drm/i915: Move gtt and ppgtt under address space umbrella
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 if (obj->pin_count)
181 pinned += i915_gem_obj_ggtt_size(obj);
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.base.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (i915_gem_obj_ggtt_bound(obj)) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (i915_gem_obj_ggtt_bound(obj)) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093 {
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116 {
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
1129 return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138 {
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
1142 unsigned reset_counter;
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 mutex_unlock(&dev->struct_mutex);
1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 mutex_lock(&dev->struct_mutex);
1165 if (ret)
1166 return ret;
1167
1168 return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
1174 */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file)
1178 {
1179 struct drm_i915_gem_set_domain *args = data;
1180 struct drm_i915_gem_object *obj;
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
1183 int ret;
1184
1185 /* Only handle setting domains to types used by the CPU. */
1186 if (write_domain & I915_GEM_GPU_DOMAINS)
1187 return -EINVAL;
1188
1189 if (read_domains & I915_GEM_GPU_DOMAINS)
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
1198 ret = i915_mutex_lock_interruptible(dev);
1199 if (ret)
1200 return ret;
1201
1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 if (&obj->base == NULL) {
1204 ret = -ENOENT;
1205 goto unlock;
1206 }
1207
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
1225 } else {
1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 }
1228
1229 unref:
1230 drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234 }
1235
1236 /**
1237 * Called when user space has done writes to this buffer
1238 */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_sw_finish *args = data;
1244 struct drm_i915_gem_object *obj;
1245 int ret = 0;
1246
1247 ret = i915_mutex_lock_interruptible(dev);
1248 if (ret)
1249 return ret;
1250
1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 if (&obj->base == NULL) {
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
1256
1257 /* Pinned buffers may be scanout, so flush the cache */
1258 if (obj->pin_count)
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261 drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265 }
1266
1267 /**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
1280 unsigned long addr;
1281
1282 obj = drm_gem_object_lookup(dev, file, args->handle);
1283 if (obj == NULL)
1284 return -ENOENT;
1285
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
1294 addr = vm_mmap(obj->filp, 0, args->size,
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
1297 drm_gem_object_unreference_unlocked(obj);
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304 }
1305
1306 /**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
1326 drm_i915_private_t *dev_priv = dev->dev_private;
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
1339
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
1348 /* Now bind it into the GTT if needed */
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
1352
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
1356
1357 ret = i915_gem_object_get_fence(obj);
1358 if (ret)
1359 goto unpin;
1360
1361 obj->fault_mappable = true;
1362
1363 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364 pfn >>= PAGE_SHIFT;
1365 pfn += page_offset;
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 i915_gem_object_unpin(obj);
1371 unlock:
1372 mutex_unlock(&dev->struct_mutex);
1373 out:
1374 switch (ret) {
1375 case -EIO:
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 return VM_FAULT_SIGBUS;
1381 case -EAGAIN:
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
1389 set_need_resched();
1390 case 0:
1391 case -ERESTARTSYS:
1392 case -EINTR:
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
1398 return VM_FAULT_NOPAGE;
1399 case -ENOMEM:
1400 return VM_FAULT_OOM;
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
1403 default:
1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 return VM_FAULT_SIGBUS;
1406 }
1407 }
1408
1409 /**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
1413 * Preserve the reservation of the mmapping with the DRM core code, but
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 if (!obj->fault_mappable)
1427 return;
1428
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
1433
1434 obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 uint32_t gtt_size;
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
1448 gtt_size = 1024*1024;
1449 else
1450 gtt_size = 512*1024;
1451
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
1454
1455 return gtt_size;
1456 }
1457
1458 /**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
1463 * potential fence register mapping.
1464 */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
1468 {
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 tiling_mode == I915_TILING_NONE)
1475 return 4096;
1476
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
1496 goto out;
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
1508 goto out;
1509
1510 i915_gem_shrink_all(dev_priv);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
1531 {
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct drm_i915_gem_object *obj;
1534 int ret;
1535
1536 ret = i915_mutex_lock_interruptible(dev);
1537 if (ret)
1538 return ret;
1539
1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 if (&obj->base == NULL) {
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
1545
1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 ret = -E2BIG;
1548 goto out;
1549 }
1550
1551 if (obj->madv != I915_MADV_WILLNEED) {
1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 ret = -EINVAL;
1554 goto out;
1555 }
1556
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
1560
1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564 drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 mutex_unlock(&dev->struct_mutex);
1567 return ret;
1568 }
1569
1570 /**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588 {
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 struct inode *inode;
1599
1600 i915_gem_object_free_mmap_offset(obj);
1601
1602 if (obj->base.filp == NULL)
1603 return;
1604
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
1610 inode = file_inode(obj->base.filp);
1611 shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613 obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 struct sg_page_iter sg_iter;
1626 int ret;
1627
1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
1640 if (i915_gem_object_needs_bit17_swizzle(obj))
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
1645
1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649 if (obj->dirty)
1650 set_page_dirty(page);
1651
1652 if (obj->madv == I915_MADV_WILLNEED)
1653 mark_page_accessed(page);
1654
1655 page_cache_release(page);
1656 }
1657 obj->dirty = 0;
1658
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668 if (obj->pages == NULL)
1669 return 0;
1670
1671 BUG_ON(i915_gem_obj_ggtt_bound(obj));
1672
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
1679 list_del(&obj->global_list);
1680
1681 ops->put_pages(obj);
1682 obj->pages = NULL;
1683
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
1693 {
1694 struct drm_i915_gem_object *obj, *next;
1695 long count = 0;
1696
1697 list_for_each_entry_safe(obj, next,
1698 &dev_priv->mm.unbound_list,
1699 global_list) {
1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701 i915_gem_object_put_pages(obj) == 0) {
1702 count += obj->base.size >> PAGE_SHIFT;
1703 if (count >= target)
1704 return count;
1705 }
1706 }
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.inactive_list,
1710 mm_list) {
1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712 i915_gem_object_unbind(obj) == 0 &&
1713 i915_gem_object_put_pages(obj) == 0) {
1714 count += obj->base.size >> PAGE_SHIFT;
1715 if (count >= target)
1716 return count;
1717 }
1718 }
1719
1720 return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726 return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732 struct drm_i915_gem_object *obj, *next;
1733
1734 i915_gem_evict_everything(dev_priv->dev);
1735
1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1737 global_list)
1738 i915_gem_object_put_pages(obj);
1739 }
1740
1741 static int
1742 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1745 int page_count, i;
1746 struct address_space *mapping;
1747 struct sg_table *st;
1748 struct scatterlist *sg;
1749 struct sg_page_iter sg_iter;
1750 struct page *page;
1751 unsigned long last_pfn = 0; /* suppress gcc warning */
1752 gfp_t gfp;
1753
1754 /* Assert that the object is not currently in any GPU domain. As it
1755 * wasn't in the GTT, there shouldn't be any way it could have been in
1756 * a GPU cache
1757 */
1758 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1759 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1760
1761 st = kmalloc(sizeof(*st), GFP_KERNEL);
1762 if (st == NULL)
1763 return -ENOMEM;
1764
1765 page_count = obj->base.size / PAGE_SIZE;
1766 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1767 sg_free_table(st);
1768 kfree(st);
1769 return -ENOMEM;
1770 }
1771
1772 /* Get the list of pages out of our struct file. They'll be pinned
1773 * at this point until we release them.
1774 *
1775 * Fail silently without starting the shrinker
1776 */
1777 mapping = file_inode(obj->base.filp)->i_mapping;
1778 gfp = mapping_gfp_mask(mapping);
1779 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1780 gfp &= ~(__GFP_IO | __GFP_WAIT);
1781 sg = st->sgl;
1782 st->nents = 0;
1783 for (i = 0; i < page_count; i++) {
1784 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785 if (IS_ERR(page)) {
1786 i915_gem_purge(dev_priv, page_count);
1787 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788 }
1789 if (IS_ERR(page)) {
1790 /* We've tried hard to allocate the memory by reaping
1791 * our own buffer, now let the real VM do its job and
1792 * go down in flames if truly OOM.
1793 */
1794 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1795 gfp |= __GFP_IO | __GFP_WAIT;
1796
1797 i915_gem_shrink_all(dev_priv);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 if (IS_ERR(page))
1800 goto err_pages;
1801
1802 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1803 gfp &= ~(__GFP_IO | __GFP_WAIT);
1804 }
1805 #ifdef CONFIG_SWIOTLB
1806 if (swiotlb_nr_tbl()) {
1807 st->nents++;
1808 sg_set_page(sg, page, PAGE_SIZE, 0);
1809 sg = sg_next(sg);
1810 continue;
1811 }
1812 #endif
1813 if (!i || page_to_pfn(page) != last_pfn + 1) {
1814 if (i)
1815 sg = sg_next(sg);
1816 st->nents++;
1817 sg_set_page(sg, page, PAGE_SIZE, 0);
1818 } else {
1819 sg->length += PAGE_SIZE;
1820 }
1821 last_pfn = page_to_pfn(page);
1822 }
1823 #ifdef CONFIG_SWIOTLB
1824 if (!swiotlb_nr_tbl())
1825 #endif
1826 sg_mark_end(sg);
1827 obj->pages = st;
1828
1829 if (i915_gem_object_needs_bit17_swizzle(obj))
1830 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832 return 0;
1833
1834 err_pages:
1835 sg_mark_end(sg);
1836 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1837 page_cache_release(sg_page_iter_page(&sg_iter));
1838 sg_free_table(st);
1839 kfree(st);
1840 return PTR_ERR(page);
1841 }
1842
1843 /* Ensure that the associated pages are gathered from the backing storage
1844 * and pinned into our object. i915_gem_object_get_pages() may be called
1845 * multiple times before they are released by a single call to
1846 * i915_gem_object_put_pages() - once the pages are no longer referenced
1847 * either as a result of memory pressure (reaping pages under the shrinker)
1848 * or as the object is itself released.
