drm/i915: Split early global GTT initialisation
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_mocs.h"
37 #include <linux/reservation.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/pci.h>
42 #include <linux/dma-buf.h>
43
44 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
48 static void
49 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int engine);
50
51 static bool cpu_cache_is_coherent(struct drm_device *dev,
52 enum i915_cache_level level)
53 {
54 return HAS_LLC(dev) || level != I915_CACHE_NONE;
55 }
56
57 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
58 {
59 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
60 return false;
61
62 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
63 return true;
64
65 return obj->pin_display;
66 }
67
68 static int
69 insert_mappable_node(struct drm_i915_private *i915,
70 struct drm_mm_node *node, u32 size)
71 {
72 memset(node, 0, sizeof(*node));
73 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
74 size, 0, 0, 0,
75 i915->ggtt.mappable_end,
76 DRM_MM_SEARCH_DEFAULT,
77 DRM_MM_CREATE_DEFAULT);
78 }
79
80 static void
81 remove_mappable_node(struct drm_mm_node *node)
82 {
83 drm_mm_remove_node(node);
84 }
85
86 /* some bookkeeping */
87 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88 size_t size)
89 {
90 spin_lock(&dev_priv->mm.object_stat_lock);
91 dev_priv->mm.object_count++;
92 dev_priv->mm.object_memory += size;
93 spin_unlock(&dev_priv->mm.object_stat_lock);
94 }
95
96 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97 size_t size)
98 {
99 spin_lock(&dev_priv->mm.object_stat_lock);
100 dev_priv->mm.object_count--;
101 dev_priv->mm.object_memory -= size;
102 spin_unlock(&dev_priv->mm.object_stat_lock);
103 }
104
105 static int
106 i915_gem_wait_for_error(struct i915_gpu_error *error)
107 {
108 int ret;
109
110 if (!i915_reset_in_progress(error))
111 return 0;
112
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
118 ret = wait_event_interruptible_timeout(error->reset_queue,
119 !i915_reset_in_progress(error),
120 10*HZ);
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
125 return ret;
126 } else {
127 return 0;
128 }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 int ret;
135
136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
144 WARN_ON(i915_verify_lists(dev));
145 return 0;
146 }
147
148 int
149 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_private *dev_priv = to_i915(dev);
153 struct i915_ggtt *ggtt = &dev_priv->ggtt;
154 struct drm_i915_gem_get_aperture *args = data;
155 struct i915_vma *vma;
156 size_t pinned;
157
158 pinned = 0;
159 mutex_lock(&dev->struct_mutex);
160 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161 if (vma->pin_count)
162 pinned += vma->node.size;
163 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164 if (vma->pin_count)
165 pinned += vma->node.size;
166 mutex_unlock(&dev->struct_mutex);
167
168 args->aper_size = ggtt->base.total;
169 args->aper_available_size = args->aper_size - pinned;
170
171 return 0;
172 }
173
174 static int
175 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176 {
177 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
178 char *vaddr = obj->phys_handle->vaddr;
179 struct sg_table *st;
180 struct scatterlist *sg;
181 int i;
182
183 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 return -EINVAL;
185
186 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
187 struct page *page;
188 char *src;
189
190 page = shmem_read_mapping_page(mapping, i);
191 if (IS_ERR(page))
192 return PTR_ERR(page);
193
194 src = kmap_atomic(page);
195 memcpy(vaddr, src, PAGE_SIZE);
196 drm_clflush_virt_range(vaddr, PAGE_SIZE);
197 kunmap_atomic(src);
198
199 put_page(page);
200 vaddr += PAGE_SIZE;
201 }
202
203 i915_gem_chipset_flush(to_i915(obj->base.dev));
204
205 st = kmalloc(sizeof(*st), GFP_KERNEL);
206 if (st == NULL)
207 return -ENOMEM;
208
209 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
210 kfree(st);
211 return -ENOMEM;
212 }
213
214 sg = st->sgl;
215 sg->offset = 0;
216 sg->length = obj->base.size;
217
218 sg_dma_address(sg) = obj->phys_handle->busaddr;
219 sg_dma_len(sg) = obj->base.size;
220
221 obj->pages = st;
222 return 0;
223 }
224
225 static void
226 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
227 {
228 int ret;
229
230 BUG_ON(obj->madv == __I915_MADV_PURGED);
231
232 ret = i915_gem_object_set_to_cpu_domain(obj, true);
233 if (WARN_ON(ret)) {
234 /* In the event of a disaster, abandon all caches and
235 * hope for the best.
236 */
237 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
238 }
239
240 if (obj->madv == I915_MADV_DONTNEED)
241 obj->dirty = 0;
242
243 if (obj->dirty) {
244 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
245 char *vaddr = obj->phys_handle->vaddr;
246 int i;
247
248 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 struct page *page;
250 char *dst;
251
252 page = shmem_read_mapping_page(mapping, i);
253 if (IS_ERR(page))
254 continue;
255
256 dst = kmap_atomic(page);
257 drm_clflush_virt_range(vaddr, PAGE_SIZE);
258 memcpy(dst, vaddr, PAGE_SIZE);
259 kunmap_atomic(dst);
260
261 set_page_dirty(page);
262 if (obj->madv == I915_MADV_WILLNEED)
263 mark_page_accessed(page);
264 put_page(page);
265 vaddr += PAGE_SIZE;
266 }
267 obj->dirty = 0;
268 }
269
270 sg_free_table(obj->pages);
271 kfree(obj->pages);
272 }
273
274 static void
275 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
276 {
277 drm_pci_free(obj->base.dev, obj->phys_handle);
278 }
279
280 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
281 .get_pages = i915_gem_object_get_pages_phys,
282 .put_pages = i915_gem_object_put_pages_phys,
283 .release = i915_gem_object_release_phys,
284 };
285
286 static int
287 drop_pages(struct drm_i915_gem_object *obj)
288 {
289 struct i915_vma *vma, *next;
290 int ret;
291
292 i915_gem_object_get(obj);
293 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
294 if (i915_vma_unbind(vma))
295 break;
296
297 ret = i915_gem_object_put_pages(obj);
298 i915_gem_object_put(obj);
299
300 return ret;
301 }
302
303 int
304 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
305 int align)
306 {
307 drm_dma_handle_t *phys;
308 int ret;
309
310 if (obj->phys_handle) {
311 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
312 return -EBUSY;
313
314 return 0;
315 }
316
317 if (obj->madv != I915_MADV_WILLNEED)
318 return -EFAULT;
319
320 if (obj->base.filp == NULL)
321 return -EINVAL;
322
323 ret = drop_pages(obj);
324 if (ret)
325 return ret;
326
327 /* create a new object */
328 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
329 if (!phys)
330 return -ENOMEM;
331
332 obj->phys_handle = phys;
333 obj->ops = &i915_gem_phys_ops;
334
335 return i915_gem_object_get_pages(obj);
336 }
337
338 static int
339 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
340 struct drm_i915_gem_pwrite *args,
341 struct drm_file *file_priv)
342 {
343 struct drm_device *dev = obj->base.dev;
344 void *vaddr = obj->phys_handle->vaddr + args->offset;
345 char __user *user_data = u64_to_user_ptr(args->data_ptr);
346 int ret = 0;
347
348 /* We manually control the domain here and pretend that it
349 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
350 */
351 ret = i915_gem_object_wait_rendering(obj, false);
352 if (ret)
353 return ret;
354
355 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
356 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
357 unsigned long unwritten;
358
359 /* The physical object once assigned is fixed for the lifetime
360 * of the obj, so we can safely drop the lock and continue
361 * to access vaddr.
362 */
363 mutex_unlock(&dev->struct_mutex);
364 unwritten = copy_from_user(vaddr, user_data, args->size);
365 mutex_lock(&dev->struct_mutex);
366 if (unwritten) {
367 ret = -EFAULT;
368 goto out;
369 }
370 }
371
372 drm_clflush_virt_range(vaddr, args->size);
373 i915_gem_chipset_flush(to_i915(dev));
374
375 out:
376 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
377 return ret;
378 }
379
380 void *i915_gem_object_alloc(struct drm_device *dev)
381 {
382 struct drm_i915_private *dev_priv = to_i915(dev);
383 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
384 }
385
386 void i915_gem_object_free(struct drm_i915_gem_object *obj)
387 {
388 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
389 kmem_cache_free(dev_priv->objects, obj);
390 }
391
392 static int
393 i915_gem_create(struct drm_file *file,
394 struct drm_device *dev,
395 uint64_t size,
396 uint32_t *handle_p)
397 {
398 struct drm_i915_gem_object *obj;
399 int ret;
400 u32 handle;
401
402 size = roundup(size, PAGE_SIZE);
403 if (size == 0)
404 return -EINVAL;
405
406 /* Allocate the new object */
407 obj = i915_gem_object_create(dev, size);
408 if (IS_ERR(obj))
409 return PTR_ERR(obj);
410
411 ret = drm_gem_handle_create(file, &obj->base, &handle);
412 /* drop reference from allocate - handle holds it now */
413 i915_gem_object_put_unlocked(obj);
414 if (ret)
415 return ret;
416
417 *handle_p = handle;
418 return 0;
419 }
420
421 int
422 i915_gem_dumb_create(struct drm_file *file,
423 struct drm_device *dev,
424 struct drm_mode_create_dumb *args)
425 {
426 /* have to work out size/pitch and return them */
427 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
428 args->size = args->pitch * args->height;
429 return i915_gem_create(file, dev,
430 args->size, &args->handle);
431 }
432
433 /**
434 * Creates a new mm object and returns a handle to it.
435 * @dev: drm device pointer
436 * @data: ioctl data blob
437 * @file: drm file pointer
438 */
439 int
440 i915_gem_create_ioctl(struct drm_device *dev, void *data,
441 struct drm_file *file)
442 {
443 struct drm_i915_gem_create *args = data;
444
445 return i915_gem_create(file, dev,
446 args->size, &args->handle);
447 }
448
449 static inline int
450 __copy_to_user_swizzled(char __user *cpu_vaddr,
451 const char *gpu_vaddr, int gpu_offset,
452 int length)
453 {
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_to_user(cpu_vaddr + cpu_offset,
462 gpu_vaddr + swizzled_gpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473 }
474
475 static inline int
476 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
477 const char __user *cpu_vaddr,
478 int length)
479 {
480 int ret, cpu_offset = 0;
481
482 while (length > 0) {
483 int cacheline_end = ALIGN(gpu_offset + 1, 64);
484 int this_length = min(cacheline_end - gpu_offset, length);
485 int swizzled_gpu_offset = gpu_offset ^ 64;
486
487 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
488 cpu_vaddr + cpu_offset,
489 this_length);
490 if (ret)
491 return ret + length;
492
493 cpu_offset += this_length;
494 gpu_offset += this_length;
495 length -= this_length;
496 }
497
498 return 0;
499 }
500
501 /*
502 * Pins the specified object's pages and synchronizes the object with
503 * GPU accesses. Sets needs_clflush to non-zero if the caller should
504 * flush the object from the CPU cache.
505 */
506 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
507 int *needs_clflush)
508 {
509 int ret;
510
511 *needs_clflush = 0;
512
513 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
514 return -EINVAL;
515
516 ret = i915_gem_object_wait_rendering(obj, true);
517 if (ret)
518 return ret;
519
520 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
521 /* If we're not in the cpu read domain, set ourself into the gtt
522 * read domain and manually flush cachelines (if required). This
523 * optimizes for the case when the gpu will dirty the data
524 * anyway again before the next pread happens. */
525 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
526 obj->cache_level);
527 }
528
529 ret = i915_gem_object_get_pages(obj);
530 if (ret)
531 return ret;
532
533 i915_gem_object_pin_pages(obj);
534
535 return ret;
536 }
537
538 /* Per-page copy function for the shmem pread fastpath.
