drm/i915: Unbind closed vma for i915_gem_object_unbind()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50 {
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68 {
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80 drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86 {
87 spin_lock(&dev_priv->mm.object_stat_lock);
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
90 spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105 int ret;
106
107 if (!i915_reset_in_progress(error))
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 !i915_reset_in_progress(error),
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 } else {
124 return 0;
125 }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130 struct drm_i915_private *dev_priv = to_i915(dev);
131 int ret;
132
133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
141 return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file)
147 {
148 struct drm_i915_private *dev_priv = to_i915(dev);
149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
150 struct drm_i915_gem_get_aperture *args = data;
151 struct i915_vma *vma;
152 size_t pinned;
153
154 pinned = 0;
155 mutex_lock(&dev->struct_mutex);
156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157 if (i915_vma_is_pinned(vma))
158 pinned += vma->node.size;
159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160 if (i915_vma_is_pinned(vma))
161 pinned += vma->node.size;
162 mutex_unlock(&dev->struct_mutex);
163
164 args->aper_size = ggtt->base.total;
165 args->aper_available_size = args->aper_size - pinned;
166
167 return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
178
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
195 put_page(page);
196 vaddr += PAGE_SIZE;
197 }
198
199 i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
213
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
218 return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
229 if (WARN_ON(ret)) {
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 put_page(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
286 int ret;
287
288 lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290 /* Closed vma are removed from the obj->vma_list - but they may
291 * still have an active binding on the object. To remove those we
292 * must wait for all rendering to complete to the object (as unbinding
293 * must anyway), and retire the requests.
294 */
295 ret = i915_gem_object_wait_rendering(obj, false);
296 if (ret)
297 return ret;
298
299 i915_gem_retire_requests(to_i915(obj->base.dev));
300
301 while ((vma = list_first_entry_or_null(&obj->vma_list,
302 struct i915_vma,
303 obj_link))) {
304 list_move_tail(&vma->obj_link, &still_in_list);
305 ret = i915_vma_unbind(vma);
306 if (ret)
307 break;
308 }
309 list_splice(&still_in_list, &obj->vma_list);
310
311 return ret;
312 }
313
314 /**
315 * Ensures that all rendering to the object has completed and the object is
316 * safe to unbind from the GTT or access from the CPU.
317 * @obj: i915 gem object
318 * @readonly: waiting for just read access or read-write access
319 */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 bool readonly)
323 {
324 struct reservation_object *resv;
325 struct i915_gem_active *active;
326 unsigned long active_mask;
327 int idx;
328
329 lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331 if (!readonly) {
332 active = obj->last_read;
333 active_mask = i915_gem_object_get_active(obj);
334 } else {
335 active_mask = 1;
336 active = &obj->last_write;
337 }
338
339 for_each_active(active_mask, idx) {
340 int ret;
341
342 ret = i915_gem_active_wait(&active[idx],
343 &obj->base.dev->struct_mutex);
344 if (ret)
345 return ret;
346 }
347
348 resv = i915_gem_object_get_dmabuf_resv(obj);
349 if (resv) {
350 long err;
351
352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 MAX_SCHEDULE_TIMEOUT);
354 if (err < 0)
355 return err;
356 }
357
358 return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362 * acquiring the mutex for the object, as the object state may change
363 * during this call. A reference must be held by the caller for the object.
364 */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 struct intel_rps_client *rps,
368 bool readonly)
369 {
370 struct i915_gem_active *active;
371 unsigned long active_mask;
372 int idx;
373
374 active_mask = __I915_BO_ACTIVE(obj);
375 if (!active_mask)
376 return 0;
377
378 if (!readonly) {
379 active = obj->last_read;
380 } else {
381 active_mask = 1;
382 active = &obj->last_write;
383 }
384
385 for_each_active(active_mask, idx) {
386 int ret;
387
388 ret = i915_gem_active_wait_unlocked(&active[idx],
389 true, NULL, rps);
390 if (ret)
391 return ret;
392 }
393
394 return 0;
395 }
396
397 static struct intel_rps_client *to_rps_client(struct drm_file *file)
398 {
399 struct drm_i915_file_private *fpriv = file->driver_priv;
400
401 return &fpriv->rps;
402 }
403
404 int
405 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
406 int align)
407 {
408 drm_dma_handle_t *phys;
409 int ret;
410
411 if (obj->phys_handle) {
412 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
413 return -EBUSY;
414
415 return 0;
416 }
417
418 if (obj->madv != I915_MADV_WILLNEED)
419 return -EFAULT;
420
421 if (obj->base.filp == NULL)
422 return -EINVAL;
423
424 ret = i915_gem_object_unbind(obj);
425 if (ret)
426 return ret;
427
428 ret = i915_gem_object_put_pages(obj);
429 if (ret)
430 return ret;
431
432 /* create a new object */
433 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
434 if (!phys)
435 return -ENOMEM;
436
437 obj->phys_handle = phys;
438 obj->ops = &i915_gem_phys_ops;
439
440 return i915_gem_object_get_pages(obj);
441 }
442
443 static int
444 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pwrite *args,
446 struct drm_file *file_priv)
447 {
448 struct drm_device *dev = obj->base.dev;
449 void *vaddr = obj->phys_handle->vaddr + args->offset;
450 char __user *user_data = u64_to_user_ptr(args->data_ptr);
451 int ret = 0;
452
453 /* We manually control the domain here and pretend that it
454 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
455 */
456 ret = i915_gem_object_wait_rendering(obj, false);
457 if (ret)
458 return ret;
459
460 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
462 unsigned long unwritten;
463
464 /* The physical object once assigned is fixed for the lifetime
465 * of the obj, so we can safely drop the lock and continue
466 * to access vaddr.
467 */
468 mutex_unlock(&dev->struct_mutex);
469 unwritten = copy_from_user(vaddr, user_data, args->size);
470 mutex_lock(&dev->struct_mutex);
471 if (unwritten) {
472 ret = -EFAULT;
473 goto out;
474 }
475 }
476
477 drm_clflush_virt_range(vaddr, args->size);
478 i915_gem_chipset_flush(to_i915(dev));
479
480 out:
481 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482 return ret;
483 }
484
485 void *i915_gem_object_alloc(struct drm_device *dev)
486 {
487 struct drm_i915_private *dev_priv = to_i915(dev);
488 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 }
490
491 void i915_gem_object_free(struct drm_i915_gem_object *obj)
492 {
493 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494 kmem_cache_free(dev_priv->objects, obj);
495 }
496
497 static int
498 i915_gem_create(struct drm_file *file,
499 struct drm_device *dev,
500 uint64_t size,
501 uint32_t *handle_p)
502 {
503 struct drm_i915_gem_object *obj;
504 int ret;
505 u32 handle;
506
507 size = roundup(size, PAGE_SIZE);
508 if (size == 0)
509 return -EINVAL;
510
511 /* Allocate the new object */
512 obj = i915_gem_object_create(dev, size);
513 if (IS_ERR(obj))
514 return PTR_ERR(obj);
515
516 ret = drm_gem_handle_create(file, &obj->base, &handle);
517 /* drop reference from allocate - handle holds it now */
518 i915_gem_object_put_unlocked(obj);
519 if (ret)
520 return ret;
521
522 *handle_p = handle;
523 return 0;
524 }
525
526 int
527 i915_gem_dumb_create(struct drm_file *file,
528 struct drm_device *dev,
529 struct drm_mode_create_dumb *args)
530 {
531 /* have to work out size/pitch and return them */
532 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 args->size = args->pitch * args->height;
534 return i915_gem_create(file, dev,
535 args->size, &args->handle);
536 }
537
538 /**
539 * Creates a new mm object and returns a handle to it.
540 * @dev: drm device pointer
541 * @data: ioctl data blob
542 * @file: drm file pointer
543 */
544 int
545 i915_gem_create_ioctl(struct drm_device *dev, void *data,
546 struct drm_file *file)
547 {
548 struct drm_i915_gem_create *args = data;
549
550 return i915_gem_create(file, dev,
551 args->size, &args->handle);
552 }
553
554 static inline int
555 __copy_to_user_swizzled(char __user *cpu_vaddr,
556 const char *gpu_vaddr, int gpu_offset,
557 int length)
558 {
559 int ret, cpu_offset = 0;
560
561 while (length > 0) {
562 int cacheline_end = ALIGN(gpu_offset + 1, 64);
563 int this_length = min(cacheline_end - gpu_offset, length);
564 int swizzled_gpu_offset = gpu_offset ^ 64;
565
566 ret = __copy_to_user(cpu_vaddr + cpu_offset,
567 gpu_vaddr + swizzled_gpu_offset,
568 this_length);
569 if (ret)
570 return ret + length;
571
572 cpu_offset += this_length;
573 gpu_offset += this_length;
574 length -= this_length;
575 }
576
577 return 0;
578 }
579
580 static inline int
581 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
582 const char __user *cpu_vaddr,
583 int length)
584 {
585 int ret, cpu_offset = 0;
586
587 while (length > 0) {
588 int cacheline_end = ALIGN(gpu_offset + 1, 64);
589 int this_length = min(cacheline_end - gpu_offset, length);
590 int swizzled_gpu_offset = gpu_offset ^ 64;
591
592 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
593 cpu_vaddr + cpu_offset,
594 this_length);
595 if (ret)
596 return ret + length;
597
598 cpu_offset += this_length;
599 gpu_offset += this_length;
600 length -= this_length;
601 }
602
603 return 0;
604 }
605
606 /*
607 * Pins the specified object's pages and synchronizes the object with
608 * GPU accesses. Sets needs_clflush to non-zero if the caller should
609 * flush the object from the CPU cache.
610 */
611 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
612 int *needs_clflush)
613 {
614 int ret;
615
616 *needs_clflush = 0;
617
618 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
619 return -EINVAL;
620
621 ret = i915_gem_object_wait_rendering(obj, true);
622 if (ret)
623 return ret;
624
625 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
626 /* If we're not in the cpu read domain, set ourself into the gtt
627 * read domain and manually flush cachelines (if required). This
628 * optimizes for the case when the gpu will dirty the data
629 * anyway again before the next pread happens. */
630 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
631 obj->cache_level);
632 }
633
634 ret = i915_gem_object_get_pages(obj);
635 if (ret)
636 return ret;
637
638 i915_gem_object_pin_pages(obj);
639
640 return ret;
641 }
642
643 /* Per-page copy function for the shmem pread fastpath.
644 * Flushes invalid cachelines before reading the target if
645 * needs_clflush is set. */
646 static int
647 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
648 char __user *user_data,
649 bool page_do_bit17_swizzling, bool needs_clflush)
650 {
651 char *vaddr;
652 int ret;
653
654 if (unlikely(page_do_bit17_swizzling))
655 return -EINVAL;
656
657 vaddr = kmap_atomic(page);
658 if (needs_clflush)
659 drm_clflush_virt_range(vaddr + shmem_page_offset,
660 page_length);
661 ret = __copy_to_user_inatomic(user_data,
662 vaddr + shmem_page_offset,
663 page_length);
664 kunmap_atomic(vaddr);
665
666 return ret ? -EFAULT : 0;
667 }
668
669 static void
670 shmem_clflush_swizzled_range(char *addr, unsigned long length,
671 bool swizzled)
672 {
673 if (unlikely(swizzled)) {
674 unsigned long start = (unsigned long) addr;
675 unsigned long end = (unsigned long) addr + length;
676
677 /* For swizzling simply ensure that we always flush both
678 * channels. Lame, but simple and it works. Swizzled
679 * pwrite/pread is far from a hotpath - current userspace
680 * doesn't use it at all. */
681 start = round_down(start, 128);
682 end = round_up(end, 128);
683
684 drm_clflush_virt_range((void *)start, end - start);
685 } else {
686 drm_clflush_virt_range(addr, length);
687 }
688
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling, bool needs_clflush)
697 {
698 char *vaddr;
699 int ret;
700
701 vaddr = kmap(page);
702 if (needs_clflush)
703 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704 page_length,
705 page_do_bit17_swizzling);
706
707 if (page_do_bit17_swizzling)
708 ret = __copy_to_user_swizzled(user_data,
709 vaddr, shmem_page_offset,
710 page_length);
711 else
712 ret = __copy_to_user(user_data,
713 vaddr + shmem_page_offset,
714 page_length);
715 kunmap(page);
716
717 return ret ? - EFAULT : 0;
718 }
719
720 static inline unsigned long
721 slow_user_access(struct io_mapping *mapping,
722 uint64_t page_base, int page_offset,
723 char __user *user_data,
724 unsigned long length, bool pwrite)
725 {
726 void __iomem *ioaddr;
727 void *vaddr;
728 uint64_t unwritten;
729
730 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
731 /* We can use the cpu mem copy function because this is X86. */
732 vaddr = (void __force *)ioaddr + page_offset;
733 if (pwrite)
734 unwritten = __copy_from_user(vaddr, user_data, length);
735 else
736 unwritten = __copy_to_user(user_data, vaddr, length);
737
738 io_mapping_unmap(ioaddr);
739 return unwritten;
740 }
741
742 static int
743 i915_gem_gtt_pread(struct drm_device *dev,
744 struct drm_i915_gem_object *obj, uint64_t size,
745 uint64_t data_offset, uint64_t data_ptr)
746 {
747 struct drm_i915_private *dev_priv = to_i915(dev);
748 struct i915_ggtt *ggtt = &dev_priv->ggtt;
749 struct drm_mm_node node;
750 char __user *user_data;
751 uint64_t remain;
752 uint64_t offset;
753 int ret;
754
755 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
756 if (ret) {
757 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
758 if (ret)
759 goto out;
760
761 ret = i915_gem_object_get_pages(obj);
762 if (ret) {
763 remove_mappable_node(&node);
764 goto out;
765 }
766
767 i915_gem_object_pin_pages(obj);
768 } else {
769 node.start = i915_gem_obj_ggtt_offset(obj);
770 node.allocated = false;
771 ret = i915_gem_object_put_fence(obj);
772 if (ret)
773 goto out_unpin;
774 }
775
776 ret = i915_gem_object_set_to_gtt_domain(obj, false);
777 if (ret)
778 goto out_unpin;
779
780 user_data = u64_to_user_ptr(data_ptr);
781 remain = size;
782 offset = data_offset;
783
784 mutex_unlock(&dev->struct_mutex);
785 if (likely(!i915.prefault_disable)) {
786 ret = fault_in_multipages_writeable(user_data, remain);
787 if (ret) {
788 mutex_lock(&dev->struct_mutex);
789 goto out_unpin;
790 }
791 }
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 u32 page_base = node.start;
801 unsigned page_offset = offset_in_page(offset);
802 unsigned page_length = PAGE_SIZE - page_offset;
803 page_length = remain < page_length ? remain : page_length;
804 if (node.allocated) {
805 wmb();
806 ggtt->base.insert_page(&ggtt->base,
807 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
808 node.start,
809 I915_CACHE_NONE, 0);
810 wmb();
811 } else {
812 page_base += offset & PAGE_MASK;
813 }
814 /* This is a slow read/write as it tries to read from
815 * and write to user memory which may result into page
816 * faults, and so we cannot perform this under struct_mutex.
817 */
818 if (slow_user_access(ggtt->mappable, page_base,
819 page_offset, user_data,
820 page_length, false)) {
821 ret = -EFAULT;
822 break;
823 }
824
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 mutex_lock(&dev->struct_mutex);
831 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
832 /* The user has modified the object whilst we tried
833 * reading from it, and we now have no idea what domain
834 * the pages should be in. As we have just been touching
835 * them directly, flush everything back to the GTT
836 * domain.
