drm/i915: Add functions to emit register offsets to the ring
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151 unsigned long timeout;
1152
1153 if (i915_gem_request_get_ring(req)->irq_refcount)
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
1158 if (i915_gem_request_completed(req, true))
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
1163
1164 cpu_relax_lowlatency();
1165 }
1166 if (i915_gem_request_completed(req, false))
1167 return 0;
1168
1169 return -EAGAIN;
1170 }
1171
1172 /**
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
1186 * Returns 0 if the request was found within the alloted time. Else returns the
1187 * errno with remaining time filled in timeout argument.
1188 */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190 unsigned reset_counter,
1191 bool interruptible,
1192 s64 *timeout,
1193 struct intel_rps_client *rps)
1194 {
1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196 struct drm_device *dev = ring->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200 DEFINE_WAIT(wait);
1201 unsigned long timeout_expire;
1202 s64 before, now;
1203 int ret;
1204
1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207 if (list_empty(&req->list))
1208 return 0;
1209
1210 if (i915_gem_request_completed(req, true))
1211 return 0;
1212
1213 timeout_expire = timeout ?
1214 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215
1216 if (INTEL_INFO(dev_priv)->gen >= 6)
1217 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218
1219 /* Record current time in case interrupted by signal, or wedged */
1220 trace_i915_gem_request_wait_begin(req);
1221 before = ktime_get_raw_ns();
1222
1223 /* Optimistic spin for the next jiffie before touching IRQs */
1224 ret = __i915_spin_request(req);
1225 if (ret == 0)
1226 goto out;
1227
1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229 ret = -ENODEV;
1230 goto out;
1231 }
1232
1233 for (;;) {
1234 struct timer_list timer;
1235
1236 prepare_to_wait(&ring->irq_queue, &wait,
1237 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238
1239 /* We need to check whether any gpu reset happened in between
1240 * the caller grabbing the seqno and now ... */
1241 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243 * is truely gone. */
1244 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245 if (ret == 0)
1246 ret = -EAGAIN;
1247 break;
1248 }
1249
1250 if (i915_gem_request_completed(req, false)) {
1251 ret = 0;
1252 break;
1253 }
1254
1255 if (interruptible && signal_pending(current)) {
1256 ret = -ERESTARTSYS;
1257 break;
1258 }
1259
1260 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261 ret = -ETIME;
1262 break;
1263 }
1264
1265 timer.function = NULL;
1266 if (timeout || missed_irq(dev_priv, ring)) {
1267 unsigned long expire;
1268
1269 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271 mod_timer(&timer, expire);
1272 }
1273
1274 io_schedule();
1275
1276 if (timer.function) {
1277 del_singleshot_timer_sync(&timer);
1278 destroy_timer_on_stack(&timer);
1279 }
1280 }
1281 if (!irq_test_in_progress)
1282 ring->irq_put(ring);
1283
1284 finish_wait(&ring->irq_queue, &wait);
1285
1286 out:
1287 now = ktime_get_raw_ns();
1288 trace_i915_gem_request_wait_end(req);
1289
1290 if (timeout) {
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
1304 }
1305
1306 return ret;
1307 }
1308
1309 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310 struct drm_file *file)
1311 {
1312 struct drm_i915_private *dev_private;
1313 struct drm_i915_file_private *file_priv;
1314
1315 WARN_ON(!req || !file || req->file_priv);
1316
1317 if (!req || !file)
1318 return -EINVAL;
1319
1320 if (req->file_priv)
1321 return -EINVAL;
1322
1323 dev_private = req->ring->dev->dev_private;
1324 file_priv = file->driver_priv;
1325
1326 spin_lock(&file_priv->mm.lock);
1327 req->file_priv = file_priv;
1328 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329 spin_unlock(&file_priv->mm.lock);
1330
1331 req->pid = get_pid(task_pid(current));
1332
1333 return 0;
1334 }
1335
1336 static inline void
1337 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338 {
1339 struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341 if (!file_priv)
1342 return;
1343
1344 spin_lock(&file_priv->mm.lock);
1345 list_del(&request->client_list);
1346 request->file_priv = NULL;
1347 spin_unlock(&file_priv->mm.lock);
1348
1349 put_pid(request->pid);
1350 request->pid = NULL;
1351 }
1352
1353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354 {
1355 trace_i915_gem_request_retire(request);
1356
1357 /* We know the GPU must have read the request to have
1358 * sent us the seqno + interrupt, so use the position
1359 * of tail of the request to update the last known position
1360 * of the GPU head.
1361 *
1362 * Note this requires that we are always called in request
1363 * completion order.
1364 */
1365 request->ringbuf->last_retired_head = request->postfix;
1366
1367 list_del_init(&request->list);
1368 i915_gem_request_remove_from_client(request);
1369
1370 i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395 * Waits for a request to be signaled, and cleans up the
1396 * request and object lists appropriately for that event.
1397 */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
1404 int ret;
1405
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 if (ret)
1416 return ret;
1417
1418 ret = __i915_wait_request(req,
1419 atomic_read(&dev_priv->gpu_error.reset_counter),
1420 interruptible, NULL, NULL);
1421 if (ret)
1422 return ret;
1423
1424 __i915_gem_request_retire__upto(req);
1425 return 0;
1426 }
1427
1428 /**
1429 * Ensures that all rendering to the object has completed and the object is
1430 * safe to unbind from the GTT or access from the CPU.
1431 */
1432 int
1433 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434 bool readonly)
1435 {
1436 int ret, i;
1437
1438 if (!obj->active)
1439 return 0;
1440
1441 if (readonly) {
1442 if (obj->last_write_req != NULL) {
1443 ret = i915_wait_request(obj->last_write_req);
1444 if (ret)
1445 return ret;
1446
1447 i = obj->last_write_req->ring->id;
1448 if (obj->last_read_req[i] == obj->last_write_req)
1449 i915_gem_object_retire__read(obj, i);
1450 else
1451 i915_gem_object_retire__write(obj);
1452 }
1453 } else {
1454 for (i = 0; i < I915_NUM_RINGS; i++) {
1455 if (obj->last_read_req[i] == NULL)
1456 continue;
1457
1458 ret = i915_wait_request(obj->last_read_req[i]);
1459 if (ret)
1460 return ret;
1461
1462 i915_gem_object_retire__read(obj, i);
1463 }
1464 RQ_BUG_ON(obj->active);
1465 }
1466
1467 return 0;
1468 }
1469
1470 static void
1471 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472 struct drm_i915_gem_request *req)
1473 {
1474 int ring = req->ring->id;
1475
1476 if (obj->last_read_req[ring] == req)
1477 i915_gem_object_retire__read(obj, ring);
1478 else if (obj->last_write_req == req)
1479 i915_gem_object_retire__write(obj);
1480
1481 __i915_gem_request_retire__upto(req);
1482 }
1483
1484 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1485 * as the object state may change during this call.
1486 */
1487 static __must_check int
1488 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489 struct intel_rps_client *rps,
1490 bool readonly)
1491 {
1492 struct drm_device *dev = obj->base.dev;
1493 struct drm_i915_private *dev_priv = dev->dev_private;
1494 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495 unsigned reset_counter;
1496 int ret, i, n = 0;
1497
1498 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499 BUG_ON(!dev_priv->mm.interruptible);
1500
1501 if (!obj->active)
1502 return 0;
1503
1504 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505 if (ret)
1506 return ret;
1507
1508 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509
1510 if (readonly) {
1511 struct drm_i915_gem_request *req;
1512
1513 req = obj->last_write_req;
1514 if (req == NULL)
1515 return 0;
1516
1517 requests[n++] = i915_gem_request_reference(req);
1518 } else {
1519 for (i = 0; i < I915_NUM_RINGS; i++) {
1520 struct drm_i915_gem_request *req;
1521
1522 req = obj->last_read_req[i];
1523 if (req == NULL)
1524 continue;
1525
1526 requests[n++] = i915_gem_request_reference(req);
1527 }
1528 }
1529
1530 mutex_unlock(&dev->struct_mutex);
1531 for (i = 0; ret == 0 && i < n; i++)
1532 ret = __i915_wait_request(requests[i], reset_counter, true,
1533 NULL, rps);
1534 mutex_lock(&dev->struct_mutex);
1535
1536 for (i = 0; i < n; i++) {
1537 if (ret == 0)
1538 i915_gem_object_retire_request(obj, requests[i]);
1539 i915_gem_request_unreference(requests[i]);
1540 }
1541
1542 return ret;
1543 }
1544
1545 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546 {
1547 struct drm_i915_file_private *fpriv = file->driver_priv;
1548 return &fpriv->rps;
1549 }
1550
1551 /**
1552 * Called when user space prepares to use an object with the CPU, either
1553 * through the mmap ioctl's mapping or a GTT mapping.
1554 */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557 struct drm_file *file)
1558 {
1559 struct drm_i915_gem_set_domain *args = data;
1560 struct drm_i915_gem_object *obj;
1561 uint32_t read_domains = args->read_domains;
1562 uint32_t write_domain = args->write_domain;
1563 int ret;
1564
1565 /* Only handle setting domains to types used by the CPU. */
1566 if (write_domain & I915_GEM_GPU_DOMAINS)
1567 return -EINVAL;
1568
1569 if (read_domains & I915_GEM_GPU_DOMAINS)
1570 return -EINVAL;
1571
1572 /* Having something in the write domain implies it's in the read
1573 * domain, and only that read domain. Enforce that in the request.
1574 */
1575 if (write_domain != 0 && read_domains != write_domain)
1576 return -EINVAL;
1577
1578 ret = i915_mutex_lock_interruptible(dev);
1579 if (ret)
1580 return ret;
1581
1582 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583 if (&obj->base == NULL) {
1584 ret = -ENOENT;
1585 goto unlock;
1586 }
1587
1588 /* Try to flush the object off the GPU without holding the lock.
1589 * We will repeat the flush holding the lock in the normal manner
1590 * to catch cases where we are gazumped.
1591 */
1592 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593 to_rps_client(file),
1594 !write_domain);
1595 if (ret)
1596 goto unref;
1597
1598 if (read_domains & I915_GEM_DOMAIN_GTT)
1599 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600 else
1601 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602
1603 if (write_domain != 0)
1604 intel_fb_obj_invalidate(obj,
1605 write_domain == I915_GEM_DOMAIN_GTT ?
1606 ORIGIN_GTT : ORIGIN_CPU);
1607
1608 unref:
1609 drm_gem_object_unreference(&obj->base);
1610 unlock:
1611 mutex_unlock(&dev->struct_mutex);
1612 return ret;
1613 }
1614
1615 /**
1616 * Called when user space has done writes to this buffer
1617 */
1618 int
1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620 struct drm_file *file)
1621 {
1622 struct drm_i915_gem_sw_finish *args = data;
1623 struct drm_i915_gem_object *obj;
1624 int ret = 0;
1625
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 return ret;
1629
1630 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631 if (&obj->base == NULL) {
1632 ret = -ENOENT;
1633 goto unlock;
1634 }
1635
1636 /* Pinned buffers may be scanout, so flush the cache */
1637 if (obj->pin_display)
1638 i915_gem_object_flush_cpu_write_domain(obj);
1639
1640 drm_gem_object_unreference(&obj->base);
1641 unlock:
1642 mutex_unlock(&dev->struct_mutex);
1643 return ret;
1644 }
1645
1646 /**
1647 * Maps the contents of an object, returning the address it is mapped
1648 * into.
1649 *
1650 * While the mapping holds a reference on the contents of the object, it doesn't
1651 * imply a ref on the object itself.
1652 *
1653 * IMPORTANT:
1654 *
1655 * DRM driver writers who look a this function as an example for how to do GEM
1656 * mmap support, please don't implement mmap support like here. The modern way
1657 * to implement DRM mmap support is with an mmap offset ioctl (like
1658 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659 * That way debug tooling like valgrind will understand what's going on, hiding
1660 * the mmap call in a driver private ioctl will break that. The i915 driver only
1661 * does cpu mmaps this way because we didn't know better.
1662 */
1663 int
1664 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665 struct drm_file *file)
1666 {
1667 struct drm_i915_gem_mmap *args = data;
1668 struct drm_gem_object *obj;
1669 unsigned long addr;
1670
1671 if (args->flags & ~(I915_MMAP_WC))
1672 return -EINVAL;
1673
1674 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675 return -ENODEV;
1676
1677 obj = drm_gem_object_lookup(dev, file, args->handle);
1678 if (obj == NULL)
1679 return -ENOENT;
1680
1681 /* prime objects have no backing filp to GEM mmap
1682 * pages from.
1683 */
1684 if (!obj->filp) {
1685 drm_gem_object_unreference_unlocked(obj);
1686 return -EINVAL;
1687 }
1688
1689 addr = vm_mmap(obj->filp, 0, args->size,
1690 PROT_READ | PROT_WRITE, MAP_SHARED,
1691 args->offset);
1692 if (args->flags & I915_MMAP_WC) {
1693 struct mm_struct *mm = current->mm;
1694 struct vm_area_struct *vma;
1695
1696 down_write(&mm->mmap_sem);
1697 vma = find_vma(mm, addr);
1698 if (vma)
1699 vma->vm_page_prot =
1700 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701 else
1702 addr = -ENOMEM;
1703 up_write(&mm->mmap_sem);
1704 }
1705 drm_gem_object_unreference_unlocked(obj);
1706 if (IS_ERR((void *)addr))
1707 return addr;
1708
1709 args->addr_ptr = (uint64_t) addr;
1710
1711 return 0;
1712 }
1713
1714 /**
1715 * i915_gem_fault - fault a page into the GTT
1716 * @vma: VMA in question
1717 * @vmf: fault info
1718 *
1719 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720 * from userspace. The fault handler takes care of binding the object to
1721 * the GTT (if needed), allocating and programming a fence register (again,
1722 * only if needed based on whether the old reg is still valid or the object
1723 * is tiled) and inserting a new PTE into the faulting process.
1724 *
1725 * Note that the faulting process may involve evicting existing objects
1726 * from the GTT and/or fence registers to make room. So performance may
1727 * suffer if the GTT working set is large or there are few fence registers
1728 * left.
1729 */
1730 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 {
1732 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733 struct drm_device *dev = obj->base.dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 struct i915_ggtt_view view = i915_ggtt_view_normal;
1736 pgoff_t page_offset;
1737 unsigned long pfn;
1738 int ret = 0;
1739 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740
1741 intel_runtime_pm_get(dev_priv);
1742
1743 /* We don't use vmf->pgoff since that has the fake offset */
1744 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745 PAGE_SHIFT;
1746
1747 ret = i915_mutex_lock_interruptible(dev);
1748 if (ret)
1749 goto out;
1750
1751 trace_i915_gem_object_fault(obj, page_offset, true, write);
1752
1753 /* Try to flush the object off the GPU first without holding the lock.