539 * Flushes invalid cachelines before reading the target if
540 * needs_clflush is set. */
541 static int
542 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543 char __user *user_data,
544 bool page_do_bit17_swizzling, bool needs_clflush)
545 {
546 char *vaddr;
547 int ret;
548
549 if (unlikely(page_do_bit17_swizzling))
550 return -EINVAL;
551
552 vaddr = kmap_atomic(page);
553 if (needs_clflush)
554 drm_clflush_virt_range(vaddr + shmem_page_offset,
555 page_length);
556 ret = __copy_to_user_inatomic(user_data,
557 vaddr + shmem_page_offset,
558 page_length);
559 kunmap_atomic(vaddr);
560
561 return ret ? -EFAULT : 0;
562 }
563
564 static void
565 shmem_clflush_swizzled_range(char *addr, unsigned long length,
566 bool swizzled)
567 {
568 if (unlikely(swizzled)) {
569 unsigned long start = (unsigned long) addr;
570 unsigned long end = (unsigned long) addr + length;
571
572 /* For swizzling simply ensure that we always flush both
573 * channels. Lame, but simple and it works. Swizzled
574 * pwrite/pread is far from a hotpath - current userspace
575 * doesn't use it at all. */
576 start = round_down(start, 128);
577 end = round_up(end, 128);
578
579 drm_clflush_virt_range((void *)start, end - start);
580 } else {
581 drm_clflush_virt_range(addr, length);
582 }
583
584 }
585
586 /* Only difference to the fast-path function is that this can handle bit17
587 * and uses non-atomic copy and kmap functions. */
588 static int
589 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590 char __user *user_data,
591 bool page_do_bit17_swizzling, bool needs_clflush)
592 {
593 char *vaddr;
594 int ret;
595
596 vaddr = kmap(page);
597 if (needs_clflush)
598 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599 page_length,
600 page_do_bit17_swizzling);
601
602 if (page_do_bit17_swizzling)
603 ret = __copy_to_user_swizzled(user_data,
604 vaddr, shmem_page_offset,
605 page_length);
606 else
607 ret = __copy_to_user(user_data,
608 vaddr + shmem_page_offset,
609 page_length);
610 kunmap(page);
611
612 return ret ? - EFAULT : 0;
613 }
614
615 static inline unsigned long
616 slow_user_access(struct io_mapping *mapping,
617 uint64_t page_base, int page_offset,
618 char __user *user_data,
619 unsigned long length, bool pwrite)
620 {
621 void __iomem *ioaddr;
622 void *vaddr;
623 uint64_t unwritten;
624
625 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
626 /* We can use the cpu mem copy function because this is X86. */
627 vaddr = (void __force *)ioaddr + page_offset;
628 if (pwrite)
629 unwritten = __copy_from_user(vaddr, user_data, length);
630 else
631 unwritten = __copy_to_user(user_data, vaddr, length);
632
633 io_mapping_unmap(ioaddr);
634 return unwritten;
635 }
636
637 static int
638 i915_gem_gtt_pread(struct drm_device *dev,
639 struct drm_i915_gem_object *obj, uint64_t size,
640 uint64_t data_offset, uint64_t data_ptr)
641 {
642 struct drm_i915_private *dev_priv = to_i915(dev);
643 struct i915_ggtt *ggtt = &dev_priv->ggtt;
644 struct drm_mm_node node;
645 char __user *user_data;
646 uint64_t remain;
647 uint64_t offset;
648 int ret;
649
650 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
651 if (ret) {
652 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
653 if (ret)
654 goto out;
655
656 ret = i915_gem_object_get_pages(obj);
657 if (ret) {
658 remove_mappable_node(&node);
659 goto out;
660 }
661
662 i915_gem_object_pin_pages(obj);
663 } else {
664 node.start = i915_gem_obj_ggtt_offset(obj);
665 node.allocated = false;
666 ret = i915_gem_object_put_fence(obj);
667 if (ret)
668 goto out_unpin;
669 }
670
671 ret = i915_gem_object_set_to_gtt_domain(obj, false);
672 if (ret)
673 goto out_unpin;
674
675 user_data = u64_to_user_ptr(data_ptr);
676 remain = size;
677 offset = data_offset;
678
679 mutex_unlock(&dev->struct_mutex);
680 if (likely(!i915.prefault_disable)) {
681 ret = fault_in_multipages_writeable(user_data, remain);
682 if (ret) {
683 mutex_lock(&dev->struct_mutex);
684 goto out_unpin;
685 }
686 }
687
688 while (remain > 0) {
689 /* Operation in this page
690 *
691 * page_base = page offset within aperture
692 * page_offset = offset within page
693 * page_length = bytes to copy for this page
694 */
695 u32 page_base = node.start;
696 unsigned page_offset = offset_in_page(offset);
697 unsigned page_length = PAGE_SIZE - page_offset;
698 page_length = remain < page_length ? remain : page_length;
699 if (node.allocated) {
700 wmb();
701 ggtt->base.insert_page(&ggtt->base,
702 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
703 node.start,
704 I915_CACHE_NONE, 0);
705 wmb();
706 } else {
707 page_base += offset & PAGE_MASK;
708 }
709 /* This is a slow read/write as it tries to read from
710 * and write to user memory which may result into page
711 * faults, and so we cannot perform this under struct_mutex.
712 */
713 if (slow_user_access(ggtt->mappable, page_base,
714 page_offset, user_data,
715 page_length, false)) {
716 ret = -EFAULT;
717 break;
718 }
719
720 remain -= page_length;
721 user_data += page_length;
722 offset += page_length;
723 }
724
725 mutex_lock(&dev->struct_mutex);
726 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
727 /* The user has modified the object whilst we tried
728 * reading from it, and we now have no idea what domain
729 * the pages should be in. As we have just been touching
730 * them directly, flush everything back to the GTT
731 * domain.
732 */
733 ret = i915_gem_object_set_to_gtt_domain(obj, false);
734 }
735
736 out_unpin:
737 if (node.allocated) {
738 wmb();
739 ggtt->base.clear_range(&ggtt->base,
740 node.start, node.size,
741 true);
742 i915_gem_object_unpin_pages(obj);
743 remove_mappable_node(&node);
744 } else {
745 i915_gem_object_ggtt_unpin(obj);
746 }
747 out:
748 return ret;
749 }
750
751 static int
752 i915_gem_shmem_pread(struct drm_device *dev,
753 struct drm_i915_gem_object *obj,
754 struct drm_i915_gem_pread *args,
755 struct drm_file *file)
756 {
757 char __user *user_data;
758 ssize_t remain;
759 loff_t offset;
760 int shmem_page_offset, page_length, ret = 0;
761 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
762 int prefaulted = 0;
763 int needs_clflush = 0;
764 struct sg_page_iter sg_iter;
765
766 if (!i915_gem_object_has_struct_page(obj))
767 return -ENODEV;
768
769 user_data = u64_to_user_ptr(args->data_ptr);
770 remain = args->size;
771
772 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
773
774 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
775 if (ret)
776 return ret;
777
778 offset = args->offset;
779
780 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
781 offset >> PAGE_SHIFT) {
782 struct page *page = sg_page_iter_page(&sg_iter);
783
784 if (remain <= 0)
785 break;
786
787 /* Operation in this page
788 *
789 * shmem_page_offset = offset within page in shmem file
790 * page_length = bytes to copy for this page
791 */
792 shmem_page_offset = offset_in_page(offset);
793 page_length = remain;
794 if ((shmem_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - shmem_page_offset;
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 needs_clflush);
803 if (ret == 0)
804 goto next_page;
805
806 mutex_unlock(&dev->struct_mutex);
807
808 if (likely(!i915.prefault_disable) && !prefaulted) {
809 ret = fault_in_multipages_writeable(user_data, remain);
810 /* Userspace is tricking us, but we've already clobbered
811 * its pages with the prefault and promised to write the
812 * data up to the first fault. Hence ignore any errors
813 * and just continue. */
814 (void)ret;
815 prefaulted = 1;
816 }
817
818 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 needs_clflush);
821
822 mutex_lock(&dev->struct_mutex);
823
824 if (ret)
825 goto out;
826
827 next_page:
828 remain -= page_length;
829 user_data += page_length;
830 offset += page_length;
831 }
832
833 out:
834 i915_gem_object_unpin_pages(obj);
835
836 return ret;
837 }
838
839 /**
840 * Reads data from the object referenced by handle.
841 * @dev: drm device pointer
842 * @data: ioctl data blob
843 * @file: drm file pointer
844 *
845 * On error, the contents of *data are undefined.
846 */
847 int
848 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pread *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret = 0;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_WRITE,
859 u64_to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = i915_mutex_lock_interruptible(dev);
864 if (ret)
865 return ret;
866
867 obj = i915_gem_object_lookup(file, args->handle);
868 if (!obj) {
869 ret = -ENOENT;
870 goto unlock;
871 }
872
873 /* Bounds check source. */
874 if (args->offset > obj->base.size ||
875 args->size > obj->base.size - args->offset) {
876 ret = -EINVAL;
877 goto out;
878 }
879
880 trace_i915_gem_object_pread(obj, args->offset, args->size);
881
882 ret = i915_gem_shmem_pread(dev, obj, args, file);
883
884 /* pread for non shmem backed objects */
885 if (ret == -EFAULT || ret == -ENODEV)
886 ret = i915_gem_gtt_pread(dev, obj, args->size,
887 args->offset, args->data_ptr);
888
889 out:
890 i915_gem_object_put(obj);
891 unlock:
892 mutex_unlock(&dev->struct_mutex);
893 return ret;
894 }
895
896 /* This is the fast write path which cannot handle
897 * page faults in the source data
898 */
899
900 static inline int
901 fast_user_write(struct io_mapping *mapping,
902 loff_t page_base, int page_offset,
903 char __user *user_data,
904 int length)
905 {
906 void __iomem *vaddr_atomic;
907 void *vaddr;
908 unsigned long unwritten;
909
910 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
911 /* We can use the cpu mem copy function because this is X86. */
912 vaddr = (void __force*)vaddr_atomic + page_offset;
913 unwritten = __copy_from_user_inatomic_nocache(vaddr,
914 user_data, length);
915 io_mapping_unmap_atomic(vaddr_atomic);
916 return unwritten;
917 }
918
919 /**
920 * This is the fast pwrite path, where we copy the data directly from the
921 * user into the GTT, uncached.
922 * @i915: i915 device private data
923 * @obj: i915 gem object
924 * @args: pwrite arguments structure
925 * @file: drm file pointer
926 */
927 static int
928 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
929 struct drm_i915_gem_object *obj,
930 struct drm_i915_gem_pwrite *args,
931 struct drm_file *file)
932 {
933 struct i915_ggtt *ggtt = &i915->ggtt;
934 struct drm_device *dev = obj->base.dev;
935 struct drm_mm_node node;
936 uint64_t remain, offset;
937 char __user *user_data;
938 int ret;
939 bool hit_slow_path = false;
940
941 if (obj->tiling_mode != I915_TILING_NONE)
942 return -EFAULT;
943
944 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
945 if (ret) {
946 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
947 if (ret)
948 goto out;
949
950 ret = i915_gem_object_get_pages(obj);
951 if (ret) {
952 remove_mappable_node(&node);
953 goto out;
954 }
955
956 i915_gem_object_pin_pages(obj);
957 } else {
958 node.start = i915_gem_obj_ggtt_offset(obj);
959 node.allocated = false;
960 ret = i915_gem_object_put_fence(obj);
961 if (ret)
962 goto out_unpin;
963 }
964
965 ret = i915_gem_object_set_to_gtt_domain(obj, true);
966 if (ret)
967 goto out_unpin;
968
969 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
970 obj->dirty = true;
971
972 user_data = u64_to_user_ptr(args->data_ptr);
973 offset = args->offset;
974 remain = args->size;
975 while (remain) {
976 /* Operation in this page
977 *
978 * page_base = page offset within aperture
979 * page_offset = offset within page
980 * page_length = bytes to copy for this page
981 */
982 u32 page_base = node.start;
983 unsigned page_offset = offset_in_page(offset);
984 unsigned page_length = PAGE_SIZE - page_offset;
985 page_length = remain < page_length ? remain : page_length;
986 if (node.allocated) {
987 wmb(); /* flush the write before we modify the GGTT */
988 ggtt->base.insert_page(&ggtt->base,
989 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
990 node.start, I915_CACHE_NONE, 0);
991 wmb(); /* flush modifications to the GGTT (insert_page) */
992 } else {
993 page_base += offset & PAGE_MASK;
994 }
995 /* If we get a fault while copying data, then (presumably) our
996 * source page isn't available. Return the error and we'll
997 * retry in the slow path.
998 * If the object is non-shmem backed, we retry again with the
999 * path that handles page fault.
1000 */
1001 if (fast_user_write(ggtt->mappable, page_base,
1002 page_offset, user_data, page_length)) {
1003 hit_slow_path = true;
1004 mutex_unlock(&dev->struct_mutex);
1005 if (slow_user_access(ggtt->mappable,
1006 page_base,
1007 page_offset, user_data,
1008 page_length, true)) {
1009 ret = -EFAULT;
1010 mutex_lock(&dev->struct_mutex);
1011 goto out_flush;
1012 }
1013
1014 mutex_lock(&dev->struct_mutex);
1015 }
1016
1017 remain -= page_length;
1018 user_data += page_length;
1019 offset += page_length;
1020 }
1021
1022 out_flush:
1023 if (hit_slow_path) {
1024 if (ret == 0 &&
1025 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1026 /* The user has modified the object whilst we tried
1027 * reading from it, and we now have no idea what domain
1028 * the pages should be in. As we have just been touching
1029 * them directly, flush everything back to the GTT
1030 * domain.
1031 */
1032 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1033 }
1034 }
1035
1036 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1037 out_unpin:
1038 if (node.allocated) {
1039 wmb();
1040 ggtt->base.clear_range(&ggtt->base,
1041 node.start, node.size,
1042 true);
1043 i915_gem_object_unpin_pages(obj);
1044 remove_mappable_node(&node);
1045 } else {
1046 i915_gem_object_ggtt_unpin(obj);
1047 }
1048 out:
1049 return ret;
1050 }
1051
1052 /* Per-page copy function for the shmem pwrite fastpath.
