
401 i915_gem_shmem_pread(struct drm_device *dev,
402 struct drm_i915_gem_object *obj,
403 struct drm_i915_gem_pread *args,
404 struct drm_file *file)
405 {
406 char __user *user_data;
407 ssize_t remain;
408 loff_t offset;
409 int shmem_page_offset, page_length, ret = 0;
410 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
411 int hit_slowpath = 0;
412 int prefaulted = 0;
413 int needs_clflush = 0;
414 struct scatterlist *sg;
415 int i;
416
417 user_data = (char __user *) (uintptr_t) args->data_ptr;
418 remain = args->size;
419
420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
434 }
435
436 ret = i915_gem_object_get_pages(obj);
437 if (ret)
438 return ret;
439
440 i915_gem_object_pin_pages(obj);
441
442 offset = args->offset;
443
444 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445 struct page *page;
446
447 if (i < offset >> PAGE_SHIFT)
448 continue;
449
450 if (remain <= 0)
451 break;
452
453 /* Operation in this page
454 *
455 * shmem_page_offset = offset within page in shmem file
456 * page_length = bytes to copy for this page
457 */
458 shmem_page_offset = offset_in_page(offset);
459 page_length = remain;
460 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461 page_length = PAGE_SIZE - shmem_page_offset;
462
463 page = sg_page(sg);
464 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465 (page_to_phys(page) & (1 << 17)) != 0;
466
467 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468 user_data, page_do_bit17_swizzling,
469 needs_clflush);
470 if (ret == 0)
471 goto next_page;
472
473 hit_slowpath = 1;
474 mutex_unlock(&dev->struct_mutex);
475
476 if (!prefaulted) {
477 ret = fault_in_multipages_writeable(user_data, remain);
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
485
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
489
490 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493 mark_page_accessed(page);
494
495 if (ret)
496 goto out;
497
498 remain -= page_length;
499 user_data += page_length;
500 offset += page_length;
501 }
502
503 out:
504 i915_gem_object_unpin_pages(obj);
505
506 if (hit_slowpath) {
507 /* Fixup: Kill any reinstated backing storage pages */
508 if (obj->madv == __I915_MADV_PURGED)
509 i915_gem_object_truncate(obj);
510 }
511
512 return ret;
513 }
514
515 /**
516 * Reads data from the object referenced by handle.
517 *
518 * On error, the contents of *data are undefined.
519 */
520 int
521 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522 struct drm_file *file)
523 {
524 struct drm_i915_gem_pread *args = data;
525 struct drm_i915_gem_object *obj;
526 int ret = 0;
527
528 if (args->size == 0)
529 return 0;
530
531 if (!access_ok(VERIFY_WRITE,
532 (char __user *)(uintptr_t)args->data_ptr,
533 args->size))
534 return -EFAULT;
535
536 ret = i915_mutex_lock_interruptible(dev);
537 if (ret)
538 return ret;
539
540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541 if (&obj->base == NULL) {
542 ret = -ENOENT;
543 goto unlock;
544 }
545
546 /* Bounds check source. */
547 if (args->offset > obj->base.size ||
548 args->size > obj->base.size - args->offset) {
549 ret = -EINVAL;
550 goto out;
551 }
552
553 /* prime objects have no backing filp to GEM pread/pwrite
554 * pages from.
555 */
556 if (!obj->base.filp) {
557 ret = -EINVAL;
558 goto out;
559 }
560
561 trace_i915_gem_object_pread(obj, args->offset, args->size);
562
563 ret = i915_gem_shmem_pread(dev, obj, args, file);
564
565 out:
566 drm_gem_object_unreference(&obj->base);
567 unlock:
568 mutex_unlock(&dev->struct_mutex);
569 return ret;
570 }
571
572 /* This is the fast write path which cannot handle
573 * page faults in the source data
574 */
575
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
581 {
582 void __iomem *vaddr_atomic;
583 void *vaddr;
584 unsigned long unwritten;
585
586 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587 /* We can use the cpu mem copy function because this is X86. */
588 vaddr = (void __force*)vaddr_atomic + page_offset;
589 unwritten = __copy_from_user_inatomic_nocache(vaddr,
590 user_data, length);
591 io_mapping_unmap_atomic(vaddr_atomic);
592 return unwritten;
593 }
594
595 /**
596 * This is the fast pwrite path, where we copy the data directly from the
597 * user into the GTT, uncached.
598 */
599 static int
600 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601 struct drm_i915_gem_object *obj,
602 struct drm_i915_gem_pwrite *args,
603 struct drm_file *file)
604 {
605 drm_i915_private_t *dev_priv = dev->dev_private;
606 ssize_t remain;
607 loff_t offset, page_base;
608 char __user *user_data;
609 int page_offset, page_length, ret;
610
611 ret = i915_gem_object_pin(obj, 0, true, true);
612 if (ret)
613 goto out;
614
615 ret = i915_gem_object_set_to_gtt_domain(obj, true);
616 if (ret)
617 goto out_unpin;
618
619 ret = i915_gem_object_put_fence(obj);
620 if (ret)
621 goto out_unpin;
622
623 user_data = (char __user *) (uintptr_t) args->data_ptr;
624 remain = args->size;
625
626 offset = obj->gtt_offset + args->offset;
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
634 */
635 page_base = offset & PAGE_MASK;
636 page_offset = offset_in_page(offset);
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
641 /* If we get a fault while copying data, then (presumably) our
642 * source page isn't available. Return the error and we'll
643 * retry in the slow path.
644 */
645 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
646 page_offset, user_data, page_length)) {
647 ret = -EFAULT;
648 goto out_unpin;
649 }
650
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
654 }
655
656 out_unpin:
657 i915_gem_object_unpin(obj);
658 out:
659 return ret;
660 }
661
662 /* Per-page copy function for the shmem pwrite fastpath.
663 * Flushes invalid cachelines before writing to the target if
664 * needs_clflush_before is set and flushes out any written cachelines after
665 * writing if needs_clflush is set. */
666 static int
667 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668 char __user *user_data,
669 bool page_do_bit17_swizzling,
670 bool needs_clflush_before,
671 bool needs_clflush_after)
672 {
673 char *vaddr;
674 int ret;
675
676 if (unlikely(page_do_bit17_swizzling))
677 return -EINVAL;
678
679 vaddr = kmap_atomic(page);
680 if (needs_clflush_before)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684 user_data,
685 page_length);
686 if (needs_clflush_after)
687 drm_clflush_virt_range(vaddr + shmem_page_offset,
688 page_length);
689 kunmap_atomic(vaddr);
690
691 return ret ? -EFAULT : 0;
692 }
693
694 /* Only difference to the fast-path function is that this can handle bit17
695 * and uses non-atomic copy and kmap functions. */
696 static int
697 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698 char __user *user_data,
699 bool page_do_bit17_swizzling,
700 bool needs_clflush_before,
701 bool needs_clflush_after)
702 {
703 char *vaddr;
704 int ret;
705
706 vaddr = kmap(page);
707 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709 page_length,
710 page_do_bit17_swizzling);
711 if (page_do_bit17_swizzling)
712 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713 user_data,
714 page_length);
715 else
716 ret = __copy_from_user(vaddr + shmem_page_offset,
717 user_data,
718 page_length);
719 if (needs_clflush_after)
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
723 kunmap(page);
724
725 return ret ? -EFAULT : 0;
726 }
727
728 static int
729 i915_gem_shmem_pwrite(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file)
733 {
734 ssize_t remain;
735 loff_t offset;
736 char __user *user_data;
737 int shmem_page_offset, page_length, ret = 0;
738 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739 int hit_slowpath = 0;
740 int needs_clflush_after = 0;
741 int needs_clflush_before = 0;
742 int i;
743 struct scatterlist *sg;
744
745 user_data = (char __user *) (uintptr_t) args->data_ptr;
746 remain = args->size;
747
748 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
749
750 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
751 /* If we're not in the cpu write domain, set ourself into the gtt
752 * write domain and manually flush cachelines (if required). This
753 * optimizes for the case when the gpu will use the data
754 * right away and we therefore have to clflush anyway. */
755 if (obj->cache_level == I915_CACHE_NONE)
756 needs_clflush_after = 1;
757 if (obj->gtt_space) {
758 ret = i915_gem_object_set_to_gtt_domain(obj, true);
759 if (ret)
760 return ret;
761 }
762 }
763 /* Same trick applies for invalidate partially written cachelines before
764 * writing. */
765 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
766 && obj->cache_level == I915_CACHE_NONE)
767 needs_clflush_before = 1;
768
769 ret = i915_gem_object_get_pages(obj);
770 if (ret)
771 return ret;
772
773 i915_gem_object_pin_pages(obj);
774
775 offset = args->offset;
776 obj->dirty = 1;
777
778 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
779 struct page *page;
780 int partial_cacheline_write;
781
782 if (i < offset >> PAGE_SHIFT)
783 continue;
784
785 if (remain <= 0)
786 break;
787
788 /* Operation in this page
789 *
790 * shmem_page_offset = offset within page in shmem file
791 * page_length = bytes to copy for this page
792 */
793 shmem_page_offset = offset_in_page(offset);
794
795 page_length = remain;
796 if ((shmem_page_offset + page_length) > PAGE_SIZE)
797 page_length = PAGE_SIZE - shmem_page_offset;
798
799 /* If we don't overwrite a cacheline completely we need to be
800 * careful to have up-to-date data by first clflushing. Don't
801 * overcomplicate things and flush the entire patch. */
802 partial_cacheline_write = needs_clflush_before &&
803 ((shmem_page_offset | page_length)
804 & (boot_cpu_data.x86_clflush_size - 1));
805
806 page = sg_page(sg);
807 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808 (page_to_phys(page) & (1 << 17)) != 0;
809
810 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
814 if (ret == 0)
815 goto next_page;
816
817 hit_slowpath = 1;
818 mutex_unlock(&dev->struct_mutex);
819 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
820 user_data, page_do_bit17_swizzling,
821 partial_cacheline_write,
822 needs_clflush_after);
823
824 mutex_lock(&dev->struct_mutex);
825
826 next_page:
827 set_page_dirty(page);
828 mark_page_accessed(page);
829
830 if (ret)
831 goto out;
832
833 remain -= page_length;
834 user_data += page_length;
835 offset += page_length;
836 }
837
838 out:
839 i915_gem_object_unpin_pages(obj);
840
841 if (hit_slowpath) {
842 /* Fixup: Kill any reinstated backing storage pages */
843 if (obj->madv == __I915_MADV_PURGED)
844 i915_gem_object_truncate(obj);
845 /* and flush dirty cachelines in case the object isn't in the cpu write
846 * domain anymore. */
847 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
848 i915_gem_clflush_object(obj);
849 intel_gtt_chipset_flush();
850 }
851 }
852
853 if (needs_clflush_after)
854 intel_gtt_chipset_flush();
855
856 return ret;
857 }
858
859 /**
860 * Writes data to the object referenced by handle.
861 *
862 * On error, the contents of the buffer that were to be modified are undefined.
863 */
864 int
865 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
866 struct drm_file *file)
867 {
868 struct drm_i915_gem_pwrite *args = data;
869 struct drm_i915_gem_object *obj;
870 int ret;
871
872 if (args->size == 0)
873 return 0;
874
875 if (!access_ok(VERIFY_READ,
876 (char __user *)(uintptr_t)args->data_ptr,
877 args->size))
878 return -EFAULT;
879
880 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
881 args->size);
882 if (ret)
883 return -EFAULT;
884
885 ret = i915_mutex_lock_interruptible(dev);
886 if (ret)
887 return ret;
888
889 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
890 if (&obj->base == NULL) {
891 ret = -ENOENT;
892 goto unlock;
893 }
894
895 /* Bounds check destination. */
896 if (args->offset > obj->base.size ||
897 args->size > obj->base.size - args->offset) {
898 ret = -EINVAL;
899 goto out;
900 }
901
902 /* prime objects have no backing filp to GEM pread/pwrite
903 * pages from.
904 */
905 if (!obj->base.filp) {
906 ret = -EINVAL;
907 goto out;
908 }
909
910 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
911
912 ret = -EFAULT;
913 /* We can only do the GTT pwrite on untiled buffers, as otherwise
914 * it would end up going through the fenced access, and we'll get
915 * different detiling behavior between reading and writing.
916 * pread/pwrite currently are reading and writing from the CPU
917 * perspective, requiring manual detiling by the client.
918 */
919 if (obj->phys_obj) {
920 ret = i915_gem_phys_pwrite(dev, obj, args, file);
921 goto out;
922 }
923
924 if (obj->cache_level == I915_CACHE_NONE &&
925 obj->tiling_mode == I915_TILING_NONE &&
926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
931 }
932
933 if (ret == -EFAULT || ret == -ENOSPC)
934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935
936 out:
937 drm_gem_object_unreference(&obj->base);
938 unlock:
939 mutex_unlock(&dev->struct_mutex);
940 return ret;
941 }
942
943 int
944 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
945 bool interruptible)
946 {
947 if (atomic_read(&dev_priv->mm.wedged)) {
948 struct completion *x = &dev_priv->error_completion;
949 bool recovery_complete;
950 unsigned long flags;
951
952 /* Give the error handler a chance to run. */
953 spin_lock_irqsave(&x->wait.lock, flags);
954 recovery_complete = x->done > 0;
955 spin_unlock_irqrestore(&x->wait.lock, flags);
956
957 /* Non-interruptible callers can't handle -EAGAIN, hence return
958 * -EIO unconditionally for these. */
959 if (!interruptible)
960 return -EIO;
961
962 /* Recovery complete, but still wedged means reset failure. */
963 if (recovery_complete)
964 return -EIO;
965
966 return -EAGAIN;
967 }
968
969 return 0;
970 }
971
972 /*
973 * Compare seqno against outstanding lazy request. Emit a request if they are
974 * equal.
975 */
976 static int
977 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
978 {
979 int ret;
980
981 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
982
983 ret = 0;
984 if (seqno == ring->outstanding_lazy_request)
985 ret = i915_add_request(ring, NULL, NULL);
986
987 return ret;
988 }
989
990 /**
991 * __wait_seqno - wait until execution of seqno has finished
992 * @ring: the ring expected to report seqno
993 * @seqno: duh!