1849 */
1850 int
1851 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852 {
1853 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854 const struct drm_i915_gem_object_ops *ops = obj->ops;
1855 int ret;
1856
1857 if (obj->pages)
1858 return 0;
1859
1860 if (obj->madv != I915_MADV_WILLNEED) {
1861 DRM_ERROR("Attempting to obtain a purgeable object\n");
1862 return -EINVAL;
1863 }
1864
1865 BUG_ON(obj->pages_pin_count);
1866
1867 ret = ops->get_pages(obj);
1868 if (ret)
1869 return ret;
1870
1871 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1872 return 0;
1873 }
1874
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877 struct intel_ring_buffer *ring)
1878 {
1879 struct drm_device *dev = obj->base.dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 u32 seqno = intel_ring_get_seqno(ring);
1882
1883 BUG_ON(ring == NULL);
1884 obj->ring = ring;
1885
1886 /* Add a reference if we're newly entering the active list. */
1887 if (!obj->active) {
1888 drm_gem_object_reference(&obj->base);
1889 obj->active = 1;
1890 }
1891
1892 /* Move from whatever list we were on to the tail of execution. */
1893 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1894 list_move_tail(&obj->ring_list, &ring->active_list);
1895
1896 obj->last_read_seqno = seqno;
1897
1898 if (obj->fenced_gpu_access) {
1899 obj->last_fenced_seqno = seqno;
1900
1901 /* Bump MRU to take account of the delayed flush */
1902 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903 struct drm_i915_fence_reg *reg;
1904
1905 reg = &dev_priv->fence_regs[obj->fence_reg];
1906 list_move_tail(&reg->lru_list,
1907 &dev_priv->mm.fence_list);
1908 }
1909 }
1910 }
1911
1912 static void
1913 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1914 {
1915 struct drm_device *dev = obj->base.dev;
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917
1918 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1919 BUG_ON(!obj->active);
1920
1921 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1922
1923 list_del_init(&obj->ring_list);
1924 obj->ring = NULL;
1925
1926 obj->last_read_seqno = 0;
1927 obj->last_write_seqno = 0;
1928 obj->base.write_domain = 0;
1929
1930 obj->last_fenced_seqno = 0;
1931 obj->fenced_gpu_access = false;
1932
1933 obj->active = 0;
1934 drm_gem_object_unreference(&obj->base);
1935
1936 WARN_ON(i915_verify_lists(dev));
1937 }
1938
1939 static int
1940 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1941 {
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 struct intel_ring_buffer *ring;
1944 int ret, i, j;
1945
1946 /* Carefully retire all requests without writing to the rings */
1947 for_each_ring(ring, dev_priv, i) {
1948 ret = intel_ring_idle(ring);
1949 if (ret)
1950 return ret;
1951 }
1952 i915_gem_retire_requests(dev);
1953
1954 /* Finally reset hw state */
1955 for_each_ring(ring, dev_priv, i) {
1956 intel_ring_init_seqno(ring, seqno);
1957
1958 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1959 ring->sync_seqno[j] = 0;
1960 }
1961
1962 return 0;
1963 }
1964
1965 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1966 {
1967 struct drm_i915_private *dev_priv = dev->dev_private;
1968 int ret;
1969
1970 if (seqno == 0)
1971 return -EINVAL;
1972
1973 /* HWS page needs to be set less than what we
1974 * will inject to ring
1975 */
1976 ret = i915_gem_init_seqno(dev, seqno - 1);
1977 if (ret)
1978 return ret;
1979
1980 /* Carefully set the last_seqno value so that wrap
1981 * detection still works
1982 */
1983 dev_priv->next_seqno = seqno;
1984 dev_priv->last_seqno = seqno - 1;
1985 if (dev_priv->last_seqno == 0)
1986 dev_priv->last_seqno--;
1987
1988 return 0;
1989 }
1990
1991 int
1992 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1993 {
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995
1996 /* reserve 0 for non-seqno */
1997 if (dev_priv->next_seqno == 0) {
1998 int ret = i915_gem_init_seqno(dev, 0);
1999 if (ret)
2000 return ret;
2001
2002 dev_priv->next_seqno = 1;
2003 }
2004
2005 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2006 return 0;
2007 }
2008
2009 int __i915_add_request(struct intel_ring_buffer *ring,
2010 struct drm_file *file,
2011 struct drm_i915_gem_object *obj,
2012 u32 *out_seqno)
2013 {
2014 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2015 struct drm_i915_gem_request *request;
2016 u32 request_ring_position, request_start;
2017 int was_empty;
2018 int ret;
2019
2020 request_start = intel_ring_get_tail(ring);
2021 /*
2022 * Emit any outstanding flushes - execbuf can fail to emit the flush
2023 * after having emitted the batchbuffer command. Hence we need to fix
2024 * things up similar to emitting the lazy request. The difference here
2025 * is that the flush _must_ happen before the next request, no matter
2026 * what.
2027 */
2028 ret = intel_ring_flush_all_caches(ring);
2029 if (ret)
2030 return ret;
2031
2032 request = kmalloc(sizeof(*request), GFP_KERNEL);
2033 if (request == NULL)
2034 return -ENOMEM;
2035
2036
2037 /* Record the position of the start of the request so that
2038 * should we detect the updated seqno part-way through the
2039 * GPU processing the request, we never over-estimate the
2040 * position of the head.
2041 */
2042 request_ring_position = intel_ring_get_tail(ring);
2043
2044 ret = ring->add_request(ring);
2045 if (ret) {
2046 kfree(request);
2047 return ret;
2048 }
2049
2050 request->seqno = intel_ring_get_seqno(ring);
2051 request->ring = ring;
2052 request->head = request_start;
2053 request->tail = request_ring_position;
2054 request->ctx = ring->last_context;
2055 request->batch_obj = obj;
2056
2057 /* Whilst this request exists, batch_obj will be on the
2058 * active_list, and so will hold the active reference. Only when this
2059 * request is retired will the the batch_obj be moved onto the
2060 * inactive_list and lose its active reference. Hence we do not need
2061 * to explicitly hold another reference here.
2062 */
2063
2064 if (request->ctx)
2065 i915_gem_context_reference(request->ctx);
2066
2067 request->emitted_jiffies = jiffies;
2068 was_empty = list_empty(&ring->request_list);
2069 list_add_tail(&request->list, &ring->request_list);
2070 request->file_priv = NULL;
2071
2072 if (file) {
2073 struct drm_i915_file_private *file_priv = file->driver_priv;
2074
2075 spin_lock(&file_priv->mm.lock);
2076 request->file_priv = file_priv;
2077 list_add_tail(&request->client_list,
2078 &file_priv->mm.request_list);
2079 spin_unlock(&file_priv->mm.lock);
2080 }
2081
2082 trace_i915_gem_request_add(ring, request->seqno);
2083 ring->outstanding_lazy_request = 0;
2084
2085 if (!dev_priv->ums.mm_suspended) {
2086 i915_queue_hangcheck(ring->dev);
2087
2088 if (was_empty) {
2089 queue_delayed_work(dev_priv->wq,
2090 &dev_priv->mm.retire_work,
2091 round_jiffies_up_relative(HZ));
2092 intel_mark_busy(dev_priv->dev);
2093 }
2094 }
2095
2096 if (out_seqno)
2097 *out_seqno = request->seqno;
2098 return 0;
2099 }
2100
2101 static inline void
2102 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2103 {
2104 struct drm_i915_file_private *file_priv = request->file_priv;
2105
2106 if (!file_priv)
2107 return;
2108
2109 spin_lock(&file_priv->mm.lock);
2110 if (request->file_priv) {
2111 list_del(&request->client_list);
2112 request->file_priv = NULL;
2113 }
2114 spin_unlock(&file_priv->mm.lock);
2115 }
2116
2117 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2118 {
2119 if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2120 acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
2121 return true;
2122
2123 return false;
2124 }
2125
2126 static bool i915_head_inside_request(const u32 acthd_unmasked,
2127 const u32 request_start,
2128 const u32 request_end)
2129 {
2130 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2131
2132 if (request_start < request_end) {
2133 if (acthd >= request_start && acthd < request_end)
2134 return true;
2135 } else if (request_start > request_end) {
2136 if (acthd >= request_start || acthd < request_end)
2137 return true;
2138 }
2139
2140 return false;
2141 }
2142
2143 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2144 const u32 acthd, bool *inside)
2145 {
2146 /* There is a possibility that unmasked head address
2147 * pointing inside the ring, matches the batch_obj address range.
2148 * However this is extremely unlikely.
2149 */
2150
2151 if (request->batch_obj) {
2152 if (i915_head_inside_object(acthd, request->batch_obj)) {
2153 *inside = true;
2154 return true;
2155 }
2156 }
2157
2158 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2159 *inside = false;
2160 return true;
2161 }
2162
2163 return false;
2164 }
2165
2166 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2167 struct drm_i915_gem_request *request,
2168 u32 acthd)
2169 {
2170 struct i915_ctx_hang_stats *hs = NULL;
2171 bool inside, guilty;
2172
2173 /* Innocent until proven guilty */
2174 guilty = false;
2175
2176 if (ring->hangcheck.action != wait &&
2177 i915_request_guilty(request, acthd, &inside)) {
2178 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2179 ring->name,
2180 inside ? "inside" : "flushing",
2181 request->batch_obj ?
2182 i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
2183 request->ctx ? request->ctx->id : 0,
2184 acthd);
2185
2186 guilty = true;
2187 }
2188
2189 /* If contexts are disabled or this is the default context, use
2190 * file_priv->reset_state
2191 */
2192 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2193 hs = &request->ctx->hang_stats;
2194 else if (request->file_priv)
2195 hs = &request->file_priv->hang_stats;
2196
2197 if (hs) {
2198 if (guilty)
2199 hs->batch_active++;
2200 else
2201 hs->batch_pending++;
2202 }
2203 }
2204
2205 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2206 {
2207 list_del(&request->list);
2208 i915_gem_request_remove_from_client(request);
2209
2210 if (request->ctx)
2211 i915_gem_context_unreference(request->ctx);
2212
2213 kfree(request);
2214 }
2215
2216 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2217 struct intel_ring_buffer *ring)
2218 {
2219 u32 completed_seqno;
2220 u32 acthd;
2221
2222 acthd = intel_ring_get_active_head(ring);
2223 completed_seqno = ring->get_seqno(ring, false);
2224
2225 while (!list_empty(&ring->request_list)) {
2226 struct drm_i915_gem_request *request;
2227
2228 request = list_first_entry(&ring->request_list,
2229 struct drm_i915_gem_request,
2230 list);
2231
2232 if (request->seqno > completed_seqno)
2233 i915_set_reset_status(ring, request, acthd);
2234
2235 i915_gem_free_request(request);
2236 }
2237
2238 while (!list_empty(&ring->active_list)) {
2239 struct drm_i915_gem_object *obj;
2240
2241 obj = list_first_entry(&ring->active_list,
2242 struct drm_i915_gem_object,
2243 ring_list);
2244
2245 i915_gem_object_move_to_inactive(obj);
2246 }
2247 }
2248
2249 static void i915_gem_reset_fences(struct drm_device *dev)
2250 {
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 int i;
2253
2254 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2255 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2256
2257 if (reg->obj)
2258 i915_gem_object_fence_lost(reg->obj);
2259
2260 i915_gem_write_fence(dev, i, NULL);
2261
2262 reg->pin_count = 0;
2263 reg->obj = NULL;
2264 INIT_LIST_HEAD(&reg->lru_list);
2265 }
2266
2267 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2268 }
2269
2270 void i915_gem_reset(struct drm_device *dev)
2271 {
2272 struct drm_i915_private *dev_priv = dev->dev_private;
2273 struct drm_i915_gem_object *obj;
2274 struct intel_ring_buffer *ring;
2275 int i;
2276
2277 for_each_ring(ring, dev_priv, i)
2278 i915_gem_reset_ring_lists(dev_priv, ring);
2279
2280 /* Move everything out of the GPU domains to ensure we do any
2281 * necessary invalidation upon reuse.
2282 */
2283 list_for_each_entry(obj,
2284 &dev_priv->mm.inactive_list,
2285 mm_list)
2286 {
2287 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2288 }
2289
2290 /* The fence registers are invalidated so clear them out */
2291 i915_gem_reset_fences(dev);
2292 }
2293
2294 /**
2295 * This function clears the request list as sequence numbers are passed.