1053 * Flushes invalid cachelines before writing to the target if
1054 * needs_clflush_before is set and flushes out any written cachelines after
1055 * writing if needs_clflush is set. */
1056 static int
1057 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1058 char __user *user_data,
1059 bool page_do_bit17_swizzling,
1060 bool needs_clflush_before,
1061 bool needs_clflush_after)
1062 {
1063 char *vaddr;
1064 int ret;
1065
1066 if (unlikely(page_do_bit17_swizzling))
1067 return -EINVAL;
1068
1069 vaddr = kmap_atomic(page);
1070 if (needs_clflush_before)
1071 drm_clflush_virt_range(vaddr + shmem_page_offset,
1072 page_length);
1073 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1074 user_data, page_length);
1075 if (needs_clflush_after)
1076 drm_clflush_virt_range(vaddr + shmem_page_offset,
1077 page_length);
1078 kunmap_atomic(vaddr);
1079
1080 return ret ? -EFAULT : 0;
1081 }
1082
1083 /* Only difference to the fast-path function is that this can handle bit17
1084 * and uses non-atomic copy and kmap functions. */
1085 static int
1086 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1087 char __user *user_data,
1088 bool page_do_bit17_swizzling,
1089 bool needs_clflush_before,
1090 bool needs_clflush_after)
1091 {
1092 char *vaddr;
1093 int ret;
1094
1095 vaddr = kmap(page);
1096 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1097 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1098 page_length,
1099 page_do_bit17_swizzling);
1100 if (page_do_bit17_swizzling)
1101 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1102 user_data,
1103 page_length);
1104 else
1105 ret = __copy_from_user(vaddr + shmem_page_offset,
1106 user_data,
1107 page_length);
1108 if (needs_clflush_after)
1109 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1110 page_length,
1111 page_do_bit17_swizzling);
1112 kunmap(page);
1113
1114 return ret ? -EFAULT : 0;
1115 }
1116
1117 static int
1118 i915_gem_shmem_pwrite(struct drm_device *dev,
1119 struct drm_i915_gem_object *obj,
1120 struct drm_i915_gem_pwrite *args,
1121 struct drm_file *file)
1122 {
1123 ssize_t remain;
1124 loff_t offset;
1125 char __user *user_data;
1126 int shmem_page_offset, page_length, ret = 0;
1127 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1128 int hit_slowpath = 0;
1129 int needs_clflush_after = 0;
1130 int needs_clflush_before = 0;
1131 struct sg_page_iter sg_iter;
1132
1133 user_data = u64_to_user_ptr(args->data_ptr);
1134 remain = args->size;
1135
1136 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1137
1138 ret = i915_gem_object_wait_rendering(obj, false);
1139 if (ret)
1140 return ret;
1141
1142 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1143 /* If we're not in the cpu write domain, set ourself into the gtt
1144 * write domain and manually flush cachelines (if required). This
1145 * optimizes for the case when the gpu will use the data
1146 * right away and we therefore have to clflush anyway. */
1147 needs_clflush_after = cpu_write_needs_clflush(obj);
1148 }
1149 /* Same trick applies to invalidate partially written cachelines read
1150 * before writing. */
1151 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1152 needs_clflush_before =
1153 !cpu_cache_is_coherent(dev, obj->cache_level);
1154
1155 ret = i915_gem_object_get_pages(obj);
1156 if (ret)
1157 return ret;
1158
1159 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160
1161 i915_gem_object_pin_pages(obj);
1162
1163 offset = args->offset;
1164 obj->dirty = 1;
1165
1166 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1167 offset >> PAGE_SHIFT) {
1168 struct page *page = sg_page_iter_page(&sg_iter);
1169 int partial_cacheline_write;
1170
1171 if (remain <= 0)
1172 break;
1173
1174 /* Operation in this page
1175 *
1176 * shmem_page_offset = offset within page in shmem file
1177 * page_length = bytes to copy for this page
1178 */
1179 shmem_page_offset = offset_in_page(offset);
1180
1181 page_length = remain;
1182 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1183 page_length = PAGE_SIZE - shmem_page_offset;
1184
1185 /* If we don't overwrite a cacheline completely we need to be
1186 * careful to have up-to-date data by first clflushing. Don't
1187 * overcomplicate things and flush the entire patch. */
1188 partial_cacheline_write = needs_clflush_before &&
1189 ((shmem_page_offset | page_length)
1190 & (boot_cpu_data.x86_clflush_size - 1));
1191
1192 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1193 (page_to_phys(page) & (1 << 17)) != 0;
1194
1195 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1196 user_data, page_do_bit17_swizzling,
1197 partial_cacheline_write,
1198 needs_clflush_after);
1199 if (ret == 0)
1200 goto next_page;
1201
1202 hit_slowpath = 1;
1203 mutex_unlock(&dev->struct_mutex);
1204 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1205 user_data, page_do_bit17_swizzling,
1206 partial_cacheline_write,
1207 needs_clflush_after);
1208
1209 mutex_lock(&dev->struct_mutex);
1210
1211 if (ret)
1212 goto out;
1213
1214 next_page:
1215 remain -= page_length;
1216 user_data += page_length;
1217 offset += page_length;
1218 }
1219
1220 out:
1221 i915_gem_object_unpin_pages(obj);
1222
1223 if (hit_slowpath) {
1224 /*
1225 * Fixup: Flush cpu caches in case we didn't flush the dirty
1226 * cachelines in-line while writing and the object moved
1227 * out of the cpu write domain while we've dropped the lock.
1228 */
1229 if (!needs_clflush_after &&
1230 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1231 if (i915_gem_clflush_object(obj, obj->pin_display))
1232 needs_clflush_after = true;
1233 }
1234 }
1235
1236 if (needs_clflush_after)
1237 i915_gem_chipset_flush(to_i915(dev));
1238 else
1239 obj->cache_dirty = true;
1240
1241 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1242 return ret;
1243 }
1244
1245 /**
1246 * Writes data to the object referenced by handle.
1247 * @dev: drm device
1248 * @data: ioctl data blob
1249 * @file: drm file
1250 *
1251 * On error, the contents of the buffer that were to be modified are undefined.
1252 */
1253 int
1254 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1255 struct drm_file *file)
1256 {
1257 struct drm_i915_private *dev_priv = to_i915(dev);
1258 struct drm_i915_gem_pwrite *args = data;
1259 struct drm_i915_gem_object *obj;
1260 int ret;
1261
1262 if (args->size == 0)
1263 return 0;
1264
1265 if (!access_ok(VERIFY_READ,
1266 u64_to_user_ptr(args->data_ptr),
1267 args->size))
1268 return -EFAULT;
1269
1270 if (likely(!i915.prefault_disable)) {
1271 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1272 args->size);
1273 if (ret)
1274 return -EFAULT;
1275 }
1276
1277 intel_runtime_pm_get(dev_priv);
1278
1279 ret = i915_mutex_lock_interruptible(dev);
1280 if (ret)
1281 goto put_rpm;
1282
1283 obj = i915_gem_object_lookup(file, args->handle);
1284 if (!obj) {
1285 ret = -ENOENT;
1286 goto unlock;
1287 }
1288
1289 /* Bounds check destination. */
1290 if (args->offset > obj->base.size ||
1291 args->size > obj->base.size - args->offset) {
1292 ret = -EINVAL;
1293 goto out;
1294 }
1295
1296 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1297
1298 ret = -EFAULT;
1299 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1300 * it would end up going through the fenced access, and we'll get
1301 * different detiling behavior between reading and writing.
1302 * pread/pwrite currently are reading and writing from the CPU
1303 * perspective, requiring manual detiling by the client.
1304 */
1305 if (!i915_gem_object_has_struct_page(obj) ||
1306 cpu_write_needs_clflush(obj)) {
1307 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1308 /* Note that the gtt paths might fail with non-page-backed user
1309 * pointers (e.g. gtt mappings when moving data between
1310 * textures). Fallback to the shmem path in that case. */
1311 }
1312
1313 if (ret == -EFAULT || ret == -ENOSPC) {
1314 if (obj->phys_handle)
1315 ret = i915_gem_phys_pwrite(obj, args, file);
1316 else if (i915_gem_object_has_struct_page(obj))
1317 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1318 else
1319 ret = -ENODEV;
1320 }
1321
1322 out:
1323 i915_gem_object_put(obj);
1324 unlock:
1325 mutex_unlock(&dev->struct_mutex);
1326 put_rpm:
1327 intel_runtime_pm_put(dev_priv);
1328
1329 return ret;
1330 }
1331
1332 /**
1333 * Ensures that all rendering to the object has completed and the object is
1334 * safe to unbind from the GTT or access from the CPU.
1335 * @obj: i915 gem object
1336 * @readonly: waiting for read access or write
1337 */
1338 int
1339 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1340 bool readonly)
1341 {
1342 struct reservation_object *resv;
1343 int ret, i;
1344
1345 if (readonly) {
1346 if (obj->last_write_req != NULL) {
1347 ret = i915_wait_request(obj->last_write_req);
1348 if (ret)
1349 return ret;
1350
1351 i = obj->last_write_req->engine->id;
1352 if (obj->last_read_req[i] == obj->last_write_req)
1353 i915_gem_object_retire__read(obj, i);
1354 else
1355 i915_gem_object_retire__write(obj);
1356 }
1357 } else {
1358 for (i = 0; i < I915_NUM_ENGINES; i++) {
1359 if (obj->last_read_req[i] == NULL)
1360 continue;
1361
1362 ret = i915_wait_request(obj->last_read_req[i]);
1363 if (ret)
1364 return ret;
1365
1366 i915_gem_object_retire__read(obj, i);
1367 }
1368 GEM_BUG_ON(obj->active);
1369 }
1370
1371 resv = i915_gem_object_get_dmabuf_resv(obj);
1372 if (resv) {
1373 long err;
1374
1375 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
1376 MAX_SCHEDULE_TIMEOUT);
1377 if (err < 0)
1378 return err;
1379 }
1380
1381 return 0;
1382 }
1383
1384 static void
1385 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1386 struct drm_i915_gem_request *req)
1387 {
1388 int idx = req->engine->id;
1389
1390 if (obj->last_read_req[idx] == req)
1391 i915_gem_object_retire__read(obj, idx);
1392 else if (obj->last_write_req == req)
1393 i915_gem_object_retire__write(obj);
1394
1395 if (!i915_reset_in_progress(&req->i915->gpu_error))
1396 i915_gem_request_retire_upto(req);
1397 }
1398
1399 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1400 * as the object state may change during this call.
1401 */
1402 static __must_check int
1403 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404 struct intel_rps_client *rps,
1405 bool readonly)
1406 {
1407 struct drm_device *dev = obj->base.dev;
1408 struct drm_i915_private *dev_priv = to_i915(dev);
1409 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1410 int ret, i, n = 0;
1411
1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413 BUG_ON(!dev_priv->mm.interruptible);
1414
1415 if (!obj->active)
1416 return 0;
1417
1418 if (readonly) {
1419 struct drm_i915_gem_request *req;
1420
1421 req = obj->last_write_req;
1422 if (req == NULL)
1423 return 0;
1424
1425 requests[n++] = i915_gem_request_get(req);
1426 } else {
1427 for (i = 0; i < I915_NUM_ENGINES; i++) {
1428 struct drm_i915_gem_request *req;
1429
1430 req = obj->last_read_req[i];
1431 if (req == NULL)
1432 continue;
1433
1434 requests[n++] = i915_gem_request_get(req);
1435 }
1436 }
1437
1438 mutex_unlock(&dev->struct_mutex);
1439 ret = 0;
1440 for (i = 0; ret == 0 && i < n; i++)
1441 ret = __i915_wait_request(requests[i], true, NULL, rps);
1442 mutex_lock(&dev->struct_mutex);
1443
1444 for (i = 0; i < n; i++) {
1445 if (ret == 0)
1446 i915_gem_object_retire_request(obj, requests[i]);
1447 i915_gem_request_put(requests[i]);
1448 }
1449
1450 return ret;
1451 }
1452
1453 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1454 {
1455 struct drm_i915_file_private *fpriv = file->driver_priv;
1456 return &fpriv->rps;
1457 }
1458
1459 static enum fb_op_origin
1460 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1461 {
1462 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1463 ORIGIN_GTT : ORIGIN_CPU;
1464 }
1465
1466 /**
1467 * Called when user space prepares to use an object with the CPU, either
1468 * through the mmap ioctl's mapping or a GTT mapping.
1469 * @dev: drm device
1470 * @data: ioctl data blob
1471 * @file: drm file
1472 */
1473 int
1474 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1475 struct drm_file *file)
1476 {
1477 struct drm_i915_gem_set_domain *args = data;
1478 struct drm_i915_gem_object *obj;
1479 uint32_t read_domains = args->read_domains;
1480 uint32_t write_domain = args->write_domain;
1481 int ret;
1482
1483 /* Only handle setting domains to types used by the CPU. */
1484 if (write_domain & I915_GEM_GPU_DOMAINS)
1485 return -EINVAL;
1486
1487 if (read_domains & I915_GEM_GPU_DOMAINS)
1488 return -EINVAL;
1489
1490 /* Having something in the write domain implies it's in the read
1491 * domain, and only that read domain. Enforce that in the request.
1492 */
1493 if (write_domain != 0 && read_domains != write_domain)
1494 return -EINVAL;
1495
1496 ret = i915_mutex_lock_interruptible(dev);
1497 if (ret)
1498 return ret;
1499
1500 obj = i915_gem_object_lookup(file, args->handle);
1501 if (!obj) {
1502 ret = -ENOENT;
1503 goto unlock;
1504 }
1505
1506 /* Try to flush the object off the GPU without holding the lock.
1507 * We will repeat the flush holding the lock in the normal manner
1508 * to catch cases where we are gazumped.
1509 */
1510 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1511 to_rps_client(file),
1512 !write_domain);
1513 if (ret)
1514 goto unref;
1515
1516 if (read_domains & I915_GEM_DOMAIN_GTT)
1517 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1518 else
1519 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1520
1521 if (write_domain != 0)
1522 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1523
1524 unref:
1525 i915_gem_object_put(obj);
1526 unlock:
1527 mutex_unlock(&dev->struct_mutex);
1528 return ret;
1529 }
1530
1531 /**
1532 * Called when user space has done writes to this buffer
1533 * @dev: drm device
1534 * @data: ioctl data blob
1535 * @file: drm file
1536 */
1537 int
1538 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1539 struct drm_file *file)
1540 {
1541 struct drm_i915_gem_sw_finish *args = data;
1542 struct drm_i915_gem_object *obj;
1543 int ret = 0;
1544
1545 ret = i915_mutex_lock_interruptible(dev);
1546 if (ret)
1547 return ret;
1548
1549 obj = i915_gem_object_lookup(file, args->handle);
1550 if (!obj) {
1551 ret = -ENOENT;
1552 goto unlock;
1553 }
1554
1555 /* Pinned buffers may be scanout, so flush the cache */
1556 if (obj->pin_display)
1557 i915_gem_object_flush_cpu_write_domain(obj);
1558
1559 i915_gem_object_put(obj);
1560 unlock:
1561 mutex_unlock(&dev->struct_mutex);
1562 return ret;
1563 }
1564
1565 /**
1566 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1567 * it is mapped to.
1568 * @dev: drm device
1569 * @data: ioctl data blob
1570 * @file: drm file
1571 *
1572 * While the mapping holds a reference on the contents of the object, it doesn't
1573 * imply a ref on the object itself.
