452178ce4d7ac87a197738a7b2f28609054f4eec
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct drm_i915_private *i915,
65 struct drm_mm_node *node, u32 size)
66 {
67 memset(node, 0, sizeof(*node));
68 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
69 size, 0, 0, 0,
70 i915->ggtt.mappable_end,
71 DRM_MM_SEARCH_DEFAULT,
72 DRM_MM_CREATE_DEFAULT);
73 }
74
75 static void
76 remove_mappable_node(struct drm_mm_node *node)
77 {
78 drm_mm_remove_node(node);
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 if (!i915_reset_in_progress(error))
106 return 0;
107
108 /*
109 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
110 * userspace. If it takes that long something really bad is going on and
111 * we should simply try to bail out and fail as gracefully as possible.
112 */
113 ret = wait_event_interruptible_timeout(error->reset_queue,
114 !i915_reset_in_progress(error),
115 10*HZ);
116 if (ret == 0) {
117 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
118 return -EIO;
119 } else if (ret < 0) {
120 return ret;
121 } else {
122 return 0;
123 }
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 struct drm_i915_private *dev_priv = dev->dev_private;
129 int ret;
130
131 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
132 if (ret)
133 return ret;
134
135 ret = mutex_lock_interruptible(&dev->struct_mutex);
136 if (ret)
137 return ret;
138
139 WARN_ON(i915_verify_lists(dev));
140 return 0;
141 }
142
143 int
144 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145 struct drm_file *file)
146 {
147 struct drm_i915_private *dev_priv = to_i915(dev);
148 struct i915_ggtt *ggtt = &dev_priv->ggtt;
149 struct drm_i915_gem_get_aperture *args = data;
150 struct i915_vma *vma;
151 size_t pinned;
152
153 pinned = 0;
154 mutex_lock(&dev->struct_mutex);
155 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156 if (vma->pin_count)
157 pinned += vma->node.size;
158 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 mutex_unlock(&dev->struct_mutex);
162
163 args->aper_size = ggtt->base.total;
164 args->aper_available_size = args->aper_size - pinned;
165
166 return 0;
167 }
168
169 static int
170 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171 {
172 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
173 char *vaddr = obj->phys_handle->vaddr;
174 struct sg_table *st;
175 struct scatterlist *sg;
176 int i;
177
178 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
179 return -EINVAL;
180
181 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
182 struct page *page;
183 char *src;
184
185 page = shmem_read_mapping_page(mapping, i);
186 if (IS_ERR(page))
187 return PTR_ERR(page);
188
189 src = kmap_atomic(page);
190 memcpy(vaddr, src, PAGE_SIZE);
191 drm_clflush_virt_range(vaddr, PAGE_SIZE);
192 kunmap_atomic(src);
193
194 put_page(page);
195 vaddr += PAGE_SIZE;
196 }
197
198 i915_gem_chipset_flush(to_i915(obj->base.dev));
199
200 st = kmalloc(sizeof(*st), GFP_KERNEL);
201 if (st == NULL)
202 return -ENOMEM;
203
204 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
205 kfree(st);
206 return -ENOMEM;
207 }
208
209 sg = st->sgl;
210 sg->offset = 0;
211 sg->length = obj->base.size;
212
213 sg_dma_address(sg) = obj->phys_handle->busaddr;
214 sg_dma_len(sg) = obj->base.size;
215
216 obj->pages = st;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (WARN_ON(ret)) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
233 }
234
235 if (obj->madv == I915_MADV_DONTNEED)
236 obj->dirty = 0;
237
238 if (obj->dirty) {
239 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
240 char *vaddr = obj->phys_handle->vaddr;
241 int i;
242
243 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
244 struct page *page;
245 char *dst;
246
247 page = shmem_read_mapping_page(mapping, i);
248 if (IS_ERR(page))
249 continue;
250
251 dst = kmap_atomic(page);
252 drm_clflush_virt_range(vaddr, PAGE_SIZE);
253 memcpy(dst, vaddr, PAGE_SIZE);
254 kunmap_atomic(dst);
255
256 set_page_dirty(page);
257 if (obj->madv == I915_MADV_WILLNEED)
258 mark_page_accessed(page);
259 put_page(page);
260 vaddr += PAGE_SIZE;
261 }
262 obj->dirty = 0;
263 }
264
265 sg_free_table(obj->pages);
266 kfree(obj->pages);
267 }
268
269 static void
270 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
271 {
272 drm_pci_free(obj->base.dev, obj->phys_handle);
273 }
274
275 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
276 .get_pages = i915_gem_object_get_pages_phys,
277 .put_pages = i915_gem_object_put_pages_phys,
278 .release = i915_gem_object_release_phys,
279 };
280
281 static int
282 drop_pages(struct drm_i915_gem_object *obj)
283 {
284 struct i915_vma *vma, *next;
285 int ret;
286
287 drm_gem_object_reference(&obj->base);
288 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
289 if (i915_vma_unbind(vma))
290 break;
291
292 ret = i915_gem_object_put_pages(obj);
293 drm_gem_object_unreference(&obj->base);
294
295 return ret;
296 }
297
298 int
299 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
300 int align)
301 {
302 drm_dma_handle_t *phys;
303 int ret;
304
305 if (obj->phys_handle) {
306 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
307 return -EBUSY;
308
309 return 0;
310 }
311
312 if (obj->madv != I915_MADV_WILLNEED)
313 return -EFAULT;
314
315 if (obj->base.filp == NULL)
316 return -EINVAL;
317
318 ret = drop_pages(obj);
319 if (ret)
320 return ret;
321
322 /* create a new object */
323 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
324 if (!phys)
325 return -ENOMEM;
326
327 obj->phys_handle = phys;
328 obj->ops = &i915_gem_phys_ops;
329
330 return i915_gem_object_get_pages(obj);
331 }
332
333 static int
334 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
335 struct drm_i915_gem_pwrite *args,
336 struct drm_file *file_priv)
337 {
338 struct drm_device *dev = obj->base.dev;
339 void *vaddr = obj->phys_handle->vaddr + args->offset;
340 char __user *user_data = u64_to_user_ptr(args->data_ptr);
341 int ret = 0;
342
343 /* We manually control the domain here and pretend that it
344 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
345 */
346 ret = i915_gem_object_wait_rendering(obj, false);
347 if (ret)
348 return ret;
349
350 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
351 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
352 unsigned long unwritten;
353
354 /* The physical object once assigned is fixed for the lifetime
355 * of the obj, so we can safely drop the lock and continue
356 * to access vaddr.
357 */
358 mutex_unlock(&dev->struct_mutex);
359 unwritten = copy_from_user(vaddr, user_data, args->size);
360 mutex_lock(&dev->struct_mutex);
361 if (unwritten) {
362 ret = -EFAULT;
363 goto out;
364 }
365 }
366
367 drm_clflush_virt_range(vaddr, args->size);
368 i915_gem_chipset_flush(to_i915(dev));
369
370 out:
371 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
372 return ret;
373 }
374
375 void *i915_gem_object_alloc(struct drm_device *dev)
376 {
377 struct drm_i915_private *dev_priv = dev->dev_private;
378 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
379 }
380
381 void i915_gem_object_free(struct drm_i915_gem_object *obj)
382 {
383 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
384 kmem_cache_free(dev_priv->objects, obj);
385 }
386
387 static int
388 i915_gem_create(struct drm_file *file,
389 struct drm_device *dev,
390 uint64_t size,
391 uint32_t *handle_p)
392 {
393 struct drm_i915_gem_object *obj;
394 int ret;
395 u32 handle;
396
397 size = roundup(size, PAGE_SIZE);
398 if (size == 0)
399 return -EINVAL;
400
401 /* Allocate the new object */
402 obj = i915_gem_object_create(dev, size);
403 if (IS_ERR(obj))
404 return PTR_ERR(obj);
405
406 ret = drm_gem_handle_create(file, &obj->base, &handle);
407 /* drop reference from allocate - handle holds it now */
408 drm_gem_object_unreference_unlocked(&obj->base);
409 if (ret)
410 return ret;
411
412 *handle_p = handle;
413 return 0;
414 }
415
416 int
417 i915_gem_dumb_create(struct drm_file *file,
418 struct drm_device *dev,
419 struct drm_mode_create_dumb *args)
420 {
421 /* have to work out size/pitch and return them */
422 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
423 args->size = args->pitch * args->height;
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 /**
429 * Creates a new mm object and returns a handle to it.
430 * @dev: drm device pointer
431 * @data: ioctl data blob
432 * @file: drm file pointer
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561 {
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614 {
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = u64_to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682 next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688 out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692 }
693
694 /**
695 * Reads data from the object referenced by handle.
696 * @dev: drm device pointer
697 * @data: ioctl data blob
698 * @file: drm file pointer
699 *
700 * On error, the contents of *data are undefined.
701 */
702 int
703 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
704 struct drm_file *file)
705 {
706 struct drm_i915_gem_pread *args = data;
707 struct drm_i915_gem_object *obj;
708 int ret = 0;
709
710 if (args->size == 0)
711 return 0;
712
713 if (!access_ok(VERIFY_WRITE,
714 u64_to_user_ptr(args->data_ptr),
715 args->size))
716 return -EFAULT;
717
718 ret = i915_mutex_lock_interruptible(dev);
719 if (ret)
720 return ret;
721
722 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
723 if (&obj->base == NULL) {
724 ret = -ENOENT;
725 goto unlock;
726 }
727
728 /* Bounds check source. */
729 if (args->offset > obj->base.size ||
730 args->size > obj->base.size - args->offset) {
731 ret = -EINVAL;
732 goto out;
733 }
734
735 /* prime objects have no backing filp to GEM pread/pwrite
736 * pages from.
737 */
738 if (!obj->base.filp) {
739 ret = -EINVAL;
740 goto out;
741 }
742
743 trace_i915_gem_object_pread(obj, args->offset, args->size);
744
745 ret = i915_gem_shmem_pread(dev, obj, args, file);
746
747 out:
748 drm_gem_object_unreference(&obj->base);
749 unlock:
750 mutex_unlock(&dev->struct_mutex);
751 return ret;
752 }
753
754 /* This is the fast write path which cannot handle
755 * page faults in the source data
756 */
757
758 static inline int
759 fast_user_write(struct io_mapping *mapping,
760 loff_t page_base, int page_offset,
761 char __user *user_data,
762 int length)
763 {
764 void __iomem *vaddr_atomic;
765 void *vaddr;
766 unsigned long unwritten;
767
768 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
769 /* We can use the cpu mem copy function because this is X86. */
770 vaddr = (void __force*)vaddr_atomic + page_offset;
771 unwritten = __copy_from_user_inatomic_nocache(vaddr,
772 user_data, length);
773 io_mapping_unmap_atomic(vaddr_atomic);
774 return unwritten;
775 }
776
777 /**
778 * This is the fast pwrite path, where we copy the data directly from the
779 * user into the GTT, uncached.
780 * @dev: drm device pointer
781 * @obj: i915 gem object
782 * @args: pwrite arguments structure
783 * @file: drm file pointer
784 */
785 static int
786 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
787 struct drm_i915_gem_object *obj,
788 struct drm_i915_gem_pwrite *args,
789 struct drm_file *file)
790 {
791 struct i915_ggtt *ggtt = &i915->ggtt;
792 struct drm_mm_node node;
793 uint64_t remain, offset;
794 char __user *user_data;
795 int ret;
796
797 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
798 if (ret) {
799 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
800 if (ret)
801 goto out;
802
803 ret = i915_gem_object_get_pages(obj);
804 if (ret) {
805 remove_mappable_node(&node);
806 goto out;
807 }
808
809 i915_gem_object_pin_pages(obj);
810 } else {
811 node.start = i915_gem_obj_ggtt_offset(obj);
812 node.allocated = false;
813 }
814
815 ret = i915_gem_object_set_to_gtt_domain(obj, true);
816 if (ret)
817 goto out_unpin;
818
819 ret = i915_gem_object_put_fence(obj);
820 if (ret)
821 goto out_unpin;
822
823 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
824 obj->dirty = true;
825
826 user_data = u64_to_user_ptr(args->data_ptr);
827 offset = args->offset;
828 remain = args->size;
829 while (remain) {
830 /* Operation in this page
831 *
832 * page_base = page offset within aperture
833 * page_offset = offset within page
834 * page_length = bytes to copy for this page
835 */
836 u32 page_base = node.start;
837 unsigned page_offset = offset_in_page(offset);
838 unsigned page_length = PAGE_SIZE - page_offset;
839 page_length = remain < page_length ? remain : page_length;
840 if (node.allocated) {
841 wmb(); /* flush the write before we modify the GGTT */
842 ggtt->base.insert_page(&ggtt->base,
843 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
844 node.start, I915_CACHE_NONE, 0);
845 wmb(); /* flush modifications to the GGTT (insert_page) */
846 } else {
847 page_base += offset & PAGE_MASK;
848 }
849 /* If we get a fault while copying data, then (presumably) our
850 * source page isn't available. Return the error and we'll
851 * retry in the slow path.
852 */
853 if (fast_user_write(ggtt->mappable, page_base,
854 page_offset, user_data, page_length)) {
855 ret = -EFAULT;
856 goto out_flush;
857 }
858
859 remain -= page_length;
860 user_data += page_length;
861 offset += page_length;
862 }
863
864 out_flush:
865 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
866 out_unpin:
867 if (node.allocated) {
868 wmb();
869 ggtt->base.clear_range(&ggtt->base,
870 node.start, node.size,
871 true);
872 i915_gem_object_unpin_pages(obj);
873 remove_mappable_node(&node);
874 } else {
875 i915_gem_object_ggtt_unpin(obj);
876 }
877 out:
878 return ret;
879 }
880
881 /* Per-page copy function for the shmem pwrite fastpath.
882 * Flushes invalid cachelines before writing to the target if
883 * needs_clflush_before is set and flushes out any written cachelines after
884 * writing if needs_clflush is set. */
885 static int
886 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
887 char __user *user_data,
888 bool page_do_bit17_swizzling,
889 bool needs_clflush_before,
890 bool needs_clflush_after)
891 {
892 char *vaddr;
893 int ret;
894
895 if (unlikely(page_do_bit17_swizzling))
896 return -EINVAL;
897
898 vaddr = kmap_atomic(page);
899 if (needs_clflush_before)
900 drm_clflush_virt_range(vaddr + shmem_page_offset,
901 page_length);
902 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
903 user_data, page_length);
904 if (needs_clflush_after)
905 drm_clflush_virt_range(vaddr + shmem_page_offset,
906 page_length);
907 kunmap_atomic(vaddr);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 /* Only difference to the fast-path function is that this can handle bit17
913 * and uses non-atomic copy and kmap functions. */
914 static int
915 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
916 char __user *user_data,
917 bool page_do_bit17_swizzling,
918 bool needs_clflush_before,
919 bool needs_clflush_after)
920 {
921 char *vaddr;
922 int ret;
923
924 vaddr = kmap(page);
925 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
926 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
927 page_length,
928 page_do_bit17_swizzling);
929 if (page_do_bit17_swizzling)
930 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
931 user_data,
932 page_length);
933 else
934 ret = __copy_from_user(vaddr + shmem_page_offset,
935 user_data,
936 page_length);
937 if (needs_clflush_after)
938 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
939 page_length,
940 page_do_bit17_swizzling);
941 kunmap(page);
942
943 return ret ? -EFAULT : 0;
944 }
945
946 static int
947 i915_gem_shmem_pwrite(struct drm_device *dev,
948 struct drm_i915_gem_object *obj,
949 struct drm_i915_gem_pwrite *args,
950 struct drm_file *file)
951 {
952 ssize_t remain;
953 loff_t offset;
954 char __user *user_data;
955 int shmem_page_offset, page_length, ret = 0;
956 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
957 int hit_slowpath = 0;
958 int needs_clflush_after = 0;
959 int needs_clflush_before = 0;
960 struct sg_page_iter sg_iter;
961
962 user_data = u64_to_user_ptr(args->data_ptr);
963 remain = args->size;
964
965 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
966
967 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
968 /* If we're not in the cpu write domain, set ourself into the gtt
969 * write domain and manually flush cachelines (if required). This
970 * optimizes for the case when the gpu will use the data
971 * right away and we therefore have to clflush anyway. */
972 needs_clflush_after = cpu_write_needs_clflush(obj);
973 ret = i915_gem_object_wait_rendering(obj, false);
974 if (ret)
975 return ret;
976 }
977 /* Same trick applies to invalidate partially written cachelines read
978 * before writing. */
979 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
980 needs_clflush_before =
981 !cpu_cache_is_coherent(dev, obj->cache_level);
982
983 ret = i915_gem_object_get_pages(obj);
984 if (ret)
985 return ret;
986
987 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
988
989 i915_gem_object_pin_pages(obj);
990
991 offset = args->offset;
992 obj->dirty = 1;
993
994 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
995 offset >> PAGE_SHIFT) {
996 struct page *page = sg_page_iter_page(&sg_iter);
997 int partial_cacheline_write;
998
999 if (remain <= 0)
1000 break;
1001
1002 /* Operation in this page
1003 *
1004 * shmem_page_offset = offset within page in shmem file
1005 * page_length = bytes to copy for this page
1006 */
1007 shmem_page_offset = offset_in_page(offset);
1008
1009 page_length = remain;
1010 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1011 page_length = PAGE_SIZE - shmem_page_offset;
1012
1013 /* If we don't overwrite a cacheline completely we need to be
1014 * careful to have up-to-date data by first clflushing. Don't
1015 * overcomplicate things and flush the entire patch. */
1016 partial_cacheline_write = needs_clflush_before &&
1017 ((shmem_page_offset | page_length)
1018 & (boot_cpu_data.x86_clflush_size - 1));
1019
1020 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1021 (page_to_phys(page) & (1 << 17)) != 0;
1022
1023 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1024 user_data, page_do_bit17_swizzling,
1025 partial_cacheline_write,
1026 needs_clflush_after);
1027 if (ret == 0)
1028 goto next_page;
1029
1030 hit_slowpath = 1;
1031 mutex_unlock(&dev->struct_mutex);
1032 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1033 user_data, page_do_bit17_swizzling,
1034 partial_cacheline_write,
1035 needs_clflush_after);
1036
1037 mutex_lock(&dev->struct_mutex);
1038
1039 if (ret)
1040 goto out;
1041
1042 next_page:
1043 remain -= page_length;
1044 user_data += page_length;
1045 offset += page_length;
1046 }
1047
1048 out:
1049 i915_gem_object_unpin_pages(obj);
1050
1051 if (hit_slowpath) {
1052 /*
1053 * Fixup: Flush cpu caches in case we didn't flush the dirty
1054 * cachelines in-line while writing and the object moved
1055 * out of the cpu write domain while we've dropped the lock.