2296 */
2297 void
2298 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2299 {
2300 uint32_t seqno;
2301
2302 if (list_empty(&ring->request_list))
2303 return;
2304
2305 WARN_ON(i915_verify_lists(ring->dev));
2306
2307 seqno = ring->get_seqno(ring, true);
2308
2309 while (!list_empty(&ring->request_list)) {
2310 struct drm_i915_gem_request *request;
2311
2312 request = list_first_entry(&ring->request_list,
2313 struct drm_i915_gem_request,
2314 list);
2315
2316 if (!i915_seqno_passed(seqno, request->seqno))
2317 break;
2318
2319 trace_i915_gem_request_retire(ring, request->seqno);
2320 /* We know the GPU must have read the request to have
2321 * sent us the seqno + interrupt, so use the position
2322 * of tail of the request to update the last known position
2323 * of the GPU head.
2324 */
2325 ring->last_retired_head = request->tail;
2326
2327 i915_gem_free_request(request);
2328 }
2329
2330 /* Move any buffers on the active list that are no longer referenced
2331 * by the ringbuffer to the flushing/inactive lists as appropriate.
2332 */
2333 while (!list_empty(&ring->active_list)) {
2334 struct drm_i915_gem_object *obj;
2335
2336 obj = list_first_entry(&ring->active_list,
2337 struct drm_i915_gem_object,
2338 ring_list);
2339
2340 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2341 break;
2342
2343 i915_gem_object_move_to_inactive(obj);
2344 }
2345
2346 if (unlikely(ring->trace_irq_seqno &&
2347 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2348 ring->irq_put(ring);
2349 ring->trace_irq_seqno = 0;
2350 }
2351
2352 WARN_ON(i915_verify_lists(ring->dev));
2353 }
2354
2355 void
2356 i915_gem_retire_requests(struct drm_device *dev)
2357 {
2358 drm_i915_private_t *dev_priv = dev->dev_private;
2359 struct intel_ring_buffer *ring;
2360 int i;
2361
2362 for_each_ring(ring, dev_priv, i)
2363 i915_gem_retire_requests_ring(ring);
2364 }
2365
2366 static void
2367 i915_gem_retire_work_handler(struct work_struct *work)
2368 {
2369 drm_i915_private_t *dev_priv;
2370 struct drm_device *dev;
2371 struct intel_ring_buffer *ring;
2372 bool idle;
2373 int i;
2374
2375 dev_priv = container_of(work, drm_i915_private_t,
2376 mm.retire_work.work);
2377 dev = dev_priv->dev;
2378
2379 /* Come back later if the device is busy... */
2380 if (!mutex_trylock(&dev->struct_mutex)) {
2381 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2382 round_jiffies_up_relative(HZ));
2383 return;
2384 }
2385
2386 i915_gem_retire_requests(dev);
2387
2388 /* Send a periodic flush down the ring so we don't hold onto GEM
2389 * objects indefinitely.
2390 */
2391 idle = true;
2392 for_each_ring(ring, dev_priv, i) {
2393 if (ring->gpu_caches_dirty)
2394 i915_add_request(ring, NULL);
2395
2396 idle &= list_empty(&ring->request_list);
2397 }
2398
2399 if (!dev_priv->ums.mm_suspended && !idle)
2400 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2401 round_jiffies_up_relative(HZ));
2402 if (idle)
2403 intel_mark_idle(dev);
2404
2405 mutex_unlock(&dev->struct_mutex);
2406 }
2407
2408 /**
2409 * Ensures that an object will eventually get non-busy by flushing any required
2410 * write domains, emitting any outstanding lazy request and retiring and
2411 * completed requests.
2412 */
2413 static int
2414 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2415 {
2416 int ret;
2417
2418 if (obj->active) {
2419 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2420 if (ret)
2421 return ret;
2422
2423 i915_gem_retire_requests_ring(obj->ring);
2424 }
2425
2426 return 0;
2427 }
2428
2429 /**
2430 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2431 * @DRM_IOCTL_ARGS: standard ioctl arguments
2432 *
2433 * Returns 0 if successful, else an error is returned with the remaining time in
2434 * the timeout parameter.
2435 * -ETIME: object is still busy after timeout
2436 * -ERESTARTSYS: signal interrupted the wait
2437 * -ENONENT: object doesn't exist
2438 * Also possible, but rare:
2439 * -EAGAIN: GPU wedged
2440 * -ENOMEM: damn
2441 * -ENODEV: Internal IRQ fail
2442 * -E?: The add request failed
2443 *
2444 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2445 * non-zero timeout parameter the wait ioctl will wait for the given number of
2446 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2447 * without holding struct_mutex the object may become re-busied before this
2448 * function completes. A similar but shorter * race condition exists in the busy
2449 * ioctl
2450 */
2451 int
2452 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2453 {
2454 drm_i915_private_t *dev_priv = dev->dev_private;
2455 struct drm_i915_gem_wait *args = data;
2456 struct drm_i915_gem_object *obj;
2457 struct intel_ring_buffer *ring = NULL;
2458 struct timespec timeout_stack, *timeout = NULL;
2459 unsigned reset_counter;
2460 u32 seqno = 0;
2461 int ret = 0;
2462
2463 if (args->timeout_ns >= 0) {
2464 timeout_stack = ns_to_timespec(args->timeout_ns);
2465 timeout = &timeout_stack;
2466 }
2467
2468 ret = i915_mutex_lock_interruptible(dev);
2469 if (ret)
2470 return ret;
2471
2472 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2473 if (&obj->base == NULL) {
2474 mutex_unlock(&dev->struct_mutex);
2475 return -ENOENT;
2476 }
2477
2478 /* Need to make sure the object gets inactive eventually. */
2479 ret = i915_gem_object_flush_active(obj);
2480 if (ret)
2481 goto out;
2482
2483 if (obj->active) {
2484 seqno = obj->last_read_seqno;
2485 ring = obj->ring;
2486 }
2487
2488 if (seqno == 0)
2489 goto out;
2490
2491 /* Do this after OLR check to make sure we make forward progress polling
2492 * on this IOCTL with a 0 timeout (like busy ioctl)
2493 */
2494 if (!args->timeout_ns) {
2495 ret = -ETIME;
2496 goto out;
2497 }
2498
2499 drm_gem_object_unreference(&obj->base);
2500 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2501 mutex_unlock(&dev->struct_mutex);
2502
2503 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2504 if (timeout)
2505 args->timeout_ns = timespec_to_ns(timeout);
2506 return ret;
2507
2508 out:
2509 drm_gem_object_unreference(&obj->base);
2510 mutex_unlock(&dev->struct_mutex);
2511 return ret;
2512 }
2513
2514 /**
2515 * i915_gem_object_sync - sync an object to a ring.
2516 *
2517 * @obj: object which may be in use on another ring.
2518 * @to: ring we wish to use the object on. May be NULL.
2519 *
2520 * This code is meant to abstract object synchronization with the GPU.
2521 * Calling with NULL implies synchronizing the object with the CPU
2522 * rather than a particular GPU ring.
2523 *
2524 * Returns 0 if successful, else propagates up the lower layer error.
2525 */
2526 int
2527 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2528 struct intel_ring_buffer *to)
2529 {
2530 struct intel_ring_buffer *from = obj->ring;
2531 u32 seqno;
2532 int ret, idx;
2533
2534 if (from == NULL || to == from)
2535 return 0;
2536
2537 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2538 return i915_gem_object_wait_rendering(obj, false);
2539
2540 idx = intel_ring_sync_index(from, to);
2541
2542 seqno = obj->last_read_seqno;
2543 if (seqno <= from->sync_seqno[idx])
2544 return 0;
2545
2546 ret = i915_gem_check_olr(obj->ring, seqno);
2547 if (ret)
2548 return ret;
2549
2550 ret = to->sync_to(to, from, seqno);
2551 if (!ret)
2552 /* We use last_read_seqno because sync_to()
2553 * might have just caused seqno wrap under
2554 * the radar.
2555 */
2556 from->sync_seqno[idx] = obj->last_read_seqno;
2557
2558 return ret;
2559 }
2560
2561 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2562 {
2563 u32 old_write_domain, old_read_domains;
2564
2565 /* Force a pagefault for domain tracking on next user access */
2566 i915_gem_release_mmap(obj);
2567
2568 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2569 return;
2570
2571 /* Wait for any direct GTT access to complete */
2572 mb();
2573
2574 old_read_domains = obj->base.read_domains;
2575 old_write_domain = obj->base.write_domain;
2576
2577 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2578 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2579
2580 trace_i915_gem_object_change_domain(obj,
2581 old_read_domains,
2582 old_write_domain);
2583 }
2584
2585 /**
2586 * Unbinds an object from the GTT aperture.
2587 */
2588 int
2589 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2590 {
2591 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2592 int ret;
2593
2594 if (!i915_gem_obj_ggtt_bound(obj))
2595 return 0;
2596
2597 if (obj->pin_count)
2598 return -EBUSY;
2599
2600 BUG_ON(obj->pages == NULL);
2601
2602 ret = i915_gem_object_finish_gpu(obj);
2603 if (ret)
2604 return ret;
2605 /* Continue on if we fail due to EIO, the GPU is hung so we
2606 * should be safe and we need to cleanup or else we might
2607 * cause memory corruption through use-after-free.