994 * @interruptible: do an interruptible wait (normally yes)
995 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
996 *
997 * Returns 0 if the seqno was found within the alloted time. Else returns the
998 * errno with remaining time filled in timeout argument.
999 */
1000 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1001 bool interruptible, struct timespec *timeout)
1002 {
1003 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1004 struct timespec before, now, wait_time={1,0};
1005 unsigned long timeout_jiffies;
1006 long end;
1007 bool wait_forever = true;
1008 int ret;
1009
1010 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1011 return 0;
1012
1013 trace_i915_gem_request_wait_begin(ring, seqno);
1014
1015 if (timeout != NULL) {
1016 wait_time = *timeout;
1017 wait_forever = false;
1018 }
1019
1020 timeout_jiffies = timespec_to_jiffies(&wait_time);
1021
1022 if (WARN_ON(!ring->irq_get(ring)))
1023 return -ENODEV;
1024
1025 /* Record current time in case interrupted by signal, or wedged * */
1026 getrawmonotonic(&before);
1027
1028 #define EXIT_COND \
1029 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1030 atomic_read(&dev_priv->mm.wedged))
1031 do {
1032 if (interruptible)
1033 end = wait_event_interruptible_timeout(ring->irq_queue,
1034 EXIT_COND,
1035 timeout_jiffies);
1036 else
1037 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1038 timeout_jiffies);
1039
1040 ret = i915_gem_check_wedge(dev_priv, interruptible);
1041 if (ret)
1042 end = ret;
1043 } while (end == 0 && wait_forever);
1044
1045 getrawmonotonic(&now);
1046
1047 ring->irq_put(ring);
1048 trace_i915_gem_request_wait_end(ring, seqno);
1049 #undef EXIT_COND
1050
1051 if (timeout) {
1052 struct timespec sleep_time = timespec_sub(now, before);
1053 *timeout = timespec_sub(*timeout, sleep_time);
1054 }
1055
1056 switch (end) {
1057 case -EIO:
1058 case -EAGAIN: /* Wedged */
1059 case -ERESTARTSYS: /* Signal */
1060 return (int)end;
1061 case 0: /* Timeout */
1062 if (timeout)
1063 set_normalized_timespec(timeout, 0, 0);
1064 return -ETIME;
1065 default: /* Completed */
1066 WARN_ON(end < 0); /* We're not aware of other errors */
1067 return 0;
1068 }
1069 }
1070
1071 /**
1072 * Waits for a sequence number to be signaled, and cleans up the
1073 * request and object lists appropriately for that event.
1074 */
1075 int
1076 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1077 {
1078 struct drm_device *dev = ring->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 bool interruptible = dev_priv->mm.interruptible;
1081 int ret;
1082
1083 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1084 BUG_ON(seqno == 0);
1085
1086 ret = i915_gem_check_wedge(dev_priv, interruptible);
1087 if (ret)
1088 return ret;
1089
1090 ret = i915_gem_check_olr(ring, seqno);
1091 if (ret)
1092 return ret;
1093
1094 return __wait_seqno(ring, seqno, interruptible, NULL);
1095 }
1096
1097 /**
1098 * Ensures that all rendering to the object has completed and the object is
1099 * safe to unbind from the GTT or access from the CPU.
1100 */
1101 static __must_check int
1102 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1103 bool readonly)
1104 {
1105 struct intel_ring_buffer *ring = obj->ring;
1106 u32 seqno;
1107 int ret;
1108
1109 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1110 if (seqno == 0)
1111 return 0;
1112
1113 ret = i915_wait_seqno(ring, seqno);
1114 if (ret)
1115 return ret;
1116
1117 i915_gem_retire_requests_ring(ring);
1118
1119 /* Manually manage the write flush as we may have not yet
1120 * retired the buffer.
1121 */
1122 if (obj->last_write_seqno &&
1123 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1124 obj->last_write_seqno = 0;
1125 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126 }
1127
1128 return 0;
1129 }
1130
1131 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1132 * as the object state may change during this call.
1133 */
1134 static __must_check int
1135 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1136 bool readonly)
1137 {
1138 struct drm_device *dev = obj->base.dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct intel_ring_buffer *ring = obj->ring;
1141 u32 seqno;
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1145 BUG_ON(!dev_priv->mm.interruptible);
1146
1147 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1148 if (seqno == 0)
1149 return 0;
1150
1151 ret = i915_gem_check_wedge(dev_priv, true);
1152 if (ret)
1153 return ret;
1154
1155 ret = i915_gem_check_olr(ring, seqno);
1156 if (ret)
1157 return ret;
1158
1159 mutex_unlock(&dev->struct_mutex);
1160 ret = __wait_seqno(ring, seqno, true, NULL);
1161 mutex_lock(&dev->struct_mutex);
1162
1163 i915_gem_retire_requests_ring(ring);
1164
1165 /* Manually manage the write flush as we may have not yet
1166 * retired the buffer.
1167 */
1168 if (obj->last_write_seqno &&
1169 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1170 obj->last_write_seqno = 0;
1171 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1172 }
1173
1174 return ret;
1175 }
1176
1177 /**
1178 * Called when user space prepares to use an object with the CPU, either
1179 * through the mmap ioctl's mapping or a GTT mapping.
1180 */
1181 int
1182 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1183 struct drm_file *file)
1184 {
1185 struct drm_i915_gem_set_domain *args = data;
1186 struct drm_i915_gem_object *obj;
1187 uint32_t read_domains = args->read_domains;
1188 uint32_t write_domain = args->write_domain;
1189 int ret;
1190
1191 /* Only handle setting domains to types used by the CPU. */
1192 if (write_domain & I915_GEM_GPU_DOMAINS)
1193 return -EINVAL;
1194
1195 if (read_domains & I915_GEM_GPU_DOMAINS)
1196 return -EINVAL;
1197
1198 /* Having something in the write domain implies it's in the read
1199 * domain, and only that read domain. Enforce that in the request.
1200 */
1201 if (write_domain != 0 && read_domains != write_domain)
1202 return -EINVAL;
1203
1204 ret = i915_mutex_lock_interruptible(dev);
1205 if (ret)
1206 return ret;
1207
1208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1209 if (&obj->base == NULL) {
1210 ret = -ENOENT;
1211 goto unlock;
1212 }
1213
1214 /* Try to flush the object off the GPU without holding the lock.
1215 * We will repeat the flush holding the lock in the normal manner
1216 * to catch cases where we are gazumped.
1217 */
1218 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1219 if (ret)
1220 goto unref;
1221
1222 if (read_domains & I915_GEM_DOMAIN_GTT) {
1223 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1224
1225 /* Silently promote "you're not bound, there was nothing to do"
1226 * to success, since the client was just asking us to
1227 * make sure everything was done.
1228 */
1229 if (ret == -EINVAL)
1230 ret = 0;
1231 } else {
1232 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1233 }
1234
1235 unref:
1236 drm_gem_object_unreference(&obj->base);
1237 unlock:
1238 mutex_unlock(&dev->struct_mutex);
1239 return ret;
1240 }
1241
1242 /**
1243 * Called when user space has done writes to this buffer
1244 */
1245 int
1246 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1247 struct drm_file *file)
1248 {
1249 struct drm_i915_gem_sw_finish *args = data;
1250 struct drm_i915_gem_object *obj;
1251 int ret = 0;
1252
1253 ret = i915_mutex_lock_interruptible(dev);
1254 if (ret)
1255 return ret;
1256
1257 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1258 if (&obj->base == NULL) {
1259 ret = -ENOENT;
1260 goto unlock;
1261 }
1262
1263 /* Pinned buffers may be scanout, so flush the cache */
1264 if (obj->pin_count)
1265 i915_gem_object_flush_cpu_write_domain(obj);
1266
1267 drm_gem_object_unreference(&obj->base);
1268 unlock:
1269 mutex_unlock(&dev->struct_mutex);
1270 return ret;
1271 }
1272
1273 /**
1274 * Maps the contents of an object, returning the address it is mapped
1275 * into.
1276 *
1277 * While the mapping holds a reference on the contents of the object, it doesn't
1278 * imply a ref on the object itself.
1279 */
1280 int
1281 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1282 struct drm_file *file)
1283 {
1284 struct drm_i915_gem_mmap *args = data;
1285 struct drm_gem_object *obj;
1286 unsigned long addr;
1287
1288 obj = drm_gem_object_lookup(dev, file, args->handle);
1289 if (obj == NULL)
1290 return -ENOENT;
1291
1292 /* prime objects have no backing filp to GEM mmap
1293 * pages from.
1294 */
1295 if (!obj->filp) {
1296 drm_gem_object_unreference_unlocked(obj);
1297 return -EINVAL;
1298 }
1299
1300 addr = vm_mmap(obj->filp, 0, args->size,
1301 PROT_READ | PROT_WRITE, MAP_SHARED,
1302 args->offset);
1303 drm_gem_object_unreference_unlocked(obj);
1304 if (IS_ERR((void *)addr))
1305 return addr;
1306
1307 args->addr_ptr = (uint64_t) addr;
1308
1309 return 0;
1310 }
1311
1312 /**
1313 * i915_gem_fault - fault a page into the GTT
1314 * vma: VMA in question
1315 * vmf: fault info
1316 *
1317 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1318 * from userspace. The fault handler takes care of binding the object to
1319 * the GTT (if needed), allocating and programming a fence register (again,
1320 * only if needed based on whether the old reg is still valid or the object
1321 * is tiled) and inserting a new PTE into the faulting process.
1322 *
1323 * Note that the faulting process may involve evicting existing objects
1324 * from the GTT and/or fence registers to make room. So performance may
1325 * suffer if the GTT working set is large or there are few fence registers
1326 * left.
1327 */
1328 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1329 {
1330 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1331 struct drm_device *dev = obj->base.dev;
1332 drm_i915_private_t *dev_priv = dev->dev_private;
1333 pgoff_t page_offset;
1334 unsigned long pfn;
1335 int ret = 0;
1336 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1337
1338 /* We don't use vmf->pgoff since that has the fake offset */
1339 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1340 PAGE_SHIFT;
1341
1342 ret = i915_mutex_lock_interruptible(dev);
1343 if (ret)
1344 goto out;
1345
1346 trace_i915_gem_object_fault(obj, page_offset, true, write);
1347
1348 /* Now bind it into the GTT if needed */
1349 if (!obj->map_and_fenceable) {
1350 ret = i915_gem_object_unbind(obj);
1351 if (ret)
1352 goto unlock;
1353 }
1354 if (!obj->gtt_space) {
1355 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1356 if (ret)
1357 goto unlock;
1358
1359 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1360 if (ret)
1361 goto unlock;
1362 }
1363
1364 if (!obj->has_global_gtt_mapping)
1365 i915_gem_gtt_bind_object(obj, obj->cache_level);
1366
1367 ret = i915_gem_object_get_fence(obj);
1368 if (ret)
1369 goto unlock;
1370
1371 if (i915_gem_object_is_inactive(obj))
1372 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1373
1374 obj->fault_mappable = true;
1375
1376 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1377 page_offset;
1378
1379 /* Finally, remap it using the new GTT offset */
1380 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381 unlock:
1382 mutex_unlock(&dev->struct_mutex);
1383 out:
1384 switch (ret) {
1385 case -EIO:
1386 /* If this -EIO is due to a gpu hang, give the reset code a
1387 * chance to clean up the mess. Otherwise return the proper
1388 * SIGBUS. */
1389 if (!atomic_read(&dev_priv->mm.wedged))
1390 return VM_FAULT_SIGBUS;
1391 case -EAGAIN:
1392 /* Give the error handler a chance to run and move the
1393 * objects off the GPU active list. Next time we service the
1394 * fault, we should be able to transition the page into the
1395 * GTT without touching the GPU (and so avoid further
1396 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1397 * with coherency, just lost writes.
1398 */
1399 set_need_resched();
1400 case 0:
1401 case -ERESTARTSYS:
1402 case -EINTR:
1403 return VM_FAULT_NOPAGE;
1404 case -ENOMEM:
1405 return VM_FAULT_OOM;
1406 default:
1407 return VM_FAULT_SIGBUS;
1408 }
1409 }
1410
1411 /**
1412 * i915_gem_release_mmap - remove physical page mappings
1413 * @obj: obj in question
1414 *
1415 * Preserve the reservation of the mmapping with the DRM core code, but
1416 * relinquish ownership of the pages back to the system.
1417 *
1418 * It is vital that we remove the page mapping if we have mapped a tiled
1419 * object through the GTT and then lose the fence register due to
1420 * resource pressure. Similarly if the object has been moved out of the
1421 * aperture, than pages mapped into userspace must be revoked. Removing the
1422 * mapping will then trigger a page fault on the next user access, allowing
1423 * fixup by i915_gem_fault().
1424 */
1425 void
1426 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1427 {
1428 if (!obj->fault_mappable)
1429 return;
1430
1431 if (obj->base.dev->dev_mapping)
1432 unmap_mapping_range(obj->base.dev->dev_mapping,
1433 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1434 obj->base.size, 1);
1435
1436 obj->fault_mappable = false;
1437 }
1438
1439 static uint32_t
1440 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1441 {
1442 uint32_t gtt_size;
1443
1444 if (INTEL_INFO(dev)->gen >= 4 ||
1445 tiling_mode == I915_TILING_NONE)
1446 return size;
1447
1448 /* Previous chips need a power-of-two fence region when tiling */
1449 if (INTEL_INFO(dev)->gen == 3)
1450 gtt_size = 1024*1024;
1451 else
1452 gtt_size = 512*1024;
1453
1454 while (gtt_size < size)
1455 gtt_size <<= 1;
1456
1457 return gtt_size;
1458 }
1459
1460 /**
1461 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1462 * @obj: object to check
1463 *
1464 * Return the required GTT alignment for an object, taking into account
1465 * potential fence register mapping.