1574 *
1575 * IMPORTANT:
1576 *
1577 * DRM driver writers who look a this function as an example for how to do GEM
1578 * mmap support, please don't implement mmap support like here. The modern way
1579 * to implement DRM mmap support is with an mmap offset ioctl (like
1580 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1581 * That way debug tooling like valgrind will understand what's going on, hiding
1582 * the mmap call in a driver private ioctl will break that. The i915 driver only
1583 * does cpu mmaps this way because we didn't know better.
1584 */
1585 int
1586 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588 {
1589 struct drm_i915_gem_mmap *args = data;
1590 struct drm_i915_gem_object *obj;
1591 unsigned long addr;
1592
1593 if (args->flags & ~(I915_MMAP_WC))
1594 return -EINVAL;
1595
1596 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1597 return -ENODEV;
1598
1599 obj = i915_gem_object_lookup(file, args->handle);
1600 if (!obj)
1601 return -ENOENT;
1602
1603 /* prime objects have no backing filp to GEM mmap
1604 * pages from.
1605 */
1606 if (!obj->base.filp) {
1607 i915_gem_object_put_unlocked(obj);
1608 return -EINVAL;
1609 }
1610
1611 addr = vm_mmap(obj->base.filp, 0, args->size,
1612 PROT_READ | PROT_WRITE, MAP_SHARED,
1613 args->offset);
1614 if (args->flags & I915_MMAP_WC) {
1615 struct mm_struct *mm = current->mm;
1616 struct vm_area_struct *vma;
1617
1618 if (down_write_killable(&mm->mmap_sem)) {
1619 i915_gem_object_put_unlocked(obj);
1620 return -EINTR;
1621 }
1622 vma = find_vma(mm, addr);
1623 if (vma)
1624 vma->vm_page_prot =
1625 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1626 else
1627 addr = -ENOMEM;
1628 up_write(&mm->mmap_sem);
1629
1630 /* This may race, but that's ok, it only gets set */
1631 WRITE_ONCE(obj->has_wc_mmap, true);
1632 }
1633 i915_gem_object_put_unlocked(obj);
1634 if (IS_ERR((void *)addr))
1635 return addr;
1636
1637 args->addr_ptr = (uint64_t) addr;
1638
1639 return 0;
1640 }
1641
1642 /**
1643 * i915_gem_fault - fault a page into the GTT
1644 * @vma: VMA in question
1645 * @vmf: fault info
1646 *
1647 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1648 * from userspace. The fault handler takes care of binding the object to
1649 * the GTT (if needed), allocating and programming a fence register (again,
1650 * only if needed based on whether the old reg is still valid or the object
1651 * is tiled) and inserting a new PTE into the faulting process.
1652 *
1653 * Note that the faulting process may involve evicting existing objects
1654 * from the GTT and/or fence registers to make room. So performance may
1655 * suffer if the GTT working set is large or there are few fence registers
1656 * left.
1657 */
1658 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1659 {
1660 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1661 struct drm_device *dev = obj->base.dev;
1662 struct drm_i915_private *dev_priv = to_i915(dev);
1663 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1664 struct i915_ggtt_view view = i915_ggtt_view_normal;
1665 pgoff_t page_offset;
1666 unsigned long pfn;
1667 int ret = 0;
1668 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1669
1670 intel_runtime_pm_get(dev_priv);
1671
1672 /* We don't use vmf->pgoff since that has the fake offset */
1673 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1674 PAGE_SHIFT;
1675
1676 ret = i915_mutex_lock_interruptible(dev);
1677 if (ret)
1678 goto out;
1679
1680 trace_i915_gem_object_fault(obj, page_offset, true, write);
1681
1682 /* Try to flush the object off the GPU first without holding the lock.
1683 * Upon reacquiring the lock, we will perform our sanity checks and then
1684 * repeat the flush holding the lock in the normal manner to catch cases
1685 * where we are gazumped.
1686 */
1687 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1688 if (ret)
1689 goto unlock;
1690
1691 /* Access to snoopable pages through the GTT is incoherent. */
1692 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1693 ret = -EFAULT;
1694 goto unlock;
1695 }
1696
1697 /* Use a partial view if the object is bigger than the aperture. */
1698 if (obj->base.size >= ggtt->mappable_end &&
1699 obj->tiling_mode == I915_TILING_NONE) {
1700 static const unsigned int chunk_size = 256; // 1 MiB
1701
1702 memset(&view, 0, sizeof(view));
1703 view.type = I915_GGTT_VIEW_PARTIAL;
1704 view.params.partial.offset = rounddown(page_offset, chunk_size);
1705 view.params.partial.size =
1706 min_t(unsigned int,
1707 chunk_size,
1708 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1709 view.params.partial.offset);
1710 }
1711
1712 /* Now pin it into the GTT if needed */
1713 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1714 if (ret)
1715 goto unlock;
1716
1717 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1718 if (ret)
1719 goto unpin;
1720
1721 ret = i915_gem_object_get_fence(obj);
1722 if (ret)
1723 goto unpin;
1724
1725 /* Finally, remap it using the new GTT offset */
1726 pfn = ggtt->mappable_base +
1727 i915_gem_obj_ggtt_offset_view(obj, &view);
1728 pfn >>= PAGE_SHIFT;
1729
1730 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1731 /* Overriding existing pages in partial view does not cause
1732 * us any trouble as TLBs are still valid because the fault
1733 * is due to userspace losing part of the mapping or never
1734 * having accessed it before (at this partials' range).
1735 */
1736 unsigned long base = vma->vm_start +
1737 (view.params.partial.offset << PAGE_SHIFT);
1738 unsigned int i;
1739
1740 for (i = 0; i < view.params.partial.size; i++) {
1741 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1742 if (ret)
1743 break;
1744 }
1745
1746 obj->fault_mappable = true;
1747 } else {
1748 if (!obj->fault_mappable) {
1749 unsigned long size = min_t(unsigned long,
1750 vma->vm_end - vma->vm_start,
1751 obj->base.size);
1752 int i;
1753
1754 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1755 ret = vm_insert_pfn(vma,
1756 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1757 pfn + i);
1758 if (ret)
1759 break;
1760 }
1761
1762 obj->fault_mappable = true;
1763 } else
1764 ret = vm_insert_pfn(vma,
1765 (unsigned long)vmf->virtual_address,
1766 pfn + page_offset);
1767 }
1768 unpin:
1769 i915_gem_object_ggtt_unpin_view(obj, &view);
1770 unlock:
1771 mutex_unlock(&dev->struct_mutex);
1772 out:
1773 switch (ret) {
1774 case -EIO:
1775 /*
1776 * We eat errors when the gpu is terminally wedged to avoid
1777 * userspace unduly crashing (gl has no provisions for mmaps to
1778 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1779 * and so needs to be reported.
1780 */
1781 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1782 ret = VM_FAULT_SIGBUS;
1783 break;
1784 }
1785 case -EAGAIN:
1786 /*
1787 * EAGAIN means the gpu is hung and we'll wait for the error
1788 * handler to reset everything when re-faulting in
1789 * i915_mutex_lock_interruptible.
1790 */
1791 case 0:
1792 case -ERESTARTSYS:
1793 case -EINTR:
1794 case -EBUSY:
1795 /*
1796 * EBUSY is ok: this just means that another thread
1797 * already did the job.
1798 */
1799 ret = VM_FAULT_NOPAGE;
1800 break;
1801 case -ENOMEM:
1802 ret = VM_FAULT_OOM;
1803 break;
1804 case -ENOSPC:
1805 case -EFAULT:
1806 ret = VM_FAULT_SIGBUS;
1807 break;
1808 default:
1809 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1810 ret = VM_FAULT_SIGBUS;
1811 break;
1812 }
1813
1814 intel_runtime_pm_put(dev_priv);
1815 return ret;
1816 }
1817
1818 /**
1819 * i915_gem_release_mmap - remove physical page mappings
1820 * @obj: obj in question
1821 *
1822 * Preserve the reservation of the mmapping with the DRM core code, but
1823 * relinquish ownership of the pages back to the system.
1824 *
1825 * It is vital that we remove the page mapping if we have mapped a tiled
1826 * object through the GTT and then lose the fence register due to
1827 * resource pressure. Similarly if the object has been moved out of the
1828 * aperture, than pages mapped into userspace must be revoked. Removing the
1829 * mapping will then trigger a page fault on the next user access, allowing
1830 * fixup by i915_gem_fault().
1831 */
1832 void
1833 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1834 {
1835 /* Serialisation between user GTT access and our code depends upon
1836 * revoking the CPU's PTE whilst the mutex is held. The next user
1837 * pagefault then has to wait until we release the mutex.
1838 */
1839 lockdep_assert_held(&obj->base.dev->struct_mutex);
1840
1841 if (!obj->fault_mappable)
1842 return;
1843
1844 drm_vma_node_unmap(&obj->base.vma_node,
1845 obj->base.dev->anon_inode->i_mapping);
1846
1847 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1848 * memory transactions from userspace before we return. The TLB
1849 * flushing implied above by changing the PTE above *should* be
1850 * sufficient, an extra barrier here just provides us with a bit
1851 * of paranoid documentation about our requirement to serialise
1852 * memory writes before touching registers / GSM.
1853 */
1854 wmb();
1855
1856 obj->fault_mappable = false;
1857 }
1858
1859 void
1860 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1861 {
1862 struct drm_i915_gem_object *obj;
1863
1864 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1865 i915_gem_release_mmap(obj);
1866 }
1867
1868 uint32_t
1869 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1870 {
1871 uint32_t gtt_size;
1872
1873 if (INTEL_INFO(dev)->gen >= 4 ||
1874 tiling_mode == I915_TILING_NONE)
1875 return size;
1876
1877 /* Previous chips need a power-of-two fence region when tiling */
1878 if (IS_GEN3(dev))
1879 gtt_size = 1024*1024;
1880 else
1881 gtt_size = 512*1024;
1882
1883 while (gtt_size < size)
1884 gtt_size <<= 1;
1885
1886 return gtt_size;
1887 }
1888
1889 /**
1890 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1891 * @dev: drm device
1892 * @size: object size
1893 * @tiling_mode: tiling mode
1894 * @fenced: is fenced alignemned required or not
1895 *
1896 * Return the required GTT alignment for an object, taking into account
1897 * potential fence register mapping.
1898 */
1899 uint32_t
1900 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1901 int tiling_mode, bool fenced)
1902 {
1903 /*
1904 * Minimum alignment is 4k (GTT page size), but might be greater
1905 * if a fence register is needed for the object.
1906 */
1907 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1908 tiling_mode == I915_TILING_NONE)
1909 return 4096;
1910
1911 /*
1912 * Previous chips need to be aligned to the size of the smallest
1913 * fence register that can contain the object.
1914 */
1915 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1916 }
1917
1918 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1919 {
1920 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1921 int ret;
1922
1923 dev_priv->mm.shrinker_no_lock_stealing = true;
1924
1925 ret = drm_gem_create_mmap_offset(&obj->base);
1926 if (ret != -ENOSPC)
1927 goto out;
1928
1929 /* Badly fragmented mmap space? The only way we can recover
1930 * space is by destroying unwanted objects. We can't randomly release
1931 * mmap_offsets as userspace expects them to be persistent for the
1932 * lifetime of the objects. The closest we can is to release the
1933 * offsets on purgeable objects by truncating it and marking it purged,
1934 * which prevents userspace from ever using that object again.
1935 */
1936 i915_gem_shrink(dev_priv,
1937 obj->base.size >> PAGE_SHIFT,
1938 I915_SHRINK_BOUND |
1939 I915_SHRINK_UNBOUND |
1940 I915_SHRINK_PURGEABLE);
1941 ret = drm_gem_create_mmap_offset(&obj->base);
1942 if (ret != -ENOSPC)
1943 goto out;
1944
1945 i915_gem_shrink_all(dev_priv);
1946 ret = drm_gem_create_mmap_offset(&obj->base);
1947 out:
1948 dev_priv->mm.shrinker_no_lock_stealing = false;
1949
1950 return ret;
1951 }
1952
1953 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1954 {
1955 drm_gem_free_mmap_offset(&obj->base);
1956 }
1957
1958 int
1959 i915_gem_mmap_gtt(struct drm_file *file,
1960 struct drm_device *dev,
1961 uint32_t handle,
1962 uint64_t *offset)
1963 {
1964 struct drm_i915_gem_object *obj;
1965 int ret;
1966
1967 ret = i915_mutex_lock_interruptible(dev);
1968 if (ret)
1969 return ret;
1970
1971 obj = i915_gem_object_lookup(file, handle);
1972 if (!obj) {
1973 ret = -ENOENT;
1974 goto unlock;
1975 }
1976
1977 if (obj->madv != I915_MADV_WILLNEED) {
1978 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1979 ret = -EFAULT;
1980 goto out;
1981 }
1982
1983 ret = i915_gem_object_create_mmap_offset(obj);
1984 if (ret)
1985 goto out;
1986
1987 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1988
1989 out:
1990 i915_gem_object_put(obj);
1991 unlock:
1992 mutex_unlock(&dev->struct_mutex);
1993 return ret;
1994 }
1995
1996 /**
1997 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1998 * @dev: DRM device
1999 * @data: GTT mapping ioctl data
2000 * @file: GEM object info
2001 *
2002 * Simply returns the fake offset to userspace so it can mmap it.
2003 * The mmap call will end up in drm_gem_mmap(), which will set things
2004 * up so we can get faults in the handler above.
2005 *
2006 * The fault handler will take care of binding the object into the GTT
2007 * (since it may have been evicted to make room for something), allocating
2008 * a fence register, and mapping the appropriate aperture address into
2009 * userspace.
2010 */
2011 int
2012 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2013 struct drm_file *file)
2014 {
2015 struct drm_i915_gem_mmap_gtt *args = data;
2016
2017 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2018 }
2019
2020 /* Immediately discard the backing storage */
2021 static void
2022 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2023 {
2024 i915_gem_object_free_mmap_offset(obj);
2025
2026 if (obj->base.filp == NULL)
2027 return;
2028
2029 /* Our goal here is to return as much of the memory as
2030 * is possible back to the system as we are called from OOM.