1754 * Upon reacquiring the lock, we will perform our sanity checks and then
1755 * repeat the flush holding the lock in the normal manner to catch cases
1756 * where we are gazumped.
1757 */
1758 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759 if (ret)
1760 goto unlock;
1761
1762 /* Access to snoopable pages through the GTT is incoherent. */
1763 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764 ret = -EFAULT;
1765 goto unlock;
1766 }
1767
1768 /* Use a partial view if the object is bigger than the aperture. */
1769 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770 obj->tiling_mode == I915_TILING_NONE) {
1771 static const unsigned int chunk_size = 256; // 1 MiB
1772
1773 memset(&view, 0, sizeof(view));
1774 view.type = I915_GGTT_VIEW_PARTIAL;
1775 view.params.partial.offset = rounddown(page_offset, chunk_size);
1776 view.params.partial.size =
1777 min_t(unsigned int,
1778 chunk_size,
1779 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780 view.params.partial.offset);
1781 }
1782
1783 /* Now pin it into the GTT if needed */
1784 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785 if (ret)
1786 goto unlock;
1787
1788 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789 if (ret)
1790 goto unpin;
1791
1792 ret = i915_gem_object_get_fence(obj);
1793 if (ret)
1794 goto unpin;
1795
1796 /* Finally, remap it using the new GTT offset */
1797 pfn = dev_priv->gtt.mappable_base +
1798 i915_gem_obj_ggtt_offset_view(obj, &view);
1799 pfn >>= PAGE_SHIFT;
1800
1801 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802 /* Overriding existing pages in partial view does not cause
1803 * us any trouble as TLBs are still valid because the fault
1804 * is due to userspace losing part of the mapping or never
1805 * having accessed it before (at this partials' range).
1806 */
1807 unsigned long base = vma->vm_start +
1808 (view.params.partial.offset << PAGE_SHIFT);
1809 unsigned int i;
1810
1811 for (i = 0; i < view.params.partial.size; i++) {
1812 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813 if (ret)
1814 break;
1815 }
1816
1817 obj->fault_mappable = true;
1818 } else {
1819 if (!obj->fault_mappable) {
1820 unsigned long size = min_t(unsigned long,
1821 vma->vm_end - vma->vm_start,
1822 obj->base.size);
1823 int i;
1824
1825 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826 ret = vm_insert_pfn(vma,
1827 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828 pfn + i);
1829 if (ret)
1830 break;
1831 }
1832
1833 obj->fault_mappable = true;
1834 } else
1835 ret = vm_insert_pfn(vma,
1836 (unsigned long)vmf->virtual_address,
1837 pfn + page_offset);
1838 }
1839 unpin:
1840 i915_gem_object_ggtt_unpin_view(obj, &view);
1841 unlock:
1842 mutex_unlock(&dev->struct_mutex);
1843 out:
1844 switch (ret) {
1845 case -EIO:
1846 /*
1847 * We eat errors when the gpu is terminally wedged to avoid
1848 * userspace unduly crashing (gl has no provisions for mmaps to
1849 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850 * and so needs to be reported.
1851 */
1852 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853 ret = VM_FAULT_SIGBUS;
1854 break;
1855 }
1856 case -EAGAIN:
1857 /*
1858 * EAGAIN means the gpu is hung and we'll wait for the error
1859 * handler to reset everything when re-faulting in
1860 * i915_mutex_lock_interruptible.
1861 */
1862 case 0:
1863 case -ERESTARTSYS:
1864 case -EINTR:
1865 case -EBUSY:
1866 /*
1867 * EBUSY is ok: this just means that another thread
1868 * already did the job.
1869 */
1870 ret = VM_FAULT_NOPAGE;
1871 break;
1872 case -ENOMEM:
1873 ret = VM_FAULT_OOM;
1874 break;
1875 case -ENOSPC:
1876 case -EFAULT:
1877 ret = VM_FAULT_SIGBUS;
1878 break;
1879 default:
1880 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881 ret = VM_FAULT_SIGBUS;
1882 break;
1883 }
1884
1885 intel_runtime_pm_put(dev_priv);
1886 return ret;
1887 }
1888
1889 /**
1890 * i915_gem_release_mmap - remove physical page mappings
1891 * @obj: obj in question
1892 *
1893 * Preserve the reservation of the mmapping with the DRM core code, but
1894 * relinquish ownership of the pages back to the system.
1895 *
1896 * It is vital that we remove the page mapping if we have mapped a tiled
1897 * object through the GTT and then lose the fence register due to
1898 * resource pressure. Similarly if the object has been moved out of the
1899 * aperture, than pages mapped into userspace must be revoked. Removing the
1900 * mapping will then trigger a page fault on the next user access, allowing
1901 * fixup by i915_gem_fault().
1902 */
1903 void
1904 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905 {
1906 if (!obj->fault_mappable)
1907 return;
1908
1909 drm_vma_node_unmap(&obj->base.vma_node,
1910 obj->base.dev->anon_inode->i_mapping);
1911 obj->fault_mappable = false;
1912 }
1913
1914 void
1915 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916 {
1917 struct drm_i915_gem_object *obj;
1918
1919 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920 i915_gem_release_mmap(obj);
1921 }
1922
1923 uint32_t
1924 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925 {
1926 uint32_t gtt_size;
1927
1928 if (INTEL_INFO(dev)->gen >= 4 ||
1929 tiling_mode == I915_TILING_NONE)
1930 return size;
1931
1932 /* Previous chips need a power-of-two fence region when tiling */
1933 if (INTEL_INFO(dev)->gen == 3)
1934 gtt_size = 1024*1024;
1935 else
1936 gtt_size = 512*1024;
1937
1938 while (gtt_size < size)
1939 gtt_size <<= 1;
1940
1941 return gtt_size;
1942 }
1943
1944 /**
1945 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946 * @obj: object to check
1947 *
1948 * Return the required GTT alignment for an object, taking into account
1949 * potential fence register mapping.
1950 */
1951 uint32_t
1952 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953 int tiling_mode, bool fenced)
1954 {
1955 /*
1956 * Minimum alignment is 4k (GTT page size), but might be greater
1957 * if a fence register is needed for the object.
1958 */
1959 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960 tiling_mode == I915_TILING_NONE)
1961 return 4096;
1962
1963 /*
1964 * Previous chips need to be aligned to the size of the smallest
1965 * fence register that can contain the object.
1966 */
1967 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 }
1969
1970 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971 {
1972 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973 int ret;
1974
1975 if (drm_vma_node_has_offset(&obj->base.vma_node))
1976 return 0;
1977
1978 dev_priv->mm.shrinker_no_lock_stealing = true;
1979
1980 ret = drm_gem_create_mmap_offset(&obj->base);
1981 if (ret != -ENOSPC)
1982 goto out;
1983
1984 /* Badly fragmented mmap space? The only way we can recover
1985 * space is by destroying unwanted objects. We can't randomly release
1986 * mmap_offsets as userspace expects them to be persistent for the
1987 * lifetime of the objects. The closest we can is to release the
1988 * offsets on purgeable objects by truncating it and marking it purged,
1989 * which prevents userspace from ever using that object again.
1990 */
1991 i915_gem_shrink(dev_priv,
1992 obj->base.size >> PAGE_SHIFT,
1993 I915_SHRINK_BOUND |
1994 I915_SHRINK_UNBOUND |
1995 I915_SHRINK_PURGEABLE);
1996 ret = drm_gem_create_mmap_offset(&obj->base);
1997 if (ret != -ENOSPC)
1998 goto out;
1999
2000 i915_gem_shrink_all(dev_priv);
2001 ret = drm_gem_create_mmap_offset(&obj->base);
2002 out:
2003 dev_priv->mm.shrinker_no_lock_stealing = false;
2004
2005 return ret;
2006 }
2007
2008 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009 {
2010 drm_gem_free_mmap_offset(&obj->base);
2011 }
2012
2013 int
2014 i915_gem_mmap_gtt(struct drm_file *file,
2015 struct drm_device *dev,
2016 uint32_t handle,
2017 uint64_t *offset)
2018 {
2019 struct drm_i915_gem_object *obj;
2020 int ret;
2021
2022 ret = i915_mutex_lock_interruptible(dev);
2023 if (ret)
2024 return ret;
2025
2026 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027 if (&obj->base == NULL) {
2028 ret = -ENOENT;
2029 goto unlock;
2030 }
2031
2032 if (obj->madv != I915_MADV_WILLNEED) {
2033 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034 ret = -EFAULT;
2035 goto out;
2036 }
2037
2038 ret = i915_gem_object_create_mmap_offset(obj);
2039 if (ret)
2040 goto out;
2041
2042 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043
2044 out:
2045 drm_gem_object_unreference(&obj->base);
2046 unlock:
2047 mutex_unlock(&dev->struct_mutex);
2048 return ret;
2049 }
2050
2051 /**
2052 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053 * @dev: DRM device
2054 * @data: GTT mapping ioctl data
2055 * @file: GEM object info
2056 *
2057 * Simply returns the fake offset to userspace so it can mmap it.
2058 * The mmap call will end up in drm_gem_mmap(), which will set things
2059 * up so we can get faults in the handler above.
2060 *
2061 * The fault handler will take care of binding the object into the GTT
2062 * (since it may have been evicted to make room for something), allocating
2063 * a fence register, and mapping the appropriate aperture address into
2064 * userspace.
2065 */
2066 int
2067 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068 struct drm_file *file)
2069 {
2070 struct drm_i915_gem_mmap_gtt *args = data;
2071
2072 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 }
2074
2075 /* Immediately discard the backing storage */
2076 static void
2077 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078 {
2079 i915_gem_object_free_mmap_offset(obj);
2080
2081 if (obj->base.filp == NULL)
2082 return;
2083
2084 /* Our goal here is to return as much of the memory as
2085 * is possible back to the system as we are called from OOM.
2086 * To do this we must instruct the shmfs to drop all of its
2087 * backing pages, *now*.
2088 */
2089 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2090 obj->madv = __I915_MADV_PURGED;
2091 }
2092
2093 /* Try to discard unwanted pages */
2094 static void
2095 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2096 {
2097 struct address_space *mapping;
2098
2099 switch (obj->madv) {
2100 case I915_MADV_DONTNEED:
2101 i915_gem_object_truncate(obj);
2102 case __I915_MADV_PURGED:
2103 return;
2104 }
2105
2106 if (obj->base.filp == NULL)
2107 return;
2108
2109 mapping = file_inode(obj->base.filp)->i_mapping,
2110 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 }
2112
2113 static void
2114 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115 {
2116 struct sg_page_iter sg_iter;
2117 int ret;
2118
2119 BUG_ON(obj->madv == __I915_MADV_PURGED);
2120
2121 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122 if (ret) {
2123 /* In the event of a disaster, abandon all caches and
2124 * hope for the best.
2125 */
2126 WARN_ON(ret != -EIO);
2127 i915_gem_clflush_object(obj, true);
2128 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129 }
2130
2131 i915_gem_gtt_finish_object(obj);
2132
2133 if (i915_gem_object_needs_bit17_swizzle(obj))
2134 i915_gem_object_save_bit_17_swizzle(obj);
2135
2136 if (obj->madv == I915_MADV_DONTNEED)
2137 obj->dirty = 0;
2138
2139 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140 struct page *page = sg_page_iter_page(&sg_iter);
2141
2142 if (obj->dirty)
2143 set_page_dirty(page);
2144
2145 if (obj->madv == I915_MADV_WILLNEED)
2146 mark_page_accessed(page);
2147
2148 page_cache_release(page);
2149 }
2150 obj->dirty = 0;
2151
2152 sg_free_table(obj->pages);
2153 kfree(obj->pages);
2154 }
2155
2156 int
2157 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158 {
2159 const struct drm_i915_gem_object_ops *ops = obj->ops;
2160
2161 if (obj->pages == NULL)
2162 return 0;
2163
2164 if (obj->pages_pin_count)
2165 return -EBUSY;
2166
2167 BUG_ON(i915_gem_obj_bound_any(obj));
2168
2169 /* ->put_pages might need to allocate memory for the bit17 swizzle
2170 * array, hence protect them from being reaped by removing them from gtt
2171 * lists early. */
2172 list_del(&obj->global_list);
2173
2174 ops->put_pages(obj);
2175 obj->pages = NULL;
2176
2177 i915_gem_object_invalidate(obj);
2178
2179 return 0;
2180 }
2181
2182 static int
2183 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184 {
2185 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186 int page_count, i;
2187 struct address_space *mapping;
2188 struct sg_table *st;
2189 struct scatterlist *sg;
2190 struct sg_page_iter sg_iter;
2191 struct page *page;
2192 unsigned long last_pfn = 0; /* suppress gcc warning */
2193 int ret;
2194 gfp_t gfp;
2195
2196 /* Assert that the object is not currently in any GPU domain. As it
2197 * wasn't in the GTT, there shouldn't be any way it could have been in
2198 * a GPU cache
2199 */
2200 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202
2203 st = kmalloc(sizeof(*st), GFP_KERNEL);
2204 if (st == NULL)
2205 return -ENOMEM;
2206
2207 page_count = obj->base.size / PAGE_SIZE;
2208 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2209 kfree(st);
2210 return -ENOMEM;
2211 }
2212
2213 /* Get the list of pages out of our struct file. They'll be pinned
2214 * at this point until we release them.
2215 *
2216 * Fail silently without starting the shrinker
2217 */
2218 mapping = file_inode(obj->base.filp)->i_mapping;
2219 gfp = mapping_gfp_mask(mapping);
2220 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2221 gfp &= ~(__GFP_IO | __GFP_WAIT);
2222 sg = st->sgl;
2223 st->nents = 0;
2224 for (i = 0; i < page_count; i++) {
2225 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2226 if (IS_ERR(page)) {
2227 i915_gem_shrink(dev_priv,
2228 page_count,
2229 I915_SHRINK_BOUND |
2230 I915_SHRINK_UNBOUND |
2231 I915_SHRINK_PURGEABLE);
2232 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233 }
2234 if (IS_ERR(page)) {
2235 /* We've tried hard to allocate the memory by reaping
2236 * our own buffer, now let the real VM do its job and
2237 * go down in flames if truly OOM.