1466 */
1467 static uint32_t
1468 i915_gem_get_gtt_alignment(struct drm_device *dev,
1469 uint32_t size,
1470 int tiling_mode)
1471 {
1472 /*
1473 * Minimum alignment is 4k (GTT page size), but might be greater
1474 * if a fence register is needed for the object.
1475 */
1476 if (INTEL_INFO(dev)->gen >= 4 ||
1477 tiling_mode == I915_TILING_NONE)
1478 return 4096;
1479
1480 /*
1481 * Previous chips need to be aligned to the size of the smallest
1482 * fence register that can contain the object.
1483 */
1484 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1485 }
1486
1487 /**
1488 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1489 * unfenced object
1490 * @dev: the device
1491 * @size: size of the object
1492 * @tiling_mode: tiling mode of the object
1493 *
1494 * Return the required GTT alignment for an object, only taking into account
1495 * unfenced tiled surface requirements.
1496 */
1497 uint32_t
1498 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1499 uint32_t size,
1500 int tiling_mode)
1501 {
1502 /*
1503 * Minimum alignment is 4k (GTT page size) for sane hw.
1504 */
1505 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1506 tiling_mode == I915_TILING_NONE)
1507 return 4096;
1508
1509 /* Previous hardware however needs to be aligned to a power-of-two
1510 * tile height. The simplest method for determining this is to reuse
1511 * the power-of-tile object size.
1512 */
1513 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1514 }
1515
1516 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1517 {
1518 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1519 int ret;
1520
1521 if (obj->base.map_list.map)
1522 return 0;
1523
1524 ret = drm_gem_create_mmap_offset(&obj->base);
1525 if (ret != -ENOSPC)
1526 return ret;
1527
1528 /* Badly fragmented mmap space? The only way we can recover
1529 * space is by destroying unwanted objects. We can't randomly release
1530 * mmap_offsets as userspace expects them to be persistent for the
1531 * lifetime of the objects. The closest we can is to release the
1532 * offsets on purgeable objects by truncating it and marking it purged,
1533 * which prevents userspace from ever using that object again.
1534 */
1535 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1536 ret = drm_gem_create_mmap_offset(&obj->base);
1537 if (ret != -ENOSPC)
1538 return ret;
1539
1540 i915_gem_shrink_all(dev_priv);
1541 return drm_gem_create_mmap_offset(&obj->base);
1542 }
1543
1544 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1545 {
1546 if (!obj->base.map_list.map)
1547 return;
1548
1549 drm_gem_free_mmap_offset(&obj->base);
1550 }
1551
1552 int
1553 i915_gem_mmap_gtt(struct drm_file *file,
1554 struct drm_device *dev,
1555 uint32_t handle,
1556 uint64_t *offset)
1557 {
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 struct drm_i915_gem_object *obj;
1560 int ret;
1561
1562 ret = i915_mutex_lock_interruptible(dev);
1563 if (ret)
1564 return ret;
1565
1566 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1567 if (&obj->base == NULL) {
1568 ret = -ENOENT;
1569 goto unlock;
1570 }
1571
1572 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1573 ret = -E2BIG;
1574 goto out;
1575 }
1576
1577 if (obj->madv != I915_MADV_WILLNEED) {
1578 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1579 ret = -EINVAL;
1580 goto out;
1581 }
1582
1583 ret = i915_gem_object_create_mmap_offset(obj);
1584 if (ret)
1585 goto out;
1586
1587 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1588
1589 out:
1590 drm_gem_object_unreference(&obj->base);
1591 unlock:
1592 mutex_unlock(&dev->struct_mutex);
1593 return ret;
1594 }
1595
1596 /**
1597 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1598 * @dev: DRM device
1599 * @data: GTT mapping ioctl data
1600 * @file: GEM object info
1601 *
1602 * Simply returns the fake offset to userspace so it can mmap it.
1603 * The mmap call will end up in drm_gem_mmap(), which will set things
1604 * up so we can get faults in the handler above.
1605 *
1606 * The fault handler will take care of binding the object into the GTT
1607 * (since it may have been evicted to make room for something), allocating
1608 * a fence register, and mapping the appropriate aperture address into
1609 * userspace.
1610 */
1611 int
1612 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1613 struct drm_file *file)
1614 {
1615 struct drm_i915_gem_mmap_gtt *args = data;
1616
1617 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1618 }
1619
1620 /* Immediately discard the backing storage */
1621 static void
1622 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1623 {
1624 struct inode *inode;
1625
1626 i915_gem_object_free_mmap_offset(obj);
1627
1628 if (obj->base.filp == NULL)
1629 return;
1630
1631 /* Our goal here is to return as much of the memory as
1632 * is possible back to the system as we are called from OOM.
1633 * To do this we must instruct the shmfs to drop all of its
1634 * backing pages, *now*.
1635 */
1636 inode = obj->base.filp->f_path.dentry->d_inode;
1637 shmem_truncate_range(inode, 0, (loff_t)-1);
1638
1639 obj->madv = __I915_MADV_PURGED;
1640 }
1641
1642 static inline int
1643 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1644 {
1645 return obj->madv == I915_MADV_DONTNEED;
1646 }
1647
1648 static void
1649 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1650 {
1651 int page_count = obj->base.size / PAGE_SIZE;
1652 struct scatterlist *sg;
1653 int ret, i;
1654
1655 BUG_ON(obj->madv == __I915_MADV_PURGED);
1656
1657 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1658 if (ret) {
1659 /* In the event of a disaster, abandon all caches and
1660 * hope for the best.
1661 */
1662 WARN_ON(ret != -EIO);
1663 i915_gem_clflush_object(obj);
1664 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1665 }
1666
1667 if (i915_gem_object_needs_bit17_swizzle(obj))
1668 i915_gem_object_save_bit_17_swizzle(obj);
1669
1670 if (obj->madv == I915_MADV_DONTNEED)
1671 obj->dirty = 0;
1672
1673 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1674 struct page *page = sg_page(sg);
1675
1676 if (obj->dirty)
1677 set_page_dirty(page);
1678
1679 if (obj->madv == I915_MADV_WILLNEED)
1680 mark_page_accessed(page);
1681
1682 page_cache_release(page);
1683 }
1684 obj->dirty = 0;
1685
1686 sg_free_table(obj->pages);
1687 kfree(obj->pages);
1688 }
1689
1690 static int
1691 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1692 {
1693 const struct drm_i915_gem_object_ops *ops = obj->ops;
1694
1695 if (obj->pages == NULL)
1696 return 0;
1697
1698 BUG_ON(obj->gtt_space);
1699
1700 if (obj->pages_pin_count)
1701 return -EBUSY;
1702
1703 ops->put_pages(obj);
1704 obj->pages = NULL;
1705
1706 list_del(&obj->gtt_list);
1707 if (i915_gem_object_is_purgeable(obj))
1708 i915_gem_object_truncate(obj);
1709
1710 return 0;
1711 }
1712
1713 static long
1714 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1715 {
1716 struct drm_i915_gem_object *obj, *next;
1717 long count = 0;
1718
1719 list_for_each_entry_safe(obj, next,
1720 &dev_priv->mm.unbound_list,
1721 gtt_list) {
1722 if (i915_gem_object_is_purgeable(obj) &&
1723 i915_gem_object_put_pages(obj) == 0) {
1724 count += obj->base.size >> PAGE_SHIFT;
1725 if (count >= target)
1726 return count;
1727 }
1728 }
1729
1730 list_for_each_entry_safe(obj, next,
1731 &dev_priv->mm.inactive_list,
1732 mm_list) {
1733 if (i915_gem_object_is_purgeable(obj) &&
1734 i915_gem_object_unbind(obj) == 0 &&
1735 i915_gem_object_put_pages(obj) == 0) {
1736 count += obj->base.size >> PAGE_SHIFT;
1737 if (count >= target)
1738 return count;
1739 }
1740 }
1741
1742 return count;
1743 }
1744
1745 static void
1746 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1747 {
1748 struct drm_i915_gem_object *obj, *next;
1749
1750 i915_gem_evict_everything(dev_priv->dev);
1751
1752 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1753 i915_gem_object_put_pages(obj);
1754 }
1755
1756 static int
1757 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1758 {
1759 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1760 int page_count, i;
1761 struct address_space *mapping;
1762 struct sg_table *st;
1763 struct scatterlist *sg;
1764 struct page *page;
1765 gfp_t gfp;
1766
1767 /* Assert that the object is not currently in any GPU domain. As it
1768 * wasn't in the GTT, there shouldn't be any way it could have been in
1769 * a GPU cache
1770 */
1771 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1772 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1773
1774 st = kmalloc(sizeof(*st), GFP_KERNEL);
1775 if (st == NULL)
1776 return -ENOMEM;
1777
1778 page_count = obj->base.size / PAGE_SIZE;
1779 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1780 sg_free_table(st);
1781 kfree(st);
1782 return -ENOMEM;
1783 }
1784
1785 /* Get the list of pages out of our struct file. They'll be pinned
1786 * at this point until we release them.
1787 *
1788 * Fail silently without starting the shrinker
1789 */
1790 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1791 gfp = mapping_gfp_mask(mapping);
1792 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1793 gfp &= ~(__GFP_IO | __GFP_WAIT);
1794 for_each_sg(st->sgl, sg, page_count, i) {
1795 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796 if (IS_ERR(page)) {
1797 i915_gem_purge(dev_priv, page_count);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 }
1800 if (IS_ERR(page)) {
1801 /* We've tried hard to allocate the memory by reaping
1802 * our own buffer, now let the real VM do its job and
1803 * go down in flames if truly OOM.
1804 */
1805 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1806 gfp |= __GFP_IO | __GFP_WAIT;
1807
1808 i915_gem_shrink_all(dev_priv);
1809 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1810 if (IS_ERR(page))
1811 goto err_pages;
1812
1813 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1814 gfp &= ~(__GFP_IO | __GFP_WAIT);
1815 }
1816
1817 sg_set_page(sg, page, PAGE_SIZE, 0);
1818 }
1819
1820 if (i915_gem_object_needs_bit17_swizzle(obj))
1821 i915_gem_object_do_bit_17_swizzle(obj);
1822
1823 obj->pages = st;
1824 return 0;
1825
1826 err_pages:
1827 for_each_sg(st->sgl, sg, i, page_count)
1828 page_cache_release(sg_page(sg));
1829 sg_free_table(st);
1830 kfree(st);
1831 return PTR_ERR(page);
1832 }
1833
1834 /* Ensure that the associated pages are gathered from the backing storage
1835 * and pinned into our object. i915_gem_object_get_pages() may be called
1836 * multiple times before they are released by a single call to
1837 * i915_gem_object_put_pages() - once the pages are no longer referenced
1838 * either as a result of memory pressure (reaping pages under the shrinker)
1839 * or as the object is itself released.
1840 */
1841 int
1842 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1843 {
1844 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1845 const struct drm_i915_gem_object_ops *ops = obj->ops;
1846 int ret;
1847
1848 if (obj->pages)
1849 return 0;
1850
1851 BUG_ON(obj->pages_pin_count);
1852
1853 ret = ops->get_pages(obj);
1854 if (ret)
1855 return ret;
1856
1857 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1858 return 0;
1859 }
1860
1861 void
1862 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1863 struct intel_ring_buffer *ring,
1864 u32 seqno)
1865 {
1866 struct drm_device *dev = obj->base.dev;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868
1869 BUG_ON(ring == NULL);
1870 obj->ring = ring;
1871
1872 /* Add a reference if we're newly entering the active list. */
1873 if (!obj->active) {
1874 drm_gem_object_reference(&obj->base);
1875 obj->active = 1;
1876 }
1877
1878 /* Move from whatever list we were on to the tail of execution. */
1879 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1880 list_move_tail(&obj->ring_list, &ring->active_list);
1881
1882 obj->last_read_seqno = seqno;
1883
1884 if (obj->fenced_gpu_access) {
1885 obj->last_fenced_seqno = seqno;
1886
1887 /* Bump MRU to take account of the delayed flush */
1888 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1889 struct drm_i915_fence_reg *reg;
1890
1891 reg = &dev_priv->fence_regs[obj->fence_reg];
1892 list_move_tail(&reg->lru_list,
1893 &dev_priv->mm.fence_list);
1894 }
1895 }
1896 }
1897
1898 static void
1899 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1900 {
1901 struct drm_device *dev = obj->base.dev;
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903
1904 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1905 BUG_ON(!obj->active);
1906
1907 if (obj->pin_count) /* are we a framebuffer? */
1908 intel_mark_fb_idle(obj);
1909
1910 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1911
1912 list_del_init(&obj->ring_list);
1913 obj->ring = NULL;
1914
1915 obj->last_read_seqno = 0;
1916 obj->last_write_seqno = 0;
1917 obj->base.write_domain = 0;
1918
1919 obj->last_fenced_seqno = 0;
1920 obj->fenced_gpu_access = false;
1921
1922 obj->active = 0;
1923 drm_gem_object_unreference(&obj->base);
1924
1925 WARN_ON(i915_verify_lists(dev));
1926 }
1927
1928 static u32
1929 i915_gem_get_seqno(struct drm_device *dev)
1930 {
1931 drm_i915_private_t *dev_priv = dev->dev_private;
1932 u32 seqno = dev_priv->next_seqno;
1933
1934 /* reserve 0 for non-seqno */
1935 if (++dev_priv->next_seqno == 0)
1936 dev_priv->next_seqno = 1;
1937
1938 return seqno;
1939 }
1940
1941 u32
1942 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1943 {
1944 if (ring->outstanding_lazy_request == 0)
1945 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1946
1947 return ring->outstanding_lazy_request;
1948 }
1949
1950 int
1951 i915_add_request(struct intel_ring_buffer *ring,
1952 struct drm_file *file,
1953 struct drm_i915_gem_request *request)
1954 {
1955 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1956 uint32_t seqno;
1957 u32 request_ring_position;
1958 int was_empty;
1959 int ret;
1960
1961 /*
1962 * Emit any outstanding flushes - execbuf can fail to emit the flush
1963 * after having emitted the batchbuffer command. Hence we need to fix
1964 * things up similar to emitting the lazy request. The difference here
1965 * is that the flush _must_ happen before the next request, no matter
1966 * what.