2031 * To do this we must instruct the shmfs to drop all of its
2032 * backing pages, *now*.
2033 */
2034 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2035 obj->madv = __I915_MADV_PURGED;
2036 }
2037
2038 /* Try to discard unwanted pages */
2039 static void
2040 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2041 {
2042 struct address_space *mapping;
2043
2044 switch (obj->madv) {
2045 case I915_MADV_DONTNEED:
2046 i915_gem_object_truncate(obj);
2047 case __I915_MADV_PURGED:
2048 return;
2049 }
2050
2051 if (obj->base.filp == NULL)
2052 return;
2053
2054 mapping = file_inode(obj->base.filp)->i_mapping,
2055 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2056 }
2057
2058 static void
2059 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2060 {
2061 struct sgt_iter sgt_iter;
2062 struct page *page;
2063 int ret;
2064
2065 BUG_ON(obj->madv == __I915_MADV_PURGED);
2066
2067 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2068 if (WARN_ON(ret)) {
2069 /* In the event of a disaster, abandon all caches and
2070 * hope for the best.
2071 */
2072 i915_gem_clflush_object(obj, true);
2073 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2074 }
2075
2076 i915_gem_gtt_finish_object(obj);
2077
2078 if (i915_gem_object_needs_bit17_swizzle(obj))
2079 i915_gem_object_save_bit_17_swizzle(obj);
2080
2081 if (obj->madv == I915_MADV_DONTNEED)
2082 obj->dirty = 0;
2083
2084 for_each_sgt_page(page, sgt_iter, obj->pages) {
2085 if (obj->dirty)
2086 set_page_dirty(page);
2087
2088 if (obj->madv == I915_MADV_WILLNEED)
2089 mark_page_accessed(page);
2090
2091 put_page(page);
2092 }
2093 obj->dirty = 0;
2094
2095 sg_free_table(obj->pages);
2096 kfree(obj->pages);
2097 }
2098
2099 int
2100 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2101 {
2102 const struct drm_i915_gem_object_ops *ops = obj->ops;
2103
2104 if (obj->pages == NULL)
2105 return 0;
2106
2107 if (obj->pages_pin_count)
2108 return -EBUSY;
2109
2110 BUG_ON(i915_gem_obj_bound_any(obj));
2111
2112 /* ->put_pages might need to allocate memory for the bit17 swizzle
2113 * array, hence protect them from being reaped by removing them from gtt
2114 * lists early. */
2115 list_del(&obj->global_list);
2116
2117 if (obj->mapping) {
2118 if (is_vmalloc_addr(obj->mapping))
2119 vunmap(obj->mapping);
2120 else
2121 kunmap(kmap_to_page(obj->mapping));
2122 obj->mapping = NULL;
2123 }
2124
2125 ops->put_pages(obj);
2126 obj->pages = NULL;
2127
2128 i915_gem_object_invalidate(obj);
2129
2130 return 0;
2131 }
2132
2133 static int
2134 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2135 {
2136 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2137 int page_count, i;
2138 struct address_space *mapping;
2139 struct sg_table *st;
2140 struct scatterlist *sg;
2141 struct sgt_iter sgt_iter;
2142 struct page *page;
2143 unsigned long last_pfn = 0; /* suppress gcc warning */
2144 int ret;
2145 gfp_t gfp;
2146
2147 /* Assert that the object is not currently in any GPU domain. As it
2148 * wasn't in the GTT, there shouldn't be any way it could have been in
2149 * a GPU cache
2150 */
2151 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2152 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2153
2154 st = kmalloc(sizeof(*st), GFP_KERNEL);
2155 if (st == NULL)
2156 return -ENOMEM;
2157
2158 page_count = obj->base.size / PAGE_SIZE;
2159 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2160 kfree(st);
2161 return -ENOMEM;
2162 }
2163
2164 /* Get the list of pages out of our struct file. They'll be pinned
2165 * at this point until we release them.
2166 *
2167 * Fail silently without starting the shrinker
2168 */
2169 mapping = file_inode(obj->base.filp)->i_mapping;
2170 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2171 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2172 sg = st->sgl;
2173 st->nents = 0;
2174 for (i = 0; i < page_count; i++) {
2175 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2176 if (IS_ERR(page)) {
2177 i915_gem_shrink(dev_priv,
2178 page_count,
2179 I915_SHRINK_BOUND |
2180 I915_SHRINK_UNBOUND |
2181 I915_SHRINK_PURGEABLE);
2182 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2183 }
2184 if (IS_ERR(page)) {
2185 /* We've tried hard to allocate the memory by reaping
2186 * our own buffer, now let the real VM do its job and
2187 * go down in flames if truly OOM.
2188 */
2189 i915_gem_shrink_all(dev_priv);
2190 page = shmem_read_mapping_page(mapping, i);
2191 if (IS_ERR(page)) {
2192 ret = PTR_ERR(page);
2193 goto err_pages;
2194 }
2195 }
2196 #ifdef CONFIG_SWIOTLB
2197 if (swiotlb_nr_tbl()) {
2198 st->nents++;
2199 sg_set_page(sg, page, PAGE_SIZE, 0);
2200 sg = sg_next(sg);
2201 continue;
2202 }
2203 #endif
2204 if (!i || page_to_pfn(page) != last_pfn + 1) {
2205 if (i)
2206 sg = sg_next(sg);
2207 st->nents++;
2208 sg_set_page(sg, page, PAGE_SIZE, 0);
2209 } else {
2210 sg->length += PAGE_SIZE;
2211 }
2212 last_pfn = page_to_pfn(page);
2213
2214 /* Check that the i965g/gm workaround works. */
2215 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2216 }
2217 #ifdef CONFIG_SWIOTLB
2218 if (!swiotlb_nr_tbl())
2219 #endif
2220 sg_mark_end(sg);
2221 obj->pages = st;
2222
2223 ret = i915_gem_gtt_prepare_object(obj);
2224 if (ret)
2225 goto err_pages;
2226
2227 if (i915_gem_object_needs_bit17_swizzle(obj))
2228 i915_gem_object_do_bit_17_swizzle(obj);
2229
2230 if (obj->tiling_mode != I915_TILING_NONE &&
2231 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2232 i915_gem_object_pin_pages(obj);
2233
2234 return 0;
2235
2236 err_pages:
2237 sg_mark_end(sg);
2238 for_each_sgt_page(page, sgt_iter, st)
2239 put_page(page);
2240 sg_free_table(st);
2241 kfree(st);
2242
2243 /* shmemfs first checks if there is enough memory to allocate the page
2244 * and reports ENOSPC should there be insufficient, along with the usual
2245 * ENOMEM for a genuine allocation failure.
2246 *
2247 * We use ENOSPC in our driver to mean that we have run out of aperture
2248 * space and so want to translate the error from shmemfs back to our
2249 * usual understanding of ENOMEM.
2250 */
2251 if (ret == -ENOSPC)
2252 ret = -ENOMEM;
2253
2254 return ret;
2255 }
2256
2257 /* Ensure that the associated pages are gathered from the backing storage
2258 * and pinned into our object. i915_gem_object_get_pages() may be called
2259 * multiple times before they are released by a single call to
2260 * i915_gem_object_put_pages() - once the pages are no longer referenced
2261 * either as a result of memory pressure (reaping pages under the shrinker)
2262 * or as the object is itself released.
2263 */
2264 int
2265 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2266 {
2267 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268 const struct drm_i915_gem_object_ops *ops = obj->ops;
2269 int ret;
2270
2271 if (obj->pages)
2272 return 0;
2273
2274 if (obj->madv != I915_MADV_WILLNEED) {
2275 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2276 return -EFAULT;
2277 }
2278
2279 BUG_ON(obj->pages_pin_count);
2280
2281 ret = ops->get_pages(obj);
2282 if (ret)
2283 return ret;
2284
2285 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2286
2287 obj->get_page.sg = obj->pages->sgl;
2288 obj->get_page.last = 0;
2289
2290 return 0;
2291 }
2292
2293 /* The 'mapping' part of i915_gem_object_pin_map() below */
2294 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2295 {
2296 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2297 struct sg_table *sgt = obj->pages;
2298 struct sgt_iter sgt_iter;
2299 struct page *page;
2300 struct page *stack_pages[32];
2301 struct page **pages = stack_pages;
2302 unsigned long i = 0;
2303 void *addr;
2304
2305 /* A single page can always be kmapped */
2306 if (n_pages == 1)
2307 return kmap(sg_page(sgt->sgl));
2308
2309 if (n_pages > ARRAY_SIZE(stack_pages)) {
2310 /* Too big for stack -- allocate temporary array instead */
2311 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2312 if (!pages)
2313 return NULL;
2314 }
2315
2316 for_each_sgt_page(page, sgt_iter, sgt)
2317 pages[i++] = page;
2318
2319 /* Check that we have the expected number of pages */
2320 GEM_BUG_ON(i != n_pages);
2321
2322 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2323
2324 if (pages != stack_pages)
2325 drm_free_large(pages);
2326
2327 return addr;
2328 }
2329
2330 /* get, pin, and map the pages of the object into kernel space */
2331 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2332 {
2333 int ret;
2334
2335 lockdep_assert_held(&obj->base.dev->struct_mutex);
2336
2337 ret = i915_gem_object_get_pages(obj);
2338 if (ret)
2339 return ERR_PTR(ret);
2340
2341 i915_gem_object_pin_pages(obj);
2342
2343 if (!obj->mapping) {
2344 obj->mapping = i915_gem_object_map(obj);
2345 if (!obj->mapping) {
2346 i915_gem_object_unpin_pages(obj);
2347 return ERR_PTR(-ENOMEM);
2348 }
2349 }
2350
2351 return obj->mapping;
2352 }
2353
2354 void i915_vma_move_to_active(struct i915_vma *vma,
2355 struct drm_i915_gem_request *req)
2356 {
2357 struct drm_i915_gem_object *obj = vma->obj;
2358 struct intel_engine_cs *engine;
2359
2360 engine = i915_gem_request_get_engine(req);
2361
2362 /* Add a reference if we're newly entering the active list. */
2363 if (obj->active == 0)
2364 i915_gem_object_get(obj);
2365 obj->active |= intel_engine_flag(engine);
2366
2367 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2368 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2369
2370 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2371 }
2372
2373 static void
2374 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2375 {
2376 GEM_BUG_ON(obj->last_write_req == NULL);
2377 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2378
2379 i915_gem_request_assign(&obj->last_write_req, NULL);
2380 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2381 }
2382
2383 static void
2384 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int idx)
2385 {
2386 struct i915_vma *vma;
2387
2388 GEM_BUG_ON(obj->last_read_req[idx] == NULL);
2389 GEM_BUG_ON(!(obj->active & (1 << idx)));
2390
2391 list_del_init(&obj->engine_list[idx]);
2392 i915_gem_request_assign(&obj->last_read_req[idx], NULL);
2393
2394 if (obj->last_write_req && obj->last_write_req->engine->id == idx)
2395 i915_gem_object_retire__write(obj);
2396
2397 obj->active &= ~(1 << idx);
2398 if (obj->active)
2399 return;
2400
2401 /* Bump our place on the bound list to keep it roughly in LRU order
2402 * so that we don't steal from recently used but inactive objects
2403 * (unless we are forced to ofc!)
2404 */
2405 list_move_tail(&obj->global_list,
2406 &to_i915(obj->base.dev)->mm.bound_list);
2407
2408 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2409 if (!list_empty(&vma->vm_link))
2410 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2411 }
2412
2413 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2414 i915_gem_object_put(obj);
2415 }
2416
2417 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2418 {
2419 unsigned long elapsed;
2420
2421 if (ctx->hang_stats.banned)
2422 return true;
2423
2424 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2425 if (ctx->hang_stats.ban_period_seconds &&
2426 elapsed <= ctx->hang_stats.ban_period_seconds) {
2427 DRM_DEBUG("context hanging too fast, banning!\n");
2428 return true;
2429 }
2430
2431 return false;
2432 }
2433
2434 static void i915_set_reset_status(struct i915_gem_context *ctx,
2435 const bool guilty)
2436 {
2437 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2438
2439 if (guilty) {
2440 hs->banned = i915_context_is_banned(ctx);
2441 hs->batch_active++;
2442 hs->guilty_ts = get_seconds();
2443 } else {
2444 hs->batch_pending++;
2445 }
2446 }
2447
2448 struct drm_i915_gem_request *
2449 i915_gem_find_active_request(struct intel_engine_cs *engine)
2450 {
2451 struct drm_i915_gem_request *request;
2452
2453 /* We are called by the error capture and reset at a random
2454 * point in time. In particular, note that neither is crucially
2455 * ordered with an interrupt. After a hang, the GPU is dead and we
2456 * assume that no more writes can happen (we waited long enough for
2457 * all writes that were in transaction to be flushed) - adding an
2458 * extra delay for a recent interrupt is pointless. Hence, we do
2459 * not need an engine->irq_seqno_barrier() before the seqno reads.
2460 */
2461 list_for_each_entry(request, &engine->request_list, list) {
2462 if (i915_gem_request_completed(request))
2463 continue;
2464
2465 return request;
2466 }
2467
2468 return NULL;
2469 }
2470
2471 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2472 {
2473 struct drm_i915_gem_request *request;
2474 bool ring_hung;
2475
2476 request = i915_gem_find_active_request(engine);
2477 if (request == NULL)
2478 return;
2479
2480 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2481
2482 i915_set_reset_status(request->ctx, ring_hung);
2483 list_for_each_entry_continue(request, &engine->request_list, list)
2484 i915_set_reset_status(request->ctx, false);
2485 }
2486
2487 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2488 {
2489 struct intel_ring *ring;
2490
2491 while (!list_empty(&engine->active_list)) {
2492 struct drm_i915_gem_object *obj;
2493
2494 obj = list_first_entry(&engine->active_list,
2495 struct drm_i915_gem_object,
2496 engine_list[engine->id]);
2497
2498 i915_gem_object_retire__read(obj, engine->id);
2499 }
2500
2501 /* Mark all pending requests as complete so that any concurrent
2502 * (lockless) lookup doesn't try and wait upon the request as we
2503 * reset it.