2608 */
2609
2610 i915_gem_object_finish_gtt(obj);
2611
2612 /* release the fence reg _after_ flushing */
2613 ret = i915_gem_object_put_fence(obj);
2614 if (ret)
2615 return ret;
2616
2617 trace_i915_gem_object_unbind(obj);
2618
2619 if (obj->has_global_gtt_mapping)
2620 i915_gem_gtt_unbind_object(obj);
2621 if (obj->has_aliasing_ppgtt_mapping) {
2622 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2623 obj->has_aliasing_ppgtt_mapping = 0;
2624 }
2625 i915_gem_gtt_finish_object(obj);
2626 i915_gem_object_unpin_pages(obj);
2627
2628 list_del(&obj->mm_list);
2629 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2630 /* Avoid an unnecessary call to unbind on rebind. */
2631 obj->map_and_fenceable = true;
2632
2633 drm_mm_remove_node(&obj->gtt_space);
2634
2635 return 0;
2636 }
2637
2638 int i915_gpu_idle(struct drm_device *dev)
2639 {
2640 drm_i915_private_t *dev_priv = dev->dev_private;
2641 struct intel_ring_buffer *ring;
2642 int ret, i;
2643
2644 /* Flush everything onto the inactive list. */
2645 for_each_ring(ring, dev_priv, i) {
2646 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2647 if (ret)
2648 return ret;
2649
2650 ret = intel_ring_idle(ring);
2651 if (ret)
2652 return ret;
2653 }
2654
2655 return 0;
2656 }
2657
2658 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2659 struct drm_i915_gem_object *obj)
2660 {
2661 drm_i915_private_t *dev_priv = dev->dev_private;
2662 int fence_reg;
2663 int fence_pitch_shift;
2664 uint64_t val;
2665
2666 if (INTEL_INFO(dev)->gen >= 6) {
2667 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2668 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2669 } else {
2670 fence_reg = FENCE_REG_965_0;
2671 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2672 }
2673
2674 if (obj) {
2675 u32 size = i915_gem_obj_ggtt_size(obj);
2676
2677 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2678 0xfffff000) << 32;
2679 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2680 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2681 if (obj->tiling_mode == I915_TILING_Y)
2682 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2683 val |= I965_FENCE_REG_VALID;
2684 } else
2685 val = 0;
2686
2687 fence_reg += reg * 8;
2688 I915_WRITE64(fence_reg, val);
2689 POSTING_READ(fence_reg);
2690 }
2691
2692 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2693 struct drm_i915_gem_object *obj)
2694 {
2695 drm_i915_private_t *dev_priv = dev->dev_private;
2696 u32 val;
2697
2698 if (obj) {
2699 u32 size = i915_gem_obj_ggtt_size(obj);
2700 int pitch_val;
2701 int tile_width;
2702
2703 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2704 (size & -size) != size ||
2705 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2706 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2707 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2708
2709 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2710 tile_width = 128;
2711 else
2712 tile_width = 512;
2713
2714 /* Note: pitch better be a power of two tile widths */
2715 pitch_val = obj->stride / tile_width;
2716 pitch_val = ffs(pitch_val) - 1;
2717
2718 val = i915_gem_obj_ggtt_offset(obj);
2719 if (obj->tiling_mode == I915_TILING_Y)
2720 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2721 val |= I915_FENCE_SIZE_BITS(size);
2722 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2723 val |= I830_FENCE_REG_VALID;
2724 } else
2725 val = 0;
2726
2727 if (reg < 8)
2728 reg = FENCE_REG_830_0 + reg * 4;
2729 else
2730 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2731
2732 I915_WRITE(reg, val);
2733 POSTING_READ(reg);
2734 }
2735
2736 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2737 struct drm_i915_gem_object *obj)
2738 {
2739 drm_i915_private_t *dev_priv = dev->dev_private;
2740 uint32_t val;
2741
2742 if (obj) {
2743 u32 size = i915_gem_obj_ggtt_size(obj);
2744 uint32_t pitch_val;
2745
2746 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2747 (size & -size) != size ||
2748 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2749 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2750 i915_gem_obj_ggtt_offset(obj), size);
2751
2752 pitch_val = obj->stride / 128;
2753 pitch_val = ffs(pitch_val) - 1;
2754
2755 val = i915_gem_obj_ggtt_offset(obj);
2756 if (obj->tiling_mode == I915_TILING_Y)
2757 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2758 val |= I830_FENCE_SIZE_BITS(size);
2759 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2760 val |= I830_FENCE_REG_VALID;
2761 } else
2762 val = 0;
2763
2764 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2765 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2766 }
2767
2768 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2769 {
2770 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2771 }
2772
2773 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2774 struct drm_i915_gem_object *obj)
2775 {
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777
2778 /* Ensure that all CPU reads are completed before installing a fence
2779 * and all writes before removing the fence.
2780 */
2781 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2782 mb();
2783
2784 switch (INTEL_INFO(dev)->gen) {
2785 case 7:
2786 case 6:
2787 case 5:
2788 case 4: i965_write_fence_reg(dev, reg, obj); break;
2789 case 3: i915_write_fence_reg(dev, reg, obj); break;
2790 case 2: i830_write_fence_reg(dev, reg, obj); break;
2791 default: BUG();
2792 }
2793
2794 /* And similarly be paranoid that no direct access to this region
2795 * is reordered to before the fence is installed.
2796 */
2797 if (i915_gem_object_needs_mb(obj))
2798 mb();
2799 }
2800
2801 static inline int fence_number(struct drm_i915_private *dev_priv,
2802 struct drm_i915_fence_reg *fence)
2803 {
2804 return fence - dev_priv->fence_regs;
2805 }
2806
2807 struct write_fence {
2808 struct drm_device *dev;
2809 struct drm_i915_gem_object *obj;
2810 int fence;
2811 };
2812
2813 static void i915_gem_write_fence__ipi(void *data)
2814 {
2815 struct write_fence *args = data;
2816
2817 /* Required for SNB+ with LLC */
2818 wbinvd();
2819
2820 /* Required for VLV */
2821 i915_gem_write_fence(args->dev, args->fence, args->obj);
2822 }
2823
2824 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2825 struct drm_i915_fence_reg *fence,
2826 bool enable)
2827 {
2828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2829 struct write_fence args = {
2830 .dev = obj->base.dev,
2831 .fence = fence_number(dev_priv, fence),
2832 .obj = enable ? obj : NULL,
2833 };
2834
2835 /* In order to fully serialize access to the fenced region and
2836 * the update to the fence register we need to take extreme
2837 * measures on SNB+. In theory, the write to the fence register
2838 * flushes all memory transactions before, and coupled with the
2839 * mb() placed around the register write we serialise all memory
2840 * operations with respect to the changes in the tiler. Yet, on
2841 * SNB+ we need to take a step further and emit an explicit wbinvd()
2842 * on each processor in order to manually flush all memory
2843 * transactions before updating the fence register.
2844 *
2845 * However, Valleyview complicates matter. There the wbinvd is
2846 * insufficient and unlike SNB/IVB requires the serialising
2847 * register write. (Note that that register write by itself is
2848 * conversely not sufficient for SNB+.) To compromise, we do both.
2849 */
2850 if (INTEL_INFO(args.dev)->gen >= 6)
2851 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2852 else
2853 i915_gem_write_fence(args.dev, args.fence, args.obj);
2854
2855 if (enable) {
2856 obj->fence_reg = args.fence;
2857 fence->obj = obj;
2858 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2859 } else {
2860 obj->fence_reg = I915_FENCE_REG_NONE;
2861 fence->obj = NULL;
2862 list_del_init(&fence->lru_list);
2863 }
2864 }
2865
2866 static int
2867 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2868 {
2869 if (obj->last_fenced_seqno) {
2870 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2871 if (ret)
2872 return ret;
2873
2874 obj->last_fenced_seqno = 0;
2875 }
2876
2877 obj->fenced_gpu_access = false;
2878 return 0;
2879 }
2880
2881 int
2882 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2883 {
2884 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2885 struct drm_i915_fence_reg *fence;
2886 int ret;
2887
2888 ret = i915_gem_object_wait_fence(obj);
2889 if (ret)
2890 return ret;
2891
2892 if (obj->fence_reg == I915_FENCE_REG_NONE)
2893 return 0;
2894
2895 fence = &dev_priv->fence_regs[obj->fence_reg];
2896
2897 i915_gem_object_fence_lost(obj);
2898 i915_gem_object_update_fence(obj, fence, false);
2899
2900 return 0;
2901 }
2902
2903 static struct drm_i915_fence_reg *
2904 i915_find_fence_reg(struct drm_device *dev)
2905 {
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 struct drm_i915_fence_reg *reg, *avail;
2908 int i;
2909
2910 /* First try to find a free reg */
2911 avail = NULL;
2912 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2913 reg = &dev_priv->fence_regs[i];
2914 if (!reg->obj)
2915 return reg;
2916
2917 if (!reg->pin_count)
2918 avail = reg;
2919 }
2920
2921 if (avail == NULL)
2922 return NULL;
2923
2924 /* None available, try to steal one or wait for a user to finish */
2925 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2926 if (reg->pin_count)
2927 continue;
2928
2929 return reg;
2930 }
2931
2932 return NULL;
2933 }
2934
2935 /**
2936 * i915_gem_object_get_fence - set up fencing for an object
2937 * @obj: object to map through a fence reg
2938 *
2939 * When mapping objects through the GTT, userspace wants to be able to write
2940 * to them without having to worry about swizzling if the object is tiled.
2941 * This function walks the fence regs looking for a free one for @obj,
2942 * stealing one if it can't find any.
2943 *
2944 * It then sets up the reg based on the object's properties: address, pitch
2945 * and tiling format.
2946 *
2947 * For an untiled surface, this removes any existing fence.
2948 */
2949 int
2950 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2951 {
2952 struct drm_device *dev = obj->base.dev;
2953 struct drm_i915_private *dev_priv = dev->dev_private;
2954 bool enable = obj->tiling_mode != I915_TILING_NONE;
2955 struct drm_i915_fence_reg *reg;
2956 int ret;
2957
2958 /* Have we updated the tiling parameters upon the object and so
2959 * will need to serialise the write to the associated fence register?
2960 */
2961 if (obj->fence_dirty) {
2962 ret = i915_gem_object_wait_fence(obj);
2963 if (ret)
2964 return ret;
2965 }
2966
2967 /* Just update our place in the LRU if our fence is getting reused. */
2968 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2969 reg = &dev_priv->fence_regs[obj->fence_reg];
2970 if (!obj->fence_dirty) {
2971 list_move_tail(&reg->lru_list,
2972 &dev_priv->mm.fence_list);
2973 return 0;
2974 }
2975 } else if (enable) {
2976 reg = i915_find_fence_reg(dev);
2977 if (reg == NULL)
2978 return -EDEADLK;
2979
2980 if (reg->obj) {
2981 struct drm_i915_gem_object *old = reg->obj;
2982
2983 ret = i915_gem_object_wait_fence(old);
2984 if (ret)
2985 return ret;
2986
2987 i915_gem_object_fence_lost(old);
2988 }
2989 } else
2990 return 0;
2991
2992 i915_gem_object_update_fence(obj, reg, enable);
2993 obj->fence_dirty = false;
2994
2995 return 0;
2996 }
2997
2998 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2999 struct drm_mm_node *gtt_space,
3000 unsigned long cache_level)
3001 {
3002 struct drm_mm_node *other;
3003
3004 /* On non-LLC machines we have to be careful when putting differing
3005 * types of snoopable memory together to avoid the prefetcher
3006 * crossing memory domains and dying.
3007 */
3008 if (HAS_LLC(dev))
3009 return true;
3010
3011 if (!drm_mm_node_allocated(gtt_space))
3012 return true;
3013
3014 if (list_empty(&gtt_space->node_list))
3015 return true;
3016
3017 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3018 if (other->allocated && !other->hole_follows && other->color != cache_level)
3019 return false;
3020
3021 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3022 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3023 return false;
3024
3025 return true;
3026 }
3027
3028 static void i915_gem_verify_gtt(struct drm_device *dev)
3029 {
3030 #if WATCH_GTT
3031 struct drm_i915_private *dev_priv = dev->dev_private;
3032 struct drm_i915_gem_object *obj;
3033 int err = 0;
3034
3035 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3036 if (obj->gtt_space == NULL) {
3037 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3038 err++;
3039 continue;
3040 }
3041
3042 if (obj->cache_level != obj->gtt_space->color) {
3043 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3044 i915_gem_obj_ggtt_offset(obj),
3045 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3046 obj->cache_level,
3047 obj->gtt_space->color);
3048 err++;
3049 continue;
3050 }
3051
3052 if (!i915_gem_valid_gtt_space(dev,
3053 obj->gtt_space,
3054 obj->cache_level)) {
3055 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3056 i915_gem_obj_ggtt_offset(obj),
3057 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3058 obj->cache_level);
3059 err++;
3060 continue;
3061 }
3062 }
3063
3064 WARN_ON(err);
3065 #endif
3066 }
3067
3068 /**
3069 * Finds free space in the GTT aperture and binds the object there.