2238 */
2239 i915_gem_shrink_all(dev_priv);
2240 page = shmem_read_mapping_page(mapping, i);
2241 if (IS_ERR(page)) {
2242 ret = PTR_ERR(page);
2243 goto err_pages;
2244 }
2245 }
2246 #ifdef CONFIG_SWIOTLB
2247 if (swiotlb_nr_tbl()) {
2248 st->nents++;
2249 sg_set_page(sg, page, PAGE_SIZE, 0);
2250 sg = sg_next(sg);
2251 continue;
2252 }
2253 #endif
2254 if (!i || page_to_pfn(page) != last_pfn + 1) {
2255 if (i)
2256 sg = sg_next(sg);
2257 st->nents++;
2258 sg_set_page(sg, page, PAGE_SIZE, 0);
2259 } else {
2260 sg->length += PAGE_SIZE;
2261 }
2262 last_pfn = page_to_pfn(page);
2263
2264 /* Check that the i965g/gm workaround works. */
2265 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2266 }
2267 #ifdef CONFIG_SWIOTLB
2268 if (!swiotlb_nr_tbl())
2269 #endif
2270 sg_mark_end(sg);
2271 obj->pages = st;
2272
2273 ret = i915_gem_gtt_prepare_object(obj);
2274 if (ret)
2275 goto err_pages;
2276
2277 if (i915_gem_object_needs_bit17_swizzle(obj))
2278 i915_gem_object_do_bit_17_swizzle(obj);
2279
2280 if (obj->tiling_mode != I915_TILING_NONE &&
2281 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2282 i915_gem_object_pin_pages(obj);
2283
2284 return 0;
2285
2286 err_pages:
2287 sg_mark_end(sg);
2288 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2289 page_cache_release(sg_page_iter_page(&sg_iter));
2290 sg_free_table(st);
2291 kfree(st);
2292
2293 /* shmemfs first checks if there is enough memory to allocate the page
2294 * and reports ENOSPC should there be insufficient, along with the usual
2295 * ENOMEM for a genuine allocation failure.
2296 *
2297 * We use ENOSPC in our driver to mean that we have run out of aperture
2298 * space and so want to translate the error from shmemfs back to our
2299 * usual understanding of ENOMEM.
2300 */
2301 if (ret == -ENOSPC)
2302 ret = -ENOMEM;
2303
2304 return ret;
2305 }
2306
2307 /* Ensure that the associated pages are gathered from the backing storage
2308 * and pinned into our object. i915_gem_object_get_pages() may be called
2309 * multiple times before they are released by a single call to
2310 * i915_gem_object_put_pages() - once the pages are no longer referenced
2311 * either as a result of memory pressure (reaping pages under the shrinker)
2312 * or as the object is itself released.
2313 */
2314 int
2315 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2316 {
2317 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2318 const struct drm_i915_gem_object_ops *ops = obj->ops;
2319 int ret;
2320
2321 if (obj->pages)
2322 return 0;
2323
2324 if (obj->madv != I915_MADV_WILLNEED) {
2325 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2326 return -EFAULT;
2327 }
2328
2329 BUG_ON(obj->pages_pin_count);
2330
2331 ret = ops->get_pages(obj);
2332 if (ret)
2333 return ret;
2334
2335 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2336
2337 obj->get_page.sg = obj->pages->sgl;
2338 obj->get_page.last = 0;
2339
2340 return 0;
2341 }
2342
2343 void i915_vma_move_to_active(struct i915_vma *vma,
2344 struct drm_i915_gem_request *req)
2345 {
2346 struct drm_i915_gem_object *obj = vma->obj;
2347 struct intel_engine_cs *ring;
2348
2349 ring = i915_gem_request_get_ring(req);
2350
2351 /* Add a reference if we're newly entering the active list. */
2352 if (obj->active == 0)
2353 drm_gem_object_reference(&obj->base);
2354 obj->active |= intel_ring_flag(ring);
2355
2356 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2357 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2358
2359 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 }
2361
2362 static void
2363 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2364 {
2365 RQ_BUG_ON(obj->last_write_req == NULL);
2366 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368 i915_gem_request_assign(&obj->last_write_req, NULL);
2369 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2370 }
2371
2372 static void
2373 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374 {
2375 struct i915_vma *vma;
2376
2377 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378 RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380 list_del_init(&obj->ring_list[ring]);
2381 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384 i915_gem_object_retire__write(obj);
2385
2386 obj->active &= ~(1 << ring);
2387 if (obj->active)
2388 return;
2389
2390 /* Bump our place on the bound list to keep it roughly in LRU order
2391 * so that we don't steal from recently used but inactive objects
2392 * (unless we are forced to ofc!)
2393 */
2394 list_move_tail(&obj->global_list,
2395 &to_i915(obj->base.dev)->mm.bound_list);
2396
2397 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2398 if (!list_empty(&vma->mm_list))
2399 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2400 }
2401
2402 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2403 drm_gem_object_unreference(&obj->base);
2404 }
2405
2406 static int
2407 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2408 {
2409 struct drm_i915_private *dev_priv = dev->dev_private;
2410 struct intel_engine_cs *ring;
2411 int ret, i, j;
2412
2413 /* Carefully retire all requests without writing to the rings */
2414 for_each_ring(ring, dev_priv, i) {
2415 ret = intel_ring_idle(ring);
2416 if (ret)
2417 return ret;
2418 }
2419 i915_gem_retire_requests(dev);
2420
2421 /* Finally reset hw state */
2422 for_each_ring(ring, dev_priv, i) {
2423 intel_ring_init_seqno(ring, seqno);
2424
2425 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2426 ring->semaphore.sync_seqno[j] = 0;
2427 }
2428
2429 return 0;
2430 }
2431
2432 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2433 {
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 int ret;
2436
2437 if (seqno == 0)
2438 return -EINVAL;
2439
2440 /* HWS page needs to be set less than what we
2441 * will inject to ring
2442 */
2443 ret = i915_gem_init_seqno(dev, seqno - 1);
2444 if (ret)
2445 return ret;
2446
2447 /* Carefully set the last_seqno value so that wrap
2448 * detection still works
2449 */
2450 dev_priv->next_seqno = seqno;
2451 dev_priv->last_seqno = seqno - 1;
2452 if (dev_priv->last_seqno == 0)
2453 dev_priv->last_seqno--;
2454
2455 return 0;
2456 }
2457
2458 int
2459 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2460 {
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462
2463 /* reserve 0 for non-seqno */
2464 if (dev_priv->next_seqno == 0) {
2465 int ret = i915_gem_init_seqno(dev, 0);
2466 if (ret)
2467 return ret;
2468
2469 dev_priv->next_seqno = 1;
2470 }
2471
2472 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2473 return 0;
2474 }
2475
2476 /*
2477 * NB: This function is not allowed to fail. Doing so would mean the the
2478 * request is not being tracked for completion but the work itself is
2479 * going to happen on the hardware. This would be a Bad Thing(tm).
2480 */
2481 void __i915_add_request(struct drm_i915_gem_request *request,
2482 struct drm_i915_gem_object *obj,
2483 bool flush_caches)
2484 {
2485 struct intel_engine_cs *ring;
2486 struct drm_i915_private *dev_priv;
2487 struct intel_ringbuffer *ringbuf;
2488 u32 request_start;
2489 int ret;
2490
2491 if (WARN_ON(request == NULL))
2492 return;
2493
2494 ring = request->ring;
2495 dev_priv = ring->dev->dev_private;
2496 ringbuf = request->ringbuf;
2497
2498 /*
2499 * To ensure that this call will not fail, space for its emissions
2500 * should already have been reserved in the ring buffer. Let the ring
2501 * know that it is time to use that space up.
2502 */
2503 intel_ring_reserved_space_use(ringbuf);
2504
2505 request_start = intel_ring_get_tail(ringbuf);
2506 /*
2507 * Emit any outstanding flushes - execbuf can fail to emit the flush
2508 * after having emitted the batchbuffer command. Hence we need to fix
2509 * things up similar to emitting the lazy request. The difference here
2510 * is that the flush _must_ happen before the next request, no matter
2511 * what.
2512 */
2513 if (flush_caches) {
2514 if (i915.enable_execlists)
2515 ret = logical_ring_flush_all_caches(request);
2516 else
2517 ret = intel_ring_flush_all_caches(request);
2518 /* Not allowed to fail! */
2519 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2520 }
2521
2522 /* Record the position of the start of the request so that
2523 * should we detect the updated seqno part-way through the
2524 * GPU processing the request, we never over-estimate the
2525 * position of the head.
2526 */
2527 request->postfix = intel_ring_get_tail(ringbuf);
2528
2529 if (i915.enable_execlists)
2530 ret = ring->emit_request(request);
2531 else {
2532 ret = ring->add_request(request);
2533
2534 request->tail = intel_ring_get_tail(ringbuf);
2535 }
2536 /* Not allowed to fail! */
2537 WARN(ret, "emit|add_request failed: %d!\n", ret);
2538
2539 request->head = request_start;
2540
2541 /* Whilst this request exists, batch_obj will be on the
2542 * active_list, and so will hold the active reference. Only when this
2543 * request is retired will the the batch_obj be moved onto the
2544 * inactive_list and lose its active reference. Hence we do not need
2545 * to explicitly hold another reference here.
2546 */
2547 request->batch_obj = obj;
2548
2549 request->emitted_jiffies = jiffies;
2550 ring->last_submitted_seqno = request->seqno;
2551 list_add_tail(&request->list, &ring->request_list);
2552
2553 trace_i915_gem_request_add(request);
2554
2555 i915_queue_hangcheck(ring->dev);
2556
2557 queue_delayed_work(dev_priv->wq,
2558 &dev_priv->mm.retire_work,
2559 round_jiffies_up_relative(HZ));
2560 intel_mark_busy(dev_priv->dev);
2561
2562 /* Sanity check that the reserved size was large enough. */
2563 intel_ring_reserved_space_end(ringbuf);
2564 }
2565
2566 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2567 const struct intel_context *ctx)
2568 {
2569 unsigned long elapsed;
2570
2571 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2572
2573 if (ctx->hang_stats.banned)
2574 return true;
2575
2576 if (ctx->hang_stats.ban_period_seconds &&
2577 elapsed <= ctx->hang_stats.ban_period_seconds) {
2578 if (!i915_gem_context_is_default(ctx)) {
2579 DRM_DEBUG("context hanging too fast, banning!\n");
2580 return true;
2581 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2582 if (i915_stop_ring_allow_warn(dev_priv))
2583 DRM_ERROR("gpu hanging too fast, banning!\n");
2584 return true;
2585 }
2586 }
2587
2588 return false;
2589 }
2590
2591 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2592 struct intel_context *ctx,
2593 const bool guilty)
2594 {
2595 struct i915_ctx_hang_stats *hs;
2596
2597 if (WARN_ON(!ctx))
2598 return;
2599
2600 hs = &ctx->hang_stats;
2601
2602 if (guilty) {
2603 hs->banned = i915_context_is_banned(dev_priv, ctx);
2604 hs->batch_active++;
2605 hs->guilty_ts = get_seconds();
2606 } else {
2607 hs->batch_pending++;
2608 }
2609 }
2610
2611 void i915_gem_request_free(struct kref *req_ref)
2612 {
2613 struct drm_i915_gem_request *req = container_of(req_ref,
2614 typeof(*req), ref);
2615 struct intel_context *ctx = req->ctx;
2616
2617 if (req->file_priv)
2618 i915_gem_request_remove_from_client(req);
2619
2620 if (ctx) {
2621 if (i915.enable_execlists) {
2622 if (ctx != req->ring->default_context)
2623 intel_lr_context_unpin(req);
2624 }
2625
2626 i915_gem_context_unreference(ctx);
2627 }
2628
2629 kmem_cache_free(req->i915->requests, req);
2630 }
2631
2632 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2633 struct intel_context *ctx,
2634 struct drm_i915_gem_request **req_out)
2635 {
2636 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2637 struct drm_i915_gem_request *req;
2638 int ret;
2639
2640 if (!req_out)
2641 return -EINVAL;
2642
2643 *req_out = NULL;
2644
2645 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2646 if (req == NULL)
2647 return -ENOMEM;
2648
2649 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2650 if (ret)
2651 goto err;
2652
2653 kref_init(&req->ref);
2654 req->i915 = dev_priv;
2655 req->ring = ring;
2656 req->ctx = ctx;
2657 i915_gem_context_reference(req->ctx);
2658
2659 if (i915.enable_execlists)
2660 ret = intel_logical_ring_alloc_request_extras(req);
2661 else
2662 ret = intel_ring_alloc_request_extras(req);
2663 if (ret) {
2664 i915_gem_context_unreference(req->ctx);
2665 goto err;
2666 }
2667
2668 /*
2669 * Reserve space in the ring buffer for all the commands required to
2670 * eventually emit this request. This is to guarantee that the
2671 * i915_add_request() call can't fail. Note that the reserve may need
2672 * to be redone if the request is not actually submitted straight
2673 * away, e.g. because a GPU scheduler has deferred it.
2674 */
2675 if (i915.enable_execlists)
2676 ret = intel_logical_ring_reserve_space(req);
2677 else
2678 ret = intel_ring_reserve_space(req);
2679 if (ret) {
2680 /*
2681 * At this point, the request is fully allocated even if not
2682 * fully prepared. Thus it can be cleaned up using the proper
2683 * free code.
2684 */
2685 i915_gem_request_cancel(req);
2686 return ret;
2687 }
2688
2689 *req_out = req;
2690 return 0;
2691
2692 err:
2693 kmem_cache_free(dev_priv->requests, req);
2694 return ret;
2695 }
2696
2697 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2698 {
2699 intel_ring_reserved_space_cancel(req->ringbuf);
2700
2701 i915_gem_request_unreference(req);
2702 }
2703
2704 struct drm_i915_gem_request *
2705 i915_gem_find_active_request(struct intel_engine_cs *ring)
2706 {
2707 struct drm_i915_gem_request *request;
2708
2709 list_for_each_entry(request, &ring->request_list, list) {
2710 if (i915_gem_request_completed(request, false))
2711 continue;
2712
2713 return request;
2714 }
2715
2716 return NULL;
2717 }
2718
2719 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2720 struct intel_engine_cs *ring)
2721 {
2722 struct drm_i915_gem_request *request;
2723 bool ring_hung;
2724
2725 request = i915_gem_find_active_request(ring);
2726
2727 if (request == NULL)
2728 return;
2729
2730 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2731
2732 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2733
2734 list_for_each_entry_continue(request, &ring->request_list, list)
2735 i915_set_reset_status(dev_priv, request->ctx, false);
2736 }
2737
2738 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2739 struct intel_engine_cs *ring)
2740 {
2741 struct intel_ringbuffer *buffer;
2742
2743 while (!list_empty(&ring->active_list)) {
2744 struct drm_i915_gem_object *obj;
2745
2746 obj = list_first_entry(&ring->active_list,
2747 struct drm_i915_gem_object,
2748 ring_list[ring->id]);
2749
2750 i915_gem_object_retire__read(obj, ring->id);
2751 }
2752
2753 /*
2754 * Clear the execlists queue up before freeing the requests, as those
2755 * are the ones that keep the context and ringbuffer backing objects
2756 * pinned in place.