837 */
838 ret = i915_gem_object_set_to_gtt_domain(obj, false);
839 }
840
841 out_unpin:
842 if (node.allocated) {
843 wmb();
844 ggtt->base.clear_range(&ggtt->base,
845 node.start, node.size,
846 true);
847 i915_gem_object_unpin_pages(obj);
848 remove_mappable_node(&node);
849 } else {
850 i915_gem_object_ggtt_unpin(obj);
851 }
852 out:
853 return ret;
854 }
855
856 static int
857 i915_gem_shmem_pread(struct drm_device *dev,
858 struct drm_i915_gem_object *obj,
859 struct drm_i915_gem_pread *args,
860 struct drm_file *file)
861 {
862 char __user *user_data;
863 ssize_t remain;
864 loff_t offset;
865 int shmem_page_offset, page_length, ret = 0;
866 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
867 int prefaulted = 0;
868 int needs_clflush = 0;
869 struct sg_page_iter sg_iter;
870
871 if (!i915_gem_object_has_struct_page(obj))
872 return -ENODEV;
873
874 user_data = u64_to_user_ptr(args->data_ptr);
875 remain = args->size;
876
877 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
878
879 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
880 if (ret)
881 return ret;
882
883 offset = args->offset;
884
885 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
886 offset >> PAGE_SHIFT) {
887 struct page *page = sg_page_iter_page(&sg_iter);
888
889 if (remain <= 0)
890 break;
891
892 /* Operation in this page
893 *
894 * shmem_page_offset = offset within page in shmem file
895 * page_length = bytes to copy for this page
896 */
897 shmem_page_offset = offset_in_page(offset);
898 page_length = remain;
899 if ((shmem_page_offset + page_length) > PAGE_SIZE)
900 page_length = PAGE_SIZE - shmem_page_offset;
901
902 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
903 (page_to_phys(page) & (1 << 17)) != 0;
904
905 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
906 user_data, page_do_bit17_swizzling,
907 needs_clflush);
908 if (ret == 0)
909 goto next_page;
910
911 mutex_unlock(&dev->struct_mutex);
912
913 if (likely(!i915.prefault_disable) && !prefaulted) {
914 ret = fault_in_multipages_writeable(user_data, remain);
915 /* Userspace is tricking us, but we've already clobbered
916 * its pages with the prefault and promised to write the
917 * data up to the first fault. Hence ignore any errors
918 * and just continue. */
919 (void)ret;
920 prefaulted = 1;
921 }
922
923 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
924 user_data, page_do_bit17_swizzling,
925 needs_clflush);
926
927 mutex_lock(&dev->struct_mutex);
928
929 if (ret)
930 goto out;
931
932 next_page:
933 remain -= page_length;
934 user_data += page_length;
935 offset += page_length;
936 }
937
938 out:
939 i915_gem_object_unpin_pages(obj);
940
941 return ret;
942 }
943
944 /**
945 * Reads data from the object referenced by handle.
946 * @dev: drm device pointer
947 * @data: ioctl data blob
948 * @file: drm file pointer
949 *
950 * On error, the contents of *data are undefined.
951 */
952 int
953 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
954 struct drm_file *file)
955 {
956 struct drm_i915_gem_pread *args = data;
957 struct drm_i915_gem_object *obj;
958 int ret = 0;
959
960 if (args->size == 0)
961 return 0;
962
963 if (!access_ok(VERIFY_WRITE,
964 u64_to_user_ptr(args->data_ptr),
965 args->size))
966 return -EFAULT;
967
968 obj = i915_gem_object_lookup(file, args->handle);
969 if (!obj)
970 return -ENOENT;
971
972 /* Bounds check source. */
973 if (args->offset > obj->base.size ||
974 args->size > obj->base.size - args->offset) {
975 ret = -EINVAL;
976 goto err;
977 }
978
979 trace_i915_gem_object_pread(obj, args->offset, args->size);
980
981 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
982 if (ret)
983 goto err;
984
985 ret = i915_mutex_lock_interruptible(dev);
986 if (ret)
987 goto err;
988
989 ret = i915_gem_shmem_pread(dev, obj, args, file);
990
991 /* pread for non shmem backed objects */
992 if (ret == -EFAULT || ret == -ENODEV) {
993 intel_runtime_pm_get(to_i915(dev));
994 ret = i915_gem_gtt_pread(dev, obj, args->size,
995 args->offset, args->data_ptr);
996 intel_runtime_pm_put(to_i915(dev));
997 }
998
999 i915_gem_object_put(obj);
1000 mutex_unlock(&dev->struct_mutex);
1001
1002 return ret;
1003
1004 err:
1005 i915_gem_object_put_unlocked(obj);
1006 return ret;
1007 }
1008
1009 /* This is the fast write path which cannot handle
1010 * page faults in the source data
1011 */
1012
1013 static inline int
1014 fast_user_write(struct io_mapping *mapping,
1015 loff_t page_base, int page_offset,
1016 char __user *user_data,
1017 int length)
1018 {
1019 void __iomem *vaddr_atomic;
1020 void *vaddr;
1021 unsigned long unwritten;
1022
1023 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1024 /* We can use the cpu mem copy function because this is X86. */
1025 vaddr = (void __force*)vaddr_atomic + page_offset;
1026 unwritten = __copy_from_user_inatomic_nocache(vaddr,
1027 user_data, length);
1028 io_mapping_unmap_atomic(vaddr_atomic);
1029 return unwritten;
1030 }
1031
1032 /**
1033 * This is the fast pwrite path, where we copy the data directly from the
1034 * user into the GTT, uncached.
1035 * @i915: i915 device private data
1036 * @obj: i915 gem object
1037 * @args: pwrite arguments structure
1038 * @file: drm file pointer
1039 */
1040 static int
1041 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1042 struct drm_i915_gem_object *obj,
1043 struct drm_i915_gem_pwrite *args,
1044 struct drm_file *file)
1045 {
1046 struct i915_ggtt *ggtt = &i915->ggtt;
1047 struct drm_device *dev = obj->base.dev;
1048 struct drm_mm_node node;
1049 uint64_t remain, offset;
1050 char __user *user_data;
1051 int ret;
1052 bool hit_slow_path = false;
1053
1054 if (i915_gem_object_is_tiled(obj))
1055 return -EFAULT;
1056
1057 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1058 PIN_MAPPABLE | PIN_NONBLOCK);
1059 if (ret) {
1060 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1061 if (ret)
1062 goto out;
1063
1064 ret = i915_gem_object_get_pages(obj);
1065 if (ret) {
1066 remove_mappable_node(&node);
1067 goto out;
1068 }
1069
1070 i915_gem_object_pin_pages(obj);
1071 } else {
1072 node.start = i915_gem_obj_ggtt_offset(obj);
1073 node.allocated = false;
1074 ret = i915_gem_object_put_fence(obj);
1075 if (ret)
1076 goto out_unpin;
1077 }
1078
1079 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1080 if (ret)
1081 goto out_unpin;
1082
1083 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1084 obj->dirty = true;
1085
1086 user_data = u64_to_user_ptr(args->data_ptr);
1087 offset = args->offset;
1088 remain = args->size;
1089 while (remain) {
1090 /* Operation in this page
1091 *
1092 * page_base = page offset within aperture
1093 * page_offset = offset within page
1094 * page_length = bytes to copy for this page
1095 */
1096 u32 page_base = node.start;
1097 unsigned page_offset = offset_in_page(offset);
1098 unsigned page_length = PAGE_SIZE - page_offset;
1099 page_length = remain < page_length ? remain : page_length;
1100 if (node.allocated) {
1101 wmb(); /* flush the write before we modify the GGTT */
1102 ggtt->base.insert_page(&ggtt->base,
1103 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1104 node.start, I915_CACHE_NONE, 0);
1105 wmb(); /* flush modifications to the GGTT (insert_page) */
1106 } else {
1107 page_base += offset & PAGE_MASK;
1108 }
1109 /* If we get a fault while copying data, then (presumably) our
1110 * source page isn't available. Return the error and we'll
1111 * retry in the slow path.
1112 * If the object is non-shmem backed, we retry again with the
1113 * path that handles page fault.
1114 */
1115 if (fast_user_write(ggtt->mappable, page_base,
1116 page_offset, user_data, page_length)) {
1117 hit_slow_path = true;
1118 mutex_unlock(&dev->struct_mutex);
1119 if (slow_user_access(ggtt->mappable,
1120 page_base,
1121 page_offset, user_data,
1122 page_length, true)) {
1123 ret = -EFAULT;
1124 mutex_lock(&dev->struct_mutex);
1125 goto out_flush;
1126 }
1127
1128 mutex_lock(&dev->struct_mutex);
1129 }
1130
1131 remain -= page_length;
1132 user_data += page_length;
1133 offset += page_length;
1134 }
1135
1136 out_flush:
1137 if (hit_slow_path) {
1138 if (ret == 0 &&
1139 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1140 /* The user has modified the object whilst we tried
1141 * reading from it, and we now have no idea what domain
1142 * the pages should be in. As we have just been touching
1143 * them directly, flush everything back to the GTT
1144 * domain.
1145 */
1146 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1147 }
1148 }
1149
1150 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1151 out_unpin:
1152 if (node.allocated) {
1153 wmb();
1154 ggtt->base.clear_range(&ggtt->base,
1155 node.start, node.size,
1156 true);
1157 i915_gem_object_unpin_pages(obj);
1158 remove_mappable_node(&node);
1159 } else {
1160 i915_gem_object_ggtt_unpin(obj);
1161 }
1162 out:
1163 return ret;
1164 }
1165
1166 /* Per-page copy function for the shmem pwrite fastpath.
1167 * Flushes invalid cachelines before writing to the target if
1168 * needs_clflush_before is set and flushes out any written cachelines after
1169 * writing if needs_clflush is set. */
1170 static int
1171 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1172 char __user *user_data,
1173 bool page_do_bit17_swizzling,
1174 bool needs_clflush_before,
1175 bool needs_clflush_after)
1176 {
1177 char *vaddr;
1178 int ret;
1179
1180 if (unlikely(page_do_bit17_swizzling))
1181 return -EINVAL;
1182
1183 vaddr = kmap_atomic(page);
1184 if (needs_clflush_before)
1185 drm_clflush_virt_range(vaddr + shmem_page_offset,
1186 page_length);
1187 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1188 user_data, page_length);
1189 if (needs_clflush_after)
1190 drm_clflush_virt_range(vaddr + shmem_page_offset,
1191 page_length);
1192 kunmap_atomic(vaddr);
1193
1194 return ret ? -EFAULT : 0;
1195 }
1196
1197 /* Only difference to the fast-path function is that this can handle bit17
1198 * and uses non-atomic copy and kmap functions. */
1199 static int
1200 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1201 char __user *user_data,
1202 bool page_do_bit17_swizzling,
1203 bool needs_clflush_before,
1204 bool needs_clflush_after)
1205 {
1206 char *vaddr;
1207 int ret;
1208
1209 vaddr = kmap(page);
1210 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1211 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1212 page_length,
1213 page_do_bit17_swizzling);
1214 if (page_do_bit17_swizzling)
1215 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1216 user_data,
1217 page_length);
1218 else
1219 ret = __copy_from_user(vaddr + shmem_page_offset,
1220 user_data,
1221 page_length);
1222 if (needs_clflush_after)
1223 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1224 page_length,
1225 page_do_bit17_swizzling);
1226 kunmap(page);
1227
1228 return ret ? -EFAULT : 0;
1229 }
1230
1231 static int
1232 i915_gem_shmem_pwrite(struct drm_device *dev,
1233 struct drm_i915_gem_object *obj,
1234 struct drm_i915_gem_pwrite *args,
1235 struct drm_file *file)
1236 {
1237 ssize_t remain;
1238 loff_t offset;
1239 char __user *user_data;
1240 int shmem_page_offset, page_length, ret = 0;
1241 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1242 int hit_slowpath = 0;
1243 int needs_clflush_after = 0;
1244 int needs_clflush_before = 0;
1245 struct sg_page_iter sg_iter;
1246
1247 user_data = u64_to_user_ptr(args->data_ptr);
1248 remain = args->size;
1249
1250 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1251
1252 ret = i915_gem_object_wait_rendering(obj, false);
1253 if (ret)
1254 return ret;
1255
1256 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1257 /* If we're not in the cpu write domain, set ourself into the gtt
1258 * write domain and manually flush cachelines (if required). This
1259 * optimizes for the case when the gpu will use the data
1260 * right away and we therefore have to clflush anyway. */
1261 needs_clflush_after = cpu_write_needs_clflush(obj);
1262 }
1263 /* Same trick applies to invalidate partially written cachelines read
1264 * before writing. */
1265 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1266 needs_clflush_before =
1267 !cpu_cache_is_coherent(dev, obj->cache_level);
1268
1269 ret = i915_gem_object_get_pages(obj);
1270 if (ret)
1271 return ret;
1272
1273 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1274
1275 i915_gem_object_pin_pages(obj);
1276
1277 offset = args->offset;
1278 obj->dirty = 1;
1279
1280 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1281 offset >> PAGE_SHIFT) {
1282 struct page *page = sg_page_iter_page(&sg_iter);
1283 int partial_cacheline_write;
1284
1285 if (remain <= 0)
1286 break;
1287
1288 /* Operation in this page
1289 *
1290 * shmem_page_offset = offset within page in shmem file
1291 * page_length = bytes to copy for this page
1292 */
1293 shmem_page_offset = offset_in_page(offset);
1294
1295 page_length = remain;
1296 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1297 page_length = PAGE_SIZE - shmem_page_offset;
1298
1299 /* If we don't overwrite a cacheline completely we need to be
1300 * careful to have up-to-date data by first clflushing. Don't
1301 * overcomplicate things and flush the entire patch. */
1302 partial_cacheline_write = needs_clflush_before &&
1303 ((shmem_page_offset | page_length)
1304 & (boot_cpu_data.x86_clflush_size - 1));
1305
1306 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1307 (page_to_phys(page) & (1 << 17)) != 0;
1308
1309 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1310 user_data, page_do_bit17_swizzling,
1311 partial_cacheline_write,
1312 needs_clflush_after);
1313 if (ret == 0)
1314 goto next_page;
1315
1316 hit_slowpath = 1;
1317 mutex_unlock(&dev->struct_mutex);
1318 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1319 user_data, page_do_bit17_swizzling,
1320 partial_cacheline_write,
1321 needs_clflush_after);
1322
1323 mutex_lock(&dev->struct_mutex);
1324
1325 if (ret)
1326 goto out;
1327
1328 next_page:
1329 remain -= page_length;
1330 user_data += page_length;
1331 offset += page_length;
1332 }
1333
1334 out:
1335 i915_gem_object_unpin_pages(obj);
1336
1337 if (hit_slowpath) {
1338 /*
1339 * Fixup: Flush cpu caches in case we didn't flush the dirty
1340 * cachelines in-line while writing and the object moved
1341 * out of the cpu write domain while we've dropped the lock.
1342 */
1343 if (!needs_clflush_after &&
1344 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1345 if (i915_gem_clflush_object(obj, obj->pin_display))
1346 needs_clflush_after = true;
1347 }
1348 }
1349
1350 if (needs_clflush_after)
1351 i915_gem_chipset_flush(to_i915(dev));
1352 else
1353 obj->cache_dirty = true;
1354
1355 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1356 return ret;
1357 }
1358
1359 /**
1360 * Writes data to the object referenced by handle.
1361 * @dev: drm device
1362 * @data: ioctl data blob
1363 * @file: drm file
1364 *
1365 * On error, the contents of the buffer that were to be modified are undefined.
1366 */
1367 int
1368 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1369 struct drm_file *file)
1370 {
1371 struct drm_i915_private *dev_priv = to_i915(dev);
1372 struct drm_i915_gem_pwrite *args = data;
1373 struct drm_i915_gem_object *obj;
1374 int ret;
1375
1376 if (args->size == 0)
1377 return 0;
1378
1379 if (!access_ok(VERIFY_READ,
1380 u64_to_user_ptr(args->data_ptr),
1381 args->size))
1382 return -EFAULT;
1383
1384 if (likely(!i915.prefault_disable)) {
1385 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1386 args->size);
1387 if (ret)
1388 return -EFAULT;
1389 }
1390
1391 obj = i915_gem_object_lookup(file, args->handle);
1392 if (!obj)
1393 return -ENOENT;
1394
1395 /* Bounds check destination. */
1396 if (args->offset > obj->base.size ||
1397 args->size > obj->base.size - args->offset) {
1398 ret = -EINVAL;
1399 goto err;
1400 }
1401
1402 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1403
1404 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1405 if (ret)
1406 goto err;
1407
1408 intel_runtime_pm_get(dev_priv);
1409
1410 ret = i915_mutex_lock_interruptible(dev);
1411 if (ret)
1412 goto err_rpm;
1413
1414 ret = -EFAULT;
1415 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1416 * it would end up going through the fenced access, and we'll get
1417 * different detiling behavior between reading and writing.
1418 * pread/pwrite currently are reading and writing from the CPU
1419 * perspective, requiring manual detiling by the client.
1420 */
1421 if (!i915_gem_object_has_struct_page(obj) ||
1422 cpu_write_needs_clflush(obj)) {
1423 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1424 /* Note that the gtt paths might fail with non-page-backed user
1425 * pointers (e.g. gtt mappings when moving data between
1426 * textures). Fallback to the shmem path in that case. */
1427 }
1428
1429 if (ret == -EFAULT || ret == -ENOSPC) {
1430 if (obj->phys_handle)
1431 ret = i915_gem_phys_pwrite(obj, args, file);
1432 else if (i915_gem_object_has_struct_page(obj))
1433 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1434 else
1435 ret = -ENODEV;
1436 }
1437
1438 i915_gem_object_put(obj);
1439 mutex_unlock(&dev->struct_mutex);
1440 intel_runtime_pm_put(dev_priv);
1441
1442 return ret;
1443
1444 err_rpm:
1445 intel_runtime_pm_put(dev_priv);
1446 err:
1447 i915_gem_object_put_unlocked(obj);
1448 return ret;
1449 }
1450
1451 static enum fb_op_origin
1452 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1453 {
1454 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1455 ORIGIN_GTT : ORIGIN_CPU;
1456 }
1457
1458 /**
1459 * Called when user space prepares to use an object with the CPU, either
1460 * through the mmap ioctl's mapping or a GTT mapping.
