51d4c1a0f54431e9986e1f710fbd1d828f0bfbfd
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (obj->pin_count)
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364 {
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417 {
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848 }
849
850 /**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858 {
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939 {
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954 }
955
956 /*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976 wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981 {
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016 {
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
1022 unsigned long timeout_expire;
1023 int ret;
1024
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1029
1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1038 }
1039
1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041 return -ENODEV;
1042
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
1045 getrawmonotonic(&before);
1046 for (;;) {
1047 struct timer_list timer;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 unsigned long expire;
1081
1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084 mod_timer(&timer, expire);
1085 }
1086
1087 io_schedule();
1088
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1092 }
1093 }
1094 getrawmonotonic(&now);
1095 trace_i915_gem_request_wait_end(ring, seqno);
1096
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143 {
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157 }
1158
1159 /**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166 {
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189 {
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229 {
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285 }
1286
1287 /**
1288 * Called when user space has done writes to this buffer
1289 */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316 }
1317
1318 /**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328 {
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 intel_runtime_pm_get(dev_priv);
1384
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
1392
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
1401 /* Now bind it into the GTT if needed */
1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1403 if (ret)
1404 goto unlock;
1405
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
1409
1410 ret = i915_gem_object_get_fence(obj);
1411 if (ret)
1412 goto unpin;
1413
1414 obj->fault_mappable = true;
1415
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423 i915_gem_object_unpin(obj);
1424 unlock:
1425 mutex_unlock(&dev->struct_mutex);
1426 out:
1427 switch (ret) {
1428 case -EIO:
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
1436 case -EAGAIN:
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
1441 */
1442 case 0:
1443 case -ERESTARTSYS:
1444 case -EINTR:
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
1450 ret = VM_FAULT_NOPAGE;
1451 break;
1452 case -ENOMEM:
1453 ret = VM_FAULT_OOM;
1454 break;
1455 case -ENOSPC:
1456 ret = VM_FAULT_SIGBUS;
1457 break;
1458 default:
1459 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460 ret = VM_FAULT_SIGBUS;
1461 break;
1462 }
1463
1464 intel_runtime_pm_put(dev_priv);
1465 return ret;
1466 }
1467
1468 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469 {
1470 struct i915_vma *vma;
1471
1472 /*
1473 * Only the global gtt is relevant for gtt memory mappings, so restrict
1474 * list traversal to objects bound into the global address space. Note
1475 * that the active list should be empty, but better safe than sorry.
1476 */
1477 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479 i915_gem_release_mmap(vma->obj);
1480 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481 i915_gem_release_mmap(vma->obj);
1482 }
1483
1484 /**
1485 * i915_gem_release_mmap - remove physical page mappings
1486 * @obj: obj in question
1487 *
1488 * Preserve the reservation of the mmapping with the DRM core code, but
1489 * relinquish ownership of the pages back to the system.
1490 *
1491 * It is vital that we remove the page mapping if we have mapped a tiled
1492 * object through the GTT and then lose the fence register due to
1493 * resource pressure. Similarly if the object has been moved out of the
1494 * aperture, than pages mapped into userspace must be revoked. Removing the
1495 * mapping will then trigger a page fault on the next user access, allowing
1496 * fixup by i915_gem_fault().
1497 */
1498 void
1499 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1500 {
1501 if (!obj->fault_mappable)
1502 return;
1503
1504 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1505 obj->fault_mappable = false;
1506 }
1507
1508 uint32_t
1509 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1510 {
1511 uint32_t gtt_size;
1512
1513 if (INTEL_INFO(dev)->gen >= 4 ||
1514 tiling_mode == I915_TILING_NONE)
1515 return size;
1516
1517 /* Previous chips need a power-of-two fence region when tiling */
1518 if (INTEL_INFO(dev)->gen == 3)
1519 gtt_size = 1024*1024;
1520 else
1521 gtt_size = 512*1024;
1522
1523 while (gtt_size < size)
1524 gtt_size <<= 1;
1525
1526 return gtt_size;
1527 }
1528
1529 /**
1530 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531 * @obj: object to check
1532 *
1533 * Return the required GTT alignment for an object, taking into account
1534 * potential fence register mapping.
1535 */
1536 uint32_t
1537 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538 int tiling_mode, bool fenced)
1539 {
1540 /*
1541 * Minimum alignment is 4k (GTT page size), but might be greater
1542 * if a fence register is needed for the object.
1543 */
1544 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1545 tiling_mode == I915_TILING_NONE)
1546 return 4096;
1547
1548 /*
1549 * Previous chips need to be aligned to the size of the smallest
1550 * fence register that can contain the object.
1551 */
1552 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1553 }
1554
1555 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556 {
1557 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558 int ret;
1559
1560 if (drm_vma_node_has_offset(&obj->base.vma_node))
1561 return 0;
1562
1563 dev_priv->mm.shrinker_no_lock_stealing = true;
1564
1565 ret = drm_gem_create_mmap_offset(&obj->base);
1566 if (ret != -ENOSPC)
1567 goto out;
1568
1569 /* Badly fragmented mmap space? The only way we can recover
1570 * space is by destroying unwanted objects. We can't randomly release
1571 * mmap_offsets as userspace expects them to be persistent for the
1572 * lifetime of the objects. The closest we can is to release the
1573 * offsets on purgeable objects by truncating it and marking it purged,
1574 * which prevents userspace from ever using that object again.
1575 */
1576 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577 ret = drm_gem_create_mmap_offset(&obj->base);
1578 if (ret != -ENOSPC)
1579 goto out;
1580
1581 i915_gem_shrink_all(dev_priv);
1582 ret = drm_gem_create_mmap_offset(&obj->base);
1583 out:
1584 dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586 return ret;
1587 }
1588
1589 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590 {
1591 drm_gem_free_mmap_offset(&obj->base);
1592 }
1593
1594 int
1595 i915_gem_mmap_gtt(struct drm_file *file,
1596 struct drm_device *dev,
1597 uint32_t handle,
1598 uint64_t *offset)
1599 {
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 struct drm_i915_gem_object *obj;
1602 int ret;
1603
1604 ret = i915_mutex_lock_interruptible(dev);
1605 if (ret)
1606 return ret;
1607
1608 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1609 if (&obj->base == NULL) {
1610 ret = -ENOENT;
1611 goto unlock;
1612 }
1613
1614 if (obj->base.size > dev_priv->gtt.mappable_end) {
1615 ret = -E2BIG;
1616 goto out;
1617 }
1618
1619 if (obj->madv != I915_MADV_WILLNEED) {
1620 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1621 ret = -EINVAL;
1622 goto out;
1623 }
1624
1625 ret = i915_gem_object_create_mmap_offset(obj);
1626 if (ret)
1627 goto out;
1628
1629 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1630
1631 out:
1632 drm_gem_object_unreference(&obj->base);
1633 unlock:
1634 mutex_unlock(&dev->struct_mutex);
1635 return ret;
1636 }
1637
1638 /**
1639 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640 * @dev: DRM device
1641 * @data: GTT mapping ioctl data
1642 * @file: GEM object info
1643 *
1644 * Simply returns the fake offset to userspace so it can mmap it.
1645 * The mmap call will end up in drm_gem_mmap(), which will set things
1646 * up so we can get faults in the handler above.
1647 *
1648 * The fault handler will take care of binding the object into the GTT
1649 * (since it may have been evicted to make room for something), allocating
1650 * a fence register, and mapping the appropriate aperture address into
1651 * userspace.
1652 */
1653 int
1654 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655 struct drm_file *file)
1656 {
1657 struct drm_i915_gem_mmap_gtt *args = data;
1658
1659 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660 }
1661
1662 /* Immediately discard the backing storage */
1663 static void
1664 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1665 {
1666 struct inode *inode;
1667
1668 i915_gem_object_free_mmap_offset(obj);
1669
1670 if (obj->base.filp == NULL)
1671 return;
1672
1673 /* Our goal here is to return as much of the memory as
1674 * is possible back to the system as we are called from OOM.
1675 * To do this we must instruct the shmfs to drop all of its
1676 * backing pages, *now*.
1677 */
1678 inode = file_inode(obj->base.filp);
1679 shmem_truncate_range(inode, 0, (loff_t)-1);
1680
1681 obj->madv = __I915_MADV_PURGED;
1682 }
1683
1684 static inline int
1685 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686 {
1687 return obj->madv == I915_MADV_DONTNEED;
1688 }
1689
1690 static void
1691 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1692 {
1693 struct sg_page_iter sg_iter;
1694 int ret;
1695
1696 BUG_ON(obj->madv == __I915_MADV_PURGED);
1697
1698 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699 if (ret) {
1700 /* In the event of a disaster, abandon all caches and
1701 * hope for the best.
1702 */
1703 WARN_ON(ret != -EIO);
1704 i915_gem_clflush_object(obj, true);
1705 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706 }
1707
1708 if (i915_gem_object_needs_bit17_swizzle(obj))
1709 i915_gem_object_save_bit_17_swizzle(obj);
1710
1711 if (obj->madv == I915_MADV_DONTNEED)
1712 obj->dirty = 0;
1713
1714 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1715 struct page *page = sg_page_iter_page(&sg_iter);
1716
1717 if (obj->dirty)
1718 set_page_dirty(page);
1719
1720 if (obj->madv == I915_MADV_WILLNEED)
1721 mark_page_accessed(page);
1722
1723 page_cache_release(page);
1724 }
1725 obj->dirty = 0;
1726
1727 sg_free_table(obj->pages);
1728 kfree(obj->pages);
1729 }
1730
1731 int
1732 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733 {
1734 const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
1736 if (obj->pages == NULL)
1737 return 0;
1738
1739 if (obj->pages_pin_count)
1740 return -EBUSY;
1741
1742 BUG_ON(i915_gem_obj_bound_any(obj));
1743
1744 /* ->put_pages might need to allocate memory for the bit17 swizzle
1745 * array, hence protect them from being reaped by removing them from gtt
1746 * lists early. */
1747 list_del(&obj->global_list);
1748
1749 ops->put_pages(obj);
1750 obj->pages = NULL;
1751
1752 if (i915_gem_object_is_purgeable(obj))
1753 i915_gem_object_truncate(obj);
1754
1755 return 0;
1756 }
1757
1758 static unsigned long
1759 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760 bool purgeable_only)
1761 {
1762 struct list_head still_bound_list;
1763 struct drm_i915_gem_object *obj, *next;
1764 unsigned long count = 0;
1765
1766 list_for_each_entry_safe(obj, next,
1767 &dev_priv->mm.unbound_list,
1768 global_list) {
1769 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1770 i915_gem_object_put_pages(obj) == 0) {
1771 count += obj->base.size >> PAGE_SHIFT;
1772 if (count >= target)
1773 return count;
1774 }
1775 }
1776
1777 /*
1778 * As we may completely rewrite the bound list whilst unbinding
1779 * (due to retiring requests) we have to strictly process only
1780 * one element of the list at the time, and recheck the list
1781 * on every iteration.
1782 */
1783 INIT_LIST_HEAD(&still_bound_list);
1784 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1785 struct i915_vma *vma, *v;
1786
1787 obj = list_first_entry(&dev_priv->mm.bound_list,
1788 typeof(*obj), global_list);
1789 list_move_tail(&obj->global_list, &still_bound_list);
1790
1791 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792 continue;
1793
1794 /*
1795 * Hold a reference whilst we unbind this object, as we may
1796 * end up waiting for and retiring requests. This might
1797 * release the final reference (held by the active list)
1798 * and result in the object being freed from under us.
1799 * in this object being freed.
1800 *
1801 * Note 1: Shrinking the bound list is special since only active
1802 * (and hence bound objects) can contain such limbo objects, so
1803 * we don't need special tricks for shrinking the unbound list.
1804 * The only other place where we have to be careful with active
1805 * objects suddenly disappearing due to retiring requests is the
1806 * eviction code.
1807 *
1808 * Note 2: Even though the bound list doesn't hold a reference
1809 * to the object we can safely grab one here: The final object
1810 * unreferencing and the bound_list are both protected by the
1811 * dev->struct_mutex and so we won't ever be able to observe an
1812 * object on the bound_list with a reference count equals 0.
1813 */
1814 drm_gem_object_reference(&obj->base);
1815
1816 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817 if (i915_vma_unbind(vma))
1818 break;
1819
1820 if (i915_gem_object_put_pages(obj) == 0)
1821 count += obj->base.size >> PAGE_SHIFT;
1822
1823 drm_gem_object_unreference(&obj->base);
1824 }
1825 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1826
1827 return count;
1828 }
1829
1830 static unsigned long
1831 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832 {
1833 return __i915_gem_shrink(dev_priv, target, true);
1834 }
1835
1836 static unsigned long
1837 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838 {
1839 struct drm_i915_gem_object *obj, *next;
1840 long freed = 0;
1841
1842 i915_gem_evict_everything(dev_priv->dev);
1843
1844 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1845 global_list) {
1846 if (i915_gem_object_put_pages(obj) == 0)
1847 freed += obj->base.size >> PAGE_SHIFT;
1848 }
1849 return freed;
1850 }
1851
1852 static int
1853 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1854 {
1855 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1856 int page_count, i;
1857 struct address_space *mapping;
1858 struct sg_table *st;
1859 struct scatterlist *sg;
1860 struct sg_page_iter sg_iter;
1861 struct page *page;
1862 unsigned long last_pfn = 0; /* suppress gcc warning */
1863 gfp_t gfp;
1864
1865 /* Assert that the object is not currently in any GPU domain. As it
1866 * wasn't in the GTT, there shouldn't be any way it could have been in
1867 * a GPU cache
1868 */
1869 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
1872 st = kmalloc(sizeof(*st), GFP_KERNEL);
1873 if (st == NULL)
1874 return -ENOMEM;
1875
1876 page_count = obj->base.size / PAGE_SIZE;
1877 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1878 kfree(st);
1879 return -ENOMEM;
1880 }
1881
1882 /* Get the list of pages out of our struct file. They'll be pinned
1883 * at this point until we release them.