1056 */
1057 if (!needs_clflush_after &&
1058 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1059 if (i915_gem_clflush_object(obj, obj->pin_display))
1060 needs_clflush_after = true;
1061 }
1062 }
1063
1064 if (needs_clflush_after)
1065 i915_gem_chipset_flush(to_i915(dev));
1066 else
1067 obj->cache_dirty = true;
1068
1069 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1070 return ret;
1071 }
1072
1073 /**
1074 * Writes data to the object referenced by handle.
1075 * @dev: drm device
1076 * @data: ioctl data blob
1077 * @file: drm file
1078 *
1079 * On error, the contents of the buffer that were to be modified are undefined.
1080 */
1081 int
1082 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1083 struct drm_file *file)
1084 {
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 struct drm_i915_gem_pwrite *args = data;
1087 struct drm_i915_gem_object *obj;
1088 int ret;
1089
1090 if (args->size == 0)
1091 return 0;
1092
1093 if (!access_ok(VERIFY_READ,
1094 u64_to_user_ptr(args->data_ptr),
1095 args->size))
1096 return -EFAULT;
1097
1098 if (likely(!i915.prefault_disable)) {
1099 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1100 args->size);
1101 if (ret)
1102 return -EFAULT;
1103 }
1104
1105 intel_runtime_pm_get(dev_priv);
1106
1107 ret = i915_mutex_lock_interruptible(dev);
1108 if (ret)
1109 goto put_rpm;
1110
1111 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1112 if (&obj->base == NULL) {
1113 ret = -ENOENT;
1114 goto unlock;
1115 }
1116
1117 /* Bounds check destination. */
1118 if (args->offset > obj->base.size ||
1119 args->size > obj->base.size - args->offset) {
1120 ret = -EINVAL;
1121 goto out;
1122 }
1123
1124 /* prime objects have no backing filp to GEM pread/pwrite
1125 * pages from.
1126 */
1127 if (!obj->base.filp) {
1128 ret = -EINVAL;
1129 goto out;
1130 }
1131
1132 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1133
1134 ret = -EFAULT;
1135 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1136 * it would end up going through the fenced access, and we'll get
1137 * different detiling behavior between reading and writing.
1138 * pread/pwrite currently are reading and writing from the CPU
1139 * perspective, requiring manual detiling by the client.
1140 */
1141 if (obj->tiling_mode == I915_TILING_NONE &&
1142 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1143 cpu_write_needs_clflush(obj)) {
1144 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1145 /* Note that the gtt paths might fail with non-page-backed user
1146 * pointers (e.g. gtt mappings when moving data between
1147 * textures). Fallback to the shmem path in that case. */
1148 }
1149
1150 if (ret == -EFAULT || ret == -ENOSPC) {
1151 if (obj->phys_handle)
1152 ret = i915_gem_phys_pwrite(obj, args, file);
1153 else
1154 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1155 }
1156
1157 out:
1158 drm_gem_object_unreference(&obj->base);
1159 unlock:
1160 mutex_unlock(&dev->struct_mutex);
1161 put_rpm:
1162 intel_runtime_pm_put(dev_priv);
1163
1164 return ret;
1165 }
1166
1167 static int
1168 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1169 {
1170 if (__i915_terminally_wedged(reset_counter))
1171 return -EIO;
1172
1173 if (__i915_reset_in_progress(reset_counter)) {
1174 /* Non-interruptible callers can't handle -EAGAIN, hence return
1175 * -EIO unconditionally for these. */
1176 if (!interruptible)
1177 return -EIO;
1178
1179 return -EAGAIN;
1180 }
1181
1182 return 0;
1183 }
1184
1185 static void fake_irq(unsigned long data)
1186 {
1187 wake_up_process((struct task_struct *)data);
1188 }
1189
1190 static bool missed_irq(struct drm_i915_private *dev_priv,
1191 struct intel_engine_cs *engine)
1192 {
1193 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1194 }
1195
1196 static unsigned long local_clock_us(unsigned *cpu)
1197 {
1198 unsigned long t;
1199
1200 /* Cheaply and approximately convert from nanoseconds to microseconds.
1201 * The result and subsequent calculations are also defined in the same
1202 * approximate microseconds units. The principal source of timing
1203 * error here is from the simple truncation.
1204 *
1205 * Note that local_clock() is only defined wrt to the current CPU;
1206 * the comparisons are no longer valid if we switch CPUs. Instead of
1207 * blocking preemption for the entire busywait, we can detect the CPU
1208 * switch and use that as indicator of system load and a reason to
1209 * stop busywaiting, see busywait_stop().
1210 */
1211 *cpu = get_cpu();
1212 t = local_clock() >> 10;
1213 put_cpu();
1214
1215 return t;
1216 }
1217
1218 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1219 {
1220 unsigned this_cpu;
1221
1222 if (time_after(local_clock_us(&this_cpu), timeout))
1223 return true;
1224
1225 return this_cpu != cpu;
1226 }
1227
1228 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1229 {
1230 unsigned long timeout;
1231 unsigned cpu;
1232
1233 /* When waiting for high frequency requests, e.g. during synchronous
1234 * rendering split between the CPU and GPU, the finite amount of time
1235 * required to set up the irq and wait upon it limits the response
1236 * rate. By busywaiting on the request completion for a short while we
1237 * can service the high frequency waits as quick as possible. However,
1238 * if it is a slow request, we want to sleep as quickly as possible.
1239 * The tradeoff between waiting and sleeping is roughly the time it
1240 * takes to sleep on a request, on the order of a microsecond.
1241 */
1242
1243 if (req->engine->irq_refcount)
1244 return -EBUSY;
1245
1246 /* Only spin if we know the GPU is processing this request */
1247 if (!i915_gem_request_started(req, true))
1248 return -EAGAIN;
1249
1250 timeout = local_clock_us(&cpu) + 5;
1251 while (!need_resched()) {
1252 if (i915_gem_request_completed(req, true))
1253 return 0;
1254
1255 if (signal_pending_state(state, current))
1256 break;
1257
1258 if (busywait_stop(timeout, cpu))
1259 break;
1260
1261 cpu_relax_lowlatency();
1262 }
1263
1264 if (i915_gem_request_completed(req, false))
1265 return 0;
1266
1267 return -EAGAIN;
1268 }
1269
1270 /**
1271 * __i915_wait_request - wait until execution of request has finished
1272 * @req: duh!
1273 * @interruptible: do an interruptible wait (normally yes)
1274 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1275 * @rps: RPS client
1276 *
1277 * Note: It is of utmost importance that the passed in seqno and reset_counter
1278 * values have been read by the caller in an smp safe manner. Where read-side
1279 * locks are involved, it is sufficient to read the reset_counter before
1280 * unlocking the lock that protects the seqno. For lockless tricks, the
1281 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1282 * inserted.
1283 *
1284 * Returns 0 if the request was found within the alloted time. Else returns the
1285 * errno with remaining time filled in timeout argument.
1286 */
1287 int __i915_wait_request(struct drm_i915_gem_request *req,
1288 bool interruptible,
1289 s64 *timeout,
1290 struct intel_rps_client *rps)
1291 {
1292 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1293 struct drm_i915_private *dev_priv = req->i915;
1294 const bool irq_test_in_progress =
1295 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1296 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1297 DEFINE_WAIT(wait);
1298 unsigned long timeout_expire;
1299 s64 before = 0; /* Only to silence a compiler warning. */
1300 int ret;
1301
1302 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1303
1304 if (list_empty(&req->list))
1305 return 0;
1306
1307 if (i915_gem_request_completed(req, true))
1308 return 0;
1309
1310 timeout_expire = 0;
1311 if (timeout) {
1312 if (WARN_ON(*timeout < 0))
1313 return -EINVAL;
1314
1315 if (*timeout == 0)
1316 return -ETIME;
1317
1318 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1319
1320 /*
1321 * Record current time in case interrupted by signal, or wedged.
1322 */
1323 before = ktime_get_raw_ns();
1324 }
1325
1326 if (INTEL_INFO(dev_priv)->gen >= 6)
1327 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1328
1329 trace_i915_gem_request_wait_begin(req);
1330
1331 /* Optimistic spin for the next jiffie before touching IRQs */
1332 ret = __i915_spin_request(req, state);
1333 if (ret == 0)
1334 goto out;
1335
1336 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1337 ret = -ENODEV;
1338 goto out;
1339 }
1340
1341 for (;;) {
1342 struct timer_list timer;
1343
1344 prepare_to_wait(&engine->irq_queue, &wait, state);
1345
1346 /* We need to check whether any gpu reset happened in between
1347 * the request being submitted and now. If a reset has occurred,
1348 * the request is effectively complete (we either are in the
1349 * process of or have discarded the rendering and completely
1350 * reset the GPU. The results of the request are lost and we
1351 * are free to continue on with the original operation.
1352 */
1353 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1354 ret = 0;
1355 break;
1356 }
1357
1358 if (i915_gem_request_completed(req, false)) {
1359 ret = 0;
1360 break;
1361 }
1362
1363 if (signal_pending_state(state, current)) {
1364 ret = -ERESTARTSYS;
1365 break;
1366 }
1367
1368 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1369 ret = -ETIME;
1370 break;
1371 }
1372
1373 timer.function = NULL;
1374 if (timeout || missed_irq(dev_priv, engine)) {
1375 unsigned long expire;
1376
1377 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1378 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1379 mod_timer(&timer, expire);
1380 }
1381
1382 io_schedule();
1383
1384 if (timer.function) {
1385 del_singleshot_timer_sync(&timer);
1386 destroy_timer_on_stack(&timer);
1387 }
1388 }
1389 if (!irq_test_in_progress)
1390 engine->irq_put(engine);
1391
1392 finish_wait(&engine->irq_queue, &wait);
1393
1394 out:
1395 trace_i915_gem_request_wait_end(req);
1396
1397 if (timeout) {
1398 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1399
1400 *timeout = tres < 0 ? 0 : tres;
1401
1402 /*
1403 * Apparently ktime isn't accurate enough and occasionally has a
1404 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1405 * things up to make the test happy. We allow up to 1 jiffy.
1406 *
1407 * This is a regrssion from the timespec->ktime conversion.
1408 */
1409 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1410 *timeout = 0;
1411 }
1412
1413 return ret;
1414 }
1415
1416 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1417 struct drm_file *file)
1418 {
1419 struct drm_i915_file_private *file_priv;
1420
1421 WARN_ON(!req || !file || req->file_priv);
1422
1423 if (!req || !file)
1424 return -EINVAL;
1425
1426 if (req->file_priv)
1427 return -EINVAL;
1428
1429 file_priv = file->driver_priv;
1430
1431 spin_lock(&file_priv->mm.lock);
1432 req->file_priv = file_priv;
1433 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1434 spin_unlock(&file_priv->mm.lock);
1435
1436 req->pid = get_pid(task_pid(current));
1437
1438 return 0;
1439 }
1440
1441 static inline void
1442 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1443 {
1444 struct drm_i915_file_private *file_priv = request->file_priv;
1445
1446 if (!file_priv)
1447 return;
1448
1449 spin_lock(&file_priv->mm.lock);
1450 list_del(&request->client_list);
1451 request->file_priv = NULL;
1452 spin_unlock(&file_priv->mm.lock);
1453
1454 put_pid(request->pid);
1455 request->pid = NULL;
1456 }
1457
1458 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1459 {
1460 trace_i915_gem_request_retire(request);
1461
1462 /* We know the GPU must have read the request to have
1463 * sent us the seqno + interrupt, so use the position
1464 * of tail of the request to update the last known position
1465 * of the GPU head.
1466 *
1467 * Note this requires that we are always called in request
1468 * completion order.
1469 */
1470 request->ringbuf->last_retired_head = request->postfix;
1471
1472 list_del_init(&request->list);
1473 i915_gem_request_remove_from_client(request);
1474
1475 if (request->previous_context) {
1476 if (i915.enable_execlists)
1477 intel_lr_context_unpin(request->previous_context,
1478 request->engine);
1479 }
1480
1481 i915_gem_context_unreference(request->ctx);
1482 i915_gem_request_unreference(request);
1483 }
1484
1485 static void
1486 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1487 {
1488 struct intel_engine_cs *engine = req->engine;
1489 struct drm_i915_gem_request *tmp;
1490
1491 lockdep_assert_held(&engine->i915->dev->struct_mutex);
1492
1493 if (list_empty(&req->list))
1494 return;
1495
1496 do {
1497 tmp = list_first_entry(&engine->request_list,
1498 typeof(*tmp), list);
1499
1500 i915_gem_request_retire(tmp);
1501 } while (tmp != req);
1502
1503 WARN_ON(i915_verify_lists(engine->dev));
1504 }
1505
1506 /**
1507 * Waits for a request to be signaled, and cleans up the
1508 * request and object lists appropriately for that event.
1509 * @req: request to wait on
1510 */
1511 int
1512 i915_wait_request(struct drm_i915_gem_request *req)
1513 {
1514 struct drm_i915_private *dev_priv = req->i915;
1515 bool interruptible;
1516 int ret;
1517
1518 interruptible = dev_priv->mm.interruptible;
1519
1520 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1521
1522 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1523 if (ret)
1524 return ret;
1525
1526 /* If the GPU hung, we want to keep the requests to find the guilty. */
1527 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1528 __i915_gem_request_retire__upto(req);
1529
1530 return 0;
1531 }
1532
1533 /**
1534 * Ensures that all rendering to the object has completed and the object is
1535 * safe to unbind from the GTT or access from the CPU.
1536 * @obj: i915 gem object
1537 * @readonly: waiting for read access or write
1538 */
1539 int
1540 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1541 bool readonly)
1542 {
1543 int ret, i;
1544
1545 if (!obj->active)
1546 return 0;
1547
1548 if (readonly) {
1549 if (obj->last_write_req != NULL) {
1550 ret = i915_wait_request(obj->last_write_req);
1551 if (ret)
1552 return ret;
1553
1554 i = obj->last_write_req->engine->id;
1555 if (obj->last_read_req[i] == obj->last_write_req)
1556 i915_gem_object_retire__read(obj, i);
1557 else
1558 i915_gem_object_retire__write(obj);
1559 }
1560 } else {
1561 for (i = 0; i < I915_NUM_ENGINES; i++) {
1562 if (obj->last_read_req[i] == NULL)
1563 continue;
1564
1565 ret = i915_wait_request(obj->last_read_req[i]);
1566 if (ret)
1567 return ret;
1568
1569 i915_gem_object_retire__read(obj, i);
1570 }
1571 GEM_BUG_ON(obj->active);
1572 }
1573
1574 return 0;
1575 }
1576
1577 static void
1578 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1579 struct drm_i915_gem_request *req)
1580 {
1581 int ring = req->engine->id;
1582
1583 if (obj->last_read_req[ring] == req)
1584 i915_gem_object_retire__read(obj, ring);
1585 else if (obj->last_write_req == req)
1586 i915_gem_object_retire__write(obj);
1587
1588 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1589 __i915_gem_request_retire__upto(req);
1590 }
1591
1592 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1593 * as the object state may change during this call.
1594 */
1595 static __must_check int
1596 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1597 struct intel_rps_client *rps,
1598 bool readonly)
1599 {
1600 struct drm_device *dev = obj->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1603 int ret, i, n = 0;
1604
1605 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1606 BUG_ON(!dev_priv->mm.interruptible);
1607
1608 if (!obj->active)
1609 return 0;
1610
1611 if (readonly) {
1612 struct drm_i915_gem_request *req;
1613
1614 req = obj->last_write_req;
1615 if (req == NULL)
1616 return 0;
1617
1618 requests[n++] = i915_gem_request_reference(req);
1619 } else {
1620 for (i = 0; i < I915_NUM_ENGINES; i++) {
1621 struct drm_i915_gem_request *req;
1622
1623 req = obj->last_read_req[i];
1624 if (req == NULL)
1625 continue;
1626
1627 requests[n++] = i915_gem_request_reference(req);
1628 }
1629 }
1630
1631 mutex_unlock(&dev->struct_mutex);
1632 ret = 0;
1633 for (i = 0; ret == 0 && i < n; i++)
1634 ret = __i915_wait_request(requests[i], true, NULL, rps);
1635 mutex_lock(&dev->struct_mutex);
1636
1637 for (i = 0; i < n; i++) {
1638 if (ret == 0)
1639 i915_gem_object_retire_request(obj, requests[i]);
1640 i915_gem_request_unreference(requests[i]);
1641 }
1642
1643 return ret;
1644 }
1645
1646 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1647 {
1648 struct drm_i915_file_private *fpriv = file->driver_priv;
1649 return &fpriv->rps;
1650 }
1651
1652 /**
1653 * Called when user space prepares to use an object with the CPU, either
1654 * through the mmap ioctl's mapping or a GTT mapping.
1655 * @dev: drm device
1656 * @data: ioctl data blob
1657 * @file: drm file
1658 */
1659 int
1660 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1661 struct drm_file *file)
1662 {
1663 struct drm_i915_gem_set_domain *args = data;
1664 struct drm_i915_gem_object *obj;
1665 uint32_t read_domains = args->read_domains;
1666 uint32_t write_domain = args->write_domain;
1667 int ret;
1668
1669 /* Only handle setting domains to types used by the CPU. */
1670 if (write_domain & I915_GEM_GPU_DOMAINS)
1671 return -EINVAL;
1672
1673 if (read_domains & I915_GEM_GPU_DOMAINS)
1674 return -EINVAL;
1675
1676 /* Having something in the write domain implies it's in the read
1677 * domain, and only that read domain. Enforce that in the request.
1678 */
1679 if (write_domain != 0 && read_domains != write_domain)
1680 return -EINVAL;
1681
1682 ret = i915_mutex_lock_interruptible(dev);
1683 if (ret)
1684 return ret;
1685
1686 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1687 if (&obj->base == NULL) {
1688 ret = -ENOENT;
1689 goto unlock;
1690 }
1691
1692 /* Try to flush the object off the GPU without holding the lock.
1693 * We will repeat the flush holding the lock in the normal manner
1694 * to catch cases where we are gazumped.