2504 */
2505 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2506
2507 /*
2508 * Clear the execlists queue up before freeing the requests, as those
2509 * are the ones that keep the context and ringbuffer backing objects
2510 * pinned in place.
2511 */
2512
2513 if (i915.enable_execlists) {
2514 /* Ensure irq handler finishes or is cancelled. */
2515 tasklet_kill(&engine->irq_tasklet);
2516
2517 intel_execlists_cancel_requests(engine);
2518 }
2519
2520 /*
2521 * We must free the requests after all the corresponding objects have
2522 * been moved off active lists. Which is the same order as the normal
2523 * retire_requests function does. This is important if object hold
2524 * implicit references on things like e.g. ppgtt address spaces through
2525 * the request.
2526 */
2527 if (!list_empty(&engine->request_list)) {
2528 struct drm_i915_gem_request *request;
2529
2530 request = list_last_entry(&engine->request_list,
2531 struct drm_i915_gem_request,
2532 list);
2533
2534 i915_gem_request_retire_upto(request);
2535 }
2536
2537 /* Having flushed all requests from all queues, we know that all
2538 * ringbuffers must now be empty. However, since we do not reclaim
2539 * all space when retiring the request (to prevent HEADs colliding
2540 * with rapid ringbuffer wraparound) the amount of available space
2541 * upon reset is less than when we start. Do one more pass over
2542 * all the ringbuffers to reset last_retired_head.
2543 */
2544 list_for_each_entry(ring, &engine->buffers, link) {
2545 ring->last_retired_head = ring->tail;
2546 intel_ring_update_space(ring);
2547 }
2548
2549 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2550 }
2551
2552 void i915_gem_reset(struct drm_device *dev)
2553 {
2554 struct drm_i915_private *dev_priv = to_i915(dev);
2555 struct intel_engine_cs *engine;
2556
2557 /*
2558 * Before we free the objects from the requests, we need to inspect
2559 * them for finding the guilty party. As the requests only borrow
2560 * their reference to the objects, the inspection must be done first.
2561 */
2562 for_each_engine(engine, dev_priv)
2563 i915_gem_reset_engine_status(engine);
2564
2565 for_each_engine(engine, dev_priv)
2566 i915_gem_reset_engine_cleanup(engine);
2567 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2568
2569 i915_gem_context_reset(dev);
2570
2571 i915_gem_restore_fences(dev);
2572
2573 WARN_ON(i915_verify_lists(dev));
2574 }
2575
2576 /**
2577 * This function clears the request list as sequence numbers are passed.
2578 * @engine: engine to retire requests on
2579 */
2580 void
2581 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2582 {
2583 WARN_ON(i915_verify_lists(engine->dev));
2584
2585 /* Retire requests first as we use it above for the early return.
2586 * If we retire requests last, we may use a later seqno and so clear
2587 * the requests lists without clearing the active list, leading to
2588 * confusion.
2589 */
2590 while (!list_empty(&engine->request_list)) {
2591 struct drm_i915_gem_request *request;
2592
2593 request = list_first_entry(&engine->request_list,
2594 struct drm_i915_gem_request,
2595 list);
2596
2597 if (!i915_gem_request_completed(request))
2598 break;
2599
2600 i915_gem_request_retire_upto(request);
2601 }
2602
2603 /* Move any buffers on the active list that are no longer referenced
2604 * by the ringbuffer to the flushing/inactive lists as appropriate,
2605 * before we free the context associated with the requests.
2606 */
2607 while (!list_empty(&engine->active_list)) {
2608 struct drm_i915_gem_object *obj;
2609
2610 obj = list_first_entry(&engine->active_list,
2611 struct drm_i915_gem_object,
2612 engine_list[engine->id]);
2613
2614 if (!list_empty(&obj->last_read_req[engine->id]->list))
2615 break;
2616
2617 i915_gem_object_retire__read(obj, engine->id);
2618 }
2619
2620 WARN_ON(i915_verify_lists(engine->dev));
2621 }
2622
2623 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2624 {
2625 struct intel_engine_cs *engine;
2626
2627 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2628
2629 if (dev_priv->gt.active_engines == 0)
2630 return;
2631
2632 GEM_BUG_ON(!dev_priv->gt.awake);
2633
2634 for_each_engine(engine, dev_priv) {
2635 i915_gem_retire_requests_ring(engine);
2636 if (list_empty(&engine->request_list))
2637 dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2638 }
2639
2640 if (dev_priv->gt.active_engines == 0)
2641 queue_delayed_work(dev_priv->wq,
2642 &dev_priv->gt.idle_work,
2643 msecs_to_jiffies(100));
2644 }
2645
2646 static void
2647 i915_gem_retire_work_handler(struct work_struct *work)
2648 {
2649 struct drm_i915_private *dev_priv =
2650 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2651 struct drm_device *dev = &dev_priv->drm;
2652
2653 /* Come back later if the device is busy... */
2654 if (mutex_trylock(&dev->struct_mutex)) {
2655 i915_gem_retire_requests(dev_priv);
2656 mutex_unlock(&dev->struct_mutex);
2657 }
2658
2659 /* Keep the retire handler running until we are finally idle.
2660 * We do not need to do this test under locking as in the worst-case
2661 * we queue the retire worker once too often.
2662 */
2663 if (READ_ONCE(dev_priv->gt.awake)) {
2664 i915_queue_hangcheck(dev_priv);
2665 queue_delayed_work(dev_priv->wq,
2666 &dev_priv->gt.retire_work,
2667 round_jiffies_up_relative(HZ));
2668 }
2669 }
2670
2671 static void
2672 i915_gem_idle_work_handler(struct work_struct *work)
2673 {
2674 struct drm_i915_private *dev_priv =
2675 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2676 struct drm_device *dev = &dev_priv->drm;
2677 struct intel_engine_cs *engine;
2678 unsigned int stuck_engines;
2679 bool rearm_hangcheck;
2680
2681 if (!READ_ONCE(dev_priv->gt.awake))
2682 return;
2683
2684 if (READ_ONCE(dev_priv->gt.active_engines))
2685 return;
2686
2687 rearm_hangcheck =
2688 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2689
2690 if (!mutex_trylock(&dev->struct_mutex)) {
2691 /* Currently busy, come back later */
2692 mod_delayed_work(dev_priv->wq,
2693 &dev_priv->gt.idle_work,
2694 msecs_to_jiffies(50));
2695 goto out_rearm;
2696 }
2697
2698 if (dev_priv->gt.active_engines)
2699 goto out_unlock;
2700
2701 for_each_engine(engine, dev_priv)
2702 i915_gem_batch_pool_fini(&engine->batch_pool);
2703
2704 GEM_BUG_ON(!dev_priv->gt.awake);
2705 dev_priv->gt.awake = false;
2706 rearm_hangcheck = false;
2707
2708 /* As we have disabled hangcheck, we need to unstick any waiters still
2709 * hanging around. However, as we may be racing against the interrupt
2710 * handler or the waiters themselves, we skip enabling the fake-irq.
2711 */
2712 stuck_engines = intel_kick_waiters(dev_priv);
2713 if (unlikely(stuck_engines))
2714 DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
2715 stuck_engines);
2716
2717 if (INTEL_GEN(dev_priv) >= 6)
2718 gen6_rps_idle(dev_priv);
2719 intel_runtime_pm_put(dev_priv);
2720 out_unlock:
2721 mutex_unlock(&dev->struct_mutex);
2722
2723 out_rearm:
2724 if (rearm_hangcheck) {
2725 GEM_BUG_ON(!dev_priv->gt.awake);
2726 i915_queue_hangcheck(dev_priv);
2727 }
2728 }
2729
2730 /**
2731 * Ensures that an object will eventually get non-busy by flushing any required
2732 * write domains, emitting any outstanding lazy request and retiring and
2733 * completed requests.
2734 * @obj: object to flush
2735 */
2736 static int
2737 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2738 {
2739 int i;
2740
2741 if (!obj->active)
2742 return 0;
2743
2744 for (i = 0; i < I915_NUM_ENGINES; i++) {
2745 struct drm_i915_gem_request *req;
2746
2747 req = obj->last_read_req[i];
2748 if (req == NULL)
2749 continue;
2750
2751 if (i915_gem_request_completed(req))
2752 i915_gem_object_retire__read(obj, i);
2753 }
2754
2755 return 0;
2756 }
2757
2758 /**
2759 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2760 * @dev: drm device pointer
2761 * @data: ioctl data blob
2762 * @file: drm file pointer
2763 *
2764 * Returns 0 if successful, else an error is returned with the remaining time in
2765 * the timeout parameter.
2766 * -ETIME: object is still busy after timeout
2767 * -ERESTARTSYS: signal interrupted the wait
2768 * -ENONENT: object doesn't exist
2769 * Also possible, but rare:
2770 * -EAGAIN: GPU wedged
2771 * -ENOMEM: damn
2772 * -ENODEV: Internal IRQ fail
2773 * -E?: The add request failed
2774 *
2775 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2776 * non-zero timeout parameter the wait ioctl will wait for the given number of
2777 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2778 * without holding struct_mutex the object may become re-busied before this
2779 * function completes. A similar but shorter * race condition exists in the busy
2780 * ioctl
2781 */
2782 int
2783 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2784 {
2785 struct drm_i915_gem_wait *args = data;
2786 struct drm_i915_gem_object *obj;
2787 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2788 int i, n = 0;
2789 int ret;
2790
2791 if (args->flags != 0)
2792 return -EINVAL;
2793
2794 ret = i915_mutex_lock_interruptible(dev);
2795 if (ret)
2796 return ret;
2797
2798 obj = i915_gem_object_lookup(file, args->bo_handle);
2799 if (!obj) {
2800 mutex_unlock(&dev->struct_mutex);
2801 return -ENOENT;
2802 }
2803
2804 /* Need to make sure the object gets inactive eventually. */
2805 ret = i915_gem_object_flush_active(obj);
2806 if (ret)
2807 goto out;
2808
2809 if (!obj->active)
2810 goto out;
2811
2812 /* Do this after OLR check to make sure we make forward progress polling
2813 * on this IOCTL with a timeout == 0 (like busy ioctl)
2814 */
2815 if (args->timeout_ns == 0) {
2816 ret = -ETIME;
2817 goto out;
2818 }
2819
2820 i915_gem_object_put(obj);
2821
2822 for (i = 0; i < I915_NUM_ENGINES; i++) {
2823 if (obj->last_read_req[i] == NULL)
2824 continue;
2825
2826 req[n++] = i915_gem_request_get(obj->last_read_req[i]);
2827 }
2828
2829 mutex_unlock(&dev->struct_mutex);
2830
2831 for (i = 0; i < n; i++) {
2832 if (ret == 0)
2833 ret = __i915_wait_request(req[i], true,
2834 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2835 to_rps_client(file));
2836 i915_gem_request_put(req[i]);
2837 }
2838 return ret;
2839
2840 out:
2841 i915_gem_object_put(obj);
2842 mutex_unlock(&dev->struct_mutex);
2843 return ret;
2844 }
2845
2846 static int
2847 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
2848 struct drm_i915_gem_request *to,
2849 struct drm_i915_gem_request *from)
2850 {
2851 int ret;
2852
2853 if (to->engine == from->engine)
2854 return 0;
2855
2856 if (i915_gem_request_completed(from))
2857 return 0;
2858
2859 if (!i915.semaphores) {
2860 ret = __i915_wait_request(from,
2861 from->i915->mm.interruptible,
2862 NULL,
2863 NO_WAITBOOST);
2864 if (ret)
2865 return ret;
2866
2867 i915_gem_object_retire_request(obj, from);
2868 } else {
2869 int idx = intel_engine_sync_index(from->engine, to->engine);
2870 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2871 return 0;
2872
2873 trace_i915_gem_ring_sync_to(to, from);
2874 ret = to->engine->semaphore.sync_to(to, from);
2875 if (ret)
2876 return ret;
2877
2878 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2879 }
2880
2881 return 0;
2882 }
2883
2884 /**
2885 * i915_gem_object_sync - sync an object to a ring.
2886 *
2887 * @obj: object which may be in use on another ring.
2888 * @to: request we are wishing to use
2889 *
2890 * This code is meant to abstract object synchronization with the GPU.
2891 * Conceptually we serialise writes between engines inside the GPU.
2892 * We only allow one engine to write into a buffer at any time, but
2893 * multiple readers. To ensure each has a coherent view of memory, we must:
2894 *
2895 * - If there is an outstanding write request to the object, the new
2896 * request must wait for it to complete (either CPU or in hw, requests
2897 * on the same ring will be naturally ordered).
2898 *
2899 * - If we are a write request (pending_write_domain is set), the new
2900 * request must wait for outstanding read requests to complete.
2901 *
2902 * Returns 0 if successful, else propagates up the lower layer error.