1884 *
1885 * Fail silently without starting the shrinker
1886 */
1887 mapping = file_inode(obj->base.filp)->i_mapping;
1888 gfp = mapping_gfp_mask(mapping);
1889 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1890 gfp &= ~(__GFP_IO | __GFP_WAIT);
1891 sg = st->sgl;
1892 st->nents = 0;
1893 for (i = 0; i < page_count; i++) {
1894 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895 if (IS_ERR(page)) {
1896 i915_gem_purge(dev_priv, page_count);
1897 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898 }
1899 if (IS_ERR(page)) {
1900 /* We've tried hard to allocate the memory by reaping
1901 * our own buffer, now let the real VM do its job and
1902 * go down in flames if truly OOM.
1903 */
1904 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1905 gfp |= __GFP_IO | __GFP_WAIT;
1906
1907 i915_gem_shrink_all(dev_priv);
1908 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909 if (IS_ERR(page))
1910 goto err_pages;
1911
1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
1914 }
1915 #ifdef CONFIG_SWIOTLB
1916 if (swiotlb_nr_tbl()) {
1917 st->nents++;
1918 sg_set_page(sg, page, PAGE_SIZE, 0);
1919 sg = sg_next(sg);
1920 continue;
1921 }
1922 #endif
1923 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924 if (i)
1925 sg = sg_next(sg);
1926 st->nents++;
1927 sg_set_page(sg, page, PAGE_SIZE, 0);
1928 } else {
1929 sg->length += PAGE_SIZE;
1930 }
1931 last_pfn = page_to_pfn(page);
1932
1933 /* Check that the i965g/gm workaround works. */
1934 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1935 }
1936 #ifdef CONFIG_SWIOTLB
1937 if (!swiotlb_nr_tbl())
1938 #endif
1939 sg_mark_end(sg);
1940 obj->pages = st;
1941
1942 if (i915_gem_object_needs_bit17_swizzle(obj))
1943 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945 return 0;
1946
1947 err_pages:
1948 sg_mark_end(sg);
1949 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1950 page_cache_release(sg_page_iter_page(&sg_iter));
1951 sg_free_table(st);
1952 kfree(st);
1953 return PTR_ERR(page);
1954 }
1955
1956 /* Ensure that the associated pages are gathered from the backing storage
1957 * and pinned into our object. i915_gem_object_get_pages() may be called
1958 * multiple times before they are released by a single call to
1959 * i915_gem_object_put_pages() - once the pages are no longer referenced
1960 * either as a result of memory pressure (reaping pages under the shrinker)
1961 * or as the object is itself released.
1962 */
1963 int
1964 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965 {
1966 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967 const struct drm_i915_gem_object_ops *ops = obj->ops;
1968 int ret;
1969
1970 if (obj->pages)
1971 return 0;
1972
1973 if (obj->madv != I915_MADV_WILLNEED) {
1974 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975 return -EINVAL;
1976 }
1977
1978 BUG_ON(obj->pages_pin_count);
1979
1980 ret = ops->get_pages(obj);
1981 if (ret)
1982 return ret;
1983
1984 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1985 return 0;
1986 }
1987
1988 static void
1989 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1990 struct intel_ring_buffer *ring)
1991 {
1992 struct drm_device *dev = obj->base.dev;
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994 u32 seqno = intel_ring_get_seqno(ring);
1995
1996 BUG_ON(ring == NULL);
1997 if (obj->ring != ring && obj->last_write_seqno) {
1998 /* Keep the seqno relative to the current ring */
1999 obj->last_write_seqno = seqno;
2000 }
2001 obj->ring = ring;
2002
2003 /* Add a reference if we're newly entering the active list. */
2004 if (!obj->active) {
2005 drm_gem_object_reference(&obj->base);
2006 obj->active = 1;
2007 }
2008
2009 list_move_tail(&obj->ring_list, &ring->active_list);
2010
2011 obj->last_read_seqno = seqno;
2012
2013 if (obj->fenced_gpu_access) {
2014 obj->last_fenced_seqno = seqno;
2015
2016 /* Bump MRU to take account of the delayed flush */
2017 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018 struct drm_i915_fence_reg *reg;
2019
2020 reg = &dev_priv->fence_regs[obj->fence_reg];
2021 list_move_tail(&reg->lru_list,
2022 &dev_priv->mm.fence_list);
2023 }
2024 }
2025 }
2026
2027 void i915_vma_move_to_active(struct i915_vma *vma,
2028 struct intel_ring_buffer *ring)
2029 {
2030 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031 return i915_gem_object_move_to_active(vma->obj, ring);
2032 }
2033
2034 static void
2035 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2039 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2040
2041 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2042 BUG_ON(!obj->active);
2043
2044 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2045
2046 list_del_init(&obj->ring_list);
2047 obj->ring = NULL;
2048
2049 obj->last_read_seqno = 0;
2050 obj->last_write_seqno = 0;
2051 obj->base.write_domain = 0;
2052
2053 obj->last_fenced_seqno = 0;
2054 obj->fenced_gpu_access = false;
2055
2056 obj->active = 0;
2057 drm_gem_object_unreference(&obj->base);
2058
2059 WARN_ON(i915_verify_lists(dev));
2060 }
2061
2062 static int
2063 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2064 {
2065 struct drm_i915_private *dev_priv = dev->dev_private;
2066 struct intel_ring_buffer *ring;
2067 int ret, i, j;
2068
2069 /* Carefully retire all requests without writing to the rings */
2070 for_each_ring(ring, dev_priv, i) {
2071 ret = intel_ring_idle(ring);
2072 if (ret)
2073 return ret;
2074 }
2075 i915_gem_retire_requests(dev);
2076
2077 /* Finally reset hw state */
2078 for_each_ring(ring, dev_priv, i) {
2079 intel_ring_init_seqno(ring, seqno);
2080
2081 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2082 ring->sync_seqno[j] = 0;
2083 }
2084
2085 return 0;
2086 }
2087
2088 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2089 {
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091 int ret;
2092
2093 if (seqno == 0)
2094 return -EINVAL;
2095
2096 /* HWS page needs to be set less than what we
2097 * will inject to ring
2098 */
2099 ret = i915_gem_init_seqno(dev, seqno - 1);
2100 if (ret)
2101 return ret;
2102
2103 /* Carefully set the last_seqno value so that wrap
2104 * detection still works
2105 */
2106 dev_priv->next_seqno = seqno;
2107 dev_priv->last_seqno = seqno - 1;
2108 if (dev_priv->last_seqno == 0)
2109 dev_priv->last_seqno--;
2110
2111 return 0;
2112 }
2113
2114 int
2115 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2116 {
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119 /* reserve 0 for non-seqno */
2120 if (dev_priv->next_seqno == 0) {
2121 int ret = i915_gem_init_seqno(dev, 0);
2122 if (ret)
2123 return ret;
2124
2125 dev_priv->next_seqno = 1;
2126 }
2127
2128 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2129 return 0;
2130 }
2131
2132 int __i915_add_request(struct intel_ring_buffer *ring,
2133 struct drm_file *file,
2134 struct drm_i915_gem_object *obj,
2135 u32 *out_seqno)
2136 {
2137 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2138 struct drm_i915_gem_request *request;
2139 u32 request_ring_position, request_start;
2140 int was_empty;
2141 int ret;
2142
2143 request_start = intel_ring_get_tail(ring);
2144 /*
2145 * Emit any outstanding flushes - execbuf can fail to emit the flush
2146 * after having emitted the batchbuffer command. Hence we need to fix
2147 * things up similar to emitting the lazy request. The difference here
2148 * is that the flush _must_ happen before the next request, no matter
2149 * what.
2150 */
2151 ret = intel_ring_flush_all_caches(ring);
2152 if (ret)
2153 return ret;
2154
2155 request = ring->preallocated_lazy_request;
2156 if (WARN_ON(request == NULL))
2157 return -ENOMEM;
2158
2159 /* Record the position of the start of the request so that
2160 * should we detect the updated seqno part-way through the
2161 * GPU processing the request, we never over-estimate the
2162 * position of the head.
2163 */
2164 request_ring_position = intel_ring_get_tail(ring);
2165
2166 ret = ring->add_request(ring);
2167 if (ret)
2168 return ret;
2169
2170 request->seqno = intel_ring_get_seqno(ring);
2171 request->ring = ring;
2172 request->head = request_start;
2173 request->tail = request_ring_position;
2174
2175 /* Whilst this request exists, batch_obj will be on the
2176 * active_list, and so will hold the active reference. Only when this
2177 * request is retired will the the batch_obj be moved onto the
2178 * inactive_list and lose its active reference. Hence we do not need
2179 * to explicitly hold another reference here.
2180 */
2181 request->batch_obj = obj;
2182
2183 /* Hold a reference to the current context so that we can inspect
2184 * it later in case a hangcheck error event fires.
2185 */
2186 request->ctx = ring->last_context;
2187 if (request->ctx)
2188 i915_gem_context_reference(request->ctx);
2189
2190 request->emitted_jiffies = jiffies;
2191 was_empty = list_empty(&ring->request_list);
2192 list_add_tail(&request->list, &ring->request_list);
2193 request->file_priv = NULL;
2194
2195 if (file) {
2196 struct drm_i915_file_private *file_priv = file->driver_priv;
2197
2198 spin_lock(&file_priv->mm.lock);
2199 request->file_priv = file_priv;
2200 list_add_tail(&request->client_list,
2201 &file_priv->mm.request_list);
2202 spin_unlock(&file_priv->mm.lock);
2203 }
2204
2205 trace_i915_gem_request_add(ring, request->seqno);
2206 ring->outstanding_lazy_seqno = 0;
2207 ring->preallocated_lazy_request = NULL;
2208
2209 if (!dev_priv->ums.mm_suspended) {
2210 i915_queue_hangcheck(ring->dev);
2211
2212 if (was_empty) {
2213 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2214 queue_delayed_work(dev_priv->wq,
2215 &dev_priv->mm.retire_work,
2216 round_jiffies_up_relative(HZ));
2217 intel_mark_busy(dev_priv->dev);
2218 }
2219 }
2220
2221 if (out_seqno)
2222 *out_seqno = request->seqno;
2223 return 0;
2224 }
2225
2226 static inline void
2227 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2228 {
2229 struct drm_i915_file_private *file_priv = request->file_priv;
2230
2231 if (!file_priv)
2232 return;
2233
2234 spin_lock(&file_priv->mm.lock);
2235 list_del(&request->client_list);
2236 request->file_priv = NULL;
2237 spin_unlock(&file_priv->mm.lock);
2238 }
2239
2240 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2241 struct i915_address_space *vm)
2242 {
2243 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2244 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2245 return true;
2246
2247 return false;
2248 }
2249
2250 static bool i915_head_inside_request(const u32 acthd_unmasked,
2251 const u32 request_start,
2252 const u32 request_end)
2253 {
2254 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2255
2256 if (request_start < request_end) {
2257 if (acthd >= request_start && acthd < request_end)
2258 return true;
2259 } else if (request_start > request_end) {
2260 if (acthd >= request_start || acthd < request_end)
2261 return true;
2262 }
2263
2264 return false;
2265 }
2266
2267 static struct i915_address_space *
2268 request_to_vm(struct drm_i915_gem_request *request)
2269 {
2270 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2271 struct i915_address_space *vm;
2272
2273 vm = &dev_priv->gtt.base;
2274
2275 return vm;
2276 }
2277
2278 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2279 const u32 acthd, bool *inside)
2280 {
2281 /* There is a possibility that unmasked head address
2282 * pointing inside the ring, matches the batch_obj address range.
2283 * However this is extremely unlikely.