2757 */
2758
2759 if (i915.enable_execlists) {
2760 spin_lock_irq(&ring->execlist_lock);
2761 while (!list_empty(&ring->execlist_queue)) {
2762 struct drm_i915_gem_request *submit_req;
2763
2764 submit_req = list_first_entry(&ring->execlist_queue,
2765 struct drm_i915_gem_request,
2766 execlist_link);
2767 list_del(&submit_req->execlist_link);
2768
2769 if (submit_req->ctx != ring->default_context)
2770 intel_lr_context_unpin(submit_req);
2771
2772 i915_gem_request_unreference(submit_req);
2773 }
2774 spin_unlock_irq(&ring->execlist_lock);
2775 }
2776
2777 /*
2778 * We must free the requests after all the corresponding objects have
2779 * been moved off active lists. Which is the same order as the normal
2780 * retire_requests function does. This is important if object hold
2781 * implicit references on things like e.g. ppgtt address spaces through
2782 * the request.
2783 */
2784 while (!list_empty(&ring->request_list)) {
2785 struct drm_i915_gem_request *request;
2786
2787 request = list_first_entry(&ring->request_list,
2788 struct drm_i915_gem_request,
2789 list);
2790
2791 i915_gem_request_retire(request);
2792 }
2793
2794 /* Having flushed all requests from all queues, we know that all
2795 * ringbuffers must now be empty. However, since we do not reclaim
2796 * all space when retiring the request (to prevent HEADs colliding
2797 * with rapid ringbuffer wraparound) the amount of available space
2798 * upon reset is less than when we start. Do one more pass over
2799 * all the ringbuffers to reset last_retired_head.
2800 */
2801 list_for_each_entry(buffer, &ring->buffers, link) {
2802 buffer->last_retired_head = buffer->tail;
2803 intel_ring_update_space(buffer);
2804 }
2805 }
2806
2807 void i915_gem_reset(struct drm_device *dev)
2808 {
2809 struct drm_i915_private *dev_priv = dev->dev_private;
2810 struct intel_engine_cs *ring;
2811 int i;
2812
2813 /*
2814 * Before we free the objects from the requests, we need to inspect
2815 * them for finding the guilty party. As the requests only borrow
2816 * their reference to the objects, the inspection must be done first.
2817 */
2818 for_each_ring(ring, dev_priv, i)
2819 i915_gem_reset_ring_status(dev_priv, ring);
2820
2821 for_each_ring(ring, dev_priv, i)
2822 i915_gem_reset_ring_cleanup(dev_priv, ring);
2823
2824 i915_gem_context_reset(dev);
2825
2826 i915_gem_restore_fences(dev);
2827
2828 WARN_ON(i915_verify_lists(dev));
2829 }
2830
2831 /**
2832 * This function clears the request list as sequence numbers are passed.
2833 */
2834 void
2835 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2836 {
2837 WARN_ON(i915_verify_lists(ring->dev));
2838
2839 /* Retire requests first as we use it above for the early return.
2840 * If we retire requests last, we may use a later seqno and so clear
2841 * the requests lists without clearing the active list, leading to
2842 * confusion.
2843 */
2844 while (!list_empty(&ring->request_list)) {
2845 struct drm_i915_gem_request *request;
2846
2847 request = list_first_entry(&ring->request_list,
2848 struct drm_i915_gem_request,
2849 list);
2850
2851 if (!i915_gem_request_completed(request, true))
2852 break;
2853
2854 i915_gem_request_retire(request);
2855 }
2856
2857 /* Move any buffers on the active list that are no longer referenced
2858 * by the ringbuffer to the flushing/inactive lists as appropriate,
2859 * before we free the context associated with the requests.
2860 */
2861 while (!list_empty(&ring->active_list)) {
2862 struct drm_i915_gem_object *obj;
2863
2864 obj = list_first_entry(&ring->active_list,
2865 struct drm_i915_gem_object,
2866 ring_list[ring->id]);
2867
2868 if (!list_empty(&obj->last_read_req[ring->id]->list))
2869 break;
2870
2871 i915_gem_object_retire__read(obj, ring->id);
2872 }
2873
2874 if (unlikely(ring->trace_irq_req &&
2875 i915_gem_request_completed(ring->trace_irq_req, true))) {
2876 ring->irq_put(ring);
2877 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2878 }
2879
2880 WARN_ON(i915_verify_lists(ring->dev));
2881 }
2882
2883 bool
2884 i915_gem_retire_requests(struct drm_device *dev)
2885 {
2886 struct drm_i915_private *dev_priv = dev->dev_private;
2887 struct intel_engine_cs *ring;
2888 bool idle = true;
2889 int i;
2890
2891 for_each_ring(ring, dev_priv, i) {
2892 i915_gem_retire_requests_ring(ring);
2893 idle &= list_empty(&ring->request_list);
2894 if (i915.enable_execlists) {
2895 unsigned long flags;
2896
2897 spin_lock_irqsave(&ring->execlist_lock, flags);
2898 idle &= list_empty(&ring->execlist_queue);
2899 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2900
2901 intel_execlists_retire_requests(ring);
2902 }
2903 }
2904
2905 if (idle)
2906 mod_delayed_work(dev_priv->wq,
2907 &dev_priv->mm.idle_work,
2908 msecs_to_jiffies(100));
2909
2910 return idle;
2911 }
2912
2913 static void
2914 i915_gem_retire_work_handler(struct work_struct *work)
2915 {
2916 struct drm_i915_private *dev_priv =
2917 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2918 struct drm_device *dev = dev_priv->dev;
2919 bool idle;
2920
2921 /* Come back later if the device is busy... */
2922 idle = false;
2923 if (mutex_trylock(&dev->struct_mutex)) {
2924 idle = i915_gem_retire_requests(dev);
2925 mutex_unlock(&dev->struct_mutex);
2926 }
2927 if (!idle)
2928 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2929 round_jiffies_up_relative(HZ));
2930 }
2931
2932 static void
2933 i915_gem_idle_work_handler(struct work_struct *work)
2934 {
2935 struct drm_i915_private *dev_priv =
2936 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2937 struct drm_device *dev = dev_priv->dev;
2938 struct intel_engine_cs *ring;
2939 int i;
2940
2941 for_each_ring(ring, dev_priv, i)
2942 if (!list_empty(&ring->request_list))
2943 return;
2944
2945 intel_mark_idle(dev);
2946
2947 if (mutex_trylock(&dev->struct_mutex)) {
2948 struct intel_engine_cs *ring;
2949 int i;
2950
2951 for_each_ring(ring, dev_priv, i)
2952 i915_gem_batch_pool_fini(&ring->batch_pool);
2953
2954 mutex_unlock(&dev->struct_mutex);
2955 }
2956 }
2957
2958 /**
2959 * Ensures that an object will eventually get non-busy by flushing any required
2960 * write domains, emitting any outstanding lazy request and retiring and
2961 * completed requests.
2962 */
2963 static int
2964 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2965 {
2966 int i;
2967
2968 if (!obj->active)
2969 return 0;
2970
2971 for (i = 0; i < I915_NUM_RINGS; i++) {
2972 struct drm_i915_gem_request *req;
2973
2974 req = obj->last_read_req[i];
2975 if (req == NULL)
2976 continue;
2977
2978 if (list_empty(&req->list))
2979 goto retire;
2980
2981 if (i915_gem_request_completed(req, true)) {
2982 __i915_gem_request_retire__upto(req);
2983 retire:
2984 i915_gem_object_retire__read(obj, i);
2985 }
2986 }
2987
2988 return 0;
2989 }
2990
2991 /**
2992 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2993 * @DRM_IOCTL_ARGS: standard ioctl arguments
2994 *
2995 * Returns 0 if successful, else an error is returned with the remaining time in
2996 * the timeout parameter.
2997 * -ETIME: object is still busy after timeout
2998 * -ERESTARTSYS: signal interrupted the wait
2999 * -ENONENT: object doesn't exist
3000 * Also possible, but rare:
3001 * -EAGAIN: GPU wedged
3002 * -ENOMEM: damn
3003 * -ENODEV: Internal IRQ fail
3004 * -E?: The add request failed
3005 *
3006 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3007 * non-zero timeout parameter the wait ioctl will wait for the given number of
3008 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3009 * without holding struct_mutex the object may become re-busied before this
3010 * function completes. A similar but shorter * race condition exists in the busy
3011 * ioctl
3012 */
3013 int
3014 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3015 {
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 struct drm_i915_gem_wait *args = data;
3018 struct drm_i915_gem_object *obj;
3019 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3020 unsigned reset_counter;
3021 int i, n = 0;
3022 int ret;
3023
3024 if (args->flags != 0)
3025 return -EINVAL;
3026
3027 ret = i915_mutex_lock_interruptible(dev);
3028 if (ret)
3029 return ret;
3030
3031 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3032 if (&obj->base == NULL) {
3033 mutex_unlock(&dev->struct_mutex);
3034 return -ENOENT;
3035 }
3036
3037 /* Need to make sure the object gets inactive eventually. */
3038 ret = i915_gem_object_flush_active(obj);
3039 if (ret)
3040 goto out;
3041
3042 if (!obj->active)
3043 goto out;
3044
3045 /* Do this after OLR check to make sure we make forward progress polling
3046 * on this IOCTL with a timeout == 0 (like busy ioctl)
3047 */
3048 if (args->timeout_ns == 0) {
3049 ret = -ETIME;
3050 goto out;
3051 }
3052
3053 drm_gem_object_unreference(&obj->base);
3054 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3055
3056 for (i = 0; i < I915_NUM_RINGS; i++) {
3057 if (obj->last_read_req[i] == NULL)
3058 continue;
3059
3060 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3061 }
3062
3063 mutex_unlock(&dev->struct_mutex);
3064
3065 for (i = 0; i < n; i++) {
3066 if (ret == 0)
3067 ret = __i915_wait_request(req[i], reset_counter, true,
3068 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3069 file->driver_priv);
3070 i915_gem_request_unreference__unlocked(req[i]);
3071 }
3072 return ret;
3073
3074 out:
3075 drm_gem_object_unreference(&obj->base);
3076 mutex_unlock(&dev->struct_mutex);
3077 return ret;
3078 }
3079
3080 static int
3081 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3082 struct intel_engine_cs *to,
3083 struct drm_i915_gem_request *from_req,
3084 struct drm_i915_gem_request **to_req)
3085 {
3086 struct intel_engine_cs *from;
3087 int ret;
3088
3089 from = i915_gem_request_get_ring(from_req);
3090 if (to == from)
3091 return 0;
3092
3093 if (i915_gem_request_completed(from_req, true))
3094 return 0;
3095
3096 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3097 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3098 ret = __i915_wait_request(from_req,
3099 atomic_read(&i915->gpu_error.reset_counter),
3100 i915->mm.interruptible,
3101 NULL,
3102 &i915->rps.semaphores);
3103 if (ret)
3104 return ret;
3105
3106 i915_gem_object_retire_request(obj, from_req);
3107 } else {
3108 int idx = intel_ring_sync_index(from, to);
3109 u32 seqno = i915_gem_request_get_seqno(from_req);
3110
3111 WARN_ON(!to_req);
3112
3113 if (seqno <= from->semaphore.sync_seqno[idx])
3114 return 0;
3115
3116 if (*to_req == NULL) {
3117 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3118 if (ret)
3119 return ret;
3120 }
3121
3122 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3123 ret = to->semaphore.sync_to(*to_req, from, seqno);
3124 if (ret)
3125 return ret;
3126
3127 /* We use last_read_req because sync_to()
3128 * might have just caused seqno wrap under
3129 * the radar.
3130 */
3131 from->semaphore.sync_seqno[idx] =
3132 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3133 }
3134
3135 return 0;
3136 }
3137
3138 /**
3139 * i915_gem_object_sync - sync an object to a ring.
3140 *
3141 * @obj: object which may be in use on another ring.
3142 * @to: ring we wish to use the object on. May be NULL.
3143 * @to_req: request we wish to use the object for. See below.
3144 * This will be allocated and returned if a request is
3145 * required but not passed in.
3146 *
3147 * This code is meant to abstract object synchronization with the GPU.
3148 * Calling with NULL implies synchronizing the object with the CPU
3149 * rather than a particular GPU ring. Conceptually we serialise writes
3150 * between engines inside the GPU. We only allow one engine to write
3151 * into a buffer at any time, but multiple readers. To ensure each has
3152 * a coherent view of memory, we must:
3153 *
3154 * - If there is an outstanding write request to the object, the new
3155 * request must wait for it to complete (either CPU or in hw, requests
3156 * on the same ring will be naturally ordered).
3157 *
3158 * - If we are a write request (pending_write_domain is set), the new
3159 * request must wait for outstanding read requests to complete.
3160 *
3161 * For CPU synchronisation (NULL to) no request is required. For syncing with
3162 * rings to_req must be non-NULL. However, a request does not have to be
3163 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3164 * request will be allocated automatically and returned through *to_req. Note
3165 * that it is not guaranteed that commands will be emitted (because the system
3166 * might already be idle). Hence there is no need to create a request that
3167 * might never have any work submitted. Note further that if a request is
3168 * returned in *to_req, it is the responsibility of the caller to submit
3169 * that request (after potentially adding more work to it).
3170 *
3171 * Returns 0 if successful, else propagates up the lower layer error.