1967 */
1968 ret = intel_ring_flush_all_caches(ring);
1969 if (ret)
1970 return ret;
1971
1972 if (request == NULL) {
1973 request = kmalloc(sizeof(*request), GFP_KERNEL);
1974 if (request == NULL)
1975 return -ENOMEM;
1976 }
1977
1978 seqno = i915_gem_next_request_seqno(ring);
1979
1980 /* Record the position of the start of the request so that
1981 * should we detect the updated seqno part-way through the
1982 * GPU processing the request, we never over-estimate the
1983 * position of the head.
1984 */
1985 request_ring_position = intel_ring_get_tail(ring);
1986
1987 ret = ring->add_request(ring, &seqno);
1988 if (ret) {
1989 kfree(request);
1990 return ret;
1991 }
1992
1993 trace_i915_gem_request_add(ring, seqno);
1994
1995 request->seqno = seqno;
1996 request->ring = ring;
1997 request->tail = request_ring_position;
1998 request->emitted_jiffies = jiffies;
1999 was_empty = list_empty(&ring->request_list);
2000 list_add_tail(&request->list, &ring->request_list);
2001 request->file_priv = NULL;
2002
2003 if (file) {
2004 struct drm_i915_file_private *file_priv = file->driver_priv;
2005
2006 spin_lock(&file_priv->mm.lock);
2007 request->file_priv = file_priv;
2008 list_add_tail(&request->client_list,
2009 &file_priv->mm.request_list);
2010 spin_unlock(&file_priv->mm.lock);
2011 }
2012
2013 ring->outstanding_lazy_request = 0;
2014
2015 if (!dev_priv->mm.suspended) {
2016 if (i915_enable_hangcheck) {
2017 mod_timer(&dev_priv->hangcheck_timer,
2018 jiffies +
2019 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2020 }
2021 if (was_empty) {
2022 queue_delayed_work(dev_priv->wq,
2023 &dev_priv->mm.retire_work, HZ);
2024 intel_mark_busy(dev_priv->dev);
2025 }
2026 }
2027
2028 return 0;
2029 }
2030
2031 static inline void
2032 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2033 {
2034 struct drm_i915_file_private *file_priv = request->file_priv;
2035
2036 if (!file_priv)
2037 return;
2038
2039 spin_lock(&file_priv->mm.lock);
2040 if (request->file_priv) {
2041 list_del(&request->client_list);
2042 request->file_priv = NULL;
2043 }
2044 spin_unlock(&file_priv->mm.lock);
2045 }
2046
2047 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2048 struct intel_ring_buffer *ring)
2049 {
2050 while (!list_empty(&ring->request_list)) {
2051 struct drm_i915_gem_request *request;
2052
2053 request = list_first_entry(&ring->request_list,
2054 struct drm_i915_gem_request,
2055 list);
2056
2057 list_del(&request->list);
2058 i915_gem_request_remove_from_client(request);
2059 kfree(request);
2060 }
2061
2062 while (!list_empty(&ring->active_list)) {
2063 struct drm_i915_gem_object *obj;
2064
2065 obj = list_first_entry(&ring->active_list,
2066 struct drm_i915_gem_object,
2067 ring_list);
2068
2069 i915_gem_object_move_to_inactive(obj);
2070 }
2071 }
2072
2073 static void i915_gem_reset_fences(struct drm_device *dev)
2074 {
2075 struct drm_i915_private *dev_priv = dev->dev_private;
2076 int i;
2077
2078 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2079 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2080
2081 i915_gem_write_fence(dev, i, NULL);
2082
2083 if (reg->obj)
2084 i915_gem_object_fence_lost(reg->obj);
2085
2086 reg->pin_count = 0;
2087 reg->obj = NULL;
2088 INIT_LIST_HEAD(&reg->lru_list);
2089 }
2090
2091 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2092 }
2093
2094 void i915_gem_reset(struct drm_device *dev)
2095 {
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 struct drm_i915_gem_object *obj;
2098 struct intel_ring_buffer *ring;
2099 int i;
2100
2101 for_each_ring(ring, dev_priv, i)
2102 i915_gem_reset_ring_lists(dev_priv, ring);
2103
2104 /* Move everything out of the GPU domains to ensure we do any
2105 * necessary invalidation upon reuse.
2106 */
2107 list_for_each_entry(obj,
2108 &dev_priv->mm.inactive_list,
2109 mm_list)
2110 {
2111 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2112 }
2113
2114 /* The fence registers are invalidated so clear them out */
2115 i915_gem_reset_fences(dev);
2116 }
2117
2118 /**
2119 * This function clears the request list as sequence numbers are passed.
2120 */
2121 void
2122 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2123 {
2124 uint32_t seqno;
2125 int i;
2126
2127 if (list_empty(&ring->request_list))
2128 return;
2129
2130 WARN_ON(i915_verify_lists(ring->dev));
2131
2132 seqno = ring->get_seqno(ring, true);
2133
2134 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2135 if (seqno >= ring->sync_seqno[i])
2136 ring->sync_seqno[i] = 0;
2137
2138 while (!list_empty(&ring->request_list)) {
2139 struct drm_i915_gem_request *request;
2140
2141 request = list_first_entry(&ring->request_list,
2142 struct drm_i915_gem_request,
2143 list);
2144
2145 if (!i915_seqno_passed(seqno, request->seqno))
2146 break;
2147
2148 trace_i915_gem_request_retire(ring, request->seqno);
2149 /* We know the GPU must have read the request to have
2150 * sent us the seqno + interrupt, so use the position
2151 * of tail of the request to update the last known position
2152 * of the GPU head.
2153 */
2154 ring->last_retired_head = request->tail;
2155
2156 list_del(&request->list);
2157 i915_gem_request_remove_from_client(request);
2158 kfree(request);
2159 }
2160
2161 /* Move any buffers on the active list that are no longer referenced
2162 * by the ringbuffer to the flushing/inactive lists as appropriate.
2163 */
2164 while (!list_empty(&ring->active_list)) {
2165 struct drm_i915_gem_object *obj;
2166
2167 obj = list_first_entry(&ring->active_list,
2168 struct drm_i915_gem_object,
2169 ring_list);
2170
2171 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2172 break;
2173
2174 i915_gem_object_move_to_inactive(obj);
2175 }
2176
2177 if (unlikely(ring->trace_irq_seqno &&
2178 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2179 ring->irq_put(ring);
2180 ring->trace_irq_seqno = 0;
2181 }
2182
2183 WARN_ON(i915_verify_lists(ring->dev));
2184 }
2185
2186 void
2187 i915_gem_retire_requests(struct drm_device *dev)
2188 {
2189 drm_i915_private_t *dev_priv = dev->dev_private;
2190 struct intel_ring_buffer *ring;
2191 int i;
2192
2193 for_each_ring(ring, dev_priv, i)
2194 i915_gem_retire_requests_ring(ring);
2195 }
2196
2197 static void
2198 i915_gem_retire_work_handler(struct work_struct *work)
2199 {
2200 drm_i915_private_t *dev_priv;
2201 struct drm_device *dev;
2202 struct intel_ring_buffer *ring;
2203 bool idle;
2204 int i;
2205
2206 dev_priv = container_of(work, drm_i915_private_t,
2207 mm.retire_work.work);
2208 dev = dev_priv->dev;
2209
2210 /* Come back later if the device is busy... */
2211 if (!mutex_trylock(&dev->struct_mutex)) {
2212 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2213 return;
2214 }
2215
2216 i915_gem_retire_requests(dev);
2217
2218 /* Send a periodic flush down the ring so we don't hold onto GEM
2219 * objects indefinitely.
2220 */
2221 idle = true;
2222 for_each_ring(ring, dev_priv, i) {
2223 if (ring->gpu_caches_dirty)
2224 i915_add_request(ring, NULL, NULL);
2225
2226 idle &= list_empty(&ring->request_list);
2227 }
2228
2229 if (!dev_priv->mm.suspended && !idle)
2230 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2231 if (idle)
2232 intel_mark_idle(dev);
2233
2234 mutex_unlock(&dev->struct_mutex);
2235 }
2236
2237 /**
2238 * Ensures that an object will eventually get non-busy by flushing any required
2239 * write domains, emitting any outstanding lazy request and retiring and
2240 * completed requests.
2241 */
2242 static int
2243 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2244 {
2245 int ret;
2246
2247 if (obj->active) {
2248 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2249 if (ret)
2250 return ret;
2251
2252 i915_gem_retire_requests_ring(obj->ring);
2253 }
2254
2255 return 0;
2256 }
2257
2258 /**
2259 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2260 * @DRM_IOCTL_ARGS: standard ioctl arguments
2261 *
2262 * Returns 0 if successful, else an error is returned with the remaining time in
2263 * the timeout parameter.
2264 * -ETIME: object is still busy after timeout
2265 * -ERESTARTSYS: signal interrupted the wait
2266 * -ENONENT: object doesn't exist
2267 * Also possible, but rare:
2268 * -EAGAIN: GPU wedged
2269 * -ENOMEM: damn
2270 * -ENODEV: Internal IRQ fail
2271 * -E?: The add request failed
2272 *
2273 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2274 * non-zero timeout parameter the wait ioctl will wait for the given number of
2275 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2276 * without holding struct_mutex the object may become re-busied before this
2277 * function completes. A similar but shorter * race condition exists in the busy
2278 * ioctl
2279 */
2280 int
2281 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2282 {
2283 struct drm_i915_gem_wait *args = data;
2284 struct drm_i915_gem_object *obj;
2285 struct intel_ring_buffer *ring = NULL;
2286 struct timespec timeout_stack, *timeout = NULL;
2287 u32 seqno = 0;
2288 int ret = 0;
2289
2290 if (args->timeout_ns >= 0) {
2291 timeout_stack = ns_to_timespec(args->timeout_ns);
2292 timeout = &timeout_stack;
2293 }
2294
2295 ret = i915_mutex_lock_interruptible(dev);
2296 if (ret)
2297 return ret;
2298
2299 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2300 if (&obj->base == NULL) {
2301 mutex_unlock(&dev->struct_mutex);
2302 return -ENOENT;
2303 }
2304
2305 /* Need to make sure the object gets inactive eventually. */
2306 ret = i915_gem_object_flush_active(obj);
2307 if (ret)
2308 goto out;
2309
2310 if (obj->active) {
2311 seqno = obj->last_read_seqno;
2312 ring = obj->ring;
2313 }
2314
2315 if (seqno == 0)
2316 goto out;
2317
2318 /* Do this after OLR check to make sure we make forward progress polling
2319 * on this IOCTL with a 0 timeout (like busy ioctl)
2320 */
2321 if (!args->timeout_ns) {
2322 ret = -ETIME;
2323 goto out;
2324 }
2325
2326 drm_gem_object_unreference(&obj->base);
2327 mutex_unlock(&dev->struct_mutex);
2328
2329 ret = __wait_seqno(ring, seqno, true, timeout);
2330 if (timeout) {
2331 WARN_ON(!timespec_valid(timeout));
2332 args->timeout_ns = timespec_to_ns(timeout);
2333 }
2334 return ret;
2335
2336 out:
2337 drm_gem_object_unreference(&obj->base);
2338 mutex_unlock(&dev->struct_mutex);
2339 return ret;
2340 }
2341
2342 /**
2343 * i915_gem_object_sync - sync an object to a ring.
2344 *
2345 * @obj: object which may be in use on another ring.
2346 * @to: ring we wish to use the object on. May be NULL.
2347 *
2348 * This code is meant to abstract object synchronization with the GPU.
2349 * Calling with NULL implies synchronizing the object with the CPU
2350 * rather than a particular GPU ring.
2351 *
2352 * Returns 0 if successful, else propagates up the lower layer error.
2353 */
2354 int
2355 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2356 struct intel_ring_buffer *to)
2357 {
2358 struct intel_ring_buffer *from = obj->ring;
2359 u32 seqno;
2360 int ret, idx;
2361
2362 if (from == NULL || to == from)
2363 return 0;
2364
2365 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2366 return i915_gem_object_wait_rendering(obj, false);
2367
2368 idx = intel_ring_sync_index(from, to);
2369
2370 seqno = obj->last_read_seqno;
2371 if (seqno <= from->sync_seqno[idx])
2372 return 0;
2373
2374 ret = i915_gem_check_olr(obj->ring, seqno);
2375 if (ret)
2376 return ret;
2377
2378 ret = to->sync_to(to, from, seqno);
2379 if (!ret)
2380 from->sync_seqno[idx] = seqno;
2381
2382 return ret;
2383 }
2384
2385 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2386 {
2387 u32 old_write_domain, old_read_domains;
2388
2389 /* Act a barrier for all accesses through the GTT */
2390 mb();
2391
2392 /* Force a pagefault for domain tracking on next user access */
2393 i915_gem_release_mmap(obj);
2394
2395 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2396 return;
2397
2398 old_read_domains = obj->base.read_domains;
2399 old_write_domain = obj->base.write_domain;
2400
2401 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2402 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2403
2404 trace_i915_gem_object_change_domain(obj,
2405 old_read_domains,
2406 old_write_domain);
2407 }
2408
2409 /**
2410 * Unbinds an object from the GTT aperture.
2411 */
2412 int
2413 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2414 {
2415 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2416 int ret = 0;
2417
2418 if (obj->gtt_space == NULL)
2419 return 0;
2420
2421 if (obj->pin_count)
2422 return -EBUSY;
2423
2424 BUG_ON(obj->pages == NULL);
2425
2426 ret = i915_gem_object_finish_gpu(obj);
2427 if (ret)
2428 return ret;
2429 /* Continue on if we fail due to EIO, the GPU is hung so we
2430 * should be safe and we need to cleanup or else we might
2431 * cause memory corruption through use-after-free.