2284 */
2285 if (request->batch_obj) {
2286 if (i915_head_inside_object(acthd, request->batch_obj,
2287 request_to_vm(request))) {
2288 *inside = true;
2289 return true;
2290 }
2291 }
2292
2293 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2294 *inside = false;
2295 return true;
2296 }
2297
2298 return false;
2299 }
2300
2301 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2302 {
2303 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2304
2305 if (hs->banned)
2306 return true;
2307
2308 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2309 DRM_ERROR("context hanging too fast, declaring banned!\n");
2310 return true;
2311 }
2312
2313 return false;
2314 }
2315
2316 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2317 struct drm_i915_gem_request *request,
2318 u32 acthd)
2319 {
2320 struct i915_ctx_hang_stats *hs = NULL;
2321 bool inside, guilty;
2322 unsigned long offset = 0;
2323
2324 /* Innocent until proven guilty */
2325 guilty = false;
2326
2327 if (request->batch_obj)
2328 offset = i915_gem_obj_offset(request->batch_obj,
2329 request_to_vm(request));
2330
2331 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2332 i915_request_guilty(request, acthd, &inside)) {
2333 DRM_DEBUG("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2334 ring->name,
2335 inside ? "inside" : "flushing",
2336 offset,
2337 request->ctx ? request->ctx->id : 0,
2338 acthd);
2339
2340 guilty = true;
2341 }
2342
2343 /* If contexts are disabled or this is the default context, use
2344 * file_priv->reset_state
2345 */
2346 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2347 hs = &request->ctx->hang_stats;
2348 else if (request->file_priv)
2349 hs = &request->file_priv->hang_stats;
2350
2351 if (hs) {
2352 if (guilty) {
2353 hs->banned = i915_context_is_banned(hs);
2354 hs->batch_active++;
2355 hs->guilty_ts = get_seconds();
2356 } else {
2357 hs->batch_pending++;
2358 }
2359 }
2360 }
2361
2362 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2363 {
2364 list_del(&request->list);
2365 i915_gem_request_remove_from_client(request);
2366
2367 if (request->ctx)
2368 i915_gem_context_unreference(request->ctx);
2369
2370 kfree(request);
2371 }
2372
2373 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2374 struct intel_ring_buffer *ring)
2375 {
2376 u32 completed_seqno = ring->get_seqno(ring, false);
2377 u32 acthd = intel_ring_get_active_head(ring);
2378 struct drm_i915_gem_request *request;
2379
2380 list_for_each_entry(request, &ring->request_list, list) {
2381 if (i915_seqno_passed(completed_seqno, request->seqno))
2382 continue;
2383
2384 i915_set_reset_status(ring, request, acthd);
2385 }
2386 }
2387
2388 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2389 struct intel_ring_buffer *ring)
2390 {
2391 while (!list_empty(&ring->request_list)) {
2392 struct drm_i915_gem_request *request;
2393
2394 request = list_first_entry(&ring->request_list,
2395 struct drm_i915_gem_request,
2396 list);
2397
2398 i915_gem_free_request(request);
2399 }
2400
2401 while (!list_empty(&ring->active_list)) {
2402 struct drm_i915_gem_object *obj;
2403
2404 obj = list_first_entry(&ring->active_list,
2405 struct drm_i915_gem_object,
2406 ring_list);
2407
2408 i915_gem_object_move_to_inactive(obj);
2409 }
2410 }
2411
2412 void i915_gem_restore_fences(struct drm_device *dev)
2413 {
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 int i;
2416
2417 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2418 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2419
2420 /*
2421 * Commit delayed tiling changes if we have an object still
2422 * attached to the fence, otherwise just clear the fence.
2423 */
2424 if (reg->obj) {
2425 i915_gem_object_update_fence(reg->obj, reg,
2426 reg->obj->tiling_mode);
2427 } else {
2428 i915_gem_write_fence(dev, i, NULL);
2429 }
2430 }
2431 }
2432
2433 void i915_gem_reset(struct drm_device *dev)
2434 {
2435 struct drm_i915_private *dev_priv = dev->dev_private;
2436 struct intel_ring_buffer *ring;
2437 int i;
2438
2439 /*
2440 * Before we free the objects from the requests, we need to inspect
2441 * them for finding the guilty party. As the requests only borrow
2442 * their reference to the objects, the inspection must be done first.
2443 */
2444 for_each_ring(ring, dev_priv, i)
2445 i915_gem_reset_ring_status(dev_priv, ring);
2446
2447 for_each_ring(ring, dev_priv, i)
2448 i915_gem_reset_ring_cleanup(dev_priv, ring);
2449
2450 i915_gem_cleanup_ringbuffer(dev);
2451
2452 i915_gem_restore_fences(dev);
2453 }
2454
2455 /**
2456 * This function clears the request list as sequence numbers are passed.
2457 */
2458 void
2459 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2460 {
2461 uint32_t seqno;
2462
2463 if (list_empty(&ring->request_list))
2464 return;
2465
2466 WARN_ON(i915_verify_lists(ring->dev));
2467
2468 seqno = ring->get_seqno(ring, true);
2469
2470 while (!list_empty(&ring->request_list)) {
2471 struct drm_i915_gem_request *request;
2472
2473 request = list_first_entry(&ring->request_list,
2474 struct drm_i915_gem_request,
2475 list);
2476
2477 if (!i915_seqno_passed(seqno, request->seqno))
2478 break;
2479
2480 trace_i915_gem_request_retire(ring, request->seqno);
2481 /* We know the GPU must have read the request to have
2482 * sent us the seqno + interrupt, so use the position
2483 * of tail of the request to update the last known position
2484 * of the GPU head.
2485 */
2486 ring->last_retired_head = request->tail;
2487
2488 i915_gem_free_request(request);
2489 }
2490
2491 /* Move any buffers on the active list that are no longer referenced
2492 * by the ringbuffer to the flushing/inactive lists as appropriate.
2493 */
2494 while (!list_empty(&ring->active_list)) {
2495 struct drm_i915_gem_object *obj;
2496
2497 obj = list_first_entry(&ring->active_list,
2498 struct drm_i915_gem_object,
2499 ring_list);
2500
2501 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2502 break;
2503
2504 i915_gem_object_move_to_inactive(obj);
2505 }
2506
2507 if (unlikely(ring->trace_irq_seqno &&
2508 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2509 ring->irq_put(ring);
2510 ring->trace_irq_seqno = 0;
2511 }
2512
2513 WARN_ON(i915_verify_lists(ring->dev));
2514 }
2515
2516 bool
2517 i915_gem_retire_requests(struct drm_device *dev)
2518 {
2519 drm_i915_private_t *dev_priv = dev->dev_private;
2520 struct intel_ring_buffer *ring;
2521 bool idle = true;
2522 int i;
2523
2524 for_each_ring(ring, dev_priv, i) {
2525 i915_gem_retire_requests_ring(ring);
2526 idle &= list_empty(&ring->request_list);
2527 }
2528
2529 if (idle)
2530 mod_delayed_work(dev_priv->wq,
2531 &dev_priv->mm.idle_work,
2532 msecs_to_jiffies(100));
2533
2534 return idle;
2535 }
2536
2537 static void
2538 i915_gem_retire_work_handler(struct work_struct *work)
2539 {
2540 struct drm_i915_private *dev_priv =
2541 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2542 struct drm_device *dev = dev_priv->dev;
2543 bool idle;
2544
2545 /* Come back later if the device is busy... */
2546 idle = false;
2547 if (mutex_trylock(&dev->struct_mutex)) {
2548 idle = i915_gem_retire_requests(dev);
2549 mutex_unlock(&dev->struct_mutex);
2550 }
2551 if (!idle)
2552 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2553 round_jiffies_up_relative(HZ));
2554 }
2555
2556 static void
2557 i915_gem_idle_work_handler(struct work_struct *work)
2558 {
2559 struct drm_i915_private *dev_priv =
2560 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2561
2562 intel_mark_idle(dev_priv->dev);
2563 }
2564
2565 /**
2566 * Ensures that an object will eventually get non-busy by flushing any required
2567 * write domains, emitting any outstanding lazy request and retiring and
2568 * completed requests.
2569 */
2570 static int
2571 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2572 {
2573 int ret;
2574
2575 if (obj->active) {
2576 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2577 if (ret)
2578 return ret;
2579
2580 i915_gem_retire_requests_ring(obj->ring);
2581 }
2582
2583 return 0;
2584 }
2585
2586 /**
2587 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2588 * @DRM_IOCTL_ARGS: standard ioctl arguments
2589 *
2590 * Returns 0 if successful, else an error is returned with the remaining time in
2591 * the timeout parameter.
2592 * -ETIME: object is still busy after timeout
2593 * -ERESTARTSYS: signal interrupted the wait
2594 * -ENONENT: object doesn't exist
2595 * Also possible, but rare:
2596 * -EAGAIN: GPU wedged
2597 * -ENOMEM: damn
2598 * -ENODEV: Internal IRQ fail
2599 * -E?: The add request failed
2600 *
2601 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2602 * non-zero timeout parameter the wait ioctl will wait for the given number of
2603 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2604 * without holding struct_mutex the object may become re-busied before this
2605 * function completes. A similar but shorter * race condition exists in the busy
2606 * ioctl
2607 */
2608 int
2609 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2610 {
2611 drm_i915_private_t *dev_priv = dev->dev_private;
2612 struct drm_i915_gem_wait *args = data;
2613 struct drm_i915_gem_object *obj;
2614 struct intel_ring_buffer *ring = NULL;
2615 struct timespec timeout_stack, *timeout = NULL;
2616 unsigned reset_counter;
2617 u32 seqno = 0;
2618 int ret = 0;
2619
2620 if (args->timeout_ns >= 0) {
2621 timeout_stack = ns_to_timespec(args->timeout_ns);
2622 timeout = &timeout_stack;
2623 }
2624
2625 ret = i915_mutex_lock_interruptible(dev);
2626 if (ret)
2627 return ret;
2628
2629 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2630 if (&obj->base == NULL) {
2631 mutex_unlock(&dev->struct_mutex);
2632 return -ENOENT;
2633 }
2634
2635 /* Need to make sure the object gets inactive eventually. */
2636 ret = i915_gem_object_flush_active(obj);
2637 if (ret)
2638 goto out;
2639
2640 if (obj->active) {
2641 seqno = obj->last_read_seqno;
2642 ring = obj->ring;
2643 }
2644
2645 if (seqno == 0)
2646 goto out;
2647
2648 /* Do this after OLR check to make sure we make forward progress polling
2649 * on this IOCTL with a 0 timeout (like busy ioctl)
2650 */
2651 if (!args->timeout_ns) {
2652 ret = -ETIME;
2653 goto out;
2654 }
2655
2656 drm_gem_object_unreference(&obj->base);
2657 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2658 mutex_unlock(&dev->struct_mutex);
2659
2660 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2661 if (timeout)
2662 args->timeout_ns = timespec_to_ns(timeout);
2663 return ret;
2664
2665 out:
2666 drm_gem_object_unreference(&obj->base);
2667 mutex_unlock(&dev->struct_mutex);
2668 return ret;
2669 }
2670
2671 /**
2672 * i915_gem_object_sync - sync an object to a ring.
2673 *
2674 * @obj: object which may be in use on another ring.
2675 * @to: ring we wish to use the object on. May be NULL.
2676 *
2677 * This code is meant to abstract object synchronization with the GPU.
2678 * Calling with NULL implies synchronizing the object with the CPU
2679 * rather than a particular GPU ring.
2680 *
2681 * Returns 0 if successful, else propagates up the lower layer error.
2682 */
2683 int
2684 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2685 struct intel_ring_buffer *to)
2686 {
2687 struct intel_ring_buffer *from = obj->ring;
2688 u32 seqno;
2689 int ret, idx;
2690
2691 if (from == NULL || to == from)
2692 return 0;
2693
2694 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2695 return i915_gem_object_wait_rendering(obj, false);
2696
2697 idx = intel_ring_sync_index(from, to);
2698
2699 seqno = obj->last_read_seqno;
2700 if (seqno <= from->sync_seqno[idx])
2701 return 0;
2702
2703 ret = i915_gem_check_olr(obj->ring, seqno);
2704 if (ret)
2705 return ret;
2706
2707 trace_i915_gem_ring_sync_to(from, to, seqno);
2708 ret = to->sync_to(to, from, seqno);
2709 if (!ret)
2710 /* We use last_read_seqno because sync_to()
2711 * might have just caused seqno wrap under
2712 * the radar.
2713 */
2714 from->sync_seqno[idx] = obj->last_read_seqno;
2715
2716 return ret;
2717 }
2718
2719 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2720 {
2721 u32 old_write_domain, old_read_domains;
2722
2723 /* Force a pagefault for domain tracking on next user access */
2724 i915_gem_release_mmap(obj);
2725
2726 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2727 return;
2728
2729 /* Wait for any direct GTT access to complete */
2730 mb();
2731
2732 old_read_domains = obj->base.read_domains;
2733 old_write_domain = obj->base.write_domain;
2734
2735 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2736 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2737
2738 trace_i915_gem_object_change_domain(obj,
2739 old_read_domains,
2740 old_write_domain);
2741 }
2742
2743 int i915_vma_unbind(struct i915_vma *vma)
2744 {
2745 struct drm_i915_gem_object *obj = vma->obj;
2746 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2747 int ret;
2748
2749 /* For now we only ever use 1 vma per object */
2750 WARN_ON(!list_is_singular(&obj->vma_list));
2751
2752 if (list_empty(&vma->vma_link))
2753 return 0;
2754
2755 if (!drm_mm_node_allocated(&vma->node)) {
2756 i915_gem_vma_destroy(vma);
2757
2758 return 0;
2759 }
2760
2761 if (obj->pin_count)
2762 return -EBUSY;
2763
2764 BUG_ON(obj->pages == NULL);
2765
2766 ret = i915_gem_object_finish_gpu(obj);
2767 if (ret)
2768 return ret;
2769 /* Continue on if we fail due to EIO, the GPU is hung so we
2770 * should be safe and we need to cleanup or else we might
2771 * cause memory corruption through use-after-free.