3172 */
3173 int
3174 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3175 struct intel_engine_cs *to,
3176 struct drm_i915_gem_request **to_req)
3177 {
3178 const bool readonly = obj->base.pending_write_domain == 0;
3179 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3180 int ret, i, n;
3181
3182 if (!obj->active)
3183 return 0;
3184
3185 if (to == NULL)
3186 return i915_gem_object_wait_rendering(obj, readonly);
3187
3188 n = 0;
3189 if (readonly) {
3190 if (obj->last_write_req)
3191 req[n++] = obj->last_write_req;
3192 } else {
3193 for (i = 0; i < I915_NUM_RINGS; i++)
3194 if (obj->last_read_req[i])
3195 req[n++] = obj->last_read_req[i];
3196 }
3197 for (i = 0; i < n; i++) {
3198 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3199 if (ret)
3200 return ret;
3201 }
3202
3203 return 0;
3204 }
3205
3206 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3207 {
3208 u32 old_write_domain, old_read_domains;
3209
3210 /* Force a pagefault for domain tracking on next user access */
3211 i915_gem_release_mmap(obj);
3212
3213 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3214 return;
3215
3216 /* Wait for any direct GTT access to complete */
3217 mb();
3218
3219 old_read_domains = obj->base.read_domains;
3220 old_write_domain = obj->base.write_domain;
3221
3222 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3223 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3224
3225 trace_i915_gem_object_change_domain(obj,
3226 old_read_domains,
3227 old_write_domain);
3228 }
3229
3230 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3231 {
3232 struct drm_i915_gem_object *obj = vma->obj;
3233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3234 int ret;
3235
3236 if (list_empty(&vma->vma_link))
3237 return 0;
3238
3239 if (!drm_mm_node_allocated(&vma->node)) {
3240 i915_gem_vma_destroy(vma);
3241 return 0;
3242 }
3243
3244 if (vma->pin_count)
3245 return -EBUSY;
3246
3247 BUG_ON(obj->pages == NULL);
3248
3249 if (wait) {
3250 ret = i915_gem_object_wait_rendering(obj, false);
3251 if (ret)
3252 return ret;
3253 }
3254
3255 if (i915_is_ggtt(vma->vm) &&
3256 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3257 i915_gem_object_finish_gtt(obj);
3258
3259 /* release the fence reg _after_ flushing */
3260 ret = i915_gem_object_put_fence(obj);
3261 if (ret)
3262 return ret;
3263 }
3264
3265 trace_i915_vma_unbind(vma);
3266
3267 vma->vm->unbind_vma(vma);
3268 vma->bound = 0;
3269
3270 list_del_init(&vma->mm_list);
3271 if (i915_is_ggtt(vma->vm)) {
3272 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3273 obj->map_and_fenceable = false;
3274 } else if (vma->ggtt_view.pages) {
3275 sg_free_table(vma->ggtt_view.pages);
3276 kfree(vma->ggtt_view.pages);
3277 }
3278 vma->ggtt_view.pages = NULL;
3279 }
3280
3281 drm_mm_remove_node(&vma->node);
3282 i915_gem_vma_destroy(vma);
3283
3284 /* Since the unbound list is global, only move to that list if
3285 * no more VMAs exist. */
3286 if (list_empty(&obj->vma_list))
3287 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3288
3289 /* And finally now the object is completely decoupled from this vma,
3290 * we can drop its hold on the backing storage and allow it to be
3291 * reaped by the shrinker.
3292 */
3293 i915_gem_object_unpin_pages(obj);
3294
3295 return 0;
3296 }
3297
3298 int i915_vma_unbind(struct i915_vma *vma)
3299 {
3300 return __i915_vma_unbind(vma, true);
3301 }
3302
3303 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3304 {
3305 return __i915_vma_unbind(vma, false);
3306 }
3307
3308 int i915_gpu_idle(struct drm_device *dev)
3309 {
3310 struct drm_i915_private *dev_priv = dev->dev_private;
3311 struct intel_engine_cs *ring;
3312 int ret, i;
3313
3314 /* Flush everything onto the inactive list. */
3315 for_each_ring(ring, dev_priv, i) {
3316 if (!i915.enable_execlists) {
3317 struct drm_i915_gem_request *req;
3318
3319 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3320 if (ret)
3321 return ret;
3322
3323 ret = i915_switch_context(req);
3324 if (ret) {
3325 i915_gem_request_cancel(req);
3326 return ret;
3327 }
3328
3329 i915_add_request_no_flush(req);
3330 }
3331
3332 ret = intel_ring_idle(ring);
3333 if (ret)
3334 return ret;
3335 }
3336
3337 WARN_ON(i915_verify_lists(dev));
3338 return 0;
3339 }
3340
3341 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3342 unsigned long cache_level)
3343 {
3344 struct drm_mm_node *gtt_space = &vma->node;
3345 struct drm_mm_node *other;
3346
3347 /*
3348 * On some machines we have to be careful when putting differing types
3349 * of snoopable memory together to avoid the prefetcher crossing memory
3350 * domains and dying. During vm initialisation, we decide whether or not
3351 * these constraints apply and set the drm_mm.color_adjust
3352 * appropriately.
3353 */
3354 if (vma->vm->mm.color_adjust == NULL)
3355 return true;
3356
3357 if (!drm_mm_node_allocated(gtt_space))
3358 return true;
3359
3360 if (list_empty(&gtt_space->node_list))
3361 return true;
3362
3363 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3364 if (other->allocated && !other->hole_follows && other->color != cache_level)
3365 return false;
3366
3367 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3368 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3369 return false;
3370
3371 return true;
3372 }
3373
3374 /**
3375 * Finds free space in the GTT aperture and binds the object or a view of it
3376 * there.
3377 */
3378 static struct i915_vma *
3379 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3380 struct i915_address_space *vm,
3381 const struct i915_ggtt_view *ggtt_view,
3382 unsigned alignment,
3383 uint64_t flags)
3384 {
3385 struct drm_device *dev = obj->base.dev;
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 u32 fence_alignment, unfenced_alignment;
3388 u32 search_flag, alloc_flag;
3389 u64 start, end;
3390 u64 size, fence_size;
3391 struct i915_vma *vma;
3392 int ret;
3393
3394 if (i915_is_ggtt(vm)) {
3395 u32 view_size;
3396
3397 if (WARN_ON(!ggtt_view))
3398 return ERR_PTR(-EINVAL);
3399
3400 view_size = i915_ggtt_view_size(obj, ggtt_view);
3401
3402 fence_size = i915_gem_get_gtt_size(dev,
3403 view_size,
3404 obj->tiling_mode);
3405 fence_alignment = i915_gem_get_gtt_alignment(dev,
3406 view_size,
3407 obj->tiling_mode,
3408 true);
3409 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3410 view_size,
3411 obj->tiling_mode,
3412 false);
3413 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3414 } else {
3415 fence_size = i915_gem_get_gtt_size(dev,
3416 obj->base.size,
3417 obj->tiling_mode);
3418 fence_alignment = i915_gem_get_gtt_alignment(dev,
3419 obj->base.size,
3420 obj->tiling_mode,
3421 true);
3422 unfenced_alignment =
3423 i915_gem_get_gtt_alignment(dev,
3424 obj->base.size,
3425 obj->tiling_mode,
3426 false);
3427 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3428 }
3429
3430 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3431 end = vm->total;
3432 if (flags & PIN_MAPPABLE)
3433 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3434 if (flags & PIN_ZONE_4G)
3435 end = min_t(u64, end, (1ULL << 32));
3436
3437 if (alignment == 0)
3438 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3439 unfenced_alignment;
3440 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3441 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3442 ggtt_view ? ggtt_view->type : 0,
3443 alignment);
3444 return ERR_PTR(-EINVAL);
3445 }
3446
3447 /* If binding the object/GGTT view requires more space than the entire
3448 * aperture has, reject it early before evicting everything in a vain
3449 * attempt to find space.
3450 */
3451 if (size > end) {
3452 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3453 ggtt_view ? ggtt_view->type : 0,
3454 size,
3455 flags & PIN_MAPPABLE ? "mappable" : "total",
3456 end);
3457 return ERR_PTR(-E2BIG);
3458 }
3459
3460 ret = i915_gem_object_get_pages(obj);
3461 if (ret)
3462 return ERR_PTR(ret);
3463
3464 i915_gem_object_pin_pages(obj);
3465
3466 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3467 i915_gem_obj_lookup_or_create_vma(obj, vm);
3468
3469 if (IS_ERR(vma))
3470 goto err_unpin;
3471
3472 if (flags & PIN_HIGH) {
3473 search_flag = DRM_MM_SEARCH_BELOW;
3474 alloc_flag = DRM_MM_CREATE_TOP;
3475 } else {
3476 search_flag = DRM_MM_SEARCH_DEFAULT;
3477 alloc_flag = DRM_MM_CREATE_DEFAULT;
3478 }
3479
3480 search_free:
3481 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3482 size, alignment,
3483 obj->cache_level,
3484 start, end,
3485 search_flag,
3486 alloc_flag);
3487 if (ret) {
3488 ret = i915_gem_evict_something(dev, vm, size, alignment,
3489 obj->cache_level,
3490 start, end,
3491 flags);
3492 if (ret == 0)
3493 goto search_free;
3494
3495 goto err_free_vma;
3496 }
3497 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3498 ret = -EINVAL;
3499 goto err_remove_node;
3500 }
3501
3502 trace_i915_vma_bind(vma, flags);
3503 ret = i915_vma_bind(vma, obj->cache_level, flags);
3504 if (ret)
3505 goto err_remove_node;
3506
3507 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3508 list_add_tail(&vma->mm_list, &vm->inactive_list);
3509
3510 return vma;
3511
3512 err_remove_node:
3513 drm_mm_remove_node(&vma->node);
3514 err_free_vma:
3515 i915_gem_vma_destroy(vma);
3516 vma = ERR_PTR(ret);
3517 err_unpin:
3518 i915_gem_object_unpin_pages(obj);
3519 return vma;
3520 }
3521
3522 bool
3523 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3524 bool force)
3525 {
3526 /* If we don't have a page list set up, then we're not pinned
3527 * to GPU, and we can ignore the cache flush because it'll happen
3528 * again at bind time.
3529 */
3530 if (obj->pages == NULL)
3531 return false;
3532
3533 /*
3534 * Stolen memory is always coherent with the GPU as it is explicitly
3535 * marked as wc by the system, or the system is cache-coherent.
3536 */
3537 if (obj->stolen || obj->phys_handle)
3538 return false;
3539
3540 /* If the GPU is snooping the contents of the CPU cache,
3541 * we do not need to manually clear the CPU cache lines. However,
3542 * the caches are only snooped when the render cache is
3543 * flushed/invalidated. As we always have to emit invalidations
3544 * and flushes when moving into and out of the RENDER domain, correct
3545 * snooping behaviour occurs naturally as the result of our domain
3546 * tracking.
3547 */
3548 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3549 obj->cache_dirty = true;
3550 return false;
3551 }
3552
3553 trace_i915_gem_object_clflush(obj);
3554 drm_clflush_sg(obj->pages);
3555 obj->cache_dirty = false;
3556
3557 return true;
3558 }
3559
3560 /** Flushes the GTT write domain for the object if it's dirty. */
3561 static void
3562 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3563 {
3564 uint32_t old_write_domain;
3565
3566 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3567 return;
3568
3569 /* No actual flushing is required for the GTT write domain. Writes
3570 * to it immediately go to main memory as far as we know, so there's
3571 * no chipset flush. It also doesn't land in render cache.
3572 *
3573 * However, we do have to enforce the order so that all writes through
3574 * the GTT land before any writes to the device, such as updates to
3575 * the GATT itself.
3576 */
3577 wmb();
3578
3579 old_write_domain = obj->base.write_domain;
3580 obj->base.write_domain = 0;
3581
3582 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3583
3584 trace_i915_gem_object_change_domain(obj,
3585 obj->base.read_domains,
3586 old_write_domain);
3587 }
3588
3589 /** Flushes the CPU write domain for the object if it's dirty. */
3590 static void
3591 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3592 {
3593 uint32_t old_write_domain;
3594
3595 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3596 return;
3597
3598 if (i915_gem_clflush_object(obj, obj->pin_display))
3599 i915_gem_chipset_flush(obj->base.dev);
3600
3601 old_write_domain = obj->base.write_domain;
3602 obj->base.write_domain = 0;
3603
3604 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3605
3606 trace_i915_gem_object_change_domain(obj,
3607 obj->base.read_domains,
3608 old_write_domain);
3609 }
3610
3611 /**
3612 * Moves a single object to the GTT read, and possibly write domain.
3613 *
3614 * This function returns when the move is complete, including waiting on
3615 * flushes to occur.
3616 */
3617 int
3618 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3619 {
3620 uint32_t old_write_domain, old_read_domains;
3621 struct i915_vma *vma;
3622 int ret;
3623
3624 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3625 return 0;
3626
3627 ret = i915_gem_object_wait_rendering(obj, !write);
3628 if (ret)
3629 return ret;
3630
3631 /* Flush and acquire obj->pages so that we are coherent through
3632 * direct access in memory with previous cached writes through
3633 * shmemfs and that our cache domain tracking remains valid.
3634 * For example, if the obj->filp was moved to swap without us
3635 * being notified and releasing the pages, we would mistakenly
3636 * continue to assume that the obj remained out of the CPU cached
3637 * domain.
3638 */
3639 ret = i915_gem_object_get_pages(obj);
3640 if (ret)
3641 return ret;
3642
3643 i915_gem_object_flush_cpu_write_domain(obj);
3644
3645 /* Serialise direct access to this object with the barriers for
3646 * coherent writes from the GPU, by effectively invalidating the
3647 * GTT domain upon first access.
3648 */
3649 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3650 mb();
3651
3652 old_write_domain = obj->base.write_domain;
3653 old_read_domains = obj->base.read_domains;
3654
3655 /* It should now be out of any other write domains, and we can update
3656 * the domain values for our changes.
3657 */
3658 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3659 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3660 if (write) {
3661 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3662 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3663 obj->dirty = 1;
3664 }
3665
3666 trace_i915_gem_object_change_domain(obj,
3667 old_read_domains,
3668 old_write_domain);
3669
3670 /* And bump the LRU for this access */
3671 vma = i915_gem_obj_to_ggtt(obj);
3672 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3673 list_move_tail(&vma->mm_list,
3674 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3675
3676 return 0;
3677 }
3678
3679 /**
3680 * Changes the cache-level of an object across all VMA.
3681 *
3682 * After this function returns, the object will be in the new cache-level
3683 * across all GTT and the contents of the backing storage will be coherent,
3684 * with respect to the new cache-level. In order to keep the backing storage
3685 * coherent for all users, we only allow a single cache level to be set
3686 * globally on the object and prevent it from being changed whilst the
3687 * hardware is reading from the object. That is if the object is currently
3688 * on the scanout it will be set to uncached (or equivalent display
3689 * cache coherency) and all non-MOCS GPU access will also be uncached so
3690 * that all direct access to the scanout remains coherent.