2903 */
2904 int
2905 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2906 struct drm_i915_gem_request *to)
2907 {
2908 const bool readonly = obj->base.pending_write_domain == 0;
2909 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2910 int ret, i, n;
2911
2912 if (!obj->active)
2913 return 0;
2914
2915 n = 0;
2916 if (readonly) {
2917 if (obj->last_write_req)
2918 req[n++] = obj->last_write_req;
2919 } else {
2920 for (i = 0; i < I915_NUM_ENGINES; i++)
2921 if (obj->last_read_req[i])
2922 req[n++] = obj->last_read_req[i];
2923 }
2924 for (i = 0; i < n; i++) {
2925 ret = __i915_gem_object_sync(obj, to, req[i]);
2926 if (ret)
2927 return ret;
2928 }
2929
2930 return 0;
2931 }
2932
2933 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2934 {
2935 u32 old_write_domain, old_read_domains;
2936
2937 /* Force a pagefault for domain tracking on next user access */
2938 i915_gem_release_mmap(obj);
2939
2940 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2941 return;
2942
2943 old_read_domains = obj->base.read_domains;
2944 old_write_domain = obj->base.write_domain;
2945
2946 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2947 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2948
2949 trace_i915_gem_object_change_domain(obj,
2950 old_read_domains,
2951 old_write_domain);
2952 }
2953
2954 static void __i915_vma_iounmap(struct i915_vma *vma)
2955 {
2956 GEM_BUG_ON(vma->pin_count);
2957
2958 if (vma->iomap == NULL)
2959 return;
2960
2961 io_mapping_unmap(vma->iomap);
2962 vma->iomap = NULL;
2963 }
2964
2965 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
2966 {
2967 struct drm_i915_gem_object *obj = vma->obj;
2968 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2969 int ret;
2970
2971 if (list_empty(&vma->obj_link))
2972 return 0;
2973
2974 if (!drm_mm_node_allocated(&vma->node)) {
2975 i915_gem_vma_destroy(vma);
2976 return 0;
2977 }
2978
2979 if (vma->pin_count)
2980 return -EBUSY;
2981
2982 BUG_ON(obj->pages == NULL);
2983
2984 if (wait) {
2985 ret = i915_gem_object_wait_rendering(obj, false);
2986 if (ret)
2987 return ret;
2988 }
2989
2990 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2991 i915_gem_object_finish_gtt(obj);
2992
2993 /* release the fence reg _after_ flushing */
2994 ret = i915_gem_object_put_fence(obj);
2995 if (ret)
2996 return ret;
2997
2998 __i915_vma_iounmap(vma);
2999 }
3000
3001 trace_i915_vma_unbind(vma);
3002
3003 vma->vm->unbind_vma(vma);
3004 vma->bound = 0;
3005
3006 list_del_init(&vma->vm_link);
3007 if (vma->is_ggtt) {
3008 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3009 obj->map_and_fenceable = false;
3010 } else if (vma->ggtt_view.pages) {
3011 sg_free_table(vma->ggtt_view.pages);
3012 kfree(vma->ggtt_view.pages);
3013 }
3014 vma->ggtt_view.pages = NULL;
3015 }
3016
3017 drm_mm_remove_node(&vma->node);
3018 i915_gem_vma_destroy(vma);
3019
3020 /* Since the unbound list is global, only move to that list if
3021 * no more VMAs exist. */
3022 if (list_empty(&obj->vma_list))
3023 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3024
3025 /* And finally now the object is completely decoupled from this vma,
3026 * we can drop its hold on the backing storage and allow it to be
3027 * reaped by the shrinker.
3028 */
3029 i915_gem_object_unpin_pages(obj);
3030
3031 return 0;
3032 }
3033
3034 int i915_vma_unbind(struct i915_vma *vma)
3035 {
3036 return __i915_vma_unbind(vma, true);
3037 }
3038
3039 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3040 {
3041 return __i915_vma_unbind(vma, false);
3042 }
3043
3044 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3045 {
3046 struct intel_engine_cs *engine;
3047 int ret;
3048
3049 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3050
3051 for_each_engine(engine, dev_priv) {
3052 if (engine->last_context == NULL)
3053 continue;
3054
3055 ret = intel_engine_idle(engine);
3056 if (ret)
3057 return ret;
3058 }
3059
3060 WARN_ON(i915_verify_lists(dev));
3061 return 0;
3062 }
3063
3064 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3065 unsigned long cache_level)
3066 {
3067 struct drm_mm_node *gtt_space = &vma->node;
3068 struct drm_mm_node *other;
3069
3070 /*
3071 * On some machines we have to be careful when putting differing types
3072 * of snoopable memory together to avoid the prefetcher crossing memory
3073 * domains and dying. During vm initialisation, we decide whether or not
3074 * these constraints apply and set the drm_mm.color_adjust
3075 * appropriately.
3076 */
3077 if (vma->vm->mm.color_adjust == NULL)
3078 return true;
3079
3080 if (!drm_mm_node_allocated(gtt_space))
3081 return true;
3082
3083 if (list_empty(&gtt_space->node_list))
3084 return true;
3085
3086 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3087 if (other->allocated && !other->hole_follows && other->color != cache_level)
3088 return false;
3089
3090 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3091 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3092 return false;
3093
3094 return true;
3095 }
3096
3097 /**
3098 * Finds free space in the GTT aperture and binds the object or a view of it
3099 * there.
3100 * @obj: object to bind
3101 * @vm: address space to bind into
3102 * @ggtt_view: global gtt view if applicable
3103 * @alignment: requested alignment
3104 * @flags: mask of PIN_* flags to use
3105 */
3106 static struct i915_vma *
3107 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3108 struct i915_address_space *vm,
3109 const struct i915_ggtt_view *ggtt_view,
3110 unsigned alignment,
3111 uint64_t flags)
3112 {
3113 struct drm_device *dev = obj->base.dev;
3114 struct drm_i915_private *dev_priv = to_i915(dev);
3115 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3116 u32 fence_alignment, unfenced_alignment;
3117 u32 search_flag, alloc_flag;
3118 u64 start, end;
3119 u64 size, fence_size;
3120 struct i915_vma *vma;
3121 int ret;
3122
3123 if (i915_is_ggtt(vm)) {
3124 u32 view_size;
3125
3126 if (WARN_ON(!ggtt_view))
3127 return ERR_PTR(-EINVAL);
3128
3129 view_size = i915_ggtt_view_size(obj, ggtt_view);
3130
3131 fence_size = i915_gem_get_gtt_size(dev,
3132 view_size,
3133 obj->tiling_mode);
3134 fence_alignment = i915_gem_get_gtt_alignment(dev,
3135 view_size,
3136 obj->tiling_mode,
3137 true);
3138 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3139 view_size,
3140 obj->tiling_mode,
3141 false);
3142 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3143 } else {
3144 fence_size = i915_gem_get_gtt_size(dev,
3145 obj->base.size,
3146 obj->tiling_mode);
3147 fence_alignment = i915_gem_get_gtt_alignment(dev,
3148 obj->base.size,
3149 obj->tiling_mode,
3150 true);
3151 unfenced_alignment =
3152 i915_gem_get_gtt_alignment(dev,
3153 obj->base.size,
3154 obj->tiling_mode,
3155 false);
3156 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3157 }
3158
3159 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3160 end = vm->total;
3161 if (flags & PIN_MAPPABLE)
3162 end = min_t(u64, end, ggtt->mappable_end);
3163 if (flags & PIN_ZONE_4G)
3164 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3165
3166 if (alignment == 0)
3167 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3168 unfenced_alignment;
3169 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3170 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3171 ggtt_view ? ggtt_view->type : 0,
3172 alignment);
3173 return ERR_PTR(-EINVAL);
3174 }
3175
3176 /* If binding the object/GGTT view requires more space than the entire
3177 * aperture has, reject it early before evicting everything in a vain
3178 * attempt to find space.
3179 */
3180 if (size > end) {
3181 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3182 ggtt_view ? ggtt_view->type : 0,
3183 size,
3184 flags & PIN_MAPPABLE ? "mappable" : "total",
3185 end);
3186 return ERR_PTR(-E2BIG);
3187 }
3188
3189 ret = i915_gem_object_get_pages(obj);
3190 if (ret)
3191 return ERR_PTR(ret);
3192
3193 i915_gem_object_pin_pages(obj);
3194
3195 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3196 i915_gem_obj_lookup_or_create_vma(obj, vm);
3197
3198 if (IS_ERR(vma))
3199 goto err_unpin;
3200
3201 if (flags & PIN_OFFSET_FIXED) {
3202 uint64_t offset = flags & PIN_OFFSET_MASK;
3203
3204 if (offset & (alignment - 1) || offset + size > end) {
3205 ret = -EINVAL;
3206 goto err_free_vma;
3207 }
3208 vma->node.start = offset;
3209 vma->node.size = size;
3210 vma->node.color = obj->cache_level;
3211 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3212 if (ret) {
3213 ret = i915_gem_evict_for_vma(vma);
3214 if (ret == 0)
3215 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3216 }
3217 if (ret)
3218 goto err_free_vma;
3219 } else {
3220 if (flags & PIN_HIGH) {
3221 search_flag = DRM_MM_SEARCH_BELOW;
3222 alloc_flag = DRM_MM_CREATE_TOP;
3223 } else {
3224 search_flag = DRM_MM_SEARCH_DEFAULT;
3225 alloc_flag = DRM_MM_CREATE_DEFAULT;
3226 }
3227
3228 search_free:
3229 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3230 size, alignment,
3231 obj->cache_level,
3232 start, end,
3233 search_flag,
3234 alloc_flag);
3235 if (ret) {
3236 ret = i915_gem_evict_something(dev, vm, size, alignment,
3237 obj->cache_level,
3238 start, end,
3239 flags);
3240 if (ret == 0)
3241 goto search_free;
3242
3243 goto err_free_vma;
3244 }
3245 }
3246 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3247 ret = -EINVAL;
3248 goto err_remove_node;
3249 }
3250
3251 trace_i915_vma_bind(vma, flags);
3252 ret = i915_vma_bind(vma, obj->cache_level, flags);
3253 if (ret)
3254 goto err_remove_node;
3255
3256 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3257 list_add_tail(&vma->vm_link, &vm->inactive_list);
3258
3259 return vma;
3260
3261 err_remove_node:
3262 drm_mm_remove_node(&vma->node);
3263 err_free_vma:
3264 i915_gem_vma_destroy(vma);
3265 vma = ERR_PTR(ret);
3266 err_unpin:
3267 i915_gem_object_unpin_pages(obj);
3268 return vma;
3269 }
3270
3271 bool
3272 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3273 bool force)
3274 {
3275 /* If we don't have a page list set up, then we're not pinned
3276 * to GPU, and we can ignore the cache flush because it'll happen
3277 * again at bind time.
3278 */
3279 if (obj->pages == NULL)
3280 return false;
3281
3282 /*
3283 * Stolen memory is always coherent with the GPU as it is explicitly
3284 * marked as wc by the system, or the system is cache-coherent.
3285 */
3286 if (obj->stolen || obj->phys_handle)
3287 return false;
3288
3289 /* If the GPU is snooping the contents of the CPU cache,
3290 * we do not need to manually clear the CPU cache lines. However,
3291 * the caches are only snooped when the render cache is
3292 * flushed/invalidated. As we always have to emit invalidations
3293 * and flushes when moving into and out of the RENDER domain, correct
3294 * snooping behaviour occurs naturally as the result of our domain
3295 * tracking.
3296 */
3297 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3298 obj->cache_dirty = true;
3299 return false;
3300 }
3301
3302 trace_i915_gem_object_clflush(obj);
3303 drm_clflush_sg(obj->pages);
3304 obj->cache_dirty = false;
3305
3306 return true;
3307 }
3308
3309 /** Flushes the GTT write domain for the object if it's dirty. */
3310 static void
3311 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3312 {
3313 uint32_t old_write_domain;
3314
3315 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3316 return;
3317
3318 /* No actual flushing is required for the GTT write domain. Writes
3319 * to it immediately go to main memory as far as we know, so there's
3320 * no chipset flush. It also doesn't land in render cache.
3321 *
3322 * However, we do have to enforce the order so that all writes through
3323 * the GTT land before any writes to the device, such as updates to
3324 * the GATT itself.
3325 */
3326 wmb();
3327
3328 old_write_domain = obj->base.write_domain;
3329 obj->base.write_domain = 0;
3330
3331 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3332
3333 trace_i915_gem_object_change_domain(obj,
3334 obj->base.read_domains,
3335 old_write_domain);
3336 }
3337
3338 /** Flushes the CPU write domain for the object if it's dirty. */
3339 static void
3340 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3341 {
3342 uint32_t old_write_domain;
3343
3344 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3345 return;
3346
3347 if (i915_gem_clflush_object(obj, obj->pin_display))
3348 i915_gem_chipset_flush(to_i915(obj->base.dev));
3349
3350 old_write_domain = obj->base.write_domain;
3351 obj->base.write_domain = 0;
3352
3353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3354
3355 trace_i915_gem_object_change_domain(obj,
3356 obj->base.read_domains,
3357 old_write_domain);
3358 }
3359
3360 /**
3361 * Moves a single object to the GTT read, and possibly write domain.
3362 * @obj: object to act on
3363 * @write: ask for write access or read only
3364 *
3365 * This function returns when the move is complete, including waiting on
3366 * flushes to occur.
3367 */
3368 int
3369 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3370 {
3371 struct drm_device *dev = obj->base.dev;
3372 struct drm_i915_private *dev_priv = to_i915(dev);
3373 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3374 uint32_t old_write_domain, old_read_domains;
3375 struct i915_vma *vma;
3376 int ret;
3377
3378 ret = i915_gem_object_wait_rendering(obj, !write);
3379 if (ret)
3380 return ret;
3381
3382 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3383 return 0;
3384
3385 /* Flush and acquire obj->pages so that we are coherent through
3386 * direct access in memory with previous cached writes through
3387 * shmemfs and that our cache domain tracking remains valid.
3388 * For example, if the obj->filp was moved to swap without us
3389 * being notified and releasing the pages, we would mistakenly
3390 * continue to assume that the obj remained out of the CPU cached
3391 * domain.
3392 */
3393 ret = i915_gem_object_get_pages(obj);
3394 if (ret)
3395 return ret;
3396
3397 i915_gem_object_flush_cpu_write_domain(obj);
3398
3399 /* Serialise direct access to this object with the barriers for
3400 * coherent writes from the GPU, by effectively invalidating the
3401 * GTT domain upon first access.
