36f629a79d88bc5357f7e022f6b25800ff079295
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
200 {
201 struct drm_i915_gem_object *obj;
202 int ret;
203 u32 handle;
204
205 size = roundup(size, PAGE_SIZE);
206 if (size == 0)
207 return -EINVAL;
208
209 /* Allocate the new object */
210 obj = i915_gem_alloc_object(dev, size);
211 if (obj == NULL)
212 return -ENOMEM;
213
214 ret = drm_gem_handle_create(file, &obj->base, &handle);
215 if (ret) {
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 kfree(obj);
219 return ret;
220 }
221
222 /* drop reference from allocate - handle holds it now */
223 drm_gem_object_unreference(&obj->base);
224 trace_i915_gem_object_create(obj);
225
226 *handle_p = handle;
227 return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234 {
235 /* have to work out size/pitch and return them */
236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245 {
246 return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250 * Creates a new mm object and returns a handle to it.
251 */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255 {
256 struct drm_i915_gem_create *args = data;
257
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int prefaulted = 0;
411 int needs_clflush = 0;
412 struct scatterlist *sg;
413 int i;
414
415 user_data = (char __user *) (uintptr_t) args->data_ptr;
416 remain = args->size;
417
418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
419
420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421 /* If we're not in the cpu read domain, set ourself into the gtt
422 * read domain and manually flush cachelines (if required). This
423 * optimizes for the case when the gpu will dirty the data
424 * anyway again before the next pread happens. */
425 if (obj->cache_level == I915_CACHE_NONE)
426 needs_clflush = 1;
427 if (obj->gtt_space) {
428 ret = i915_gem_object_set_to_gtt_domain(obj, false);
429 if (ret)
430 return ret;
431 }
432 }
433
434 ret = i915_gem_object_get_pages(obj);
435 if (ret)
436 return ret;
437
438 i915_gem_object_pin_pages(obj);
439
440 offset = args->offset;
441
442 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
443 struct page *page;
444
445 if (i < offset >> PAGE_SHIFT)
446 continue;
447
448 if (remain <= 0)
449 break;
450
451 /* Operation in this page
452 *
453 * shmem_page_offset = offset within page in shmem file
454 * page_length = bytes to copy for this page
455 */
456 shmem_page_offset = offset_in_page(offset);
457 page_length = remain;
458 if ((shmem_page_offset + page_length) > PAGE_SIZE)
459 page_length = PAGE_SIZE - shmem_page_offset;
460
461 page = sg_page(sg);
462 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
463 (page_to_phys(page) & (1 << 17)) != 0;
464
465 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
466 user_data, page_do_bit17_swizzling,
467 needs_clflush);
468 if (ret == 0)
469 goto next_page;
470
471 mutex_unlock(&dev->struct_mutex);
472
473 if (!prefaulted) {
474 ret = fault_in_multipages_writeable(user_data, remain);
475 /* Userspace is tricking us, but we've already clobbered
476 * its pages with the prefault and promised to write the
477 * data up to the first fault. Hence ignore any errors
478 * and just continue. */
479 (void)ret;
480 prefaulted = 1;
481 }
482
483 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
484 user_data, page_do_bit17_swizzling,
485 needs_clflush);
486
487 mutex_lock(&dev->struct_mutex);
488
489 next_page:
490 mark_page_accessed(page);
491
492 if (ret)
493 goto out;
494
495 remain -= page_length;
496 user_data += page_length;
497 offset += page_length;
498 }
499
500 out:
501 i915_gem_object_unpin_pages(obj);
502
503 return ret;
504 }
505
506 /**
507 * Reads data from the object referenced by handle.
508 *
509 * On error, the contents of *data are undefined.
510 */
511 int
512 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
513 struct drm_file *file)
514 {
515 struct drm_i915_gem_pread *args = data;
516 struct drm_i915_gem_object *obj;
517 int ret = 0;
518
519 if (args->size == 0)
520 return 0;
521
522 if (!access_ok(VERIFY_WRITE,
523 (char __user *)(uintptr_t)args->data_ptr,
524 args->size))
525 return -EFAULT;
526
527 ret = i915_mutex_lock_interruptible(dev);
528 if (ret)
529 return ret;
530
531 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
532 if (&obj->base == NULL) {
533 ret = -ENOENT;
534 goto unlock;
535 }
536
537 /* Bounds check source. */
538 if (args->offset > obj->base.size ||
539 args->size > obj->base.size - args->offset) {
540 ret = -EINVAL;
541 goto out;
542 }
543
544 /* prime objects have no backing filp to GEM pread/pwrite
545 * pages from.
546 */
547 if (!obj->base.filp) {
548 ret = -EINVAL;
549 goto out;
550 }
551
552 trace_i915_gem_object_pread(obj, args->offset, args->size);
553
554 ret = i915_gem_shmem_pread(dev, obj, args, file);
555
556 out:
557 drm_gem_object_unreference(&obj->base);
558 unlock:
559 mutex_unlock(&dev->struct_mutex);
560 return ret;
561 }
562
563 /* This is the fast write path which cannot handle
564 * page faults in the source data
565 */
566
567 static inline int
568 fast_user_write(struct io_mapping *mapping,
569 loff_t page_base, int page_offset,
570 char __user *user_data,
571 int length)
572 {
573 void __iomem *vaddr_atomic;
574 void *vaddr;
575 unsigned long unwritten;
576
577 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
578 /* We can use the cpu mem copy function because this is X86. */
579 vaddr = (void __force*)vaddr_atomic + page_offset;
580 unwritten = __copy_from_user_inatomic_nocache(vaddr,
581 user_data, length);
582 io_mapping_unmap_atomic(vaddr_atomic);
583 return unwritten;
584 }
585
586 /**
587 * This is the fast pwrite path, where we copy the data directly from the
588 * user into the GTT, uncached.
589 */
590 static int
591 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
592 struct drm_i915_gem_object *obj,
593 struct drm_i915_gem_pwrite *args,
594 struct drm_file *file)
595 {
596 drm_i915_private_t *dev_priv = dev->dev_private;
597 ssize_t remain;
598 loff_t offset, page_base;
599 char __user *user_data;
600 int page_offset, page_length, ret;
601
602 ret = i915_gem_object_pin(obj, 0, true, true);
603 if (ret)
604 goto out;
605
606 ret = i915_gem_object_set_to_gtt_domain(obj, true);
607 if (ret)
608 goto out_unpin;
609
610 ret = i915_gem_object_put_fence(obj);
611 if (ret)
612 goto out_unpin;
613
614 user_data = (char __user *) (uintptr_t) args->data_ptr;
615 remain = args->size;
616
617 offset = obj->gtt_offset + args->offset;
618
619 while (remain > 0) {
620 /* Operation in this page
621 *
622 * page_base = page offset within aperture
623 * page_offset = offset within page
624 * page_length = bytes to copy for this page
625 */
626 page_base = offset & PAGE_MASK;
627 page_offset = offset_in_page(offset);
628 page_length = remain;
629 if ((page_offset + remain) > PAGE_SIZE)
630 page_length = PAGE_SIZE - page_offset;
631
632 /* If we get a fault while copying data, then (presumably) our
633 * source page isn't available. Return the error and we'll
634 * retry in the slow path.
635 */
636 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
637 page_offset, user_data, page_length)) {
638 ret = -EFAULT;
639 goto out_unpin;
640 }
641
642 remain -= page_length;
643 user_data += page_length;
644 offset += page_length;
645 }
646
647 out_unpin:
648 i915_gem_object_unpin(obj);
649 out:
650 return ret;
651 }
652
653 /* Per-page copy function for the shmem pwrite fastpath.
654 * Flushes invalid cachelines before writing to the target if
655 * needs_clflush_before is set and flushes out any written cachelines after
656 * writing if needs_clflush is set. */
657 static int
658 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
659 char __user *user_data,
660 bool page_do_bit17_swizzling,
661 bool needs_clflush_before,
662 bool needs_clflush_after)
663 {
664 char *vaddr;
665 int ret;
666
667 if (unlikely(page_do_bit17_swizzling))
668 return -EINVAL;
669
670 vaddr = kmap_atomic(page);
671 if (needs_clflush_before)
672 drm_clflush_virt_range(vaddr + shmem_page_offset,
673 page_length);
674 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
675 user_data,
676 page_length);
677 if (needs_clflush_after)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 kunmap_atomic(vaddr);
681
682 return ret ? -EFAULT : 0;
683 }
684
685 /* Only difference to the fast-path function is that this can handle bit17
686 * and uses non-atomic copy and kmap functions. */
687 static int
688 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
689 char __user *user_data,
690 bool page_do_bit17_swizzling,
691 bool needs_clflush_before,
692 bool needs_clflush_after)
693 {
694 char *vaddr;
695 int ret;
696
697 vaddr = kmap(page);
698 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
699 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
700 page_length,
701 page_do_bit17_swizzling);
702 if (page_do_bit17_swizzling)
703 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
704 user_data,
705 page_length);
706 else
707 ret = __copy_from_user(vaddr + shmem_page_offset,
708 user_data,
709 page_length);
710 if (needs_clflush_after)
711 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
712 page_length,
713 page_do_bit17_swizzling);
714 kunmap(page);
715
716 return ret ? -EFAULT : 0;
717 }
718
719 static int
720 i915_gem_shmem_pwrite(struct drm_device *dev,
721 struct drm_i915_gem_object *obj,
722 struct drm_i915_gem_pwrite *args,
723 struct drm_file *file)
724 {
725 ssize_t remain;
726 loff_t offset;
727 char __user *user_data;
728 int shmem_page_offset, page_length, ret = 0;
729 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
730 int hit_slowpath = 0;
731 int needs_clflush_after = 0;
732 int needs_clflush_before = 0;
733 int i;
734 struct scatterlist *sg;
735
736 user_data = (char __user *) (uintptr_t) args->data_ptr;
737 remain = args->size;
738
739 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
740
741 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
742 /* If we're not in the cpu write domain, set ourself into the gtt
743 * write domain and manually flush cachelines (if required). This
744 * optimizes for the case when the gpu will use the data
745 * right away and we therefore have to clflush anyway. */
746 if (obj->cache_level == I915_CACHE_NONE)
747 needs_clflush_after = 1;
748 if (obj->gtt_space) {
749 ret = i915_gem_object_set_to_gtt_domain(obj, true);
750 if (ret)
751 return ret;
752 }
753 }
754 /* Same trick applies for invalidate partially written cachelines before
755 * writing. */
756 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
757 && obj->cache_level == I915_CACHE_NONE)
758 needs_clflush_before = 1;
759
760 ret = i915_gem_object_get_pages(obj);
761 if (ret)
762 return ret;
763
764 i915_gem_object_pin_pages(obj);
765
766 offset = args->offset;
767 obj->dirty = 1;
768
769 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
770 struct page *page;
771 int partial_cacheline_write;
772
773 if (i < offset >> PAGE_SHIFT)
774 continue;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page = sg_page(sg);
798 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
799 (page_to_phys(page) & (1 << 17)) != 0;
800
801 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805 if (ret == 0)
806 goto next_page;
807
808 hit_slowpath = 1;
809 mutex_unlock(&dev->struct_mutex);
810 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
814
815 mutex_lock(&dev->struct_mutex);
816
817 next_page:
818 set_page_dirty(page);
819 mark_page_accessed(page);
820
821 if (ret)
822 goto out;
823
824 remain -= page_length;
825 user_data += page_length;
826 offset += page_length;
827 }
828
829 out:
830 i915_gem_object_unpin_pages(obj);
831
832 if (hit_slowpath) {
833 /* Fixup: Flush dirty cachelines in case the object isn't in the
834 * cpu write domain anymore. */
835 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
836 i915_gem_clflush_object(obj);
837 i915_gem_chipset_flush(dev);
838 }
839 }
840
841 if (needs_clflush_after)
842 i915_gem_chipset_flush(dev);
843
844 return ret;
845 }
846
847 /**
848 * Writes data to the object referenced by handle.
849 *
850 * On error, the contents of the buffer that were to be modified are undefined.
851 */
852 int
853 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
854 struct drm_file *file)
855 {
856 struct drm_i915_gem_pwrite *args = data;
857 struct drm_i915_gem_object *obj;
858 int ret;
859
860 if (args->size == 0)
861 return 0;
862
863 if (!access_ok(VERIFY_READ,
864 (char __user *)(uintptr_t)args->data_ptr,
865 args->size))
866 return -EFAULT;
867
868 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
869 args->size);
870 if (ret)
871 return -EFAULT;
872
873 ret = i915_mutex_lock_interruptible(dev);
874 if (ret)
875 return ret;
876
877 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
878 if (&obj->base == NULL) {
879 ret = -ENOENT;
880 goto unlock;
881 }
882
883 /* Bounds check destination. */
884 if (args->offset > obj->base.size ||
885 args->size > obj->base.size - args->offset) {
886 ret = -EINVAL;
887 goto out;
888 }
889
890 /* prime objects have no backing filp to GEM pread/pwrite
891 * pages from.
892 */
893 if (!obj->base.filp) {
894 ret = -EINVAL;
895 goto out;
896 }
897
898 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
899
900 ret = -EFAULT;
901 /* We can only do the GTT pwrite on untiled buffers, as otherwise
902 * it would end up going through the fenced access, and we'll get
903 * different detiling behavior between reading and writing.
904 * pread/pwrite currently are reading and writing from the CPU
905 * perspective, requiring manual detiling by the client.