2432 */
2433
2434 i915_gem_object_finish_gtt(obj);
2435
2436 /* release the fence reg _after_ flushing */
2437 ret = i915_gem_object_put_fence(obj);
2438 if (ret)
2439 return ret;
2440
2441 trace_i915_gem_object_unbind(obj);
2442
2443 if (obj->has_global_gtt_mapping)
2444 i915_gem_gtt_unbind_object(obj);
2445 if (obj->has_aliasing_ppgtt_mapping) {
2446 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2447 obj->has_aliasing_ppgtt_mapping = 0;
2448 }
2449 i915_gem_gtt_finish_object(obj);
2450
2451 list_del(&obj->mm_list);
2452 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2453 /* Avoid an unnecessary call to unbind on rebind. */
2454 obj->map_and_fenceable = true;
2455
2456 drm_mm_put_block(obj->gtt_space);
2457 obj->gtt_space = NULL;
2458 obj->gtt_offset = 0;
2459
2460 return 0;
2461 }
2462
2463 static int i915_ring_idle(struct intel_ring_buffer *ring)
2464 {
2465 if (list_empty(&ring->active_list))
2466 return 0;
2467
2468 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2469 }
2470
2471 int i915_gpu_idle(struct drm_device *dev)
2472 {
2473 drm_i915_private_t *dev_priv = dev->dev_private;
2474 struct intel_ring_buffer *ring;
2475 int ret, i;
2476
2477 /* Flush everything onto the inactive list. */
2478 for_each_ring(ring, dev_priv, i) {
2479 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2480 if (ret)
2481 return ret;
2482
2483 ret = i915_ring_idle(ring);
2484 if (ret)
2485 return ret;
2486 }
2487
2488 return 0;
2489 }
2490
2491 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2492 struct drm_i915_gem_object *obj)
2493 {
2494 drm_i915_private_t *dev_priv = dev->dev_private;
2495 uint64_t val;
2496
2497 if (obj) {
2498 u32 size = obj->gtt_space->size;
2499
2500 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2501 0xfffff000) << 32;
2502 val |= obj->gtt_offset & 0xfffff000;
2503 val |= (uint64_t)((obj->stride / 128) - 1) <<
2504 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2505
2506 if (obj->tiling_mode == I915_TILING_Y)
2507 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2508 val |= I965_FENCE_REG_VALID;
2509 } else
2510 val = 0;
2511
2512 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2513 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2514 }
2515
2516 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2517 struct drm_i915_gem_object *obj)
2518 {
2519 drm_i915_private_t *dev_priv = dev->dev_private;
2520 uint64_t val;
2521
2522 if (obj) {
2523 u32 size = obj->gtt_space->size;
2524
2525 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2526 0xfffff000) << 32;
2527 val |= obj->gtt_offset & 0xfffff000;
2528 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2529 if (obj->tiling_mode == I915_TILING_Y)
2530 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2531 val |= I965_FENCE_REG_VALID;
2532 } else
2533 val = 0;
2534
2535 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2536 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2537 }
2538
2539 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2540 struct drm_i915_gem_object *obj)
2541 {
2542 drm_i915_private_t *dev_priv = dev->dev_private;
2543 u32 val;
2544
2545 if (obj) {
2546 u32 size = obj->gtt_space->size;
2547 int pitch_val;
2548 int tile_width;
2549
2550 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2551 (size & -size) != size ||
2552 (obj->gtt_offset & (size - 1)),
2553 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2554 obj->gtt_offset, obj->map_and_fenceable, size);
2555
2556 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2557 tile_width = 128;
2558 else
2559 tile_width = 512;
2560
2561 /* Note: pitch better be a power of two tile widths */
2562 pitch_val = obj->stride / tile_width;
2563 pitch_val = ffs(pitch_val) - 1;
2564
2565 val = obj->gtt_offset;
2566 if (obj->tiling_mode == I915_TILING_Y)
2567 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2568 val |= I915_FENCE_SIZE_BITS(size);
2569 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2570 val |= I830_FENCE_REG_VALID;
2571 } else
2572 val = 0;
2573
2574 if (reg < 8)
2575 reg = FENCE_REG_830_0 + reg * 4;
2576 else
2577 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2578
2579 I915_WRITE(reg, val);
2580 POSTING_READ(reg);
2581 }
2582
2583 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2584 struct drm_i915_gem_object *obj)
2585 {
2586 drm_i915_private_t *dev_priv = dev->dev_private;
2587 uint32_t val;
2588
2589 if (obj) {
2590 u32 size = obj->gtt_space->size;
2591 uint32_t pitch_val;
2592
2593 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2594 (size & -size) != size ||
2595 (obj->gtt_offset & (size - 1)),
2596 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2597 obj->gtt_offset, size);
2598
2599 pitch_val = obj->stride / 128;
2600 pitch_val = ffs(pitch_val) - 1;
2601
2602 val = obj->gtt_offset;
2603 if (obj->tiling_mode == I915_TILING_Y)
2604 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2605 val |= I830_FENCE_SIZE_BITS(size);
2606 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2607 val |= I830_FENCE_REG_VALID;
2608 } else
2609 val = 0;
2610
2611 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2612 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2613 }
2614
2615 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2616 struct drm_i915_gem_object *obj)
2617 {
2618 switch (INTEL_INFO(dev)->gen) {
2619 case 7:
2620 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2621 case 5:
2622 case 4: i965_write_fence_reg(dev, reg, obj); break;
2623 case 3: i915_write_fence_reg(dev, reg, obj); break;
2624 case 2: i830_write_fence_reg(dev, reg, obj); break;
2625 default: break;
2626 }
2627 }
2628
2629 static inline int fence_number(struct drm_i915_private *dev_priv,
2630 struct drm_i915_fence_reg *fence)
2631 {
2632 return fence - dev_priv->fence_regs;
2633 }
2634
2635 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2636 struct drm_i915_fence_reg *fence,
2637 bool enable)
2638 {
2639 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2640 int reg = fence_number(dev_priv, fence);
2641
2642 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2643
2644 if (enable) {
2645 obj->fence_reg = reg;
2646 fence->obj = obj;
2647 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2648 } else {
2649 obj->fence_reg = I915_FENCE_REG_NONE;
2650 fence->obj = NULL;
2651 list_del_init(&fence->lru_list);
2652 }
2653 }
2654
2655 static int
2656 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2657 {
2658 if (obj->last_fenced_seqno) {
2659 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2660 if (ret)
2661 return ret;
2662
2663 obj->last_fenced_seqno = 0;
2664 }
2665
2666 /* Ensure that all CPU reads are completed before installing a fence
2667 * and all writes before removing the fence.
2668 */
2669 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2670 mb();
2671
2672 obj->fenced_gpu_access = false;
2673 return 0;
2674 }
2675
2676 int
2677 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2678 {
2679 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2680 int ret;
2681
2682 ret = i915_gem_object_flush_fence(obj);
2683 if (ret)
2684 return ret;
2685
2686 if (obj->fence_reg == I915_FENCE_REG_NONE)
2687 return 0;
2688
2689 i915_gem_object_update_fence(obj,
2690 &dev_priv->fence_regs[obj->fence_reg],
2691 false);
2692 i915_gem_object_fence_lost(obj);
2693
2694 return 0;
2695 }
2696
2697 static struct drm_i915_fence_reg *
2698 i915_find_fence_reg(struct drm_device *dev)
2699 {
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 struct drm_i915_fence_reg *reg, *avail;
2702 int i;
2703
2704 /* First try to find a free reg */
2705 avail = NULL;
2706 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2707 reg = &dev_priv->fence_regs[i];
2708 if (!reg->obj)
2709 return reg;
2710
2711 if (!reg->pin_count)
2712 avail = reg;
2713 }
2714
2715 if (avail == NULL)
2716 return NULL;
2717
2718 /* None available, try to steal one or wait for a user to finish */
2719 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2720 if (reg->pin_count)
2721 continue;
2722
2723 return reg;
2724 }
2725
2726 return NULL;
2727 }
2728
2729 /**
2730 * i915_gem_object_get_fence - set up fencing for an object
2731 * @obj: object to map through a fence reg
2732 *
2733 * When mapping objects through the GTT, userspace wants to be able to write
2734 * to them without having to worry about swizzling if the object is tiled.
2735 * This function walks the fence regs looking for a free one for @obj,
2736 * stealing one if it can't find any.
2737 *
2738 * It then sets up the reg based on the object's properties: address, pitch
2739 * and tiling format.
2740 *
2741 * For an untiled surface, this removes any existing fence.
2742 */
2743 int
2744 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2745 {
2746 struct drm_device *dev = obj->base.dev;
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 bool enable = obj->tiling_mode != I915_TILING_NONE;
2749 struct drm_i915_fence_reg *reg;
2750 int ret;
2751
2752 /* Have we updated the tiling parameters upon the object and so
2753 * will need to serialise the write to the associated fence register?
2754 */
2755 if (obj->fence_dirty) {
2756 ret = i915_gem_object_flush_fence(obj);
2757 if (ret)
2758 return ret;
2759 }
2760
2761 /* Just update our place in the LRU if our fence is getting reused. */
2762 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2763 reg = &dev_priv->fence_regs[obj->fence_reg];
2764 if (!obj->fence_dirty) {
2765 list_move_tail(&reg->lru_list,
2766 &dev_priv->mm.fence_list);
2767 return 0;
2768 }
2769 } else if (enable) {
2770 reg = i915_find_fence_reg(dev);
2771 if (reg == NULL)
2772 return -EDEADLK;
2773
2774 if (reg->obj) {
2775 struct drm_i915_gem_object *old = reg->obj;
2776
2777 ret = i915_gem_object_flush_fence(old);
2778 if (ret)
2779 return ret;
2780
2781 i915_gem_object_fence_lost(old);
2782 }
2783 } else
2784 return 0;
2785
2786 i915_gem_object_update_fence(obj, reg, enable);
2787 obj->fence_dirty = false;
2788
2789 return 0;
2790 }
2791
2792 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2793 struct drm_mm_node *gtt_space,
2794 unsigned long cache_level)
2795 {
2796 struct drm_mm_node *other;
2797
2798 /* On non-LLC machines we have to be careful when putting differing
2799 * types of snoopable memory together to avoid the prefetcher
2800 * crossing memory domains and dieing.
2801 */
2802 if (HAS_LLC(dev))
2803 return true;
2804
2805 if (gtt_space == NULL)
2806 return true;
2807
2808 if (list_empty(&gtt_space->node_list))
2809 return true;
2810
2811 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2812 if (other->allocated && !other->hole_follows && other->color != cache_level)
2813 return false;
2814
2815 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2816 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2817 return false;
2818
2819 return true;
2820 }
2821
2822 static void i915_gem_verify_gtt(struct drm_device *dev)
2823 {
2824 #if WATCH_GTT
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 struct drm_i915_gem_object *obj;
2827 int err = 0;
2828
2829 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2830 if (obj->gtt_space == NULL) {
2831 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2832 err++;
2833 continue;
2834 }
2835
2836 if (obj->cache_level != obj->gtt_space->color) {
2837 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2838 obj->gtt_space->start,
2839 obj->gtt_space->start + obj->gtt_space->size,
2840 obj->cache_level,
2841 obj->gtt_space->color);
2842 err++;
2843 continue;
2844 }
2845
2846 if (!i915_gem_valid_gtt_space(dev,
2847 obj->gtt_space,
2848 obj->cache_level)) {
2849 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2850 obj->gtt_space->start,
2851 obj->gtt_space->start + obj->gtt_space->size,
2852 obj->cache_level);
2853 err++;
2854 continue;
2855 }
2856 }
2857
2858 WARN_ON(err);
2859 #endif
2860 }
2861
2862 /**
2863 * Finds free space in the GTT aperture and binds the object there.
2864 */
2865 static int
2866 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2867 unsigned alignment,
2868 bool map_and_fenceable,
2869 bool nonblocking)
2870 {
2871 struct drm_device *dev = obj->base.dev;
2872 drm_i915_private_t *dev_priv = dev->dev_private;
2873 struct drm_mm_node *free_space;
2874 u32 size, fence_size, fence_alignment, unfenced_alignment;
2875 bool mappable, fenceable;
2876 int ret;
2877
2878 if (obj->madv != I915_MADV_WILLNEED) {
2879 DRM_ERROR("Attempting to bind a purgeable object\n");
2880 return -EINVAL;
2881 }
2882
2883 fence_size = i915_gem_get_gtt_size(dev,
2884 obj->base.size,
2885 obj->tiling_mode);
2886 fence_alignment = i915_gem_get_gtt_alignment(dev,
2887 obj->base.size,
2888 obj->tiling_mode);
2889 unfenced_alignment =
2890 i915_gem_get_unfenced_gtt_alignment(dev,
2891 obj->base.size,
2892 obj->tiling_mode);
2893
2894 if (alignment == 0)
2895 alignment = map_and_fenceable ? fence_alignment :
2896 unfenced_alignment;
2897 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2898 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2899 return -EINVAL;
2900 }
2901
2902 size = map_and_fenceable ? fence_size : obj->base.size;
2903
2904 /* If the object is bigger than the entire aperture, reject it early
2905 * before evicting everything in a vain attempt to find space.