3070 */
3071 static int
3072 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3073 unsigned alignment,
3074 bool map_and_fenceable,
3075 bool nonblocking)
3076 {
3077 struct drm_device *dev = obj->base.dev;
3078 drm_i915_private_t *dev_priv = dev->dev_private;
3079 u32 size, fence_size, fence_alignment, unfenced_alignment;
3080 bool mappable, fenceable;
3081 size_t gtt_max = map_and_fenceable ?
3082 dev_priv->gtt.mappable_end : dev_priv->gtt.base.total;
3083 int ret;
3084
3085 fence_size = i915_gem_get_gtt_size(dev,
3086 obj->base.size,
3087 obj->tiling_mode);
3088 fence_alignment = i915_gem_get_gtt_alignment(dev,
3089 obj->base.size,
3090 obj->tiling_mode, true);
3091 unfenced_alignment =
3092 i915_gem_get_gtt_alignment(dev,
3093 obj->base.size,
3094 obj->tiling_mode, false);
3095
3096 if (alignment == 0)
3097 alignment = map_and_fenceable ? fence_alignment :
3098 unfenced_alignment;
3099 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3100 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3101 return -EINVAL;
3102 }
3103
3104 size = map_and_fenceable ? fence_size : obj->base.size;
3105
3106 /* If the object is bigger than the entire aperture, reject it early
3107 * before evicting everything in a vain attempt to find space.
3108 */
3109 if (obj->base.size > gtt_max) {
3110 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3111 obj->base.size,
3112 map_and_fenceable ? "mappable" : "total",
3113 gtt_max);
3114 return -E2BIG;
3115 }
3116
3117 ret = i915_gem_object_get_pages(obj);
3118 if (ret)
3119 return ret;
3120
3121 i915_gem_object_pin_pages(obj);
3122
3123 search_free:
3124 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space,
3125 &obj->gtt_space,
3126 size, alignment,
3127 obj->cache_level, 0, gtt_max);
3128 if (ret) {
3129 ret = i915_gem_evict_something(dev, size, alignment,
3130 obj->cache_level,
3131 map_and_fenceable,
3132 nonblocking);
3133 if (ret == 0)
3134 goto search_free;
3135
3136 i915_gem_object_unpin_pages(obj);
3137 return ret;
3138 }
3139 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &obj->gtt_space,
3140 obj->cache_level))) {
3141 i915_gem_object_unpin_pages(obj);
3142 drm_mm_remove_node(&obj->gtt_space);
3143 return -EINVAL;
3144 }
3145
3146 ret = i915_gem_gtt_prepare_object(obj);
3147 if (ret) {
3148 i915_gem_object_unpin_pages(obj);
3149 drm_mm_remove_node(&obj->gtt_space);
3150 return ret;
3151 }
3152
3153 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3154 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3155
3156 fenceable =
3157 i915_gem_obj_ggtt_size(obj) == fence_size &&
3158 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3159
3160 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3161 dev_priv->gtt.mappable_end;
3162
3163 obj->map_and_fenceable = mappable && fenceable;
3164
3165 trace_i915_gem_object_bind(obj, map_and_fenceable);
3166 i915_gem_verify_gtt(dev);
3167 return 0;
3168 }
3169
3170 void
3171 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3172 {
3173 /* If we don't have a page list set up, then we're not pinned
3174 * to GPU, and we can ignore the cache flush because it'll happen
3175 * again at bind time.
3176 */
3177 if (obj->pages == NULL)
3178 return;
3179
3180 /*
3181 * Stolen memory is always coherent with the GPU as it is explicitly
3182 * marked as wc by the system, or the system is cache-coherent.
3183 */
3184 if (obj->stolen)
3185 return;
3186
3187 /* If the GPU is snooping the contents of the CPU cache,
3188 * we do not need to manually clear the CPU cache lines. However,
3189 * the caches are only snooped when the render cache is
3190 * flushed/invalidated. As we always have to emit invalidations
3191 * and flushes when moving into and out of the RENDER domain, correct
3192 * snooping behaviour occurs naturally as the result of our domain
3193 * tracking.
3194 */
3195 if (obj->cache_level != I915_CACHE_NONE)
3196 return;
3197
3198 trace_i915_gem_object_clflush(obj);
3199
3200 drm_clflush_sg(obj->pages);
3201 }
3202
3203 /** Flushes the GTT write domain for the object if it's dirty. */
3204 static void
3205 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3206 {
3207 uint32_t old_write_domain;
3208
3209 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3210 return;
3211
3212 /* No actual flushing is required for the GTT write domain. Writes
3213 * to it immediately go to main memory as far as we know, so there's
3214 * no chipset flush. It also doesn't land in render cache.
3215 *
3216 * However, we do have to enforce the order so that all writes through
3217 * the GTT land before any writes to the device, such as updates to
3218 * the GATT itself.
3219 */
3220 wmb();
3221
3222 old_write_domain = obj->base.write_domain;
3223 obj->base.write_domain = 0;
3224
3225 trace_i915_gem_object_change_domain(obj,
3226 obj->base.read_domains,
3227 old_write_domain);
3228 }
3229
3230 /** Flushes the CPU write domain for the object if it's dirty. */
3231 static void
3232 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3233 {
3234 uint32_t old_write_domain;
3235
3236 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3237 return;
3238
3239 i915_gem_clflush_object(obj);
3240 i915_gem_chipset_flush(obj->base.dev);
3241 old_write_domain = obj->base.write_domain;
3242 obj->base.write_domain = 0;
3243
3244 trace_i915_gem_object_change_domain(obj,
3245 obj->base.read_domains,
3246 old_write_domain);
3247 }
3248
3249 /**
3250 * Moves a single object to the GTT read, and possibly write domain.
3251 *
3252 * This function returns when the move is complete, including waiting on
3253 * flushes to occur.
3254 */
3255 int
3256 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3257 {
3258 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3259 uint32_t old_write_domain, old_read_domains;
3260 int ret;
3261
3262 /* Not valid to be called on unbound objects. */
3263 if (!i915_gem_obj_ggtt_bound(obj))
3264 return -EINVAL;
3265
3266 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3267 return 0;
3268
3269 ret = i915_gem_object_wait_rendering(obj, !write);
3270 if (ret)
3271 return ret;
3272
3273 i915_gem_object_flush_cpu_write_domain(obj);
3274
3275 /* Serialise direct access to this object with the barriers for
3276 * coherent writes from the GPU, by effectively invalidating the
3277 * GTT domain upon first access.
3278 */
3279 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3280 mb();
3281
3282 old_write_domain = obj->base.write_domain;
3283 old_read_domains = obj->base.read_domains;
3284
3285 /* It should now be out of any other write domains, and we can update
3286 * the domain values for our changes.
3287 */
3288 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3289 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3290 if (write) {
3291 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3292 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3293 obj->dirty = 1;
3294 }
3295
3296 trace_i915_gem_object_change_domain(obj,
3297 old_read_domains,
3298 old_write_domain);
3299
3300 /* And bump the LRU for this access */
3301 if (i915_gem_object_is_inactive(obj))
3302 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3303
3304 return 0;
3305 }
3306
3307 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3308 enum i915_cache_level cache_level)
3309 {
3310 struct drm_device *dev = obj->base.dev;
3311 drm_i915_private_t *dev_priv = dev->dev_private;
3312 int ret;
3313
3314 if (obj->cache_level == cache_level)
3315 return 0;
3316
3317 if (obj->pin_count) {
3318 DRM_DEBUG("can not change the cache level of pinned objects\n");
3319 return -EBUSY;
3320 }
3321
3322 if (!i915_gem_valid_gtt_space(dev, &obj->gtt_space, cache_level)) {
3323 ret = i915_gem_object_unbind(obj);
3324 if (ret)
3325 return ret;
3326 }
3327
3328 if (i915_gem_obj_ggtt_bound(obj)) {
3329 ret = i915_gem_object_finish_gpu(obj);
3330 if (ret)
3331 return ret;
3332
3333 i915_gem_object_finish_gtt(obj);
3334
3335 /* Before SandyBridge, you could not use tiling or fence
3336 * registers with snooped memory, so relinquish any fences
3337 * currently pointing to our region in the aperture.
3338 */
3339 if (INTEL_INFO(dev)->gen < 6) {
3340 ret = i915_gem_object_put_fence(obj);
3341 if (ret)
3342 return ret;
3343 }
3344
3345 if (obj->has_global_gtt_mapping)
3346 i915_gem_gtt_bind_object(obj, cache_level);
3347 if (obj->has_aliasing_ppgtt_mapping)
3348 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3349 obj, cache_level);
3350
3351 i915_gem_obj_ggtt_set_color(obj, cache_level);
3352 }
3353
3354 if (cache_level == I915_CACHE_NONE) {
3355 u32 old_read_domains, old_write_domain;
3356
3357 /* If we're coming from LLC cached, then we haven't
3358 * actually been tracking whether the data is in the
3359 * CPU cache or not, since we only allow one bit set
3360 * in obj->write_domain and have been skipping the clflushes.
3361 * Just set it to the CPU cache for now.
3362 */
3363 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3364 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3365
3366 old_read_domains = obj->base.read_domains;
3367 old_write_domain = obj->base.write_domain;
3368
3369 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3370 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3371
3372 trace_i915_gem_object_change_domain(obj,
3373 old_read_domains,
3374 old_write_domain);
3375 }
3376
3377 obj->cache_level = cache_level;
3378 i915_gem_verify_gtt(dev);
3379 return 0;
3380 }
3381
3382 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3383 struct drm_file *file)
3384 {
3385 struct drm_i915_gem_caching *args = data;
3386 struct drm_i915_gem_object *obj;
3387 int ret;
3388
3389 ret = i915_mutex_lock_interruptible(dev);
3390 if (ret)
3391 return ret;
3392
3393 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3394 if (&obj->base == NULL) {
3395 ret = -ENOENT;
3396 goto unlock;
3397 }
3398
3399 args->caching = obj->cache_level != I915_CACHE_NONE;
3400
3401 drm_gem_object_unreference(&obj->base);
3402 unlock:
3403 mutex_unlock(&dev->struct_mutex);
3404 return ret;
3405 }
3406
3407 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3408 struct drm_file *file)
3409 {
3410 struct drm_i915_gem_caching *args = data;
3411 struct drm_i915_gem_object *obj;
3412 enum i915_cache_level level;
3413 int ret;
3414
3415 switch (args->caching) {
3416 case I915_CACHING_NONE:
3417 level = I915_CACHE_NONE;
3418 break;
3419 case I915_CACHING_CACHED:
3420 level = I915_CACHE_LLC;
3421 break;
3422 default:
3423 return -EINVAL;
3424 }
3425
3426 ret = i915_mutex_lock_interruptible(dev);
3427 if (ret)
3428 return ret;
3429
3430 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3431 if (&obj->base == NULL) {
3432 ret = -ENOENT;
3433 goto unlock;
3434 }
3435
3436 ret = i915_gem_object_set_cache_level(obj, level);
3437
3438 drm_gem_object_unreference(&obj->base);
3439 unlock:
3440 mutex_unlock(&dev->struct_mutex);
3441 return ret;
3442 }
3443
3444 /*
3445 * Prepare buffer for display plane (scanout, cursors, etc).