906 */
907 if (obj->phys_obj) {
908 ret = i915_gem_phys_pwrite(dev, obj, args, file);
909 goto out;
910 }
911
912 if (obj->cache_level == I915_CACHE_NONE &&
913 obj->tiling_mode == I915_TILING_NONE &&
914 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
915 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
916 /* Note that the gtt paths might fail with non-page-backed user
917 * pointers (e.g. gtt mappings when moving data between
918 * textures). Fallback to the shmem path in that case. */
919 }
920
921 if (ret == -EFAULT || ret == -ENOSPC)
922 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
923
924 out:
925 drm_gem_object_unreference(&obj->base);
926 unlock:
927 mutex_unlock(&dev->struct_mutex);
928 return ret;
929 }
930
931 int
932 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
933 bool interruptible)
934 {
935 if (atomic_read(&dev_priv->mm.wedged)) {
936 struct completion *x = &dev_priv->error_completion;
937 bool recovery_complete;
938 unsigned long flags;
939
940 /* Give the error handler a chance to run. */
941 spin_lock_irqsave(&x->wait.lock, flags);
942 recovery_complete = x->done > 0;
943 spin_unlock_irqrestore(&x->wait.lock, flags);
944
945 /* Non-interruptible callers can't handle -EAGAIN, hence return
946 * -EIO unconditionally for these. */
947 if (!interruptible)
948 return -EIO;
949
950 /* Recovery complete, but still wedged means reset failure. */
951 if (recovery_complete)
952 return -EIO;
953
954 return -EAGAIN;
955 }
956
957 return 0;
958 }
959
960 /*
961 * Compare seqno against outstanding lazy request. Emit a request if they are
962 * equal.
963 */
964 static int
965 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
966 {
967 int ret;
968
969 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
970
971 ret = 0;
972 if (seqno == ring->outstanding_lazy_request)
973 ret = i915_add_request(ring, NULL, NULL);
974
975 return ret;
976 }
977
978 /**
979 * __wait_seqno - wait until execution of seqno has finished
980 * @ring: the ring expected to report seqno
981 * @seqno: duh!
982 * @interruptible: do an interruptible wait (normally yes)
983 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
984 *
985 * Returns 0 if the seqno was found within the alloted time. Else returns the
986 * errno with remaining time filled in timeout argument.
987 */
988 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
989 bool interruptible, struct timespec *timeout)
990 {
991 drm_i915_private_t *dev_priv = ring->dev->dev_private;
992 struct timespec before, now, wait_time={1,0};
993 unsigned long timeout_jiffies;
994 long end;
995 bool wait_forever = true;
996 int ret;
997
998 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
999 return 0;
1000
1001 trace_i915_gem_request_wait_begin(ring, seqno);
1002
1003 if (timeout != NULL) {
1004 wait_time = *timeout;
1005 wait_forever = false;
1006 }
1007
1008 timeout_jiffies = timespec_to_jiffies(&wait_time);
1009
1010 if (WARN_ON(!ring->irq_get(ring)))
1011 return -ENODEV;
1012
1013 /* Record current time in case interrupted by signal, or wedged * */
1014 getrawmonotonic(&before);
1015
1016 #define EXIT_COND \
1017 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1018 atomic_read(&dev_priv->mm.wedged))
1019 do {
1020 if (interruptible)
1021 end = wait_event_interruptible_timeout(ring->irq_queue,
1022 EXIT_COND,
1023 timeout_jiffies);
1024 else
1025 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1026 timeout_jiffies);
1027
1028 ret = i915_gem_check_wedge(dev_priv, interruptible);
1029 if (ret)
1030 end = ret;
1031 } while (end == 0 && wait_forever);
1032
1033 getrawmonotonic(&now);
1034
1035 ring->irq_put(ring);
1036 trace_i915_gem_request_wait_end(ring, seqno);
1037 #undef EXIT_COND
1038
1039 if (timeout) {
1040 struct timespec sleep_time = timespec_sub(now, before);
1041 *timeout = timespec_sub(*timeout, sleep_time);
1042 }
1043
1044 switch (end) {
1045 case -EIO:
1046 case -EAGAIN: /* Wedged */
1047 case -ERESTARTSYS: /* Signal */
1048 return (int)end;
1049 case 0: /* Timeout */
1050 if (timeout)
1051 set_normalized_timespec(timeout, 0, 0);
1052 return -ETIME;
1053 default: /* Completed */
1054 WARN_ON(end < 0); /* We're not aware of other errors */
1055 return 0;
1056 }
1057 }
1058
1059 /**
1060 * Waits for a sequence number to be signaled, and cleans up the
1061 * request and object lists appropriately for that event.
1062 */
1063 int
1064 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1065 {
1066 struct drm_device *dev = ring->dev;
1067 struct drm_i915_private *dev_priv = dev->dev_private;
1068 bool interruptible = dev_priv->mm.interruptible;
1069 int ret;
1070
1071 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1072 BUG_ON(seqno == 0);
1073
1074 ret = i915_gem_check_wedge(dev_priv, interruptible);
1075 if (ret)
1076 return ret;
1077
1078 ret = i915_gem_check_olr(ring, seqno);
1079 if (ret)
1080 return ret;
1081
1082 return __wait_seqno(ring, seqno, interruptible, NULL);
1083 }
1084
1085 /**
1086 * Ensures that all rendering to the object has completed and the object is
1087 * safe to unbind from the GTT or access from the CPU.
1088 */
1089 static __must_check int
1090 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1091 bool readonly)
1092 {
1093 struct intel_ring_buffer *ring = obj->ring;
1094 u32 seqno;
1095 int ret;
1096
1097 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1098 if (seqno == 0)
1099 return 0;
1100
1101 ret = i915_wait_seqno(ring, seqno);
1102 if (ret)
1103 return ret;
1104
1105 i915_gem_retire_requests_ring(ring);
1106
1107 /* Manually manage the write flush as we may have not yet
1108 * retired the buffer.
1109 */
1110 if (obj->last_write_seqno &&
1111 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1112 obj->last_write_seqno = 0;
1113 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1114 }
1115
1116 return 0;
1117 }
1118
1119 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1120 * as the object state may change during this call.
1121 */
1122 static __must_check int
1123 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1124 bool readonly)
1125 {
1126 struct drm_device *dev = obj->base.dev;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 struct intel_ring_buffer *ring = obj->ring;
1129 u32 seqno;
1130 int ret;
1131
1132 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1133 BUG_ON(!dev_priv->mm.interruptible);
1134
1135 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1136 if (seqno == 0)
1137 return 0;
1138
1139 ret = i915_gem_check_wedge(dev_priv, true);
1140 if (ret)
1141 return ret;
1142
1143 ret = i915_gem_check_olr(ring, seqno);
1144 if (ret)
1145 return ret;
1146
1147 mutex_unlock(&dev->struct_mutex);
1148 ret = __wait_seqno(ring, seqno, true, NULL);
1149 mutex_lock(&dev->struct_mutex);
1150
1151 i915_gem_retire_requests_ring(ring);
1152
1153 /* Manually manage the write flush as we may have not yet
1154 * retired the buffer.
1155 */
1156 if (obj->last_write_seqno &&
1157 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1158 obj->last_write_seqno = 0;
1159 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1160 }
1161
1162 return ret;
1163 }
1164
1165 /**
1166 * Called when user space prepares to use an object with the CPU, either
1167 * through the mmap ioctl's mapping or a GTT mapping.
1168 */
1169 int
1170 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1171 struct drm_file *file)
1172 {
1173 struct drm_i915_gem_set_domain *args = data;
1174 struct drm_i915_gem_object *obj;
1175 uint32_t read_domains = args->read_domains;
1176 uint32_t write_domain = args->write_domain;
1177 int ret;
1178
1179 /* Only handle setting domains to types used by the CPU. */
1180 if (write_domain & I915_GEM_GPU_DOMAINS)
1181 return -EINVAL;
1182
1183 if (read_domains & I915_GEM_GPU_DOMAINS)
1184 return -EINVAL;
1185
1186 /* Having something in the write domain implies it's in the read
1187 * domain, and only that read domain. Enforce that in the request.
1188 */
1189 if (write_domain != 0 && read_domains != write_domain)
1190 return -EINVAL;
1191
1192 ret = i915_mutex_lock_interruptible(dev);
1193 if (ret)
1194 return ret;
1195
1196 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1197 if (&obj->base == NULL) {
1198 ret = -ENOENT;
1199 goto unlock;
1200 }
1201
1202 /* Try to flush the object off the GPU without holding the lock.
1203 * We will repeat the flush holding the lock in the normal manner
1204 * to catch cases where we are gazumped.
1205 */
1206 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1207 if (ret)
1208 goto unref;
1209
1210 if (read_domains & I915_GEM_DOMAIN_GTT) {
1211 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1212
1213 /* Silently promote "you're not bound, there was nothing to do"
1214 * to success, since the client was just asking us to
1215 * make sure everything was done.
1216 */
1217 if (ret == -EINVAL)
1218 ret = 0;
1219 } else {
1220 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1221 }
1222
1223 unref:
1224 drm_gem_object_unreference(&obj->base);
1225 unlock:
1226 mutex_unlock(&dev->struct_mutex);
1227 return ret;
1228 }
1229
1230 /**
1231 * Called when user space has done writes to this buffer
1232 */
1233 int
1234 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1235 struct drm_file *file)
1236 {
1237 struct drm_i915_gem_sw_finish *args = data;
1238 struct drm_i915_gem_object *obj;
1239 int ret = 0;
1240
1241 ret = i915_mutex_lock_interruptible(dev);
1242 if (ret)
1243 return ret;
1244
1245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1246 if (&obj->base == NULL) {
1247 ret = -ENOENT;
1248 goto unlock;
1249 }
1250
1251 /* Pinned buffers may be scanout, so flush the cache */
1252 if (obj->pin_count)
1253 i915_gem_object_flush_cpu_write_domain(obj);
1254
1255 drm_gem_object_unreference(&obj->base);
1256 unlock:
1257 mutex_unlock(&dev->struct_mutex);
1258 return ret;
1259 }
1260
1261 /**
1262 * Maps the contents of an object, returning the address it is mapped
1263 * into.
1264 *
1265 * While the mapping holds a reference on the contents of the object, it doesn't
1266 * imply a ref on the object itself.
1267 */
1268 int
1269 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1270 struct drm_file *file)
1271 {
1272 struct drm_i915_gem_mmap *args = data;
1273 struct drm_gem_object *obj;
1274 unsigned long addr;
1275
1276 obj = drm_gem_object_lookup(dev, file, args->handle);
1277 if (obj == NULL)
1278 return -ENOENT;
1279
1280 /* prime objects have no backing filp to GEM mmap
1281 * pages from.
1282 */
1283 if (!obj->filp) {
1284 drm_gem_object_unreference_unlocked(obj);
1285 return -EINVAL;
1286 }
1287
1288 addr = vm_mmap(obj->filp, 0, args->size,
1289 PROT_READ | PROT_WRITE, MAP_SHARED,
1290 args->offset);
1291 drm_gem_object_unreference_unlocked(obj);
1292 if (IS_ERR((void *)addr))
1293 return addr;
1294
1295 args->addr_ptr = (uint64_t) addr;
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * i915_gem_fault - fault a page into the GTT
1302 * vma: VMA in question
1303 * vmf: fault info
1304 *
1305 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1306 * from userspace. The fault handler takes care of binding the object to
1307 * the GTT (if needed), allocating and programming a fence register (again,
1308 * only if needed based on whether the old reg is still valid or the object
1309 * is tiled) and inserting a new PTE into the faulting process.
1310 *
1311 * Note that the faulting process may involve evicting existing objects
1312 * from the GTT and/or fence registers to make room. So performance may
1313 * suffer if the GTT working set is large or there are few fence registers
1314 * left.
1315 */
1316 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1317 {
1318 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1319 struct drm_device *dev = obj->base.dev;
1320 drm_i915_private_t *dev_priv = dev->dev_private;
1321 pgoff_t page_offset;
1322 unsigned long pfn;
1323 int ret = 0;
1324 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1325
1326 /* We don't use vmf->pgoff since that has the fake offset */
1327 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1328 PAGE_SHIFT;
1329
1330 ret = i915_mutex_lock_interruptible(dev);
1331 if (ret)
1332 goto out;
1333
1334 trace_i915_gem_object_fault(obj, page_offset, true, write);
1335
1336 /* Now bind it into the GTT if needed */
1337 ret = i915_gem_object_pin(obj, 0, true, false);
1338 if (ret)
1339 goto unlock;
1340
1341 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1342 if (ret)
1343 goto unpin;
1344
1345 ret = i915_gem_object_get_fence(obj);
1346 if (ret)
1347 goto unpin;
1348
1349 obj->fault_mappable = true;
1350
1351 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1352 page_offset;
1353
1354 /* Finally, remap it using the new GTT offset */
1355 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1356 unpin:
1357 i915_gem_object_unpin(obj);
1358 unlock:
1359 mutex_unlock(&dev->struct_mutex);
1360 out:
1361 switch (ret) {
1362 case -EIO:
1363 /* If this -EIO is due to a gpu hang, give the reset code a
1364 * chance to clean up the mess. Otherwise return the proper
1365 * SIGBUS. */
1366 if (!atomic_read(&dev_priv->mm.wedged))
1367 return VM_FAULT_SIGBUS;
1368 case -EAGAIN:
1369 /* Give the error handler a chance to run and move the
1370 * objects off the GPU active list. Next time we service the
1371 * fault, we should be able to transition the page into the
1372 * GTT without touching the GPU (and so avoid further
1373 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1374 * with coherency, just lost writes.
1375 */
1376 set_need_resched();
1377 case 0:
1378 case -ERESTARTSYS:
1379 case -EINTR:
1380 case -EBUSY:
1381 /*
1382 * EBUSY is ok: this just means that another thread
1383 * already did the job.
1384 */
1385 return VM_FAULT_NOPAGE;
1386 case -ENOMEM:
1387 return VM_FAULT_OOM;
1388 case -ENOSPC:
1389 return VM_FAULT_SIGBUS;
1390 default:
1391 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1392 return VM_FAULT_SIGBUS;
1393 }
1394 }
1395
1396 /**
1397 * i915_gem_release_mmap - remove physical page mappings
1398 * @obj: obj in question
1399 *
1400 * Preserve the reservation of the mmapping with the DRM core code, but
1401 * relinquish ownership of the pages back to the system.
1402 *
1403 * It is vital that we remove the page mapping if we have mapped a tiled
1404 * object through the GTT and then lose the fence register due to
1405 * resource pressure. Similarly if the object has been moved out of the
1406 * aperture, than pages mapped into userspace must be revoked. Removing the
1407 * mapping will then trigger a page fault on the next user access, allowing
1408 * fixup by i915_gem_fault().