2906 */
2907 if (obj->base.size >
2908 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2909 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2910 return -E2BIG;
2911 }
2912
2913 ret = i915_gem_object_get_pages(obj);
2914 if (ret)
2915 return ret;
2916
2917 search_free:
2918 if (map_and_fenceable)
2919 free_space =
2920 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2921 size, alignment, obj->cache_level,
2922 0, dev_priv->mm.gtt_mappable_end,
2923 false);
2924 else
2925 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2926 size, alignment, obj->cache_level,
2927 false);
2928
2929 if (free_space != NULL) {
2930 if (map_and_fenceable)
2931 obj->gtt_space =
2932 drm_mm_get_block_range_generic(free_space,
2933 size, alignment, obj->cache_level,
2934 0, dev_priv->mm.gtt_mappable_end,
2935 false);
2936 else
2937 obj->gtt_space =
2938 drm_mm_get_block_generic(free_space,
2939 size, alignment, obj->cache_level,
2940 false);
2941 }
2942 if (obj->gtt_space == NULL) {
2943 ret = i915_gem_evict_something(dev, size, alignment,
2944 obj->cache_level,
2945 map_and_fenceable,
2946 nonblocking);
2947 if (ret)
2948 return ret;
2949
2950 goto search_free;
2951 }
2952 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2953 obj->gtt_space,
2954 obj->cache_level))) {
2955 drm_mm_put_block(obj->gtt_space);
2956 obj->gtt_space = NULL;
2957 return -EINVAL;
2958 }
2959
2960
2961 ret = i915_gem_gtt_prepare_object(obj);
2962 if (ret) {
2963 drm_mm_put_block(obj->gtt_space);
2964 obj->gtt_space = NULL;
2965 return ret;
2966 }
2967
2968 if (!dev_priv->mm.aliasing_ppgtt)
2969 i915_gem_gtt_bind_object(obj, obj->cache_level);
2970
2971 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2972 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2973
2974 obj->gtt_offset = obj->gtt_space->start;
2975
2976 fenceable =
2977 obj->gtt_space->size == fence_size &&
2978 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2979
2980 mappable =
2981 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2982
2983 obj->map_and_fenceable = mappable && fenceable;
2984
2985 trace_i915_gem_object_bind(obj, map_and_fenceable);
2986 i915_gem_verify_gtt(dev);
2987 return 0;
2988 }
2989
2990 void
2991 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2992 {
2993 /* If we don't have a page list set up, then we're not pinned
2994 * to GPU, and we can ignore the cache flush because it'll happen
2995 * again at bind time.
2996 */
2997 if (obj->pages == NULL)
2998 return;
2999
3000 /* If the GPU is snooping the contents of the CPU cache,
3001 * we do not need to manually clear the CPU cache lines. However,
3002 * the caches are only snooped when the render cache is
3003 * flushed/invalidated. As we always have to emit invalidations
3004 * and flushes when moving into and out of the RENDER domain, correct
3005 * snooping behaviour occurs naturally as the result of our domain
3006 * tracking.
3007 */
3008 if (obj->cache_level != I915_CACHE_NONE)
3009 return;
3010
3011 trace_i915_gem_object_clflush(obj);
3012
3013 drm_clflush_sg(obj->pages);
3014 }
3015
3016 /** Flushes the GTT write domain for the object if it's dirty. */
3017 static void
3018 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3019 {
3020 uint32_t old_write_domain;
3021
3022 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3023 return;
3024
3025 /* No actual flushing is required for the GTT write domain. Writes
3026 * to it immediately go to main memory as far as we know, so there's
3027 * no chipset flush. It also doesn't land in render cache.
3028 *
3029 * However, we do have to enforce the order so that all writes through
3030 * the GTT land before any writes to the device, such as updates to
3031 * the GATT itself.
3032 */
3033 wmb();
3034
3035 old_write_domain = obj->base.write_domain;
3036 obj->base.write_domain = 0;
3037
3038 trace_i915_gem_object_change_domain(obj,
3039 obj->base.read_domains,
3040 old_write_domain);
3041 }
3042
3043 /** Flushes the CPU write domain for the object if it's dirty. */
3044 static void
3045 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3046 {
3047 uint32_t old_write_domain;
3048
3049 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3050 return;
3051
3052 i915_gem_clflush_object(obj);
3053 intel_gtt_chipset_flush();
3054 old_write_domain = obj->base.write_domain;
3055 obj->base.write_domain = 0;
3056
3057 trace_i915_gem_object_change_domain(obj,
3058 obj->base.read_domains,
3059 old_write_domain);
3060 }
3061
3062 /**
3063 * Moves a single object to the GTT read, and possibly write domain.
3064 *
3065 * This function returns when the move is complete, including waiting on
3066 * flushes to occur.
3067 */
3068 int
3069 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3070 {
3071 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3072 uint32_t old_write_domain, old_read_domains;
3073 int ret;
3074
3075 /* Not valid to be called on unbound objects. */
3076 if (obj->gtt_space == NULL)
3077 return -EINVAL;
3078
3079 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3080 return 0;
3081
3082 ret = i915_gem_object_wait_rendering(obj, !write);
3083 if (ret)
3084 return ret;
3085
3086 i915_gem_object_flush_cpu_write_domain(obj);
3087
3088 old_write_domain = obj->base.write_domain;
3089 old_read_domains = obj->base.read_domains;
3090
3091 /* It should now be out of any other write domains, and we can update
3092 * the domain values for our changes.
3093 */
3094 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3095 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3096 if (write) {
3097 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3098 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3099 obj->dirty = 1;
3100 }
3101
3102 trace_i915_gem_object_change_domain(obj,
3103 old_read_domains,
3104 old_write_domain);
3105
3106 /* And bump the LRU for this access */
3107 if (i915_gem_object_is_inactive(obj))
3108 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3109
3110 return 0;
3111 }
3112
3113 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3114 enum i915_cache_level cache_level)
3115 {
3116 struct drm_device *dev = obj->base.dev;
3117 drm_i915_private_t *dev_priv = dev->dev_private;
3118 int ret;
3119
3120 if (obj->cache_level == cache_level)
3121 return 0;
3122
3123 if (obj->pin_count) {
3124 DRM_DEBUG("can not change the cache level of pinned objects\n");
3125 return -EBUSY;
3126 }
3127
3128 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3129 ret = i915_gem_object_unbind(obj);
3130 if (ret)
3131 return ret;
3132 }
3133
3134 if (obj->gtt_space) {
3135 ret = i915_gem_object_finish_gpu(obj);
3136 if (ret)
3137 return ret;
3138
3139 i915_gem_object_finish_gtt(obj);
3140
3141 /* Before SandyBridge, you could not use tiling or fence
3142 * registers with snooped memory, so relinquish any fences
3143 * currently pointing to our region in the aperture.
3144 */
3145 if (INTEL_INFO(dev)->gen < 6) {
3146 ret = i915_gem_object_put_fence(obj);
3147 if (ret)
3148 return ret;
3149 }
3150
3151 if (obj->has_global_gtt_mapping)
3152 i915_gem_gtt_bind_object(obj, cache_level);
3153 if (obj->has_aliasing_ppgtt_mapping)
3154 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3155 obj, cache_level);
3156
3157 obj->gtt_space->color = cache_level;
3158 }
3159
3160 if (cache_level == I915_CACHE_NONE) {
3161 u32 old_read_domains, old_write_domain;
3162
3163 /* If we're coming from LLC cached, then we haven't
3164 * actually been tracking whether the data is in the
3165 * CPU cache or not, since we only allow one bit set
3166 * in obj->write_domain and have been skipping the clflushes.
3167 * Just set it to the CPU cache for now.
3168 */
3169 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3170 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3171
3172 old_read_domains = obj->base.read_domains;
3173 old_write_domain = obj->base.write_domain;
3174
3175 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3176 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3177
3178 trace_i915_gem_object_change_domain(obj,
3179 old_read_domains,
3180 old_write_domain);
3181 }
3182
3183 obj->cache_level = cache_level;
3184 i915_gem_verify_gtt(dev);
3185 return 0;
3186 }
3187
3188 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3189 struct drm_file *file)
3190 {
3191 struct drm_i915_gem_caching *args = data;
3192 struct drm_i915_gem_object *obj;
3193 int ret;
3194
3195 ret = i915_mutex_lock_interruptible(dev);
3196 if (ret)
3197 return ret;
3198
3199 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3200 if (&obj->base == NULL) {
3201 ret = -ENOENT;
3202 goto unlock;
3203 }
3204
3205 args->caching = obj->cache_level != I915_CACHE_NONE;
3206
3207 drm_gem_object_unreference(&obj->base);
3208 unlock:
3209 mutex_unlock(&dev->struct_mutex);
3210 return ret;
3211 }
3212
3213 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3214 struct drm_file *file)
3215 {
3216 struct drm_i915_gem_caching *args = data;
3217 struct drm_i915_gem_object *obj;
3218 enum i915_cache_level level;
3219 int ret;
3220
3221 ret = i915_mutex_lock_interruptible(dev);
3222 if (ret)
3223 return ret;
3224
3225 switch (args->caching) {
3226 case I915_CACHING_NONE:
3227 level = I915_CACHE_NONE;
3228 break;
3229 case I915_CACHING_CACHED:
3230 level = I915_CACHE_LLC;
3231 break;
3232 default:
3233 return -EINVAL;
3234 }
3235
3236 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3237 if (&obj->base == NULL) {
3238 ret = -ENOENT;
3239 goto unlock;
3240 }
3241
3242 ret = i915_gem_object_set_cache_level(obj, level);
3243
3244 drm_gem_object_unreference(&obj->base);
3245 unlock:
3246 mutex_unlock(&dev->struct_mutex);
3247 return ret;
3248 }
3249
3250 /*
3251 * Prepare buffer for display plane (scanout, cursors, etc).
3252 * Can be called from an uninterruptible phase (modesetting) and allows
3253 * any flushes to be pipelined (for pageflips).
3254 */
3255 int
3256 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3257 u32 alignment,
3258 struct intel_ring_buffer *pipelined)
3259 {
3260 u32 old_read_domains, old_write_domain;
3261 int ret;
3262
3263 if (pipelined != obj->ring) {
3264 ret = i915_gem_object_sync(obj, pipelined);
3265 if (ret)
3266 return ret;
3267 }
3268
3269 /* The display engine is not coherent with the LLC cache on gen6. As
3270 * a result, we make sure that the pinning that is about to occur is
3271 * done with uncached PTEs. This is lowest common denominator for all
3272 * chipsets.
3273 *
3274 * However for gen6+, we could do better by using the GFDT bit instead
3275 * of uncaching, which would allow us to flush all the LLC-cached data
3276 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3277 */
3278 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3279 if (ret)
3280 return ret;
3281
3282 /* As the user may map the buffer once pinned in the display plane
3283 * (e.g. libkms for the bootup splash), we have to ensure that we
3284 * always use map_and_fenceable for all scanout buffers.
3285 */
3286 ret = i915_gem_object_pin(obj, alignment, true, false);
3287 if (ret)
3288 return ret;
3289
3290 i915_gem_object_flush_cpu_write_domain(obj);
3291
3292 old_write_domain = obj->base.write_domain;
3293 old_read_domains = obj->base.read_domains;
3294
3295 /* It should now be out of any other write domains, and we can update
3296 * the domain values for our changes.
3297 */
3298 obj->base.write_domain = 0;
3299 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3300
3301 trace_i915_gem_object_change_domain(obj,
3302 old_read_domains,
3303 old_write_domain);
3304
3305 return 0;
3306 }
3307
3308 int
3309 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3310 {
3311 int ret;
3312
3313 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3314 return 0;
3315
3316 ret = i915_gem_object_wait_rendering(obj, false);
3317 if (ret)
3318 return ret;
3319
3320 /* Ensure that we invalidate the GPU's caches and TLBs. */
3321 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3322 return 0;
3323 }
3324
3325 /**
3326 * Moves a single object to the CPU read, and possibly write domain.
3327 *
3328 * This function returns when the move is complete, including waiting on
3329 * flushes to occur.
3330 */
3331 int
3332 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3333 {
3334 uint32_t old_write_domain, old_read_domains;
3335 int ret;
3336
3337 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3338 return 0;
3339
3340 ret = i915_gem_object_wait_rendering(obj, !write);
3341 if (ret)
3342 return ret;
3343
3344 i915_gem_object_flush_gtt_write_domain(obj);
3345
3346 old_write_domain = obj->base.write_domain;
3347 old_read_domains = obj->base.read_domains;
3348
3349 /* Flush the CPU cache if it's still invalid. */
3350 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3351 i915_gem_clflush_object(obj);
3352
3353 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3354 }
3355
3356 /* It should now be out of any other write domains, and we can update
3357 * the domain values for our changes.
3358 */
3359 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3360
3361 /* If we're writing through the CPU, then the GPU read domains will
3362 * need to be invalidated at next use.
3363 */
3364 if (write) {
3365 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3366 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3367 }
3368
3369 trace_i915_gem_object_change_domain(obj,
3370 old_read_domains,
3371 old_write_domain);
3372
3373 return 0;
3374 }
3375
3376 /* Throttle our rendering by waiting until the ring has completed our requests
3377 * emitted over 20 msec ago.
3378 *
3379 * Note that if we were to use the current jiffies each time around the loop,
3380 * we wouldn't escape the function with any frames outstanding if the time to
3381 * render a frame was over 20ms.
3382 *
3383 * This should get us reasonable parallelism between CPU and GPU but also
3384 * relatively low latency when blocking on a particular request to finish.