1461 * @dev: drm device
1462 * @data: ioctl data blob
1463 * @file: drm file
1464 */
1465 int
1466 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file)
1468 {
1469 struct drm_i915_gem_set_domain *args = data;
1470 struct drm_i915_gem_object *obj;
1471 uint32_t read_domains = args->read_domains;
1472 uint32_t write_domain = args->write_domain;
1473 int ret;
1474
1475 /* Only handle setting domains to types used by the CPU. */
1476 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1477 return -EINVAL;
1478
1479 /* Having something in the write domain implies it's in the read
1480 * domain, and only that read domain. Enforce that in the request.
1481 */
1482 if (write_domain != 0 && read_domains != write_domain)
1483 return -EINVAL;
1484
1485 obj = i915_gem_object_lookup(file, args->handle);
1486 if (!obj)
1487 return -ENOENT;
1488
1489 /* Try to flush the object off the GPU without holding the lock.
1490 * We will repeat the flush holding the lock in the normal manner
1491 * to catch cases where we are gazumped.
1492 */
1493 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1494 if (ret)
1495 goto err;
1496
1497 ret = i915_mutex_lock_interruptible(dev);
1498 if (ret)
1499 goto err;
1500
1501 if (read_domains & I915_GEM_DOMAIN_GTT)
1502 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1503 else
1504 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1505
1506 if (write_domain != 0)
1507 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1508
1509 i915_gem_object_put(obj);
1510 mutex_unlock(&dev->struct_mutex);
1511 return ret;
1512
1513 err:
1514 i915_gem_object_put_unlocked(obj);
1515 return ret;
1516 }
1517
1518 /**
1519 * Called when user space has done writes to this buffer
1520 * @dev: drm device
1521 * @data: ioctl data blob
1522 * @file: drm file
1523 */
1524 int
1525 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1526 struct drm_file *file)
1527 {
1528 struct drm_i915_gem_sw_finish *args = data;
1529 struct drm_i915_gem_object *obj;
1530 int err = 0;
1531
1532 obj = i915_gem_object_lookup(file, args->handle);
1533 if (!obj)
1534 return -ENOENT;
1535
1536 /* Pinned buffers may be scanout, so flush the cache */
1537 if (READ_ONCE(obj->pin_display)) {
1538 err = i915_mutex_lock_interruptible(dev);
1539 if (!err) {
1540 i915_gem_object_flush_cpu_write_domain(obj);
1541 mutex_unlock(&dev->struct_mutex);
1542 }
1543 }
1544
1545 i915_gem_object_put_unlocked(obj);
1546 return err;
1547 }
1548
1549 /**
1550 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1551 * it is mapped to.
1552 * @dev: drm device
1553 * @data: ioctl data blob
1554 * @file: drm file
1555 *
1556 * While the mapping holds a reference on the contents of the object, it doesn't
1557 * imply a ref on the object itself.
1558 *
1559 * IMPORTANT:
1560 *
1561 * DRM driver writers who look a this function as an example for how to do GEM
1562 * mmap support, please don't implement mmap support like here. The modern way
1563 * to implement DRM mmap support is with an mmap offset ioctl (like
1564 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1565 * That way debug tooling like valgrind will understand what's going on, hiding
1566 * the mmap call in a driver private ioctl will break that. The i915 driver only
1567 * does cpu mmaps this way because we didn't know better.
1568 */
1569 int
1570 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1571 struct drm_file *file)
1572 {
1573 struct drm_i915_gem_mmap *args = data;
1574 struct drm_i915_gem_object *obj;
1575 unsigned long addr;
1576
1577 if (args->flags & ~(I915_MMAP_WC))
1578 return -EINVAL;
1579
1580 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1581 return -ENODEV;
1582
1583 obj = i915_gem_object_lookup(file, args->handle);
1584 if (!obj)
1585 return -ENOENT;
1586
1587 /* prime objects have no backing filp to GEM mmap
1588 * pages from.
1589 */
1590 if (!obj->base.filp) {
1591 i915_gem_object_put_unlocked(obj);
1592 return -EINVAL;
1593 }
1594
1595 addr = vm_mmap(obj->base.filp, 0, args->size,
1596 PROT_READ | PROT_WRITE, MAP_SHARED,
1597 args->offset);
1598 if (args->flags & I915_MMAP_WC) {
1599 struct mm_struct *mm = current->mm;
1600 struct vm_area_struct *vma;
1601
1602 if (down_write_killable(&mm->mmap_sem)) {
1603 i915_gem_object_put_unlocked(obj);
1604 return -EINTR;
1605 }
1606 vma = find_vma(mm, addr);
1607 if (vma)
1608 vma->vm_page_prot =
1609 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1610 else
1611 addr = -ENOMEM;
1612 up_write(&mm->mmap_sem);
1613
1614 /* This may race, but that's ok, it only gets set */
1615 WRITE_ONCE(obj->has_wc_mmap, true);
1616 }
1617 i915_gem_object_put_unlocked(obj);
1618 if (IS_ERR((void *)addr))
1619 return addr;
1620
1621 args->addr_ptr = (uint64_t) addr;
1622
1623 return 0;
1624 }
1625
1626 /**
1627 * i915_gem_fault - fault a page into the GTT
1628 * @vma: VMA in question
1629 * @vmf: fault info
1630 *
1631 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1632 * from userspace. The fault handler takes care of binding the object to
1633 * the GTT (if needed), allocating and programming a fence register (again,
1634 * only if needed based on whether the old reg is still valid or the object
1635 * is tiled) and inserting a new PTE into the faulting process.
1636 *
1637 * Note that the faulting process may involve evicting existing objects
1638 * from the GTT and/or fence registers to make room. So performance may
1639 * suffer if the GTT working set is large or there are few fence registers
1640 * left.
1641 */
1642 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1643 {
1644 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1645 struct drm_device *dev = obj->base.dev;
1646 struct drm_i915_private *dev_priv = to_i915(dev);
1647 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1648 struct i915_ggtt_view view = i915_ggtt_view_normal;
1649 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1650 pgoff_t page_offset;
1651 unsigned long pfn;
1652 int ret;
1653
1654 /* We don't use vmf->pgoff since that has the fake offset */
1655 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1656 PAGE_SHIFT;
1657
1658 trace_i915_gem_object_fault(obj, page_offset, true, write);
1659
1660 /* Try to flush the object off the GPU first without holding the lock.
1661 * Upon acquiring the lock, we will perform our sanity checks and then
1662 * repeat the flush holding the lock in the normal manner to catch cases
1663 * where we are gazumped.
1664 */
1665 ret = __unsafe_wait_rendering(obj, NULL, !write);
1666 if (ret)
1667 goto err;
1668
1669 intel_runtime_pm_get(dev_priv);
1670
1671 ret = i915_mutex_lock_interruptible(dev);
1672 if (ret)
1673 goto err_rpm;
1674
1675 /* Access to snoopable pages through the GTT is incoherent. */
1676 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1677 ret = -EFAULT;
1678 goto err_unlock;
1679 }
1680
1681 /* Use a partial view if the object is bigger than the aperture. */
1682 if (obj->base.size >= ggtt->mappable_end &&
1683 !i915_gem_object_is_tiled(obj)) {
1684 static const unsigned int chunk_size = 256; // 1 MiB
1685
1686 memset(&view, 0, sizeof(view));
1687 view.type = I915_GGTT_VIEW_PARTIAL;
1688 view.params.partial.offset = rounddown(page_offset, chunk_size);
1689 view.params.partial.size =
1690 min_t(unsigned int,
1691 chunk_size,
1692 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1693 view.params.partial.offset);
1694 }
1695
1696 /* Now pin it into the GTT if needed */
1697 ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1698 if (ret)
1699 goto err_unlock;
1700
1701 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1702 if (ret)
1703 goto err_unpin;
1704
1705 ret = i915_gem_object_get_fence(obj);
1706 if (ret)
1707 goto err_unpin;
1708
1709 /* Finally, remap it using the new GTT offset */
1710 pfn = ggtt->mappable_base +
1711 i915_gem_obj_ggtt_offset_view(obj, &view);
1712 pfn >>= PAGE_SHIFT;
1713
1714 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1715 /* Overriding existing pages in partial view does not cause
1716 * us any trouble as TLBs are still valid because the fault
1717 * is due to userspace losing part of the mapping or never
1718 * having accessed it before (at this partials' range).
1719 */
1720 unsigned long base = vma->vm_start +
1721 (view.params.partial.offset << PAGE_SHIFT);
1722 unsigned int i;
1723
1724 for (i = 0; i < view.params.partial.size; i++) {
1725 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1726 if (ret)
1727 break;
1728 }
1729
1730 obj->fault_mappable = true;
1731 } else {
1732 if (!obj->fault_mappable) {
1733 unsigned long size = min_t(unsigned long,
1734 vma->vm_end - vma->vm_start,
1735 obj->base.size);
1736 int i;
1737
1738 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1739 ret = vm_insert_pfn(vma,
1740 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1741 pfn + i);
1742 if (ret)
1743 break;
1744 }
1745
1746 obj->fault_mappable = true;
1747 } else
1748 ret = vm_insert_pfn(vma,
1749 (unsigned long)vmf->virtual_address,
1750 pfn + page_offset);
1751 }
1752 err_unpin:
1753 i915_gem_object_ggtt_unpin_view(obj, &view);
1754 err_unlock:
1755 mutex_unlock(&dev->struct_mutex);
1756 err_rpm:
1757 intel_runtime_pm_put(dev_priv);
1758 err:
1759 switch (ret) {
1760 case -EIO:
1761 /*
1762 * We eat errors when the gpu is terminally wedged to avoid
1763 * userspace unduly crashing (gl has no provisions for mmaps to
1764 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1765 * and so needs to be reported.
1766 */
1767 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1768 ret = VM_FAULT_SIGBUS;
1769 break;
1770 }
1771 case -EAGAIN:
1772 /*
1773 * EAGAIN means the gpu is hung and we'll wait for the error
1774 * handler to reset everything when re-faulting in
1775 * i915_mutex_lock_interruptible.
1776 */
1777 case 0:
1778 case -ERESTARTSYS:
1779 case -EINTR:
1780 case -EBUSY:
1781 /*
1782 * EBUSY is ok: this just means that another thread
1783 * already did the job.
1784 */
1785 ret = VM_FAULT_NOPAGE;
1786 break;
1787 case -ENOMEM:
1788 ret = VM_FAULT_OOM;
1789 break;
1790 case -ENOSPC:
1791 case -EFAULT:
1792 ret = VM_FAULT_SIGBUS;
1793 break;
1794 default:
1795 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1796 ret = VM_FAULT_SIGBUS;
1797 break;
1798 }
1799 return ret;
1800 }
1801
1802 /**
1803 * i915_gem_release_mmap - remove physical page mappings
1804 * @obj: obj in question
1805 *
1806 * Preserve the reservation of the mmapping with the DRM core code, but
1807 * relinquish ownership of the pages back to the system.
1808 *
1809 * It is vital that we remove the page mapping if we have mapped a tiled
1810 * object through the GTT and then lose the fence register due to
1811 * resource pressure. Similarly if the object has been moved out of the
1812 * aperture, than pages mapped into userspace must be revoked. Removing the
1813 * mapping will then trigger a page fault on the next user access, allowing
1814 * fixup by i915_gem_fault().
1815 */
1816 void
1817 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1818 {
1819 /* Serialisation between user GTT access and our code depends upon
1820 * revoking the CPU's PTE whilst the mutex is held. The next user
1821 * pagefault then has to wait until we release the mutex.
1822 */
1823 lockdep_assert_held(&obj->base.dev->struct_mutex);
1824
1825 if (!obj->fault_mappable)
1826 return;
1827
1828 drm_vma_node_unmap(&obj->base.vma_node,
1829 obj->base.dev->anon_inode->i_mapping);
1830
1831 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1832 * memory transactions from userspace before we return. The TLB
1833 * flushing implied above by changing the PTE above *should* be
1834 * sufficient, an extra barrier here just provides us with a bit
1835 * of paranoid documentation about our requirement to serialise
1836 * memory writes before touching registers / GSM.
1837 */
1838 wmb();
1839
1840 obj->fault_mappable = false;
1841 }
1842
1843 void
1844 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1845 {
1846 struct drm_i915_gem_object *obj;
1847
1848 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1849 i915_gem_release_mmap(obj);
1850 }
1851
1852 /**
1853 * i915_gem_get_ggtt_size - return required global GTT size for an object
1854 * @dev_priv: i915 device
1855 * @size: object size
1856 * @tiling_mode: tiling mode
1857 *
1858 * Return the required global GTT size for an object, taking into account
1859 * potential fence register mapping.
1860 */
1861 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1862 u64 size, int tiling_mode)
1863 {
1864 u64 ggtt_size;
1865
1866 GEM_BUG_ON(size == 0);
1867
1868 if (INTEL_GEN(dev_priv) >= 4 ||
1869 tiling_mode == I915_TILING_NONE)
1870 return size;
1871
1872 /* Previous chips need a power-of-two fence region when tiling */
1873 if (IS_GEN3(dev_priv))
1874 ggtt_size = 1024*1024;
1875 else
1876 ggtt_size = 512*1024;
1877
1878 while (ggtt_size < size)
1879 ggtt_size <<= 1;
1880
1881 return ggtt_size;
1882 }
1883
1884 /**
1885 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1886 * @dev_priv: i915 device
1887 * @size: object size
1888 * @tiling_mode: tiling mode
1889 * @fenced: is fenced alignment required or not
1890 *
1891 * Return the required global GTT alignment for an object, taking into account
1892 * potential fence register mapping.
1893 */
1894 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1895 int tiling_mode, bool fenced)
1896 {
1897 GEM_BUG_ON(size == 0);
1898
1899 /*
1900 * Minimum alignment is 4k (GTT page size), but might be greater
1901 * if a fence register is needed for the object.
1902 */
1903 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1904 tiling_mode == I915_TILING_NONE)
1905 return 4096;
1906
1907 /*
1908 * Previous chips need to be aligned to the size of the smallest
1909 * fence register that can contain the object.
1910 */
1911 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1912 }
1913
1914 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1915 {
1916 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1917 int err;
1918
1919 err = drm_gem_create_mmap_offset(&obj->base);
1920 if (!err)
1921 return 0;
1922
1923 /* We can idle the GPU locklessly to flush stale objects, but in order
1924 * to claim that space for ourselves, we need to take the big
1925 * struct_mutex to free the requests+objects and allocate our slot.
1926 */
1927 err = i915_gem_wait_for_idle(dev_priv, true);
1928 if (err)
1929 return err;
1930
1931 err = i915_mutex_lock_interruptible(&dev_priv->drm);
1932 if (!err) {
1933 i915_gem_retire_requests(dev_priv);
1934 err = drm_gem_create_mmap_offset(&obj->base);
1935 mutex_unlock(&dev_priv->drm.struct_mutex);
1936 }
1937
1938 return err;
1939 }
1940
1941 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1942 {
1943 drm_gem_free_mmap_offset(&obj->base);
1944 }
1945
1946 int
1947 i915_gem_mmap_gtt(struct drm_file *file,
1948 struct drm_device *dev,
1949 uint32_t handle,
1950 uint64_t *offset)
1951 {
1952 struct drm_i915_gem_object *obj;
1953 int ret;
1954
1955 obj = i915_gem_object_lookup(file, handle);
1956 if (!obj)
1957 return -ENOENT;
1958
1959 ret = i915_gem_object_create_mmap_offset(obj);
1960 if (ret == 0)
1961 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1962
1963 i915_gem_object_put_unlocked(obj);
1964 return ret;
1965 }
1966
1967 /**
1968 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1969 * @dev: DRM device
1970 * @data: GTT mapping ioctl data
1971 * @file: GEM object info
1972 *
1973 * Simply returns the fake offset to userspace so it can mmap it.
1974 * The mmap call will end up in drm_gem_mmap(), which will set things
1975 * up so we can get faults in the handler above.
1976 *
1977 * The fault handler will take care of binding the object into the GTT
1978 * (since it may have been evicted to make room for something), allocating
1979 * a fence register, and mapping the appropriate aperture address into
1980 * userspace.
1981 */
1982 int
1983 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1984 struct drm_file *file)
1985 {
1986 struct drm_i915_gem_mmap_gtt *args = data;
1987
1988 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1989 }
1990
1991 /* Immediately discard the backing storage */
1992 static void
1993 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1994 {
1995 i915_gem_object_free_mmap_offset(obj);
1996
1997 if (obj->base.filp == NULL)
1998 return;
1999
2000 /* Our goal here is to return as much of the memory as
2001 * is possible back to the system as we are called from OOM.