1695 */
1696 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1697 to_rps_client(file),
1698 !write_domain);
1699 if (ret)
1700 goto unref;
1701
1702 if (read_domains & I915_GEM_DOMAIN_GTT)
1703 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1704 else
1705 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1706
1707 if (write_domain != 0)
1708 intel_fb_obj_invalidate(obj,
1709 write_domain == I915_GEM_DOMAIN_GTT ?
1710 ORIGIN_GTT : ORIGIN_CPU);
1711
1712 unref:
1713 drm_gem_object_unreference(&obj->base);
1714 unlock:
1715 mutex_unlock(&dev->struct_mutex);
1716 return ret;
1717 }
1718
1719 /**
1720 * Called when user space has done writes to this buffer
1721 * @dev: drm device
1722 * @data: ioctl data blob
1723 * @file: drm file
1724 */
1725 int
1726 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1727 struct drm_file *file)
1728 {
1729 struct drm_i915_gem_sw_finish *args = data;
1730 struct drm_i915_gem_object *obj;
1731 int ret = 0;
1732
1733 ret = i915_mutex_lock_interruptible(dev);
1734 if (ret)
1735 return ret;
1736
1737 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1738 if (&obj->base == NULL) {
1739 ret = -ENOENT;
1740 goto unlock;
1741 }
1742
1743 /* Pinned buffers may be scanout, so flush the cache */
1744 if (obj->pin_display)
1745 i915_gem_object_flush_cpu_write_domain(obj);
1746
1747 drm_gem_object_unreference(&obj->base);
1748 unlock:
1749 mutex_unlock(&dev->struct_mutex);
1750 return ret;
1751 }
1752
1753 /**
1754 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1755 * it is mapped to.
1756 * @dev: drm device
1757 * @data: ioctl data blob
1758 * @file: drm file
1759 *
1760 * While the mapping holds a reference on the contents of the object, it doesn't
1761 * imply a ref on the object itself.
1762 *
1763 * IMPORTANT:
1764 *
1765 * DRM driver writers who look a this function as an example for how to do GEM
1766 * mmap support, please don't implement mmap support like here. The modern way
1767 * to implement DRM mmap support is with an mmap offset ioctl (like
1768 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1769 * That way debug tooling like valgrind will understand what's going on, hiding
1770 * the mmap call in a driver private ioctl will break that. The i915 driver only
1771 * does cpu mmaps this way because we didn't know better.
1772 */
1773 int
1774 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1775 struct drm_file *file)
1776 {
1777 struct drm_i915_gem_mmap *args = data;
1778 struct drm_gem_object *obj;
1779 unsigned long addr;
1780
1781 if (args->flags & ~(I915_MMAP_WC))
1782 return -EINVAL;
1783
1784 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1785 return -ENODEV;
1786
1787 obj = drm_gem_object_lookup(file, args->handle);
1788 if (obj == NULL)
1789 return -ENOENT;
1790
1791 /* prime objects have no backing filp to GEM mmap
1792 * pages from.
1793 */
1794 if (!obj->filp) {
1795 drm_gem_object_unreference_unlocked(obj);
1796 return -EINVAL;
1797 }
1798
1799 addr = vm_mmap(obj->filp, 0, args->size,
1800 PROT_READ | PROT_WRITE, MAP_SHARED,
1801 args->offset);
1802 if (args->flags & I915_MMAP_WC) {
1803 struct mm_struct *mm = current->mm;
1804 struct vm_area_struct *vma;
1805
1806 if (down_write_killable(&mm->mmap_sem)) {
1807 drm_gem_object_unreference_unlocked(obj);
1808 return -EINTR;
1809 }
1810 vma = find_vma(mm, addr);
1811 if (vma)
1812 vma->vm_page_prot =
1813 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1814 else
1815 addr = -ENOMEM;
1816 up_write(&mm->mmap_sem);
1817 }
1818 drm_gem_object_unreference_unlocked(obj);
1819 if (IS_ERR((void *)addr))
1820 return addr;
1821
1822 args->addr_ptr = (uint64_t) addr;
1823
1824 return 0;
1825 }
1826
1827 /**
1828 * i915_gem_fault - fault a page into the GTT
1829 * @vma: VMA in question
1830 * @vmf: fault info
1831 *
1832 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1833 * from userspace. The fault handler takes care of binding the object to
1834 * the GTT (if needed), allocating and programming a fence register (again,
1835 * only if needed based on whether the old reg is still valid or the object
1836 * is tiled) and inserting a new PTE into the faulting process.
1837 *
1838 * Note that the faulting process may involve evicting existing objects
1839 * from the GTT and/or fence registers to make room. So performance may
1840 * suffer if the GTT working set is large or there are few fence registers
1841 * left.
1842 */
1843 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1844 {
1845 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1846 struct drm_device *dev = obj->base.dev;
1847 struct drm_i915_private *dev_priv = to_i915(dev);
1848 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1849 struct i915_ggtt_view view = i915_ggtt_view_normal;
1850 pgoff_t page_offset;
1851 unsigned long pfn;
1852 int ret = 0;
1853 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1854
1855 intel_runtime_pm_get(dev_priv);
1856
1857 /* We don't use vmf->pgoff since that has the fake offset */
1858 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1859 PAGE_SHIFT;
1860
1861 ret = i915_mutex_lock_interruptible(dev);
1862 if (ret)
1863 goto out;
1864
1865 trace_i915_gem_object_fault(obj, page_offset, true, write);
1866
1867 /* Try to flush the object off the GPU first without holding the lock.
1868 * Upon reacquiring the lock, we will perform our sanity checks and then
1869 * repeat the flush holding the lock in the normal manner to catch cases
1870 * where we are gazumped.
1871 */
1872 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1873 if (ret)
1874 goto unlock;
1875
1876 /* Access to snoopable pages through the GTT is incoherent. */
1877 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1878 ret = -EFAULT;
1879 goto unlock;
1880 }
1881
1882 /* Use a partial view if the object is bigger than the aperture. */
1883 if (obj->base.size >= ggtt->mappable_end &&
1884 obj->tiling_mode == I915_TILING_NONE) {
1885 static const unsigned int chunk_size = 256; // 1 MiB
1886
1887 memset(&view, 0, sizeof(view));
1888 view.type = I915_GGTT_VIEW_PARTIAL;
1889 view.params.partial.offset = rounddown(page_offset, chunk_size);
1890 view.params.partial.size =
1891 min_t(unsigned int,
1892 chunk_size,
1893 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1894 view.params.partial.offset);
1895 }
1896
1897 /* Now pin it into the GTT if needed */
1898 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1899 if (ret)
1900 goto unlock;
1901
1902 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1903 if (ret)
1904 goto unpin;
1905
1906 ret = i915_gem_object_get_fence(obj);
1907 if (ret)
1908 goto unpin;
1909
1910 /* Finally, remap it using the new GTT offset */
1911 pfn = ggtt->mappable_base +
1912 i915_gem_obj_ggtt_offset_view(obj, &view);
1913 pfn >>= PAGE_SHIFT;
1914
1915 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1916 /* Overriding existing pages in partial view does not cause
1917 * us any trouble as TLBs are still valid because the fault
1918 * is due to userspace losing part of the mapping or never
1919 * having accessed it before (at this partials' range).
1920 */
1921 unsigned long base = vma->vm_start +
1922 (view.params.partial.offset << PAGE_SHIFT);
1923 unsigned int i;
1924
1925 for (i = 0; i < view.params.partial.size; i++) {
1926 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1927 if (ret)
1928 break;
1929 }
1930
1931 obj->fault_mappable = true;
1932 } else {
1933 if (!obj->fault_mappable) {
1934 unsigned long size = min_t(unsigned long,
1935 vma->vm_end - vma->vm_start,
1936 obj->base.size);
1937 int i;
1938
1939 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1940 ret = vm_insert_pfn(vma,
1941 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1942 pfn + i);
1943 if (ret)
1944 break;
1945 }
1946
1947 obj->fault_mappable = true;
1948 } else
1949 ret = vm_insert_pfn(vma,
1950 (unsigned long)vmf->virtual_address,
1951 pfn + page_offset);
1952 }
1953 unpin:
1954 i915_gem_object_ggtt_unpin_view(obj, &view);
1955 unlock:
1956 mutex_unlock(&dev->struct_mutex);
1957 out:
1958 switch (ret) {
1959 case -EIO:
1960 /*
1961 * We eat errors when the gpu is terminally wedged to avoid
1962 * userspace unduly crashing (gl has no provisions for mmaps to
1963 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1964 * and so needs to be reported.
1965 */
1966 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1967 ret = VM_FAULT_SIGBUS;
1968 break;
1969 }
1970 case -EAGAIN:
1971 /*
1972 * EAGAIN means the gpu is hung and we'll wait for the error
1973 * handler to reset everything when re-faulting in
1974 * i915_mutex_lock_interruptible.
1975 */
1976 case 0:
1977 case -ERESTARTSYS:
1978 case -EINTR:
1979 case -EBUSY:
1980 /*
1981 * EBUSY is ok: this just means that another thread
1982 * already did the job.
1983 */
1984 ret = VM_FAULT_NOPAGE;
1985 break;
1986 case -ENOMEM:
1987 ret = VM_FAULT_OOM;
1988 break;
1989 case -ENOSPC:
1990 case -EFAULT:
1991 ret = VM_FAULT_SIGBUS;
1992 break;
1993 default:
1994 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1995 ret = VM_FAULT_SIGBUS;
1996 break;
1997 }
1998
1999 intel_runtime_pm_put(dev_priv);
2000 return ret;
2001 }
2002
2003 /**
2004 * i915_gem_release_mmap - remove physical page mappings
2005 * @obj: obj in question
2006 *
2007 * Preserve the reservation of the mmapping with the DRM core code, but
2008 * relinquish ownership of the pages back to the system.
2009 *
2010 * It is vital that we remove the page mapping if we have mapped a tiled
2011 * object through the GTT and then lose the fence register due to
2012 * resource pressure. Similarly if the object has been moved out of the
2013 * aperture, than pages mapped into userspace must be revoked. Removing the
2014 * mapping will then trigger a page fault on the next user access, allowing
2015 * fixup by i915_gem_fault().
2016 */
2017 void
2018 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2019 {
2020 /* Serialisation between user GTT access and our code depends upon
2021 * revoking the CPU's PTE whilst the mutex is held. The next user
2022 * pagefault then has to wait until we release the mutex.
2023 */
2024 lockdep_assert_held(&obj->base.dev->struct_mutex);
2025
2026 if (!obj->fault_mappable)
2027 return;
2028
2029 drm_vma_node_unmap(&obj->base.vma_node,
2030 obj->base.dev->anon_inode->i_mapping);
2031
2032 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2033 * memory transactions from userspace before we return. The TLB
2034 * flushing implied above by changing the PTE above *should* be
2035 * sufficient, an extra barrier here just provides us with a bit
2036 * of paranoid documentation about our requirement to serialise
2037 * memory writes before touching registers / GSM.
2038 */
2039 wmb();
2040
2041 obj->fault_mappable = false;
2042 }
2043
2044 void
2045 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2046 {
2047 struct drm_i915_gem_object *obj;
2048
2049 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2050 i915_gem_release_mmap(obj);
2051 }
2052
2053 uint32_t
2054 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2055 {
2056 uint32_t gtt_size;
2057
2058 if (INTEL_INFO(dev)->gen >= 4 ||
2059 tiling_mode == I915_TILING_NONE)
2060 return size;
2061
2062 /* Previous chips need a power-of-two fence region when tiling */
2063 if (IS_GEN3(dev))
2064 gtt_size = 1024*1024;
2065 else
2066 gtt_size = 512*1024;
2067
2068 while (gtt_size < size)
2069 gtt_size <<= 1;
2070
2071 return gtt_size;
2072 }
2073
2074 /**
2075 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2076 * @dev: drm device
2077 * @size: object size
2078 * @tiling_mode: tiling mode
2079 * @fenced: is fenced alignemned required or not
2080 *
2081 * Return the required GTT alignment for an object, taking into account
2082 * potential fence register mapping.
2083 */
2084 uint32_t
2085 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2086 int tiling_mode, bool fenced)
2087 {
2088 /*
2089 * Minimum alignment is 4k (GTT page size), but might be greater
2090 * if a fence register is needed for the object.
2091 */
2092 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2093 tiling_mode == I915_TILING_NONE)
2094 return 4096;
2095
2096 /*
2097 * Previous chips need to be aligned to the size of the smallest
2098 * fence register that can contain the object.
2099 */
2100 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2101 }
2102
2103 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2104 {
2105 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2106 int ret;
2107
2108 dev_priv->mm.shrinker_no_lock_stealing = true;
2109
2110 ret = drm_gem_create_mmap_offset(&obj->base);
2111 if (ret != -ENOSPC)
2112 goto out;
2113
2114 /* Badly fragmented mmap space? The only way we can recover
2115 * space is by destroying unwanted objects. We can't randomly release
2116 * mmap_offsets as userspace expects them to be persistent for the
2117 * lifetime of the objects. The closest we can is to release the
2118 * offsets on purgeable objects by truncating it and marking it purged,
2119 * which prevents userspace from ever using that object again.
2120 */
2121 i915_gem_shrink(dev_priv,
2122 obj->base.size >> PAGE_SHIFT,
2123 I915_SHRINK_BOUND |
2124 I915_SHRINK_UNBOUND |
2125 I915_SHRINK_PURGEABLE);
2126 ret = drm_gem_create_mmap_offset(&obj->base);
2127 if (ret != -ENOSPC)
2128 goto out;
2129
2130 i915_gem_shrink_all(dev_priv);
2131 ret = drm_gem_create_mmap_offset(&obj->base);
2132 out:
2133 dev_priv->mm.shrinker_no_lock_stealing = false;
2134
2135 return ret;
2136 }
2137
2138 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2139 {
2140 drm_gem_free_mmap_offset(&obj->base);
2141 }
2142
2143 int
2144 i915_gem_mmap_gtt(struct drm_file *file,
2145 struct drm_device *dev,
2146 uint32_t handle,
2147 uint64_t *offset)
2148 {
2149 struct drm_i915_gem_object *obj;
2150 int ret;
2151
2152 ret = i915_mutex_lock_interruptible(dev);
2153 if (ret)
2154 return ret;
2155
2156 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2157 if (&obj->base == NULL) {
2158 ret = -ENOENT;
2159 goto unlock;
2160 }
2161
2162 if (obj->madv != I915_MADV_WILLNEED) {
2163 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2164 ret = -EFAULT;
2165 goto out;
2166 }
2167
2168 ret = i915_gem_object_create_mmap_offset(obj);
2169 if (ret)
2170 goto out;
2171
2172 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2173
2174 out:
2175 drm_gem_object_unreference(&obj->base);
2176 unlock:
2177 mutex_unlock(&dev->struct_mutex);
2178 return ret;
2179 }
2180
2181 /**
2182 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2183 * @dev: DRM device
2184 * @data: GTT mapping ioctl data
2185 * @file: GEM object info
2186 *
2187 * Simply returns the fake offset to userspace so it can mmap it.
2188 * The mmap call will end up in drm_gem_mmap(), which will set things
2189 * up so we can get faults in the handler above.
2190 *
2191 * The fault handler will take care of binding the object into the GTT
2192 * (since it may have been evicted to make room for something), allocating
2193 * a fence register, and mapping the appropriate aperture address into
2194 * userspace.
2195 */
2196 int
2197 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2198 struct drm_file *file)
2199 {
2200 struct drm_i915_gem_mmap_gtt *args = data;
2201
2202 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2203 }
2204
2205 /* Immediately discard the backing storage */
2206 static void
2207 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2208 {
2209 i915_gem_object_free_mmap_offset(obj);
2210
2211 if (obj->base.filp == NULL)
2212 return;
2213
2214 /* Our goal here is to return as much of the memory as
2215 * is possible back to the system as we are called from OOM.
2216 * To do this we must instruct the shmfs to drop all of its
2217 * backing pages, *now*.
2218 */
2219 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2220 obj->madv = __I915_MADV_PURGED;
2221 }
2222
2223 /* Try to discard unwanted pages */
2224 static void
2225 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2226 {
2227 struct address_space *mapping;
2228
2229 switch (obj->madv) {
2230 case I915_MADV_DONTNEED:
2231 i915_gem_object_truncate(obj);
2232 case __I915_MADV_PURGED:
2233 return;
2234 }
2235
2236 if (obj->base.filp == NULL)
2237 return;
2238
2239 mapping = file_inode(obj->base.filp)->i_mapping,
2240 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2241 }
2242
2243 static void
2244 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246 struct sgt_iter sgt_iter;
2247 struct page *page;
2248 int ret;
2249
2250 BUG_ON(obj->madv == __I915_MADV_PURGED);
2251
2252 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2253 if (WARN_ON(ret)) {
2254 /* In the event of a disaster, abandon all caches and
2255 * hope for the best.
2256 */
2257 i915_gem_clflush_object(obj, true);
2258 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2259 }
2260
2261 i915_gem_gtt_finish_object(obj);
2262
2263 if (i915_gem_object_needs_bit17_swizzle(obj))
2264 i915_gem_object_save_bit_17_swizzle(obj);
2265
2266 if (obj->madv == I915_MADV_DONTNEED)
2267 obj->dirty = 0;
2268
2269 for_each_sgt_page(page, sgt_iter, obj->pages) {
2270 if (obj->dirty)
2271 set_page_dirty(page);
2272
2273 if (obj->madv == I915_MADV_WILLNEED)
2274 mark_page_accessed(page);
2275
2276 put_page(page);
2277 }
2278 obj->dirty = 0;
2279
2280 sg_free_table(obj->pages);
2281 kfree(obj->pages);
2282 }
2283
2284 int
2285 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2286 {
2287 const struct drm_i915_gem_object_ops *ops = obj->ops;
2288
2289 if (obj->pages == NULL)
2290 return 0;
2291
2292 if (obj->pages_pin_count)
2293 return -EBUSY;
2294
2295 BUG_ON(i915_gem_obj_bound_any(obj));
2296
2297 /* ->put_pages might need to allocate memory for the bit17 swizzle
2298 * array, hence protect them from being reaped by removing them from gtt
2299 * lists early. */
2300 list_del(&obj->global_list);
2301
2302 if (obj->mapping) {
2303 if (is_vmalloc_addr(obj->mapping))
2304 vunmap(obj->mapping);
2305 else
2306 kunmap(kmap_to_page(obj->mapping));
2307 obj->mapping = NULL;
2308 }
2309
2310 ops->put_pages(obj);
2311 obj->pages = NULL;
2312
2313 i915_gem_object_invalidate(obj);
2314
2315 return 0;
2316 }
2317
2318 static int
2319 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2320 {
2321 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2322 int page_count, i;
2323 struct address_space *mapping;
2324 struct sg_table *st;
2325 struct scatterlist *sg;
2326 struct sgt_iter sgt_iter;
2327 struct page *page;
2328 unsigned long last_pfn = 0; /* suppress gcc warning */
2329 int ret;
2330 gfp_t gfp;
2331
2332 /* Assert that the object is not currently in any GPU domain. As it
2333 * wasn't in the GTT, there shouldn't be any way it could have been in
2334 * a GPU cache
2335 */
2336 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2337 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2338
2339 st = kmalloc(sizeof(*st), GFP_KERNEL);
2340 if (st == NULL)
2341 return -ENOMEM;
2342
2343 page_count = obj->base.size / PAGE_SIZE;
2344 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2345 kfree(st);
2346 return -ENOMEM;
2347 }
2348
2349 /* Get the list of pages out of our struct file. They'll be pinned
2350 * at this point until we release them.