3691 */
3692 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3693 enum i915_cache_level cache_level)
3694 {
3695 struct drm_device *dev = obj->base.dev;
3696 struct i915_vma *vma, *next;
3697 bool bound = false;
3698 int ret = 0;
3699
3700 if (obj->cache_level == cache_level)
3701 goto out;
3702
3703 /* Inspect the list of currently bound VMA and unbind any that would
3704 * be invalid given the new cache-level. This is principally to
3705 * catch the issue of the CS prefetch crossing page boundaries and
3706 * reading an invalid PTE on older architectures.
3707 */
3708 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3709 if (!drm_mm_node_allocated(&vma->node))
3710 continue;
3711
3712 if (vma->pin_count) {
3713 DRM_DEBUG("can not change the cache level of pinned objects\n");
3714 return -EBUSY;
3715 }
3716
3717 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3718 ret = i915_vma_unbind(vma);
3719 if (ret)
3720 return ret;
3721 } else
3722 bound = true;
3723 }
3724
3725 /* We can reuse the existing drm_mm nodes but need to change the
3726 * cache-level on the PTE. We could simply unbind them all and
3727 * rebind with the correct cache-level on next use. However since
3728 * we already have a valid slot, dma mapping, pages etc, we may as
3729 * rewrite the PTE in the belief that doing so tramples upon less
3730 * state and so involves less work.
3731 */
3732 if (bound) {
3733 /* Before we change the PTE, the GPU must not be accessing it.
3734 * If we wait upon the object, we know that all the bound
3735 * VMA are no longer active.
3736 */
3737 ret = i915_gem_object_wait_rendering(obj, false);
3738 if (ret)
3739 return ret;
3740
3741 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3742 /* Access to snoopable pages through the GTT is
3743 * incoherent and on some machines causes a hard
3744 * lockup. Relinquish the CPU mmaping to force
3745 * userspace to refault in the pages and we can
3746 * then double check if the GTT mapping is still
3747 * valid for that pointer access.
3748 */
3749 i915_gem_release_mmap(obj);
3750
3751 /* As we no longer need a fence for GTT access,
3752 * we can relinquish it now (and so prevent having
3753 * to steal a fence from someone else on the next
3754 * fence request). Note GPU activity would have
3755 * dropped the fence as all snoopable access is
3756 * supposed to be linear.
3757 */
3758 ret = i915_gem_object_put_fence(obj);
3759 if (ret)
3760 return ret;
3761 } else {
3762 /* We either have incoherent backing store and
3763 * so no GTT access or the architecture is fully
3764 * coherent. In such cases, existing GTT mmaps
3765 * ignore the cache bit in the PTE and we can
3766 * rewrite it without confusing the GPU or having
3767 * to force userspace to fault back in its mmaps.
3768 */
3769 }
3770
3771 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3772 if (!drm_mm_node_allocated(&vma->node))
3773 continue;
3774
3775 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3776 if (ret)
3777 return ret;
3778 }
3779 }
3780
3781 list_for_each_entry(vma, &obj->vma_list, vma_link)
3782 vma->node.color = cache_level;
3783 obj->cache_level = cache_level;
3784
3785 out:
3786 /* Flush the dirty CPU caches to the backing storage so that the
3787 * object is now coherent at its new cache level (with respect
3788 * to the access domain).
3789 */
3790 if (obj->cache_dirty &&
3791 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3792 cpu_write_needs_clflush(obj)) {
3793 if (i915_gem_clflush_object(obj, true))
3794 i915_gem_chipset_flush(obj->base.dev);
3795 }
3796
3797 return 0;
3798 }
3799
3800 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3801 struct drm_file *file)
3802 {
3803 struct drm_i915_gem_caching *args = data;
3804 struct drm_i915_gem_object *obj;
3805
3806 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3807 if (&obj->base == NULL)
3808 return -ENOENT;
3809
3810 switch (obj->cache_level) {
3811 case I915_CACHE_LLC:
3812 case I915_CACHE_L3_LLC:
3813 args->caching = I915_CACHING_CACHED;
3814 break;
3815
3816 case I915_CACHE_WT:
3817 args->caching = I915_CACHING_DISPLAY;
3818 break;
3819
3820 default:
3821 args->caching = I915_CACHING_NONE;
3822 break;
3823 }
3824
3825 drm_gem_object_unreference_unlocked(&obj->base);
3826 return 0;
3827 }
3828
3829 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3830 struct drm_file *file)
3831 {
3832 struct drm_i915_gem_caching *args = data;
3833 struct drm_i915_gem_object *obj;
3834 enum i915_cache_level level;
3835 int ret;
3836
3837 switch (args->caching) {
3838 case I915_CACHING_NONE:
3839 level = I915_CACHE_NONE;
3840 break;
3841 case I915_CACHING_CACHED:
3842 /*
3843 * Due to a HW issue on BXT A stepping, GPU stores via a
3844 * snooped mapping may leave stale data in a corresponding CPU
3845 * cacheline, whereas normally such cachelines would get
3846 * invalidated.
3847 */
3848 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3849 return -ENODEV;
3850
3851 level = I915_CACHE_LLC;
3852 break;
3853 case I915_CACHING_DISPLAY:
3854 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3855 break;
3856 default:
3857 return -EINVAL;
3858 }
3859
3860 ret = i915_mutex_lock_interruptible(dev);
3861 if (ret)
3862 return ret;
3863
3864 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3865 if (&obj->base == NULL) {
3866 ret = -ENOENT;
3867 goto unlock;
3868 }
3869
3870 ret = i915_gem_object_set_cache_level(obj, level);
3871
3872 drm_gem_object_unreference(&obj->base);
3873 unlock:
3874 mutex_unlock(&dev->struct_mutex);
3875 return ret;
3876 }
3877
3878 /*
3879 * Prepare buffer for display plane (scanout, cursors, etc).
3880 * Can be called from an uninterruptible phase (modesetting) and allows
3881 * any flushes to be pipelined (for pageflips).
3882 */
3883 int
3884 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3885 u32 alignment,
3886 const struct i915_ggtt_view *view)
3887 {
3888 u32 old_read_domains, old_write_domain;
3889 int ret;
3890
3891 /* Mark the pin_display early so that we account for the
3892 * display coherency whilst setting up the cache domains.
3893 */
3894 obj->pin_display++;
3895
3896 /* The display engine is not coherent with the LLC cache on gen6. As
3897 * a result, we make sure that the pinning that is about to occur is
3898 * done with uncached PTEs. This is lowest common denominator for all
3899 * chipsets.
3900 *
3901 * However for gen6+, we could do better by using the GFDT bit instead
3902 * of uncaching, which would allow us to flush all the LLC-cached data
3903 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3904 */
3905 ret = i915_gem_object_set_cache_level(obj,
3906 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3907 if (ret)
3908 goto err_unpin_display;
3909
3910 /* As the user may map the buffer once pinned in the display plane
3911 * (e.g. libkms for the bootup splash), we have to ensure that we
3912 * always use map_and_fenceable for all scanout buffers.
3913 */
3914 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3915 view->type == I915_GGTT_VIEW_NORMAL ?
3916 PIN_MAPPABLE : 0);
3917 if (ret)
3918 goto err_unpin_display;
3919
3920 i915_gem_object_flush_cpu_write_domain(obj);
3921
3922 old_write_domain = obj->base.write_domain;
3923 old_read_domains = obj->base.read_domains;
3924
3925 /* It should now be out of any other write domains, and we can update
3926 * the domain values for our changes.
3927 */
3928 obj->base.write_domain = 0;
3929 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3930
3931 trace_i915_gem_object_change_domain(obj,
3932 old_read_domains,
3933 old_write_domain);
3934
3935 return 0;
3936
3937 err_unpin_display:
3938 obj->pin_display--;
3939 return ret;
3940 }
3941
3942 void
3943 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3944 const struct i915_ggtt_view *view)
3945 {
3946 if (WARN_ON(obj->pin_display == 0))
3947 return;
3948
3949 i915_gem_object_ggtt_unpin_view(obj, view);
3950
3951 obj->pin_display--;
3952 }
3953
3954 /**
3955 * Moves a single object to the CPU read, and possibly write domain.
3956 *
3957 * This function returns when the move is complete, including waiting on
3958 * flushes to occur.
3959 */
3960 int
3961 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3962 {
3963 uint32_t old_write_domain, old_read_domains;
3964 int ret;
3965
3966 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3967 return 0;
3968
3969 ret = i915_gem_object_wait_rendering(obj, !write);
3970 if (ret)
3971 return ret;
3972
3973 i915_gem_object_flush_gtt_write_domain(obj);
3974
3975 old_write_domain = obj->base.write_domain;
3976 old_read_domains = obj->base.read_domains;
3977
3978 /* Flush the CPU cache if it's still invalid. */
3979 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3980 i915_gem_clflush_object(obj, false);
3981
3982 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3983 }
3984
3985 /* It should now be out of any other write domains, and we can update
3986 * the domain values for our changes.
3987 */
3988 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3989
3990 /* If we're writing through the CPU, then the GPU read domains will
3991 * need to be invalidated at next use.
3992 */
3993 if (write) {
3994 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3995 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3996 }
3997
3998 trace_i915_gem_object_change_domain(obj,
3999 old_read_domains,
4000 old_write_domain);
4001
4002 return 0;
4003 }
4004
4005 /* Throttle our rendering by waiting until the ring has completed our requests
4006 * emitted over 20 msec ago.
4007 *
4008 * Note that if we were to use the current jiffies each time around the loop,
4009 * we wouldn't escape the function with any frames outstanding if the time to
4010 * render a frame was over 20ms.
4011 *
4012 * This should get us reasonable parallelism between CPU and GPU but also
4013 * relatively low latency when blocking on a particular request to finish.
4014 */
4015 static int
4016 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4017 {
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019 struct drm_i915_file_private *file_priv = file->driver_priv;
4020 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4021 struct drm_i915_gem_request *request, *target = NULL;
4022 unsigned reset_counter;
4023 int ret;
4024
4025 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4026 if (ret)
4027 return ret;
4028
4029 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4030 if (ret)
4031 return ret;
4032
4033 spin_lock(&file_priv->mm.lock);
4034 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4035 if (time_after_eq(request->emitted_jiffies, recent_enough))
4036 break;
4037
4038 /*
4039 * Note that the request might not have been submitted yet.
4040 * In which case emitted_jiffies will be zero.
4041 */
4042 if (!request->emitted_jiffies)
4043 continue;
4044
4045 target = request;
4046 }
4047 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4048 if (target)
4049 i915_gem_request_reference(target);
4050 spin_unlock(&file_priv->mm.lock);
4051
4052 if (target == NULL)
4053 return 0;
4054
4055 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4056 if (ret == 0)
4057 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4058
4059 i915_gem_request_unreference__unlocked(target);
4060
4061 return ret;
4062 }
4063
4064 static bool
4065 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4066 {
4067 struct drm_i915_gem_object *obj = vma->obj;
4068
4069 if (alignment &&
4070 vma->node.start & (alignment - 1))
4071 return true;
4072
4073 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4074 return true;
4075
4076 if (flags & PIN_OFFSET_BIAS &&
4077 vma->node.start < (flags & PIN_OFFSET_MASK))
4078 return true;
4079
4080 return false;
4081 }
4082
4083 static int
4084 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4085 struct i915_address_space *vm,
4086 const struct i915_ggtt_view *ggtt_view,
4087 uint32_t alignment,
4088 uint64_t flags)
4089 {
4090 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4091 struct i915_vma *vma;
4092 unsigned bound;
4093 int ret;
4094
4095 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4096 return -ENODEV;
4097
4098 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4099 return -EINVAL;
4100
4101 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4102 return -EINVAL;
4103
4104 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4105 return -EINVAL;
4106
4107 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4108 i915_gem_obj_to_vma(obj, vm);
4109
4110 if (IS_ERR(vma))
4111 return PTR_ERR(vma);
4112
4113 if (vma) {
4114 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4115 return -EBUSY;
4116
4117 if (i915_vma_misplaced(vma, alignment, flags)) {
4118 WARN(vma->pin_count,
4119 "bo is already pinned in %s with incorrect alignment:"
4120 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4121 " obj->map_and_fenceable=%d\n",
4122 ggtt_view ? "ggtt" : "ppgtt",
4123 upper_32_bits(vma->node.start),
4124 lower_32_bits(vma->node.start),
4125 alignment,
4126 !!(flags & PIN_MAPPABLE),
4127 obj->map_and_fenceable);
4128 ret = i915_vma_unbind(vma);
4129 if (ret)
4130 return ret;
4131
4132 vma = NULL;
4133 }
4134 }
4135
4136 bound = vma ? vma->bound : 0;
4137 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4138 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4139 flags);
4140 if (IS_ERR(vma))
4141 return PTR_ERR(vma);
4142 } else {
4143 ret = i915_vma_bind(vma, obj->cache_level, flags);
4144 if (ret)
4145 return ret;
4146 }
4147
4148 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4149 (bound ^ vma->bound) & GLOBAL_BIND) {
4150 bool mappable, fenceable;
4151 u32 fence_size, fence_alignment;
4152
4153 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4154 obj->base.size,
4155 obj->tiling_mode);
4156 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4157 obj->base.size,
4158 obj->tiling_mode,
4159 true);
4160
4161 fenceable = (vma->node.size == fence_size &&
4162 (vma->node.start & (fence_alignment - 1)) == 0);
4163
4164 mappable = (vma->node.start + fence_size <=
4165 dev_priv->gtt.mappable_end);
4166
4167 obj->map_and_fenceable = mappable && fenceable;
4168
4169 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4170 }
4171
4172 vma->pin_count++;
4173 return 0;
4174 }
4175
4176 int
4177 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4178 struct i915_address_space *vm,
4179 uint32_t alignment,
4180 uint64_t flags)
4181 {
4182 return i915_gem_object_do_pin(obj, vm,
4183 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4184 alignment, flags);
4185 }
4186
4187 int
4188 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4189 const struct i915_ggtt_view *view,
4190 uint32_t alignment,
4191 uint64_t flags)
4192 {
4193 if (WARN_ONCE(!view, "no view specified"))
4194 return -EINVAL;
4195
4196 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4197 alignment, flags | PIN_GLOBAL);
4198 }
4199
4200 void
4201 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4202 const struct i915_ggtt_view *view)
4203 {
4204 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4205
4206 BUG_ON(!vma);
4207 WARN_ON(vma->pin_count == 0);
4208 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4209
4210 --vma->pin_count;
4211 }
4212
4213 int
4214 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4215 struct drm_file *file)
4216 {
4217 struct drm_i915_gem_busy *args = data;
4218 struct drm_i915_gem_object *obj;
4219 int ret;
4220
4221 ret = i915_mutex_lock_interruptible(dev);
4222 if (ret)
4223 return ret;
4224
4225 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4226 if (&obj->base == NULL) {
4227 ret = -ENOENT;
4228 goto unlock;
4229 }
4230
4231 /* Count all active objects as busy, even if they are currently not used
4232 * by the gpu. Users of this interface expect objects to eventually
4233 * become non-busy without any further actions, therefore emit any
4234 * necessary flushes here.