1409 */
1410 void
1411 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1412 {
1413 if (!obj->fault_mappable)
1414 return;
1415
1416 if (obj->base.dev->dev_mapping)
1417 unmap_mapping_range(obj->base.dev->dev_mapping,
1418 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1419 obj->base.size, 1);
1420
1421 obj->fault_mappable = false;
1422 }
1423
1424 static uint32_t
1425 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1426 {
1427 uint32_t gtt_size;
1428
1429 if (INTEL_INFO(dev)->gen >= 4 ||
1430 tiling_mode == I915_TILING_NONE)
1431 return size;
1432
1433 /* Previous chips need a power-of-two fence region when tiling */
1434 if (INTEL_INFO(dev)->gen == 3)
1435 gtt_size = 1024*1024;
1436 else
1437 gtt_size = 512*1024;
1438
1439 while (gtt_size < size)
1440 gtt_size <<= 1;
1441
1442 return gtt_size;
1443 }
1444
1445 /**
1446 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1447 * @obj: object to check
1448 *
1449 * Return the required GTT alignment for an object, taking into account
1450 * potential fence register mapping.
1451 */
1452 static uint32_t
1453 i915_gem_get_gtt_alignment(struct drm_device *dev,
1454 uint32_t size,
1455 int tiling_mode)
1456 {
1457 /*
1458 * Minimum alignment is 4k (GTT page size), but might be greater
1459 * if a fence register is needed for the object.
1460 */
1461 if (INTEL_INFO(dev)->gen >= 4 ||
1462 tiling_mode == I915_TILING_NONE)
1463 return 4096;
1464
1465 /*
1466 * Previous chips need to be aligned to the size of the smallest
1467 * fence register that can contain the object.
1468 */
1469 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1470 }
1471
1472 /**
1473 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1474 * unfenced object
1475 * @dev: the device
1476 * @size: size of the object
1477 * @tiling_mode: tiling mode of the object
1478 *
1479 * Return the required GTT alignment for an object, only taking into account
1480 * unfenced tiled surface requirements.
1481 */
1482 uint32_t
1483 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1484 uint32_t size,
1485 int tiling_mode)
1486 {
1487 /*
1488 * Minimum alignment is 4k (GTT page size) for sane hw.
1489 */
1490 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1491 tiling_mode == I915_TILING_NONE)
1492 return 4096;
1493
1494 /* Previous hardware however needs to be aligned to a power-of-two
1495 * tile height. The simplest method for determining this is to reuse
1496 * the power-of-tile object size.
1497 */
1498 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1499 }
1500
1501 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1502 {
1503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1504 int ret;
1505
1506 if (obj->base.map_list.map)
1507 return 0;
1508
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
1511 return ret;
1512
1513 /* Badly fragmented mmap space? The only way we can recover
1514 * space is by destroying unwanted objects. We can't randomly release
1515 * mmap_offsets as userspace expects them to be persistent for the
1516 * lifetime of the objects. The closest we can is to release the
1517 * offsets on purgeable objects by truncating it and marking it purged,
1518 * which prevents userspace from ever using that object again.
1519 */
1520 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1521 ret = drm_gem_create_mmap_offset(&obj->base);
1522 if (ret != -ENOSPC)
1523 return ret;
1524
1525 i915_gem_shrink_all(dev_priv);
1526 return drm_gem_create_mmap_offset(&obj->base);
1527 }
1528
1529 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1530 {
1531 if (!obj->base.map_list.map)
1532 return;
1533
1534 drm_gem_free_mmap_offset(&obj->base);
1535 }
1536
1537 int
1538 i915_gem_mmap_gtt(struct drm_file *file,
1539 struct drm_device *dev,
1540 uint32_t handle,
1541 uint64_t *offset)
1542 {
1543 struct drm_i915_private *dev_priv = dev->dev_private;
1544 struct drm_i915_gem_object *obj;
1545 int ret;
1546
1547 ret = i915_mutex_lock_interruptible(dev);
1548 if (ret)
1549 return ret;
1550
1551 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1552 if (&obj->base == NULL) {
1553 ret = -ENOENT;
1554 goto unlock;
1555 }
1556
1557 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1558 ret = -E2BIG;
1559 goto out;
1560 }
1561
1562 if (obj->madv != I915_MADV_WILLNEED) {
1563 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1564 ret = -EINVAL;
1565 goto out;
1566 }
1567
1568 ret = i915_gem_object_create_mmap_offset(obj);
1569 if (ret)
1570 goto out;
1571
1572 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1573
1574 out:
1575 drm_gem_object_unreference(&obj->base);
1576 unlock:
1577 mutex_unlock(&dev->struct_mutex);
1578 return ret;
1579 }
1580
1581 /**
1582 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1583 * @dev: DRM device
1584 * @data: GTT mapping ioctl data
1585 * @file: GEM object info
1586 *
1587 * Simply returns the fake offset to userspace so it can mmap it.
1588 * The mmap call will end up in drm_gem_mmap(), which will set things
1589 * up so we can get faults in the handler above.
1590 *
1591 * The fault handler will take care of binding the object into the GTT
1592 * (since it may have been evicted to make room for something), allocating
1593 * a fence register, and mapping the appropriate aperture address into
1594 * userspace.
1595 */
1596 int
1597 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1598 struct drm_file *file)
1599 {
1600 struct drm_i915_gem_mmap_gtt *args = data;
1601
1602 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1603 }
1604
1605 /* Immediately discard the backing storage */
1606 static void
1607 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1608 {
1609 struct inode *inode;
1610
1611 i915_gem_object_free_mmap_offset(obj);
1612
1613 if (obj->base.filp == NULL)
1614 return;
1615
1616 /* Our goal here is to return as much of the memory as
1617 * is possible back to the system as we are called from OOM.
1618 * To do this we must instruct the shmfs to drop all of its
1619 * backing pages, *now*.
1620 */
1621 inode = obj->base.filp->f_path.dentry->d_inode;
1622 shmem_truncate_range(inode, 0, (loff_t)-1);
1623
1624 obj->madv = __I915_MADV_PURGED;
1625 }
1626
1627 static inline int
1628 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1629 {
1630 return obj->madv == I915_MADV_DONTNEED;
1631 }
1632
1633 static void
1634 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1635 {
1636 int page_count = obj->base.size / PAGE_SIZE;
1637 struct scatterlist *sg;
1638 int ret, i;
1639
1640 BUG_ON(obj->madv == __I915_MADV_PURGED);
1641
1642 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1643 if (ret) {
1644 /* In the event of a disaster, abandon all caches and
1645 * hope for the best.
1646 */
1647 WARN_ON(ret != -EIO);
1648 i915_gem_clflush_object(obj);
1649 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1650 }
1651
1652 if (i915_gem_object_needs_bit17_swizzle(obj))
1653 i915_gem_object_save_bit_17_swizzle(obj);
1654
1655 if (obj->madv == I915_MADV_DONTNEED)
1656 obj->dirty = 0;
1657
1658 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1659 struct page *page = sg_page(sg);
1660
1661 if (obj->dirty)
1662 set_page_dirty(page);
1663
1664 if (obj->madv == I915_MADV_WILLNEED)
1665 mark_page_accessed(page);
1666
1667 page_cache_release(page);
1668 }
1669 obj->dirty = 0;
1670
1671 sg_free_table(obj->pages);
1672 kfree(obj->pages);
1673 }
1674
1675 static int
1676 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1677 {
1678 const struct drm_i915_gem_object_ops *ops = obj->ops;
1679
1680 if (obj->pages == NULL)
1681 return 0;
1682
1683 BUG_ON(obj->gtt_space);
1684
1685 if (obj->pages_pin_count)
1686 return -EBUSY;
1687
1688 ops->put_pages(obj);
1689 obj->pages = NULL;
1690
1691 list_del(&obj->gtt_list);
1692 if (i915_gem_object_is_purgeable(obj))
1693 i915_gem_object_truncate(obj);
1694
1695 return 0;
1696 }
1697
1698 static long
1699 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1700 {
1701 struct drm_i915_gem_object *obj, *next;
1702 long count = 0;
1703
1704 list_for_each_entry_safe(obj, next,
1705 &dev_priv->mm.unbound_list,
1706 gtt_list) {
1707 if (i915_gem_object_is_purgeable(obj) &&
1708 i915_gem_object_put_pages(obj) == 0) {
1709 count += obj->base.size >> PAGE_SHIFT;
1710 if (count >= target)
1711 return count;
1712 }
1713 }
1714
1715 list_for_each_entry_safe(obj, next,
1716 &dev_priv->mm.inactive_list,
1717 mm_list) {
1718 if (i915_gem_object_is_purgeable(obj) &&
1719 i915_gem_object_unbind(obj) == 0 &&
1720 i915_gem_object_put_pages(obj) == 0) {
1721 count += obj->base.size >> PAGE_SHIFT;
1722 if (count >= target)
1723 return count;
1724 }
1725 }
1726
1727 return count;
1728 }
1729
1730 static void
1731 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1732 {
1733 struct drm_i915_gem_object *obj, *next;
1734
1735 i915_gem_evict_everything(dev_priv->dev);
1736
1737 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1738 i915_gem_object_put_pages(obj);
1739 }
1740
1741 static int
1742 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1745 int page_count, i;
1746 struct address_space *mapping;
1747 struct sg_table *st;
1748 struct scatterlist *sg;
1749 struct page *page;
1750 gfp_t gfp;
1751
1752 /* Assert that the object is not currently in any GPU domain. As it
1753 * wasn't in the GTT, there shouldn't be any way it could have been in
1754 * a GPU cache
1755 */
1756 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1757 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1758
1759 st = kmalloc(sizeof(*st), GFP_KERNEL);
1760 if (st == NULL)
1761 return -ENOMEM;
1762
1763 page_count = obj->base.size / PAGE_SIZE;
1764 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1765 sg_free_table(st);
1766 kfree(st);
1767 return -ENOMEM;
1768 }
1769
1770 /* Get the list of pages out of our struct file. They'll be pinned
1771 * at this point until we release them.
1772 *
1773 * Fail silently without starting the shrinker
1774 */
1775 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1776 gfp = mapping_gfp_mask(mapping);
1777 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1778 gfp &= ~(__GFP_IO | __GFP_WAIT);
1779 for_each_sg(st->sgl, sg, page_count, i) {
1780 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1781 if (IS_ERR(page)) {
1782 i915_gem_purge(dev_priv, page_count);
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 }
1785 if (IS_ERR(page)) {
1786 /* We've tried hard to allocate the memory by reaping
1787 * our own buffer, now let the real VM do its job and
1788 * go down in flames if truly OOM.
1789 */
1790 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1791 gfp |= __GFP_IO | __GFP_WAIT;
1792
1793 i915_gem_shrink_all(dev_priv);
1794 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795 if (IS_ERR(page))
1796 goto err_pages;
1797
1798 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1799 gfp &= ~(__GFP_IO | __GFP_WAIT);
1800 }
1801
1802 sg_set_page(sg, page, PAGE_SIZE, 0);
1803 }
1804
1805 obj->pages = st;
1806
1807 if (i915_gem_object_needs_bit17_swizzle(obj))
1808 i915_gem_object_do_bit_17_swizzle(obj);
1809
1810 return 0;
1811
1812 err_pages:
1813 for_each_sg(st->sgl, sg, i, page_count)
1814 page_cache_release(sg_page(sg));
1815 sg_free_table(st);
1816 kfree(st);
1817 return PTR_ERR(page);
1818 }
1819
1820 /* Ensure that the associated pages are gathered from the backing storage
1821 * and pinned into our object. i915_gem_object_get_pages() may be called
1822 * multiple times before they are released by a single call to
1823 * i915_gem_object_put_pages() - once the pages are no longer referenced
1824 * either as a result of memory pressure (reaping pages under the shrinker)
1825 * or as the object is itself released.
1826 */
1827 int
1828 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1829 {
1830 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1831 const struct drm_i915_gem_object_ops *ops = obj->ops;
1832 int ret;
1833
1834 if (obj->pages)
1835 return 0;
1836
1837 BUG_ON(obj->pages_pin_count);
1838
1839 ret = ops->get_pages(obj);
1840 if (ret)
1841 return ret;
1842
1843 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1844 return 0;
1845 }
1846
1847 void
1848 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1849 struct intel_ring_buffer *ring)
1850 {
1851 struct drm_device *dev = obj->base.dev;
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 u32 seqno = intel_ring_get_seqno(ring);
1854
1855 BUG_ON(ring == NULL);
1856 obj->ring = ring;
1857
1858 /* Add a reference if we're newly entering the active list. */
1859 if (!obj->active) {
1860 drm_gem_object_reference(&obj->base);
1861 obj->active = 1;
1862 }
1863
1864 /* Move from whatever list we were on to the tail of execution. */
1865 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1866 list_move_tail(&obj->ring_list, &ring->active_list);
1867
1868 obj->last_read_seqno = seqno;
1869
1870 if (obj->fenced_gpu_access) {
1871 obj->last_fenced_seqno = seqno;
1872
1873 /* Bump MRU to take account of the delayed flush */
1874 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1875 struct drm_i915_fence_reg *reg;
1876
1877 reg = &dev_priv->fence_regs[obj->fence_reg];
1878 list_move_tail(&reg->lru_list,
1879 &dev_priv->mm.fence_list);
1880 }
1881 }
1882 }
1883
1884 static void
1885 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1886 {
1887 struct drm_device *dev = obj->base.dev;
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889
1890 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1891 BUG_ON(!obj->active);
1892
1893 if (obj->pin_count) /* are we a framebuffer? */
1894 intel_mark_fb_idle(obj);
1895
1896 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1897
1898 list_del_init(&obj->ring_list);
1899 obj->ring = NULL;
1900
1901 obj->last_read_seqno = 0;
1902 obj->last_write_seqno = 0;
1903 obj->base.write_domain = 0;
1904
1905 obj->last_fenced_seqno = 0;
1906 obj->fenced_gpu_access = false;
1907
1908 obj->active = 0;
1909 drm_gem_object_unreference(&obj->base);
1910
1911 WARN_ON(i915_verify_lists(dev));
1912 }
1913
1914 static int
1915 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1916 {
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918 struct intel_ring_buffer *ring;
1919 int ret, i, j;
1920
1921 /* The hardware uses various monotonic 32-bit counters, if we
1922 * detect that they will wraparound we need to idle the GPU
1923 * and reset those counters.