2351 *
2352 * Fail silently without starting the shrinker
2353 */
2354 mapping = file_inode(obj->base.filp)->i_mapping;
2355 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2356 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2357 sg = st->sgl;
2358 st->nents = 0;
2359 for (i = 0; i < page_count; i++) {
2360 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2361 if (IS_ERR(page)) {
2362 i915_gem_shrink(dev_priv,
2363 page_count,
2364 I915_SHRINK_BOUND |
2365 I915_SHRINK_UNBOUND |
2366 I915_SHRINK_PURGEABLE);
2367 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2368 }
2369 if (IS_ERR(page)) {
2370 /* We've tried hard to allocate the memory by reaping
2371 * our own buffer, now let the real VM do its job and
2372 * go down in flames if truly OOM.
2373 */
2374 i915_gem_shrink_all(dev_priv);
2375 page = shmem_read_mapping_page(mapping, i);
2376 if (IS_ERR(page)) {
2377 ret = PTR_ERR(page);
2378 goto err_pages;
2379 }
2380 }
2381 #ifdef CONFIG_SWIOTLB
2382 if (swiotlb_nr_tbl()) {
2383 st->nents++;
2384 sg_set_page(sg, page, PAGE_SIZE, 0);
2385 sg = sg_next(sg);
2386 continue;
2387 }
2388 #endif
2389 if (!i || page_to_pfn(page) != last_pfn + 1) {
2390 if (i)
2391 sg = sg_next(sg);
2392 st->nents++;
2393 sg_set_page(sg, page, PAGE_SIZE, 0);
2394 } else {
2395 sg->length += PAGE_SIZE;
2396 }
2397 last_pfn = page_to_pfn(page);
2398
2399 /* Check that the i965g/gm workaround works. */
2400 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2401 }
2402 #ifdef CONFIG_SWIOTLB
2403 if (!swiotlb_nr_tbl())
2404 #endif
2405 sg_mark_end(sg);
2406 obj->pages = st;
2407
2408 ret = i915_gem_gtt_prepare_object(obj);
2409 if (ret)
2410 goto err_pages;
2411
2412 if (i915_gem_object_needs_bit17_swizzle(obj))
2413 i915_gem_object_do_bit_17_swizzle(obj);
2414
2415 if (obj->tiling_mode != I915_TILING_NONE &&
2416 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2417 i915_gem_object_pin_pages(obj);
2418
2419 return 0;
2420
2421 err_pages:
2422 sg_mark_end(sg);
2423 for_each_sgt_page(page, sgt_iter, st)
2424 put_page(page);
2425 sg_free_table(st);
2426 kfree(st);
2427
2428 /* shmemfs first checks if there is enough memory to allocate the page
2429 * and reports ENOSPC should there be insufficient, along with the usual
2430 * ENOMEM for a genuine allocation failure.
2431 *
2432 * We use ENOSPC in our driver to mean that we have run out of aperture
2433 * space and so want to translate the error from shmemfs back to our
2434 * usual understanding of ENOMEM.
2435 */
2436 if (ret == -ENOSPC)
2437 ret = -ENOMEM;
2438
2439 return ret;
2440 }
2441
2442 /* Ensure that the associated pages are gathered from the backing storage
2443 * and pinned into our object. i915_gem_object_get_pages() may be called
2444 * multiple times before they are released by a single call to
2445 * i915_gem_object_put_pages() - once the pages are no longer referenced
2446 * either as a result of memory pressure (reaping pages under the shrinker)
2447 * or as the object is itself released.
2448 */
2449 int
2450 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2451 {
2452 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2453 const struct drm_i915_gem_object_ops *ops = obj->ops;
2454 int ret;
2455
2456 if (obj->pages)
2457 return 0;
2458
2459 if (obj->madv != I915_MADV_WILLNEED) {
2460 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2461 return -EFAULT;
2462 }
2463
2464 BUG_ON(obj->pages_pin_count);
2465
2466 ret = ops->get_pages(obj);
2467 if (ret)
2468 return ret;
2469
2470 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2471
2472 obj->get_page.sg = obj->pages->sgl;
2473 obj->get_page.last = 0;
2474
2475 return 0;
2476 }
2477
2478 /* The 'mapping' part of i915_gem_object_pin_map() below */
2479 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2480 {
2481 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2482 struct sg_table *sgt = obj->pages;
2483 struct sgt_iter sgt_iter;
2484 struct page *page;
2485 struct page *stack_pages[32];
2486 struct page **pages = stack_pages;
2487 unsigned long i = 0;
2488 void *addr;
2489
2490 /* A single page can always be kmapped */
2491 if (n_pages == 1)
2492 return kmap(sg_page(sgt->sgl));
2493
2494 if (n_pages > ARRAY_SIZE(stack_pages)) {
2495 /* Too big for stack -- allocate temporary array instead */
2496 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2497 if (!pages)
2498 return NULL;
2499 }
2500
2501 for_each_sgt_page(page, sgt_iter, sgt)
2502 pages[i++] = page;
2503
2504 /* Check that we have the expected number of pages */
2505 GEM_BUG_ON(i != n_pages);
2506
2507 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2508
2509 if (pages != stack_pages)
2510 drm_free_large(pages);
2511
2512 return addr;
2513 }
2514
2515 /* get, pin, and map the pages of the object into kernel space */
2516 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2517 {
2518 int ret;
2519
2520 lockdep_assert_held(&obj->base.dev->struct_mutex);
2521
2522 ret = i915_gem_object_get_pages(obj);
2523 if (ret)
2524 return ERR_PTR(ret);
2525
2526 i915_gem_object_pin_pages(obj);
2527
2528 if (!obj->mapping) {
2529 obj->mapping = i915_gem_object_map(obj);
2530 if (!obj->mapping) {
2531 i915_gem_object_unpin_pages(obj);
2532 return ERR_PTR(-ENOMEM);
2533 }
2534 }
2535
2536 return obj->mapping;
2537 }
2538
2539 void i915_vma_move_to_active(struct i915_vma *vma,
2540 struct drm_i915_gem_request *req)
2541 {
2542 struct drm_i915_gem_object *obj = vma->obj;
2543 struct intel_engine_cs *engine;
2544
2545 engine = i915_gem_request_get_engine(req);
2546
2547 /* Add a reference if we're newly entering the active list. */
2548 if (obj->active == 0)
2549 drm_gem_object_reference(&obj->base);
2550 obj->active |= intel_engine_flag(engine);
2551
2552 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2553 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2554
2555 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2556 }
2557
2558 static void
2559 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2560 {
2561 GEM_BUG_ON(obj->last_write_req == NULL);
2562 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2563
2564 i915_gem_request_assign(&obj->last_write_req, NULL);
2565 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2566 }
2567
2568 static void
2569 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2570 {
2571 struct i915_vma *vma;
2572
2573 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2574 GEM_BUG_ON(!(obj->active & (1 << ring)));
2575
2576 list_del_init(&obj->engine_list[ring]);
2577 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2578
2579 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2580 i915_gem_object_retire__write(obj);
2581
2582 obj->active &= ~(1 << ring);
2583 if (obj->active)
2584 return;
2585
2586 /* Bump our place on the bound list to keep it roughly in LRU order
2587 * so that we don't steal from recently used but inactive objects
2588 * (unless we are forced to ofc!)
2589 */
2590 list_move_tail(&obj->global_list,
2591 &to_i915(obj->base.dev)->mm.bound_list);
2592
2593 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2594 if (!list_empty(&vma->vm_link))
2595 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2596 }
2597
2598 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2599 drm_gem_object_unreference(&obj->base);
2600 }
2601
2602 static int
2603 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2604 {
2605 struct intel_engine_cs *engine;
2606 int ret;
2607
2608 /* Carefully retire all requests without writing to the rings */
2609 for_each_engine(engine, dev_priv) {
2610 ret = intel_engine_idle(engine);
2611 if (ret)
2612 return ret;
2613 }
2614 i915_gem_retire_requests(dev_priv);
2615
2616 /* Finally reset hw state */
2617 for_each_engine(engine, dev_priv)
2618 intel_ring_init_seqno(engine, seqno);
2619
2620 return 0;
2621 }
2622
2623 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2624 {
2625 struct drm_i915_private *dev_priv = dev->dev_private;
2626 int ret;
2627
2628 if (seqno == 0)
2629 return -EINVAL;
2630
2631 /* HWS page needs to be set less than what we
2632 * will inject to ring
2633 */
2634 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2635 if (ret)
2636 return ret;
2637
2638 /* Carefully set the last_seqno value so that wrap
2639 * detection still works
2640 */
2641 dev_priv->next_seqno = seqno;
2642 dev_priv->last_seqno = seqno - 1;
2643 if (dev_priv->last_seqno == 0)
2644 dev_priv->last_seqno--;
2645
2646 return 0;
2647 }
2648
2649 int
2650 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2651 {
2652 /* reserve 0 for non-seqno */
2653 if (dev_priv->next_seqno == 0) {
2654 int ret = i915_gem_init_seqno(dev_priv, 0);
2655 if (ret)
2656 return ret;
2657
2658 dev_priv->next_seqno = 1;
2659 }
2660
2661 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2662 return 0;
2663 }
2664
2665 /*
2666 * NB: This function is not allowed to fail. Doing so would mean the the
2667 * request is not being tracked for completion but the work itself is
2668 * going to happen on the hardware. This would be a Bad Thing(tm).
2669 */
2670 void __i915_add_request(struct drm_i915_gem_request *request,
2671 struct drm_i915_gem_object *obj,
2672 bool flush_caches)
2673 {
2674 struct intel_engine_cs *engine;
2675 struct drm_i915_private *dev_priv;
2676 struct intel_ringbuffer *ringbuf;
2677 u32 request_start;
2678 u32 reserved_tail;
2679 int ret;
2680
2681 if (WARN_ON(request == NULL))
2682 return;
2683
2684 engine = request->engine;
2685 dev_priv = request->i915;
2686 ringbuf = request->ringbuf;
2687
2688 /*
2689 * To ensure that this call will not fail, space for its emissions
2690 * should already have been reserved in the ring buffer. Let the ring
2691 * know that it is time to use that space up.
2692 */
2693 request_start = intel_ring_get_tail(ringbuf);
2694 reserved_tail = request->reserved_space;
2695 request->reserved_space = 0;
2696
2697 /*
2698 * Emit any outstanding flushes - execbuf can fail to emit the flush
2699 * after having emitted the batchbuffer command. Hence we need to fix
2700 * things up similar to emitting the lazy request. The difference here
2701 * is that the flush _must_ happen before the next request, no matter
2702 * what.
2703 */
2704 if (flush_caches) {
2705 if (i915.enable_execlists)
2706 ret = logical_ring_flush_all_caches(request);
2707 else
2708 ret = intel_ring_flush_all_caches(request);
2709 /* Not allowed to fail! */
2710 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2711 }
2712
2713 trace_i915_gem_request_add(request);
2714
2715 request->head = request_start;
2716
2717 /* Whilst this request exists, batch_obj will be on the
2718 * active_list, and so will hold the active reference. Only when this
2719 * request is retired will the the batch_obj be moved onto the
2720 * inactive_list and lose its active reference. Hence we do not need
2721 * to explicitly hold another reference here.
2722 */
2723 request->batch_obj = obj;
2724
2725 /* Seal the request and mark it as pending execution. Note that
2726 * we may inspect this state, without holding any locks, during
2727 * hangcheck. Hence we apply the barrier to ensure that we do not
2728 * see a more recent value in the hws than we are tracking.
2729 */
2730 request->emitted_jiffies = jiffies;
2731 request->previous_seqno = engine->last_submitted_seqno;
2732 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2733 list_add_tail(&request->list, &engine->request_list);
2734
2735 /* Record the position of the start of the request so that
2736 * should we detect the updated seqno part-way through the
2737 * GPU processing the request, we never over-estimate the
2738 * position of the head.
2739 */
2740 request->postfix = intel_ring_get_tail(ringbuf);
2741
2742 if (i915.enable_execlists)
2743 ret = engine->emit_request(request);
2744 else {
2745 ret = engine->add_request(request);
2746
2747 request->tail = intel_ring_get_tail(ringbuf);
2748 }
2749 /* Not allowed to fail! */
2750 WARN(ret, "emit|add_request failed: %d!\n", ret);
2751
2752 i915_queue_hangcheck(engine->i915);
2753
2754 queue_delayed_work(dev_priv->wq,
2755 &dev_priv->mm.retire_work,
2756 round_jiffies_up_relative(HZ));
2757 intel_mark_busy(dev_priv);
2758
2759 /* Sanity check that the reserved size was large enough. */
2760 ret = intel_ring_get_tail(ringbuf) - request_start;
2761 if (ret < 0)
2762 ret += ringbuf->size;
2763 WARN_ONCE(ret > reserved_tail,
2764 "Not enough space reserved (%d bytes) "
2765 "for adding the request (%d bytes)\n",
2766 reserved_tail, ret);
2767 }
2768
2769 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2770 const struct i915_gem_context *ctx)
2771 {
2772 unsigned long elapsed;
2773
2774 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2775
2776 if (ctx->hang_stats.banned)
2777 return true;
2778
2779 if (ctx->hang_stats.ban_period_seconds &&
2780 elapsed <= ctx->hang_stats.ban_period_seconds) {
2781 if (!i915_gem_context_is_default(ctx)) {
2782 DRM_DEBUG("context hanging too fast, banning!\n");
2783 return true;
2784 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2785 if (i915_stop_ring_allow_warn(dev_priv))
2786 DRM_ERROR("gpu hanging too fast, banning!\n");
2787 return true;
2788 }
2789 }
2790
2791 return false;
2792 }
2793
2794 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2795 struct i915_gem_context *ctx,
2796 const bool guilty)
2797 {
2798 struct i915_ctx_hang_stats *hs;
2799
2800 if (WARN_ON(!ctx))
2801 return;
2802
2803 hs = &ctx->hang_stats;
2804
2805 if (guilty) {
2806 hs->banned = i915_context_is_banned(dev_priv, ctx);
2807 hs->batch_active++;
2808 hs->guilty_ts = get_seconds();
2809 } else {
2810 hs->batch_pending++;
2811 }
2812 }
2813
2814 void i915_gem_request_free(struct kref *req_ref)
2815 {
2816 struct drm_i915_gem_request *req = container_of(req_ref,
2817 typeof(*req), ref);
2818 kmem_cache_free(req->i915->requests, req);
2819 }
2820
2821 static inline int
2822 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2823 struct i915_gem_context *ctx,
2824 struct drm_i915_gem_request **req_out)
2825 {
2826 struct drm_i915_private *dev_priv = engine->i915;
2827 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2828 struct drm_i915_gem_request *req;
2829 int ret;
2830
2831 if (!req_out)
2832 return -EINVAL;
2833
2834 *req_out = NULL;
2835
2836 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2837 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2838 * and restart.
2839 */
2840 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2841 if (ret)
2842 return ret;
2843
2844 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2845 if (req == NULL)
2846 return -ENOMEM;
2847
2848 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2849 if (ret)
2850 goto err;
2851
2852 kref_init(&req->ref);
2853 req->i915 = dev_priv;
2854 req->engine = engine;
2855 req->reset_counter = reset_counter;
2856 req->ctx = ctx;
2857 i915_gem_context_reference(req->ctx);
2858
2859 /*
2860 * Reserve space in the ring buffer for all the commands required to
2861 * eventually emit this request. This is to guarantee that the
2862 * i915_add_request() call can't fail. Note that the reserve may need
2863 * to be redone if the request is not actually submitted straight
2864 * away, e.g. because a GPU scheduler has deferred it.
2865 */
2866 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2867
2868 if (i915.enable_execlists)
2869 ret = intel_logical_ring_alloc_request_extras(req);
2870 else
2871 ret = intel_ring_alloc_request_extras(req);
2872 if (ret)
2873 goto err_ctx;
2874
2875 *req_out = req;
2876 return 0;
2877
2878 err_ctx:
2879 i915_gem_context_unreference(ctx);
2880 err:
2881 kmem_cache_free(dev_priv->requests, req);
2882 return ret;
2883 }
2884
2885 /**
2886 * i915_gem_request_alloc - allocate a request structure
2887 *
2888 * @engine: engine that we wish to issue the request on.
2889 * @ctx: context that the request will be associated with.
2890 * This can be NULL if the request is not directly related to
2891 * any specific user context, in which case this function will
2892 * choose an appropriate context to use.
2893 *
2894 * Returns a pointer to the allocated request if successful,
2895 * or an error code if not.