2002 * To do this we must instruct the shmfs to drop all of its
2003 * backing pages, *now*.
2004 */
2005 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2006 obj->madv = __I915_MADV_PURGED;
2007 }
2008
2009 /* Try to discard unwanted pages */
2010 static void
2011 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2012 {
2013 struct address_space *mapping;
2014
2015 switch (obj->madv) {
2016 case I915_MADV_DONTNEED:
2017 i915_gem_object_truncate(obj);
2018 case __I915_MADV_PURGED:
2019 return;
2020 }
2021
2022 if (obj->base.filp == NULL)
2023 return;
2024
2025 mapping = file_inode(obj->base.filp)->i_mapping,
2026 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2027 }
2028
2029 static void
2030 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2031 {
2032 struct sgt_iter sgt_iter;
2033 struct page *page;
2034 int ret;
2035
2036 BUG_ON(obj->madv == __I915_MADV_PURGED);
2037
2038 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2039 if (WARN_ON(ret)) {
2040 /* In the event of a disaster, abandon all caches and
2041 * hope for the best.
2042 */
2043 i915_gem_clflush_object(obj, true);
2044 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2045 }
2046
2047 i915_gem_gtt_finish_object(obj);
2048
2049 if (i915_gem_object_needs_bit17_swizzle(obj))
2050 i915_gem_object_save_bit_17_swizzle(obj);
2051
2052 if (obj->madv == I915_MADV_DONTNEED)
2053 obj->dirty = 0;
2054
2055 for_each_sgt_page(page, sgt_iter, obj->pages) {
2056 if (obj->dirty)
2057 set_page_dirty(page);
2058
2059 if (obj->madv == I915_MADV_WILLNEED)
2060 mark_page_accessed(page);
2061
2062 put_page(page);
2063 }
2064 obj->dirty = 0;
2065
2066 sg_free_table(obj->pages);
2067 kfree(obj->pages);
2068 }
2069
2070 int
2071 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2072 {
2073 const struct drm_i915_gem_object_ops *ops = obj->ops;
2074
2075 if (obj->pages == NULL)
2076 return 0;
2077
2078 if (obj->pages_pin_count)
2079 return -EBUSY;
2080
2081 GEM_BUG_ON(obj->bind_count);
2082
2083 /* ->put_pages might need to allocate memory for the bit17 swizzle
2084 * array, hence protect them from being reaped by removing them from gtt
2085 * lists early. */
2086 list_del(&obj->global_list);
2087
2088 if (obj->mapping) {
2089 /* low bits are ignored by is_vmalloc_addr and kmap_to_page */
2090 if (is_vmalloc_addr(obj->mapping))
2091 vunmap(obj->mapping);
2092 else
2093 kunmap(kmap_to_page(obj->mapping));
2094 obj->mapping = NULL;
2095 }
2096
2097 ops->put_pages(obj);
2098 obj->pages = NULL;
2099
2100 i915_gem_object_invalidate(obj);
2101
2102 return 0;
2103 }
2104
2105 static int
2106 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2107 {
2108 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2109 int page_count, i;
2110 struct address_space *mapping;
2111 struct sg_table *st;
2112 struct scatterlist *sg;
2113 struct sgt_iter sgt_iter;
2114 struct page *page;
2115 unsigned long last_pfn = 0; /* suppress gcc warning */
2116 int ret;
2117 gfp_t gfp;
2118
2119 /* Assert that the object is not currently in any GPU domain. As it
2120 * wasn't in the GTT, there shouldn't be any way it could have been in
2121 * a GPU cache
2122 */
2123 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2124 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2125
2126 st = kmalloc(sizeof(*st), GFP_KERNEL);
2127 if (st == NULL)
2128 return -ENOMEM;
2129
2130 page_count = obj->base.size / PAGE_SIZE;
2131 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2132 kfree(st);
2133 return -ENOMEM;
2134 }
2135
2136 /* Get the list of pages out of our struct file. They'll be pinned
2137 * at this point until we release them.
2138 *
2139 * Fail silently without starting the shrinker
2140 */
2141 mapping = file_inode(obj->base.filp)->i_mapping;
2142 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2143 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2144 sg = st->sgl;
2145 st->nents = 0;
2146 for (i = 0; i < page_count; i++) {
2147 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2148 if (IS_ERR(page)) {
2149 i915_gem_shrink(dev_priv,
2150 page_count,
2151 I915_SHRINK_BOUND |
2152 I915_SHRINK_UNBOUND |
2153 I915_SHRINK_PURGEABLE);
2154 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2155 }
2156 if (IS_ERR(page)) {
2157 /* We've tried hard to allocate the memory by reaping
2158 * our own buffer, now let the real VM do its job and
2159 * go down in flames if truly OOM.
2160 */
2161 i915_gem_shrink_all(dev_priv);
2162 page = shmem_read_mapping_page(mapping, i);
2163 if (IS_ERR(page)) {
2164 ret = PTR_ERR(page);
2165 goto err_pages;
2166 }
2167 }
2168 #ifdef CONFIG_SWIOTLB
2169 if (swiotlb_nr_tbl()) {
2170 st->nents++;
2171 sg_set_page(sg, page, PAGE_SIZE, 0);
2172 sg = sg_next(sg);
2173 continue;
2174 }
2175 #endif
2176 if (!i || page_to_pfn(page) != last_pfn + 1) {
2177 if (i)
2178 sg = sg_next(sg);
2179 st->nents++;
2180 sg_set_page(sg, page, PAGE_SIZE, 0);
2181 } else {
2182 sg->length += PAGE_SIZE;
2183 }
2184 last_pfn = page_to_pfn(page);
2185
2186 /* Check that the i965g/gm workaround works. */
2187 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2188 }
2189 #ifdef CONFIG_SWIOTLB
2190 if (!swiotlb_nr_tbl())
2191 #endif
2192 sg_mark_end(sg);
2193 obj->pages = st;
2194
2195 ret = i915_gem_gtt_prepare_object(obj);
2196 if (ret)
2197 goto err_pages;
2198
2199 if (i915_gem_object_needs_bit17_swizzle(obj))
2200 i915_gem_object_do_bit_17_swizzle(obj);
2201
2202 if (i915_gem_object_is_tiled(obj) &&
2203 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2204 i915_gem_object_pin_pages(obj);
2205
2206 return 0;
2207
2208 err_pages:
2209 sg_mark_end(sg);
2210 for_each_sgt_page(page, sgt_iter, st)
2211 put_page(page);
2212 sg_free_table(st);
2213 kfree(st);
2214
2215 /* shmemfs first checks if there is enough memory to allocate the page
2216 * and reports ENOSPC should there be insufficient, along with the usual
2217 * ENOMEM for a genuine allocation failure.
2218 *
2219 * We use ENOSPC in our driver to mean that we have run out of aperture
2220 * space and so want to translate the error from shmemfs back to our
2221 * usual understanding of ENOMEM.
2222 */
2223 if (ret == -ENOSPC)
2224 ret = -ENOMEM;
2225
2226 return ret;
2227 }
2228
2229 /* Ensure that the associated pages are gathered from the backing storage
2230 * and pinned into our object. i915_gem_object_get_pages() may be called
2231 * multiple times before they are released by a single call to
2232 * i915_gem_object_put_pages() - once the pages are no longer referenced
2233 * either as a result of memory pressure (reaping pages under the shrinker)
2234 * or as the object is itself released.
2235 */
2236 int
2237 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2238 {
2239 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2240 const struct drm_i915_gem_object_ops *ops = obj->ops;
2241 int ret;
2242
2243 if (obj->pages)
2244 return 0;
2245
2246 if (obj->madv != I915_MADV_WILLNEED) {
2247 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2248 return -EFAULT;
2249 }
2250
2251 BUG_ON(obj->pages_pin_count);
2252
2253 ret = ops->get_pages(obj);
2254 if (ret)
2255 return ret;
2256
2257 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2258
2259 obj->get_page.sg = obj->pages->sgl;
2260 obj->get_page.last = 0;
2261
2262 return 0;
2263 }
2264
2265 /* The 'mapping' part of i915_gem_object_pin_map() below */
2266 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2267 enum i915_map_type type)
2268 {
2269 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2270 struct sg_table *sgt = obj->pages;
2271 struct sgt_iter sgt_iter;
2272 struct page *page;
2273 struct page *stack_pages[32];
2274 struct page **pages = stack_pages;
2275 unsigned long i = 0;
2276 pgprot_t pgprot;
2277 void *addr;
2278
2279 /* A single page can always be kmapped */
2280 if (n_pages == 1 && type == I915_MAP_WB)
2281 return kmap(sg_page(sgt->sgl));
2282
2283 if (n_pages > ARRAY_SIZE(stack_pages)) {
2284 /* Too big for stack -- allocate temporary array instead */
2285 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2286 if (!pages)
2287 return NULL;
2288 }
2289
2290 for_each_sgt_page(page, sgt_iter, sgt)
2291 pages[i++] = page;
2292
2293 /* Check that we have the expected number of pages */
2294 GEM_BUG_ON(i != n_pages);
2295
2296 switch (type) {
2297 case I915_MAP_WB:
2298 pgprot = PAGE_KERNEL;
2299 break;
2300 case I915_MAP_WC:
2301 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2302 break;
2303 }
2304 addr = vmap(pages, n_pages, 0, pgprot);
2305
2306 if (pages != stack_pages)
2307 drm_free_large(pages);
2308
2309 return addr;
2310 }
2311
2312 /* get, pin, and map the pages of the object into kernel space */
2313 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2314 enum i915_map_type type)
2315 {
2316 enum i915_map_type has_type;
2317 bool pinned;
2318 void *ptr;
2319 int ret;
2320
2321 lockdep_assert_held(&obj->base.dev->struct_mutex);
2322 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2323
2324 ret = i915_gem_object_get_pages(obj);
2325 if (ret)
2326 return ERR_PTR(ret);
2327
2328 i915_gem_object_pin_pages(obj);
2329 pinned = obj->pages_pin_count > 1;
2330
2331 ptr = ptr_unpack_bits(obj->mapping, has_type);
2332 if (ptr && has_type != type) {
2333 if (pinned) {
2334 ret = -EBUSY;
2335 goto err;
2336 }
2337
2338 if (is_vmalloc_addr(ptr))
2339 vunmap(ptr);
2340 else
2341 kunmap(kmap_to_page(ptr));
2342
2343 ptr = obj->mapping = NULL;
2344 }
2345
2346 if (!ptr) {
2347 ptr = i915_gem_object_map(obj, type);
2348 if (!ptr) {
2349 ret = -ENOMEM;
2350 goto err;
2351 }
2352
2353 obj->mapping = ptr_pack_bits(ptr, type);
2354 }
2355
2356 return ptr;
2357
2358 err:
2359 i915_gem_object_unpin_pages(obj);
2360 return ERR_PTR(ret);
2361 }
2362
2363 static void
2364 i915_gem_object_retire__write(struct i915_gem_active *active,
2365 struct drm_i915_gem_request *request)
2366 {
2367 struct drm_i915_gem_object *obj =
2368 container_of(active, struct drm_i915_gem_object, last_write);
2369
2370 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2371 }
2372
2373 static void
2374 i915_gem_object_retire__read(struct i915_gem_active *active,
2375 struct drm_i915_gem_request *request)
2376 {
2377 int idx = request->engine->id;
2378 struct drm_i915_gem_object *obj =
2379 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2380
2381 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2382
2383 i915_gem_object_clear_active(obj, idx);
2384 if (i915_gem_object_is_active(obj))
2385 return;
2386
2387 /* Bump our place on the bound list to keep it roughly in LRU order
2388 * so that we don't steal from recently used but inactive objects
2389 * (unless we are forced to ofc!)
2390 */
2391 if (obj->bind_count)
2392 list_move_tail(&obj->global_list,
2393 &request->i915->mm.bound_list);
2394
2395 i915_gem_object_put(obj);
2396 }
2397
2398 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2399 {
2400 unsigned long elapsed;
2401
2402 if (ctx->hang_stats.banned)
2403 return true;
2404
2405 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2406 if (ctx->hang_stats.ban_period_seconds &&
2407 elapsed <= ctx->hang_stats.ban_period_seconds) {
2408 DRM_DEBUG("context hanging too fast, banning!\n");
2409 return true;
2410 }
2411
2412 return false;
2413 }
2414
2415 static void i915_set_reset_status(struct i915_gem_context *ctx,
2416 const bool guilty)
2417 {
2418 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2419
2420 if (guilty) {
2421 hs->banned = i915_context_is_banned(ctx);
2422 hs->batch_active++;
2423 hs->guilty_ts = get_seconds();
2424 } else {
2425 hs->batch_pending++;
2426 }
2427 }
2428
2429 struct drm_i915_gem_request *
2430 i915_gem_find_active_request(struct intel_engine_cs *engine)
2431 {
2432 struct drm_i915_gem_request *request;
2433
2434 /* We are called by the error capture and reset at a random
2435 * point in time. In particular, note that neither is crucially
2436 * ordered with an interrupt. After a hang, the GPU is dead and we
2437 * assume that no more writes can happen (we waited long enough for
2438 * all writes that were in transaction to be flushed) - adding an
2439 * extra delay for a recent interrupt is pointless. Hence, we do
2440 * not need an engine->irq_seqno_barrier() before the seqno reads.
2441 */
2442 list_for_each_entry(request, &engine->request_list, link) {
2443 if (i915_gem_request_completed(request))
2444 continue;
2445
2446 return request;
2447 }
2448
2449 return NULL;
2450 }
2451
2452 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2453 {
2454 struct drm_i915_gem_request *request;
2455 bool ring_hung;
2456
2457 request = i915_gem_find_active_request(engine);
2458 if (request == NULL)
2459 return;
2460
2461 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2462
2463 i915_set_reset_status(request->ctx, ring_hung);
2464 list_for_each_entry_continue(request, &engine->request_list, link)
2465 i915_set_reset_status(request->ctx, false);
2466 }
2467
2468 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2469 {
2470 struct drm_i915_gem_request *request;
2471 struct intel_ring *ring;
2472
2473 /* Mark all pending requests as complete so that any concurrent
2474 * (lockless) lookup doesn't try and wait upon the request as we
2475 * reset it.
2476 */
2477 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2478
2479 /*
2480 * Clear the execlists queue up before freeing the requests, as those
2481 * are the ones that keep the context and ringbuffer backing objects
2482 * pinned in place.
2483 */
2484
2485 if (i915.enable_execlists) {
2486 /* Ensure irq handler finishes or is cancelled. */
2487 tasklet_kill(&engine->irq_tasklet);
2488
2489 intel_execlists_cancel_requests(engine);
2490 }
2491
2492 /*
2493 * We must free the requests after all the corresponding objects have
2494 * been moved off active lists. Which is the same order as the normal
2495 * retire_requests function does. This is important if object hold
2496 * implicit references on things like e.g. ppgtt address spaces through
2497 * the request.
2498 */
2499 request = i915_gem_active_raw(&engine->last_request,
2500 &engine->i915->drm.struct_mutex);
2501 if (request)
2502 i915_gem_request_retire_upto(request);
2503 GEM_BUG_ON(intel_engine_is_active(engine));
2504
2505 /* Having flushed all requests from all queues, we know that all
2506 * ringbuffers must now be empty. However, since we do not reclaim
2507 * all space when retiring the request (to prevent HEADs colliding
2508 * with rapid ringbuffer wraparound) the amount of available space
2509 * upon reset is less than when we start. Do one more pass over
2510 * all the ringbuffers to reset last_retired_head.
2511 */
2512 list_for_each_entry(ring, &engine->buffers, link) {
2513 ring->last_retired_head = ring->tail;
2514 intel_ring_update_space(ring);
2515 }
2516
2517 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2518 }
2519
2520 void i915_gem_reset(struct drm_device *dev)
2521 {
2522 struct drm_i915_private *dev_priv = to_i915(dev);
2523 struct intel_engine_cs *engine;
2524
2525 /*
2526 * Before we free the objects from the requests, we need to inspect
2527 * them for finding the guilty party. As the requests only borrow
2528 * their reference to the objects, the inspection must be done first.
2529 */
2530 for_each_engine(engine, dev_priv)
2531 i915_gem_reset_engine_status(engine);
2532
2533 for_each_engine(engine, dev_priv)
2534 i915_gem_reset_engine_cleanup(engine);
2535 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2536
2537 i915_gem_context_reset(dev);
2538
2539 i915_gem_restore_fences(dev);
2540 }
2541
2542 static void
2543 i915_gem_retire_work_handler(struct work_struct *work)
2544 {
2545 struct drm_i915_private *dev_priv =
2546 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2547 struct drm_device *dev = &dev_priv->drm;
2548
2549 /* Come back later if the device is busy... */
2550 if (mutex_trylock(&dev->struct_mutex)) {
2551 i915_gem_retire_requests(dev_priv);
2552 mutex_unlock(&dev->struct_mutex);
2553 }
2554
2555 /* Keep the retire handler running until we are finally idle.