1924 */
1925 ret = 0;
1926 for_each_ring(ring, dev_priv, i) {
1927 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1928 ret |= ring->sync_seqno[j] != 0;
1929 }
1930 if (ret == 0)
1931 return ret;
1932
1933 ret = i915_gpu_idle(dev);
1934 if (ret)
1935 return ret;
1936
1937 i915_gem_retire_requests(dev);
1938 for_each_ring(ring, dev_priv, i) {
1939 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1940 ring->sync_seqno[j] = 0;
1941 }
1942
1943 return 0;
1944 }
1945
1946 int
1947 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1948 {
1949 struct drm_i915_private *dev_priv = dev->dev_private;
1950
1951 /* reserve 0 for non-seqno */
1952 if (dev_priv->next_seqno == 0) {
1953 int ret = i915_gem_handle_seqno_wrap(dev);
1954 if (ret)
1955 return ret;
1956
1957 dev_priv->next_seqno = 1;
1958 }
1959
1960 *seqno = dev_priv->next_seqno++;
1961 return 0;
1962 }
1963
1964 int
1965 i915_add_request(struct intel_ring_buffer *ring,
1966 struct drm_file *file,
1967 u32 *out_seqno)
1968 {
1969 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1970 struct drm_i915_gem_request *request;
1971 u32 request_ring_position;
1972 int was_empty;
1973 int ret;
1974
1975 /*
1976 * Emit any outstanding flushes - execbuf can fail to emit the flush
1977 * after having emitted the batchbuffer command. Hence we need to fix
1978 * things up similar to emitting the lazy request. The difference here
1979 * is that the flush _must_ happen before the next request, no matter
1980 * what.
1981 */
1982 ret = intel_ring_flush_all_caches(ring);
1983 if (ret)
1984 return ret;
1985
1986 request = kmalloc(sizeof(*request), GFP_KERNEL);
1987 if (request == NULL)
1988 return -ENOMEM;
1989
1990
1991 /* Record the position of the start of the request so that
1992 * should we detect the updated seqno part-way through the
1993 * GPU processing the request, we never over-estimate the
1994 * position of the head.
1995 */
1996 request_ring_position = intel_ring_get_tail(ring);
1997
1998 ret = ring->add_request(ring);
1999 if (ret) {
2000 kfree(request);
2001 return ret;
2002 }
2003
2004 request->seqno = intel_ring_get_seqno(ring);
2005 request->ring = ring;
2006 request->tail = request_ring_position;
2007 request->emitted_jiffies = jiffies;
2008 was_empty = list_empty(&ring->request_list);
2009 list_add_tail(&request->list, &ring->request_list);
2010 request->file_priv = NULL;
2011
2012 if (file) {
2013 struct drm_i915_file_private *file_priv = file->driver_priv;
2014
2015 spin_lock(&file_priv->mm.lock);
2016 request->file_priv = file_priv;
2017 list_add_tail(&request->client_list,
2018 &file_priv->mm.request_list);
2019 spin_unlock(&file_priv->mm.lock);
2020 }
2021
2022 trace_i915_gem_request_add(ring, request->seqno);
2023 ring->outstanding_lazy_request = 0;
2024
2025 if (!dev_priv->mm.suspended) {
2026 if (i915_enable_hangcheck) {
2027 mod_timer(&dev_priv->hangcheck_timer,
2028 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2029 }
2030 if (was_empty) {
2031 queue_delayed_work(dev_priv->wq,
2032 &dev_priv->mm.retire_work,
2033 round_jiffies_up_relative(HZ));
2034 intel_mark_busy(dev_priv->dev);
2035 }
2036 }
2037
2038 if (out_seqno)
2039 *out_seqno = request->seqno;
2040 return 0;
2041 }
2042
2043 static inline void
2044 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2045 {
2046 struct drm_i915_file_private *file_priv = request->file_priv;
2047
2048 if (!file_priv)
2049 return;
2050
2051 spin_lock(&file_priv->mm.lock);
2052 if (request->file_priv) {
2053 list_del(&request->client_list);
2054 request->file_priv = NULL;
2055 }
2056 spin_unlock(&file_priv->mm.lock);
2057 }
2058
2059 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2060 struct intel_ring_buffer *ring)
2061 {
2062 while (!list_empty(&ring->request_list)) {
2063 struct drm_i915_gem_request *request;
2064
2065 request = list_first_entry(&ring->request_list,
2066 struct drm_i915_gem_request,
2067 list);
2068
2069 list_del(&request->list);
2070 i915_gem_request_remove_from_client(request);
2071 kfree(request);
2072 }
2073
2074 while (!list_empty(&ring->active_list)) {
2075 struct drm_i915_gem_object *obj;
2076
2077 obj = list_first_entry(&ring->active_list,
2078 struct drm_i915_gem_object,
2079 ring_list);
2080
2081 i915_gem_object_move_to_inactive(obj);
2082 }
2083 }
2084
2085 static void i915_gem_reset_fences(struct drm_device *dev)
2086 {
2087 struct drm_i915_private *dev_priv = dev->dev_private;
2088 int i;
2089
2090 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2091 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2092
2093 i915_gem_write_fence(dev, i, NULL);
2094
2095 if (reg->obj)
2096 i915_gem_object_fence_lost(reg->obj);
2097
2098 reg->pin_count = 0;
2099 reg->obj = NULL;
2100 INIT_LIST_HEAD(&reg->lru_list);
2101 }
2102
2103 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2104 }
2105
2106 void i915_gem_reset(struct drm_device *dev)
2107 {
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 struct drm_i915_gem_object *obj;
2110 struct intel_ring_buffer *ring;
2111 int i;
2112
2113 for_each_ring(ring, dev_priv, i)
2114 i915_gem_reset_ring_lists(dev_priv, ring);
2115
2116 /* Move everything out of the GPU domains to ensure we do any
2117 * necessary invalidation upon reuse.
2118 */
2119 list_for_each_entry(obj,
2120 &dev_priv->mm.inactive_list,
2121 mm_list)
2122 {
2123 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2124 }
2125
2126 /* The fence registers are invalidated so clear them out */
2127 i915_gem_reset_fences(dev);
2128 }
2129
2130 /**
2131 * This function clears the request list as sequence numbers are passed.
2132 */
2133 void
2134 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2135 {
2136 uint32_t seqno;
2137
2138 if (list_empty(&ring->request_list))
2139 return;
2140
2141 WARN_ON(i915_verify_lists(ring->dev));
2142
2143 seqno = ring->get_seqno(ring, true);
2144
2145 while (!list_empty(&ring->request_list)) {
2146 struct drm_i915_gem_request *request;
2147
2148 request = list_first_entry(&ring->request_list,
2149 struct drm_i915_gem_request,
2150 list);
2151
2152 if (!i915_seqno_passed(seqno, request->seqno))
2153 break;
2154
2155 trace_i915_gem_request_retire(ring, request->seqno);
2156 /* We know the GPU must have read the request to have
2157 * sent us the seqno + interrupt, so use the position
2158 * of tail of the request to update the last known position
2159 * of the GPU head.
2160 */
2161 ring->last_retired_head = request->tail;
2162
2163 list_del(&request->list);
2164 i915_gem_request_remove_from_client(request);
2165 kfree(request);
2166 }
2167
2168 /* Move any buffers on the active list that are no longer referenced
2169 * by the ringbuffer to the flushing/inactive lists as appropriate.
2170 */
2171 while (!list_empty(&ring->active_list)) {
2172 struct drm_i915_gem_object *obj;
2173
2174 obj = list_first_entry(&ring->active_list,
2175 struct drm_i915_gem_object,
2176 ring_list);
2177
2178 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2179 break;
2180
2181 i915_gem_object_move_to_inactive(obj);
2182 }
2183
2184 if (unlikely(ring->trace_irq_seqno &&
2185 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2186 ring->irq_put(ring);
2187 ring->trace_irq_seqno = 0;
2188 }
2189
2190 WARN_ON(i915_verify_lists(ring->dev));
2191 }
2192
2193 void
2194 i915_gem_retire_requests(struct drm_device *dev)
2195 {
2196 drm_i915_private_t *dev_priv = dev->dev_private;
2197 struct intel_ring_buffer *ring;
2198 int i;
2199
2200 for_each_ring(ring, dev_priv, i)
2201 i915_gem_retire_requests_ring(ring);
2202 }
2203
2204 static void
2205 i915_gem_retire_work_handler(struct work_struct *work)
2206 {
2207 drm_i915_private_t *dev_priv;
2208 struct drm_device *dev;
2209 struct intel_ring_buffer *ring;
2210 bool idle;
2211 int i;
2212
2213 dev_priv = container_of(work, drm_i915_private_t,
2214 mm.retire_work.work);
2215 dev = dev_priv->dev;
2216
2217 /* Come back later if the device is busy... */
2218 if (!mutex_trylock(&dev->struct_mutex)) {
2219 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2220 round_jiffies_up_relative(HZ));
2221 return;
2222 }
2223
2224 i915_gem_retire_requests(dev);
2225
2226 /* Send a periodic flush down the ring so we don't hold onto GEM
2227 * objects indefinitely.
2228 */
2229 idle = true;
2230 for_each_ring(ring, dev_priv, i) {
2231 if (ring->gpu_caches_dirty)
2232 i915_add_request(ring, NULL, NULL);
2233
2234 idle &= list_empty(&ring->request_list);
2235 }
2236
2237 if (!dev_priv->mm.suspended && !idle)
2238 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2239 round_jiffies_up_relative(HZ));
2240 if (idle)
2241 intel_mark_idle(dev);
2242
2243 mutex_unlock(&dev->struct_mutex);
2244 }
2245
2246 /**
2247 * Ensures that an object will eventually get non-busy by flushing any required
2248 * write domains, emitting any outstanding lazy request and retiring and
2249 * completed requests.
2250 */
2251 static int
2252 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2253 {
2254 int ret;
2255
2256 if (obj->active) {
2257 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2258 if (ret)
2259 return ret;
2260
2261 i915_gem_retire_requests_ring(obj->ring);
2262 }
2263
2264 return 0;
2265 }
2266
2267 /**
2268 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2269 * @DRM_IOCTL_ARGS: standard ioctl arguments
2270 *
2271 * Returns 0 if successful, else an error is returned with the remaining time in
2272 * the timeout parameter.
2273 * -ETIME: object is still busy after timeout
2274 * -ERESTARTSYS: signal interrupted the wait
2275 * -ENONENT: object doesn't exist
2276 * Also possible, but rare:
2277 * -EAGAIN: GPU wedged
2278 * -ENOMEM: damn
2279 * -ENODEV: Internal IRQ fail
2280 * -E?: The add request failed
2281 *
2282 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2283 * non-zero timeout parameter the wait ioctl will wait for the given number of
2284 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2285 * without holding struct_mutex the object may become re-busied before this
2286 * function completes. A similar but shorter * race condition exists in the busy
2287 * ioctl
2288 */
2289 int
2290 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2291 {
2292 struct drm_i915_gem_wait *args = data;
2293 struct drm_i915_gem_object *obj;
2294 struct intel_ring_buffer *ring = NULL;
2295 struct timespec timeout_stack, *timeout = NULL;
2296 u32 seqno = 0;
2297 int ret = 0;
2298
2299 if (args->timeout_ns >= 0) {
2300 timeout_stack = ns_to_timespec(args->timeout_ns);
2301 timeout = &timeout_stack;
2302 }
2303
2304 ret = i915_mutex_lock_interruptible(dev);
2305 if (ret)
2306 return ret;
2307
2308 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2309 if (&obj->base == NULL) {
2310 mutex_unlock(&dev->struct_mutex);
2311 return -ENOENT;
2312 }
2313
2314 /* Need to make sure the object gets inactive eventually. */
2315 ret = i915_gem_object_flush_active(obj);
2316 if (ret)
2317 goto out;
2318
2319 if (obj->active) {
2320 seqno = obj->last_read_seqno;
2321 ring = obj->ring;
2322 }
2323
2324 if (seqno == 0)
2325 goto out;
2326
2327 /* Do this after OLR check to make sure we make forward progress polling
2328 * on this IOCTL with a 0 timeout (like busy ioctl)
2329 */
2330 if (!args->timeout_ns) {
2331 ret = -ETIME;
2332 goto out;
2333 }
2334
2335 drm_gem_object_unreference(&obj->base);
2336 mutex_unlock(&dev->struct_mutex);
2337
2338 ret = __wait_seqno(ring, seqno, true, timeout);
2339 if (timeout) {
2340 WARN_ON(!timespec_valid(timeout));
2341 args->timeout_ns = timespec_to_ns(timeout);
2342 }
2343 return ret;
2344
2345 out:
2346 drm_gem_object_unreference(&obj->base);
2347 mutex_unlock(&dev->struct_mutex);
2348 return ret;
2349 }
2350
2351 /**
2352 * i915_gem_object_sync - sync an object to a ring.
2353 *
2354 * @obj: object which may be in use on another ring.
2355 * @to: ring we wish to use the object on. May be NULL.
2356 *
2357 * This code is meant to abstract object synchronization with the GPU.
2358 * Calling with NULL implies synchronizing the object with the CPU
2359 * rather than a particular GPU ring.
2360 *
2361 * Returns 0 if successful, else propagates up the lower layer error.
2362 */
2363 int
2364 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2365 struct intel_ring_buffer *to)
2366 {
2367 struct intel_ring_buffer *from = obj->ring;
2368 u32 seqno;
2369 int ret, idx;
2370
2371 if (from == NULL || to == from)
2372 return 0;
2373
2374 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2375 return i915_gem_object_wait_rendering(obj, false);
2376
2377 idx = intel_ring_sync_index(from, to);
2378
2379 seqno = obj->last_read_seqno;
2380 if (seqno <= from->sync_seqno[idx])
2381 return 0;
2382
2383 ret = i915_gem_check_olr(obj->ring, seqno);
2384 if (ret)
2385 return ret;
2386
2387 ret = to->sync_to(to, from, seqno);
2388 if (!ret)
2389 /* We use last_read_seqno because sync_to()
2390 * might have just caused seqno wrap under
2391 * the radar.