4235 */
4236 ret = i915_gem_object_flush_active(obj);
4237 if (ret)
4238 goto unref;
4239
4240 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4241 args->busy = obj->active << 16;
4242 if (obj->last_write_req)
4243 args->busy |= obj->last_write_req->ring->id;
4244
4245 unref:
4246 drm_gem_object_unreference(&obj->base);
4247 unlock:
4248 mutex_unlock(&dev->struct_mutex);
4249 return ret;
4250 }
4251
4252 int
4253 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4254 struct drm_file *file_priv)
4255 {
4256 return i915_gem_ring_throttle(dev, file_priv);
4257 }
4258
4259 int
4260 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4261 struct drm_file *file_priv)
4262 {
4263 struct drm_i915_private *dev_priv = dev->dev_private;
4264 struct drm_i915_gem_madvise *args = data;
4265 struct drm_i915_gem_object *obj;
4266 int ret;
4267
4268 switch (args->madv) {
4269 case I915_MADV_DONTNEED:
4270 case I915_MADV_WILLNEED:
4271 break;
4272 default:
4273 return -EINVAL;
4274 }
4275
4276 ret = i915_mutex_lock_interruptible(dev);
4277 if (ret)
4278 return ret;
4279
4280 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4281 if (&obj->base == NULL) {
4282 ret = -ENOENT;
4283 goto unlock;
4284 }
4285
4286 if (i915_gem_obj_is_pinned(obj)) {
4287 ret = -EINVAL;
4288 goto out;
4289 }
4290
4291 if (obj->pages &&
4292 obj->tiling_mode != I915_TILING_NONE &&
4293 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4294 if (obj->madv == I915_MADV_WILLNEED)
4295 i915_gem_object_unpin_pages(obj);
4296 if (args->madv == I915_MADV_WILLNEED)
4297 i915_gem_object_pin_pages(obj);
4298 }
4299
4300 if (obj->madv != __I915_MADV_PURGED)
4301 obj->madv = args->madv;
4302
4303 /* if the object is no longer attached, discard its backing storage */
4304 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4305 i915_gem_object_truncate(obj);
4306
4307 args->retained = obj->madv != __I915_MADV_PURGED;
4308
4309 out:
4310 drm_gem_object_unreference(&obj->base);
4311 unlock:
4312 mutex_unlock(&dev->struct_mutex);
4313 return ret;
4314 }
4315
4316 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4317 const struct drm_i915_gem_object_ops *ops)
4318 {
4319 int i;
4320
4321 INIT_LIST_HEAD(&obj->global_list);
4322 for (i = 0; i < I915_NUM_RINGS; i++)
4323 INIT_LIST_HEAD(&obj->ring_list[i]);
4324 INIT_LIST_HEAD(&obj->obj_exec_link);
4325 INIT_LIST_HEAD(&obj->vma_list);
4326 INIT_LIST_HEAD(&obj->batch_pool_link);
4327
4328 obj->ops = ops;
4329
4330 obj->fence_reg = I915_FENCE_REG_NONE;
4331 obj->madv = I915_MADV_WILLNEED;
4332
4333 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4334 }
4335
4336 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4337 .get_pages = i915_gem_object_get_pages_gtt,
4338 .put_pages = i915_gem_object_put_pages_gtt,
4339 };
4340
4341 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4342 size_t size)
4343 {
4344 struct drm_i915_gem_object *obj;
4345 struct address_space *mapping;
4346 gfp_t mask;
4347
4348 obj = i915_gem_object_alloc(dev);
4349 if (obj == NULL)
4350 return NULL;
4351
4352 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4353 i915_gem_object_free(obj);
4354 return NULL;
4355 }
4356
4357 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4358 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4359 /* 965gm cannot relocate objects above 4GiB. */
4360 mask &= ~__GFP_HIGHMEM;
4361 mask |= __GFP_DMA32;
4362 }
4363
4364 mapping = file_inode(obj->base.filp)->i_mapping;
4365 mapping_set_gfp_mask(mapping, mask);
4366
4367 i915_gem_object_init(obj, &i915_gem_object_ops);
4368
4369 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4370 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4371
4372 if (HAS_LLC(dev)) {
4373 /* On some devices, we can have the GPU use the LLC (the CPU
4374 * cache) for about a 10% performance improvement
4375 * compared to uncached. Graphics requests other than
4376 * display scanout are coherent with the CPU in
4377 * accessing this cache. This means in this mode we
4378 * don't need to clflush on the CPU side, and on the
4379 * GPU side we only need to flush internal caches to
4380 * get data visible to the CPU.
4381 *
4382 * However, we maintain the display planes as UC, and so
4383 * need to rebind when first used as such.
4384 */
4385 obj->cache_level = I915_CACHE_LLC;
4386 } else
4387 obj->cache_level = I915_CACHE_NONE;
4388
4389 trace_i915_gem_object_create(obj);
4390
4391 return obj;
4392 }
4393
4394 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4395 {
4396 /* If we are the last user of the backing storage (be it shmemfs
4397 * pages or stolen etc), we know that the pages are going to be
4398 * immediately released. In this case, we can then skip copying
4399 * back the contents from the GPU.
4400 */
4401
4402 if (obj->madv != I915_MADV_WILLNEED)
4403 return false;
4404
4405 if (obj->base.filp == NULL)
4406 return true;
4407
4408 /* At first glance, this looks racy, but then again so would be
4409 * userspace racing mmap against close. However, the first external
4410 * reference to the filp can only be obtained through the
4411 * i915_gem_mmap_ioctl() which safeguards us against the user
4412 * acquiring such a reference whilst we are in the middle of
4413 * freeing the object.
4414 */
4415 return atomic_long_read(&obj->base.filp->f_count) == 1;
4416 }
4417
4418 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4419 {
4420 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4421 struct drm_device *dev = obj->base.dev;
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423 struct i915_vma *vma, *next;
4424
4425 intel_runtime_pm_get(dev_priv);
4426
4427 trace_i915_gem_object_destroy(obj);
4428
4429 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4430 int ret;
4431
4432 vma->pin_count = 0;
4433 ret = i915_vma_unbind(vma);
4434 if (WARN_ON(ret == -ERESTARTSYS)) {
4435 bool was_interruptible;
4436
4437 was_interruptible = dev_priv->mm.interruptible;
4438 dev_priv->mm.interruptible = false;
4439
4440 WARN_ON(i915_vma_unbind(vma));
4441
4442 dev_priv->mm.interruptible = was_interruptible;
4443 }
4444 }
4445
4446 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4447 * before progressing. */
4448 if (obj->stolen)
4449 i915_gem_object_unpin_pages(obj);
4450
4451 WARN_ON(obj->frontbuffer_bits);
4452
4453 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4454 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4455 obj->tiling_mode != I915_TILING_NONE)
4456 i915_gem_object_unpin_pages(obj);
4457
4458 if (WARN_ON(obj->pages_pin_count))
4459 obj->pages_pin_count = 0;
4460 if (discard_backing_storage(obj))
4461 obj->madv = I915_MADV_DONTNEED;
4462 i915_gem_object_put_pages(obj);
4463 i915_gem_object_free_mmap_offset(obj);
4464
4465 BUG_ON(obj->pages);
4466
4467 if (obj->base.import_attach)
4468 drm_prime_gem_destroy(&obj->base, NULL);
4469
4470 if (obj->ops->release)
4471 obj->ops->release(obj);
4472
4473 drm_gem_object_release(&obj->base);
4474 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4475
4476 kfree(obj->bit_17);
4477 i915_gem_object_free(obj);
4478
4479 intel_runtime_pm_put(dev_priv);
4480 }
4481
4482 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4483 struct i915_address_space *vm)
4484 {
4485 struct i915_vma *vma;
4486 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4487 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4488 vma->vm == vm)
4489 return vma;
4490 }
4491 return NULL;
4492 }
4493
4494 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4495 const struct i915_ggtt_view *view)
4496 {
4497 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4498 struct i915_vma *vma;
4499
4500 if (WARN_ONCE(!view, "no view specified"))
4501 return ERR_PTR(-EINVAL);
4502
4503 list_for_each_entry(vma, &obj->vma_list, vma_link)
4504 if (vma->vm == ggtt &&
4505 i915_ggtt_view_equal(&vma->ggtt_view, view))
4506 return vma;
4507 return NULL;
4508 }
4509
4510 void i915_gem_vma_destroy(struct i915_vma *vma)
4511 {
4512 struct i915_address_space *vm = NULL;
4513 WARN_ON(vma->node.allocated);
4514
4515 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4516 if (!list_empty(&vma->exec_list))
4517 return;
4518
4519 vm = vma->vm;
4520
4521 if (!i915_is_ggtt(vm))
4522 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4523
4524 list_del(&vma->vma_link);
4525
4526 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4527 }
4528
4529 static void
4530 i915_gem_stop_ringbuffers(struct drm_device *dev)
4531 {
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533 struct intel_engine_cs *ring;
4534 int i;
4535
4536 for_each_ring(ring, dev_priv, i)
4537 dev_priv->gt.stop_ring(ring);
4538 }
4539
4540 int
4541 i915_gem_suspend(struct drm_device *dev)
4542 {
4543 struct drm_i915_private *dev_priv = dev->dev_private;
4544 int ret = 0;
4545
4546 mutex_lock(&dev->struct_mutex);
4547 ret = i915_gpu_idle(dev);
4548 if (ret)
4549 goto err;
4550
4551 i915_gem_retire_requests(dev);
4552
4553 i915_gem_stop_ringbuffers(dev);
4554 mutex_unlock(&dev->struct_mutex);
4555
4556 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4557 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4558 flush_delayed_work(&dev_priv->mm.idle_work);
4559
4560 /* Assert that we sucessfully flushed all the work and
4561 * reset the GPU back to its idle, low power state.
4562 */
4563 WARN_ON(dev_priv->mm.busy);
4564
4565 return 0;
4566
4567 err:
4568 mutex_unlock(&dev->struct_mutex);
4569 return ret;
4570 }
4571
4572 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4573 {
4574 struct intel_engine_cs *ring = req->ring;
4575 struct drm_device *dev = ring->dev;
4576 struct drm_i915_private *dev_priv = dev->dev_private;
4577 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4578 int i, ret;
4579
4580 if (!HAS_L3_DPF(dev) || !remap_info)
4581 return 0;
4582
4583 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4584 if (ret)
4585 return ret;
4586
4587 /*
4588 * Note: We do not worry about the concurrent register cacheline hang
4589 * here because no other code should access these registers other than
4590 * at initialization time.
4591 */
4592 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4593 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4594 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4595 intel_ring_emit(ring, remap_info[i]);
4596 }
4597
4598 intel_ring_advance(ring);
4599
4600 return ret;
4601 }
4602
4603 void i915_gem_init_swizzling(struct drm_device *dev)
4604 {
4605 struct drm_i915_private *dev_priv = dev->dev_private;
4606
4607 if (INTEL_INFO(dev)->gen < 5 ||
4608 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4609 return;
4610
4611 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4612 DISP_TILE_SURFACE_SWIZZLING);
4613
4614 if (IS_GEN5(dev))
4615 return;
4616
4617 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4618 if (IS_GEN6(dev))
4619 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4620 else if (IS_GEN7(dev))
4621 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4622 else if (IS_GEN8(dev))
4623 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4624 else
4625 BUG();
4626 }
4627
4628 static void init_unused_ring(struct drm_device *dev, u32 base)
4629 {
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631
4632 I915_WRITE(RING_CTL(base), 0);
4633 I915_WRITE(RING_HEAD(base), 0);
4634 I915_WRITE(RING_TAIL(base), 0);
4635 I915_WRITE(RING_START(base), 0);
4636 }
4637
4638 static void init_unused_rings(struct drm_device *dev)
4639 {
4640 if (IS_I830(dev)) {
4641 init_unused_ring(dev, PRB1_BASE);
4642 init_unused_ring(dev, SRB0_BASE);
4643 init_unused_ring(dev, SRB1_BASE);
4644 init_unused_ring(dev, SRB2_BASE);
4645 init_unused_ring(dev, SRB3_BASE);
4646 } else if (IS_GEN2(dev)) {
4647 init_unused_ring(dev, SRB0_BASE);
4648 init_unused_ring(dev, SRB1_BASE);
4649 } else if (IS_GEN3(dev)) {
4650 init_unused_ring(dev, PRB1_BASE);
4651 init_unused_ring(dev, PRB2_BASE);
4652 }
4653 }
4654
4655 int i915_gem_init_rings(struct drm_device *dev)
4656 {
4657 struct drm_i915_private *dev_priv = dev->dev_private;
4658 int ret;
4659
4660 ret = intel_init_render_ring_buffer(dev);
4661 if (ret)
4662 return ret;
4663
4664 if (HAS_BSD(dev)) {
4665 ret = intel_init_bsd_ring_buffer(dev);
4666 if (ret)
4667 goto cleanup_render_ring;
4668 }
4669
4670 if (HAS_BLT(dev)) {
4671 ret = intel_init_blt_ring_buffer(dev);
4672 if (ret)
4673 goto cleanup_bsd_ring;
4674 }
4675
4676 if (HAS_VEBOX(dev)) {
4677 ret = intel_init_vebox_ring_buffer(dev);
4678 if (ret)
4679 goto cleanup_blt_ring;
4680 }
4681
4682 if (HAS_BSD2(dev)) {
4683 ret = intel_init_bsd2_ring_buffer(dev);
4684 if (ret)
4685 goto cleanup_vebox_ring;
4686 }
4687
4688 return 0;
4689
4690 cleanup_vebox_ring:
4691 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4692 cleanup_blt_ring:
4693 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4694 cleanup_bsd_ring:
4695 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4696 cleanup_render_ring:
4697 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4698
4699 return ret;
4700 }
4701
4702 int
4703 i915_gem_init_hw(struct drm_device *dev)
4704 {
4705 struct drm_i915_private *dev_priv = dev->dev_private;
4706 struct intel_engine_cs *ring;
4707 int ret, i, j;
4708
4709 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4710 return -EIO;
4711
4712 /* Double layer security blanket, see i915_gem_init() */
4713 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4714
4715 if (dev_priv->ellc_size)
4716 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4717
4718 if (IS_HASWELL(dev))
4719 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4720 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4721
4722 if (HAS_PCH_NOP(dev)) {
4723 if (IS_IVYBRIDGE(dev)) {
4724 u32 temp = I915_READ(GEN7_MSG_CTL);
4725 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4726 I915_WRITE(GEN7_MSG_CTL, temp);
4727 } else if (INTEL_INFO(dev)->gen >= 7) {
4728 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4729 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4730 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4731 }
4732 }
4733
4734 i915_gem_init_swizzling(dev);
4735
4736 /*
4737 * At least 830 can leave some of the unused rings
4738 * "active" (ie. head != tail) after resume which
4739 * will prevent c3 entry. Makes sure all unused rings
4740 * are totally idle.