2772 */
2773
2774 i915_gem_object_finish_gtt(obj);
2775
2776 /* release the fence reg _after_ flushing */
2777 ret = i915_gem_object_put_fence(obj);
2778 if (ret)
2779 return ret;
2780
2781 trace_i915_vma_unbind(vma);
2782
2783 if (obj->has_global_gtt_mapping)
2784 i915_gem_gtt_unbind_object(obj);
2785 if (obj->has_aliasing_ppgtt_mapping) {
2786 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2787 obj->has_aliasing_ppgtt_mapping = 0;
2788 }
2789 i915_gem_gtt_finish_object(obj);
2790
2791 list_del(&vma->mm_list);
2792 /* Avoid an unnecessary call to unbind on rebind. */
2793 if (i915_is_ggtt(vma->vm))
2794 obj->map_and_fenceable = true;
2795
2796 drm_mm_remove_node(&vma->node);
2797 i915_gem_vma_destroy(vma);
2798
2799 /* Since the unbound list is global, only move to that list if
2800 * no more VMAs exist. */
2801 if (list_empty(&obj->vma_list))
2802 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2803
2804 /* And finally now the object is completely decoupled from this vma,
2805 * we can drop its hold on the backing storage and allow it to be
2806 * reaped by the shrinker.
2807 */
2808 i915_gem_object_unpin_pages(obj);
2809
2810 return 0;
2811 }
2812
2813 /**
2814 * Unbinds an object from the global GTT aperture.
2815 */
2816 int
2817 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2818 {
2819 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2820 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2821
2822 if (!i915_gem_obj_ggtt_bound(obj))
2823 return 0;
2824
2825 if (obj->pin_count)
2826 return -EBUSY;
2827
2828 BUG_ON(obj->pages == NULL);
2829
2830 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2831 }
2832
2833 int i915_gpu_idle(struct drm_device *dev)
2834 {
2835 drm_i915_private_t *dev_priv = dev->dev_private;
2836 struct intel_ring_buffer *ring;
2837 int ret, i;
2838
2839 /* Flush everything onto the inactive list. */
2840 for_each_ring(ring, dev_priv, i) {
2841 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2842 if (ret)
2843 return ret;
2844
2845 ret = intel_ring_idle(ring);
2846 if (ret)
2847 return ret;
2848 }
2849
2850 return 0;
2851 }
2852
2853 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2854 struct drm_i915_gem_object *obj)
2855 {
2856 drm_i915_private_t *dev_priv = dev->dev_private;
2857 int fence_reg;
2858 int fence_pitch_shift;
2859
2860 if (INTEL_INFO(dev)->gen >= 6) {
2861 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2862 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2863 } else {
2864 fence_reg = FENCE_REG_965_0;
2865 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2866 }
2867
2868 fence_reg += reg * 8;
2869
2870 /* To w/a incoherency with non-atomic 64-bit register updates,
2871 * we split the 64-bit update into two 32-bit writes. In order
2872 * for a partial fence not to be evaluated between writes, we
2873 * precede the update with write to turn off the fence register,
2874 * and only enable the fence as the last step.
2875 *
2876 * For extra levels of paranoia, we make sure each step lands
2877 * before applying the next step.
2878 */
2879 I915_WRITE(fence_reg, 0);
2880 POSTING_READ(fence_reg);
2881
2882 if (obj) {
2883 u32 size = i915_gem_obj_ggtt_size(obj);
2884 uint64_t val;
2885
2886 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2887 0xfffff000) << 32;
2888 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2889 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2890 if (obj->tiling_mode == I915_TILING_Y)
2891 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2892 val |= I965_FENCE_REG_VALID;
2893
2894 I915_WRITE(fence_reg + 4, val >> 32);
2895 POSTING_READ(fence_reg + 4);
2896
2897 I915_WRITE(fence_reg + 0, val);
2898 POSTING_READ(fence_reg);
2899 } else {
2900 I915_WRITE(fence_reg + 4, 0);
2901 POSTING_READ(fence_reg + 4);
2902 }
2903 }
2904
2905 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2906 struct drm_i915_gem_object *obj)
2907 {
2908 drm_i915_private_t *dev_priv = dev->dev_private;
2909 u32 val;
2910
2911 if (obj) {
2912 u32 size = i915_gem_obj_ggtt_size(obj);
2913 int pitch_val;
2914 int tile_width;
2915
2916 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2917 (size & -size) != size ||
2918 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2919 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2920 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2921
2922 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2923 tile_width = 128;
2924 else
2925 tile_width = 512;
2926
2927 /* Note: pitch better be a power of two tile widths */
2928 pitch_val = obj->stride / tile_width;
2929 pitch_val = ffs(pitch_val) - 1;
2930
2931 val = i915_gem_obj_ggtt_offset(obj);
2932 if (obj->tiling_mode == I915_TILING_Y)
2933 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2934 val |= I915_FENCE_SIZE_BITS(size);
2935 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2936 val |= I830_FENCE_REG_VALID;
2937 } else
2938 val = 0;
2939
2940 if (reg < 8)
2941 reg = FENCE_REG_830_0 + reg * 4;
2942 else
2943 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2944
2945 I915_WRITE(reg, val);
2946 POSTING_READ(reg);
2947 }
2948
2949 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2950 struct drm_i915_gem_object *obj)
2951 {
2952 drm_i915_private_t *dev_priv = dev->dev_private;
2953 uint32_t val;
2954
2955 if (obj) {
2956 u32 size = i915_gem_obj_ggtt_size(obj);
2957 uint32_t pitch_val;
2958
2959 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2960 (size & -size) != size ||
2961 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2962 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2963 i915_gem_obj_ggtt_offset(obj), size);
2964
2965 pitch_val = obj->stride / 128;
2966 pitch_val = ffs(pitch_val) - 1;
2967
2968 val = i915_gem_obj_ggtt_offset(obj);
2969 if (obj->tiling_mode == I915_TILING_Y)
2970 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2971 val |= I830_FENCE_SIZE_BITS(size);
2972 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2973 val |= I830_FENCE_REG_VALID;
2974 } else
2975 val = 0;
2976
2977 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2978 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2979 }
2980
2981 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2982 {
2983 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2984 }
2985
2986 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2987 struct drm_i915_gem_object *obj)
2988 {
2989 struct drm_i915_private *dev_priv = dev->dev_private;
2990
2991 /* Ensure that all CPU reads are completed before installing a fence
2992 * and all writes before removing the fence.
2993 */
2994 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2995 mb();
2996
2997 WARN(obj && (!obj->stride || !obj->tiling_mode),
2998 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2999 obj->stride, obj->tiling_mode);
3000
3001 switch (INTEL_INFO(dev)->gen) {
3002 case 8:
3003 case 7:
3004 case 6:
3005 case 5:
3006 case 4: i965_write_fence_reg(dev, reg, obj); break;
3007 case 3: i915_write_fence_reg(dev, reg, obj); break;
3008 case 2: i830_write_fence_reg(dev, reg, obj); break;
3009 default: BUG();
3010 }
3011
3012 /* And similarly be paranoid that no direct access to this region
3013 * is reordered to before the fence is installed.
3014 */
3015 if (i915_gem_object_needs_mb(obj))
3016 mb();
3017 }
3018
3019 static inline int fence_number(struct drm_i915_private *dev_priv,
3020 struct drm_i915_fence_reg *fence)
3021 {
3022 return fence - dev_priv->fence_regs;
3023 }
3024
3025 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3026 struct drm_i915_fence_reg *fence,
3027 bool enable)
3028 {
3029 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3030 int reg = fence_number(dev_priv, fence);
3031
3032 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3033
3034 if (enable) {
3035 obj->fence_reg = reg;
3036 fence->obj = obj;
3037 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3038 } else {
3039 obj->fence_reg = I915_FENCE_REG_NONE;
3040 fence->obj = NULL;
3041 list_del_init(&fence->lru_list);
3042 }
3043 obj->fence_dirty = false;
3044 }
3045
3046 static int
3047 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3048 {
3049 if (obj->last_fenced_seqno) {
3050 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3051 if (ret)
3052 return ret;
3053
3054 obj->last_fenced_seqno = 0;
3055 }
3056
3057 obj->fenced_gpu_access = false;
3058 return 0;
3059 }
3060
3061 int
3062 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3063 {
3064 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3065 struct drm_i915_fence_reg *fence;
3066 int ret;
3067
3068 ret = i915_gem_object_wait_fence(obj);
3069 if (ret)
3070 return ret;
3071
3072 if (obj->fence_reg == I915_FENCE_REG_NONE)
3073 return 0;
3074
3075 fence = &dev_priv->fence_regs[obj->fence_reg];
3076
3077 i915_gem_object_fence_lost(obj);
3078 i915_gem_object_update_fence(obj, fence, false);
3079
3080 return 0;
3081 }
3082
3083 static struct drm_i915_fence_reg *
3084 i915_find_fence_reg(struct drm_device *dev)
3085 {
3086 struct drm_i915_private *dev_priv = dev->dev_private;
3087 struct drm_i915_fence_reg *reg, *avail;
3088 int i;
3089
3090 /* First try to find a free reg */
3091 avail = NULL;
3092 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3093 reg = &dev_priv->fence_regs[i];
3094 if (!reg->obj)
3095 return reg;
3096
3097 if (!reg->pin_count)
3098 avail = reg;
3099 }
3100
3101 if (avail == NULL)
3102 return NULL;
3103
3104 /* None available, try to steal one or wait for a user to finish */
3105 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3106 if (reg->pin_count)
3107 continue;
3108
3109 return reg;
3110 }
3111
3112 return NULL;
3113 }
3114
3115 /**
3116 * i915_gem_object_get_fence - set up fencing for an object
3117 * @obj: object to map through a fence reg
3118 *
3119 * When mapping objects through the GTT, userspace wants to be able to write
3120 * to them without having to worry about swizzling if the object is tiled.
3121 * This function walks the fence regs looking for a free one for @obj,
3122 * stealing one if it can't find any.
3123 *
3124 * It then sets up the reg based on the object's properties: address, pitch
3125 * and tiling format.
3126 *
3127 * For an untiled surface, this removes any existing fence.
3128 */
3129 int
3130 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3131 {
3132 struct drm_device *dev = obj->base.dev;
3133 struct drm_i915_private *dev_priv = dev->dev_private;
3134 bool enable = obj->tiling_mode != I915_TILING_NONE;
3135 struct drm_i915_fence_reg *reg;
3136 int ret;
3137
3138 /* Have we updated the tiling parameters upon the object and so
3139 * will need to serialise the write to the associated fence register?
3140 */
3141 if (obj->fence_dirty) {
3142 ret = i915_gem_object_wait_fence(obj);
3143 if (ret)
3144 return ret;
3145 }
3146
3147 /* Just update our place in the LRU if our fence is getting reused. */
3148 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3149 reg = &dev_priv->fence_regs[obj->fence_reg];
3150 if (!obj->fence_dirty) {
3151 list_move_tail(&reg->lru_list,
3152 &dev_priv->mm.fence_list);
3153 return 0;
3154 }
3155 } else if (enable) {
3156 reg = i915_find_fence_reg(dev);
3157 if (reg == NULL)
3158 return -EDEADLK;
3159
3160 if (reg->obj) {
3161 struct drm_i915_gem_object *old = reg->obj;
3162
3163 ret = i915_gem_object_wait_fence(old);
3164 if (ret)
3165 return ret;
3166
3167 i915_gem_object_fence_lost(old);
3168 }
3169 } else
3170 return 0;
3171
3172 i915_gem_object_update_fence(obj, reg, enable);
3173
3174 return 0;
3175 }
3176
3177 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3178 struct drm_mm_node *gtt_space,
3179 unsigned long cache_level)
3180 {
3181 struct drm_mm_node *other;
3182
3183 /* On non-LLC machines we have to be careful when putting differing
3184 * types of snoopable memory together to avoid the prefetcher
3185 * crossing memory domains and dying.
3186 */
3187 if (HAS_LLC(dev))
3188 return true;
3189
3190 if (!drm_mm_node_allocated(gtt_space))
3191 return true;
3192
3193 if (list_empty(&gtt_space->node_list))
3194 return true;
3195
3196 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3197 if (other->allocated && !other->hole_follows && other->color != cache_level)
3198 return false;
3199
3200 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3201 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3202 return false;
3203
3204 return true;
3205 }
3206
3207 static void i915_gem_verify_gtt(struct drm_device *dev)
3208 {
3209 #if WATCH_GTT
3210 struct drm_i915_private *dev_priv = dev->dev_private;
3211 struct drm_i915_gem_object *obj;
3212 int err = 0;
3213
3214 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3215 if (obj->gtt_space == NULL) {
3216 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3217 err++;
3218 continue;
3219 }
3220
3221 if (obj->cache_level != obj->gtt_space->color) {
3222 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3223 i915_gem_obj_ggtt_offset(obj),
3224 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3225 obj->cache_level,
3226 obj->gtt_space->color);
3227 err++;
3228 continue;
3229 }
3230
3231 if (!i915_gem_valid_gtt_space(dev,
3232 obj->gtt_space,
3233 obj->cache_level)) {
3234 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3235 i915_gem_obj_ggtt_offset(obj),
3236 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3237 obj->cache_level);
3238 err++;
3239 continue;
3240 }
3241 }
3242
3243 WARN_ON(err);
3244 #endif
3245 }
3246
3247 /**
3248 * Finds free space in the GTT aperture and binds the object there.