2392 */
2393 from->sync_seqno[idx] = obj->last_read_seqno;
2394
2395 return ret;
2396 }
2397
2398 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2399 {
2400 u32 old_write_domain, old_read_domains;
2401
2402 /* Act a barrier for all accesses through the GTT */
2403 mb();
2404
2405 /* Force a pagefault for domain tracking on next user access */
2406 i915_gem_release_mmap(obj);
2407
2408 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2409 return;
2410
2411 old_read_domains = obj->base.read_domains;
2412 old_write_domain = obj->base.write_domain;
2413
2414 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2415 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2416
2417 trace_i915_gem_object_change_domain(obj,
2418 old_read_domains,
2419 old_write_domain);
2420 }
2421
2422 /**
2423 * Unbinds an object from the GTT aperture.
2424 */
2425 int
2426 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2427 {
2428 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2429 int ret = 0;
2430
2431 if (obj->gtt_space == NULL)
2432 return 0;
2433
2434 if (obj->pin_count)
2435 return -EBUSY;
2436
2437 BUG_ON(obj->pages == NULL);
2438
2439 ret = i915_gem_object_finish_gpu(obj);
2440 if (ret)
2441 return ret;
2442 /* Continue on if we fail due to EIO, the GPU is hung so we
2443 * should be safe and we need to cleanup or else we might
2444 * cause memory corruption through use-after-free.
2445 */
2446
2447 i915_gem_object_finish_gtt(obj);
2448
2449 /* release the fence reg _after_ flushing */
2450 ret = i915_gem_object_put_fence(obj);
2451 if (ret)
2452 return ret;
2453
2454 trace_i915_gem_object_unbind(obj);
2455
2456 if (obj->has_global_gtt_mapping)
2457 i915_gem_gtt_unbind_object(obj);
2458 if (obj->has_aliasing_ppgtt_mapping) {
2459 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2460 obj->has_aliasing_ppgtt_mapping = 0;
2461 }
2462 i915_gem_gtt_finish_object(obj);
2463
2464 list_del(&obj->mm_list);
2465 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2466 /* Avoid an unnecessary call to unbind on rebind. */
2467 obj->map_and_fenceable = true;
2468
2469 drm_mm_put_block(obj->gtt_space);
2470 obj->gtt_space = NULL;
2471 obj->gtt_offset = 0;
2472
2473 return 0;
2474 }
2475
2476 int i915_gpu_idle(struct drm_device *dev)
2477 {
2478 drm_i915_private_t *dev_priv = dev->dev_private;
2479 struct intel_ring_buffer *ring;
2480 int ret, i;
2481
2482 /* Flush everything onto the inactive list. */
2483 for_each_ring(ring, dev_priv, i) {
2484 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2485 if (ret)
2486 return ret;
2487
2488 ret = intel_ring_idle(ring);
2489 if (ret)
2490 return ret;
2491 }
2492
2493 return 0;
2494 }
2495
2496 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2497 struct drm_i915_gem_object *obj)
2498 {
2499 drm_i915_private_t *dev_priv = dev->dev_private;
2500 uint64_t val;
2501
2502 if (obj) {
2503 u32 size = obj->gtt_space->size;
2504
2505 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2506 0xfffff000) << 32;
2507 val |= obj->gtt_offset & 0xfffff000;
2508 val |= (uint64_t)((obj->stride / 128) - 1) <<
2509 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2510
2511 if (obj->tiling_mode == I915_TILING_Y)
2512 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2513 val |= I965_FENCE_REG_VALID;
2514 } else
2515 val = 0;
2516
2517 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2518 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2519 }
2520
2521 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2522 struct drm_i915_gem_object *obj)
2523 {
2524 drm_i915_private_t *dev_priv = dev->dev_private;
2525 uint64_t val;
2526
2527 if (obj) {
2528 u32 size = obj->gtt_space->size;
2529
2530 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2531 0xfffff000) << 32;
2532 val |= obj->gtt_offset & 0xfffff000;
2533 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2534 if (obj->tiling_mode == I915_TILING_Y)
2535 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2536 val |= I965_FENCE_REG_VALID;
2537 } else
2538 val = 0;
2539
2540 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2541 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2542 }
2543
2544 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2545 struct drm_i915_gem_object *obj)
2546 {
2547 drm_i915_private_t *dev_priv = dev->dev_private;
2548 u32 val;
2549
2550 if (obj) {
2551 u32 size = obj->gtt_space->size;
2552 int pitch_val;
2553 int tile_width;
2554
2555 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2556 (size & -size) != size ||
2557 (obj->gtt_offset & (size - 1)),
2558 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2559 obj->gtt_offset, obj->map_and_fenceable, size);
2560
2561 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2562 tile_width = 128;
2563 else
2564 tile_width = 512;
2565
2566 /* Note: pitch better be a power of two tile widths */
2567 pitch_val = obj->stride / tile_width;
2568 pitch_val = ffs(pitch_val) - 1;
2569
2570 val = obj->gtt_offset;
2571 if (obj->tiling_mode == I915_TILING_Y)
2572 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2573 val |= I915_FENCE_SIZE_BITS(size);
2574 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2575 val |= I830_FENCE_REG_VALID;
2576 } else
2577 val = 0;
2578
2579 if (reg < 8)
2580 reg = FENCE_REG_830_0 + reg * 4;
2581 else
2582 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2583
2584 I915_WRITE(reg, val);
2585 POSTING_READ(reg);
2586 }
2587
2588 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2589 struct drm_i915_gem_object *obj)
2590 {
2591 drm_i915_private_t *dev_priv = dev->dev_private;
2592 uint32_t val;
2593
2594 if (obj) {
2595 u32 size = obj->gtt_space->size;
2596 uint32_t pitch_val;
2597
2598 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2599 (size & -size) != size ||
2600 (obj->gtt_offset & (size - 1)),
2601 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2602 obj->gtt_offset, size);
2603
2604 pitch_val = obj->stride / 128;
2605 pitch_val = ffs(pitch_val) - 1;
2606
2607 val = obj->gtt_offset;
2608 if (obj->tiling_mode == I915_TILING_Y)
2609 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2610 val |= I830_FENCE_SIZE_BITS(size);
2611 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2612 val |= I830_FENCE_REG_VALID;
2613 } else
2614 val = 0;
2615
2616 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2617 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2618 }
2619
2620 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2621 struct drm_i915_gem_object *obj)
2622 {
2623 switch (INTEL_INFO(dev)->gen) {
2624 case 7:
2625 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2626 case 5:
2627 case 4: i965_write_fence_reg(dev, reg, obj); break;
2628 case 3: i915_write_fence_reg(dev, reg, obj); break;
2629 case 2: i830_write_fence_reg(dev, reg, obj); break;
2630 default: break;
2631 }
2632 }
2633
2634 static inline int fence_number(struct drm_i915_private *dev_priv,
2635 struct drm_i915_fence_reg *fence)
2636 {
2637 return fence - dev_priv->fence_regs;
2638 }
2639
2640 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2641 struct drm_i915_fence_reg *fence,
2642 bool enable)
2643 {
2644 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2645 int reg = fence_number(dev_priv, fence);
2646
2647 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2648
2649 if (enable) {
2650 obj->fence_reg = reg;
2651 fence->obj = obj;
2652 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2653 } else {
2654 obj->fence_reg = I915_FENCE_REG_NONE;
2655 fence->obj = NULL;
2656 list_del_init(&fence->lru_list);
2657 }
2658 }
2659
2660 static int
2661 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2662 {
2663 if (obj->last_fenced_seqno) {
2664 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2665 if (ret)
2666 return ret;
2667
2668 obj->last_fenced_seqno = 0;
2669 }
2670
2671 /* Ensure that all CPU reads are completed before installing a fence
2672 * and all writes before removing the fence.
2673 */
2674 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2675 mb();
2676
2677 obj->fenced_gpu_access = false;
2678 return 0;
2679 }
2680
2681 int
2682 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2683 {
2684 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2685 int ret;
2686
2687 ret = i915_gem_object_flush_fence(obj);
2688 if (ret)
2689 return ret;
2690
2691 if (obj->fence_reg == I915_FENCE_REG_NONE)
2692 return 0;
2693
2694 i915_gem_object_update_fence(obj,
2695 &dev_priv->fence_regs[obj->fence_reg],
2696 false);
2697 i915_gem_object_fence_lost(obj);
2698
2699 return 0;
2700 }
2701
2702 static struct drm_i915_fence_reg *
2703 i915_find_fence_reg(struct drm_device *dev)
2704 {
2705 struct drm_i915_private *dev_priv = dev->dev_private;
2706 struct drm_i915_fence_reg *reg, *avail;
2707 int i;
2708
2709 /* First try to find a free reg */
2710 avail = NULL;
2711 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2712 reg = &dev_priv->fence_regs[i];
2713 if (!reg->obj)
2714 return reg;
2715
2716 if (!reg->pin_count)
2717 avail = reg;
2718 }
2719
2720 if (avail == NULL)
2721 return NULL;
2722
2723 /* None available, try to steal one or wait for a user to finish */
2724 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2725 if (reg->pin_count)
2726 continue;
2727
2728 return reg;
2729 }
2730
2731 return NULL;
2732 }
2733
2734 /**
2735 * i915_gem_object_get_fence - set up fencing for an object
2736 * @obj: object to map through a fence reg
2737 *
2738 * When mapping objects through the GTT, userspace wants to be able to write
2739 * to them without having to worry about swizzling if the object is tiled.
2740 * This function walks the fence regs looking for a free one for @obj,
2741 * stealing one if it can't find any.
2742 *
2743 * It then sets up the reg based on the object's properties: address, pitch
2744 * and tiling format.
2745 *
2746 * For an untiled surface, this removes any existing fence.
2747 */
2748 int
2749 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2750 {
2751 struct drm_device *dev = obj->base.dev;
2752 struct drm_i915_private *dev_priv = dev->dev_private;
2753 bool enable = obj->tiling_mode != I915_TILING_NONE;
2754 struct drm_i915_fence_reg *reg;
2755 int ret;
2756
2757 /* Have we updated the tiling parameters upon the object and so
2758 * will need to serialise the write to the associated fence register?
2759 */
2760 if (obj->fence_dirty) {
2761 ret = i915_gem_object_flush_fence(obj);
2762 if (ret)
2763 return ret;
2764 }
2765
2766 /* Just update our place in the LRU if our fence is getting reused. */
2767 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2768 reg = &dev_priv->fence_regs[obj->fence_reg];
2769 if (!obj->fence_dirty) {
2770 list_move_tail(&reg->lru_list,
2771 &dev_priv->mm.fence_list);
2772 return 0;
2773 }
2774 } else if (enable) {
2775 reg = i915_find_fence_reg(dev);
2776 if (reg == NULL)
2777 return -EDEADLK;
2778
2779 if (reg->obj) {
2780 struct drm_i915_gem_object *old = reg->obj;
2781
2782 ret = i915_gem_object_flush_fence(old);
2783 if (ret)
2784 return ret;
2785
2786 i915_gem_object_fence_lost(old);
2787 }
2788 } else
2789 return 0;
2790
2791 i915_gem_object_update_fence(obj, reg, enable);
2792 obj->fence_dirty = false;
2793
2794 return 0;
2795 }
2796
2797 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2798 struct drm_mm_node *gtt_space,
2799 unsigned long cache_level)
2800 {
2801 struct drm_mm_node *other;
2802
2803 /* On non-LLC machines we have to be careful when putting differing
2804 * types of snoopable memory together to avoid the prefetcher
2805 * crossing memory domains and dieing.
2806 */
2807 if (HAS_LLC(dev))
2808 return true;
2809
2810 if (gtt_space == NULL)
2811 return true;
2812
2813 if (list_empty(&gtt_space->node_list))
2814 return true;
2815
2816 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2817 if (other->allocated && !other->hole_follows && other->color != cache_level)
2818 return false;
2819
2820 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2821 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2822 return false;
2823
2824 return true;
2825 }
2826
2827 static void i915_gem_verify_gtt(struct drm_device *dev)
2828 {
2829 #if WATCH_GTT
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831 struct drm_i915_gem_object *obj;
2832 int err = 0;
2833
2834 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2835 if (obj->gtt_space == NULL) {
2836 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2837 err++;
2838 continue;
2839 }
2840
2841 if (obj->cache_level != obj->gtt_space->color) {
2842 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2843 obj->gtt_space->start,
2844 obj->gtt_space->start + obj->gtt_space->size,
2845 obj->cache_level,
2846 obj->gtt_space->color);
2847 err++;
2848 continue;
2849 }
2850
2851 if (!i915_gem_valid_gtt_space(dev,
2852 obj->gtt_space,
2853 obj->cache_level)) {
2854 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2855 obj->gtt_space->start,
2856 obj->gtt_space->start + obj->gtt_space->size,
2857 obj->cache_level);
2858 err++;
2859 continue;
2860 }
2861 }
2862
2863 WARN_ON(err);
2864 #endif
2865 }
2866
2867 /**
2868 * Finds free space in the GTT aperture and binds the object there.
2869 */
2870 static int
2871 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2872 unsigned alignment,
2873 bool map_and_fenceable,
2874 bool nonblocking)
2875 {
2876 struct drm_device *dev = obj->base.dev;
2877 drm_i915_private_t *dev_priv = dev->dev_private;
2878 struct drm_mm_node *free_space;
2879 u32 size, fence_size, fence_alignment, unfenced_alignment;
2880 bool mappable, fenceable;
2881 int ret;
2882
2883 if (obj->madv != I915_MADV_WILLNEED) {
2884 DRM_ERROR("Attempting to bind a purgeable object\n");
2885 return -EINVAL;
2886 }
2887
2888 fence_size = i915_gem_get_gtt_size(dev,
2889 obj->base.size,
2890 obj->tiling_mode);
2891 fence_alignment = i915_gem_get_gtt_alignment(dev,
2892 obj->base.size,
2893 obj->tiling_mode);
2894 unfenced_alignment =
2895 i915_gem_get_unfenced_gtt_alignment(dev,
2896 obj->base.size,
2897 obj->tiling_mode);
2898
2899 if (alignment == 0)
2900 alignment = map_and_fenceable ? fence_alignment :
2901 unfenced_alignment;
2902 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2903 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2904 return -EINVAL;
2905 }
2906
2907 size = map_and_fenceable ? fence_size : obj->base.size;
2908
2909 /* If the object is bigger than the entire aperture, reject it early
2910 * before evicting everything in a vain attempt to find space.