2556 * We do not need to do this test under locking as in the worst-case
2557 * we queue the retire worker once too often.
2558 */
2559 if (READ_ONCE(dev_priv->gt.awake)) {
2560 i915_queue_hangcheck(dev_priv);
2561 queue_delayed_work(dev_priv->wq,
2562 &dev_priv->gt.retire_work,
2563 round_jiffies_up_relative(HZ));
2564 }
2565 }
2566
2567 static void
2568 i915_gem_idle_work_handler(struct work_struct *work)
2569 {
2570 struct drm_i915_private *dev_priv =
2571 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2572 struct drm_device *dev = &dev_priv->drm;
2573 struct intel_engine_cs *engine;
2574 bool rearm_hangcheck;
2575
2576 if (!READ_ONCE(dev_priv->gt.awake))
2577 return;
2578
2579 if (READ_ONCE(dev_priv->gt.active_engines))
2580 return;
2581
2582 rearm_hangcheck =
2583 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2584
2585 if (!mutex_trylock(&dev->struct_mutex)) {
2586 /* Currently busy, come back later */
2587 mod_delayed_work(dev_priv->wq,
2588 &dev_priv->gt.idle_work,
2589 msecs_to_jiffies(50));
2590 goto out_rearm;
2591 }
2592
2593 if (dev_priv->gt.active_engines)
2594 goto out_unlock;
2595
2596 for_each_engine(engine, dev_priv)
2597 i915_gem_batch_pool_fini(&engine->batch_pool);
2598
2599 GEM_BUG_ON(!dev_priv->gt.awake);
2600 dev_priv->gt.awake = false;
2601 rearm_hangcheck = false;
2602
2603 if (INTEL_GEN(dev_priv) >= 6)
2604 gen6_rps_idle(dev_priv);
2605 intel_runtime_pm_put(dev_priv);
2606 out_unlock:
2607 mutex_unlock(&dev->struct_mutex);
2608
2609 out_rearm:
2610 if (rearm_hangcheck) {
2611 GEM_BUG_ON(!dev_priv->gt.awake);
2612 i915_queue_hangcheck(dev_priv);
2613 }
2614 }
2615
2616 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2617 {
2618 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2619 struct drm_i915_file_private *fpriv = file->driver_priv;
2620 struct i915_vma *vma, *vn;
2621
2622 mutex_lock(&obj->base.dev->struct_mutex);
2623 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2624 if (vma->vm->file == fpriv)
2625 i915_vma_close(vma);
2626 mutex_unlock(&obj->base.dev->struct_mutex);
2627 }
2628
2629 /**
2630 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2631 * @dev: drm device pointer
2632 * @data: ioctl data blob
2633 * @file: drm file pointer
2634 *
2635 * Returns 0 if successful, else an error is returned with the remaining time in
2636 * the timeout parameter.
2637 * -ETIME: object is still busy after timeout
2638 * -ERESTARTSYS: signal interrupted the wait
2639 * -ENONENT: object doesn't exist
2640 * Also possible, but rare:
2641 * -EAGAIN: GPU wedged
2642 * -ENOMEM: damn
2643 * -ENODEV: Internal IRQ fail
2644 * -E?: The add request failed
2645 *
2646 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2647 * non-zero timeout parameter the wait ioctl will wait for the given number of
2648 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2649 * without holding struct_mutex the object may become re-busied before this
2650 * function completes. A similar but shorter * race condition exists in the busy
2651 * ioctl
2652 */
2653 int
2654 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2655 {
2656 struct drm_i915_gem_wait *args = data;
2657 struct intel_rps_client *rps = to_rps_client(file);
2658 struct drm_i915_gem_object *obj;
2659 unsigned long active;
2660 int idx, ret = 0;
2661
2662 if (args->flags != 0)
2663 return -EINVAL;
2664
2665 obj = i915_gem_object_lookup(file, args->bo_handle);
2666 if (!obj)
2667 return -ENOENT;
2668
2669 active = __I915_BO_ACTIVE(obj);
2670 for_each_active(active, idx) {
2671 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2672 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
2673 timeout, rps);
2674 if (ret)
2675 break;
2676 }
2677
2678 i915_gem_object_put_unlocked(obj);
2679 return ret;
2680 }
2681
2682 static int
2683 __i915_gem_object_sync(struct drm_i915_gem_request *to,
2684 struct drm_i915_gem_request *from)
2685 {
2686 int ret;
2687
2688 if (to->engine == from->engine)
2689 return 0;
2690
2691 if (!i915.semaphores) {
2692 ret = i915_wait_request(from,
2693 from->i915->mm.interruptible,
2694 NULL,
2695 NO_WAITBOOST);
2696 if (ret)
2697 return ret;
2698 } else {
2699 int idx = intel_engine_sync_index(from->engine, to->engine);
2700 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2701 return 0;
2702
2703 trace_i915_gem_ring_sync_to(to, from);
2704 ret = to->engine->semaphore.sync_to(to, from);
2705 if (ret)
2706 return ret;
2707
2708 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2709 }
2710
2711 return 0;
2712 }
2713
2714 /**
2715 * i915_gem_object_sync - sync an object to a ring.
2716 *
2717 * @obj: object which may be in use on another ring.
2718 * @to: request we are wishing to use
2719 *
2720 * This code is meant to abstract object synchronization with the GPU.
2721 * Conceptually we serialise writes between engines inside the GPU.
2722 * We only allow one engine to write into a buffer at any time, but
2723 * multiple readers. To ensure each has a coherent view of memory, we must:
2724 *
2725 * - If there is an outstanding write request to the object, the new
2726 * request must wait for it to complete (either CPU or in hw, requests
2727 * on the same ring will be naturally ordered).
2728 *
2729 * - If we are a write request (pending_write_domain is set), the new
2730 * request must wait for outstanding read requests to complete.
2731 *
2732 * Returns 0 if successful, else propagates up the lower layer error.
2733 */
2734 int
2735 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2736 struct drm_i915_gem_request *to)
2737 {
2738 struct i915_gem_active *active;
2739 unsigned long active_mask;
2740 int idx;
2741
2742 lockdep_assert_held(&obj->base.dev->struct_mutex);
2743
2744 active_mask = i915_gem_object_get_active(obj);
2745 if (!active_mask)
2746 return 0;
2747
2748 if (obj->base.pending_write_domain) {
2749 active = obj->last_read;
2750 } else {
2751 active_mask = 1;
2752 active = &obj->last_write;
2753 }
2754
2755 for_each_active(active_mask, idx) {
2756 struct drm_i915_gem_request *request;
2757 int ret;
2758
2759 request = i915_gem_active_peek(&active[idx],
2760 &obj->base.dev->struct_mutex);
2761 if (!request)
2762 continue;
2763
2764 ret = __i915_gem_object_sync(to, request);
2765 if (ret)
2766 return ret;
2767 }
2768
2769 return 0;
2770 }
2771
2772 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2773 {
2774 u32 old_write_domain, old_read_domains;
2775
2776 /* Force a pagefault for domain tracking on next user access */
2777 i915_gem_release_mmap(obj);
2778
2779 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2780 return;
2781
2782 old_read_domains = obj->base.read_domains;
2783 old_write_domain = obj->base.write_domain;
2784
2785 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2786 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2787
2788 trace_i915_gem_object_change_domain(obj,
2789 old_read_domains,
2790 old_write_domain);
2791 }
2792
2793 static void __i915_vma_iounmap(struct i915_vma *vma)
2794 {
2795 GEM_BUG_ON(i915_vma_is_pinned(vma));
2796
2797 if (vma->iomap == NULL)
2798 return;
2799
2800 io_mapping_unmap(vma->iomap);
2801 vma->iomap = NULL;
2802 }
2803
2804 int i915_vma_unbind(struct i915_vma *vma)
2805 {
2806 struct drm_i915_gem_object *obj = vma->obj;
2807 unsigned long active;
2808 int ret;
2809
2810 /* First wait upon any activity as retiring the request may
2811 * have side-effects such as unpinning or even unbinding this vma.
2812 */
2813 active = i915_vma_get_active(vma);
2814 if (active) {
2815 int idx;
2816
2817 /* When a closed VMA is retired, it is unbound - eek.
2818 * In order to prevent it from being recursively closed,
2819 * take a pin on the vma so that the second unbind is
2820 * aborted.
2821 */
2822 __i915_vma_pin(vma);
2823
2824 for_each_active(active, idx) {
2825 ret = i915_gem_active_retire(&vma->last_read[idx],
2826 &vma->vm->dev->struct_mutex);
2827 if (ret)
2828 break;
2829 }
2830
2831 __i915_vma_unpin(vma);
2832 if (ret)
2833 return ret;
2834
2835 GEM_BUG_ON(i915_vma_is_active(vma));
2836 }
2837
2838 if (i915_vma_is_pinned(vma))
2839 return -EBUSY;
2840
2841 if (!drm_mm_node_allocated(&vma->node))
2842 goto destroy;
2843
2844 GEM_BUG_ON(obj->bind_count == 0);
2845 GEM_BUG_ON(!obj->pages);
2846
2847 if (i915_vma_is_ggtt(vma) &&
2848 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2849 i915_gem_object_finish_gtt(obj);
2850
2851 /* release the fence reg _after_ flushing */
2852 ret = i915_gem_object_put_fence(obj);
2853 if (ret)
2854 return ret;
2855
2856 __i915_vma_iounmap(vma);
2857 }
2858
2859 if (likely(!vma->vm->closed)) {
2860 trace_i915_vma_unbind(vma);
2861 vma->vm->unbind_vma(vma);
2862 }
2863 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2864
2865 drm_mm_remove_node(&vma->node);
2866 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2867
2868 if (i915_vma_is_ggtt(vma)) {
2869 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2870 obj->map_and_fenceable = false;
2871 } else if (vma->ggtt_view.pages) {
2872 sg_free_table(vma->ggtt_view.pages);
2873 kfree(vma->ggtt_view.pages);
2874 }
2875 vma->ggtt_view.pages = NULL;
2876 }
2877
2878 /* Since the unbound list is global, only move to that list if
2879 * no more VMAs exist. */
2880 if (--obj->bind_count == 0)
2881 list_move_tail(&obj->global_list,
2882 &to_i915(obj->base.dev)->mm.unbound_list);
2883
2884 /* And finally now the object is completely decoupled from this vma,
2885 * we can drop its hold on the backing storage and allow it to be
2886 * reaped by the shrinker.
2887 */
2888 i915_gem_object_unpin_pages(obj);
2889
2890 destroy:
2891 if (unlikely(i915_vma_is_closed(vma)))
2892 i915_vma_destroy(vma);
2893
2894 return 0;
2895 }
2896
2897 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2898 bool interruptible)
2899 {
2900 struct intel_engine_cs *engine;
2901 int ret;
2902
2903 for_each_engine(engine, dev_priv) {
2904 if (engine->last_context == NULL)
2905 continue;
2906
2907 ret = intel_engine_idle(engine, interruptible);
2908 if (ret)
2909 return ret;
2910 }
2911
2912 return 0;
2913 }
2914
2915 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2916 unsigned long cache_level)
2917 {
2918 struct drm_mm_node *gtt_space = &vma->node;
2919 struct drm_mm_node *other;
2920
2921 /*
2922 * On some machines we have to be careful when putting differing types
2923 * of snoopable memory together to avoid the prefetcher crossing memory
2924 * domains and dying. During vm initialisation, we decide whether or not
2925 * these constraints apply and set the drm_mm.color_adjust
2926 * appropriately.
2927 */
2928 if (vma->vm->mm.color_adjust == NULL)
2929 return true;
2930
2931 if (!drm_mm_node_allocated(gtt_space))
2932 return true;
2933
2934 if (list_empty(&gtt_space->node_list))
2935 return true;
2936
2937 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2938 if (other->allocated && !other->hole_follows && other->color != cache_level)
2939 return false;
2940
2941 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2942 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2943 return false;
2944
2945 return true;
2946 }
2947
2948 /**
2949 * i915_vma_insert - finds a slot for the vma in its address space
2950 * @vma: the vma
2951 * @size: requested size in bytes (can be larger than the VMA)
2952 * @alignment: required alignment
2953 * @flags: mask of PIN_* flags to use
2954 *
2955 * First we try to allocate some free space that meets the requirements for
2956 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2957 * preferrably the oldest idle entry to make room for the new VMA.
2958 *
2959 * Returns:
2960 * 0 on success, negative error code otherwise.
2961 */
2962 static int
2963 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2964 {
2965 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2966 struct drm_i915_gem_object *obj = vma->obj;
2967 u64 start, end;
2968 u64 min_alignment;
2969 int ret;
2970
2971 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2972 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2973
2974 size = max(size, vma->size);
2975 if (flags & PIN_MAPPABLE)
2976 size = i915_gem_get_ggtt_size(dev_priv, size,
2977 i915_gem_object_get_tiling(obj));
2978
2979 min_alignment =
2980 i915_gem_get_ggtt_alignment(dev_priv, size,
2981 i915_gem_object_get_tiling(obj),
2982 flags & PIN_MAPPABLE);
2983 if (alignment == 0)
2984 alignment = min_alignment;
2985 if (alignment & (min_alignment - 1)) {
2986 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
2987 alignment, min_alignment);
2988 return -EINVAL;
2989 }
2990
2991 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2992
2993 end = vma->vm->total;
2994 if (flags & PIN_MAPPABLE)
2995 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
2996 if (flags & PIN_ZONE_4G)
2997 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
2998
2999 /* If binding the object/GGTT view requires more space than the entire
3000 * aperture has, reject it early before evicting everything in a vain
3001 * attempt to find space.
3002 */
3003 if (size > end) {
3004 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3005 size, obj->base.size,
3006 flags & PIN_MAPPABLE ? "mappable" : "total",
3007 end);
3008 return -E2BIG;
3009 }
3010
3011 ret = i915_gem_object_get_pages(obj);
3012 if (ret)
3013 return ret;
3014
3015 i915_gem_object_pin_pages(obj);
3016
3017 if (flags & PIN_OFFSET_FIXED) {
3018 u64 offset = flags & PIN_OFFSET_MASK;
3019 if (offset & (alignment - 1) || offset > end - size) {
3020 ret = -EINVAL;
3021 goto err_unpin;
3022 }
3023
3024 vma->node.start = offset;
3025 vma->node.size = size;
3026 vma->node.color = obj->cache_level;
3027 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3028 if (ret) {
3029 ret = i915_gem_evict_for_vma(vma);
3030 if (ret == 0)
3031 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3032 if (ret)
3033 goto err_unpin;
3034 }
3035 } else {
3036 u32 search_flag, alloc_flag;
3037
3038 if (flags & PIN_HIGH) {
3039 search_flag = DRM_MM_SEARCH_BELOW;
3040 alloc_flag = DRM_MM_CREATE_TOP;
3041 } else {
3042 search_flag = DRM_MM_SEARCH_DEFAULT;
3043 alloc_flag = DRM_MM_CREATE_DEFAULT;
3044 }
3045
3046 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3047 * so we know that we always have a minimum alignment of 4096.
3048 * The drm_mm range manager is optimised to return results
3049 * with zero alignment, so where possible use the optimal
3050 * path.
3051 */
3052 if (alignment <= 4096)
3053 alignment = 0;
3054
3055 search_free:
3056 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3057 &vma->node,
3058 size, alignment,
3059 obj->cache_level,
3060 start, end,
3061 search_flag,
3062 alloc_flag);
3063 if (ret) {
3064 ret = i915_gem_evict_something(vma->vm, size, alignment,
3065 obj->cache_level,
3066 start, end,
3067 flags);
3068 if (ret == 0)
3069 goto search_free;
3070
3071 goto err_unpin;
3072 }
3073 }
3074 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3075
3076 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3077 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3078 obj->bind_count++;
3079
3080 return 0;
3081
3082 err_unpin:
3083 i915_gem_object_unpin_pages(obj);
3084 return ret;
3085 }
3086
3087 bool
3088 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3089 bool force)
3090 {
3091 /* If we don't have a page list set up, then we're not pinned
3092 * to GPU, and we can ignore the cache flush because it'll happen
3093 * again at bind time.
3094 */
3095 if (obj->pages == NULL)
3096 return false;
3097
3098 /*
3099 * Stolen memory is always coherent with the GPU as it is explicitly
3100 * marked as wc by the system, or the system is cache-coherent.
3101 */
3102 if (obj->stolen || obj->phys_handle)
3103 return false;
3104
3105 /* If the GPU is snooping the contents of the CPU cache,
3106 * we do not need to manually clear the CPU cache lines. However,
3107 * the caches are only snooped when the render cache is
3108 * flushed/invalidated. As we always have to emit invalidations
3109 * and flushes when moving into and out of the RENDER domain, correct
3110 * snooping behaviour occurs naturally as the result of our domain
3111 * tracking.