2896 */
2897 struct drm_i915_gem_request *
2898 i915_gem_request_alloc(struct intel_engine_cs *engine,
2899 struct i915_gem_context *ctx)
2900 {
2901 struct drm_i915_gem_request *req;
2902 int err;
2903
2904 if (ctx == NULL)
2905 ctx = engine->i915->kernel_context;
2906 err = __i915_gem_request_alloc(engine, ctx, &req);
2907 return err ? ERR_PTR(err) : req;
2908 }
2909
2910 struct drm_i915_gem_request *
2911 i915_gem_find_active_request(struct intel_engine_cs *engine)
2912 {
2913 struct drm_i915_gem_request *request;
2914
2915 list_for_each_entry(request, &engine->request_list, list) {
2916 if (i915_gem_request_completed(request, false))
2917 continue;
2918
2919 return request;
2920 }
2921
2922 return NULL;
2923 }
2924
2925 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2926 struct intel_engine_cs *engine)
2927 {
2928 struct drm_i915_gem_request *request;
2929 bool ring_hung;
2930
2931 request = i915_gem_find_active_request(engine);
2932
2933 if (request == NULL)
2934 return;
2935
2936 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2937
2938 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2939
2940 list_for_each_entry_continue(request, &engine->request_list, list)
2941 i915_set_reset_status(dev_priv, request->ctx, false);
2942 }
2943
2944 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2945 struct intel_engine_cs *engine)
2946 {
2947 struct intel_ringbuffer *buffer;
2948
2949 while (!list_empty(&engine->active_list)) {
2950 struct drm_i915_gem_object *obj;
2951
2952 obj = list_first_entry(&engine->active_list,
2953 struct drm_i915_gem_object,
2954 engine_list[engine->id]);
2955
2956 i915_gem_object_retire__read(obj, engine->id);
2957 }
2958
2959 /*
2960 * Clear the execlists queue up before freeing the requests, as those
2961 * are the ones that keep the context and ringbuffer backing objects
2962 * pinned in place.
2963 */
2964
2965 if (i915.enable_execlists) {
2966 /* Ensure irq handler finishes or is cancelled. */
2967 tasklet_kill(&engine->irq_tasklet);
2968
2969 intel_execlists_cancel_requests(engine);
2970 }
2971
2972 /*
2973 * We must free the requests after all the corresponding objects have
2974 * been moved off active lists. Which is the same order as the normal
2975 * retire_requests function does. This is important if object hold
2976 * implicit references on things like e.g. ppgtt address spaces through
2977 * the request.
2978 */
2979 while (!list_empty(&engine->request_list)) {
2980 struct drm_i915_gem_request *request;
2981
2982 request = list_first_entry(&engine->request_list,
2983 struct drm_i915_gem_request,
2984 list);
2985
2986 i915_gem_request_retire(request);
2987 }
2988
2989 /* Having flushed all requests from all queues, we know that all
2990 * ringbuffers must now be empty. However, since we do not reclaim
2991 * all space when retiring the request (to prevent HEADs colliding
2992 * with rapid ringbuffer wraparound) the amount of available space
2993 * upon reset is less than when we start. Do one more pass over
2994 * all the ringbuffers to reset last_retired_head.
2995 */
2996 list_for_each_entry(buffer, &engine->buffers, link) {
2997 buffer->last_retired_head = buffer->tail;
2998 intel_ring_update_space(buffer);
2999 }
3000
3001 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3002 }
3003
3004 void i915_gem_reset(struct drm_device *dev)
3005 {
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 struct intel_engine_cs *engine;
3008
3009 /*
3010 * Before we free the objects from the requests, we need to inspect
3011 * them for finding the guilty party. As the requests only borrow
3012 * their reference to the objects, the inspection must be done first.
3013 */
3014 for_each_engine(engine, dev_priv)
3015 i915_gem_reset_engine_status(dev_priv, engine);
3016
3017 for_each_engine(engine, dev_priv)
3018 i915_gem_reset_engine_cleanup(dev_priv, engine);
3019
3020 i915_gem_context_reset(dev);
3021
3022 i915_gem_restore_fences(dev);
3023
3024 WARN_ON(i915_verify_lists(dev));
3025 }
3026
3027 /**
3028 * This function clears the request list as sequence numbers are passed.
3029 * @engine: engine to retire requests on
3030 */
3031 void
3032 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3033 {
3034 WARN_ON(i915_verify_lists(engine->dev));
3035
3036 /* Retire requests first as we use it above for the early return.
3037 * If we retire requests last, we may use a later seqno and so clear
3038 * the requests lists without clearing the active list, leading to
3039 * confusion.
3040 */
3041 while (!list_empty(&engine->request_list)) {
3042 struct drm_i915_gem_request *request;
3043
3044 request = list_first_entry(&engine->request_list,
3045 struct drm_i915_gem_request,
3046 list);
3047
3048 if (!i915_gem_request_completed(request, true))
3049 break;
3050
3051 i915_gem_request_retire(request);
3052 }
3053
3054 /* Move any buffers on the active list that are no longer referenced
3055 * by the ringbuffer to the flushing/inactive lists as appropriate,
3056 * before we free the context associated with the requests.
3057 */
3058 while (!list_empty(&engine->active_list)) {
3059 struct drm_i915_gem_object *obj;
3060
3061 obj = list_first_entry(&engine->active_list,
3062 struct drm_i915_gem_object,
3063 engine_list[engine->id]);
3064
3065 if (!list_empty(&obj->last_read_req[engine->id]->list))
3066 break;
3067
3068 i915_gem_object_retire__read(obj, engine->id);
3069 }
3070
3071 if (unlikely(engine->trace_irq_req &&
3072 i915_gem_request_completed(engine->trace_irq_req, true))) {
3073 engine->irq_put(engine);
3074 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3075 }
3076
3077 WARN_ON(i915_verify_lists(engine->dev));
3078 }
3079
3080 bool
3081 i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3082 {
3083 struct intel_engine_cs *engine;
3084 bool idle = true;
3085
3086 for_each_engine(engine, dev_priv) {
3087 i915_gem_retire_requests_ring(engine);
3088 idle &= list_empty(&engine->request_list);
3089 if (i915.enable_execlists) {
3090 spin_lock_bh(&engine->execlist_lock);
3091 idle &= list_empty(&engine->execlist_queue);
3092 spin_unlock_bh(&engine->execlist_lock);
3093 }
3094 }
3095
3096 if (idle)
3097 mod_delayed_work(dev_priv->wq,
3098 &dev_priv->mm.idle_work,
3099 msecs_to_jiffies(100));
3100
3101 return idle;
3102 }
3103
3104 static void
3105 i915_gem_retire_work_handler(struct work_struct *work)
3106 {
3107 struct drm_i915_private *dev_priv =
3108 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3109 struct drm_device *dev = dev_priv->dev;
3110 bool idle;
3111
3112 /* Come back later if the device is busy... */
3113 idle = false;
3114 if (mutex_trylock(&dev->struct_mutex)) {
3115 idle = i915_gem_retire_requests(dev_priv);
3116 mutex_unlock(&dev->struct_mutex);
3117 }
3118 if (!idle)
3119 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3120 round_jiffies_up_relative(HZ));
3121 }
3122
3123 static void
3124 i915_gem_idle_work_handler(struct work_struct *work)
3125 {
3126 struct drm_i915_private *dev_priv =
3127 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3128 struct drm_device *dev = dev_priv->dev;
3129 struct intel_engine_cs *engine;
3130
3131 for_each_engine(engine, dev_priv)
3132 if (!list_empty(&engine->request_list))
3133 return;
3134
3135 /* we probably should sync with hangcheck here, using cancel_work_sync.
3136 * Also locking seems to be fubar here, engine->request_list is protected
3137 * by dev->struct_mutex. */
3138
3139 intel_mark_idle(dev_priv);
3140
3141 if (mutex_trylock(&dev->struct_mutex)) {
3142 for_each_engine(engine, dev_priv)
3143 i915_gem_batch_pool_fini(&engine->batch_pool);
3144
3145 mutex_unlock(&dev->struct_mutex);
3146 }
3147 }
3148
3149 /**
3150 * Ensures that an object will eventually get non-busy by flushing any required
3151 * write domains, emitting any outstanding lazy request and retiring and
3152 * completed requests.
3153 * @obj: object to flush
3154 */
3155 static int
3156 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3157 {
3158 int i;
3159
3160 if (!obj->active)
3161 return 0;
3162
3163 for (i = 0; i < I915_NUM_ENGINES; i++) {
3164 struct drm_i915_gem_request *req;
3165
3166 req = obj->last_read_req[i];
3167 if (req == NULL)
3168 continue;
3169
3170 if (i915_gem_request_completed(req, true))
3171 i915_gem_object_retire__read(obj, i);
3172 }
3173
3174 return 0;
3175 }
3176
3177 /**
3178 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3179 * @dev: drm device pointer
3180 * @data: ioctl data blob
3181 * @file: drm file pointer
3182 *
3183 * Returns 0 if successful, else an error is returned with the remaining time in
3184 * the timeout parameter.
3185 * -ETIME: object is still busy after timeout
3186 * -ERESTARTSYS: signal interrupted the wait
3187 * -ENONENT: object doesn't exist
3188 * Also possible, but rare:
3189 * -EAGAIN: GPU wedged
3190 * -ENOMEM: damn
3191 * -ENODEV: Internal IRQ fail
3192 * -E?: The add request failed
3193 *
3194 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3195 * non-zero timeout parameter the wait ioctl will wait for the given number of
3196 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3197 * without holding struct_mutex the object may become re-busied before this
3198 * function completes. A similar but shorter * race condition exists in the busy
3199 * ioctl
3200 */
3201 int
3202 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3203 {
3204 struct drm_i915_gem_wait *args = data;
3205 struct drm_i915_gem_object *obj;
3206 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3207 int i, n = 0;
3208 int ret;
3209
3210 if (args->flags != 0)
3211 return -EINVAL;
3212
3213 ret = i915_mutex_lock_interruptible(dev);
3214 if (ret)
3215 return ret;
3216
3217 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3218 if (&obj->base == NULL) {
3219 mutex_unlock(&dev->struct_mutex);
3220 return -ENOENT;
3221 }
3222
3223 /* Need to make sure the object gets inactive eventually. */
3224 ret = i915_gem_object_flush_active(obj);
3225 if (ret)
3226 goto out;
3227
3228 if (!obj->active)
3229 goto out;
3230
3231 /* Do this after OLR check to make sure we make forward progress polling
3232 * on this IOCTL with a timeout == 0 (like busy ioctl)
3233 */
3234 if (args->timeout_ns == 0) {
3235 ret = -ETIME;
3236 goto out;
3237 }
3238
3239 drm_gem_object_unreference(&obj->base);
3240
3241 for (i = 0; i < I915_NUM_ENGINES; i++) {
3242 if (obj->last_read_req[i] == NULL)
3243 continue;
3244
3245 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3246 }
3247
3248 mutex_unlock(&dev->struct_mutex);
3249
3250 for (i = 0; i < n; i++) {
3251 if (ret == 0)
3252 ret = __i915_wait_request(req[i], true,
3253 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3254 to_rps_client(file));
3255 i915_gem_request_unreference(req[i]);
3256 }
3257 return ret;
3258
3259 out:
3260 drm_gem_object_unreference(&obj->base);
3261 mutex_unlock(&dev->struct_mutex);
3262 return ret;
3263 }
3264
3265 static int
3266 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3267 struct intel_engine_cs *to,
3268 struct drm_i915_gem_request *from_req,
3269 struct drm_i915_gem_request **to_req)
3270 {
3271 struct intel_engine_cs *from;
3272 int ret;
3273
3274 from = i915_gem_request_get_engine(from_req);
3275 if (to == from)
3276 return 0;
3277
3278 if (i915_gem_request_completed(from_req, true))
3279 return 0;
3280
3281 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3282 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3283 ret = __i915_wait_request(from_req,
3284 i915->mm.interruptible,
3285 NULL,
3286 &i915->rps.semaphores);
3287 if (ret)
3288 return ret;
3289
3290 i915_gem_object_retire_request(obj, from_req);
3291 } else {
3292 int idx = intel_ring_sync_index(from, to);
3293 u32 seqno = i915_gem_request_get_seqno(from_req);
3294
3295 WARN_ON(!to_req);
3296
3297 if (seqno <= from->semaphore.sync_seqno[idx])
3298 return 0;
3299
3300 if (*to_req == NULL) {
3301 struct drm_i915_gem_request *req;
3302
3303 req = i915_gem_request_alloc(to, NULL);
3304 if (IS_ERR(req))
3305 return PTR_ERR(req);
3306
3307 *to_req = req;
3308 }
3309
3310 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3311 ret = to->semaphore.sync_to(*to_req, from, seqno);
3312 if (ret)
3313 return ret;
3314
3315 /* We use last_read_req because sync_to()
3316 * might have just caused seqno wrap under
3317 * the radar.
3318 */
3319 from->semaphore.sync_seqno[idx] =
3320 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3321 }
3322
3323 return 0;
3324 }
3325
3326 /**
3327 * i915_gem_object_sync - sync an object to a ring.
3328 *
3329 * @obj: object which may be in use on another ring.
3330 * @to: ring we wish to use the object on. May be NULL.
3331 * @to_req: request we wish to use the object for. See below.
3332 * This will be allocated and returned if a request is
3333 * required but not passed in.
3334 *
3335 * This code is meant to abstract object synchronization with the GPU.
3336 * Calling with NULL implies synchronizing the object with the CPU
3337 * rather than a particular GPU ring. Conceptually we serialise writes
3338 * between engines inside the GPU. We only allow one engine to write
3339 * into a buffer at any time, but multiple readers. To ensure each has
3340 * a coherent view of memory, we must:
3341 *
3342 * - If there is an outstanding write request to the object, the new
3343 * request must wait for it to complete (either CPU or in hw, requests
3344 * on the same ring will be naturally ordered).
3345 *
3346 * - If we are a write request (pending_write_domain is set), the new
3347 * request must wait for outstanding read requests to complete.
3348 *
3349 * For CPU synchronisation (NULL to) no request is required. For syncing with
3350 * rings to_req must be non-NULL. However, a request does not have to be
3351 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3352 * request will be allocated automatically and returned through *to_req. Note
3353 * that it is not guaranteed that commands will be emitted (because the system
3354 * might already be idle). Hence there is no need to create a request that
3355 * might never have any work submitted. Note further that if a request is
3356 * returned in *to_req, it is the responsibility of the caller to submit
3357 * that request (after potentially adding more work to it).
3358 *
3359 * Returns 0 if successful, else propagates up the lower layer error.
3360 */
3361 int
3362 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3363 struct intel_engine_cs *to,
3364 struct drm_i915_gem_request **to_req)
3365 {
3366 const bool readonly = obj->base.pending_write_domain == 0;
3367 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3368 int ret, i, n;
3369
3370 if (!obj->active)
3371 return 0;
3372
3373 if (to == NULL)
3374 return i915_gem_object_wait_rendering(obj, readonly);
3375
3376 n = 0;
3377 if (readonly) {
3378 if (obj->last_write_req)
3379 req[n++] = obj->last_write_req;
3380 } else {
3381 for (i = 0; i < I915_NUM_ENGINES; i++)
3382 if (obj->last_read_req[i])
3383 req[n++] = obj->last_read_req[i];
3384 }
3385 for (i = 0; i < n; i++) {
3386 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3387 if (ret)
3388 return ret;
3389 }
3390
3391 return 0;
3392 }
3393
3394 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3395 {
3396 u32 old_write_domain, old_read_domains;
3397
3398 /* Force a pagefault for domain tracking on next user access */
3399 i915_gem_release_mmap(obj);
3400
3401 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3402 return;
3403
3404 old_read_domains = obj->base.read_domains;
3405 old_write_domain = obj->base.write_domain;
3406
3407 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3408 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3409
3410 trace_i915_gem_object_change_domain(obj,
3411 old_read_domains,
3412 old_write_domain);
3413 }
3414
3415 static void __i915_vma_iounmap(struct i915_vma *vma)
3416 {
3417 GEM_BUG_ON(vma->pin_count);
3418
3419 if (vma->iomap == NULL)
3420 return;
3421
3422 io_mapping_unmap(vma->iomap);
3423 vma->iomap = NULL;
3424 }
3425
3426 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3427 {
3428 struct drm_i915_gem_object *obj = vma->obj;
3429 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3430 int ret;
3431
3432 if (list_empty(&vma->obj_link))
3433 return 0;
3434
3435 if (!drm_mm_node_allocated(&vma->node)) {
3436 i915_gem_vma_destroy(vma);
3437 return 0;
3438 }
3439
3440 if (vma->pin_count)
3441 return -EBUSY;
3442
3443 BUG_ON(obj->pages == NULL);
3444
3445 if (wait) {
3446 ret = i915_gem_object_wait_rendering(obj, false);
3447 if (ret)
3448 return ret;
3449 }
3450
3451 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3452 i915_gem_object_finish_gtt(obj);
3453
3454 /* release the fence reg _after_ flushing */
3455 ret = i915_gem_object_put_fence(obj);
3456 if (ret)
3457 return ret;
3458
3459 __i915_vma_iounmap(vma);
3460 }
3461
3462 trace_i915_vma_unbind(vma);
3463
3464 vma->vm->unbind_vma(vma);
3465 vma->bound = 0;
3466
3467 list_del_init(&vma->vm_link);
3468 if (vma->is_ggtt) {
3469 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3470 obj->map_and_fenceable = false;
3471 } else if (vma->ggtt_view.pages) {
3472 sg_free_table(vma->ggtt_view.pages);
3473 kfree(vma->ggtt_view.pages);
3474 }
3475 vma->ggtt_view.pages = NULL;
3476 }
3477
3478 drm_mm_remove_node(&vma->node);
3479 i915_gem_vma_destroy(vma);
3480
3481 /* Since the unbound list is global, only move to that list if
3482 * no more VMAs exist. */
3483 if (list_empty(&obj->vma_list))
3484 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3485
3486 /* And finally now the object is completely decoupled from this vma,
3487 * we can drop its hold on the backing storage and allow it to be
3488 * reaped by the shrinker.
3489 */
3490 i915_gem_object_unpin_pages(obj);
3491
3492 return 0;
3493 }
3494
3495 int i915_vma_unbind(struct i915_vma *vma)
3496 {
3497 return __i915_vma_unbind(vma, true);
3498 }
3499
3500 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3501 {
3502 return __i915_vma_unbind(vma, false);
3503 }
3504
3505 int i915_gpu_idle(struct drm_device *dev)
3506 {
3507 struct drm_i915_private *dev_priv = dev->dev_private;
3508 struct intel_engine_cs *engine;
3509 int ret;
3510
3511 /* Flush everything onto the inactive list. */
3512 for_each_engine(engine, dev_priv) {
3513 if (!i915.enable_execlists) {
3514 struct drm_i915_gem_request *req;
3515
3516 req = i915_gem_request_alloc(engine, NULL);
3517 if (IS_ERR(req))
3518 return PTR_ERR(req);
3519
3520 ret = i915_switch_context(req);
3521 i915_add_request_no_flush(req);
3522 if (ret)
3523 return ret;
3524 }
3525
3526 ret = intel_engine_idle(engine);
3527 if (ret)
3528 return ret;
3529 }
3530
3531 WARN_ON(i915_verify_lists(dev));
3532 return 0;
3533 }
3534
3535 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3536 unsigned long cache_level)
3537 {
3538 struct drm_mm_node *gtt_space = &vma->node;
3539 struct drm_mm_node *other;
3540
3541 /*
3542 * On some machines we have to be careful when putting differing types
3543 * of snoopable memory together to avoid the prefetcher crossing memory
3544 * domains and dying. During vm initialisation, we decide whether or not
3545 * these constraints apply and set the drm_mm.color_adjust
3546 * appropriately.