2911 */
2912 if (obj->base.size >
2913 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2914 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2915 return -E2BIG;
2916 }
2917
2918 ret = i915_gem_object_get_pages(obj);
2919 if (ret)
2920 return ret;
2921
2922 i915_gem_object_pin_pages(obj);
2923
2924 search_free:
2925 if (map_and_fenceable)
2926 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2927 size, alignment, obj->cache_level,
2928 0, dev_priv->mm.gtt_mappable_end,
2929 false);
2930 else
2931 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2932 size, alignment, obj->cache_level,
2933 false);
2934
2935 if (free_space != NULL) {
2936 if (map_and_fenceable)
2937 free_space =
2938 drm_mm_get_block_range_generic(free_space,
2939 size, alignment, obj->cache_level,
2940 0, dev_priv->mm.gtt_mappable_end,
2941 false);
2942 else
2943 free_space =
2944 drm_mm_get_block_generic(free_space,
2945 size, alignment, obj->cache_level,
2946 false);
2947 }
2948 if (free_space == NULL) {
2949 ret = i915_gem_evict_something(dev, size, alignment,
2950 obj->cache_level,
2951 map_and_fenceable,
2952 nonblocking);
2953 if (ret) {
2954 i915_gem_object_unpin_pages(obj);
2955 return ret;
2956 }
2957
2958 goto search_free;
2959 }
2960 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2961 free_space,
2962 obj->cache_level))) {
2963 i915_gem_object_unpin_pages(obj);
2964 drm_mm_put_block(free_space);
2965 return -EINVAL;
2966 }
2967
2968 ret = i915_gem_gtt_prepare_object(obj);
2969 if (ret) {
2970 i915_gem_object_unpin_pages(obj);
2971 drm_mm_put_block(free_space);
2972 return ret;
2973 }
2974
2975 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2976 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2977
2978 obj->gtt_space = free_space;
2979 obj->gtt_offset = free_space->start;
2980
2981 fenceable =
2982 free_space->size == fence_size &&
2983 (free_space->start & (fence_alignment - 1)) == 0;
2984
2985 mappable =
2986 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2987
2988 obj->map_and_fenceable = mappable && fenceable;
2989
2990 i915_gem_object_unpin_pages(obj);
2991 trace_i915_gem_object_bind(obj, map_and_fenceable);
2992 i915_gem_verify_gtt(dev);
2993 return 0;
2994 }
2995
2996 void
2997 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2998 {
2999 /* If we don't have a page list set up, then we're not pinned
3000 * to GPU, and we can ignore the cache flush because it'll happen
3001 * again at bind time.
3002 */
3003 if (obj->pages == NULL)
3004 return;
3005
3006 /* If the GPU is snooping the contents of the CPU cache,
3007 * we do not need to manually clear the CPU cache lines. However,
3008 * the caches are only snooped when the render cache is
3009 * flushed/invalidated. As we always have to emit invalidations
3010 * and flushes when moving into and out of the RENDER domain, correct
3011 * snooping behaviour occurs naturally as the result of our domain
3012 * tracking.
3013 */
3014 if (obj->cache_level != I915_CACHE_NONE)
3015 return;
3016
3017 trace_i915_gem_object_clflush(obj);
3018
3019 drm_clflush_sg(obj->pages);
3020 }
3021
3022 /** Flushes the GTT write domain for the object if it's dirty. */
3023 static void
3024 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3025 {
3026 uint32_t old_write_domain;
3027
3028 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3029 return;
3030
3031 /* No actual flushing is required for the GTT write domain. Writes
3032 * to it immediately go to main memory as far as we know, so there's
3033 * no chipset flush. It also doesn't land in render cache.
3034 *
3035 * However, we do have to enforce the order so that all writes through
3036 * the GTT land before any writes to the device, such as updates to
3037 * the GATT itself.
3038 */
3039 wmb();
3040
3041 old_write_domain = obj->base.write_domain;
3042 obj->base.write_domain = 0;
3043
3044 trace_i915_gem_object_change_domain(obj,
3045 obj->base.read_domains,
3046 old_write_domain);
3047 }
3048
3049 /** Flushes the CPU write domain for the object if it's dirty. */
3050 static void
3051 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3052 {
3053 uint32_t old_write_domain;
3054
3055 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3056 return;
3057
3058 i915_gem_clflush_object(obj);
3059 i915_gem_chipset_flush(obj->base.dev);
3060 old_write_domain = obj->base.write_domain;
3061 obj->base.write_domain = 0;
3062
3063 trace_i915_gem_object_change_domain(obj,
3064 obj->base.read_domains,
3065 old_write_domain);
3066 }
3067
3068 /**
3069 * Moves a single object to the GTT read, and possibly write domain.
3070 *
3071 * This function returns when the move is complete, including waiting on
3072 * flushes to occur.
3073 */
3074 int
3075 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3076 {
3077 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3078 uint32_t old_write_domain, old_read_domains;
3079 int ret;
3080
3081 /* Not valid to be called on unbound objects. */
3082 if (obj->gtt_space == NULL)
3083 return -EINVAL;
3084
3085 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3086 return 0;
3087
3088 ret = i915_gem_object_wait_rendering(obj, !write);
3089 if (ret)
3090 return ret;
3091
3092 i915_gem_object_flush_cpu_write_domain(obj);
3093
3094 old_write_domain = obj->base.write_domain;
3095 old_read_domains = obj->base.read_domains;
3096
3097 /* It should now be out of any other write domains, and we can update
3098 * the domain values for our changes.
3099 */
3100 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3101 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3102 if (write) {
3103 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3104 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3105 obj->dirty = 1;
3106 }
3107
3108 trace_i915_gem_object_change_domain(obj,
3109 old_read_domains,
3110 old_write_domain);
3111
3112 /* And bump the LRU for this access */
3113 if (i915_gem_object_is_inactive(obj))
3114 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3115
3116 return 0;
3117 }
3118
3119 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3120 enum i915_cache_level cache_level)
3121 {
3122 struct drm_device *dev = obj->base.dev;
3123 drm_i915_private_t *dev_priv = dev->dev_private;
3124 int ret;
3125
3126 if (obj->cache_level == cache_level)
3127 return 0;
3128
3129 if (obj->pin_count) {
3130 DRM_DEBUG("can not change the cache level of pinned objects\n");
3131 return -EBUSY;
3132 }
3133
3134 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3135 ret = i915_gem_object_unbind(obj);
3136 if (ret)
3137 return ret;
3138 }
3139
3140 if (obj->gtt_space) {
3141 ret = i915_gem_object_finish_gpu(obj);
3142 if (ret)
3143 return ret;
3144
3145 i915_gem_object_finish_gtt(obj);
3146
3147 /* Before SandyBridge, you could not use tiling or fence
3148 * registers with snooped memory, so relinquish any fences
3149 * currently pointing to our region in the aperture.
3150 */
3151 if (INTEL_INFO(dev)->gen < 6) {
3152 ret = i915_gem_object_put_fence(obj);
3153 if (ret)
3154 return ret;
3155 }
3156
3157 if (obj->has_global_gtt_mapping)
3158 i915_gem_gtt_bind_object(obj, cache_level);
3159 if (obj->has_aliasing_ppgtt_mapping)
3160 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3161 obj, cache_level);
3162
3163 obj->gtt_space->color = cache_level;
3164 }
3165
3166 if (cache_level == I915_CACHE_NONE) {
3167 u32 old_read_domains, old_write_domain;
3168
3169 /* If we're coming from LLC cached, then we haven't
3170 * actually been tracking whether the data is in the
3171 * CPU cache or not, since we only allow one bit set
3172 * in obj->write_domain and have been skipping the clflushes.
3173 * Just set it to the CPU cache for now.
3174 */
3175 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3176 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3177
3178 old_read_domains = obj->base.read_domains;
3179 old_write_domain = obj->base.write_domain;
3180
3181 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3182 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3183
3184 trace_i915_gem_object_change_domain(obj,
3185 old_read_domains,
3186 old_write_domain);
3187 }
3188
3189 obj->cache_level = cache_level;
3190 i915_gem_verify_gtt(dev);
3191 return 0;
3192 }
3193
3194 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3195 struct drm_file *file)
3196 {
3197 struct drm_i915_gem_caching *args = data;
3198 struct drm_i915_gem_object *obj;
3199 int ret;
3200
3201 ret = i915_mutex_lock_interruptible(dev);
3202 if (ret)
3203 return ret;
3204
3205 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3206 if (&obj->base == NULL) {
3207 ret = -ENOENT;
3208 goto unlock;
3209 }
3210
3211 args->caching = obj->cache_level != I915_CACHE_NONE;
3212
3213 drm_gem_object_unreference(&obj->base);
3214 unlock:
3215 mutex_unlock(&dev->struct_mutex);
3216 return ret;
3217 }
3218
3219 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3220 struct drm_file *file)
3221 {
3222 struct drm_i915_gem_caching *args = data;
3223 struct drm_i915_gem_object *obj;
3224 enum i915_cache_level level;
3225 int ret;
3226
3227 switch (args->caching) {
3228 case I915_CACHING_NONE:
3229 level = I915_CACHE_NONE;
3230 break;
3231 case I915_CACHING_CACHED:
3232 level = I915_CACHE_LLC;
3233 break;
3234 default:
3235 return -EINVAL;
3236 }
3237
3238 ret = i915_mutex_lock_interruptible(dev);
3239 if (ret)
3240 return ret;
3241
3242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243 if (&obj->base == NULL) {
3244 ret = -ENOENT;
3245 goto unlock;
3246 }
3247
3248 ret = i915_gem_object_set_cache_level(obj, level);
3249
3250 drm_gem_object_unreference(&obj->base);
3251 unlock:
3252 mutex_unlock(&dev->struct_mutex);
3253 return ret;
3254 }
3255
3256 /*
3257 * Prepare buffer for display plane (scanout, cursors, etc).
3258 * Can be called from an uninterruptible phase (modesetting) and allows
3259 * any flushes to be pipelined (for pageflips).
3260 */
3261 int
3262 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3263 u32 alignment,
3264 struct intel_ring_buffer *pipelined)
3265 {
3266 u32 old_read_domains, old_write_domain;
3267 int ret;
3268
3269 if (pipelined != obj->ring) {
3270 ret = i915_gem_object_sync(obj, pipelined);
3271 if (ret)
3272 return ret;
3273 }
3274
3275 /* The display engine is not coherent with the LLC cache on gen6. As
3276 * a result, we make sure that the pinning that is about to occur is
3277 * done with uncached PTEs. This is lowest common denominator for all
3278 * chipsets.
3279 *
3280 * However for gen6+, we could do better by using the GFDT bit instead
3281 * of uncaching, which would allow us to flush all the LLC-cached data
3282 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3283 */
3284 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3285 if (ret)
3286 return ret;
3287
3288 /* As the user may map the buffer once pinned in the display plane
3289 * (e.g. libkms for the bootup splash), we have to ensure that we
3290 * always use map_and_fenceable for all scanout buffers.
3291 */
3292 ret = i915_gem_object_pin(obj, alignment, true, false);
3293 if (ret)
3294 return ret;
3295
3296 i915_gem_object_flush_cpu_write_domain(obj);
3297
3298 old_write_domain = obj->base.write_domain;
3299 old_read_domains = obj->base.read_domains;
3300
3301 /* It should now be out of any other write domains, and we can update
3302 * the domain values for our changes.
3303 */
3304 obj->base.write_domain = 0;
3305 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3306
3307 trace_i915_gem_object_change_domain(obj,
3308 old_read_domains,
3309 old_write_domain);
3310
3311 return 0;
3312 }
3313
3314 int
3315 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3316 {
3317 int ret;
3318
3319 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3320 return 0;
3321
3322 ret = i915_gem_object_wait_rendering(obj, false);
3323 if (ret)
3324 return ret;
3325
3326 /* Ensure that we invalidate the GPU's caches and TLBs. */
3327 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3328 return 0;
3329 }
3330
3331 /**
3332 * Moves a single object to the CPU read, and possibly write domain.
3333 *
3334 * This function returns when the move is complete, including waiting on
3335 * flushes to occur.
3336 */
3337 int
3338 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3339 {
3340 uint32_t old_write_domain, old_read_domains;
3341 int ret;
3342
3343 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3344 return 0;
3345
3346 ret = i915_gem_object_wait_rendering(obj, !write);
3347 if (ret)
3348 return ret;
3349
3350 i915_gem_object_flush_gtt_write_domain(obj);
3351
3352 old_write_domain = obj->base.write_domain;
3353 old_read_domains = obj->base.read_domains;
3354
3355 /* Flush the CPU cache if it's still invalid. */
3356 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3357 i915_gem_clflush_object(obj);
3358
3359 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3360 }
3361
3362 /* It should now be out of any other write domains, and we can update
3363 * the domain values for our changes.
3364 */
3365 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3366
3367 /* If we're writing through the CPU, then the GPU read domains will
3368 * need to be invalidated at next use.
3369 */
3370 if (write) {
3371 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3373 }
3374
3375 trace_i915_gem_object_change_domain(obj,
3376 old_read_domains,
3377 old_write_domain);
3378
3379 return 0;
3380 }
3381
3382 /* Throttle our rendering by waiting until the ring has completed our requests
3383 * emitted over 20 msec ago.
3384 *
3385 * Note that if we were to use the current jiffies each time around the loop,
3386 * we wouldn't escape the function with any frames outstanding if the time to
3387 * render a frame was over 20ms.
3388 *
3389 * This should get us reasonable parallelism between CPU and GPU but also
3390 * relatively low latency when blocking on a particular request to finish.