3249 */
3250 static int
3251 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3252 struct i915_address_space *vm,
3253 unsigned alignment,
3254 bool map_and_fenceable,
3255 bool nonblocking)
3256 {
3257 struct drm_device *dev = obj->base.dev;
3258 drm_i915_private_t *dev_priv = dev->dev_private;
3259 u32 size, fence_size, fence_alignment, unfenced_alignment;
3260 size_t gtt_max =
3261 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3262 struct i915_vma *vma;
3263 int ret;
3264
3265 fence_size = i915_gem_get_gtt_size(dev,
3266 obj->base.size,
3267 obj->tiling_mode);
3268 fence_alignment = i915_gem_get_gtt_alignment(dev,
3269 obj->base.size,
3270 obj->tiling_mode, true);
3271 unfenced_alignment =
3272 i915_gem_get_gtt_alignment(dev,
3273 obj->base.size,
3274 obj->tiling_mode, false);
3275
3276 if (alignment == 0)
3277 alignment = map_and_fenceable ? fence_alignment :
3278 unfenced_alignment;
3279 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3280 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3281 return -EINVAL;
3282 }
3283
3284 size = map_and_fenceable ? fence_size : obj->base.size;
3285
3286 /* If the object is bigger than the entire aperture, reject it early
3287 * before evicting everything in a vain attempt to find space.
3288 */
3289 if (obj->base.size > gtt_max) {
3290 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3291 obj->base.size,
3292 map_and_fenceable ? "mappable" : "total",
3293 gtt_max);
3294 return -E2BIG;
3295 }
3296
3297 ret = i915_gem_object_get_pages(obj);
3298 if (ret)
3299 return ret;
3300
3301 i915_gem_object_pin_pages(obj);
3302
3303 BUG_ON(!i915_is_ggtt(vm));
3304
3305 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3306 if (IS_ERR(vma)) {
3307 ret = PTR_ERR(vma);
3308 goto err_unpin;
3309 }
3310
3311 /* For now we only ever use 1 vma per object */
3312 WARN_ON(!list_is_singular(&obj->vma_list));
3313
3314 search_free:
3315 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3316 size, alignment,
3317 obj->cache_level, 0, gtt_max,
3318 DRM_MM_SEARCH_DEFAULT);
3319 if (ret) {
3320 ret = i915_gem_evict_something(dev, vm, size, alignment,
3321 obj->cache_level,
3322 map_and_fenceable,
3323 nonblocking);
3324 if (ret == 0)
3325 goto search_free;
3326
3327 goto err_free_vma;
3328 }
3329 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3330 obj->cache_level))) {
3331 ret = -EINVAL;
3332 goto err_remove_node;
3333 }
3334
3335 ret = i915_gem_gtt_prepare_object(obj);
3336 if (ret)
3337 goto err_remove_node;
3338
3339 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3340 list_add_tail(&vma->mm_list, &vm->inactive_list);
3341
3342 if (i915_is_ggtt(vm)) {
3343 bool mappable, fenceable;
3344
3345 fenceable = (vma->node.size == fence_size &&
3346 (vma->node.start & (fence_alignment - 1)) == 0);
3347
3348 mappable = (vma->node.start + obj->base.size <=
3349 dev_priv->gtt.mappable_end);
3350
3351 obj->map_and_fenceable = mappable && fenceable;
3352 }
3353
3354 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3355
3356 trace_i915_vma_bind(vma, map_and_fenceable);
3357 i915_gem_verify_gtt(dev);
3358 return 0;
3359
3360 err_remove_node:
3361 drm_mm_remove_node(&vma->node);
3362 err_free_vma:
3363 i915_gem_vma_destroy(vma);
3364 err_unpin:
3365 i915_gem_object_unpin_pages(obj);
3366 return ret;
3367 }
3368
3369 bool
3370 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3371 bool force)
3372 {
3373 /* If we don't have a page list set up, then we're not pinned
3374 * to GPU, and we can ignore the cache flush because it'll happen
3375 * again at bind time.
3376 */
3377 if (obj->pages == NULL)
3378 return false;
3379
3380 /*
3381 * Stolen memory is always coherent with the GPU as it is explicitly
3382 * marked as wc by the system, or the system is cache-coherent.
3383 */
3384 if (obj->stolen)
3385 return false;
3386
3387 /* If the GPU is snooping the contents of the CPU cache,
3388 * we do not need to manually clear the CPU cache lines. However,
3389 * the caches are only snooped when the render cache is
3390 * flushed/invalidated. As we always have to emit invalidations
3391 * and flushes when moving into and out of the RENDER domain, correct
3392 * snooping behaviour occurs naturally as the result of our domain
3393 * tracking.
3394 */
3395 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3396 return false;
3397
3398 trace_i915_gem_object_clflush(obj);
3399 drm_clflush_sg(obj->pages);
3400
3401 return true;
3402 }
3403
3404 /** Flushes the GTT write domain for the object if it's dirty. */
3405 static void
3406 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3407 {
3408 uint32_t old_write_domain;
3409
3410 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3411 return;
3412
3413 /* No actual flushing is required for the GTT write domain. Writes
3414 * to it immediately go to main memory as far as we know, so there's
3415 * no chipset flush. It also doesn't land in render cache.
3416 *
3417 * However, we do have to enforce the order so that all writes through
3418 * the GTT land before any writes to the device, such as updates to
3419 * the GATT itself.
3420 */
3421 wmb();
3422
3423 old_write_domain = obj->base.write_domain;
3424 obj->base.write_domain = 0;
3425
3426 trace_i915_gem_object_change_domain(obj,
3427 obj->base.read_domains,
3428 old_write_domain);
3429 }
3430
3431 /** Flushes the CPU write domain for the object if it's dirty. */
3432 static void
3433 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3434 bool force)
3435 {
3436 uint32_t old_write_domain;
3437
3438 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3439 return;
3440
3441 if (i915_gem_clflush_object(obj, force))
3442 i915_gem_chipset_flush(obj->base.dev);
3443
3444 old_write_domain = obj->base.write_domain;
3445 obj->base.write_domain = 0;
3446
3447 trace_i915_gem_object_change_domain(obj,
3448 obj->base.read_domains,
3449 old_write_domain);
3450 }
3451
3452 /**
3453 * Moves a single object to the GTT read, and possibly write domain.
3454 *
3455 * This function returns when the move is complete, including waiting on
3456 * flushes to occur.
3457 */
3458 int
3459 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3460 {
3461 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3462 uint32_t old_write_domain, old_read_domains;
3463 int ret;
3464
3465 /* Not valid to be called on unbound objects. */
3466 if (!i915_gem_obj_bound_any(obj))
3467 return -EINVAL;
3468
3469 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3470 return 0;
3471
3472 ret = i915_gem_object_wait_rendering(obj, !write);
3473 if (ret)
3474 return ret;
3475
3476 i915_gem_object_flush_cpu_write_domain(obj, false);
3477
3478 /* Serialise direct access to this object with the barriers for
3479 * coherent writes from the GPU, by effectively invalidating the
3480 * GTT domain upon first access.
3481 */
3482 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3483 mb();
3484
3485 old_write_domain = obj->base.write_domain;
3486 old_read_domains = obj->base.read_domains;
3487
3488 /* It should now be out of any other write domains, and we can update
3489 * the domain values for our changes.
3490 */
3491 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3492 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3493 if (write) {
3494 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3495 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3496 obj->dirty = 1;
3497 }
3498
3499 trace_i915_gem_object_change_domain(obj,
3500 old_read_domains,
3501 old_write_domain);
3502
3503 /* And bump the LRU for this access */
3504 if (i915_gem_object_is_inactive(obj)) {
3505 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3506 if (vma)
3507 list_move_tail(&vma->mm_list,
3508 &dev_priv->gtt.base.inactive_list);
3509
3510 }
3511
3512 return 0;
3513 }
3514
3515 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3516 enum i915_cache_level cache_level)
3517 {
3518 struct drm_device *dev = obj->base.dev;
3519 drm_i915_private_t *dev_priv = dev->dev_private;
3520 struct i915_vma *vma;
3521 int ret;
3522
3523 if (obj->cache_level == cache_level)
3524 return 0;
3525
3526 if (obj->pin_count) {
3527 DRM_DEBUG("can not change the cache level of pinned objects\n");
3528 return -EBUSY;
3529 }
3530
3531 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3532 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3533 ret = i915_vma_unbind(vma);
3534 if (ret)
3535 return ret;
3536
3537 break;
3538 }
3539 }
3540
3541 if (i915_gem_obj_bound_any(obj)) {
3542 ret = i915_gem_object_finish_gpu(obj);
3543 if (ret)
3544 return ret;
3545
3546 i915_gem_object_finish_gtt(obj);
3547
3548 /* Before SandyBridge, you could not use tiling or fence
3549 * registers with snooped memory, so relinquish any fences
3550 * currently pointing to our region in the aperture.
3551 */
3552 if (INTEL_INFO(dev)->gen < 6) {
3553 ret = i915_gem_object_put_fence(obj);
3554 if (ret)
3555 return ret;
3556 }
3557
3558 if (obj->has_global_gtt_mapping)
3559 i915_gem_gtt_bind_object(obj, cache_level);
3560 if (obj->has_aliasing_ppgtt_mapping)
3561 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3562 obj, cache_level);
3563 }
3564
3565 list_for_each_entry(vma, &obj->vma_list, vma_link)
3566 vma->node.color = cache_level;
3567 obj->cache_level = cache_level;
3568
3569 if (cpu_write_needs_clflush(obj)) {
3570 u32 old_read_domains, old_write_domain;
3571
3572 /* If we're coming from LLC cached, then we haven't
3573 * actually been tracking whether the data is in the
3574 * CPU cache or not, since we only allow one bit set
3575 * in obj->write_domain and have been skipping the clflushes.
3576 * Just set it to the CPU cache for now.
3577 */
3578 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3579
3580 old_read_domains = obj->base.read_domains;
3581 old_write_domain = obj->base.write_domain;
3582
3583 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3584 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3585
3586 trace_i915_gem_object_change_domain(obj,
3587 old_read_domains,
3588 old_write_domain);
3589 }
3590
3591 i915_gem_verify_gtt(dev);
3592 return 0;
3593 }
3594
3595 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3596 struct drm_file *file)
3597 {
3598 struct drm_i915_gem_caching *args = data;
3599 struct drm_i915_gem_object *obj;
3600 int ret;
3601
3602 ret = i915_mutex_lock_interruptible(dev);
3603 if (ret)
3604 return ret;
3605
3606 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3607 if (&obj->base == NULL) {
3608 ret = -ENOENT;
3609 goto unlock;
3610 }
3611
3612 switch (obj->cache_level) {
3613 case I915_CACHE_LLC:
3614 case I915_CACHE_L3_LLC:
3615 args->caching = I915_CACHING_CACHED;
3616 break;
3617
3618 case I915_CACHE_WT:
3619 args->caching = I915_CACHING_DISPLAY;
3620 break;
3621
3622 default:
3623 args->caching = I915_CACHING_NONE;
3624 break;
3625 }
3626
3627 drm_gem_object_unreference(&obj->base);
3628 unlock:
3629 mutex_unlock(&dev->struct_mutex);
3630 return ret;
3631 }
3632
3633 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3634 struct drm_file *file)
3635 {
3636 struct drm_i915_gem_caching *args = data;
3637 struct drm_i915_gem_object *obj;
3638 enum i915_cache_level level;
3639 int ret;
3640
3641 switch (args->caching) {
3642 case I915_CACHING_NONE:
3643 level = I915_CACHE_NONE;
3644 break;
3645 case I915_CACHING_CACHED:
3646 level = I915_CACHE_LLC;
3647 break;
3648 case I915_CACHING_DISPLAY:
3649 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3650 break;
3651 default:
3652 return -EINVAL;
3653 }
3654
3655 ret = i915_mutex_lock_interruptible(dev);
3656 if (ret)
3657 return ret;
3658
3659 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3660 if (&obj->base == NULL) {
3661 ret = -ENOENT;
3662 goto unlock;
3663 }
3664
3665 ret = i915_gem_object_set_cache_level(obj, level);
3666
3667 drm_gem_object_unreference(&obj->base);
3668 unlock:
3669 mutex_unlock(&dev->struct_mutex);
3670 return ret;
3671 }
3672
3673 static bool is_pin_display(struct drm_i915_gem_object *obj)
3674 {
3675 /* There are 3 sources that pin objects:
3676 * 1. The display engine (scanouts, sprites, cursors);
3677 * 2. Reservations for execbuffer;
3678 * 3. The user.
3679 *
3680 * We can ignore reservations as we hold the struct_mutex and
3681 * are only called outside of the reservation path. The user
3682 * can only increment pin_count once, and so if after
3683 * subtracting the potential reference by the user, any pin_count
3684 * remains, it must be due to another use by the display engine.
3685 */
3686 return obj->pin_count - !!obj->user_pin_count;
3687 }
3688
3689 /*
3690 * Prepare buffer for display plane (scanout, cursors, etc).