3112 */
3113 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3114 obj->cache_dirty = true;
3115 return false;
3116 }
3117
3118 trace_i915_gem_object_clflush(obj);
3119 drm_clflush_sg(obj->pages);
3120 obj->cache_dirty = false;
3121
3122 return true;
3123 }
3124
3125 /** Flushes the GTT write domain for the object if it's dirty. */
3126 static void
3127 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3128 {
3129 uint32_t old_write_domain;
3130
3131 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3132 return;
3133
3134 /* No actual flushing is required for the GTT write domain. Writes
3135 * to it immediately go to main memory as far as we know, so there's
3136 * no chipset flush. It also doesn't land in render cache.
3137 *
3138 * However, we do have to enforce the order so that all writes through
3139 * the GTT land before any writes to the device, such as updates to
3140 * the GATT itself.
3141 */
3142 wmb();
3143
3144 old_write_domain = obj->base.write_domain;
3145 obj->base.write_domain = 0;
3146
3147 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3148
3149 trace_i915_gem_object_change_domain(obj,
3150 obj->base.read_domains,
3151 old_write_domain);
3152 }
3153
3154 /** Flushes the CPU write domain for the object if it's dirty. */
3155 static void
3156 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3157 {
3158 uint32_t old_write_domain;
3159
3160 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3161 return;
3162
3163 if (i915_gem_clflush_object(obj, obj->pin_display))
3164 i915_gem_chipset_flush(to_i915(obj->base.dev));
3165
3166 old_write_domain = obj->base.write_domain;
3167 obj->base.write_domain = 0;
3168
3169 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3170
3171 trace_i915_gem_object_change_domain(obj,
3172 obj->base.read_domains,
3173 old_write_domain);
3174 }
3175
3176 /**
3177 * Moves a single object to the GTT read, and possibly write domain.
3178 * @obj: object to act on
3179 * @write: ask for write access or read only
3180 *
3181 * This function returns when the move is complete, including waiting on
3182 * flushes to occur.
3183 */
3184 int
3185 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3186 {
3187 uint32_t old_write_domain, old_read_domains;
3188 struct i915_vma *vma;
3189 int ret;
3190
3191 ret = i915_gem_object_wait_rendering(obj, !write);
3192 if (ret)
3193 return ret;
3194
3195 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3196 return 0;
3197
3198 /* Flush and acquire obj->pages so that we are coherent through
3199 * direct access in memory with previous cached writes through
3200 * shmemfs and that our cache domain tracking remains valid.
3201 * For example, if the obj->filp was moved to swap without us
3202 * being notified and releasing the pages, we would mistakenly
3203 * continue to assume that the obj remained out of the CPU cached
3204 * domain.
3205 */
3206 ret = i915_gem_object_get_pages(obj);
3207 if (ret)
3208 return ret;
3209
3210 i915_gem_object_flush_cpu_write_domain(obj);
3211
3212 /* Serialise direct access to this object with the barriers for
3213 * coherent writes from the GPU, by effectively invalidating the
3214 * GTT domain upon first access.
3215 */
3216 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3217 mb();
3218
3219 old_write_domain = obj->base.write_domain;
3220 old_read_domains = obj->base.read_domains;
3221
3222 /* It should now be out of any other write domains, and we can update
3223 * the domain values for our changes.
3224 */
3225 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3226 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3227 if (write) {
3228 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3229 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3230 obj->dirty = 1;
3231 }
3232
3233 trace_i915_gem_object_change_domain(obj,
3234 old_read_domains,
3235 old_write_domain);
3236
3237 /* And bump the LRU for this access */
3238 vma = i915_gem_obj_to_ggtt(obj);
3239 if (vma &&
3240 drm_mm_node_allocated(&vma->node) &&
3241 !i915_vma_is_active(vma))
3242 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3243
3244 return 0;
3245 }
3246
3247 /**
3248 * Changes the cache-level of an object across all VMA.
3249 * @obj: object to act on
3250 * @cache_level: new cache level to set for the object
3251 *
3252 * After this function returns, the object will be in the new cache-level
3253 * across all GTT and the contents of the backing storage will be coherent,
3254 * with respect to the new cache-level. In order to keep the backing storage
3255 * coherent for all users, we only allow a single cache level to be set
3256 * globally on the object and prevent it from being changed whilst the
3257 * hardware is reading from the object. That is if the object is currently
3258 * on the scanout it will be set to uncached (or equivalent display
3259 * cache coherency) and all non-MOCS GPU access will also be uncached so
3260 * that all direct access to the scanout remains coherent.
3261 */
3262 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3263 enum i915_cache_level cache_level)
3264 {
3265 struct i915_vma *vma;
3266 int ret = 0;
3267
3268 if (obj->cache_level == cache_level)
3269 goto out;
3270
3271 /* Inspect the list of currently bound VMA and unbind any that would
3272 * be invalid given the new cache-level. This is principally to
3273 * catch the issue of the CS prefetch crossing page boundaries and
3274 * reading an invalid PTE on older architectures.
3275 */
3276 restart:
3277 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3278 if (!drm_mm_node_allocated(&vma->node))
3279 continue;
3280
3281 if (i915_vma_is_pinned(vma)) {
3282 DRM_DEBUG("can not change the cache level of pinned objects\n");
3283 return -EBUSY;
3284 }
3285
3286 if (i915_gem_valid_gtt_space(vma, cache_level))
3287 continue;
3288
3289 ret = i915_vma_unbind(vma);
3290 if (ret)
3291 return ret;
3292
3293 /* As unbinding may affect other elements in the
3294 * obj->vma_list (due to side-effects from retiring
3295 * an active vma), play safe and restart the iterator.
3296 */
3297 goto restart;
3298 }
3299
3300 /* We can reuse the existing drm_mm nodes but need to change the
3301 * cache-level on the PTE. We could simply unbind them all and
3302 * rebind with the correct cache-level on next use. However since
3303 * we already have a valid slot, dma mapping, pages etc, we may as
3304 * rewrite the PTE in the belief that doing so tramples upon less
3305 * state and so involves less work.
3306 */
3307 if (obj->bind_count) {
3308 /* Before we change the PTE, the GPU must not be accessing it.
3309 * If we wait upon the object, we know that all the bound
3310 * VMA are no longer active.
3311 */
3312 ret = i915_gem_object_wait_rendering(obj, false);
3313 if (ret)
3314 return ret;
3315
3316 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3317 /* Access to snoopable pages through the GTT is
3318 * incoherent and on some machines causes a hard
3319 * lockup. Relinquish the CPU mmaping to force
3320 * userspace to refault in the pages and we can
3321 * then double check if the GTT mapping is still
3322 * valid for that pointer access.
3323 */
3324 i915_gem_release_mmap(obj);
3325
3326 /* As we no longer need a fence for GTT access,
3327 * we can relinquish it now (and so prevent having
3328 * to steal a fence from someone else on the next
3329 * fence request). Note GPU activity would have
3330 * dropped the fence as all snoopable access is
3331 * supposed to be linear.
3332 */
3333 ret = i915_gem_object_put_fence(obj);
3334 if (ret)
3335 return ret;
3336 } else {
3337 /* We either have incoherent backing store and
3338 * so no GTT access or the architecture is fully
3339 * coherent. In such cases, existing GTT mmaps
3340 * ignore the cache bit in the PTE and we can
3341 * rewrite it without confusing the GPU or having
3342 * to force userspace to fault back in its mmaps.
3343 */
3344 }
3345
3346 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3347 if (!drm_mm_node_allocated(&vma->node))
3348 continue;
3349
3350 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3351 if (ret)
3352 return ret;
3353 }
3354 }
3355
3356 list_for_each_entry(vma, &obj->vma_list, obj_link)
3357 vma->node.color = cache_level;
3358 obj->cache_level = cache_level;
3359
3360 out:
3361 /* Flush the dirty CPU caches to the backing storage so that the
3362 * object is now coherent at its new cache level (with respect
3363 * to the access domain).
3364 */
3365 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3366 if (i915_gem_clflush_object(obj, true))
3367 i915_gem_chipset_flush(to_i915(obj->base.dev));
3368 }
3369
3370 return 0;
3371 }
3372
3373 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3374 struct drm_file *file)
3375 {
3376 struct drm_i915_gem_caching *args = data;
3377 struct drm_i915_gem_object *obj;
3378
3379 obj = i915_gem_object_lookup(file, args->handle);
3380 if (!obj)
3381 return -ENOENT;
3382
3383 switch (obj->cache_level) {
3384 case I915_CACHE_LLC:
3385 case I915_CACHE_L3_LLC:
3386 args->caching = I915_CACHING_CACHED;
3387 break;
3388
3389 case I915_CACHE_WT:
3390 args->caching = I915_CACHING_DISPLAY;
3391 break;
3392
3393 default:
3394 args->caching = I915_CACHING_NONE;
3395 break;
3396 }
3397
3398 i915_gem_object_put_unlocked(obj);
3399 return 0;
3400 }
3401
3402 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3403 struct drm_file *file)
3404 {
3405 struct drm_i915_private *dev_priv = to_i915(dev);
3406 struct drm_i915_gem_caching *args = data;
3407 struct drm_i915_gem_object *obj;
3408 enum i915_cache_level level;
3409 int ret;
3410
3411 switch (args->caching) {
3412 case I915_CACHING_NONE:
3413 level = I915_CACHE_NONE;
3414 break;
3415 case I915_CACHING_CACHED:
3416 /*
3417 * Due to a HW issue on BXT A stepping, GPU stores via a
3418 * snooped mapping may leave stale data in a corresponding CPU
3419 * cacheline, whereas normally such cachelines would get
3420 * invalidated.
3421 */
3422 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3423 return -ENODEV;
3424
3425 level = I915_CACHE_LLC;
3426 break;
3427 case I915_CACHING_DISPLAY:
3428 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3429 break;
3430 default:
3431 return -EINVAL;
3432 }
3433
3434 intel_runtime_pm_get(dev_priv);
3435
3436 ret = i915_mutex_lock_interruptible(dev);
3437 if (ret)
3438 goto rpm_put;
3439
3440 obj = i915_gem_object_lookup(file, args->handle);
3441 if (!obj) {
3442 ret = -ENOENT;
3443 goto unlock;
3444 }
3445
3446 ret = i915_gem_object_set_cache_level(obj, level);
3447
3448 i915_gem_object_put(obj);
3449 unlock:
3450 mutex_unlock(&dev->struct_mutex);
3451 rpm_put:
3452 intel_runtime_pm_put(dev_priv);
3453
3454 return ret;
3455 }
3456
3457 /*
3458 * Prepare buffer for display plane (scanout, cursors, etc).
3459 * Can be called from an uninterruptible phase (modesetting) and allows
3460 * any flushes to be pipelined (for pageflips).
3461 */
3462 int
3463 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3464 u32 alignment,
3465 const struct i915_ggtt_view *view)
3466 {
3467 u32 old_read_domains, old_write_domain;
3468 int ret;
3469
3470 /* Mark the pin_display early so that we account for the
3471 * display coherency whilst setting up the cache domains.
3472 */
3473 obj->pin_display++;
3474
3475 /* The display engine is not coherent with the LLC cache on gen6. As
3476 * a result, we make sure that the pinning that is about to occur is
3477 * done with uncached PTEs. This is lowest common denominator for all
3478 * chipsets.
3479 *
3480 * However for gen6+, we could do better by using the GFDT bit instead
3481 * of uncaching, which would allow us to flush all the LLC-cached data
3482 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3483 */
3484 ret = i915_gem_object_set_cache_level(obj,
3485 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3486 if (ret)
3487 goto err_unpin_display;
3488
3489 /* As the user may map the buffer once pinned in the display plane
3490 * (e.g. libkms for the bootup splash), we have to ensure that we
3491 * always use map_and_fenceable for all scanout buffers.
3492 */
3493 ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3494 view->type == I915_GGTT_VIEW_NORMAL ?
3495 PIN_MAPPABLE : 0);
3496 if (ret)
3497 goto err_unpin_display;
3498
3499 i915_gem_object_flush_cpu_write_domain(obj);
3500
3501 old_write_domain = obj->base.write_domain;
3502 old_read_domains = obj->base.read_domains;
3503
3504 /* It should now be out of any other write domains, and we can update
3505 * the domain values for our changes.
3506 */
3507 obj->base.write_domain = 0;
3508 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3509
3510 trace_i915_gem_object_change_domain(obj,
3511 old_read_domains,
3512 old_write_domain);
3513
3514 return 0;
3515
3516 err_unpin_display:
3517 obj->pin_display--;
3518 return ret;
3519 }
3520
3521 void
3522 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3523 const struct i915_ggtt_view *view)
3524 {
3525 if (WARN_ON(obj->pin_display == 0))
3526 return;
3527
3528 i915_gem_object_ggtt_unpin_view(obj, view);
3529
3530 obj->pin_display--;
3531 }
3532
3533 /**
3534 * Moves a single object to the CPU read, and possibly write domain.
3535 * @obj: object to act on
3536 * @write: requesting write or read-only access
3537 *
3538 * This function returns when the move is complete, including waiting on
3539 * flushes to occur.
3540 */
3541 int
3542 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3543 {
3544 uint32_t old_write_domain, old_read_domains;
3545 int ret;
3546
3547 ret = i915_gem_object_wait_rendering(obj, !write);
3548 if (ret)
3549 return ret;
3550
3551 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3552 return 0;
3553
3554 i915_gem_object_flush_gtt_write_domain(obj);
3555
3556 old_write_domain = obj->base.write_domain;
3557 old_read_domains = obj->base.read_domains;
3558
3559 /* Flush the CPU cache if it's still invalid. */
3560 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3561 i915_gem_clflush_object(obj, false);
3562
3563 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3564 }
3565
3566 /* It should now be out of any other write domains, and we can update
3567 * the domain values for our changes.
3568 */
3569 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3570
3571 /* If we're writing through the CPU, then the GPU read domains will
3572 * need to be invalidated at next use.
3573 */
3574 if (write) {
3575 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3576 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3577 }
3578
3579 trace_i915_gem_object_change_domain(obj,
3580 old_read_domains,
3581 old_write_domain);
3582
3583 return 0;
3584 }
3585
3586 /* Throttle our rendering by waiting until the ring has completed our requests
3587 * emitted over 20 msec ago.
3588 *
3589 * Note that if we were to use the current jiffies each time around the loop,
3590 * we wouldn't escape the function with any frames outstanding if the time to
3591 * render a frame was over 20ms.
3592 *
3593 * This should get us reasonable parallelism between CPU and GPU but also
3594 * relatively low latency when blocking on a particular request to finish.
3595 */
3596 static int
3597 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3598 {
3599 struct drm_i915_private *dev_priv = to_i915(dev);
3600 struct drm_i915_file_private *file_priv = file->driver_priv;
3601 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3602 struct drm_i915_gem_request *request, *target = NULL;
3603 int ret;
3604
3605 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3606 if (ret)
3607 return ret;
3608
3609 /* ABI: return -EIO if already wedged */
3610 if (i915_terminally_wedged(&dev_priv->gpu_error))
3611 return -EIO;
3612
3613 spin_lock(&file_priv->mm.lock);
3614 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3615 if (time_after_eq(request->emitted_jiffies, recent_enough))
3616 break;
3617
3618 /*
3619 * Note that the request might not have been submitted yet.
3620 * In which case emitted_jiffies will be zero.