3547 */
3548 if (vma->vm->mm.color_adjust == NULL)
3549 return true;
3550
3551 if (!drm_mm_node_allocated(gtt_space))
3552 return true;
3553
3554 if (list_empty(&gtt_space->node_list))
3555 return true;
3556
3557 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3558 if (other->allocated && !other->hole_follows && other->color != cache_level)
3559 return false;
3560
3561 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3562 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3563 return false;
3564
3565 return true;
3566 }
3567
3568 /**
3569 * Finds free space in the GTT aperture and binds the object or a view of it
3570 * there.
3571 * @obj: object to bind
3572 * @vm: address space to bind into
3573 * @ggtt_view: global gtt view if applicable
3574 * @alignment: requested alignment
3575 * @flags: mask of PIN_* flags to use
3576 */
3577 static struct i915_vma *
3578 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3579 struct i915_address_space *vm,
3580 const struct i915_ggtt_view *ggtt_view,
3581 unsigned alignment,
3582 uint64_t flags)
3583 {
3584 struct drm_device *dev = obj->base.dev;
3585 struct drm_i915_private *dev_priv = to_i915(dev);
3586 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3587 u32 fence_alignment, unfenced_alignment;
3588 u32 search_flag, alloc_flag;
3589 u64 start, end;
3590 u64 size, fence_size;
3591 struct i915_vma *vma;
3592 int ret;
3593
3594 if (i915_is_ggtt(vm)) {
3595 u32 view_size;
3596
3597 if (WARN_ON(!ggtt_view))
3598 return ERR_PTR(-EINVAL);
3599
3600 view_size = i915_ggtt_view_size(obj, ggtt_view);
3601
3602 fence_size = i915_gem_get_gtt_size(dev,
3603 view_size,
3604 obj->tiling_mode);
3605 fence_alignment = i915_gem_get_gtt_alignment(dev,
3606 view_size,
3607 obj->tiling_mode,
3608 true);
3609 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3610 view_size,
3611 obj->tiling_mode,
3612 false);
3613 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3614 } else {
3615 fence_size = i915_gem_get_gtt_size(dev,
3616 obj->base.size,
3617 obj->tiling_mode);
3618 fence_alignment = i915_gem_get_gtt_alignment(dev,
3619 obj->base.size,
3620 obj->tiling_mode,
3621 true);
3622 unfenced_alignment =
3623 i915_gem_get_gtt_alignment(dev,
3624 obj->base.size,
3625 obj->tiling_mode,
3626 false);
3627 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3628 }
3629
3630 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3631 end = vm->total;
3632 if (flags & PIN_MAPPABLE)
3633 end = min_t(u64, end, ggtt->mappable_end);
3634 if (flags & PIN_ZONE_4G)
3635 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3636
3637 if (alignment == 0)
3638 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3639 unfenced_alignment;
3640 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3641 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3642 ggtt_view ? ggtt_view->type : 0,
3643 alignment);
3644 return ERR_PTR(-EINVAL);
3645 }
3646
3647 /* If binding the object/GGTT view requires more space than the entire
3648 * aperture has, reject it early before evicting everything in a vain
3649 * attempt to find space.
3650 */
3651 if (size > end) {
3652 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3653 ggtt_view ? ggtt_view->type : 0,
3654 size,
3655 flags & PIN_MAPPABLE ? "mappable" : "total",
3656 end);
3657 return ERR_PTR(-E2BIG);
3658 }
3659
3660 ret = i915_gem_object_get_pages(obj);
3661 if (ret)
3662 return ERR_PTR(ret);
3663
3664 i915_gem_object_pin_pages(obj);
3665
3666 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3667 i915_gem_obj_lookup_or_create_vma(obj, vm);
3668
3669 if (IS_ERR(vma))
3670 goto err_unpin;
3671
3672 if (flags & PIN_OFFSET_FIXED) {
3673 uint64_t offset = flags & PIN_OFFSET_MASK;
3674
3675 if (offset & (alignment - 1) || offset + size > end) {
3676 ret = -EINVAL;
3677 goto err_free_vma;
3678 }
3679 vma->node.start = offset;
3680 vma->node.size = size;
3681 vma->node.color = obj->cache_level;
3682 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3683 if (ret) {
3684 ret = i915_gem_evict_for_vma(vma);
3685 if (ret == 0)
3686 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3687 }
3688 if (ret)
3689 goto err_free_vma;
3690 } else {
3691 if (flags & PIN_HIGH) {
3692 search_flag = DRM_MM_SEARCH_BELOW;
3693 alloc_flag = DRM_MM_CREATE_TOP;
3694 } else {
3695 search_flag = DRM_MM_SEARCH_DEFAULT;
3696 alloc_flag = DRM_MM_CREATE_DEFAULT;
3697 }
3698
3699 search_free:
3700 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3701 size, alignment,
3702 obj->cache_level,
3703 start, end,
3704 search_flag,
3705 alloc_flag);
3706 if (ret) {
3707 ret = i915_gem_evict_something(dev, vm, size, alignment,
3708 obj->cache_level,
3709 start, end,
3710 flags);
3711 if (ret == 0)
3712 goto search_free;
3713
3714 goto err_free_vma;
3715 }
3716 }
3717 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3718 ret = -EINVAL;
3719 goto err_remove_node;
3720 }
3721
3722 trace_i915_vma_bind(vma, flags);
3723 ret = i915_vma_bind(vma, obj->cache_level, flags);
3724 if (ret)
3725 goto err_remove_node;
3726
3727 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3728 list_add_tail(&vma->vm_link, &vm->inactive_list);
3729
3730 return vma;
3731
3732 err_remove_node:
3733 drm_mm_remove_node(&vma->node);
3734 err_free_vma:
3735 i915_gem_vma_destroy(vma);
3736 vma = ERR_PTR(ret);
3737 err_unpin:
3738 i915_gem_object_unpin_pages(obj);
3739 return vma;
3740 }
3741
3742 bool
3743 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3744 bool force)
3745 {
3746 /* If we don't have a page list set up, then we're not pinned
3747 * to GPU, and we can ignore the cache flush because it'll happen
3748 * again at bind time.
3749 */
3750 if (obj->pages == NULL)
3751 return false;
3752
3753 /*
3754 * Stolen memory is always coherent with the GPU as it is explicitly
3755 * marked as wc by the system, or the system is cache-coherent.
3756 */
3757 if (obj->stolen || obj->phys_handle)
3758 return false;
3759
3760 /* If the GPU is snooping the contents of the CPU cache,
3761 * we do not need to manually clear the CPU cache lines. However,
3762 * the caches are only snooped when the render cache is
3763 * flushed/invalidated. As we always have to emit invalidations
3764 * and flushes when moving into and out of the RENDER domain, correct
3765 * snooping behaviour occurs naturally as the result of our domain
3766 * tracking.
3767 */
3768 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3769 obj->cache_dirty = true;
3770 return false;
3771 }
3772
3773 trace_i915_gem_object_clflush(obj);
3774 drm_clflush_sg(obj->pages);
3775 obj->cache_dirty = false;
3776
3777 return true;
3778 }
3779
3780 /** Flushes the GTT write domain for the object if it's dirty. */
3781 static void
3782 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3783 {
3784 uint32_t old_write_domain;
3785
3786 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3787 return;
3788
3789 /* No actual flushing is required for the GTT write domain. Writes
3790 * to it immediately go to main memory as far as we know, so there's
3791 * no chipset flush. It also doesn't land in render cache.
3792 *
3793 * However, we do have to enforce the order so that all writes through
3794 * the GTT land before any writes to the device, such as updates to
3795 * the GATT itself.
3796 */
3797 wmb();
3798
3799 old_write_domain = obj->base.write_domain;
3800 obj->base.write_domain = 0;
3801
3802 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3803
3804 trace_i915_gem_object_change_domain(obj,
3805 obj->base.read_domains,
3806 old_write_domain);
3807 }
3808
3809 /** Flushes the CPU write domain for the object if it's dirty. */
3810 static void
3811 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3812 {
3813 uint32_t old_write_domain;
3814
3815 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3816 return;
3817
3818 if (i915_gem_clflush_object(obj, obj->pin_display))
3819 i915_gem_chipset_flush(to_i915(obj->base.dev));
3820
3821 old_write_domain = obj->base.write_domain;
3822 obj->base.write_domain = 0;
3823
3824 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3825
3826 trace_i915_gem_object_change_domain(obj,
3827 obj->base.read_domains,
3828 old_write_domain);
3829 }
3830
3831 /**
3832 * Moves a single object to the GTT read, and possibly write domain.
3833 * @obj: object to act on
3834 * @write: ask for write access or read only
3835 *
3836 * This function returns when the move is complete, including waiting on
3837 * flushes to occur.
3838 */
3839 int
3840 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3841 {
3842 struct drm_device *dev = obj->base.dev;
3843 struct drm_i915_private *dev_priv = to_i915(dev);
3844 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3845 uint32_t old_write_domain, old_read_domains;
3846 struct i915_vma *vma;
3847 int ret;
3848
3849 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3850 return 0;
3851
3852 ret = i915_gem_object_wait_rendering(obj, !write);
3853 if (ret)
3854 return ret;
3855
3856 /* Flush and acquire obj->pages so that we are coherent through
3857 * direct access in memory with previous cached writes through
3858 * shmemfs and that our cache domain tracking remains valid.
3859 * For example, if the obj->filp was moved to swap without us
3860 * being notified and releasing the pages, we would mistakenly
3861 * continue to assume that the obj remained out of the CPU cached
3862 * domain.
3863 */
3864 ret = i915_gem_object_get_pages(obj);
3865 if (ret)
3866 return ret;
3867
3868 i915_gem_object_flush_cpu_write_domain(obj);
3869
3870 /* Serialise direct access to this object with the barriers for
3871 * coherent writes from the GPU, by effectively invalidating the
3872 * GTT domain upon first access.
3873 */
3874 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3875 mb();
3876
3877 old_write_domain = obj->base.write_domain;
3878 old_read_domains = obj->base.read_domains;
3879
3880 /* It should now be out of any other write domains, and we can update
3881 * the domain values for our changes.
3882 */
3883 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3884 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3885 if (write) {
3886 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3887 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3888 obj->dirty = 1;
3889 }
3890
3891 trace_i915_gem_object_change_domain(obj,
3892 old_read_domains,
3893 old_write_domain);
3894
3895 /* And bump the LRU for this access */
3896 vma = i915_gem_obj_to_ggtt(obj);
3897 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3898 list_move_tail(&vma->vm_link,
3899 &ggtt->base.inactive_list);
3900
3901 return 0;
3902 }
3903
3904 /**
3905 * Changes the cache-level of an object across all VMA.
3906 * @obj: object to act on
3907 * @cache_level: new cache level to set for the object
3908 *
3909 * After this function returns, the object will be in the new cache-level
3910 * across all GTT and the contents of the backing storage will be coherent,
3911 * with respect to the new cache-level. In order to keep the backing storage
3912 * coherent for all users, we only allow a single cache level to be set
3913 * globally on the object and prevent it from being changed whilst the
3914 * hardware is reading from the object. That is if the object is currently
3915 * on the scanout it will be set to uncached (or equivalent display
3916 * cache coherency) and all non-MOCS GPU access will also be uncached so
3917 * that all direct access to the scanout remains coherent.
3918 */
3919 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3920 enum i915_cache_level cache_level)
3921 {
3922 struct drm_device *dev = obj->base.dev;
3923 struct i915_vma *vma, *next;
3924 bool bound = false;
3925 int ret = 0;
3926
3927 if (obj->cache_level == cache_level)
3928 goto out;
3929
3930 /* Inspect the list of currently bound VMA and unbind any that would
3931 * be invalid given the new cache-level. This is principally to
3932 * catch the issue of the CS prefetch crossing page boundaries and
3933 * reading an invalid PTE on older architectures.
3934 */
3935 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3936 if (!drm_mm_node_allocated(&vma->node))
3937 continue;
3938
3939 if (vma->pin_count) {
3940 DRM_DEBUG("can not change the cache level of pinned objects\n");
3941 return -EBUSY;
3942 }
3943
3944 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3945 ret = i915_vma_unbind(vma);
3946 if (ret)
3947 return ret;
3948 } else
3949 bound = true;
3950 }
3951
3952 /* We can reuse the existing drm_mm nodes but need to change the
3953 * cache-level on the PTE. We could simply unbind them all and
3954 * rebind with the correct cache-level on next use. However since
3955 * we already have a valid slot, dma mapping, pages etc, we may as
3956 * rewrite the PTE in the belief that doing so tramples upon less
3957 * state and so involves less work.
3958 */
3959 if (bound) {
3960 /* Before we change the PTE, the GPU must not be accessing it.
3961 * If we wait upon the object, we know that all the bound
3962 * VMA are no longer active.
3963 */
3964 ret = i915_gem_object_wait_rendering(obj, false);
3965 if (ret)
3966 return ret;
3967
3968 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3969 /* Access to snoopable pages through the GTT is
3970 * incoherent and on some machines causes a hard
3971 * lockup. Relinquish the CPU mmaping to force
3972 * userspace to refault in the pages and we can
3973 * then double check if the GTT mapping is still
3974 * valid for that pointer access.
3975 */
3976 i915_gem_release_mmap(obj);
3977
3978 /* As we no longer need a fence for GTT access,
3979 * we can relinquish it now (and so prevent having
3980 * to steal a fence from someone else on the next
3981 * fence request). Note GPU activity would have
3982 * dropped the fence as all snoopable access is
3983 * supposed to be linear.
3984 */
3985 ret = i915_gem_object_put_fence(obj);
3986 if (ret)
3987 return ret;
3988 } else {
3989 /* We either have incoherent backing store and
3990 * so no GTT access or the architecture is fully
3991 * coherent. In such cases, existing GTT mmaps
3992 * ignore the cache bit in the PTE and we can
3993 * rewrite it without confusing the GPU or having
3994 * to force userspace to fault back in its mmaps.
3995 */
3996 }
3997
3998 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3999 if (!drm_mm_node_allocated(&vma->node))
4000 continue;
4001
4002 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4003 if (ret)
4004 return ret;
4005 }
4006 }
4007
4008 list_for_each_entry(vma, &obj->vma_list, obj_link)
4009 vma->node.color = cache_level;
4010 obj->cache_level = cache_level;
4011
4012 out:
4013 /* Flush the dirty CPU caches to the backing storage so that the
4014 * object is now coherent at its new cache level (with respect
4015 * to the access domain).
4016 */
4017 if (obj->cache_dirty &&
4018 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4019 cpu_write_needs_clflush(obj)) {
4020 if (i915_gem_clflush_object(obj, true))
4021 i915_gem_chipset_flush(to_i915(obj->base.dev));
4022 }
4023
4024 return 0;
4025 }
4026
4027 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4028 struct drm_file *file)
4029 {
4030 struct drm_i915_gem_caching *args = data;
4031 struct drm_i915_gem_object *obj;
4032
4033 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4034 if (&obj->base == NULL)
4035 return -ENOENT;
4036
4037 switch (obj->cache_level) {
4038 case I915_CACHE_LLC:
4039 case I915_CACHE_L3_LLC:
4040 args->caching = I915_CACHING_CACHED;
4041 break;
4042
4043 case I915_CACHE_WT:
4044 args->caching = I915_CACHING_DISPLAY;
4045 break;
4046
4047 default:
4048 args->caching = I915_CACHING_NONE;
4049 break;
4050 }
4051
4052 drm_gem_object_unreference_unlocked(&obj->base);
4053 return 0;
4054 }
4055
4056 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4057 struct drm_file *file)
4058 {
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 struct drm_i915_gem_caching *args = data;
4061 struct drm_i915_gem_object *obj;
4062 enum i915_cache_level level;
4063 int ret;
4064
4065 switch (args->caching) {
4066 case I915_CACHING_NONE:
4067 level = I915_CACHE_NONE;
4068 break;
4069 case I915_CACHING_CACHED:
4070 /*
4071 * Due to a HW issue on BXT A stepping, GPU stores via a
4072 * snooped mapping may leave stale data in a corresponding CPU
4073 * cacheline, whereas normally such cachelines would get
4074 * invalidated.
4075 */
4076 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4077 return -ENODEV;
4078
4079 level = I915_CACHE_LLC;
4080 break;
4081 case I915_CACHING_DISPLAY:
4082 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4083 break;
4084 default:
4085 return -EINVAL;
4086 }
4087
4088 intel_runtime_pm_get(dev_priv);
4089
4090 ret = i915_mutex_lock_interruptible(dev);
4091 if (ret)
4092 goto rpm_put;
4093
4094 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4095 if (&obj->base == NULL) {
4096 ret = -ENOENT;
4097 goto unlock;
4098 }
4099
4100 ret = i915_gem_object_set_cache_level(obj, level);
4101
4102 drm_gem_object_unreference(&obj->base);
4103 unlock:
4104 mutex_unlock(&dev->struct_mutex);
4105 rpm_put:
4106 intel_runtime_pm_put(dev_priv);
4107
4108 return ret;
4109 }
4110
4111 /*
4112 * Prepare buffer for display plane (scanout, cursors, etc).
4113 * Can be called from an uninterruptible phase (modesetting) and allows
4114 * any flushes to be pipelined (for pageflips).
4115 */
4116 int
4117 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4118 u32 alignment,
4119 const struct i915_ggtt_view *view)
4120 {
4121 u32 old_read_domains, old_write_domain;
4122 int ret;
4123
4124 /* Mark the pin_display early so that we account for the
4125 * display coherency whilst setting up the cache domains.