4741 */
4742 init_unused_rings(dev);
4743
4744 BUG_ON(!dev_priv->ring[RCS].default_context);
4745
4746 ret = i915_ppgtt_init_hw(dev);
4747 if (ret) {
4748 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4749 goto out;
4750 }
4751
4752 /* Need to do basic initialisation of all rings first: */
4753 for_each_ring(ring, dev_priv, i) {
4754 ret = ring->init_hw(ring);
4755 if (ret)
4756 goto out;
4757 }
4758
4759 /* We can't enable contexts until all firmware is loaded */
4760 if (HAS_GUC_UCODE(dev)) {
4761 ret = intel_guc_ucode_load(dev);
4762 if (ret) {
4763 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4764 ret = -EIO;
4765 goto out;
4766 }
4767 }
4768
4769 /*
4770 * Increment the next seqno by 0x100 so we have a visible break
4771 * on re-initialisation
4772 */
4773 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4774 if (ret)
4775 goto out;
4776
4777 /* Now it is safe to go back round and do everything else: */
4778 for_each_ring(ring, dev_priv, i) {
4779 struct drm_i915_gem_request *req;
4780
4781 WARN_ON(!ring->default_context);
4782
4783 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4784 if (ret) {
4785 i915_gem_cleanup_ringbuffer(dev);
4786 goto out;
4787 }
4788
4789 if (ring->id == RCS) {
4790 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4791 i915_gem_l3_remap(req, j);
4792 }
4793
4794 ret = i915_ppgtt_init_ring(req);
4795 if (ret && ret != -EIO) {
4796 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4797 i915_gem_request_cancel(req);
4798 i915_gem_cleanup_ringbuffer(dev);
4799 goto out;
4800 }
4801
4802 ret = i915_gem_context_enable(req);
4803 if (ret && ret != -EIO) {
4804 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4805 i915_gem_request_cancel(req);
4806 i915_gem_cleanup_ringbuffer(dev);
4807 goto out;
4808 }
4809
4810 i915_add_request_no_flush(req);
4811 }
4812
4813 out:
4814 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4815 return ret;
4816 }
4817
4818 int i915_gem_init(struct drm_device *dev)
4819 {
4820 struct drm_i915_private *dev_priv = dev->dev_private;
4821 int ret;
4822
4823 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4824 i915.enable_execlists);
4825
4826 mutex_lock(&dev->struct_mutex);
4827
4828 if (IS_VALLEYVIEW(dev)) {
4829 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4830 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4831 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4832 VLV_GTLC_ALLOWWAKEACK), 10))
4833 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4834 }
4835
4836 if (!i915.enable_execlists) {
4837 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4838 dev_priv->gt.init_rings = i915_gem_init_rings;
4839 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4840 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4841 } else {
4842 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4843 dev_priv->gt.init_rings = intel_logical_rings_init;
4844 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4845 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4846 }
4847
4848 /* This is just a security blanket to placate dragons.
4849 * On some systems, we very sporadically observe that the first TLBs
4850 * used by the CS may be stale, despite us poking the TLB reset. If
4851 * we hold the forcewake during initialisation these problems
4852 * just magically go away.
4853 */
4854 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4855
4856 ret = i915_gem_init_userptr(dev);
4857 if (ret)
4858 goto out_unlock;
4859
4860 i915_gem_init_global_gtt(dev);
4861
4862 ret = i915_gem_context_init(dev);
4863 if (ret)
4864 goto out_unlock;
4865
4866 ret = dev_priv->gt.init_rings(dev);
4867 if (ret)
4868 goto out_unlock;
4869
4870 ret = i915_gem_init_hw(dev);
4871 if (ret == -EIO) {
4872 /* Allow ring initialisation to fail by marking the GPU as
4873 * wedged. But we only want to do this where the GPU is angry,
4874 * for all other failure, such as an allocation failure, bail.
4875 */
4876 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4877 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4878 ret = 0;
4879 }
4880
4881 out_unlock:
4882 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4883 mutex_unlock(&dev->struct_mutex);
4884
4885 return ret;
4886 }
4887
4888 void
4889 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4890 {
4891 struct drm_i915_private *dev_priv = dev->dev_private;
4892 struct intel_engine_cs *ring;
4893 int i;
4894
4895 for_each_ring(ring, dev_priv, i)
4896 dev_priv->gt.cleanup_ring(ring);
4897
4898 if (i915.enable_execlists)
4899 /*
4900 * Neither the BIOS, ourselves or any other kernel
4901 * expects the system to be in execlists mode on startup,
4902 * so we need to reset the GPU back to legacy mode.
4903 */
4904 intel_gpu_reset(dev);
4905 }
4906
4907 static void
4908 init_ring_lists(struct intel_engine_cs *ring)
4909 {
4910 INIT_LIST_HEAD(&ring->active_list);
4911 INIT_LIST_HEAD(&ring->request_list);
4912 }
4913
4914 void
4915 i915_gem_load(struct drm_device *dev)
4916 {
4917 struct drm_i915_private *dev_priv = dev->dev_private;
4918 int i;
4919
4920 dev_priv->objects =
4921 kmem_cache_create("i915_gem_object",
4922 sizeof(struct drm_i915_gem_object), 0,
4923 SLAB_HWCACHE_ALIGN,
4924 NULL);
4925 dev_priv->vmas =
4926 kmem_cache_create("i915_gem_vma",
4927 sizeof(struct i915_vma), 0,
4928 SLAB_HWCACHE_ALIGN,
4929 NULL);
4930 dev_priv->requests =
4931 kmem_cache_create("i915_gem_request",
4932 sizeof(struct drm_i915_gem_request), 0,
4933 SLAB_HWCACHE_ALIGN,
4934 NULL);
4935
4936 INIT_LIST_HEAD(&dev_priv->vm_list);
4937 INIT_LIST_HEAD(&dev_priv->context_list);
4938 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4939 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4940 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4941 for (i = 0; i < I915_NUM_RINGS; i++)
4942 init_ring_lists(&dev_priv->ring[i]);
4943 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4944 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4945 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4946 i915_gem_retire_work_handler);
4947 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4948 i915_gem_idle_work_handler);
4949 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4950
4951 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4952
4953 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4954 dev_priv->num_fence_regs = 32;
4955 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4956 dev_priv->num_fence_regs = 16;
4957 else
4958 dev_priv->num_fence_regs = 8;
4959
4960 if (intel_vgpu_active(dev))
4961 dev_priv->num_fence_regs =
4962 I915_READ(vgtif_reg(avail_rs.fence_num));
4963
4964 /*
4965 * Set initial sequence number for requests.
4966 * Using this number allows the wraparound to happen early,
4967 * catching any obvious problems.
4968 */
4969 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4970 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4971
4972 /* Initialize fence registers to zero */
4973 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4974 i915_gem_restore_fences(dev);
4975
4976 i915_gem_detect_bit_6_swizzle(dev);
4977 init_waitqueue_head(&dev_priv->pending_flip_queue);
4978
4979 dev_priv->mm.interruptible = true;
4980
4981 i915_gem_shrinker_init(dev_priv);
4982
4983 mutex_init(&dev_priv->fb_tracking.lock);
4984 }
4985
4986 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4987 {
4988 struct drm_i915_file_private *file_priv = file->driver_priv;
4989
4990 /* Clean up our request list when the client is going away, so that
4991 * later retire_requests won't dereference our soon-to-be-gone
4992 * file_priv.
4993 */
4994 spin_lock(&file_priv->mm.lock);
4995 while (!list_empty(&file_priv->mm.request_list)) {
4996 struct drm_i915_gem_request *request;
4997
4998 request = list_first_entry(&file_priv->mm.request_list,
4999 struct drm_i915_gem_request,
5000 client_list);
5001 list_del(&request->client_list);
5002 request->file_priv = NULL;
5003 }
5004 spin_unlock(&file_priv->mm.lock);
5005
5006 if (!list_empty(&file_priv->rps.link)) {
5007 spin_lock(&to_i915(dev)->rps.client_lock);
5008 list_del(&file_priv->rps.link);
5009 spin_unlock(&to_i915(dev)->rps.client_lock);
5010 }
5011 }
5012
5013 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5014 {
5015 struct drm_i915_file_private *file_priv;
5016 int ret;
5017
5018 DRM_DEBUG_DRIVER("\n");
5019
5020 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5021 if (!file_priv)
5022 return -ENOMEM;
5023
5024 file->driver_priv = file_priv;
5025 file_priv->dev_priv = dev->dev_private;
5026 file_priv->file = file;
5027 INIT_LIST_HEAD(&file_priv->rps.link);
5028
5029 spin_lock_init(&file_priv->mm.lock);
5030 INIT_LIST_HEAD(&file_priv->mm.request_list);
5031
5032 ret = i915_gem_context_open(dev, file);
5033 if (ret)
5034 kfree(file_priv);
5035
5036 return ret;
5037 }
5038
5039 /**
5040 * i915_gem_track_fb - update frontbuffer tracking
5041 * @old: current GEM buffer for the frontbuffer slots
5042 * @new: new GEM buffer for the frontbuffer slots
5043 * @frontbuffer_bits: bitmask of frontbuffer slots
5044 *
5045 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5046 * from @old and setting them in @new. Both @old and @new can be NULL.
5047 */
5048 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5049 struct drm_i915_gem_object *new,
5050 unsigned frontbuffer_bits)
5051 {
5052 if (old) {
5053 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5054 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5055 old->frontbuffer_bits &= ~frontbuffer_bits;
5056 }
5057
5058 if (new) {
5059 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5060 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5061 new->frontbuffer_bits |= frontbuffer_bits;
5062 }
5063 }
5064
5065 /* All the new VM stuff */
5066 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5067 struct i915_address_space *vm)
5068 {
5069 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5070 struct i915_vma *vma;
5071
5072 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5073
5074 list_for_each_entry(vma, &o->vma_list, vma_link) {
5075 if (i915_is_ggtt(vma->vm) &&
5076 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5077 continue;
5078 if (vma->vm == vm)
5079 return vma->node.start;
5080 }
5081
5082 WARN(1, "%s vma for this object not found.\n",
5083 i915_is_ggtt(vm) ? "global" : "ppgtt");
5084 return -1;
5085 }
5086
5087 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5088 const struct i915_ggtt_view *view)
5089 {
5090 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5091 struct i915_vma *vma;
5092
5093 list_for_each_entry(vma, &o->vma_list, vma_link)
5094 if (vma->vm == ggtt &&
5095 i915_ggtt_view_equal(&vma->ggtt_view, view))
5096 return vma->node.start;
5097
5098 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5099 return -1;
5100 }
5101
5102 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5103 struct i915_address_space *vm)
5104 {
5105 struct i915_vma *vma;
5106
5107 list_for_each_entry(vma, &o->vma_list, vma_link) {
5108 if (i915_is_ggtt(vma->vm) &&
5109 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5110 continue;
5111 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5112 return true;
5113 }
5114
5115 return false;
5116 }
5117
5118 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5119 const struct i915_ggtt_view *view)
5120 {
5121 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5122 struct i915_vma *vma;
5123
5124 list_for_each_entry(vma, &o->vma_list, vma_link)
5125 if (vma->vm == ggtt &&
5126 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5127 drm_mm_node_allocated(&vma->node))
5128 return true;
5129
5130 return false;
5131 }
5132
5133 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5134 {
5135 struct i915_vma *vma;
5136
5137 list_for_each_entry(vma, &o->vma_list, vma_link)
5138 if (drm_mm_node_allocated(&vma->node))
5139 return true;
5140
5141 return false;
5142 }
5143
5144 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5145 struct i915_address_space *vm)
5146 {
5147 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5148 struct i915_vma *vma;
5149
5150 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5151
5152 BUG_ON(list_empty(&o->vma_list));
5153
5154 list_for_each_entry(vma, &o->vma_list, vma_link) {
5155 if (i915_is_ggtt(vma->vm) &&
5156 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5157 continue;
5158 if (vma->vm == vm)
5159 return vma->node.size;
5160 }
5161 return 0;
5162 }
5163
5164 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5165 {
5166 struct i915_vma *vma;
5167 list_for_each_entry(vma, &obj->vma_list, vma_link)
5168 if (vma->pin_count > 0)
5169 return true;
5170
5171 return false;
5172 }
5173
5174 /* Allocate a new GEM object and fill it with the supplied data */
5175 struct drm_i915_gem_object *
5176 i915_gem_object_create_from_data(struct drm_device *dev,
5177 const void *data, size_t size)
5178 {
5179 struct drm_i915_gem_object *obj;
5180 struct sg_table *sg;
5181 size_t bytes;
5182 int ret;
5183
5184 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5185 if (IS_ERR_OR_NULL(obj))
5186 return obj;
5187
5188 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5189 if (ret)
5190 goto fail;
5191
5192 ret = i915_gem_object_get_pages(obj);
5193 if (ret)
5194 goto fail;
5195
5196 i915_gem_object_pin_pages(obj);
5197 sg = obj->pages;
5198 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5199 i915_gem_object_unpin_pages(obj);
5200
5201 if (WARN_ON(bytes != size)) {
5202 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5203 ret = -EFAULT;
5204 goto fail;
5205 }
5206
5207 return obj;
5208
5209 fail:
5210 drm_gem_object_unreference(&obj->base);
5211 return ERR_PTR(ret);
5212 }
This page took 0.151874 seconds and 5 git commands to generate.