3446 * Can be called from an uninterruptible phase (modesetting) and allows
3447 * any flushes to be pipelined (for pageflips).
3448 */
3449 int
3450 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3451 u32 alignment,
3452 struct intel_ring_buffer *pipelined)
3453 {
3454 u32 old_read_domains, old_write_domain;
3455 int ret;
3456
3457 if (pipelined != obj->ring) {
3458 ret = i915_gem_object_sync(obj, pipelined);
3459 if (ret)
3460 return ret;
3461 }
3462
3463 /* The display engine is not coherent with the LLC cache on gen6. As
3464 * a result, we make sure that the pinning that is about to occur is
3465 * done with uncached PTEs. This is lowest common denominator for all
3466 * chipsets.
3467 *
3468 * However for gen6+, we could do better by using the GFDT bit instead
3469 * of uncaching, which would allow us to flush all the LLC-cached data
3470 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3471 */
3472 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3473 if (ret)
3474 return ret;
3475
3476 /* As the user may map the buffer once pinned in the display plane
3477 * (e.g. libkms for the bootup splash), we have to ensure that we
3478 * always use map_and_fenceable for all scanout buffers.
3479 */
3480 ret = i915_gem_object_pin(obj, alignment, true, false);
3481 if (ret)
3482 return ret;
3483
3484 i915_gem_object_flush_cpu_write_domain(obj);
3485
3486 old_write_domain = obj->base.write_domain;
3487 old_read_domains = obj->base.read_domains;
3488
3489 /* It should now be out of any other write domains, and we can update
3490 * the domain values for our changes.
3491 */
3492 obj->base.write_domain = 0;
3493 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3494
3495 trace_i915_gem_object_change_domain(obj,
3496 old_read_domains,
3497 old_write_domain);
3498
3499 return 0;
3500 }
3501
3502 int
3503 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3504 {
3505 int ret;
3506
3507 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3508 return 0;
3509
3510 ret = i915_gem_object_wait_rendering(obj, false);
3511 if (ret)
3512 return ret;
3513
3514 /* Ensure that we invalidate the GPU's caches and TLBs. */
3515 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3516 return 0;
3517 }
3518
3519 /**
3520 * Moves a single object to the CPU read, and possibly write domain.
3521 *
3522 * This function returns when the move is complete, including waiting on
3523 * flushes to occur.
3524 */
3525 int
3526 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3527 {
3528 uint32_t old_write_domain, old_read_domains;
3529 int ret;
3530
3531 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3532 return 0;
3533
3534 ret = i915_gem_object_wait_rendering(obj, !write);
3535 if (ret)
3536 return ret;
3537
3538 i915_gem_object_flush_gtt_write_domain(obj);
3539
3540 old_write_domain = obj->base.write_domain;
3541 old_read_domains = obj->base.read_domains;
3542
3543 /* Flush the CPU cache if it's still invalid. */
3544 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3545 i915_gem_clflush_object(obj);
3546
3547 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3548 }
3549
3550 /* It should now be out of any other write domains, and we can update
3551 * the domain values for our changes.
3552 */
3553 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3554
3555 /* If we're writing through the CPU, then the GPU read domains will
3556 * need to be invalidated at next use.
3557 */
3558 if (write) {
3559 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3560 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3561 }
3562
3563 trace_i915_gem_object_change_domain(obj,
3564 old_read_domains,
3565 old_write_domain);
3566
3567 return 0;
3568 }
3569
3570 /* Throttle our rendering by waiting until the ring has completed our requests
3571 * emitted over 20 msec ago.
3572 *
3573 * Note that if we were to use the current jiffies each time around the loop,
3574 * we wouldn't escape the function with any frames outstanding if the time to
3575 * render a frame was over 20ms.
3576 *
3577 * This should get us reasonable parallelism between CPU and GPU but also
3578 * relatively low latency when blocking on a particular request to finish.
3579 */
3580 static int
3581 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3582 {
3583 struct drm_i915_private *dev_priv = dev->dev_private;
3584 struct drm_i915_file_private *file_priv = file->driver_priv;
3585 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3586 struct drm_i915_gem_request *request;
3587 struct intel_ring_buffer *ring = NULL;
3588 unsigned reset_counter;
3589 u32 seqno = 0;
3590 int ret;
3591
3592 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3593 if (ret)
3594 return ret;
3595
3596 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3597 if (ret)
3598 return ret;
3599
3600 spin_lock(&file_priv->mm.lock);
3601 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3602 if (time_after_eq(request->emitted_jiffies, recent_enough))
3603 break;
3604
3605 ring = request->ring;
3606 seqno = request->seqno;
3607 }
3608 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3609 spin_unlock(&file_priv->mm.lock);
3610
3611 if (seqno == 0)
3612 return 0;
3613
3614 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3615 if (ret == 0)
3616 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3617
3618 return ret;
3619 }
3620
3621 int
3622 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3623 uint32_t alignment,
3624 bool map_and_fenceable,
3625 bool nonblocking)
3626 {
3627 int ret;
3628
3629 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3630 return -EBUSY;
3631
3632 if (i915_gem_obj_ggtt_bound(obj)) {
3633 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3634 (map_and_fenceable && !obj->map_and_fenceable)) {
3635 WARN(obj->pin_count,
3636 "bo is already pinned with incorrect alignment:"
3637 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3638 " obj->map_and_fenceable=%d\n",
3639 i915_gem_obj_ggtt_offset(obj), alignment,
3640 map_and_fenceable,
3641 obj->map_and_fenceable);
3642 ret = i915_gem_object_unbind(obj);
3643 if (ret)
3644 return ret;
3645 }
3646 }
3647
3648 if (!i915_gem_obj_ggtt_bound(obj)) {
3649 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3650
3651 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3652 map_and_fenceable,
3653 nonblocking);
3654 if (ret)
3655 return ret;
3656
3657 if (!dev_priv->mm.aliasing_ppgtt)
3658 i915_gem_gtt_bind_object(obj, obj->cache_level);
3659 }
3660
3661 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3662 i915_gem_gtt_bind_object(obj, obj->cache_level);
3663
3664 obj->pin_count++;
3665 obj->pin_mappable |= map_and_fenceable;
3666
3667 return 0;
3668 }
3669
3670 void
3671 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3672 {
3673 BUG_ON(obj->pin_count == 0);
3674 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3675
3676 if (--obj->pin_count == 0)
3677 obj->pin_mappable = false;
3678 }
3679
3680 int
3681 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3682 struct drm_file *file)
3683 {
3684 struct drm_i915_gem_pin *args = data;
3685 struct drm_i915_gem_object *obj;
3686 int ret;
3687
3688 ret = i915_mutex_lock_interruptible(dev);
3689 if (ret)
3690 return ret;
3691
3692 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3693 if (&obj->base == NULL) {
3694 ret = -ENOENT;
3695 goto unlock;
3696 }
3697
3698 if (obj->madv != I915_MADV_WILLNEED) {
3699 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3700 ret = -EINVAL;
3701 goto out;
3702 }
3703
3704 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3705 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3706 args->handle);
3707 ret = -EINVAL;
3708 goto out;
3709 }
3710
3711 if (obj->user_pin_count == 0) {
3712 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3713 if (ret)
3714 goto out;
3715 }
3716
3717 obj->user_pin_count++;
3718 obj->pin_filp = file;
3719
3720 /* XXX - flush the CPU caches for pinned objects
3721 * as the X server doesn't manage domains yet
3722 */
3723 i915_gem_object_flush_cpu_write_domain(obj);
3724 args->offset = i915_gem_obj_ggtt_offset(obj);
3725 out:
3726 drm_gem_object_unreference(&obj->base);
3727 unlock:
3728 mutex_unlock(&dev->struct_mutex);
3729 return ret;
3730 }
3731
3732 int
3733 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3734 struct drm_file *file)
3735 {
3736 struct drm_i915_gem_pin *args = data;
3737 struct drm_i915_gem_object *obj;
3738 int ret;
3739
3740 ret = i915_mutex_lock_interruptible(dev);
3741 if (ret)
3742 return ret;
3743
3744 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3745 if (&obj->base == NULL) {
3746 ret = -ENOENT;
3747 goto unlock;
3748 }
3749
3750 if (obj->pin_filp != file) {
3751 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3752 args->handle);
3753 ret = -EINVAL;
3754 goto out;
3755 }
3756 obj->user_pin_count--;
3757 if (obj->user_pin_count == 0) {
3758 obj->pin_filp = NULL;
3759 i915_gem_object_unpin(obj);
3760 }
3761
3762 out:
3763 drm_gem_object_unreference(&obj->base);
3764 unlock:
3765 mutex_unlock(&dev->struct_mutex);
3766 return ret;
3767 }
3768
3769 int
3770 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3771 struct drm_file *file)
3772 {
3773 struct drm_i915_gem_busy *args = data;
3774 struct drm_i915_gem_object *obj;
3775 int ret;
3776
3777 ret = i915_mutex_lock_interruptible(dev);
3778 if (ret)
3779 return ret;
3780
3781 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3782 if (&obj->base == NULL) {
3783 ret = -ENOENT;
3784 goto unlock;
3785 }
3786
3787 /* Count all active objects as busy, even if they are currently not used
3788 * by the gpu. Users of this interface expect objects to eventually
3789 * become non-busy without any further actions, therefore emit any
3790 * necessary flushes here.