4126 */
4127 obj->pin_display++;
4128
4129 /* The display engine is not coherent with the LLC cache on gen6. As
4130 * a result, we make sure that the pinning that is about to occur is
4131 * done with uncached PTEs. This is lowest common denominator for all
4132 * chipsets.
4133 *
4134 * However for gen6+, we could do better by using the GFDT bit instead
4135 * of uncaching, which would allow us to flush all the LLC-cached data
4136 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4137 */
4138 ret = i915_gem_object_set_cache_level(obj,
4139 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4140 if (ret)
4141 goto err_unpin_display;
4142
4143 /* As the user may map the buffer once pinned in the display plane
4144 * (e.g. libkms for the bootup splash), we have to ensure that we
4145 * always use map_and_fenceable for all scanout buffers.
4146 */
4147 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4148 view->type == I915_GGTT_VIEW_NORMAL ?
4149 PIN_MAPPABLE : 0);
4150 if (ret)
4151 goto err_unpin_display;
4152
4153 i915_gem_object_flush_cpu_write_domain(obj);
4154
4155 old_write_domain = obj->base.write_domain;
4156 old_read_domains = obj->base.read_domains;
4157
4158 /* It should now be out of any other write domains, and we can update
4159 * the domain values for our changes.
4160 */
4161 obj->base.write_domain = 0;
4162 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4163
4164 trace_i915_gem_object_change_domain(obj,
4165 old_read_domains,
4166 old_write_domain);
4167
4168 return 0;
4169
4170 err_unpin_display:
4171 obj->pin_display--;
4172 return ret;
4173 }
4174
4175 void
4176 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4177 const struct i915_ggtt_view *view)
4178 {
4179 if (WARN_ON(obj->pin_display == 0))
4180 return;
4181
4182 i915_gem_object_ggtt_unpin_view(obj, view);
4183
4184 obj->pin_display--;
4185 }
4186
4187 /**
4188 * Moves a single object to the CPU read, and possibly write domain.
4189 * @obj: object to act on
4190 * @write: requesting write or read-only access
4191 *
4192 * This function returns when the move is complete, including waiting on
4193 * flushes to occur.
4194 */
4195 int
4196 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4197 {
4198 uint32_t old_write_domain, old_read_domains;
4199 int ret;
4200
4201 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4202 return 0;
4203
4204 ret = i915_gem_object_wait_rendering(obj, !write);
4205 if (ret)
4206 return ret;
4207
4208 i915_gem_object_flush_gtt_write_domain(obj);
4209
4210 old_write_domain = obj->base.write_domain;
4211 old_read_domains = obj->base.read_domains;
4212
4213 /* Flush the CPU cache if it's still invalid. */
4214 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4215 i915_gem_clflush_object(obj, false);
4216
4217 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4218 }
4219
4220 /* It should now be out of any other write domains, and we can update
4221 * the domain values for our changes.
4222 */
4223 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4224
4225 /* If we're writing through the CPU, then the GPU read domains will
4226 * need to be invalidated at next use.
4227 */
4228 if (write) {
4229 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4230 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4231 }
4232
4233 trace_i915_gem_object_change_domain(obj,
4234 old_read_domains,
4235 old_write_domain);
4236
4237 return 0;
4238 }
4239
4240 /* Throttle our rendering by waiting until the ring has completed our requests
4241 * emitted over 20 msec ago.
4242 *
4243 * Note that if we were to use the current jiffies each time around the loop,
4244 * we wouldn't escape the function with any frames outstanding if the time to
4245 * render a frame was over 20ms.
4246 *
4247 * This should get us reasonable parallelism between CPU and GPU but also
4248 * relatively low latency when blocking on a particular request to finish.
4249 */
4250 static int
4251 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4252 {
4253 struct drm_i915_private *dev_priv = dev->dev_private;
4254 struct drm_i915_file_private *file_priv = file->driver_priv;
4255 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4256 struct drm_i915_gem_request *request, *target = NULL;
4257 int ret;
4258
4259 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4260 if (ret)
4261 return ret;
4262
4263 /* ABI: return -EIO if already wedged */
4264 if (i915_terminally_wedged(&dev_priv->gpu_error))
4265 return -EIO;
4266
4267 spin_lock(&file_priv->mm.lock);
4268 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4269 if (time_after_eq(request->emitted_jiffies, recent_enough))
4270 break;
4271
4272 /*
4273 * Note that the request might not have been submitted yet.
4274 * In which case emitted_jiffies will be zero.
4275 */
4276 if (!request->emitted_jiffies)
4277 continue;
4278
4279 target = request;
4280 }
4281 if (target)
4282 i915_gem_request_reference(target);
4283 spin_unlock(&file_priv->mm.lock);
4284
4285 if (target == NULL)
4286 return 0;
4287
4288 ret = __i915_wait_request(target, true, NULL, NULL);
4289 if (ret == 0)
4290 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4291
4292 i915_gem_request_unreference(target);
4293
4294 return ret;
4295 }
4296
4297 static bool
4298 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4299 {
4300 struct drm_i915_gem_object *obj = vma->obj;
4301
4302 if (alignment &&
4303 vma->node.start & (alignment - 1))
4304 return true;
4305
4306 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4307 return true;
4308
4309 if (flags & PIN_OFFSET_BIAS &&
4310 vma->node.start < (flags & PIN_OFFSET_MASK))
4311 return true;
4312
4313 if (flags & PIN_OFFSET_FIXED &&
4314 vma->node.start != (flags & PIN_OFFSET_MASK))
4315 return true;
4316
4317 return false;
4318 }
4319
4320 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4321 {
4322 struct drm_i915_gem_object *obj = vma->obj;
4323 bool mappable, fenceable;
4324 u32 fence_size, fence_alignment;
4325
4326 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4327 obj->base.size,
4328 obj->tiling_mode);
4329 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4330 obj->base.size,
4331 obj->tiling_mode,
4332 true);
4333
4334 fenceable = (vma->node.size == fence_size &&
4335 (vma->node.start & (fence_alignment - 1)) == 0);
4336
4337 mappable = (vma->node.start + fence_size <=
4338 to_i915(obj->base.dev)->ggtt.mappable_end);
4339
4340 obj->map_and_fenceable = mappable && fenceable;
4341 }
4342
4343 static int
4344 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4345 struct i915_address_space *vm,
4346 const struct i915_ggtt_view *ggtt_view,
4347 uint32_t alignment,
4348 uint64_t flags)
4349 {
4350 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4351 struct i915_vma *vma;
4352 unsigned bound;
4353 int ret;
4354
4355 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4356 return -ENODEV;
4357
4358 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4359 return -EINVAL;
4360
4361 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4362 return -EINVAL;
4363
4364 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4365 return -EINVAL;
4366
4367 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4368 i915_gem_obj_to_vma(obj, vm);
4369
4370 if (vma) {
4371 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4372 return -EBUSY;
4373
4374 if (i915_vma_misplaced(vma, alignment, flags)) {
4375 WARN(vma->pin_count,
4376 "bo is already pinned in %s with incorrect alignment:"
4377 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4378 " obj->map_and_fenceable=%d\n",
4379 ggtt_view ? "ggtt" : "ppgtt",
4380 upper_32_bits(vma->node.start),
4381 lower_32_bits(vma->node.start),
4382 alignment,
4383 !!(flags & PIN_MAPPABLE),
4384 obj->map_and_fenceable);
4385 ret = i915_vma_unbind(vma);
4386 if (ret)
4387 return ret;
4388
4389 vma = NULL;
4390 }
4391 }
4392
4393 bound = vma ? vma->bound : 0;
4394 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4395 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4396 flags);
4397 if (IS_ERR(vma))
4398 return PTR_ERR(vma);
4399 } else {
4400 ret = i915_vma_bind(vma, obj->cache_level, flags);
4401 if (ret)
4402 return ret;
4403 }
4404
4405 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4406 (bound ^ vma->bound) & GLOBAL_BIND) {
4407 __i915_vma_set_map_and_fenceable(vma);
4408 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4409 }
4410
4411 vma->pin_count++;
4412 return 0;
4413 }
4414
4415 int
4416 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4417 struct i915_address_space *vm,
4418 uint32_t alignment,
4419 uint64_t flags)
4420 {
4421 return i915_gem_object_do_pin(obj, vm,
4422 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4423 alignment, flags);
4424 }
4425
4426 int
4427 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4428 const struct i915_ggtt_view *view,
4429 uint32_t alignment,
4430 uint64_t flags)
4431 {
4432 struct drm_device *dev = obj->base.dev;
4433 struct drm_i915_private *dev_priv = to_i915(dev);
4434 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4435
4436 BUG_ON(!view);
4437
4438 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4439 alignment, flags | PIN_GLOBAL);
4440 }
4441
4442 void
4443 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4444 const struct i915_ggtt_view *view)
4445 {
4446 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4447
4448 WARN_ON(vma->pin_count == 0);
4449 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4450
4451 --vma->pin_count;
4452 }
4453
4454 int
4455 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4456 struct drm_file *file)
4457 {
4458 struct drm_i915_gem_busy *args = data;
4459 struct drm_i915_gem_object *obj;
4460 int ret;
4461
4462 ret = i915_mutex_lock_interruptible(dev);
4463 if (ret)
4464 return ret;
4465
4466 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4467 if (&obj->base == NULL) {
4468 ret = -ENOENT;
4469 goto unlock;
4470 }
4471
4472 /* Count all active objects as busy, even if they are currently not used
4473 * by the gpu. Users of this interface expect objects to eventually
4474 * become non-busy without any further actions, therefore emit any
4475 * necessary flushes here.
4476 */
4477 ret = i915_gem_object_flush_active(obj);
4478 if (ret)
4479 goto unref;
4480
4481 args->busy = 0;
4482 if (obj->active) {
4483 int i;
4484
4485 for (i = 0; i < I915_NUM_ENGINES; i++) {
4486 struct drm_i915_gem_request *req;
4487
4488 req = obj->last_read_req[i];
4489 if (req)
4490 args->busy |= 1 << (16 + req->engine->exec_id);
4491 }
4492 if (obj->last_write_req)
4493 args->busy |= obj->last_write_req->engine->exec_id;
4494 }
4495
4496 unref:
4497 drm_gem_object_unreference(&obj->base);
4498 unlock:
4499 mutex_unlock(&dev->struct_mutex);
4500 return ret;
4501 }
4502
4503 int
4504 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4505 struct drm_file *file_priv)
4506 {
4507 return i915_gem_ring_throttle(dev, file_priv);
4508 }
4509
4510 int
4511 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4512 struct drm_file *file_priv)
4513 {
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 struct drm_i915_gem_madvise *args = data;
4516 struct drm_i915_gem_object *obj;
4517 int ret;
4518
4519 switch (args->madv) {
4520 case I915_MADV_DONTNEED:
4521 case I915_MADV_WILLNEED:
4522 break;
4523 default:
4524 return -EINVAL;
4525 }
4526
4527 ret = i915_mutex_lock_interruptible(dev);
4528 if (ret)
4529 return ret;
4530
4531 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4532 if (&obj->base == NULL) {
4533 ret = -ENOENT;
4534 goto unlock;
4535 }
4536
4537 if (i915_gem_obj_is_pinned(obj)) {
4538 ret = -EINVAL;
4539 goto out;
4540 }
4541
4542 if (obj->pages &&
4543 obj->tiling_mode != I915_TILING_NONE &&
4544 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4545 if (obj->madv == I915_MADV_WILLNEED)
4546 i915_gem_object_unpin_pages(obj);
4547 if (args->madv == I915_MADV_WILLNEED)
4548 i915_gem_object_pin_pages(obj);
4549 }
4550
4551 if (obj->madv != __I915_MADV_PURGED)
4552 obj->madv = args->madv;
4553
4554 /* if the object is no longer attached, discard its backing storage */
4555 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4556 i915_gem_object_truncate(obj);
4557
4558 args->retained = obj->madv != __I915_MADV_PURGED;
4559
4560 out:
4561 drm_gem_object_unreference(&obj->base);
4562 unlock:
4563 mutex_unlock(&dev->struct_mutex);
4564 return ret;
4565 }
4566
4567 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4568 const struct drm_i915_gem_object_ops *ops)
4569 {
4570 int i;
4571
4572 INIT_LIST_HEAD(&obj->global_list);
4573 for (i = 0; i < I915_NUM_ENGINES; i++)
4574 INIT_LIST_HEAD(&obj->engine_list[i]);
4575 INIT_LIST_HEAD(&obj->obj_exec_link);
4576 INIT_LIST_HEAD(&obj->vma_list);
4577 INIT_LIST_HEAD(&obj->batch_pool_link);
4578
4579 obj->ops = ops;
4580
4581 obj->fence_reg = I915_FENCE_REG_NONE;
4582 obj->madv = I915_MADV_WILLNEED;
4583
4584 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4585 }
4586
4587 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4588 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4589 .get_pages = i915_gem_object_get_pages_gtt,
4590 .put_pages = i915_gem_object_put_pages_gtt,
4591 };
4592
4593 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4594 size_t size)
4595 {
4596 struct drm_i915_gem_object *obj;
4597 struct address_space *mapping;
4598 gfp_t mask;
4599 int ret;
4600
4601 obj = i915_gem_object_alloc(dev);
4602 if (obj == NULL)
4603 return ERR_PTR(-ENOMEM);
4604
4605 ret = drm_gem_object_init(dev, &obj->base, size);
4606 if (ret)
4607 goto fail;
4608
4609 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4610 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4611 /* 965gm cannot relocate objects above 4GiB. */
4612 mask &= ~__GFP_HIGHMEM;
4613 mask |= __GFP_DMA32;
4614 }
4615
4616 mapping = file_inode(obj->base.filp)->i_mapping;
4617 mapping_set_gfp_mask(mapping, mask);
4618
4619 i915_gem_object_init(obj, &i915_gem_object_ops);
4620
4621 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4622 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4623
4624 if (HAS_LLC(dev)) {
4625 /* On some devices, we can have the GPU use the LLC (the CPU
4626 * cache) for about a 10% performance improvement
4627 * compared to uncached. Graphics requests other than
4628 * display scanout are coherent with the CPU in
4629 * accessing this cache. This means in this mode we
4630 * don't need to clflush on the CPU side, and on the
4631 * GPU side we only need to flush internal caches to
4632 * get data visible to the CPU.
4633 *
4634 * However, we maintain the display planes as UC, and so
4635 * need to rebind when first used as such.
4636 */
4637 obj->cache_level = I915_CACHE_LLC;
4638 } else
4639 obj->cache_level = I915_CACHE_NONE;
4640
4641 trace_i915_gem_object_create(obj);
4642
4643 return obj;
4644
4645 fail:
4646 i915_gem_object_free(obj);
4647
4648 return ERR_PTR(ret);
4649 }
4650
4651 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4652 {
4653 /* If we are the last user of the backing storage (be it shmemfs
4654 * pages or stolen etc), we know that the pages are going to be
4655 * immediately released. In this case, we can then skip copying
4656 * back the contents from the GPU.
4657 */
4658
4659 if (obj->madv != I915_MADV_WILLNEED)
4660 return false;
4661
4662 if (obj->base.filp == NULL)
4663 return true;
4664
4665 /* At first glance, this looks racy, but then again so would be
4666 * userspace racing mmap against close. However, the first external
4667 * reference to the filp can only be obtained through the
4668 * i915_gem_mmap_ioctl() which safeguards us against the user
4669 * acquiring such a reference whilst we are in the middle of
4670 * freeing the object.
4671 */
4672 return atomic_long_read(&obj->base.filp->f_count) == 1;
4673 }
4674
4675 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4676 {
4677 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4678 struct drm_device *dev = obj->base.dev;
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680 struct i915_vma *vma, *next;
4681
4682 intel_runtime_pm_get(dev_priv);
4683
4684 trace_i915_gem_object_destroy(obj);
4685
4686 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4687 int ret;
4688
4689 vma->pin_count = 0;
4690 ret = i915_vma_unbind(vma);
4691 if (WARN_ON(ret == -ERESTARTSYS)) {
4692 bool was_interruptible;
4693
4694 was_interruptible = dev_priv->mm.interruptible;
4695 dev_priv->mm.interruptible = false;
4696
4697 WARN_ON(i915_vma_unbind(vma));
4698
4699 dev_priv->mm.interruptible = was_interruptible;
4700 }
4701 }
4702
4703 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4704 * before progressing. */
4705 if (obj->stolen)
4706 i915_gem_object_unpin_pages(obj);
4707
4708 WARN_ON(obj->frontbuffer_bits);
4709
4710 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4711 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4712 obj->tiling_mode != I915_TILING_NONE)
4713 i915_gem_object_unpin_pages(obj);
4714
4715 if (WARN_ON(obj->pages_pin_count))
4716 obj->pages_pin_count = 0;
4717 if (discard_backing_storage(obj))
4718 obj->madv = I915_MADV_DONTNEED;
4719 i915_gem_object_put_pages(obj);
4720 i915_gem_object_free_mmap_offset(obj);
4721
4722 BUG_ON(obj->pages);
4723
4724 if (obj->base.import_attach)
4725 drm_prime_gem_destroy(&obj->base, NULL);
4726
4727 if (obj->ops->release)
4728 obj->ops->release(obj);
4729
4730 drm_gem_object_release(&obj->base);
4731 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4732
4733 kfree(obj->bit_17);
4734 i915_gem_object_free(obj);
4735
4736 intel_runtime_pm_put(dev_priv);
4737 }
4738
4739 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4740 struct i915_address_space *vm)
4741 {
4742 struct i915_vma *vma;
4743 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4744 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4745 vma->vm == vm)
4746 return vma;
4747 }
4748 return NULL;
4749 }
4750
4751 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4752 const struct i915_ggtt_view *view)
4753 {
4754 struct i915_vma *vma;
4755
4756 GEM_BUG_ON(!view);
4757
4758 list_for_each_entry(vma, &obj->vma_list, obj_link)
4759 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4760 return vma;
4761 return NULL;
4762 }
4763
4764 void i915_gem_vma_destroy(struct i915_vma *vma)
4765 {
4766 WARN_ON(vma->node.allocated);
4767
4768 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4769 if (!list_empty(&vma->exec_list))
4770 return;
4771
4772 if (!vma->is_ggtt)
4773 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4774
4775 list_del(&vma->obj_link);
4776
4777 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4778 }
4779
4780 static void
4781 i915_gem_stop_engines(struct drm_device *dev)
4782 {
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 struct intel_engine_cs *engine;
4785
4786 for_each_engine(engine, dev_priv)
4787 dev_priv->gt.stop_engine(engine);
4788 }
4789
4790 int
4791 i915_gem_suspend(struct drm_device *dev)
4792 {
4793 struct drm_i915_private *dev_priv = dev->dev_private;
4794 int ret = 0;
4795
4796 mutex_lock(&dev->struct_mutex);
4797 ret = i915_gpu_idle(dev);
4798 if (ret)
4799 goto err;
4800
4801 i915_gem_retire_requests(dev_priv);
4802
4803 i915_gem_stop_engines(dev);
4804 i915_gem_context_lost(dev_priv);
4805 mutex_unlock(&dev->struct_mutex);
4806
4807 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4808 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4809 flush_delayed_work(&dev_priv->mm.idle_work);
4810
4811 /* Assert that we sucessfully flushed all the work and
4812 * reset the GPU back to its idle, low power state.