3385 */
3386 static int
3387 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3388 {
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390 struct drm_i915_file_private *file_priv = file->driver_priv;
3391 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3392 struct drm_i915_gem_request *request;
3393 struct intel_ring_buffer *ring = NULL;
3394 u32 seqno = 0;
3395 int ret;
3396
3397 if (atomic_read(&dev_priv->mm.wedged))
3398 return -EIO;
3399
3400 spin_lock(&file_priv->mm.lock);
3401 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3402 if (time_after_eq(request->emitted_jiffies, recent_enough))
3403 break;
3404
3405 ring = request->ring;
3406 seqno = request->seqno;
3407 }
3408 spin_unlock(&file_priv->mm.lock);
3409
3410 if (seqno == 0)
3411 return 0;
3412
3413 ret = __wait_seqno(ring, seqno, true, NULL);
3414 if (ret == 0)
3415 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3416
3417 return ret;
3418 }
3419
3420 int
3421 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3422 uint32_t alignment,
3423 bool map_and_fenceable,
3424 bool nonblocking)
3425 {
3426 int ret;
3427
3428 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3429 return -EBUSY;
3430
3431 if (obj->gtt_space != NULL) {
3432 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3433 (map_and_fenceable && !obj->map_and_fenceable)) {
3434 WARN(obj->pin_count,
3435 "bo is already pinned with incorrect alignment:"
3436 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3437 " obj->map_and_fenceable=%d\n",
3438 obj->gtt_offset, alignment,
3439 map_and_fenceable,
3440 obj->map_and_fenceable);
3441 ret = i915_gem_object_unbind(obj);
3442 if (ret)
3443 return ret;
3444 }
3445 }
3446
3447 if (obj->gtt_space == NULL) {
3448 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3449 map_and_fenceable,
3450 nonblocking);
3451 if (ret)
3452 return ret;
3453 }
3454
3455 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3456 i915_gem_gtt_bind_object(obj, obj->cache_level);
3457
3458 obj->pin_count++;
3459 obj->pin_mappable |= map_and_fenceable;
3460
3461 return 0;
3462 }
3463
3464 void
3465 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3466 {
3467 BUG_ON(obj->pin_count == 0);
3468 BUG_ON(obj->gtt_space == NULL);
3469
3470 if (--obj->pin_count == 0)
3471 obj->pin_mappable = false;
3472 }
3473
3474 int
3475 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3476 struct drm_file *file)
3477 {
3478 struct drm_i915_gem_pin *args = data;
3479 struct drm_i915_gem_object *obj;
3480 int ret;
3481
3482 ret = i915_mutex_lock_interruptible(dev);
3483 if (ret)
3484 return ret;
3485
3486 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3487 if (&obj->base == NULL) {
3488 ret = -ENOENT;
3489 goto unlock;
3490 }
3491
3492 if (obj->madv != I915_MADV_WILLNEED) {
3493 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3494 ret = -EINVAL;
3495 goto out;
3496 }
3497
3498 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3499 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3500 args->handle);
3501 ret = -EINVAL;
3502 goto out;
3503 }
3504
3505 obj->user_pin_count++;
3506 obj->pin_filp = file;
3507 if (obj->user_pin_count == 1) {
3508 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3509 if (ret)
3510 goto out;
3511 }
3512
3513 /* XXX - flush the CPU caches for pinned objects
3514 * as the X server doesn't manage domains yet
3515 */
3516 i915_gem_object_flush_cpu_write_domain(obj);
3517 args->offset = obj->gtt_offset;
3518 out:
3519 drm_gem_object_unreference(&obj->base);
3520 unlock:
3521 mutex_unlock(&dev->struct_mutex);
3522 return ret;
3523 }
3524
3525 int
3526 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3527 struct drm_file *file)
3528 {
3529 struct drm_i915_gem_pin *args = data;
3530 struct drm_i915_gem_object *obj;
3531 int ret;
3532
3533 ret = i915_mutex_lock_interruptible(dev);
3534 if (ret)
3535 return ret;
3536
3537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3538 if (&obj->base == NULL) {
3539 ret = -ENOENT;
3540 goto unlock;
3541 }
3542
3543 if (obj->pin_filp != file) {
3544 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3545 args->handle);
3546 ret = -EINVAL;
3547 goto out;
3548 }
3549 obj->user_pin_count--;
3550 if (obj->user_pin_count == 0) {
3551 obj->pin_filp = NULL;
3552 i915_gem_object_unpin(obj);
3553 }
3554
3555 out:
3556 drm_gem_object_unreference(&obj->base);
3557 unlock:
3558 mutex_unlock(&dev->struct_mutex);
3559 return ret;
3560 }
3561
3562 int
3563 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3564 struct drm_file *file)
3565 {
3566 struct drm_i915_gem_busy *args = data;
3567 struct drm_i915_gem_object *obj;
3568 int ret;
3569
3570 ret = i915_mutex_lock_interruptible(dev);
3571 if (ret)
3572 return ret;
3573
3574 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3575 if (&obj->base == NULL) {
3576 ret = -ENOENT;
3577 goto unlock;
3578 }
3579
3580 /* Count all active objects as busy, even if they are currently not used
3581 * by the gpu. Users of this interface expect objects to eventually
3582 * become non-busy without any further actions, therefore emit any
3583 * necessary flushes here.
3584 */
3585 ret = i915_gem_object_flush_active(obj);
3586
3587 args->busy = obj->active;
3588 if (obj->ring) {
3589 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3590 args->busy |= intel_ring_flag(obj->ring) << 16;
3591 }
3592
3593 drm_gem_object_unreference(&obj->base);
3594 unlock:
3595 mutex_unlock(&dev->struct_mutex);
3596 return ret;
3597 }
3598
3599 int
3600 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3601 struct drm_file *file_priv)
3602 {
3603 return i915_gem_ring_throttle(dev, file_priv);
3604 }
3605
3606 int
3607 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3608 struct drm_file *file_priv)
3609 {
3610 struct drm_i915_gem_madvise *args = data;
3611 struct drm_i915_gem_object *obj;
3612 int ret;
3613
3614 switch (args->madv) {
3615 case I915_MADV_DONTNEED:
3616 case I915_MADV_WILLNEED:
3617 break;
3618 default:
3619 return -EINVAL;
3620 }
3621
3622 ret = i915_mutex_lock_interruptible(dev);
3623 if (ret)
3624 return ret;
3625
3626 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3627 if (&obj->base == NULL) {
3628 ret = -ENOENT;
3629 goto unlock;
3630 }
3631
3632 if (obj->pin_count) {
3633 ret = -EINVAL;
3634 goto out;
3635 }
3636
3637 if (obj->madv != __I915_MADV_PURGED)
3638 obj->madv = args->madv;
3639
3640 /* if the object is no longer attached, discard its backing storage */
3641 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3642 i915_gem_object_truncate(obj);
3643
3644 args->retained = obj->madv != __I915_MADV_PURGED;
3645
3646 out:
3647 drm_gem_object_unreference(&obj->base);
3648 unlock:
3649 mutex_unlock(&dev->struct_mutex);
3650 return ret;
3651 }
3652
3653 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3654 const struct drm_i915_gem_object_ops *ops)
3655 {
3656 INIT_LIST_HEAD(&obj->mm_list);
3657 INIT_LIST_HEAD(&obj->gtt_list);
3658 INIT_LIST_HEAD(&obj->ring_list);
3659 INIT_LIST_HEAD(&obj->exec_list);
3660
3661 obj->ops = ops;
3662
3663 obj->fence_reg = I915_FENCE_REG_NONE;
3664 obj->madv = I915_MADV_WILLNEED;
3665 /* Avoid an unnecessary call to unbind on the first bind. */
3666 obj->map_and_fenceable = true;
3667
3668 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3669 }
3670
3671 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3672 .get_pages = i915_gem_object_get_pages_gtt,
3673 .put_pages = i915_gem_object_put_pages_gtt,
3674 };
3675
3676 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3677 size_t size)
3678 {
3679 struct drm_i915_gem_object *obj;
3680 struct address_space *mapping;
3681 u32 mask;
3682
3683 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3684 if (obj == NULL)
3685 return NULL;
3686
3687 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3688 kfree(obj);
3689 return NULL;
3690 }
3691
3692 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3693 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3694 /* 965gm cannot relocate objects above 4GiB. */
3695 mask &= ~__GFP_HIGHMEM;
3696 mask |= __GFP_DMA32;
3697 }
3698
3699 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3700 mapping_set_gfp_mask(mapping, mask);
3701
3702 i915_gem_object_init(obj, &i915_gem_object_ops);
3703
3704 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3705 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3706
3707 if (HAS_LLC(dev)) {
3708 /* On some devices, we can have the GPU use the LLC (the CPU
3709 * cache) for about a 10% performance improvement
3710 * compared to uncached. Graphics requests other than
3711 * display scanout are coherent with the CPU in
3712 * accessing this cache. This means in this mode we
3713 * don't need to clflush on the CPU side, and on the
3714 * GPU side we only need to flush internal caches to
3715 * get data visible to the CPU.
3716 *
3717 * However, we maintain the display planes as UC, and so
3718 * need to rebind when first used as such.
3719 */
3720 obj->cache_level = I915_CACHE_LLC;
3721 } else
3722 obj->cache_level = I915_CACHE_NONE;
3723
3724 return obj;
3725 }
3726
3727 int i915_gem_init_object(struct drm_gem_object *obj)
3728 {
3729 BUG();
3730
3731 return 0;
3732 }
3733
3734 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3735 {
3736 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3737 struct drm_device *dev = obj->base.dev;
3738 drm_i915_private_t *dev_priv = dev->dev_private;
3739
3740 trace_i915_gem_object_destroy(obj);
3741
3742 if (obj->phys_obj)
3743 i915_gem_detach_phys_object(dev, obj);
3744
3745 obj->pin_count = 0;
3746 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3747 bool was_interruptible;
3748
3749 was_interruptible = dev_priv->mm.interruptible;
3750 dev_priv->mm.interruptible = false;
3751
3752 WARN_ON(i915_gem_object_unbind(obj));
3753
3754 dev_priv->mm.interruptible = was_interruptible;
3755 }
3756
3757 obj->pages_pin_count = 0;
3758 i915_gem_object_put_pages(obj);
3759 i915_gem_object_free_mmap_offset(obj);
3760
3761 BUG_ON(obj->pages);
3762
3763 if (obj->base.import_attach)
3764 drm_prime_gem_destroy(&obj->base, NULL);
3765
3766 drm_gem_object_release(&obj->base);
3767 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3768
3769 kfree(obj->bit_17);
3770 kfree(obj);
3771 }
3772
3773 int
3774 i915_gem_idle(struct drm_device *dev)
3775 {
3776 drm_i915_private_t *dev_priv = dev->dev_private;
3777 int ret;
3778
3779 mutex_lock(&dev->struct_mutex);
3780
3781 if (dev_priv->mm.suspended) {
3782 mutex_unlock(&dev->struct_mutex);
3783 return 0;
3784 }
3785
3786 ret = i915_gpu_idle(dev);
3787 if (ret) {
3788 mutex_unlock(&dev->struct_mutex);
3789 return ret;
3790 }
3791 i915_gem_retire_requests(dev);
3792
3793 /* Under UMS, be paranoid and evict. */
3794 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3795 i915_gem_evict_everything(dev);
3796
3797 i915_gem_reset_fences(dev);
3798
3799 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3800 * We need to replace this with a semaphore, or something.
3801 * And not confound mm.suspended!
3802 */
3803 dev_priv->mm.suspended = 1;
3804 del_timer_sync(&dev_priv->hangcheck_timer);
3805
3806 i915_kernel_lost_context(dev);
3807 i915_gem_cleanup_ringbuffer(dev);
3808
3809 mutex_unlock(&dev->struct_mutex);
3810
3811 /* Cancel the retire work handler, which should be idle now. */
3812 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3813
3814 return 0;
3815 }
3816
3817 void i915_gem_l3_remap(struct drm_device *dev)
3818 {
3819 drm_i915_private_t *dev_priv = dev->dev_private;
3820 u32 misccpctl;
3821 int i;
3822
3823 if (!IS_IVYBRIDGE(dev))
3824 return;
3825
3826 if (!dev_priv->mm.l3_remap_info)
3827 return;
3828
3829 misccpctl = I915_READ(GEN7_MISCCPCTL);
3830 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3831 POSTING_READ(GEN7_MISCCPCTL);
3832
3833 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3834 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3835 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3836 DRM_DEBUG("0x%x was already programmed to %x\n",
3837 GEN7_L3LOG_BASE + i, remap);
3838 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3839 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3840 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3841 }
3842
3843 /* Make sure all the writes land before disabling dop clock gating */
3844 POSTING_READ(GEN7_L3LOG_BASE);
3845
3846 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3847 }
3848
3849 void i915_gem_init_swizzling(struct drm_device *dev)
3850 {
3851 drm_i915_private_t *dev_priv = dev->dev_private;
3852
3853 if (INTEL_INFO(dev)->gen < 5 ||
3854 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3855 return;
3856
3857 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3858 DISP_TILE_SURFACE_SWIZZLING);
3859
3860 if (IS_GEN5(dev))
3861 return;
3862
3863 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3864 if (IS_GEN6(dev))
3865 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3866 else
3867 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3868 }
3869
3870 void i915_gem_init_ppgtt(struct drm_device *dev)
3871 {
3872 drm_i915_private_t *dev_priv = dev->dev_private;
3873 uint32_t pd_offset;
3874 struct intel_ring_buffer *ring;
3875 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3876 uint32_t __iomem *pd_addr;
3877 uint32_t pd_entry;
3878 int i;
3879
3880 if (!dev_priv->mm.aliasing_ppgtt)
3881 return;
3882
3883
3884 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3885 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3886 dma_addr_t pt_addr;
3887
3888 if (dev_priv->mm.gtt->needs_dmar)
3889 pt_addr = ppgtt->pt_dma_addr[i];
3890 else
3891 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3892
3893 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3894 pd_entry |= GEN6_PDE_VALID;
3895
3896 writel(pd_entry, pd_addr + i);
3897 }
3898 readl(pd_addr);
3899
3900 pd_offset = ppgtt->pd_offset;
3901 pd_offset /= 64; /* in cachelines, */
3902 pd_offset <<= 16;
3903
3904 if (INTEL_INFO(dev)->gen == 6) {
3905 uint32_t ecochk, gab_ctl, ecobits;
3906
3907 ecobits = I915_READ(GAC_ECO_BITS);
3908 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3909
3910 gab_ctl = I915_READ(GAB_CTL);
3911 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3912
3913 ecochk = I915_READ(GAM_ECOCHK);
3914 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3915 ECOCHK_PPGTT_CACHE64B);
3916 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3917 } else if (INTEL_INFO(dev)->gen >= 7) {
3918 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3919 /* GFX_MODE is per-ring on gen7+ */
3920 }
3921
3922 for_each_ring(ring, dev_priv, i) {
3923 if (INTEL_INFO(dev)->gen >= 7)
3924 I915_WRITE(RING_MODE_GEN7(ring),
3925 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3926
3927 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3928 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3929 }
3930 }
3931
3932 static bool
3933 intel_enable_blt(struct drm_device *dev)
3934 {
3935 if (!HAS_BLT(dev))
3936 return false;
3937
3938 /* The blitter was dysfunctional on early prototypes */
3939 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3940 DRM_INFO("BLT not supported on this pre-production hardware;"
3941 " graphics performance will be degraded.\n");
3942 return false;
3943 }
3944
3945 return true;
3946 }
3947
3948 int
3949 i915_gem_init_hw(struct drm_device *dev)
3950 {
3951 drm_i915_private_t *dev_priv = dev->dev_private;
3952 int ret;
3953
3954 if (!intel_enable_gtt())
3955 return -EIO;
3956
3957 i915_gem_l3_remap(dev);
3958
3959 i915_gem_init_swizzling(dev);
3960
3961 ret = intel_init_render_ring_buffer(dev);
3962 if (ret)
3963 return ret;
3964
3965 if (HAS_BSD(dev)) {
3966 ret = intel_init_bsd_ring_buffer(dev);
3967 if (ret)
3968 goto cleanup_render_ring;
3969 }
3970
3971 if (intel_enable_blt(dev)) {
3972 ret = intel_init_blt_ring_buffer(dev);
3973 if (ret)
3974 goto cleanup_bsd_ring;
3975 }
3976
3977 dev_priv->next_seqno = 1;
3978
3979 /*
3980 * XXX: There was some w/a described somewhere suggesting loading
3981 * contexts before PPGTT.