3391 */
3392 static int
3393 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3394 {
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 struct drm_i915_file_private *file_priv = file->driver_priv;
3397 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3398 struct drm_i915_gem_request *request;
3399 struct intel_ring_buffer *ring = NULL;
3400 u32 seqno = 0;
3401 int ret;
3402
3403 if (atomic_read(&dev_priv->mm.wedged))
3404 return -EIO;
3405
3406 spin_lock(&file_priv->mm.lock);
3407 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3408 if (time_after_eq(request->emitted_jiffies, recent_enough))
3409 break;
3410
3411 ring = request->ring;
3412 seqno = request->seqno;
3413 }
3414 spin_unlock(&file_priv->mm.lock);
3415
3416 if (seqno == 0)
3417 return 0;
3418
3419 ret = __wait_seqno(ring, seqno, true, NULL);
3420 if (ret == 0)
3421 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3422
3423 return ret;
3424 }
3425
3426 int
3427 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3428 uint32_t alignment,
3429 bool map_and_fenceable,
3430 bool nonblocking)
3431 {
3432 int ret;
3433
3434 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3435 return -EBUSY;
3436
3437 if (obj->gtt_space != NULL) {
3438 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3439 (map_and_fenceable && !obj->map_and_fenceable)) {
3440 WARN(obj->pin_count,
3441 "bo is already pinned with incorrect alignment:"
3442 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3443 " obj->map_and_fenceable=%d\n",
3444 obj->gtt_offset, alignment,
3445 map_and_fenceable,
3446 obj->map_and_fenceable);
3447 ret = i915_gem_object_unbind(obj);
3448 if (ret)
3449 return ret;
3450 }
3451 }
3452
3453 if (obj->gtt_space == NULL) {
3454 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3455
3456 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3457 map_and_fenceable,
3458 nonblocking);
3459 if (ret)
3460 return ret;
3461
3462 if (!dev_priv->mm.aliasing_ppgtt)
3463 i915_gem_gtt_bind_object(obj, obj->cache_level);
3464 }
3465
3466 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3467 i915_gem_gtt_bind_object(obj, obj->cache_level);
3468
3469 obj->pin_count++;
3470 obj->pin_mappable |= map_and_fenceable;
3471
3472 return 0;
3473 }
3474
3475 void
3476 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3477 {
3478 BUG_ON(obj->pin_count == 0);
3479 BUG_ON(obj->gtt_space == NULL);
3480
3481 if (--obj->pin_count == 0)
3482 obj->pin_mappable = false;
3483 }
3484
3485 int
3486 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3487 struct drm_file *file)
3488 {
3489 struct drm_i915_gem_pin *args = data;
3490 struct drm_i915_gem_object *obj;
3491 int ret;
3492
3493 ret = i915_mutex_lock_interruptible(dev);
3494 if (ret)
3495 return ret;
3496
3497 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3498 if (&obj->base == NULL) {
3499 ret = -ENOENT;
3500 goto unlock;
3501 }
3502
3503 if (obj->madv != I915_MADV_WILLNEED) {
3504 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3505 ret = -EINVAL;
3506 goto out;
3507 }
3508
3509 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3510 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3511 args->handle);
3512 ret = -EINVAL;
3513 goto out;
3514 }
3515
3516 obj->user_pin_count++;
3517 obj->pin_filp = file;
3518 if (obj->user_pin_count == 1) {
3519 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3520 if (ret)
3521 goto out;
3522 }
3523
3524 /* XXX - flush the CPU caches for pinned objects
3525 * as the X server doesn't manage domains yet
3526 */
3527 i915_gem_object_flush_cpu_write_domain(obj);
3528 args->offset = obj->gtt_offset;
3529 out:
3530 drm_gem_object_unreference(&obj->base);
3531 unlock:
3532 mutex_unlock(&dev->struct_mutex);
3533 return ret;
3534 }
3535
3536 int
3537 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3538 struct drm_file *file)
3539 {
3540 struct drm_i915_gem_pin *args = data;
3541 struct drm_i915_gem_object *obj;
3542 int ret;
3543
3544 ret = i915_mutex_lock_interruptible(dev);
3545 if (ret)
3546 return ret;
3547
3548 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3549 if (&obj->base == NULL) {
3550 ret = -ENOENT;
3551 goto unlock;
3552 }
3553
3554 if (obj->pin_filp != file) {
3555 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3556 args->handle);
3557 ret = -EINVAL;
3558 goto out;
3559 }
3560 obj->user_pin_count--;
3561 if (obj->user_pin_count == 0) {
3562 obj->pin_filp = NULL;
3563 i915_gem_object_unpin(obj);
3564 }
3565
3566 out:
3567 drm_gem_object_unreference(&obj->base);
3568 unlock:
3569 mutex_unlock(&dev->struct_mutex);
3570 return ret;
3571 }
3572
3573 int
3574 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3575 struct drm_file *file)
3576 {
3577 struct drm_i915_gem_busy *args = data;
3578 struct drm_i915_gem_object *obj;
3579 int ret;
3580
3581 ret = i915_mutex_lock_interruptible(dev);
3582 if (ret)
3583 return ret;
3584
3585 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3586 if (&obj->base == NULL) {
3587 ret = -ENOENT;
3588 goto unlock;
3589 }
3590
3591 /* Count all active objects as busy, even if they are currently not used
3592 * by the gpu. Users of this interface expect objects to eventually
3593 * become non-busy without any further actions, therefore emit any
3594 * necessary flushes here.
3595 */
3596 ret = i915_gem_object_flush_active(obj);
3597
3598 args->busy = obj->active;
3599 if (obj->ring) {
3600 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3601 args->busy |= intel_ring_flag(obj->ring) << 16;
3602 }
3603
3604 drm_gem_object_unreference(&obj->base);
3605 unlock:
3606 mutex_unlock(&dev->struct_mutex);
3607 return ret;
3608 }
3609
3610 int
3611 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3612 struct drm_file *file_priv)
3613 {
3614 return i915_gem_ring_throttle(dev, file_priv);
3615 }
3616
3617 int
3618 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3619 struct drm_file *file_priv)
3620 {
3621 struct drm_i915_gem_madvise *args = data;
3622 struct drm_i915_gem_object *obj;
3623 int ret;
3624
3625 switch (args->madv) {
3626 case I915_MADV_DONTNEED:
3627 case I915_MADV_WILLNEED:
3628 break;
3629 default:
3630 return -EINVAL;
3631 }
3632
3633 ret = i915_mutex_lock_interruptible(dev);
3634 if (ret)
3635 return ret;
3636
3637 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3638 if (&obj->base == NULL) {
3639 ret = -ENOENT;
3640 goto unlock;
3641 }
3642
3643 if (obj->pin_count) {
3644 ret = -EINVAL;
3645 goto out;
3646 }
3647
3648 if (obj->madv != __I915_MADV_PURGED)
3649 obj->madv = args->madv;
3650
3651 /* if the object is no longer attached, discard its backing storage */
3652 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3653 i915_gem_object_truncate(obj);
3654
3655 args->retained = obj->madv != __I915_MADV_PURGED;
3656
3657 out:
3658 drm_gem_object_unreference(&obj->base);
3659 unlock:
3660 mutex_unlock(&dev->struct_mutex);
3661 return ret;
3662 }
3663
3664 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3665 const struct drm_i915_gem_object_ops *ops)
3666 {
3667 INIT_LIST_HEAD(&obj->mm_list);
3668 INIT_LIST_HEAD(&obj->gtt_list);
3669 INIT_LIST_HEAD(&obj->ring_list);
3670 INIT_LIST_HEAD(&obj->exec_list);
3671
3672 obj->ops = ops;
3673
3674 obj->fence_reg = I915_FENCE_REG_NONE;
3675 obj->madv = I915_MADV_WILLNEED;
3676 /* Avoid an unnecessary call to unbind on the first bind. */
3677 obj->map_and_fenceable = true;
3678
3679 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3680 }
3681
3682 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3683 .get_pages = i915_gem_object_get_pages_gtt,
3684 .put_pages = i915_gem_object_put_pages_gtt,
3685 };
3686
3687 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3688 size_t size)
3689 {
3690 struct drm_i915_gem_object *obj;
3691 struct address_space *mapping;
3692 u32 mask;
3693
3694 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3695 if (obj == NULL)
3696 return NULL;
3697
3698 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3699 kfree(obj);
3700 return NULL;
3701 }
3702
3703 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3704 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3705 /* 965gm cannot relocate objects above 4GiB. */
3706 mask &= ~__GFP_HIGHMEM;
3707 mask |= __GFP_DMA32;
3708 }
3709
3710 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3711 mapping_set_gfp_mask(mapping, mask);
3712
3713 i915_gem_object_init(obj, &i915_gem_object_ops);
3714
3715 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3716 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3717
3718 if (HAS_LLC(dev)) {
3719 /* On some devices, we can have the GPU use the LLC (the CPU
3720 * cache) for about a 10% performance improvement
3721 * compared to uncached. Graphics requests other than
3722 * display scanout are coherent with the CPU in
3723 * accessing this cache. This means in this mode we
3724 * don't need to clflush on the CPU side, and on the
3725 * GPU side we only need to flush internal caches to
3726 * get data visible to the CPU.
3727 *
3728 * However, we maintain the display planes as UC, and so
3729 * need to rebind when first used as such.
3730 */
3731 obj->cache_level = I915_CACHE_LLC;
3732 } else
3733 obj->cache_level = I915_CACHE_NONE;
3734
3735 return obj;
3736 }
3737
3738 int i915_gem_init_object(struct drm_gem_object *obj)
3739 {
3740 BUG();
3741
3742 return 0;
3743 }
3744
3745 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3746 {
3747 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3748 struct drm_device *dev = obj->base.dev;
3749 drm_i915_private_t *dev_priv = dev->dev_private;
3750
3751 trace_i915_gem_object_destroy(obj);
3752
3753 if (obj->phys_obj)
3754 i915_gem_detach_phys_object(dev, obj);
3755
3756 obj->pin_count = 0;
3757 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3758 bool was_interruptible;
3759
3760 was_interruptible = dev_priv->mm.interruptible;
3761 dev_priv->mm.interruptible = false;
3762
3763 WARN_ON(i915_gem_object_unbind(obj));
3764
3765 dev_priv->mm.interruptible = was_interruptible;
3766 }
3767
3768 obj->pages_pin_count = 0;
3769 i915_gem_object_put_pages(obj);
3770 i915_gem_object_free_mmap_offset(obj);
3771
3772 BUG_ON(obj->pages);
3773
3774 if (obj->base.import_attach)
3775 drm_prime_gem_destroy(&obj->base, NULL);
3776
3777 drm_gem_object_release(&obj->base);
3778 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3779
3780 kfree(obj->bit_17);
3781 kfree(obj);
3782 }
3783
3784 int
3785 i915_gem_idle(struct drm_device *dev)
3786 {
3787 drm_i915_private_t *dev_priv = dev->dev_private;
3788 int ret;
3789
3790 mutex_lock(&dev->struct_mutex);
3791
3792 if (dev_priv->mm.suspended) {
3793 mutex_unlock(&dev->struct_mutex);
3794 return 0;
3795 }
3796
3797 ret = i915_gpu_idle(dev);
3798 if (ret) {
3799 mutex_unlock(&dev->struct_mutex);
3800 return ret;
3801 }
3802 i915_gem_retire_requests(dev);
3803
3804 /* Under UMS, be paranoid and evict. */
3805 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3806 i915_gem_evict_everything(dev);
3807
3808 i915_gem_reset_fences(dev);
3809
3810 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3811 * We need to replace this with a semaphore, or something.
3812 * And not confound mm.suspended!
3813 */
3814 dev_priv->mm.suspended = 1;
3815 del_timer_sync(&dev_priv->hangcheck_timer);
3816
3817 i915_kernel_lost_context(dev);
3818 i915_gem_cleanup_ringbuffer(dev);
3819
3820 mutex_unlock(&dev->struct_mutex);
3821
3822 /* Cancel the retire work handler, which should be idle now. */
3823 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3824
3825 return 0;
3826 }
3827
3828 void i915_gem_l3_remap(struct drm_device *dev)
3829 {
3830 drm_i915_private_t *dev_priv = dev->dev_private;
3831 u32 misccpctl;
3832 int i;
3833
3834 if (!IS_IVYBRIDGE(dev))
3835 return;
3836
3837 if (!dev_priv->l3_parity.remap_info)
3838 return;
3839
3840 misccpctl = I915_READ(GEN7_MISCCPCTL);
3841 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3842 POSTING_READ(GEN7_MISCCPCTL);
3843
3844 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3845 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3846 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3847 DRM_DEBUG("0x%x was already programmed to %x\n",
3848 GEN7_L3LOG_BASE + i, remap);
3849 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3850 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3851 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3852 }
3853
3854 /* Make sure all the writes land before disabling dop clock gating */
3855 POSTING_READ(GEN7_L3LOG_BASE);
3856
3857 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3858 }
3859
3860 void i915_gem_init_swizzling(struct drm_device *dev)
3861 {
3862 drm_i915_private_t *dev_priv = dev->dev_private;
3863
3864 if (INTEL_INFO(dev)->gen < 5 ||
3865 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3866 return;
3867
3868 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3869 DISP_TILE_SURFACE_SWIZZLING);
3870
3871 if (IS_GEN5(dev))
3872 return;
3873
3874 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3875 if (IS_GEN6(dev))
3876 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3877 else
3878 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3879 }
3880
3881 static bool
3882 intel_enable_blt(struct drm_device *dev)
3883 {
3884 if (!HAS_BLT(dev))
3885 return false;
3886
3887 /* The blitter was dysfunctional on early prototypes */
3888 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3889 DRM_INFO("BLT not supported on this pre-production hardware;"
3890 " graphics performance will be degraded.\n");
3891 return false;
3892 }
3893
3894 return true;
3895 }
3896
3897 int
3898 i915_gem_init_hw(struct drm_device *dev)
3899 {
3900 drm_i915_private_t *dev_priv = dev->dev_private;
3901 int ret;
3902
3903 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3904 return -EIO;
3905
3906 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3907 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3908
3909 i915_gem_l3_remap(dev);
3910
3911 i915_gem_init_swizzling(dev);
3912
3913 ret = intel_init_render_ring_buffer(dev);
3914 if (ret)
3915 return ret;
3916
3917 if (HAS_BSD(dev)) {
3918 ret = intel_init_bsd_ring_buffer(dev);
3919 if (ret)
3920 goto cleanup_render_ring;
3921 }
3922
3923 if (intel_enable_blt(dev)) {
3924 ret = intel_init_blt_ring_buffer(dev);
3925 if (ret)
3926 goto cleanup_bsd_ring;
3927 }
3928
3929 dev_priv->next_seqno = 1;
3930
3931 /*
3932 * XXX: There was some w/a described somewhere suggesting loading
3933 * contexts before PPGTT.