4813 */
4814 WARN_ON(dev_priv->mm.busy);
4815
4816 return 0;
4817
4818 err:
4819 mutex_unlock(&dev->struct_mutex);
4820 return ret;
4821 }
4822
4823 void i915_gem_init_swizzling(struct drm_device *dev)
4824 {
4825 struct drm_i915_private *dev_priv = dev->dev_private;
4826
4827 if (INTEL_INFO(dev)->gen < 5 ||
4828 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4829 return;
4830
4831 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4832 DISP_TILE_SURFACE_SWIZZLING);
4833
4834 if (IS_GEN5(dev))
4835 return;
4836
4837 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4838 if (IS_GEN6(dev))
4839 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4840 else if (IS_GEN7(dev))
4841 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4842 else if (IS_GEN8(dev))
4843 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4844 else
4845 BUG();
4846 }
4847
4848 static void init_unused_ring(struct drm_device *dev, u32 base)
4849 {
4850 struct drm_i915_private *dev_priv = dev->dev_private;
4851
4852 I915_WRITE(RING_CTL(base), 0);
4853 I915_WRITE(RING_HEAD(base), 0);
4854 I915_WRITE(RING_TAIL(base), 0);
4855 I915_WRITE(RING_START(base), 0);
4856 }
4857
4858 static void init_unused_rings(struct drm_device *dev)
4859 {
4860 if (IS_I830(dev)) {
4861 init_unused_ring(dev, PRB1_BASE);
4862 init_unused_ring(dev, SRB0_BASE);
4863 init_unused_ring(dev, SRB1_BASE);
4864 init_unused_ring(dev, SRB2_BASE);
4865 init_unused_ring(dev, SRB3_BASE);
4866 } else if (IS_GEN2(dev)) {
4867 init_unused_ring(dev, SRB0_BASE);
4868 init_unused_ring(dev, SRB1_BASE);
4869 } else if (IS_GEN3(dev)) {
4870 init_unused_ring(dev, PRB1_BASE);
4871 init_unused_ring(dev, PRB2_BASE);
4872 }
4873 }
4874
4875 int i915_gem_init_engines(struct drm_device *dev)
4876 {
4877 struct drm_i915_private *dev_priv = dev->dev_private;
4878 int ret;
4879
4880 ret = intel_init_render_ring_buffer(dev);
4881 if (ret)
4882 return ret;
4883
4884 if (HAS_BSD(dev)) {
4885 ret = intel_init_bsd_ring_buffer(dev);
4886 if (ret)
4887 goto cleanup_render_ring;
4888 }
4889
4890 if (HAS_BLT(dev)) {
4891 ret = intel_init_blt_ring_buffer(dev);
4892 if (ret)
4893 goto cleanup_bsd_ring;
4894 }
4895
4896 if (HAS_VEBOX(dev)) {
4897 ret = intel_init_vebox_ring_buffer(dev);
4898 if (ret)
4899 goto cleanup_blt_ring;
4900 }
4901
4902 if (HAS_BSD2(dev)) {
4903 ret = intel_init_bsd2_ring_buffer(dev);
4904 if (ret)
4905 goto cleanup_vebox_ring;
4906 }
4907
4908 return 0;
4909
4910 cleanup_vebox_ring:
4911 intel_cleanup_engine(&dev_priv->engine[VECS]);
4912 cleanup_blt_ring:
4913 intel_cleanup_engine(&dev_priv->engine[BCS]);
4914 cleanup_bsd_ring:
4915 intel_cleanup_engine(&dev_priv->engine[VCS]);
4916 cleanup_render_ring:
4917 intel_cleanup_engine(&dev_priv->engine[RCS]);
4918
4919 return ret;
4920 }
4921
4922 int
4923 i915_gem_init_hw(struct drm_device *dev)
4924 {
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926 struct intel_engine_cs *engine;
4927 int ret;
4928
4929 /* Double layer security blanket, see i915_gem_init() */
4930 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4931
4932 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4933 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4934
4935 if (IS_HASWELL(dev))
4936 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4937 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4938
4939 if (HAS_PCH_NOP(dev)) {
4940 if (IS_IVYBRIDGE(dev)) {
4941 u32 temp = I915_READ(GEN7_MSG_CTL);
4942 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4943 I915_WRITE(GEN7_MSG_CTL, temp);
4944 } else if (INTEL_INFO(dev)->gen >= 7) {
4945 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4946 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4947 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4948 }
4949 }
4950
4951 i915_gem_init_swizzling(dev);
4952
4953 /*
4954 * At least 830 can leave some of the unused rings
4955 * "active" (ie. head != tail) after resume which
4956 * will prevent c3 entry. Makes sure all unused rings
4957 * are totally idle.
4958 */
4959 init_unused_rings(dev);
4960
4961 BUG_ON(!dev_priv->kernel_context);
4962
4963 ret = i915_ppgtt_init_hw(dev);
4964 if (ret) {
4965 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4966 goto out;
4967 }
4968
4969 /* Need to do basic initialisation of all rings first: */
4970 for_each_engine(engine, dev_priv) {
4971 ret = engine->init_hw(engine);
4972 if (ret)
4973 goto out;
4974 }
4975
4976 intel_mocs_init_l3cc_table(dev);
4977
4978 /* We can't enable contexts until all firmware is loaded */
4979 ret = intel_guc_setup(dev);
4980 if (ret)
4981 goto out;
4982
4983 /*
4984 * Increment the next seqno by 0x100 so we have a visible break
4985 * on re-initialisation
4986 */
4987 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4988
4989 out:
4990 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4991 return ret;
4992 }
4993
4994 int i915_gem_init(struct drm_device *dev)
4995 {
4996 struct drm_i915_private *dev_priv = dev->dev_private;
4997 int ret;
4998
4999 mutex_lock(&dev->struct_mutex);
5000
5001 if (!i915.enable_execlists) {
5002 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5003 dev_priv->gt.init_engines = i915_gem_init_engines;
5004 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5005 dev_priv->gt.stop_engine = intel_stop_engine;
5006 } else {
5007 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5008 dev_priv->gt.init_engines = intel_logical_rings_init;
5009 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5010 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5011 }
5012
5013 /* This is just a security blanket to placate dragons.
5014 * On some systems, we very sporadically observe that the first TLBs
5015 * used by the CS may be stale, despite us poking the TLB reset. If
5016 * we hold the forcewake during initialisation these problems
5017 * just magically go away.
5018 */
5019 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5020
5021 i915_gem_init_userptr(dev_priv);
5022 i915_gem_init_ggtt(dev);
5023
5024 ret = i915_gem_context_init(dev);
5025 if (ret)
5026 goto out_unlock;
5027
5028 ret = dev_priv->gt.init_engines(dev);
5029 if (ret)
5030 goto out_unlock;
5031
5032 ret = i915_gem_init_hw(dev);
5033 if (ret == -EIO) {
5034 /* Allow ring initialisation to fail by marking the GPU as
5035 * wedged. But we only want to do this where the GPU is angry,
5036 * for all other failure, such as an allocation failure, bail.
5037 */
5038 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5039 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5040 ret = 0;
5041 }
5042
5043 out_unlock:
5044 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5045 mutex_unlock(&dev->struct_mutex);
5046
5047 return ret;
5048 }
5049
5050 void
5051 i915_gem_cleanup_engines(struct drm_device *dev)
5052 {
5053 struct drm_i915_private *dev_priv = dev->dev_private;
5054 struct intel_engine_cs *engine;
5055
5056 for_each_engine(engine, dev_priv)
5057 dev_priv->gt.cleanup_engine(engine);
5058 }
5059
5060 static void
5061 init_engine_lists(struct intel_engine_cs *engine)
5062 {
5063 INIT_LIST_HEAD(&engine->active_list);
5064 INIT_LIST_HEAD(&engine->request_list);
5065 }
5066
5067 void
5068 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5069 {
5070 struct drm_device *dev = dev_priv->dev;
5071
5072 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5073 !IS_CHERRYVIEW(dev_priv))
5074 dev_priv->num_fence_regs = 32;
5075 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5076 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5077 dev_priv->num_fence_regs = 16;
5078 else
5079 dev_priv->num_fence_regs = 8;
5080
5081 if (intel_vgpu_active(dev_priv))
5082 dev_priv->num_fence_regs =
5083 I915_READ(vgtif_reg(avail_rs.fence_num));
5084
5085 /* Initialize fence registers to zero */
5086 i915_gem_restore_fences(dev);
5087
5088 i915_gem_detect_bit_6_swizzle(dev);
5089 }
5090
5091 void
5092 i915_gem_load_init(struct drm_device *dev)
5093 {
5094 struct drm_i915_private *dev_priv = dev->dev_private;
5095 int i;
5096
5097 dev_priv->objects =
5098 kmem_cache_create("i915_gem_object",
5099 sizeof(struct drm_i915_gem_object), 0,
5100 SLAB_HWCACHE_ALIGN,
5101 NULL);
5102 dev_priv->vmas =
5103 kmem_cache_create("i915_gem_vma",
5104 sizeof(struct i915_vma), 0,
5105 SLAB_HWCACHE_ALIGN,
5106 NULL);
5107 dev_priv->requests =
5108 kmem_cache_create("i915_gem_request",
5109 sizeof(struct drm_i915_gem_request), 0,
5110 SLAB_HWCACHE_ALIGN,
5111 NULL);
5112
5113 INIT_LIST_HEAD(&dev_priv->vm_list);
5114 INIT_LIST_HEAD(&dev_priv->context_list);
5115 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5116 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5117 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5118 for (i = 0; i < I915_NUM_ENGINES; i++)
5119 init_engine_lists(&dev_priv->engine[i]);
5120 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5121 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5122 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5123 i915_gem_retire_work_handler);
5124 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5125 i915_gem_idle_work_handler);
5126 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5127
5128 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5129
5130 /*
5131 * Set initial sequence number for requests.
5132 * Using this number allows the wraparound to happen early,
5133 * catching any obvious problems.
5134 */
5135 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5136 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5137
5138 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5139
5140 init_waitqueue_head(&dev_priv->pending_flip_queue);
5141
5142 dev_priv->mm.interruptible = true;
5143
5144 mutex_init(&dev_priv->fb_tracking.lock);
5145 }
5146
5147 void i915_gem_load_cleanup(struct drm_device *dev)
5148 {
5149 struct drm_i915_private *dev_priv = to_i915(dev);
5150
5151 kmem_cache_destroy(dev_priv->requests);
5152 kmem_cache_destroy(dev_priv->vmas);
5153 kmem_cache_destroy(dev_priv->objects);
5154 }
5155
5156 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5157 {
5158 struct drm_i915_gem_object *obj;
5159
5160 /* Called just before we write the hibernation image.
5161 *
5162 * We need to update the domain tracking to reflect that the CPU
5163 * will be accessing all the pages to create and restore from the
5164 * hibernation, and so upon restoration those pages will be in the
5165 * CPU domain.
5166 *
5167 * To make sure the hibernation image contains the latest state,
5168 * we update that state just before writing out the image.
5169 */
5170
5171 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5172 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5173 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5174 }
5175
5176 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5177 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5178 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5179 }
5180
5181 return 0;
5182 }
5183
5184 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5185 {
5186 struct drm_i915_file_private *file_priv = file->driver_priv;
5187
5188 /* Clean up our request list when the client is going away, so that
5189 * later retire_requests won't dereference our soon-to-be-gone
5190 * file_priv.
5191 */
5192 spin_lock(&file_priv->mm.lock);
5193 while (!list_empty(&file_priv->mm.request_list)) {
5194 struct drm_i915_gem_request *request;
5195
5196 request = list_first_entry(&file_priv->mm.request_list,
5197 struct drm_i915_gem_request,
5198 client_list);
5199 list_del(&request->client_list);
5200 request->file_priv = NULL;
5201 }
5202 spin_unlock(&file_priv->mm.lock);
5203
5204 if (!list_empty(&file_priv->rps.link)) {
5205 spin_lock(&to_i915(dev)->rps.client_lock);
5206 list_del(&file_priv->rps.link);
5207 spin_unlock(&to_i915(dev)->rps.client_lock);
5208 }
5209 }
5210
5211 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5212 {
5213 struct drm_i915_file_private *file_priv;
5214 int ret;
5215
5216 DRM_DEBUG_DRIVER("\n");
5217
5218 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5219 if (!file_priv)
5220 return -ENOMEM;
5221
5222 file->driver_priv = file_priv;
5223 file_priv->dev_priv = dev->dev_private;
5224 file_priv->file = file;
5225 INIT_LIST_HEAD(&file_priv->rps.link);
5226
5227 spin_lock_init(&file_priv->mm.lock);
5228 INIT_LIST_HEAD(&file_priv->mm.request_list);
5229
5230 file_priv->bsd_ring = -1;
5231
5232 ret = i915_gem_context_open(dev, file);
5233 if (ret)
5234 kfree(file_priv);
5235
5236 return ret;
5237 }
5238
5239 /**
5240 * i915_gem_track_fb - update frontbuffer tracking
5241 * @old: current GEM buffer for the frontbuffer slots
5242 * @new: new GEM buffer for the frontbuffer slots
5243 * @frontbuffer_bits: bitmask of frontbuffer slots
5244 *
5245 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5246 * from @old and setting them in @new. Both @old and @new can be NULL.
5247 */
5248 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5249 struct drm_i915_gem_object *new,
5250 unsigned frontbuffer_bits)
5251 {
5252 if (old) {
5253 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5254 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5255 old->frontbuffer_bits &= ~frontbuffer_bits;
5256 }
5257
5258 if (new) {
5259 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5260 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5261 new->frontbuffer_bits |= frontbuffer_bits;
5262 }
5263 }
5264
5265 /* All the new VM stuff */
5266 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5267 struct i915_address_space *vm)
5268 {
5269 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5270 struct i915_vma *vma;
5271
5272 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5273
5274 list_for_each_entry(vma, &o->vma_list, obj_link) {
5275 if (vma->is_ggtt &&
5276 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5277 continue;
5278 if (vma->vm == vm)
5279 return vma->node.start;
5280 }
5281
5282 WARN(1, "%s vma for this object not found.\n",
5283 i915_is_ggtt(vm) ? "global" : "ppgtt");
5284 return -1;
5285 }
5286
5287 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5288 const struct i915_ggtt_view *view)
5289 {
5290 struct i915_vma *vma;
5291
5292 list_for_each_entry(vma, &o->vma_list, obj_link)
5293 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5294 return vma->node.start;
5295
5296 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5297 return -1;
5298 }
5299
5300 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5301 struct i915_address_space *vm)
5302 {
5303 struct i915_vma *vma;
5304
5305 list_for_each_entry(vma, &o->vma_list, obj_link) {
5306 if (vma->is_ggtt &&
5307 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5308 continue;
5309 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5310 return true;
5311 }
5312
5313 return false;
5314 }
5315
5316 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5317 const struct i915_ggtt_view *view)
5318 {
5319 struct i915_vma *vma;
5320
5321 list_for_each_entry(vma, &o->vma_list, obj_link)
5322 if (vma->is_ggtt &&
5323 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5324 drm_mm_node_allocated(&vma->node))
5325 return true;
5326
5327 return false;
5328 }
5329
5330 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5331 {
5332 struct i915_vma *vma;
5333
5334 list_for_each_entry(vma, &o->vma_list, obj_link)
5335 if (drm_mm_node_allocated(&vma->node))
5336 return true;
5337
5338 return false;
5339 }
5340
5341 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5342 {
5343 struct i915_vma *vma;
5344
5345 GEM_BUG_ON(list_empty(&o->vma_list));
5346
5347 list_for_each_entry(vma, &o->vma_list, obj_link) {
5348 if (vma->is_ggtt &&
5349 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5350 return vma->node.size;
5351 }
5352
5353 return 0;
5354 }
5355
5356 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5357 {
5358 struct i915_vma *vma;
5359 list_for_each_entry(vma, &obj->vma_list, obj_link)
5360 if (vma->pin_count > 0)
5361 return true;
5362
5363 return false;
5364 }
5365
5366 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5367 struct page *
5368 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5369 {
5370 struct page *page;
5371
5372 /* Only default objects have per-page dirty tracking */
5373 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5374 return NULL;
5375
5376 page = i915_gem_object_get_page(obj, n);
5377 set_page_dirty(page);
5378 return page;
5379 }
5380
5381 /* Allocate a new GEM object and fill it with the supplied data */
5382 struct drm_i915_gem_object *
5383 i915_gem_object_create_from_data(struct drm_device *dev,
5384 const void *data, size_t size)
5385 {
5386 struct drm_i915_gem_object *obj;
5387 struct sg_table *sg;
5388 size_t bytes;
5389 int ret;
5390
5391 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5392 if (IS_ERR(obj))
5393 return obj;
5394
5395 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5396 if (ret)
5397 goto fail;
5398
5399 ret = i915_gem_object_get_pages(obj);
5400 if (ret)
5401 goto fail;
5402
5403 i915_gem_object_pin_pages(obj);
5404 sg = obj->pages;
5405 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5406 obj->dirty = 1; /* Backing store is now out of date */
5407 i915_gem_object_unpin_pages(obj);
5408
5409 if (WARN_ON(bytes != size)) {
5410 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5411 ret = -EFAULT;
5412 goto fail;
5413 }
5414
5415 return obj;
5416
5417 fail:
5418 drm_gem_object_unreference(&obj->base);
5419 return ERR_PTR(ret);
5420 }
This page took 0.310833 seconds and 4 git commands to generate.