3691 * Can be called from an uninterruptible phase (modesetting) and allows
3692 * any flushes to be pipelined (for pageflips).
3693 */
3694 int
3695 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3696 u32 alignment,
3697 struct intel_ring_buffer *pipelined)
3698 {
3699 u32 old_read_domains, old_write_domain;
3700 int ret;
3701
3702 if (pipelined != obj->ring) {
3703 ret = i915_gem_object_sync(obj, pipelined);
3704 if (ret)
3705 return ret;
3706 }
3707
3708 /* Mark the pin_display early so that we account for the
3709 * display coherency whilst setting up the cache domains.
3710 */
3711 obj->pin_display = true;
3712
3713 /* The display engine is not coherent with the LLC cache on gen6. As
3714 * a result, we make sure that the pinning that is about to occur is
3715 * done with uncached PTEs. This is lowest common denominator for all
3716 * chipsets.
3717 *
3718 * However for gen6+, we could do better by using the GFDT bit instead
3719 * of uncaching, which would allow us to flush all the LLC-cached data
3720 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3721 */
3722 ret = i915_gem_object_set_cache_level(obj,
3723 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3724 if (ret)
3725 goto err_unpin_display;
3726
3727 /* As the user may map the buffer once pinned in the display plane
3728 * (e.g. libkms for the bootup splash), we have to ensure that we
3729 * always use map_and_fenceable for all scanout buffers.
3730 */
3731 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3732 if (ret)
3733 goto err_unpin_display;
3734
3735 i915_gem_object_flush_cpu_write_domain(obj, true);
3736
3737 old_write_domain = obj->base.write_domain;
3738 old_read_domains = obj->base.read_domains;
3739
3740 /* It should now be out of any other write domains, and we can update
3741 * the domain values for our changes.
3742 */
3743 obj->base.write_domain = 0;
3744 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3745
3746 trace_i915_gem_object_change_domain(obj,
3747 old_read_domains,
3748 old_write_domain);
3749
3750 return 0;
3751
3752 err_unpin_display:
3753 obj->pin_display = is_pin_display(obj);
3754 return ret;
3755 }
3756
3757 void
3758 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3759 {
3760 i915_gem_object_unpin(obj);
3761 obj->pin_display = is_pin_display(obj);
3762 }
3763
3764 int
3765 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3766 {
3767 int ret;
3768
3769 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3770 return 0;
3771
3772 ret = i915_gem_object_wait_rendering(obj, false);
3773 if (ret)
3774 return ret;
3775
3776 /* Ensure that we invalidate the GPU's caches and TLBs. */
3777 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3778 return 0;
3779 }
3780
3781 /**
3782 * Moves a single object to the CPU read, and possibly write domain.
3783 *
3784 * This function returns when the move is complete, including waiting on
3785 * flushes to occur.
3786 */
3787 int
3788 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3789 {
3790 uint32_t old_write_domain, old_read_domains;
3791 int ret;
3792
3793 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3794 return 0;
3795
3796 ret = i915_gem_object_wait_rendering(obj, !write);
3797 if (ret)
3798 return ret;
3799
3800 i915_gem_object_flush_gtt_write_domain(obj);
3801
3802 old_write_domain = obj->base.write_domain;
3803 old_read_domains = obj->base.read_domains;
3804
3805 /* Flush the CPU cache if it's still invalid. */
3806 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3807 i915_gem_clflush_object(obj, false);
3808
3809 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3810 }
3811
3812 /* It should now be out of any other write domains, and we can update
3813 * the domain values for our changes.
3814 */
3815 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3816
3817 /* If we're writing through the CPU, then the GPU read domains will
3818 * need to be invalidated at next use.
3819 */
3820 if (write) {
3821 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3822 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3823 }
3824
3825 trace_i915_gem_object_change_domain(obj,
3826 old_read_domains,
3827 old_write_domain);
3828
3829 return 0;
3830 }
3831
3832 /* Throttle our rendering by waiting until the ring has completed our requests
3833 * emitted over 20 msec ago.
3834 *
3835 * Note that if we were to use the current jiffies each time around the loop,
3836 * we wouldn't escape the function with any frames outstanding if the time to
3837 * render a frame was over 20ms.
3838 *
3839 * This should get us reasonable parallelism between CPU and GPU but also
3840 * relatively low latency when blocking on a particular request to finish.
3841 */
3842 static int
3843 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3844 {
3845 struct drm_i915_private *dev_priv = dev->dev_private;
3846 struct drm_i915_file_private *file_priv = file->driver_priv;
3847 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3848 struct drm_i915_gem_request *request;
3849 struct intel_ring_buffer *ring = NULL;
3850 unsigned reset_counter;
3851 u32 seqno = 0;
3852 int ret;
3853
3854 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3855 if (ret)
3856 return ret;
3857
3858 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3859 if (ret)
3860 return ret;
3861
3862 spin_lock(&file_priv->mm.lock);
3863 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3864 if (time_after_eq(request->emitted_jiffies, recent_enough))
3865 break;
3866
3867 ring = request->ring;
3868 seqno = request->seqno;
3869 }
3870 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3871 spin_unlock(&file_priv->mm.lock);
3872
3873 if (seqno == 0)
3874 return 0;
3875
3876 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3877 if (ret == 0)
3878 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3879
3880 return ret;
3881 }
3882
3883 int
3884 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3885 struct i915_address_space *vm,
3886 uint32_t alignment,
3887 bool map_and_fenceable,
3888 bool nonblocking)
3889 {
3890 struct i915_vma *vma;
3891 int ret;
3892
3893 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3894 return -EBUSY;
3895
3896 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3897
3898 vma = i915_gem_obj_to_vma(obj, vm);
3899
3900 if (vma) {
3901 if ((alignment &&
3902 vma->node.start & (alignment - 1)) ||
3903 (map_and_fenceable && !obj->map_and_fenceable)) {
3904 WARN(obj->pin_count,
3905 "bo is already pinned with incorrect alignment:"
3906 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3907 " obj->map_and_fenceable=%d\n",
3908 i915_gem_obj_offset(obj, vm), alignment,
3909 map_and_fenceable,
3910 obj->map_and_fenceable);
3911 ret = i915_vma_unbind(vma);
3912 if (ret)
3913 return ret;
3914 }
3915 }
3916
3917 if (!i915_gem_obj_bound(obj, vm)) {
3918 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3919
3920 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3921 map_and_fenceable,
3922 nonblocking);
3923 if (ret)
3924 return ret;
3925
3926 if (!dev_priv->mm.aliasing_ppgtt)
3927 i915_gem_gtt_bind_object(obj, obj->cache_level);
3928 }
3929
3930 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3931 i915_gem_gtt_bind_object(obj, obj->cache_level);
3932
3933 obj->pin_count++;
3934 obj->pin_mappable |= map_and_fenceable;
3935
3936 return 0;
3937 }
3938
3939 void
3940 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3941 {
3942 BUG_ON(obj->pin_count == 0);
3943 BUG_ON(!i915_gem_obj_bound_any(obj));
3944
3945 if (--obj->pin_count == 0)
3946 obj->pin_mappable = false;
3947 }
3948
3949 int
3950 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3951 struct drm_file *file)
3952 {
3953 struct drm_i915_gem_pin *args = data;
3954 struct drm_i915_gem_object *obj;
3955 int ret;
3956
3957 ret = i915_mutex_lock_interruptible(dev);
3958 if (ret)
3959 return ret;
3960
3961 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3962 if (&obj->base == NULL) {
3963 ret = -ENOENT;
3964 goto unlock;
3965 }
3966
3967 if (obj->madv != I915_MADV_WILLNEED) {
3968 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3969 ret = -EINVAL;
3970 goto out;
3971 }
3972
3973 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3974 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3975 args->handle);
3976 ret = -EINVAL;
3977 goto out;
3978 }
3979
3980 if (obj->user_pin_count == ULONG_MAX) {
3981 ret = -EBUSY;
3982 goto out;
3983 }
3984
3985 if (obj->user_pin_count == 0) {
3986 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3987 if (ret)
3988 goto out;
3989 }
3990
3991 obj->user_pin_count++;
3992 obj->pin_filp = file;
3993
3994 args->offset = i915_gem_obj_ggtt_offset(obj);
3995 out:
3996 drm_gem_object_unreference(&obj->base);
3997 unlock:
3998 mutex_unlock(&dev->struct_mutex);
3999 return ret;
4000 }
4001
4002 int
4003 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4004 struct drm_file *file)
4005 {
4006 struct drm_i915_gem_pin *args = data;
4007 struct drm_i915_gem_object *obj;
4008 int ret;
4009
4010 ret = i915_mutex_lock_interruptible(dev);
4011 if (ret)
4012 return ret;
4013
4014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4015 if (&obj->base == NULL) {
4016 ret = -ENOENT;
4017 goto unlock;
4018 }
4019
4020 if (obj->pin_filp != file) {
4021 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4022 args->handle);
4023 ret = -EINVAL;
4024 goto out;
4025 }
4026 obj->user_pin_count--;
4027 if (obj->user_pin_count == 0) {
4028 obj->pin_filp = NULL;
4029 i915_gem_object_unpin(obj);
4030 }
4031
4032 out:
4033 drm_gem_object_unreference(&obj->base);
4034 unlock:
4035 mutex_unlock(&dev->struct_mutex);
4036 return ret;
4037 }
4038
4039 int
4040 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4041 struct drm_file *file)
4042 {
4043 struct drm_i915_gem_busy *args = data;
4044 struct drm_i915_gem_object *obj;
4045 int ret;
4046
4047 ret = i915_mutex_lock_interruptible(dev);
4048 if (ret)
4049 return ret;
4050
4051 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4052 if (&obj->base == NULL) {
4053 ret = -ENOENT;
4054 goto unlock;
4055 }
4056
4057 /* Count all active objects as busy, even if they are currently not used
4058 * by the gpu. Users of this interface expect objects to eventually
4059 * become non-busy without any further actions, therefore emit any
4060 * necessary flushes here.
4061 */
4062 ret = i915_gem_object_flush_active(obj);
4063
4064 args->busy = obj->active;
4065 if (obj->ring) {
4066 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4067 args->busy |= intel_ring_flag(obj->ring) << 16;
4068 }
4069
4070 drm_gem_object_unreference(&obj->base);
4071 unlock:
4072 mutex_unlock(&dev->struct_mutex);
4073 return ret;
4074 }
4075
4076 int
4077 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4078 struct drm_file *file_priv)
4079 {
4080 return i915_gem_ring_throttle(dev, file_priv);
4081 }
4082
4083 int
4084 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4085 struct drm_file *file_priv)
4086 {
4087 struct drm_i915_gem_madvise *args = data;
4088 struct drm_i915_gem_object *obj;
4089 int ret;
4090
4091 switch (args->madv) {
4092 case I915_MADV_DONTNEED:
4093 case I915_MADV_WILLNEED:
4094 break;
4095 default:
4096 return -EINVAL;
4097 }
4098
4099 ret = i915_mutex_lock_interruptible(dev);
4100 if (ret)
4101 return ret;
4102
4103 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4104 if (&obj->base == NULL) {
4105 ret = -ENOENT;
4106 goto unlock;
4107 }
4108
4109 if (obj->pin_count) {
4110 ret = -EINVAL;
4111 goto out;
4112 }
4113
4114 if (obj->madv != __I915_MADV_PURGED)
4115 obj->madv = args->madv;
4116
4117 /* if the object is no longer attached, discard its backing storage */
4118 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4119 i915_gem_object_truncate(obj);
4120
4121 args->retained = obj->madv != __I915_MADV_PURGED;
4122
4123 out:
4124 drm_gem_object_unreference(&obj->base);
4125 unlock:
4126 mutex_unlock(&dev->struct_mutex);
4127 return ret;
4128 }
4129
4130 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4131 const struct drm_i915_gem_object_ops *ops)
4132 {
4133 INIT_LIST_HEAD(&obj->global_list);
4134 INIT_LIST_HEAD(&obj->ring_list);
4135 INIT_LIST_HEAD(&obj->obj_exec_link);
4136 INIT_LIST_HEAD(&obj->vma_list);
4137
4138 obj->ops = ops;
4139
4140 obj->fence_reg = I915_FENCE_REG_NONE;
4141 obj->madv = I915_MADV_WILLNEED;
4142 /* Avoid an unnecessary call to unbind on the first bind. */
4143 obj->map_and_fenceable = true;
4144
4145 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4146 }
4147
4148 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4149 .get_pages = i915_gem_object_get_pages_gtt,
4150 .put_pages = i915_gem_object_put_pages_gtt,
4151 };
4152
4153 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4154 size_t size)
4155 {
4156 struct drm_i915_gem_object *obj;
4157 struct address_space *mapping;
4158 gfp_t mask;
4159
4160 obj = i915_gem_object_alloc(dev);
4161 if (obj == NULL)
4162 return NULL;
4163
4164 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4165 i915_gem_object_free(obj);
4166 return NULL;
4167 }
4168
4169 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4170 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4171 /* 965gm cannot relocate objects above 4GiB. */
4172 mask &= ~__GFP_HIGHMEM;
4173 mask |= __GFP_DMA32;
4174 }
4175
4176 mapping = file_inode(obj->base.filp)->i_mapping;
4177 mapping_set_gfp_mask(mapping, mask);
4178
4179 i915_gem_object_init(obj, &i915_gem_object_ops);
4180
4181 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4182 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4183
4184 if (HAS_LLC(dev)) {
4185 /* On some devices, we can have the GPU use the LLC (the CPU
4186 * cache) for about a 10% performance improvement
4187 * compared to uncached. Graphics requests other than
4188 * display scanout are coherent with the CPU in
4189 * accessing this cache. This means in this mode we
4190 * don't need to clflush on the CPU side, and on the
4191 * GPU side we only need to flush internal caches to
4192 * get data visible to the CPU.