3621 */
3622 if (!request->emitted_jiffies)
3623 continue;
3624
3625 target = request;
3626 }
3627 if (target)
3628 i915_gem_request_get(target);
3629 spin_unlock(&file_priv->mm.lock);
3630
3631 if (target == NULL)
3632 return 0;
3633
3634 ret = i915_wait_request(target, true, NULL, NULL);
3635 i915_gem_request_put(target);
3636
3637 return ret;
3638 }
3639
3640 static bool
3641 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3642 {
3643 struct drm_i915_gem_object *obj = vma->obj;
3644
3645 if (!drm_mm_node_allocated(&vma->node))
3646 return false;
3647
3648 if (vma->node.size < size)
3649 return true;
3650
3651 if (alignment && vma->node.start & (alignment - 1))
3652 return true;
3653
3654 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3655 return true;
3656
3657 if (flags & PIN_OFFSET_BIAS &&
3658 vma->node.start < (flags & PIN_OFFSET_MASK))
3659 return true;
3660
3661 if (flags & PIN_OFFSET_FIXED &&
3662 vma->node.start != (flags & PIN_OFFSET_MASK))
3663 return true;
3664
3665 return false;
3666 }
3667
3668 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3669 {
3670 struct drm_i915_gem_object *obj = vma->obj;
3671 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3672 bool mappable, fenceable;
3673 u32 fence_size, fence_alignment;
3674
3675 fence_size = i915_gem_get_ggtt_size(dev_priv,
3676 obj->base.size,
3677 i915_gem_object_get_tiling(obj));
3678 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3679 obj->base.size,
3680 i915_gem_object_get_tiling(obj),
3681 true);
3682
3683 fenceable = (vma->node.size == fence_size &&
3684 (vma->node.start & (fence_alignment - 1)) == 0);
3685
3686 mappable = (vma->node.start + fence_size <=
3687 dev_priv->ggtt.mappable_end);
3688
3689 obj->map_and_fenceable = mappable && fenceable;
3690 }
3691
3692 int __i915_vma_do_pin(struct i915_vma *vma,
3693 u64 size, u64 alignment, u64 flags)
3694 {
3695 unsigned int bound = vma->flags;
3696 int ret;
3697
3698 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3699 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3700
3701 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3702 ret = -EBUSY;
3703 goto err;
3704 }
3705
3706 if ((bound & I915_VMA_BIND_MASK) == 0) {
3707 ret = i915_vma_insert(vma, size, alignment, flags);
3708 if (ret)
3709 goto err;
3710 }
3711
3712 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3713 if (ret)
3714 goto err;
3715
3716 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3717 __i915_vma_set_map_and_fenceable(vma);
3718
3719 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3720 return 0;
3721
3722 err:
3723 __i915_vma_unpin(vma);
3724 return ret;
3725 }
3726
3727 int
3728 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3729 const struct i915_ggtt_view *view,
3730 u64 size,
3731 u64 alignment,
3732 u64 flags)
3733 {
3734 struct i915_vma *vma;
3735 int ret;
3736
3737 if (!view)
3738 view = &i915_ggtt_view_normal;
3739
3740 vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
3741 if (IS_ERR(vma))
3742 return PTR_ERR(vma);
3743
3744 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3745 if (flags & PIN_NONBLOCK &&
3746 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3747 return -ENOSPC;
3748
3749 WARN(i915_vma_is_pinned(vma),
3750 "bo is already pinned in ggtt with incorrect alignment:"
3751 " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3752 " obj->map_and_fenceable=%d\n",
3753 upper_32_bits(vma->node.start),
3754 lower_32_bits(vma->node.start),
3755 alignment,
3756 !!(flags & PIN_MAPPABLE),
3757 obj->map_and_fenceable);
3758 ret = i915_vma_unbind(vma);
3759 if (ret)
3760 return ret;
3761 }
3762
3763 return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3764 }
3765
3766 void
3767 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3768 const struct i915_ggtt_view *view)
3769 {
3770 i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3771 }
3772
3773 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3774 {
3775 /* Note that we could alias engines in the execbuf API, but
3776 * that would be very unwise as it prevents userspace from
3777 * fine control over engine selection. Ahem.
3778 *
3779 * This should be something like EXEC_MAX_ENGINE instead of
3780 * I915_NUM_ENGINES.
3781 */
3782 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3783 return 0x10000 << id;
3784 }
3785
3786 static __always_inline unsigned int __busy_write_id(unsigned int id)
3787 {
3788 /* The uABI guarantees an active writer is also amongst the read
3789 * engines. This would be true if we accessed the activity tracking
3790 * under the lock, but as we perform the lookup of the object and
3791 * its activity locklessly we can not guarantee that the last_write
3792 * being active implies that we have set the same engine flag from
3793 * last_read - hence we always set both read and write busy for
3794 * last_write.
3795 */
3796 return id | __busy_read_flag(id);
3797 }
3798
3799 static __always_inline unsigned int
3800 __busy_set_if_active(const struct i915_gem_active *active,
3801 unsigned int (*flag)(unsigned int id))
3802 {
3803 /* For more discussion about the barriers and locking concerns,
3804 * see __i915_gem_active_get_rcu().
3805 */
3806 do {
3807 struct drm_i915_gem_request *request;
3808 unsigned int id;
3809
3810 request = rcu_dereference(active->request);
3811 if (!request || i915_gem_request_completed(request))
3812 return 0;
3813
3814 id = request->engine->exec_id;
3815
3816 /* Check that the pointer wasn't reassigned and overwritten.
3817 *
3818 * In __i915_gem_active_get_rcu(), we enforce ordering between
3819 * the first rcu pointer dereference (imposing a
3820 * read-dependency only on access through the pointer) and
3821 * the second lockless access through the memory barrier
3822 * following a successful atomic_inc_not_zero(). Here there
3823 * is no such barrier, and so we must manually insert an
3824 * explicit read barrier to ensure that the following
3825 * access occurs after all the loads through the first
3826 * pointer.
3827 *
3828 * It is worth comparing this sequence with
3829 * raw_write_seqcount_latch() which operates very similarly.
3830 * The challenge here is the visibility of the other CPU
3831 * writes to the reallocated request vs the local CPU ordering.
3832 * Before the other CPU can overwrite the request, it will
3833 * have updated our active->request and gone through a wmb.
3834 * During the read here, we want to make sure that the values
3835 * we see have not been overwritten as we do so - and we do
3836 * that by serialising the second pointer check with the writes
3837 * on other other CPUs.
3838 *
3839 * The corresponding write barrier is part of
3840 * rcu_assign_pointer().
3841 */
3842 smp_rmb();
3843 if (request == rcu_access_pointer(active->request))
3844 return flag(id);
3845 } while (1);
3846 }
3847
3848 static __always_inline unsigned int
3849 busy_check_reader(const struct i915_gem_active *active)
3850 {
3851 return __busy_set_if_active(active, __busy_read_flag);
3852 }
3853
3854 static __always_inline unsigned int
3855 busy_check_writer(const struct i915_gem_active *active)
3856 {
3857 return __busy_set_if_active(active, __busy_write_id);
3858 }
3859
3860 int
3861 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3862 struct drm_file *file)
3863 {
3864 struct drm_i915_gem_busy *args = data;
3865 struct drm_i915_gem_object *obj;
3866 unsigned long active;
3867
3868 obj = i915_gem_object_lookup(file, args->handle);
3869 if (!obj)
3870 return -ENOENT;
3871
3872 args->busy = 0;
3873 active = __I915_BO_ACTIVE(obj);
3874 if (active) {
3875 int idx;
3876
3877 /* Yes, the lookups are intentionally racy.
3878 *
3879 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3880 * to regard the value as stale and as our ABI guarantees
3881 * forward progress, we confirm the status of each active
3882 * request with the hardware.
3883 *
3884 * Even though we guard the pointer lookup by RCU, that only
3885 * guarantees that the pointer and its contents remain
3886 * dereferencable and does *not* mean that the request we
3887 * have is the same as the one being tracked by the object.
3888 *
3889 * Consider that we lookup the request just as it is being
3890 * retired and freed. We take a local copy of the pointer,
3891 * but before we add its engine into the busy set, the other
3892 * thread reallocates it and assigns it to a task on another
3893 * engine with a fresh and incomplete seqno.
3894 *
3895 * So after we lookup the engine's id, we double check that
3896 * the active request is the same and only then do we add it
3897 * into the busy set.
3898 */
3899 rcu_read_lock();
3900
3901 for_each_active(active, idx)
3902 args->busy |= busy_check_reader(&obj->last_read[idx]);
3903
3904 /* For ABI sanity, we only care that the write engine is in
3905 * the set of read engines. This should be ensured by the
3906 * ordering of setting last_read/last_write in
3907 * i915_vma_move_to_active(), and then in reverse in retire.
3908 * However, for good measure, we always report the last_write
3909 * request as a busy read as well as being a busy write.
3910 *
3911 * We don't care that the set of active read/write engines
3912 * may change during construction of the result, as it is
3913 * equally liable to change before userspace can inspect
3914 * the result.
3915 */
3916 args->busy |= busy_check_writer(&obj->last_write);
3917
3918 rcu_read_unlock();
3919 }
3920
3921 i915_gem_object_put_unlocked(obj);
3922 return 0;
3923 }
3924
3925 int
3926 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3927 struct drm_file *file_priv)
3928 {
3929 return i915_gem_ring_throttle(dev, file_priv);
3930 }
3931
3932 int
3933 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3934 struct drm_file *file_priv)
3935 {
3936 struct drm_i915_private *dev_priv = to_i915(dev);
3937 struct drm_i915_gem_madvise *args = data;
3938 struct drm_i915_gem_object *obj;
3939 int ret;
3940
3941 switch (args->madv) {
3942 case I915_MADV_DONTNEED:
3943 case I915_MADV_WILLNEED:
3944 break;
3945 default:
3946 return -EINVAL;
3947 }
3948
3949 ret = i915_mutex_lock_interruptible(dev);
3950 if (ret)
3951 return ret;
3952
3953 obj = i915_gem_object_lookup(file_priv, args->handle);
3954 if (!obj) {
3955 ret = -ENOENT;
3956 goto unlock;
3957 }
3958
3959 if (obj->pages &&
3960 i915_gem_object_is_tiled(obj) &&
3961 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3962 if (obj->madv == I915_MADV_WILLNEED)
3963 i915_gem_object_unpin_pages(obj);
3964 if (args->madv == I915_MADV_WILLNEED)
3965 i915_gem_object_pin_pages(obj);
3966 }
3967
3968 if (obj->madv != __I915_MADV_PURGED)
3969 obj->madv = args->madv;
3970
3971 /* if the object is no longer attached, discard its backing storage */
3972 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3973 i915_gem_object_truncate(obj);
3974
3975 args->retained = obj->madv != __I915_MADV_PURGED;
3976
3977 i915_gem_object_put(obj);
3978 unlock:
3979 mutex_unlock(&dev->struct_mutex);
3980 return ret;
3981 }
3982
3983 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3984 const struct drm_i915_gem_object_ops *ops)
3985 {
3986 int i;
3987
3988 INIT_LIST_HEAD(&obj->global_list);
3989 for (i = 0; i < I915_NUM_ENGINES; i++)
3990 init_request_active(&obj->last_read[i],
3991 i915_gem_object_retire__read);
3992 init_request_active(&obj->last_write,
3993 i915_gem_object_retire__write);
3994 init_request_active(&obj->last_fence, NULL);
3995 INIT_LIST_HEAD(&obj->obj_exec_link);
3996 INIT_LIST_HEAD(&obj->vma_list);
3997 INIT_LIST_HEAD(&obj->batch_pool_link);
3998
3999 obj->ops = ops;
4000
4001 obj->fence_reg = I915_FENCE_REG_NONE;
4002 obj->madv = I915_MADV_WILLNEED;
4003
4004 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4005 }
4006
4007 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4008 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4009 .get_pages = i915_gem_object_get_pages_gtt,
4010 .put_pages = i915_gem_object_put_pages_gtt,
4011 };
4012
4013 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4014 size_t size)
4015 {
4016 struct drm_i915_gem_object *obj;
4017 struct address_space *mapping;
4018 gfp_t mask;
4019 int ret;
4020
4021 obj = i915_gem_object_alloc(dev);
4022 if (obj == NULL)
4023 return ERR_PTR(-ENOMEM);
4024
4025 ret = drm_gem_object_init(dev, &obj->base, size);
4026 if (ret)
4027 goto fail;
4028
4029 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4030 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4031 /* 965gm cannot relocate objects above 4GiB. */
4032 mask &= ~__GFP_HIGHMEM;
4033 mask |= __GFP_DMA32;
4034 }
4035
4036 mapping = file_inode(obj->base.filp)->i_mapping;
4037 mapping_set_gfp_mask(mapping, mask);
4038
4039 i915_gem_object_init(obj, &i915_gem_object_ops);
4040
4041 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4042 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4043
4044 if (HAS_LLC(dev)) {
4045 /* On some devices, we can have the GPU use the LLC (the CPU
4046 * cache) for about a 10% performance improvement
4047 * compared to uncached. Graphics requests other than
4048 * display scanout are coherent with the CPU in
4049 * accessing this cache. This means in this mode we
4050 * don't need to clflush on the CPU side, and on the
4051 * GPU side we only need to flush internal caches to
4052 * get data visible to the CPU.
4053 *
4054 * However, we maintain the display planes as UC, and so
4055 * need to rebind when first used as such.
4056 */
4057 obj->cache_level = I915_CACHE_LLC;
4058 } else
4059 obj->cache_level = I915_CACHE_NONE;
4060
4061 trace_i915_gem_object_create(obj);
4062
4063 return obj;
4064
4065 fail:
4066 i915_gem_object_free(obj);
4067
4068 return ERR_PTR(ret);
4069 }
4070
4071 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4072 {
4073 /* If we are the last user of the backing storage (be it shmemfs
4074 * pages or stolen etc), we know that the pages are going to be
4075 * immediately released. In this case, we can then skip copying
4076 * back the contents from the GPU.
4077 */
4078
4079 if (obj->madv != I915_MADV_WILLNEED)
4080 return false;
4081
4082 if (obj->base.filp == NULL)
4083 return true;
4084
4085 /* At first glance, this looks racy, but then again so would be
4086 * userspace racing mmap against close. However, the first external
4087 * reference to the filp can only be obtained through the
4088 * i915_gem_mmap_ioctl() which safeguards us against the user
4089 * acquiring such a reference whilst we are in the middle of
4090 * freeing the object.
4091 */
4092 return atomic_long_read(&obj->base.filp->f_count) == 1;
4093 }
4094
4095 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4096 {
4097 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4098 struct drm_device *dev = obj->base.dev;
4099 struct drm_i915_private *dev_priv = to_i915(dev);
4100 struct i915_vma *vma, *next;
4101
4102 intel_runtime_pm_get(dev_priv);
4103
4104 trace_i915_gem_object_destroy(obj);
4105
4106 /* All file-owned VMA should have been released by this point through
4107 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4108 * However, the object may also be bound into the global GTT (e.g.
4109 * older GPUs without per-process support, or for direct access through
4110 * the GTT either for the user or for scanout). Those VMA still need to
4111 * unbound now.
4112 */
4113 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4114 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4115 GEM_BUG_ON(i915_vma_is_active(vma));
4116 vma->flags &= ~I915_VMA_PIN_MASK;
4117 i915_vma_close(vma);
4118 }
4119 GEM_BUG_ON(obj->bind_count);
4120
4121 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4122 * before progressing. */
4123 if (obj->stolen)
4124 i915_gem_object_unpin_pages(obj);
4125
4126 WARN_ON(atomic_read(&obj->frontbuffer_bits));
4127
4128 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4129 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4130 i915_gem_object_is_tiled(obj))
4131 i915_gem_object_unpin_pages(obj);
4132
4133 if (WARN_ON(obj->pages_pin_count))
4134 obj->pages_pin_count = 0;
4135 if (discard_backing_storage(obj))
4136 obj->madv = I915_MADV_DONTNEED;
4137 i915_gem_object_put_pages(obj);
4138
4139 BUG_ON(obj->pages);
4140
4141 if (obj->base.import_attach)
4142 drm_prime_gem_destroy(&obj->base, NULL);
4143
4144 if (obj->ops->release)
4145 obj->ops->release(obj);
4146
4147 drm_gem_object_release(&obj->base);
4148 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4149
4150 kfree(obj->bit_17);
4151 i915_gem_object_free(obj);
4152
4153 intel_runtime_pm_put(dev_priv);
4154 }
4155
4156 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4157 struct i915_address_space *vm)
4158 {
4159 struct i915_vma *vma;
4160 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4161 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4162 vma->vm == vm)
4163 return vma;
4164 }
4165 return NULL;
4166 }
4167
4168 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4169 const struct i915_ggtt_view *view)
4170 {
4171 struct i915_vma *vma;
4172
4173 GEM_BUG_ON(!view);
4174
4175 list_for_each_entry(vma, &obj->vma_list, obj_link)
4176 if (i915_vma_is_ggtt(vma) &&
4177 i915_ggtt_view_equal(&vma->ggtt_view, view))
4178 return vma;
4179 return NULL;
4180 }
4181
4182 int i915_gem_suspend(struct drm_device *dev)
4183 {
4184 struct drm_i915_private *dev_priv = to_i915(dev);
4185 int ret;
4186
4187 intel_suspend_gt_powersave(dev_priv);
4188
4189 mutex_lock(&dev->struct_mutex);
4190
4191 /* We have to flush all the executing contexts to main memory so
4192 * that they can saved in the hibernation image. To ensure the last
4193 * context image is coherent, we have to switch away from it. That
4194 * leaves the dev_priv->kernel_context still active when
4195 * we actually suspend, and its image in memory may not match the GPU
4196 * state. Fortunately, the kernel_context is disposable and we do
4197 * not rely on its state.