3791 */
3792 ret = i915_gem_object_flush_active(obj);
3793
3794 args->busy = obj->active;
3795 if (obj->ring) {
3796 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3797 args->busy |= intel_ring_flag(obj->ring) << 16;
3798 }
3799
3800 drm_gem_object_unreference(&obj->base);
3801 unlock:
3802 mutex_unlock(&dev->struct_mutex);
3803 return ret;
3804 }
3805
3806 int
3807 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3808 struct drm_file *file_priv)
3809 {
3810 return i915_gem_ring_throttle(dev, file_priv);
3811 }
3812
3813 int
3814 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3815 struct drm_file *file_priv)
3816 {
3817 struct drm_i915_gem_madvise *args = data;
3818 struct drm_i915_gem_object *obj;
3819 int ret;
3820
3821 switch (args->madv) {
3822 case I915_MADV_DONTNEED:
3823 case I915_MADV_WILLNEED:
3824 break;
3825 default:
3826 return -EINVAL;
3827 }
3828
3829 ret = i915_mutex_lock_interruptible(dev);
3830 if (ret)
3831 return ret;
3832
3833 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3834 if (&obj->base == NULL) {
3835 ret = -ENOENT;
3836 goto unlock;
3837 }
3838
3839 if (obj->pin_count) {
3840 ret = -EINVAL;
3841 goto out;
3842 }
3843
3844 if (obj->madv != __I915_MADV_PURGED)
3845 obj->madv = args->madv;
3846
3847 /* if the object is no longer attached, discard its backing storage */
3848 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3849 i915_gem_object_truncate(obj);
3850
3851 args->retained = obj->madv != __I915_MADV_PURGED;
3852
3853 out:
3854 drm_gem_object_unreference(&obj->base);
3855 unlock:
3856 mutex_unlock(&dev->struct_mutex);
3857 return ret;
3858 }
3859
3860 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3861 const struct drm_i915_gem_object_ops *ops)
3862 {
3863 INIT_LIST_HEAD(&obj->mm_list);
3864 INIT_LIST_HEAD(&obj->global_list);
3865 INIT_LIST_HEAD(&obj->ring_list);
3866 INIT_LIST_HEAD(&obj->exec_list);
3867
3868 obj->ops = ops;
3869
3870 obj->fence_reg = I915_FENCE_REG_NONE;
3871 obj->madv = I915_MADV_WILLNEED;
3872 /* Avoid an unnecessary call to unbind on the first bind. */
3873 obj->map_and_fenceable = true;
3874
3875 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3876 }
3877
3878 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3879 .get_pages = i915_gem_object_get_pages_gtt,
3880 .put_pages = i915_gem_object_put_pages_gtt,
3881 };
3882
3883 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3884 size_t size)
3885 {
3886 struct drm_i915_gem_object *obj;
3887 struct address_space *mapping;
3888 gfp_t mask;
3889
3890 obj = i915_gem_object_alloc(dev);
3891 if (obj == NULL)
3892 return NULL;
3893
3894 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3895 i915_gem_object_free(obj);
3896 return NULL;
3897 }
3898
3899 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3900 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3901 /* 965gm cannot relocate objects above 4GiB. */
3902 mask &= ~__GFP_HIGHMEM;
3903 mask |= __GFP_DMA32;
3904 }
3905
3906 mapping = file_inode(obj->base.filp)->i_mapping;
3907 mapping_set_gfp_mask(mapping, mask);
3908
3909 i915_gem_object_init(obj, &i915_gem_object_ops);
3910
3911 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3912 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3913
3914 if (HAS_LLC(dev)) {
3915 /* On some devices, we can have the GPU use the LLC (the CPU
3916 * cache) for about a 10% performance improvement
3917 * compared to uncached. Graphics requests other than
3918 * display scanout are coherent with the CPU in
3919 * accessing this cache. This means in this mode we
3920 * don't need to clflush on the CPU side, and on the
3921 * GPU side we only need to flush internal caches to
3922 * get data visible to the CPU.
3923 *
3924 * However, we maintain the display planes as UC, and so
3925 * need to rebind when first used as such.
3926 */
3927 obj->cache_level = I915_CACHE_LLC;
3928 } else
3929 obj->cache_level = I915_CACHE_NONE;
3930
3931 return obj;
3932 }
3933
3934 int i915_gem_init_object(struct drm_gem_object *obj)
3935 {
3936 BUG();
3937
3938 return 0;
3939 }
3940
3941 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3942 {
3943 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3944 struct drm_device *dev = obj->base.dev;
3945 drm_i915_private_t *dev_priv = dev->dev_private;
3946
3947 trace_i915_gem_object_destroy(obj);
3948
3949 if (obj->phys_obj)
3950 i915_gem_detach_phys_object(dev, obj);
3951
3952 obj->pin_count = 0;
3953 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3954 bool was_interruptible;
3955
3956 was_interruptible = dev_priv->mm.interruptible;
3957 dev_priv->mm.interruptible = false;
3958
3959 WARN_ON(i915_gem_object_unbind(obj));
3960
3961 dev_priv->mm.interruptible = was_interruptible;
3962 }
3963
3964 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3965 * before progressing. */
3966 if (obj->stolen)
3967 i915_gem_object_unpin_pages(obj);
3968
3969 if (WARN_ON(obj->pages_pin_count))
3970 obj->pages_pin_count = 0;
3971 i915_gem_object_put_pages(obj);
3972 i915_gem_object_free_mmap_offset(obj);
3973 i915_gem_object_release_stolen(obj);
3974
3975 BUG_ON(obj->pages);
3976
3977 if (obj->base.import_attach)
3978 drm_prime_gem_destroy(&obj->base, NULL);
3979
3980 drm_gem_object_release(&obj->base);
3981 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3982
3983 kfree(obj->bit_17);
3984 i915_gem_object_free(obj);
3985 }
3986
3987 int
3988 i915_gem_idle(struct drm_device *dev)
3989 {
3990 drm_i915_private_t *dev_priv = dev->dev_private;
3991 int ret;
3992
3993 if (dev_priv->ums.mm_suspended) {
3994 mutex_unlock(&dev->struct_mutex);
3995 return 0;
3996 }
3997
3998 ret = i915_gpu_idle(dev);
3999 if (ret) {
4000 mutex_unlock(&dev->struct_mutex);
4001 return ret;
4002 }
4003 i915_gem_retire_requests(dev);
4004
4005 /* Under UMS, be paranoid and evict. */
4006 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4007 i915_gem_evict_everything(dev);
4008
4009 i915_gem_reset_fences(dev);
4010
4011 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4012
4013 i915_kernel_lost_context(dev);
4014 i915_gem_cleanup_ringbuffer(dev);
4015
4016 /* Cancel the retire work handler, which should be idle now. */
4017 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4018
4019 return 0;
4020 }
4021
4022 void i915_gem_l3_remap(struct drm_device *dev)
4023 {
4024 drm_i915_private_t *dev_priv = dev->dev_private;
4025 u32 misccpctl;
4026 int i;
4027
4028 if (!HAS_L3_GPU_CACHE(dev))
4029 return;
4030
4031 if (!dev_priv->l3_parity.remap_info)
4032 return;
4033
4034 misccpctl = I915_READ(GEN7_MISCCPCTL);
4035 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4036 POSTING_READ(GEN7_MISCCPCTL);
4037
4038 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4039 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4040 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4041 DRM_DEBUG("0x%x was already programmed to %x\n",
4042 GEN7_L3LOG_BASE + i, remap);
4043 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4044 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4045 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4046 }
4047
4048 /* Make sure all the writes land before disabling dop clock gating */
4049 POSTING_READ(GEN7_L3LOG_BASE);
4050
4051 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4052 }
4053
4054 void i915_gem_init_swizzling(struct drm_device *dev)
4055 {
4056 drm_i915_private_t *dev_priv = dev->dev_private;
4057
4058 if (INTEL_INFO(dev)->gen < 5 ||
4059 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4060 return;
4061
4062 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4063 DISP_TILE_SURFACE_SWIZZLING);
4064
4065 if (IS_GEN5(dev))
4066 return;
4067
4068 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4069 if (IS_GEN6(dev))
4070 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4071 else if (IS_GEN7(dev))
4072 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4073 else
4074 BUG();
4075 }
4076
4077 static bool
4078 intel_enable_blt(struct drm_device *dev)
4079 {
4080 if (!HAS_BLT(dev))
4081 return false;
4082
4083 /* The blitter was dysfunctional on early prototypes */
4084 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4085 DRM_INFO("BLT not supported on this pre-production hardware;"
4086 " graphics performance will be degraded.\n");
4087 return false;
4088 }
4089
4090 return true;
4091 }
4092
4093 static int i915_gem_init_rings(struct drm_device *dev)
4094 {
4095 struct drm_i915_private *dev_priv = dev->dev_private;
4096 int ret;
4097
4098 ret = intel_init_render_ring_buffer(dev);
4099 if (ret)
4100 return ret;
4101
4102 if (HAS_BSD(dev)) {
4103 ret = intel_init_bsd_ring_buffer(dev);
4104 if (ret)
4105 goto cleanup_render_ring;
4106 }
4107
4108 if (intel_enable_blt(dev)) {
4109 ret = intel_init_blt_ring_buffer(dev);
4110 if (ret)
4111 goto cleanup_bsd_ring;
4112 }
4113
4114 if (HAS_VEBOX(dev)) {
4115 ret = intel_init_vebox_ring_buffer(dev);
4116 if (ret)
4117 goto cleanup_blt_ring;
4118 }
4119
4120
4121 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4122 if (ret)
4123 goto cleanup_vebox_ring;
4124
4125 return 0;
4126
4127 cleanup_vebox_ring:
4128 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4129 cleanup_blt_ring:
4130 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4131 cleanup_bsd_ring:
4132 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4133 cleanup_render_ring:
4134 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4135
4136 return ret;
4137 }
4138
4139 int
4140 i915_gem_init_hw(struct drm_device *dev)
4141 {
4142 drm_i915_private_t *dev_priv = dev->dev_private;
4143 int ret;
4144
4145 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4146 return -EIO;
4147
4148 if (dev_priv->ellc_size)
4149 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4150
4151 if (HAS_PCH_NOP(dev)) {
4152 u32 temp = I915_READ(GEN7_MSG_CTL);
4153 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4154 I915_WRITE(GEN7_MSG_CTL, temp);
4155 }
4156
4157 i915_gem_l3_remap(dev);
4158
4159 i915_gem_init_swizzling(dev);
4160
4161 ret = i915_gem_init_rings(dev);
4162 if (ret)
4163 return ret;
4164
4165 /*
4166 * XXX: There was some w/a described somewhere suggesting loading
4167 * contexts before PPGTT.
4168 */
4169 i915_gem_context_init(dev);
4170 if (dev_priv->mm.aliasing_ppgtt) {
4171 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4172 if (ret) {
4173 i915_gem_cleanup_aliasing_ppgtt(dev);
4174 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4175 }
4176 }
4177
4178 return 0;
4179 }
4180
4181 int i915_gem_init(struct drm_device *dev)
4182 {
4183 struct drm_i915_private *dev_priv = dev->dev_private;
4184 int ret;
4185
4186 mutex_lock(&dev->struct_mutex);
4187
4188 if (IS_VALLEYVIEW(dev)) {
4189 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4190 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4191 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4192 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4193 }
4194
4195 i915_gem_init_global_gtt(dev);
4196
4197 ret = i915_gem_init_hw(dev);
4198 mutex_unlock(&dev->struct_mutex);
4199 if (ret) {
4200 i915_gem_cleanup_aliasing_ppgtt(dev);
4201 return ret;
4202 }
4203
4204 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4205 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4206 dev_priv->dri1.allow_batchbuffer = 1;
4207 return 0;
4208 }
4209
4210 void
4211 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4212 {
4213 drm_i915_private_t *dev_priv = dev->dev_private;
4214 struct intel_ring_buffer *ring;
4215 int i;
4216
4217 for_each_ring(ring, dev_priv, i)
4218 intel_cleanup_ring_buffer(ring);
4219 }
4220
4221 int
4222 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4223 struct drm_file *file_priv)
4224 {
4225 struct drm_i915_private *dev_priv = dev->dev_private;
4226 int ret;
4227
4228 if (drm_core_check_feature(dev, DRIVER_MODESET))
4229 return 0;
4230
4231 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4232 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4233 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4234 }
4235
4236 mutex_lock(&dev->struct_mutex);
4237 dev_priv->ums.mm_suspended = 0;
4238
4239 ret = i915_gem_init_hw(dev);
4240 if (ret != 0) {
4241 mutex_unlock(&dev->struct_mutex);
4242 return ret;
4243 }
4244
4245 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4246 mutex_unlock(&dev->struct_mutex);
4247
4248 ret = drm_irq_install(dev);
4249 if (ret)
4250 goto cleanup_ringbuffer;
4251
4252 return 0;
4253
4254 cleanup_ringbuffer:
4255 mutex_lock(&dev->struct_mutex);
4256 i915_gem_cleanup_ringbuffer(dev);
4257 dev_priv->ums.mm_suspended = 1;
4258 mutex_unlock(&dev->struct_mutex);
4259
4260 return ret;
4261 }
4262
4263 int
4264 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4265 struct drm_file *file_priv)
4266 {
4267 struct drm_i915_private *dev_priv = dev->dev_private;
4268 int ret;
4269
4270 if (drm_core_check_feature(dev, DRIVER_MODESET))
4271 return 0;
4272
4273 drm_irq_uninstall(dev);
4274
4275 mutex_lock(&dev->struct_mutex);
4276 ret = i915_gem_idle(dev);
4277
4278 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4279 * We need to replace this with a semaphore, or something.