4193 *
4194 * However, we maintain the display planes as UC, and so
4195 * need to rebind when first used as such.
4196 */
4197 obj->cache_level = I915_CACHE_LLC;
4198 } else
4199 obj->cache_level = I915_CACHE_NONE;
4200
4201 trace_i915_gem_object_create(obj);
4202
4203 return obj;
4204 }
4205
4206 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4207 {
4208 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4209 struct drm_device *dev = obj->base.dev;
4210 drm_i915_private_t *dev_priv = dev->dev_private;
4211 struct i915_vma *vma, *next;
4212
4213 intel_runtime_pm_get(dev_priv);
4214
4215 trace_i915_gem_object_destroy(obj);
4216
4217 if (obj->phys_obj)
4218 i915_gem_detach_phys_object(dev, obj);
4219
4220 obj->pin_count = 0;
4221 /* NB: 0 or 1 elements */
4222 WARN_ON(!list_empty(&obj->vma_list) &&
4223 !list_is_singular(&obj->vma_list));
4224 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4225 int ret = i915_vma_unbind(vma);
4226 if (WARN_ON(ret == -ERESTARTSYS)) {
4227 bool was_interruptible;
4228
4229 was_interruptible = dev_priv->mm.interruptible;
4230 dev_priv->mm.interruptible = false;
4231
4232 WARN_ON(i915_vma_unbind(vma));
4233
4234 dev_priv->mm.interruptible = was_interruptible;
4235 }
4236 }
4237
4238 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4239 * before progressing. */
4240 if (obj->stolen)
4241 i915_gem_object_unpin_pages(obj);
4242
4243 if (WARN_ON(obj->pages_pin_count))
4244 obj->pages_pin_count = 0;
4245 i915_gem_object_put_pages(obj);
4246 i915_gem_object_free_mmap_offset(obj);
4247 i915_gem_object_release_stolen(obj);
4248
4249 BUG_ON(obj->pages);
4250
4251 if (obj->base.import_attach)
4252 drm_prime_gem_destroy(&obj->base, NULL);
4253
4254 drm_gem_object_release(&obj->base);
4255 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4256
4257 kfree(obj->bit_17);
4258 i915_gem_object_free(obj);
4259
4260 intel_runtime_pm_put(dev_priv);
4261 }
4262
4263 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4264 struct i915_address_space *vm)
4265 {
4266 struct i915_vma *vma;
4267 list_for_each_entry(vma, &obj->vma_list, vma_link)
4268 if (vma->vm == vm)
4269 return vma;
4270
4271 return NULL;
4272 }
4273
4274 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4275 struct i915_address_space *vm)
4276 {
4277 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4278 if (vma == NULL)
4279 return ERR_PTR(-ENOMEM);
4280
4281 INIT_LIST_HEAD(&vma->vma_link);
4282 INIT_LIST_HEAD(&vma->mm_list);
4283 INIT_LIST_HEAD(&vma->exec_list);
4284 vma->vm = vm;
4285 vma->obj = obj;
4286
4287 /* Keep GGTT vmas first to make debug easier */
4288 if (i915_is_ggtt(vm))
4289 list_add(&vma->vma_link, &obj->vma_list);
4290 else
4291 list_add_tail(&vma->vma_link, &obj->vma_list);
4292
4293 return vma;
4294 }
4295
4296 struct i915_vma *
4297 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4298 struct i915_address_space *vm)
4299 {
4300 struct i915_vma *vma;
4301
4302 vma = i915_gem_obj_to_vma(obj, vm);
4303 if (!vma)
4304 vma = __i915_gem_vma_create(obj, vm);
4305
4306 return vma;
4307 }
4308
4309 void i915_gem_vma_destroy(struct i915_vma *vma)
4310 {
4311 WARN_ON(vma->node.allocated);
4312
4313 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4314 if (!list_empty(&vma->exec_list))
4315 return;
4316
4317 list_del(&vma->vma_link);
4318
4319 kfree(vma);
4320 }
4321
4322 int
4323 i915_gem_suspend(struct drm_device *dev)
4324 {
4325 drm_i915_private_t *dev_priv = dev->dev_private;
4326 int ret = 0;
4327
4328 mutex_lock(&dev->struct_mutex);
4329 if (dev_priv->ums.mm_suspended)
4330 goto err;
4331
4332 ret = i915_gpu_idle(dev);
4333 if (ret)
4334 goto err;
4335
4336 i915_gem_retire_requests(dev);
4337
4338 /* Under UMS, be paranoid and evict. */
4339 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4340 i915_gem_evict_everything(dev);
4341
4342 i915_kernel_lost_context(dev);
4343 i915_gem_cleanup_ringbuffer(dev);
4344
4345 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4346 * We need to replace this with a semaphore, or something.
4347 * And not confound ums.mm_suspended!
4348 */
4349 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4350 DRIVER_MODESET);
4351 mutex_unlock(&dev->struct_mutex);
4352
4353 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4354 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4355 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4356
4357 return 0;
4358
4359 err:
4360 mutex_unlock(&dev->struct_mutex);
4361 return ret;
4362 }
4363
4364 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4365 {
4366 struct drm_device *dev = ring->dev;
4367 drm_i915_private_t *dev_priv = dev->dev_private;
4368 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4369 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4370 int i, ret;
4371
4372 if (!HAS_L3_DPF(dev) || !remap_info)
4373 return 0;
4374
4375 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4376 if (ret)
4377 return ret;
4378
4379 /*
4380 * Note: We do not worry about the concurrent register cacheline hang
4381 * here because no other code should access these registers other than
4382 * at initialization time.
4383 */
4384 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4385 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4386 intel_ring_emit(ring, reg_base + i);
4387 intel_ring_emit(ring, remap_info[i/4]);
4388 }
4389
4390 intel_ring_advance(ring);
4391
4392 return ret;
4393 }
4394
4395 void i915_gem_init_swizzling(struct drm_device *dev)
4396 {
4397 drm_i915_private_t *dev_priv = dev->dev_private;
4398
4399 if (INTEL_INFO(dev)->gen < 5 ||
4400 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4401 return;
4402
4403 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4404 DISP_TILE_SURFACE_SWIZZLING);
4405
4406 if (IS_GEN5(dev))
4407 return;
4408
4409 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4410 if (IS_GEN6(dev))
4411 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4412 else if (IS_GEN7(dev))
4413 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4414 else if (IS_GEN8(dev))
4415 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4416 else
4417 BUG();
4418 }
4419
4420 static bool
4421 intel_enable_blt(struct drm_device *dev)
4422 {
4423 if (!HAS_BLT(dev))
4424 return false;
4425
4426 /* The blitter was dysfunctional on early prototypes */
4427 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4428 DRM_INFO("BLT not supported on this pre-production hardware;"
4429 " graphics performance will be degraded.\n");
4430 return false;
4431 }
4432
4433 return true;
4434 }
4435
4436 static int i915_gem_init_rings(struct drm_device *dev)
4437 {
4438 struct drm_i915_private *dev_priv = dev->dev_private;
4439 int ret;
4440
4441 ret = intel_init_render_ring_buffer(dev);
4442 if (ret)
4443 return ret;
4444
4445 if (HAS_BSD(dev)) {
4446 ret = intel_init_bsd_ring_buffer(dev);
4447 if (ret)
4448 goto cleanup_render_ring;
4449 }
4450
4451 if (intel_enable_blt(dev)) {
4452 ret = intel_init_blt_ring_buffer(dev);
4453 if (ret)
4454 goto cleanup_bsd_ring;
4455 }
4456
4457 if (HAS_VEBOX(dev)) {
4458 ret = intel_init_vebox_ring_buffer(dev);
4459 if (ret)
4460 goto cleanup_blt_ring;
4461 }
4462
4463
4464 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4465 if (ret)
4466 goto cleanup_vebox_ring;
4467
4468 return 0;
4469
4470 cleanup_vebox_ring:
4471 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4472 cleanup_blt_ring:
4473 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4474 cleanup_bsd_ring:
4475 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4476 cleanup_render_ring:
4477 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4478
4479 return ret;
4480 }
4481
4482 int
4483 i915_gem_init_hw(struct drm_device *dev)
4484 {
4485 drm_i915_private_t *dev_priv = dev->dev_private;
4486 int ret, i;
4487
4488 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4489 return -EIO;
4490
4491 if (dev_priv->ellc_size)
4492 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4493
4494 if (IS_HASWELL(dev))
4495 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4496 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4497
4498 if (HAS_PCH_NOP(dev)) {
4499 u32 temp = I915_READ(GEN7_MSG_CTL);
4500 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4501 I915_WRITE(GEN7_MSG_CTL, temp);
4502 }
4503
4504 i915_gem_init_swizzling(dev);
4505
4506 ret = i915_gem_init_rings(dev);
4507 if (ret)
4508 return ret;
4509
4510 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4511 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4512
4513 /*
4514 * XXX: There was some w/a described somewhere suggesting loading
4515 * contexts before PPGTT.