4198 */
4199 ret = i915_gem_switch_to_kernel_context(dev_priv);
4200 if (ret)
4201 goto err;
4202
4203 ret = i915_gem_wait_for_idle(dev_priv, true);
4204 if (ret)
4205 goto err;
4206
4207 i915_gem_retire_requests(dev_priv);
4208
4209 i915_gem_context_lost(dev_priv);
4210 mutex_unlock(&dev->struct_mutex);
4211
4212 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4213 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4214 flush_delayed_work(&dev_priv->gt.idle_work);
4215
4216 /* Assert that we sucessfully flushed all the work and
4217 * reset the GPU back to its idle, low power state.
4218 */
4219 WARN_ON(dev_priv->gt.awake);
4220
4221 return 0;
4222
4223 err:
4224 mutex_unlock(&dev->struct_mutex);
4225 return ret;
4226 }
4227
4228 void i915_gem_resume(struct drm_device *dev)
4229 {
4230 struct drm_i915_private *dev_priv = to_i915(dev);
4231
4232 mutex_lock(&dev->struct_mutex);
4233 i915_gem_restore_gtt_mappings(dev);
4234
4235 /* As we didn't flush the kernel context before suspend, we cannot
4236 * guarantee that the context image is complete. So let's just reset
4237 * it and start again.
4238 */
4239 if (i915.enable_execlists)
4240 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4241
4242 mutex_unlock(&dev->struct_mutex);
4243 }
4244
4245 void i915_gem_init_swizzling(struct drm_device *dev)
4246 {
4247 struct drm_i915_private *dev_priv = to_i915(dev);
4248
4249 if (INTEL_INFO(dev)->gen < 5 ||
4250 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4251 return;
4252
4253 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4254 DISP_TILE_SURFACE_SWIZZLING);
4255
4256 if (IS_GEN5(dev))
4257 return;
4258
4259 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4260 if (IS_GEN6(dev))
4261 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4262 else if (IS_GEN7(dev))
4263 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4264 else if (IS_GEN8(dev))
4265 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4266 else
4267 BUG();
4268 }
4269
4270 static void init_unused_ring(struct drm_device *dev, u32 base)
4271 {
4272 struct drm_i915_private *dev_priv = to_i915(dev);
4273
4274 I915_WRITE(RING_CTL(base), 0);
4275 I915_WRITE(RING_HEAD(base), 0);
4276 I915_WRITE(RING_TAIL(base), 0);
4277 I915_WRITE(RING_START(base), 0);
4278 }
4279
4280 static void init_unused_rings(struct drm_device *dev)
4281 {
4282 if (IS_I830(dev)) {
4283 init_unused_ring(dev, PRB1_BASE);
4284 init_unused_ring(dev, SRB0_BASE);
4285 init_unused_ring(dev, SRB1_BASE);
4286 init_unused_ring(dev, SRB2_BASE);
4287 init_unused_ring(dev, SRB3_BASE);
4288 } else if (IS_GEN2(dev)) {
4289 init_unused_ring(dev, SRB0_BASE);
4290 init_unused_ring(dev, SRB1_BASE);
4291 } else if (IS_GEN3(dev)) {
4292 init_unused_ring(dev, PRB1_BASE);
4293 init_unused_ring(dev, PRB2_BASE);
4294 }
4295 }
4296
4297 int
4298 i915_gem_init_hw(struct drm_device *dev)
4299 {
4300 struct drm_i915_private *dev_priv = to_i915(dev);
4301 struct intel_engine_cs *engine;
4302 int ret;
4303
4304 /* Double layer security blanket, see i915_gem_init() */
4305 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4306
4307 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4308 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4309
4310 if (IS_HASWELL(dev))
4311 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4312 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4313
4314 if (HAS_PCH_NOP(dev)) {
4315 if (IS_IVYBRIDGE(dev)) {
4316 u32 temp = I915_READ(GEN7_MSG_CTL);
4317 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4318 I915_WRITE(GEN7_MSG_CTL, temp);
4319 } else if (INTEL_INFO(dev)->gen >= 7) {
4320 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4321 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4322 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4323 }
4324 }
4325
4326 i915_gem_init_swizzling(dev);
4327
4328 /*
4329 * At least 830 can leave some of the unused rings
4330 * "active" (ie. head != tail) after resume which
4331 * will prevent c3 entry. Makes sure all unused rings
4332 * are totally idle.
4333 */
4334 init_unused_rings(dev);
4335
4336 BUG_ON(!dev_priv->kernel_context);
4337
4338 ret = i915_ppgtt_init_hw(dev);
4339 if (ret) {
4340 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4341 goto out;
4342 }
4343
4344 /* Need to do basic initialisation of all rings first: */
4345 for_each_engine(engine, dev_priv) {
4346 ret = engine->init_hw(engine);
4347 if (ret)
4348 goto out;
4349 }
4350
4351 intel_mocs_init_l3cc_table(dev);
4352
4353 /* We can't enable contexts until all firmware is loaded */
4354 ret = intel_guc_setup(dev);
4355 if (ret)
4356 goto out;
4357
4358 out:
4359 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4360 return ret;
4361 }
4362
4363 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4364 {
4365 if (INTEL_INFO(dev_priv)->gen < 6)
4366 return false;
4367
4368 /* TODO: make semaphores and Execlists play nicely together */
4369 if (i915.enable_execlists)
4370 return false;
4371
4372 if (value >= 0)
4373 return value;
4374
4375 #ifdef CONFIG_INTEL_IOMMU
4376 /* Enable semaphores on SNB when IO remapping is off */
4377 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4378 return false;
4379 #endif
4380
4381 return true;
4382 }
4383
4384 int i915_gem_init(struct drm_device *dev)
4385 {
4386 struct drm_i915_private *dev_priv = to_i915(dev);
4387 int ret;
4388
4389 mutex_lock(&dev->struct_mutex);
4390
4391 if (!i915.enable_execlists) {
4392 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4393 } else {
4394 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4395 }
4396
4397 /* This is just a security blanket to placate dragons.
4398 * On some systems, we very sporadically observe that the first TLBs
4399 * used by the CS may be stale, despite us poking the TLB reset. If
4400 * we hold the forcewake during initialisation these problems
4401 * just magically go away.
4402 */
4403 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4404
4405 i915_gem_init_userptr(dev_priv);
4406
4407 ret = i915_gem_init_ggtt(dev_priv);
4408 if (ret)
4409 goto out_unlock;
4410
4411 ret = i915_gem_context_init(dev);
4412 if (ret)
4413 goto out_unlock;
4414
4415 ret = intel_engines_init(dev);
4416 if (ret)
4417 goto out_unlock;
4418
4419 ret = i915_gem_init_hw(dev);
4420 if (ret == -EIO) {
4421 /* Allow engine initialisation to fail by marking the GPU as
4422 * wedged. But we only want to do this where the GPU is angry,
4423 * for all other failure, such as an allocation failure, bail.
4424 */
4425 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4426 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4427 ret = 0;
4428 }
4429
4430 out_unlock:
4431 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4432 mutex_unlock(&dev->struct_mutex);
4433
4434 return ret;
4435 }
4436
4437 void
4438 i915_gem_cleanup_engines(struct drm_device *dev)
4439 {
4440 struct drm_i915_private *dev_priv = to_i915(dev);
4441 struct intel_engine_cs *engine;
4442
4443 for_each_engine(engine, dev_priv)
4444 dev_priv->gt.cleanup_engine(engine);
4445 }
4446
4447 static void
4448 init_engine_lists(struct intel_engine_cs *engine)
4449 {
4450 INIT_LIST_HEAD(&engine->request_list);
4451 }
4452
4453 void
4454 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4455 {
4456 struct drm_device *dev = &dev_priv->drm;
4457
4458 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4459 !IS_CHERRYVIEW(dev_priv))
4460 dev_priv->num_fence_regs = 32;
4461 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4462 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4463 dev_priv->num_fence_regs = 16;
4464 else
4465 dev_priv->num_fence_regs = 8;
4466
4467 if (intel_vgpu_active(dev_priv))
4468 dev_priv->num_fence_regs =
4469 I915_READ(vgtif_reg(avail_rs.fence_num));
4470
4471 /* Initialize fence registers to zero */
4472 i915_gem_restore_fences(dev);
4473
4474 i915_gem_detect_bit_6_swizzle(dev);
4475 }
4476
4477 void
4478 i915_gem_load_init(struct drm_device *dev)
4479 {
4480 struct drm_i915_private *dev_priv = to_i915(dev);
4481 int i;
4482
4483 dev_priv->objects =
4484 kmem_cache_create("i915_gem_object",
4485 sizeof(struct drm_i915_gem_object), 0,
4486 SLAB_HWCACHE_ALIGN,
4487 NULL);
4488 dev_priv->vmas =
4489 kmem_cache_create("i915_gem_vma",
4490 sizeof(struct i915_vma), 0,
4491 SLAB_HWCACHE_ALIGN,
4492 NULL);
4493 dev_priv->requests =
4494 kmem_cache_create("i915_gem_request",
4495 sizeof(struct drm_i915_gem_request), 0,
4496 SLAB_HWCACHE_ALIGN |
4497 SLAB_RECLAIM_ACCOUNT |
4498 SLAB_DESTROY_BY_RCU,
4499 NULL);
4500
4501 INIT_LIST_HEAD(&dev_priv->context_list);
4502 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4503 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4504 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4505 for (i = 0; i < I915_NUM_ENGINES; i++)
4506 init_engine_lists(&dev_priv->engine[i]);
4507 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4508 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4509 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4510 i915_gem_retire_work_handler);
4511 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4512 i915_gem_idle_work_handler);
4513 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4514 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4515
4516 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4517
4518 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4519
4520 init_waitqueue_head(&dev_priv->pending_flip_queue);
4521
4522 dev_priv->mm.interruptible = true;
4523
4524 spin_lock_init(&dev_priv->fb_tracking.lock);
4525 }
4526
4527 void i915_gem_load_cleanup(struct drm_device *dev)
4528 {
4529 struct drm_i915_private *dev_priv = to_i915(dev);
4530
4531 kmem_cache_destroy(dev_priv->requests);
4532 kmem_cache_destroy(dev_priv->vmas);
4533 kmem_cache_destroy(dev_priv->objects);
4534
4535 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4536 rcu_barrier();
4537 }
4538
4539 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4540 {
4541 struct drm_i915_gem_object *obj;
4542
4543 /* Called just before we write the hibernation image.
4544 *
4545 * We need to update the domain tracking to reflect that the CPU
4546 * will be accessing all the pages to create and restore from the
4547 * hibernation, and so upon restoration those pages will be in the
4548 * CPU domain.
4549 *
4550 * To make sure the hibernation image contains the latest state,
4551 * we update that state just before writing out the image.
4552 */
4553
4554 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4555 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4556 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4557 }
4558
4559 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4560 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4561 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4562 }
4563
4564 return 0;
4565 }
4566
4567 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4568 {
4569 struct drm_i915_file_private *file_priv = file->driver_priv;
4570 struct drm_i915_gem_request *request;
4571
4572 /* Clean up our request list when the client is going away, so that
4573 * later retire_requests won't dereference our soon-to-be-gone
4574 * file_priv.
4575 */
4576 spin_lock(&file_priv->mm.lock);
4577 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4578 request->file_priv = NULL;
4579 spin_unlock(&file_priv->mm.lock);
4580
4581 if (!list_empty(&file_priv->rps.link)) {
4582 spin_lock(&to_i915(dev)->rps.client_lock);
4583 list_del(&file_priv->rps.link);
4584 spin_unlock(&to_i915(dev)->rps.client_lock);
4585 }
4586 }
4587
4588 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4589 {
4590 struct drm_i915_file_private *file_priv;
4591 int ret;
4592
4593 DRM_DEBUG_DRIVER("\n");
4594
4595 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4596 if (!file_priv)
4597 return -ENOMEM;
4598
4599 file->driver_priv = file_priv;
4600 file_priv->dev_priv = to_i915(dev);
4601 file_priv->file = file;
4602 INIT_LIST_HEAD(&file_priv->rps.link);
4603
4604 spin_lock_init(&file_priv->mm.lock);
4605 INIT_LIST_HEAD(&file_priv->mm.request_list);
4606
4607 file_priv->bsd_engine = -1;
4608
4609 ret = i915_gem_context_open(dev, file);
4610 if (ret)
4611 kfree(file_priv);
4612
4613 return ret;
4614 }
4615
4616 /**
4617 * i915_gem_track_fb - update frontbuffer tracking
4618 * @old: current GEM buffer for the frontbuffer slots
4619 * @new: new GEM buffer for the frontbuffer slots
4620 * @frontbuffer_bits: bitmask of frontbuffer slots
4621 *
4622 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4623 * from @old and setting them in @new. Both @old and @new can be NULL.
4624 */
4625 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4626 struct drm_i915_gem_object *new,
4627 unsigned frontbuffer_bits)
4628 {
4629 /* Control of individual bits within the mask are guarded by
4630 * the owning plane->mutex, i.e. we can never see concurrent
4631 * manipulation of individual bits. But since the bitfield as a whole
4632 * is updated using RMW, we need to use atomics in order to update
4633 * the bits.
4634 */
4635 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4636 sizeof(atomic_t) * BITS_PER_BYTE);
4637
4638 if (old) {
4639 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4640 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4641 }
4642
4643 if (new) {
4644 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4645 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4646 }
4647 }
4648
4649 /* All the new VM stuff */
4650 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4651 struct i915_address_space *vm)
4652 {
4653 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4654 struct i915_vma *vma;
4655
4656 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4657
4658 list_for_each_entry(vma, &o->vma_list, obj_link) {
4659 if (i915_vma_is_ggtt(vma) &&
4660 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4661 continue;
4662 if (vma->vm == vm)
4663 return vma->node.start;
4664 }
4665
4666 WARN(1, "%s vma for this object not found.\n",
4667 i915_is_ggtt(vm) ? "global" : "ppgtt");
4668 return -1;
4669 }
4670
4671 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4672 const struct i915_ggtt_view *view)
4673 {
4674 struct i915_vma *vma;
4675
4676 list_for_each_entry(vma, &o->vma_list, obj_link)
4677 if (i915_vma_is_ggtt(vma) &&
4678 i915_ggtt_view_equal(&vma->ggtt_view, view))
4679 return vma->node.start;
4680
4681 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4682 return -1;
4683 }
4684
4685 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4686 struct i915_address_space *vm)
4687 {
4688 struct i915_vma *vma;
4689
4690 list_for_each_entry(vma, &o->vma_list, obj_link) {
4691 if (i915_vma_is_ggtt(vma) &&
4692 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4693 continue;
4694 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4695 return true;
4696 }
4697
4698 return false;
4699 }
4700
4701 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4702 const struct i915_ggtt_view *view)
4703 {
4704 struct i915_vma *vma;
4705
4706 list_for_each_entry(vma, &o->vma_list, obj_link)
4707 if (i915_vma_is_ggtt(vma) &&
4708 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4709 drm_mm_node_allocated(&vma->node))
4710 return true;
4711
4712 return false;
4713 }
4714
4715 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4716 {
4717 struct i915_vma *vma;
4718
4719 GEM_BUG_ON(list_empty(&o->vma_list));
4720
4721 list_for_each_entry(vma, &o->vma_list, obj_link) {
4722 if (i915_vma_is_ggtt(vma) &&
4723 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4724 return vma->node.size;
4725 }
4726
4727 return 0;
4728 }
4729
4730 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4731 {
4732 struct i915_vma *vma;
4733 list_for_each_entry(vma, &obj->vma_list, obj_link)
4734 if (i915_vma_is_pinned(vma))
4735 return true;
4736
4737 return false;
4738 }
4739
4740 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4741 struct page *
4742 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4743 {
4744 struct page *page;
4745
4746 /* Only default objects have per-page dirty tracking */
4747 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4748 return NULL;
4749
4750 page = i915_gem_object_get_page(obj, n);
4751 set_page_dirty(page);
4752 return page;
4753 }
4754
4755 /* Allocate a new GEM object and fill it with the supplied data */
4756 struct drm_i915_gem_object *
4757 i915_gem_object_create_from_data(struct drm_device *dev,
4758 const void *data, size_t size)
4759 {
4760 struct drm_i915_gem_object *obj;
4761 struct sg_table *sg;
4762 size_t bytes;
4763 int ret;
4764
4765 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4766 if (IS_ERR(obj))
4767 return obj;
4768
4769 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4770 if (ret)
4771 goto fail;
4772
4773 ret = i915_gem_object_get_pages(obj);
4774 if (ret)
4775 goto fail;
4776
4777 i915_gem_object_pin_pages(obj);
4778 sg = obj->pages;
4779 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4780 obj->dirty = 1; /* Backing store is now out of date */
4781 i915_gem_object_unpin_pages(obj);
4782
4783 if (WARN_ON(bytes != size)) {
4784 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4785 ret = -EFAULT;
4786 goto fail;
4787 }
4788
4789 return obj;
4790
4791 fail:
4792 i915_gem_object_put(obj);
4793 return ERR_PTR(ret);
4794 }
This page took 0.136697 seconds and 5 git commands to generate.