3934 */
3935 i915_gem_context_init(dev);
3936 i915_gem_init_ppgtt(dev);
3937
3938 return 0;
3939
3940 cleanup_bsd_ring:
3941 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3942 cleanup_render_ring:
3943 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3944 return ret;
3945 }
3946
3947 static bool
3948 intel_enable_ppgtt(struct drm_device *dev)
3949 {
3950 if (i915_enable_ppgtt >= 0)
3951 return i915_enable_ppgtt;
3952
3953 #ifdef CONFIG_INTEL_IOMMU
3954 /* Disable ppgtt on SNB if VT-d is on. */
3955 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3956 return false;
3957 #endif
3958
3959 return true;
3960 }
3961
3962 int i915_gem_init(struct drm_device *dev)
3963 {
3964 struct drm_i915_private *dev_priv = dev->dev_private;
3965 unsigned long gtt_size, mappable_size;
3966 int ret;
3967
3968 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3969 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3970
3971 mutex_lock(&dev->struct_mutex);
3972 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3973 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3974 * aperture accordingly when using aliasing ppgtt. */
3975 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3976
3977 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3978
3979 ret = i915_gem_init_aliasing_ppgtt(dev);
3980 if (ret) {
3981 mutex_unlock(&dev->struct_mutex);
3982 return ret;
3983 }
3984 } else {
3985 /* Let GEM Manage all of the aperture.
3986 *
3987 * However, leave one page at the end still bound to the scratch
3988 * page. There are a number of places where the hardware
3989 * apparently prefetches past the end of the object, and we've
3990 * seen multiple hangs with the GPU head pointer stuck in a
3991 * batchbuffer bound at the last page of the aperture. One page
3992 * should be enough to keep any prefetching inside of the
3993 * aperture.
3994 */
3995 i915_gem_init_global_gtt(dev, 0, mappable_size,
3996 gtt_size);
3997 }
3998
3999 ret = i915_gem_init_hw(dev);
4000 mutex_unlock(&dev->struct_mutex);
4001 if (ret) {
4002 i915_gem_cleanup_aliasing_ppgtt(dev);
4003 return ret;
4004 }
4005
4006 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4007 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4008 dev_priv->dri1.allow_batchbuffer = 1;
4009 return 0;
4010 }
4011
4012 void
4013 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4014 {
4015 drm_i915_private_t *dev_priv = dev->dev_private;
4016 struct intel_ring_buffer *ring;
4017 int i;
4018
4019 for_each_ring(ring, dev_priv, i)
4020 intel_cleanup_ring_buffer(ring);
4021 }
4022
4023 int
4024 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4025 struct drm_file *file_priv)
4026 {
4027 drm_i915_private_t *dev_priv = dev->dev_private;
4028 int ret;
4029
4030 if (drm_core_check_feature(dev, DRIVER_MODESET))
4031 return 0;
4032
4033 if (atomic_read(&dev_priv->mm.wedged)) {
4034 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4035 atomic_set(&dev_priv->mm.wedged, 0);
4036 }
4037
4038 mutex_lock(&dev->struct_mutex);
4039 dev_priv->mm.suspended = 0;
4040
4041 ret = i915_gem_init_hw(dev);
4042 if (ret != 0) {
4043 mutex_unlock(&dev->struct_mutex);
4044 return ret;
4045 }
4046
4047 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4048 mutex_unlock(&dev->struct_mutex);
4049
4050 ret = drm_irq_install(dev);
4051 if (ret)
4052 goto cleanup_ringbuffer;
4053
4054 return 0;
4055
4056 cleanup_ringbuffer:
4057 mutex_lock(&dev->struct_mutex);
4058 i915_gem_cleanup_ringbuffer(dev);
4059 dev_priv->mm.suspended = 1;
4060 mutex_unlock(&dev->struct_mutex);
4061
4062 return ret;
4063 }
4064
4065 int
4066 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4067 struct drm_file *file_priv)
4068 {
4069 if (drm_core_check_feature(dev, DRIVER_MODESET))
4070 return 0;
4071
4072 drm_irq_uninstall(dev);
4073 return i915_gem_idle(dev);
4074 }
4075
4076 void
4077 i915_gem_lastclose(struct drm_device *dev)
4078 {
4079 int ret;
4080
4081 if (drm_core_check_feature(dev, DRIVER_MODESET))
4082 return;
4083
4084 ret = i915_gem_idle(dev);
4085 if (ret)
4086 DRM_ERROR("failed to idle hardware: %d\n", ret);
4087 }
4088
4089 static void
4090 init_ring_lists(struct intel_ring_buffer *ring)
4091 {
4092 INIT_LIST_HEAD(&ring->active_list);
4093 INIT_LIST_HEAD(&ring->request_list);
4094 }
4095
4096 void
4097 i915_gem_load(struct drm_device *dev)
4098 {
4099 int i;
4100 drm_i915_private_t *dev_priv = dev->dev_private;
4101
4102 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4103 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4104 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4105 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4106 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4107 for (i = 0; i < I915_NUM_RINGS; i++)
4108 init_ring_lists(&dev_priv->ring[i]);
4109 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4110 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4111 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4112 i915_gem_retire_work_handler);
4113 init_completion(&dev_priv->error_completion);
4114
4115 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4116 if (IS_GEN3(dev)) {
4117 I915_WRITE(MI_ARB_STATE,
4118 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4119 }
4120
4121 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4122
4123 /* Old X drivers will take 0-2 for front, back, depth buffers */
4124 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4125 dev_priv->fence_reg_start = 3;
4126
4127 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4128 dev_priv->num_fence_regs = 16;
4129 else
4130 dev_priv->num_fence_regs = 8;
4131
4132 /* Initialize fence registers to zero */
4133 i915_gem_reset_fences(dev);
4134
4135 i915_gem_detect_bit_6_swizzle(dev);
4136 init_waitqueue_head(&dev_priv->pending_flip_queue);
4137
4138 dev_priv->mm.interruptible = true;
4139
4140 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4141 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4142 register_shrinker(&dev_priv->mm.inactive_shrinker);
4143 }
4144
4145 /*
4146 * Create a physically contiguous memory object for this object
4147 * e.g. for cursor + overlay regs
4148 */
4149 static int i915_gem_init_phys_object(struct drm_device *dev,
4150 int id, int size, int align)
4151 {
4152 drm_i915_private_t *dev_priv = dev->dev_private;
4153 struct drm_i915_gem_phys_object *phys_obj;
4154 int ret;
4155
4156 if (dev_priv->mm.phys_objs[id - 1] || !size)
4157 return 0;
4158
4159 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4160 if (!phys_obj)
4161 return -ENOMEM;
4162
4163 phys_obj->id = id;
4164
4165 phys_obj->handle = drm_pci_alloc(dev, size, align);
4166 if (!phys_obj->handle) {
4167 ret = -ENOMEM;
4168 goto kfree_obj;
4169 }
4170 #ifdef CONFIG_X86
4171 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4172 #endif
4173
4174 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4175
4176 return 0;
4177 kfree_obj:
4178 kfree(phys_obj);
4179 return ret;
4180 }
4181
4182 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4183 {
4184 drm_i915_private_t *dev_priv = dev->dev_private;
4185 struct drm_i915_gem_phys_object *phys_obj;
4186
4187 if (!dev_priv->mm.phys_objs[id - 1])
4188 return;
4189
4190 phys_obj = dev_priv->mm.phys_objs[id - 1];
4191 if (phys_obj->cur_obj) {
4192 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4193 }
4194
4195 #ifdef CONFIG_X86
4196 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4197 #endif
4198 drm_pci_free(dev, phys_obj->handle);
4199 kfree(phys_obj);
4200 dev_priv->mm.phys_objs[id - 1] = NULL;
4201 }
4202
4203 void i915_gem_free_all_phys_object(struct drm_device *dev)
4204 {
4205 int i;
4206
4207 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4208 i915_gem_free_phys_object(dev, i);
4209 }
4210
4211 void i915_gem_detach_phys_object(struct drm_device *dev,
4212 struct drm_i915_gem_object *obj)
4213 {
4214 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4215 char *vaddr;
4216 int i;
4217 int page_count;
4218
4219 if (!obj->phys_obj)
4220 return;
4221 vaddr = obj->phys_obj->handle->vaddr;
4222
4223 page_count = obj->base.size / PAGE_SIZE;
4224 for (i = 0; i < page_count; i++) {
4225 struct page *page = shmem_read_mapping_page(mapping, i);
4226 if (!IS_ERR(page)) {
4227 char *dst = kmap_atomic(page);
4228 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4229 kunmap_atomic(dst);
4230
4231 drm_clflush_pages(&page, 1);
4232
4233 set_page_dirty(page);
4234 mark_page_accessed(page);
4235 page_cache_release(page);
4236 }
4237 }
4238 i915_gem_chipset_flush(dev);
4239
4240 obj->phys_obj->cur_obj = NULL;
4241 obj->phys_obj = NULL;
4242 }
4243
4244 int
4245 i915_gem_attach_phys_object(struct drm_device *dev,
4246 struct drm_i915_gem_object *obj,
4247 int id,
4248 int align)
4249 {
4250 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4251 drm_i915_private_t *dev_priv = dev->dev_private;
4252 int ret = 0;
4253 int page_count;
4254 int i;
4255
4256 if (id > I915_MAX_PHYS_OBJECT)
4257 return -EINVAL;
4258
4259 if (obj->phys_obj) {
4260 if (obj->phys_obj->id == id)
4261 return 0;
4262 i915_gem_detach_phys_object(dev, obj);
4263 }
4264
4265 /* create a new object */
4266 if (!dev_priv->mm.phys_objs[id - 1]) {
4267 ret = i915_gem_init_phys_object(dev, id,
4268 obj->base.size, align);
4269 if (ret) {
4270 DRM_ERROR("failed to init phys object %d size: %zu\n",
4271 id, obj->base.size);
4272 return ret;
4273 }
4274 }
4275
4276 /* bind to the object */
4277 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4278 obj->phys_obj->cur_obj = obj;
4279
4280 page_count = obj->base.size / PAGE_SIZE;
4281
4282 for (i = 0; i < page_count; i++) {
4283 struct page *page;
4284 char *dst, *src;
4285
4286 page = shmem_read_mapping_page(mapping, i);
4287 if (IS_ERR(page))
4288 return PTR_ERR(page);
4289
4290 src = kmap_atomic(page);
4291 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4292 memcpy(dst, src, PAGE_SIZE);
4293 kunmap_atomic(src);
4294
4295 mark_page_accessed(page);
4296 page_cache_release(page);
4297 }
4298
4299 return 0;
4300 }
4301
4302 static int
4303 i915_gem_phys_pwrite(struct drm_device *dev,
4304 struct drm_i915_gem_object *obj,
4305 struct drm_i915_gem_pwrite *args,
4306 struct drm_file *file_priv)
4307 {
4308 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4309 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4310
4311 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4312 unsigned long unwritten;
4313
4314 /* The physical object once assigned is fixed for the lifetime
4315 * of the obj, so we can safely drop the lock and continue
4316 * to access vaddr.
4317 */
4318 mutex_unlock(&dev->struct_mutex);
4319 unwritten = copy_from_user(vaddr, user_data, args->size);
4320 mutex_lock(&dev->struct_mutex);
4321 if (unwritten)
4322 return -EFAULT;
4323 }
4324
4325 i915_gem_chipset_flush(dev);
4326 return 0;
4327 }
4328
4329 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4330 {
4331 struct drm_i915_file_private *file_priv = file->driver_priv;
4332
4333 /* Clean up our request list when the client is going away, so that
4334 * later retire_requests won't dereference our soon-to-be-gone
4335 * file_priv.
4336 */
4337 spin_lock(&file_priv->mm.lock);
4338 while (!list_empty(&file_priv->mm.request_list)) {
4339 struct drm_i915_gem_request *request;
4340
4341 request = list_first_entry(&file_priv->mm.request_list,
4342 struct drm_i915_gem_request,
4343 client_list);
4344 list_del(&request->client_list);
4345 request->file_priv = NULL;
4346 }
4347 spin_unlock(&file_priv->mm.lock);
4348 }
4349
4350 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4351 {
4352 if (!mutex_is_locked(mutex))
4353 return false;
4354
4355 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4356 return mutex->owner == task;
4357 #else
4358 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4359 return false;
4360 #endif
4361 }
4362
4363 static int
4364 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4365 {
4366 struct drm_i915_private *dev_priv =
4367 container_of(shrinker,
4368 struct drm_i915_private,
4369 mm.inactive_shrinker);
4370 struct drm_device *dev = dev_priv->dev;
4371 struct drm_i915_gem_object *obj;
4372 int nr_to_scan = sc->nr_to_scan;
4373 bool unlock = true;
4374 int cnt;
4375
4376 if (!mutex_trylock(&dev->struct_mutex)) {
4377 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4378 return 0;
4379
4380 unlock = false;
4381 }
4382
4383 if (nr_to_scan) {
4384 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4385 if (nr_to_scan > 0)
4386 i915_gem_shrink_all(dev_priv);
4387 }
4388
4389 cnt = 0;
4390 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4391 if (obj->pages_pin_count == 0)
4392 cnt += obj->base.size >> PAGE_SHIFT;
4393 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4394 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4395 cnt += obj->base.size >> PAGE_SHIFT;
4396
4397 if (unlock)
4398 mutex_unlock(&dev->struct_mutex);
4399 return cnt;
4400 }
This page took 0.115308 seconds and 4 git commands to generate.