4516 */
4517 ret = i915_gem_context_init(dev);
4518 if (ret) {
4519 i915_gem_cleanup_ringbuffer(dev);
4520 DRM_ERROR("Context initialization failed %d\n", ret);
4521 return ret;
4522 }
4523
4524 if (dev_priv->mm.aliasing_ppgtt) {
4525 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4526 if (ret) {
4527 i915_gem_cleanup_aliasing_ppgtt(dev);
4528 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4529 }
4530 }
4531
4532 return 0;
4533 }
4534
4535 int i915_gem_init(struct drm_device *dev)
4536 {
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 int ret;
4539
4540 mutex_lock(&dev->struct_mutex);
4541
4542 if (IS_VALLEYVIEW(dev)) {
4543 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4544 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4545 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4546 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4547 }
4548
4549 i915_gem_init_global_gtt(dev);
4550
4551 ret = i915_gem_init_hw(dev);
4552 mutex_unlock(&dev->struct_mutex);
4553 if (ret) {
4554 i915_gem_cleanup_aliasing_ppgtt(dev);
4555 return ret;
4556 }
4557
4558 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4559 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4560 dev_priv->dri1.allow_batchbuffer = 1;
4561 return 0;
4562 }
4563
4564 void
4565 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4566 {
4567 drm_i915_private_t *dev_priv = dev->dev_private;
4568 struct intel_ring_buffer *ring;
4569 int i;
4570
4571 for_each_ring(ring, dev_priv, i)
4572 intel_cleanup_ring_buffer(ring);
4573 }
4574
4575 int
4576 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4577 struct drm_file *file_priv)
4578 {
4579 struct drm_i915_private *dev_priv = dev->dev_private;
4580 int ret;
4581
4582 if (drm_core_check_feature(dev, DRIVER_MODESET))
4583 return 0;
4584
4585 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4586 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4587 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4588 }
4589
4590 mutex_lock(&dev->struct_mutex);
4591 dev_priv->ums.mm_suspended = 0;
4592
4593 ret = i915_gem_init_hw(dev);
4594 if (ret != 0) {
4595 mutex_unlock(&dev->struct_mutex);
4596 return ret;
4597 }
4598
4599 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4600 mutex_unlock(&dev->struct_mutex);
4601
4602 ret = drm_irq_install(dev);
4603 if (ret)
4604 goto cleanup_ringbuffer;
4605
4606 return 0;
4607
4608 cleanup_ringbuffer:
4609 mutex_lock(&dev->struct_mutex);
4610 i915_gem_cleanup_ringbuffer(dev);
4611 dev_priv->ums.mm_suspended = 1;
4612 mutex_unlock(&dev->struct_mutex);
4613
4614 return ret;
4615 }
4616
4617 int
4618 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4619 struct drm_file *file_priv)
4620 {
4621 if (drm_core_check_feature(dev, DRIVER_MODESET))
4622 return 0;
4623
4624 drm_irq_uninstall(dev);
4625
4626 return i915_gem_suspend(dev);
4627 }
4628
4629 void
4630 i915_gem_lastclose(struct drm_device *dev)
4631 {
4632 int ret;
4633
4634 if (drm_core_check_feature(dev, DRIVER_MODESET))
4635 return;
4636
4637 ret = i915_gem_suspend(dev);
4638 if (ret)
4639 DRM_ERROR("failed to idle hardware: %d\n", ret);
4640 }
4641
4642 static void
4643 init_ring_lists(struct intel_ring_buffer *ring)
4644 {
4645 INIT_LIST_HEAD(&ring->active_list);
4646 INIT_LIST_HEAD(&ring->request_list);
4647 }
4648
4649 static void i915_init_vm(struct drm_i915_private *dev_priv,
4650 struct i915_address_space *vm)
4651 {
4652 vm->dev = dev_priv->dev;
4653 INIT_LIST_HEAD(&vm->active_list);
4654 INIT_LIST_HEAD(&vm->inactive_list);
4655 INIT_LIST_HEAD(&vm->global_link);
4656 list_add(&vm->global_link, &dev_priv->vm_list);
4657 }
4658
4659 void
4660 i915_gem_load(struct drm_device *dev)
4661 {
4662 drm_i915_private_t *dev_priv = dev->dev_private;
4663 int i;
4664
4665 dev_priv->slab =
4666 kmem_cache_create("i915_gem_object",
4667 sizeof(struct drm_i915_gem_object), 0,
4668 SLAB_HWCACHE_ALIGN,
4669 NULL);
4670
4671 INIT_LIST_HEAD(&dev_priv->vm_list);
4672 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4673
4674 INIT_LIST_HEAD(&dev_priv->context_list);
4675 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4676 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4677 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4678 for (i = 0; i < I915_NUM_RINGS; i++)
4679 init_ring_lists(&dev_priv->ring[i]);
4680 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4681 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4682 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4683 i915_gem_retire_work_handler);
4684 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4685 i915_gem_idle_work_handler);
4686 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4687
4688 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4689 if (IS_GEN3(dev)) {
4690 I915_WRITE(MI_ARB_STATE,
4691 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4692 }
4693
4694 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4695
4696 /* Old X drivers will take 0-2 for front, back, depth buffers */
4697 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4698 dev_priv->fence_reg_start = 3;
4699
4700 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4701 dev_priv->num_fence_regs = 32;
4702 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4703 dev_priv->num_fence_regs = 16;
4704 else
4705 dev_priv->num_fence_regs = 8;
4706
4707 /* Initialize fence registers to zero */
4708 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4709 i915_gem_restore_fences(dev);
4710
4711 i915_gem_detect_bit_6_swizzle(dev);
4712 init_waitqueue_head(&dev_priv->pending_flip_queue);
4713
4714 dev_priv->mm.interruptible = true;
4715
4716 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4717 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4718 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4719 register_shrinker(&dev_priv->mm.inactive_shrinker);
4720 }
4721
4722 /*
4723 * Create a physically contiguous memory object for this object
4724 * e.g. for cursor + overlay regs
4725 */
4726 static int i915_gem_init_phys_object(struct drm_device *dev,
4727 int id, int size, int align)
4728 {
4729 drm_i915_private_t *dev_priv = dev->dev_private;
4730 struct drm_i915_gem_phys_object *phys_obj;
4731 int ret;
4732
4733 if (dev_priv->mm.phys_objs[id - 1] || !size)
4734 return 0;
4735
4736 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4737 if (!phys_obj)
4738 return -ENOMEM;
4739
4740 phys_obj->id = id;
4741
4742 phys_obj->handle = drm_pci_alloc(dev, size, align);
4743 if (!phys_obj->handle) {
4744 ret = -ENOMEM;
4745 goto kfree_obj;
4746 }
4747 #ifdef CONFIG_X86
4748 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4749 #endif
4750
4751 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4752
4753 return 0;
4754 kfree_obj:
4755 kfree(phys_obj);
4756 return ret;
4757 }
4758
4759 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4760 {
4761 drm_i915_private_t *dev_priv = dev->dev_private;
4762 struct drm_i915_gem_phys_object *phys_obj;
4763
4764 if (!dev_priv->mm.phys_objs[id - 1])
4765 return;
4766
4767 phys_obj = dev_priv->mm.phys_objs[id - 1];
4768 if (phys_obj->cur_obj) {
4769 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4770 }
4771
4772 #ifdef CONFIG_X86
4773 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4774 #endif
4775 drm_pci_free(dev, phys_obj->handle);
4776 kfree(phys_obj);
4777 dev_priv->mm.phys_objs[id - 1] = NULL;
4778 }
4779
4780 void i915_gem_free_all_phys_object(struct drm_device *dev)
4781 {
4782 int i;
4783
4784 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4785 i915_gem_free_phys_object(dev, i);
4786 }
4787
4788 void i915_gem_detach_phys_object(struct drm_device *dev,
4789 struct drm_i915_gem_object *obj)
4790 {
4791 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4792 char *vaddr;
4793 int i;
4794 int page_count;
4795
4796 if (!obj->phys_obj)
4797 return;
4798 vaddr = obj->phys_obj->handle->vaddr;
4799
4800 page_count = obj->base.size / PAGE_SIZE;
4801 for (i = 0; i < page_count; i++) {
4802 struct page *page = shmem_read_mapping_page(mapping, i);
4803 if (!IS_ERR(page)) {
4804 char *dst = kmap_atomic(page);
4805 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4806 kunmap_atomic(dst);
4807
4808 drm_clflush_pages(&page, 1);
4809
4810 set_page_dirty(page);
4811 mark_page_accessed(page);
4812 page_cache_release(page);
4813 }
4814 }
4815 i915_gem_chipset_flush(dev);
4816
4817 obj->phys_obj->cur_obj = NULL;
4818 obj->phys_obj = NULL;
4819 }
4820
4821 int
4822 i915_gem_attach_phys_object(struct drm_device *dev,
4823 struct drm_i915_gem_object *obj,
4824 int id,
4825 int align)
4826 {
4827 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4828 drm_i915_private_t *dev_priv = dev->dev_private;
4829 int ret = 0;
4830 int page_count;
4831 int i;
4832
4833 if (id > I915_MAX_PHYS_OBJECT)
4834 return -EINVAL;
4835
4836 if (obj->phys_obj) {
4837 if (obj->phys_obj->id == id)
4838 return 0;
4839 i915_gem_detach_phys_object(dev, obj);
4840 }
4841
4842 /* create a new object */
4843 if (!dev_priv->mm.phys_objs[id - 1]) {
4844 ret = i915_gem_init_phys_object(dev, id,
4845 obj->base.size, align);
4846 if (ret) {
4847 DRM_ERROR("failed to init phys object %d size: %zu\n",
4848 id, obj->base.size);
4849 return ret;
4850 }
4851 }
4852
4853 /* bind to the object */
4854 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4855 obj->phys_obj->cur_obj = obj;
4856
4857 page_count = obj->base.size / PAGE_SIZE;
4858
4859 for (i = 0; i < page_count; i++) {
4860 struct page *page;
4861 char *dst, *src;
4862
4863 page = shmem_read_mapping_page(mapping, i);
4864 if (IS_ERR(page))
4865 return PTR_ERR(page);
4866
4867 src = kmap_atomic(page);
4868 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4869 memcpy(dst, src, PAGE_SIZE);
4870 kunmap_atomic(src);
4871
4872 mark_page_accessed(page);
4873 page_cache_release(page);
4874 }
4875
4876 return 0;
4877 }
4878
4879 static int
4880 i915_gem_phys_pwrite(struct drm_device *dev,
4881 struct drm_i915_gem_object *obj,
4882 struct drm_i915_gem_pwrite *args,
4883 struct drm_file *file_priv)
4884 {
4885 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4886 char __user *user_data = to_user_ptr(args->data_ptr);
4887
4888 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4889 unsigned long unwritten;
4890
4891 /* The physical object once assigned is fixed for the lifetime
4892 * of the obj, so we can safely drop the lock and continue
4893 * to access vaddr.
4894 */
4895 mutex_unlock(&dev->struct_mutex);
4896 unwritten = copy_from_user(vaddr, user_data, args->size);
4897 mutex_lock(&dev->struct_mutex);
4898 if (unwritten)
4899 return -EFAULT;
4900 }
4901
4902 i915_gem_chipset_flush(dev);
4903 return 0;
4904 }
4905
4906 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4907 {
4908 struct drm_i915_file_private *file_priv = file->driver_priv;
4909
4910 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4911
4912 /* Clean up our request list when the client is going away, so that
4913 * later retire_requests won't dereference our soon-to-be-gone
4914 * file_priv.
4915 */
4916 spin_lock(&file_priv->mm.lock);
4917 while (!list_empty(&file_priv->mm.request_list)) {
4918 struct drm_i915_gem_request *request;
4919
4920 request = list_first_entry(&file_priv->mm.request_list,
4921 struct drm_i915_gem_request,
4922 client_list);
4923 list_del(&request->client_list);
4924 request->file_priv = NULL;
4925 }
4926 spin_unlock(&file_priv->mm.lock);
4927 }
4928
4929 static void
4930 i915_gem_file_idle_work_handler(struct work_struct *work)
4931 {
4932 struct drm_i915_file_private *file_priv =
4933 container_of(work, typeof(*file_priv), mm.idle_work.work);
4934
4935 atomic_set(&file_priv->rps_wait_boost, false);
4936 }
4937
4938 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4939 {
4940 struct drm_i915_file_private *file_priv;
4941
4942 DRM_DEBUG_DRIVER("\n");
4943
4944 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4945 if (!file_priv)
4946 return -ENOMEM;
4947
4948 file->driver_priv = file_priv;
4949 file_priv->dev_priv = dev->dev_private;
4950
4951 spin_lock_init(&file_priv->mm.lock);
4952 INIT_LIST_HEAD(&file_priv->mm.request_list);
4953 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4954 i915_gem_file_idle_work_handler);
4955
4956 idr_init(&file_priv->context_idr);
4957
4958 return 0;
4959 }
4960
4961 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4962 {
4963 if (!mutex_is_locked(mutex))
4964 return false;
4965
4966 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4967 return mutex->owner == task;
4968 #else
4969 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4970 return false;
4971 #endif
4972 }
4973
4974 static unsigned long
4975 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4976 {
4977 struct drm_i915_private *dev_priv =
4978 container_of(shrinker,
4979 struct drm_i915_private,
4980 mm.inactive_shrinker);
4981 struct drm_device *dev = dev_priv->dev;
4982 struct drm_i915_gem_object *obj;
4983 bool unlock = true;
4984 unsigned long count;
4985
4986 if (!mutex_trylock(&dev->struct_mutex)) {
4987 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4988 return 0;
4989
4990 if (dev_priv->mm.shrinker_no_lock_stealing)
4991 return 0;
4992
4993 unlock = false;
4994 }
4995
4996 count = 0;
4997 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4998 if (obj->pages_pin_count == 0)
4999 count += obj->base.size >> PAGE_SHIFT;
5000
5001 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5002 if (obj->active)
5003 continue;
5004
5005 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
5006 count += obj->base.size >> PAGE_SHIFT;
5007 }
5008
5009 if (unlock)
5010 mutex_unlock(&dev->struct_mutex);
5011
5012 return count;
5013 }
5014
5015 /* All the new VM stuff */
5016 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5017 struct i915_address_space *vm)
5018 {
5019 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5020 struct i915_vma *vma;
5021
5022 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5023 vm = &dev_priv->gtt.base;
5024
5025 BUG_ON(list_empty(&o->vma_list));
5026 list_for_each_entry(vma, &o->vma_list, vma_link) {
5027 if (vma->vm == vm)
5028 return vma->node.start;
5029
5030 }
5031 return -1;
5032 }
5033
5034 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5035 struct i915_address_space *vm)
5036 {
5037 struct i915_vma *vma;
5038
5039 list_for_each_entry(vma, &o->vma_list, vma_link)
5040 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5041 return true;
5042
5043 return false;
5044 }
5045
5046 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5047 {
5048 struct i915_vma *vma;
5049
5050 list_for_each_entry(vma, &o->vma_list, vma_link)
5051 if (drm_mm_node_allocated(&vma->node))
5052 return true;
5053
5054 return false;
5055 }
5056
5057 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5058 struct i915_address_space *vm)
5059 {
5060 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5061 struct i915_vma *vma;
5062
5063 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5064 vm = &dev_priv->gtt.base;
5065
5066 BUG_ON(list_empty(&o->vma_list));
5067
5068 list_for_each_entry(vma, &o->vma_list, vma_link)
5069 if (vma->vm == vm)
5070 return vma->node.size;
5071
5072 return 0;
5073 }
5074
5075 static unsigned long
5076 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5077 {
5078 struct drm_i915_private *dev_priv =
5079 container_of(shrinker,
5080 struct drm_i915_private,
5081 mm.inactive_shrinker);
5082 struct drm_device *dev = dev_priv->dev;
5083 unsigned long freed;
5084 bool unlock = true;
5085
5086 if (!mutex_trylock(&dev->struct_mutex)) {
5087 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5088 return SHRINK_STOP;
5089
5090 if (dev_priv->mm.shrinker_no_lock_stealing)
5091 return SHRINK_STOP;
5092
5093 unlock = false;
5094 }
5095
5096 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5097 if (freed < sc->nr_to_scan)
5098 freed += __i915_gem_shrink(dev_priv,
5099 sc->nr_to_scan - freed,
5100 false);
5101 if (freed < sc->nr_to_scan)
5102 freed += i915_gem_shrink_all(dev_priv);
5103
5104 if (unlock)
5105 mutex_unlock(&dev->struct_mutex);
5106
5107 return freed;
5108 }
5109
5110 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5111 {
5112 struct i915_vma *vma;
5113
5114 if (WARN_ON(list_empty(&obj->vma_list)))
5115 return NULL;
5116
5117 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5118 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5119 return NULL;
5120
5121 return vma;
5122 }
This page took 0.130286 seconds and 4 git commands to generate.