4280 * And not confound ums.mm_suspended!
4281 */
4282 if (ret != 0)
4283 dev_priv->ums.mm_suspended = 1;
4284 mutex_unlock(&dev->struct_mutex);
4285
4286 return ret;
4287 }
4288
4289 void
4290 i915_gem_lastclose(struct drm_device *dev)
4291 {
4292 int ret;
4293
4294 if (drm_core_check_feature(dev, DRIVER_MODESET))
4295 return;
4296
4297 mutex_lock(&dev->struct_mutex);
4298 ret = i915_gem_idle(dev);
4299 if (ret)
4300 DRM_ERROR("failed to idle hardware: %d\n", ret);
4301 mutex_unlock(&dev->struct_mutex);
4302 }
4303
4304 static void
4305 init_ring_lists(struct intel_ring_buffer *ring)
4306 {
4307 INIT_LIST_HEAD(&ring->active_list);
4308 INIT_LIST_HEAD(&ring->request_list);
4309 }
4310
4311 void
4312 i915_gem_load(struct drm_device *dev)
4313 {
4314 drm_i915_private_t *dev_priv = dev->dev_private;
4315 int i;
4316
4317 dev_priv->slab =
4318 kmem_cache_create("i915_gem_object",
4319 sizeof(struct drm_i915_gem_object), 0,
4320 SLAB_HWCACHE_ALIGN,
4321 NULL);
4322
4323 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4324 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4325 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4326 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4327 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4328 for (i = 0; i < I915_NUM_RINGS; i++)
4329 init_ring_lists(&dev_priv->ring[i]);
4330 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4331 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4332 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4333 i915_gem_retire_work_handler);
4334 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4335
4336 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4337 if (IS_GEN3(dev)) {
4338 I915_WRITE(MI_ARB_STATE,
4339 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4340 }
4341
4342 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4343
4344 /* Old X drivers will take 0-2 for front, back, depth buffers */
4345 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4346 dev_priv->fence_reg_start = 3;
4347
4348 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4349 dev_priv->num_fence_regs = 32;
4350 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4351 dev_priv->num_fence_regs = 16;
4352 else
4353 dev_priv->num_fence_regs = 8;
4354
4355 /* Initialize fence registers to zero */
4356 i915_gem_reset_fences(dev);
4357
4358 i915_gem_detect_bit_6_swizzle(dev);
4359 init_waitqueue_head(&dev_priv->pending_flip_queue);
4360
4361 dev_priv->mm.interruptible = true;
4362
4363 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4364 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4365 register_shrinker(&dev_priv->mm.inactive_shrinker);
4366 }
4367
4368 /*
4369 * Create a physically contiguous memory object for this object
4370 * e.g. for cursor + overlay regs
4371 */
4372 static int i915_gem_init_phys_object(struct drm_device *dev,
4373 int id, int size, int align)
4374 {
4375 drm_i915_private_t *dev_priv = dev->dev_private;
4376 struct drm_i915_gem_phys_object *phys_obj;
4377 int ret;
4378
4379 if (dev_priv->mm.phys_objs[id - 1] || !size)
4380 return 0;
4381
4382 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4383 if (!phys_obj)
4384 return -ENOMEM;
4385
4386 phys_obj->id = id;
4387
4388 phys_obj->handle = drm_pci_alloc(dev, size, align);
4389 if (!phys_obj->handle) {
4390 ret = -ENOMEM;
4391 goto kfree_obj;
4392 }
4393 #ifdef CONFIG_X86
4394 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4395 #endif
4396
4397 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4398
4399 return 0;
4400 kfree_obj:
4401 kfree(phys_obj);
4402 return ret;
4403 }
4404
4405 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4406 {
4407 drm_i915_private_t *dev_priv = dev->dev_private;
4408 struct drm_i915_gem_phys_object *phys_obj;
4409
4410 if (!dev_priv->mm.phys_objs[id - 1])
4411 return;
4412
4413 phys_obj = dev_priv->mm.phys_objs[id - 1];
4414 if (phys_obj->cur_obj) {
4415 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4416 }
4417
4418 #ifdef CONFIG_X86
4419 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4420 #endif
4421 drm_pci_free(dev, phys_obj->handle);
4422 kfree(phys_obj);
4423 dev_priv->mm.phys_objs[id - 1] = NULL;
4424 }
4425
4426 void i915_gem_free_all_phys_object(struct drm_device *dev)
4427 {
4428 int i;
4429
4430 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4431 i915_gem_free_phys_object(dev, i);
4432 }
4433
4434 void i915_gem_detach_phys_object(struct drm_device *dev,
4435 struct drm_i915_gem_object *obj)
4436 {
4437 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4438 char *vaddr;
4439 int i;
4440 int page_count;
4441
4442 if (!obj->phys_obj)
4443 return;
4444 vaddr = obj->phys_obj->handle->vaddr;
4445
4446 page_count = obj->base.size / PAGE_SIZE;
4447 for (i = 0; i < page_count; i++) {
4448 struct page *page = shmem_read_mapping_page(mapping, i);
4449 if (!IS_ERR(page)) {
4450 char *dst = kmap_atomic(page);
4451 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4452 kunmap_atomic(dst);
4453
4454 drm_clflush_pages(&page, 1);
4455
4456 set_page_dirty(page);
4457 mark_page_accessed(page);
4458 page_cache_release(page);
4459 }
4460 }
4461 i915_gem_chipset_flush(dev);
4462
4463 obj->phys_obj->cur_obj = NULL;
4464 obj->phys_obj = NULL;
4465 }
4466
4467 int
4468 i915_gem_attach_phys_object(struct drm_device *dev,
4469 struct drm_i915_gem_object *obj,
4470 int id,
4471 int align)
4472 {
4473 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4474 drm_i915_private_t *dev_priv = dev->dev_private;
4475 int ret = 0;
4476 int page_count;
4477 int i;
4478
4479 if (id > I915_MAX_PHYS_OBJECT)
4480 return -EINVAL;
4481
4482 if (obj->phys_obj) {
4483 if (obj->phys_obj->id == id)
4484 return 0;
4485 i915_gem_detach_phys_object(dev, obj);
4486 }
4487
4488 /* create a new object */
4489 if (!dev_priv->mm.phys_objs[id - 1]) {
4490 ret = i915_gem_init_phys_object(dev, id,
4491 obj->base.size, align);
4492 if (ret) {
4493 DRM_ERROR("failed to init phys object %d size: %zu\n",
4494 id, obj->base.size);
4495 return ret;
4496 }
4497 }
4498
4499 /* bind to the object */
4500 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4501 obj->phys_obj->cur_obj = obj;
4502
4503 page_count = obj->base.size / PAGE_SIZE;
4504
4505 for (i = 0; i < page_count; i++) {
4506 struct page *page;
4507 char *dst, *src;
4508
4509 page = shmem_read_mapping_page(mapping, i);
4510 if (IS_ERR(page))
4511 return PTR_ERR(page);
4512
4513 src = kmap_atomic(page);
4514 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4515 memcpy(dst, src, PAGE_SIZE);
4516 kunmap_atomic(src);
4517
4518 mark_page_accessed(page);
4519 page_cache_release(page);
4520 }
4521
4522 return 0;
4523 }
4524
4525 static int
4526 i915_gem_phys_pwrite(struct drm_device *dev,
4527 struct drm_i915_gem_object *obj,
4528 struct drm_i915_gem_pwrite *args,
4529 struct drm_file *file_priv)
4530 {
4531 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4532 char __user *user_data = to_user_ptr(args->data_ptr);
4533
4534 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4535 unsigned long unwritten;
4536
4537 /* The physical object once assigned is fixed for the lifetime
4538 * of the obj, so we can safely drop the lock and continue
4539 * to access vaddr.
4540 */
4541 mutex_unlock(&dev->struct_mutex);
4542 unwritten = copy_from_user(vaddr, user_data, args->size);
4543 mutex_lock(&dev->struct_mutex);
4544 if (unwritten)
4545 return -EFAULT;
4546 }
4547
4548 i915_gem_chipset_flush(dev);
4549 return 0;
4550 }
4551
4552 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4553 {
4554 struct drm_i915_file_private *file_priv = file->driver_priv;
4555
4556 /* Clean up our request list when the client is going away, so that
4557 * later retire_requests won't dereference our soon-to-be-gone
4558 * file_priv.
4559 */
4560 spin_lock(&file_priv->mm.lock);
4561 while (!list_empty(&file_priv->mm.request_list)) {
4562 struct drm_i915_gem_request *request;
4563
4564 request = list_first_entry(&file_priv->mm.request_list,
4565 struct drm_i915_gem_request,
4566 client_list);
4567 list_del(&request->client_list);
4568 request->file_priv = NULL;
4569 }
4570 spin_unlock(&file_priv->mm.lock);
4571 }
4572
4573 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4574 {
4575 if (!mutex_is_locked(mutex))
4576 return false;
4577
4578 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4579 return mutex->owner == task;
4580 #else
4581 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4582 return false;
4583 #endif
4584 }
4585
4586 static int
4587 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4588 {
4589 struct drm_i915_private *dev_priv =
4590 container_of(shrinker,
4591 struct drm_i915_private,
4592 mm.inactive_shrinker);
4593 struct drm_device *dev = dev_priv->dev;
4594 struct drm_i915_gem_object *obj;
4595 int nr_to_scan = sc->nr_to_scan;
4596 bool unlock = true;
4597 int cnt;
4598
4599 if (!mutex_trylock(&dev->struct_mutex)) {
4600 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4601 return 0;
4602
4603 if (dev_priv->mm.shrinker_no_lock_stealing)
4604 return 0;
4605
4606 unlock = false;
4607 }
4608
4609 if (nr_to_scan) {
4610 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4611 if (nr_to_scan > 0)
4612 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4613 false);
4614 if (nr_to_scan > 0)
4615 i915_gem_shrink_all(dev_priv);
4616 }
4617
4618 cnt = 0;
4619 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4620 if (obj->pages_pin_count == 0)
4621 cnt += obj->base.size >> PAGE_SHIFT;
4622 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4623 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4624 cnt += obj->base.size >> PAGE_SHIFT;
4625
4626 if (unlock)
4627 mutex_unlock(&dev->struct_mutex);
4628 return cnt;
4629 }
This page took 0.173614 seconds and 5 git commands to generate.