3982 */
3983 i915_gem_context_init(dev);
3984 i915_gem_init_ppgtt(dev);
3985
3986 return 0;
3987
3988 cleanup_bsd_ring:
3989 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3990 cleanup_render_ring:
3991 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3992 return ret;
3993 }
3994
3995 static bool
3996 intel_enable_ppgtt(struct drm_device *dev)
3997 {
3998 if (i915_enable_ppgtt >= 0)
3999 return i915_enable_ppgtt;
4000
4001 #ifdef CONFIG_INTEL_IOMMU
4002 /* Disable ppgtt on SNB if VT-d is on. */
4003 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4004 return false;
4005 #endif
4006
4007 return true;
4008 }
4009
4010 int i915_gem_init(struct drm_device *dev)
4011 {
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 unsigned long gtt_size, mappable_size;
4014 int ret;
4015
4016 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4017 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4018
4019 mutex_lock(&dev->struct_mutex);
4020 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4021 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4022 * aperture accordingly when using aliasing ppgtt. */
4023 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4024
4025 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4026
4027 ret = i915_gem_init_aliasing_ppgtt(dev);
4028 if (ret) {
4029 mutex_unlock(&dev->struct_mutex);
4030 return ret;
4031 }
4032 } else {
4033 /* Let GEM Manage all of the aperture.
4034 *
4035 * However, leave one page at the end still bound to the scratch
4036 * page. There are a number of places where the hardware
4037 * apparently prefetches past the end of the object, and we've
4038 * seen multiple hangs with the GPU head pointer stuck in a
4039 * batchbuffer bound at the last page of the aperture. One page
4040 * should be enough to keep any prefetching inside of the
4041 * aperture.
4042 */
4043 i915_gem_init_global_gtt(dev, 0, mappable_size,
4044 gtt_size);
4045 }
4046
4047 ret = i915_gem_init_hw(dev);
4048 mutex_unlock(&dev->struct_mutex);
4049 if (ret) {
4050 i915_gem_cleanup_aliasing_ppgtt(dev);
4051 return ret;
4052 }
4053
4054 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4055 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4056 dev_priv->dri1.allow_batchbuffer = 1;
4057 return 0;
4058 }
4059
4060 void
4061 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4062 {
4063 drm_i915_private_t *dev_priv = dev->dev_private;
4064 struct intel_ring_buffer *ring;
4065 int i;
4066
4067 for_each_ring(ring, dev_priv, i)
4068 intel_cleanup_ring_buffer(ring);
4069 }
4070
4071 int
4072 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4073 struct drm_file *file_priv)
4074 {
4075 drm_i915_private_t *dev_priv = dev->dev_private;
4076 int ret;
4077
4078 if (drm_core_check_feature(dev, DRIVER_MODESET))
4079 return 0;
4080
4081 if (atomic_read(&dev_priv->mm.wedged)) {
4082 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4083 atomic_set(&dev_priv->mm.wedged, 0);
4084 }
4085
4086 mutex_lock(&dev->struct_mutex);
4087 dev_priv->mm.suspended = 0;
4088
4089 ret = i915_gem_init_hw(dev);
4090 if (ret != 0) {
4091 mutex_unlock(&dev->struct_mutex);
4092 return ret;
4093 }
4094
4095 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4096 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4097 mutex_unlock(&dev->struct_mutex);
4098
4099 ret = drm_irq_install(dev);
4100 if (ret)
4101 goto cleanup_ringbuffer;
4102
4103 return 0;
4104
4105 cleanup_ringbuffer:
4106 mutex_lock(&dev->struct_mutex);
4107 i915_gem_cleanup_ringbuffer(dev);
4108 dev_priv->mm.suspended = 1;
4109 mutex_unlock(&dev->struct_mutex);
4110
4111 return ret;
4112 }
4113
4114 int
4115 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4116 struct drm_file *file_priv)
4117 {
4118 if (drm_core_check_feature(dev, DRIVER_MODESET))
4119 return 0;
4120
4121 drm_irq_uninstall(dev);
4122 return i915_gem_idle(dev);
4123 }
4124
4125 void
4126 i915_gem_lastclose(struct drm_device *dev)
4127 {
4128 int ret;
4129
4130 if (drm_core_check_feature(dev, DRIVER_MODESET))
4131 return;
4132
4133 ret = i915_gem_idle(dev);
4134 if (ret)
4135 DRM_ERROR("failed to idle hardware: %d\n", ret);
4136 }
4137
4138 static void
4139 init_ring_lists(struct intel_ring_buffer *ring)
4140 {
4141 INIT_LIST_HEAD(&ring->active_list);
4142 INIT_LIST_HEAD(&ring->request_list);
4143 }
4144
4145 void
4146 i915_gem_load(struct drm_device *dev)
4147 {
4148 int i;
4149 drm_i915_private_t *dev_priv = dev->dev_private;
4150
4151 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4152 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4153 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4154 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4155 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4156 for (i = 0; i < I915_NUM_RINGS; i++)
4157 init_ring_lists(&dev_priv->ring[i]);
4158 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4159 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4160 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4161 i915_gem_retire_work_handler);
4162 init_completion(&dev_priv->error_completion);
4163
4164 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4165 if (IS_GEN3(dev)) {
4166 I915_WRITE(MI_ARB_STATE,
4167 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4168 }
4169
4170 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4171
4172 /* Old X drivers will take 0-2 for front, back, depth buffers */
4173 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4174 dev_priv->fence_reg_start = 3;
4175
4176 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4177 dev_priv->num_fence_regs = 16;
4178 else
4179 dev_priv->num_fence_regs = 8;
4180
4181 /* Initialize fence registers to zero */
4182 i915_gem_reset_fences(dev);
4183
4184 i915_gem_detect_bit_6_swizzle(dev);
4185 init_waitqueue_head(&dev_priv->pending_flip_queue);
4186
4187 dev_priv->mm.interruptible = true;
4188
4189 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4190 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4191 register_shrinker(&dev_priv->mm.inactive_shrinker);
4192 }
4193
4194 /*
4195 * Create a physically contiguous memory object for this object
4196 * e.g. for cursor + overlay regs
4197 */
4198 static int i915_gem_init_phys_object(struct drm_device *dev,
4199 int id, int size, int align)
4200 {
4201 drm_i915_private_t *dev_priv = dev->dev_private;
4202 struct drm_i915_gem_phys_object *phys_obj;
4203 int ret;
4204
4205 if (dev_priv->mm.phys_objs[id - 1] || !size)
4206 return 0;
4207
4208 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4209 if (!phys_obj)
4210 return -ENOMEM;
4211
4212 phys_obj->id = id;
4213
4214 phys_obj->handle = drm_pci_alloc(dev, size, align);
4215 if (!phys_obj->handle) {
4216 ret = -ENOMEM;
4217 goto kfree_obj;
4218 }
4219 #ifdef CONFIG_X86
4220 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4221 #endif
4222
4223 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4224
4225 return 0;
4226 kfree_obj:
4227 kfree(phys_obj);
4228 return ret;
4229 }
4230
4231 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4232 {
4233 drm_i915_private_t *dev_priv = dev->dev_private;
4234 struct drm_i915_gem_phys_object *phys_obj;
4235
4236 if (!dev_priv->mm.phys_objs[id - 1])
4237 return;
4238
4239 phys_obj = dev_priv->mm.phys_objs[id - 1];
4240 if (phys_obj->cur_obj) {
4241 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4242 }
4243
4244 #ifdef CONFIG_X86
4245 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4246 #endif
4247 drm_pci_free(dev, phys_obj->handle);
4248 kfree(phys_obj);
4249 dev_priv->mm.phys_objs[id - 1] = NULL;
4250 }
4251
4252 void i915_gem_free_all_phys_object(struct drm_device *dev)
4253 {
4254 int i;
4255
4256 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4257 i915_gem_free_phys_object(dev, i);
4258 }
4259
4260 void i915_gem_detach_phys_object(struct drm_device *dev,
4261 struct drm_i915_gem_object *obj)
4262 {
4263 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4264 char *vaddr;
4265 int i;
4266 int page_count;
4267
4268 if (!obj->phys_obj)
4269 return;
4270 vaddr = obj->phys_obj->handle->vaddr;
4271
4272 page_count = obj->base.size / PAGE_SIZE;
4273 for (i = 0; i < page_count; i++) {
4274 struct page *page = shmem_read_mapping_page(mapping, i);
4275 if (!IS_ERR(page)) {
4276 char *dst = kmap_atomic(page);
4277 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4278 kunmap_atomic(dst);
4279
4280 drm_clflush_pages(&page, 1);
4281
4282 set_page_dirty(page);
4283 mark_page_accessed(page);
4284 page_cache_release(page);
4285 }
4286 }
4287 intel_gtt_chipset_flush();
4288
4289 obj->phys_obj->cur_obj = NULL;
4290 obj->phys_obj = NULL;
4291 }
4292
4293 int
4294 i915_gem_attach_phys_object(struct drm_device *dev,
4295 struct drm_i915_gem_object *obj,
4296 int id,
4297 int align)
4298 {
4299 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4300 drm_i915_private_t *dev_priv = dev->dev_private;
4301 int ret = 0;
4302 int page_count;
4303 int i;
4304
4305 if (id > I915_MAX_PHYS_OBJECT)
4306 return -EINVAL;
4307
4308 if (obj->phys_obj) {
4309 if (obj->phys_obj->id == id)
4310 return 0;
4311 i915_gem_detach_phys_object(dev, obj);
4312 }
4313
4314 /* create a new object */
4315 if (!dev_priv->mm.phys_objs[id - 1]) {
4316 ret = i915_gem_init_phys_object(dev, id,
4317 obj->base.size, align);
4318 if (ret) {
4319 DRM_ERROR("failed to init phys object %d size: %zu\n",
4320 id, obj->base.size);
4321 return ret;
4322 }
4323 }
4324
4325 /* bind to the object */
4326 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4327 obj->phys_obj->cur_obj = obj;
4328
4329 page_count = obj->base.size / PAGE_SIZE;
4330
4331 for (i = 0; i < page_count; i++) {
4332 struct page *page;
4333 char *dst, *src;
4334
4335 page = shmem_read_mapping_page(mapping, i);
4336 if (IS_ERR(page))
4337 return PTR_ERR(page);
4338
4339 src = kmap_atomic(page);
4340 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4341 memcpy(dst, src, PAGE_SIZE);
4342 kunmap_atomic(src);
4343
4344 mark_page_accessed(page);
4345 page_cache_release(page);
4346 }
4347
4348 return 0;
4349 }
4350
4351 static int
4352 i915_gem_phys_pwrite(struct drm_device *dev,
4353 struct drm_i915_gem_object *obj,
4354 struct drm_i915_gem_pwrite *args,
4355 struct drm_file *file_priv)
4356 {
4357 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4358 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4359
4360 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4361 unsigned long unwritten;
4362
4363 /* The physical object once assigned is fixed for the lifetime
4364 * of the obj, so we can safely drop the lock and continue
4365 * to access vaddr.
4366 */
4367 mutex_unlock(&dev->struct_mutex);
4368 unwritten = copy_from_user(vaddr, user_data, args->size);
4369 mutex_lock(&dev->struct_mutex);
4370 if (unwritten)
4371 return -EFAULT;
4372 }
4373
4374 intel_gtt_chipset_flush();
4375 return 0;
4376 }
4377
4378 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4379 {
4380 struct drm_i915_file_private *file_priv = file->driver_priv;
4381
4382 /* Clean up our request list when the client is going away, so that
4383 * later retire_requests won't dereference our soon-to-be-gone
4384 * file_priv.
4385 */
4386 spin_lock(&file_priv->mm.lock);
4387 while (!list_empty(&file_priv->mm.request_list)) {
4388 struct drm_i915_gem_request *request;
4389
4390 request = list_first_entry(&file_priv->mm.request_list,
4391 struct drm_i915_gem_request,
4392 client_list);
4393 list_del(&request->client_list);
4394 request->file_priv = NULL;
4395 }
4396 spin_unlock(&file_priv->mm.lock);
4397 }
4398
4399 static int
4400 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4401 {
4402 struct drm_i915_private *dev_priv =
4403 container_of(shrinker,
4404 struct drm_i915_private,
4405 mm.inactive_shrinker);
4406 struct drm_device *dev = dev_priv->dev;
4407 struct drm_i915_gem_object *obj;
4408 int nr_to_scan = sc->nr_to_scan;
4409 int cnt;
4410
4411 if (!mutex_trylock(&dev->struct_mutex))
4412 return 0;
4413
4414 if (nr_to_scan) {
4415 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4416 if (nr_to_scan > 0)
4417 i915_gem_shrink_all(dev_priv);
4418 }
4419
4420 cnt = 0;
4421 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4422 if (obj->pages_pin_count == 0)
4423 cnt += obj->base.size >> PAGE_SHIFT;
4424 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4425 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4426 cnt += obj->base.size >> PAGE_SHIFT;
4427
4428 mutex_unlock(&dev->struct_mutex);
4429 return cnt;
4430 }
This page took 0.128037 seconds and 5 git commands to generate.