3402 */
3403 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3404 mb();
3405
3406 old_write_domain = obj->base.write_domain;
3407 old_read_domains = obj->base.read_domains;
3408
3409 /* It should now be out of any other write domains, and we can update
3410 * the domain values for our changes.
3411 */
3412 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3413 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3414 if (write) {
3415 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3416 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3417 obj->dirty = 1;
3418 }
3419
3420 trace_i915_gem_object_change_domain(obj,
3421 old_read_domains,
3422 old_write_domain);
3423
3424 /* And bump the LRU for this access */
3425 vma = i915_gem_obj_to_ggtt(obj);
3426 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3427 list_move_tail(&vma->vm_link,
3428 &ggtt->base.inactive_list);
3429
3430 return 0;
3431 }
3432
3433 /**
3434 * Changes the cache-level of an object across all VMA.
3435 * @obj: object to act on
3436 * @cache_level: new cache level to set for the object
3437 *
3438 * After this function returns, the object will be in the new cache-level
3439 * across all GTT and the contents of the backing storage will be coherent,
3440 * with respect to the new cache-level. In order to keep the backing storage
3441 * coherent for all users, we only allow a single cache level to be set
3442 * globally on the object and prevent it from being changed whilst the
3443 * hardware is reading from the object. That is if the object is currently
3444 * on the scanout it will be set to uncached (or equivalent display
3445 * cache coherency) and all non-MOCS GPU access will also be uncached so
3446 * that all direct access to the scanout remains coherent.
3447 */
3448 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3449 enum i915_cache_level cache_level)
3450 {
3451 struct drm_device *dev = obj->base.dev;
3452 struct i915_vma *vma, *next;
3453 bool bound = false;
3454 int ret = 0;
3455
3456 if (obj->cache_level == cache_level)
3457 goto out;
3458
3459 /* Inspect the list of currently bound VMA and unbind any that would
3460 * be invalid given the new cache-level. This is principally to
3461 * catch the issue of the CS prefetch crossing page boundaries and
3462 * reading an invalid PTE on older architectures.
3463 */
3464 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3465 if (!drm_mm_node_allocated(&vma->node))
3466 continue;
3467
3468 if (vma->pin_count) {
3469 DRM_DEBUG("can not change the cache level of pinned objects\n");
3470 return -EBUSY;
3471 }
3472
3473 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3474 ret = i915_vma_unbind(vma);
3475 if (ret)
3476 return ret;
3477 } else
3478 bound = true;
3479 }
3480
3481 /* We can reuse the existing drm_mm nodes but need to change the
3482 * cache-level on the PTE. We could simply unbind them all and
3483 * rebind with the correct cache-level on next use. However since
3484 * we already have a valid slot, dma mapping, pages etc, we may as
3485 * rewrite the PTE in the belief that doing so tramples upon less
3486 * state and so involves less work.
3487 */
3488 if (bound) {
3489 /* Before we change the PTE, the GPU must not be accessing it.
3490 * If we wait upon the object, we know that all the bound
3491 * VMA are no longer active.
3492 */
3493 ret = i915_gem_object_wait_rendering(obj, false);
3494 if (ret)
3495 return ret;
3496
3497 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3498 /* Access to snoopable pages through the GTT is
3499 * incoherent and on some machines causes a hard
3500 * lockup. Relinquish the CPU mmaping to force
3501 * userspace to refault in the pages and we can
3502 * then double check if the GTT mapping is still
3503 * valid for that pointer access.
3504 */
3505 i915_gem_release_mmap(obj);
3506
3507 /* As we no longer need a fence for GTT access,
3508 * we can relinquish it now (and so prevent having
3509 * to steal a fence from someone else on the next
3510 * fence request). Note GPU activity would have
3511 * dropped the fence as all snoopable access is
3512 * supposed to be linear.
3513 */
3514 ret = i915_gem_object_put_fence(obj);
3515 if (ret)
3516 return ret;
3517 } else {
3518 /* We either have incoherent backing store and
3519 * so no GTT access or the architecture is fully
3520 * coherent. In such cases, existing GTT mmaps
3521 * ignore the cache bit in the PTE and we can
3522 * rewrite it without confusing the GPU or having
3523 * to force userspace to fault back in its mmaps.
3524 */
3525 }
3526
3527 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3528 if (!drm_mm_node_allocated(&vma->node))
3529 continue;
3530
3531 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3532 if (ret)
3533 return ret;
3534 }
3535 }
3536
3537 list_for_each_entry(vma, &obj->vma_list, obj_link)
3538 vma->node.color = cache_level;
3539 obj->cache_level = cache_level;
3540
3541 out:
3542 /* Flush the dirty CPU caches to the backing storage so that the
3543 * object is now coherent at its new cache level (with respect
3544 * to the access domain).
3545 */
3546 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3547 if (i915_gem_clflush_object(obj, true))
3548 i915_gem_chipset_flush(to_i915(obj->base.dev));
3549 }
3550
3551 return 0;
3552 }
3553
3554 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3555 struct drm_file *file)
3556 {
3557 struct drm_i915_gem_caching *args = data;
3558 struct drm_i915_gem_object *obj;
3559
3560 obj = i915_gem_object_lookup(file, args->handle);
3561 if (!obj)
3562 return -ENOENT;
3563
3564 switch (obj->cache_level) {
3565 case I915_CACHE_LLC:
3566 case I915_CACHE_L3_LLC:
3567 args->caching = I915_CACHING_CACHED;
3568 break;
3569
3570 case I915_CACHE_WT:
3571 args->caching = I915_CACHING_DISPLAY;
3572 break;
3573
3574 default:
3575 args->caching = I915_CACHING_NONE;
3576 break;
3577 }
3578
3579 i915_gem_object_put_unlocked(obj);
3580 return 0;
3581 }
3582
3583 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3584 struct drm_file *file)
3585 {
3586 struct drm_i915_private *dev_priv = to_i915(dev);
3587 struct drm_i915_gem_caching *args = data;
3588 struct drm_i915_gem_object *obj;
3589 enum i915_cache_level level;
3590 int ret;
3591
3592 switch (args->caching) {
3593 case I915_CACHING_NONE:
3594 level = I915_CACHE_NONE;
3595 break;
3596 case I915_CACHING_CACHED:
3597 /*
3598 * Due to a HW issue on BXT A stepping, GPU stores via a
3599 * snooped mapping may leave stale data in a corresponding CPU
3600 * cacheline, whereas normally such cachelines would get
3601 * invalidated.
3602 */
3603 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3604 return -ENODEV;
3605
3606 level = I915_CACHE_LLC;
3607 break;
3608 case I915_CACHING_DISPLAY:
3609 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3610 break;
3611 default:
3612 return -EINVAL;
3613 }
3614
3615 intel_runtime_pm_get(dev_priv);
3616
3617 ret = i915_mutex_lock_interruptible(dev);
3618 if (ret)
3619 goto rpm_put;
3620
3621 obj = i915_gem_object_lookup(file, args->handle);
3622 if (!obj) {
3623 ret = -ENOENT;
3624 goto unlock;
3625 }
3626
3627 ret = i915_gem_object_set_cache_level(obj, level);
3628
3629 i915_gem_object_put(obj);
3630 unlock:
3631 mutex_unlock(&dev->struct_mutex);
3632 rpm_put:
3633 intel_runtime_pm_put(dev_priv);
3634
3635 return ret;
3636 }
3637
3638 /*
3639 * Prepare buffer for display plane (scanout, cursors, etc).
3640 * Can be called from an uninterruptible phase (modesetting) and allows
3641 * any flushes to be pipelined (for pageflips).
3642 */
3643 int
3644 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3645 u32 alignment,
3646 const struct i915_ggtt_view *view)
3647 {
3648 u32 old_read_domains, old_write_domain;
3649 int ret;
3650
3651 /* Mark the pin_display early so that we account for the
3652 * display coherency whilst setting up the cache domains.
3653 */
3654 obj->pin_display++;
3655
3656 /* The display engine is not coherent with the LLC cache on gen6. As
3657 * a result, we make sure that the pinning that is about to occur is
3658 * done with uncached PTEs. This is lowest common denominator for all
3659 * chipsets.
3660 *
3661 * However for gen6+, we could do better by using the GFDT bit instead
3662 * of uncaching, which would allow us to flush all the LLC-cached data
3663 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3664 */
3665 ret = i915_gem_object_set_cache_level(obj,
3666 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3667 if (ret)
3668 goto err_unpin_display;
3669
3670 /* As the user may map the buffer once pinned in the display plane
3671 * (e.g. libkms for the bootup splash), we have to ensure that we
3672 * always use map_and_fenceable for all scanout buffers.
3673 */
3674 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3675 view->type == I915_GGTT_VIEW_NORMAL ?
3676 PIN_MAPPABLE : 0);
3677 if (ret)
3678 goto err_unpin_display;
3679
3680 i915_gem_object_flush_cpu_write_domain(obj);
3681
3682 old_write_domain = obj->base.write_domain;
3683 old_read_domains = obj->base.read_domains;
3684
3685 /* It should now be out of any other write domains, and we can update
3686 * the domain values for our changes.
3687 */
3688 obj->base.write_domain = 0;
3689 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3690
3691 trace_i915_gem_object_change_domain(obj,
3692 old_read_domains,
3693 old_write_domain);
3694
3695 return 0;
3696
3697 err_unpin_display:
3698 obj->pin_display--;
3699 return ret;
3700 }
3701
3702 void
3703 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3704 const struct i915_ggtt_view *view)
3705 {
3706 if (WARN_ON(obj->pin_display == 0))
3707 return;
3708
3709 i915_gem_object_ggtt_unpin_view(obj, view);
3710
3711 obj->pin_display--;
3712 }
3713
3714 /**
3715 * Moves a single object to the CPU read, and possibly write domain.
3716 * @obj: object to act on
3717 * @write: requesting write or read-only access
3718 *
3719 * This function returns when the move is complete, including waiting on
3720 * flushes to occur.
3721 */
3722 int
3723 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3724 {
3725 uint32_t old_write_domain, old_read_domains;
3726 int ret;
3727
3728 ret = i915_gem_object_wait_rendering(obj, !write);
3729 if (ret)
3730 return ret;
3731
3732 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3733 return 0;
3734
3735 i915_gem_object_flush_gtt_write_domain(obj);
3736
3737 old_write_domain = obj->base.write_domain;
3738 old_read_domains = obj->base.read_domains;
3739
3740 /* Flush the CPU cache if it's still invalid. */
3741 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3742 i915_gem_clflush_object(obj, false);
3743
3744 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3745 }
3746
3747 /* It should now be out of any other write domains, and we can update
3748 * the domain values for our changes.
3749 */
3750 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3751
3752 /* If we're writing through the CPU, then the GPU read domains will
3753 * need to be invalidated at next use.
3754 */
3755 if (write) {
3756 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3757 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3758 }
3759
3760 trace_i915_gem_object_change_domain(obj,
3761 old_read_domains,
3762 old_write_domain);
3763
3764 return 0;
3765 }
3766
3767 /* Throttle our rendering by waiting until the ring has completed our requests
3768 * emitted over 20 msec ago.
3769 *
3770 * Note that if we were to use the current jiffies each time around the loop,
3771 * we wouldn't escape the function with any frames outstanding if the time to
3772 * render a frame was over 20ms.
3773 *
3774 * This should get us reasonable parallelism between CPU and GPU but also
3775 * relatively low latency when blocking on a particular request to finish.
3776 */
3777 static int
3778 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3779 {
3780 struct drm_i915_private *dev_priv = to_i915(dev);
3781 struct drm_i915_file_private *file_priv = file->driver_priv;
3782 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3783 struct drm_i915_gem_request *request, *target = NULL;
3784 int ret;
3785
3786 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3787 if (ret)
3788 return ret;
3789
3790 /* ABI: return -EIO if already wedged */
3791 if (i915_terminally_wedged(&dev_priv->gpu_error))
3792 return -EIO;
3793
3794 spin_lock(&file_priv->mm.lock);
3795 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3796 if (time_after_eq(request->emitted_jiffies, recent_enough))
3797 break;
3798
3799 /*
3800 * Note that the request might not have been submitted yet.
3801 * In which case emitted_jiffies will be zero.
3802 */
3803 if (!request->emitted_jiffies)
3804 continue;
3805
3806 target = request;
3807 }
3808 if (target)
3809 i915_gem_request_get(target);
3810 spin_unlock(&file_priv->mm.lock);
3811
3812 if (target == NULL)
3813 return 0;
3814
3815 ret = __i915_wait_request(target, true, NULL, NULL);
3816 i915_gem_request_put(target);
3817
3818 return ret;
3819 }
3820
3821 static bool
3822 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3823 {
3824 struct drm_i915_gem_object *obj = vma->obj;
3825
3826 if (alignment &&
3827 vma->node.start & (alignment - 1))
3828 return true;
3829
3830 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3831 return true;
3832
3833 if (flags & PIN_OFFSET_BIAS &&
3834 vma->node.start < (flags & PIN_OFFSET_MASK))
3835 return true;
3836
3837 if (flags & PIN_OFFSET_FIXED &&
3838 vma->node.start != (flags & PIN_OFFSET_MASK))
3839 return true;
3840
3841 return false;
3842 }
3843
3844 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3845 {
3846 struct drm_i915_gem_object *obj = vma->obj;
3847 bool mappable, fenceable;
3848 u32 fence_size, fence_alignment;
3849
3850 fence_size = i915_gem_get_gtt_size(obj->base.dev,
3851 obj->base.size,
3852 obj->tiling_mode);
3853 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
3854 obj->base.size,
3855 obj->tiling_mode,
3856 true);
3857
3858 fenceable = (vma->node.size == fence_size &&
3859 (vma->node.start & (fence_alignment - 1)) == 0);
3860
3861 mappable = (vma->node.start + fence_size <=
3862 to_i915(obj->base.dev)->ggtt.mappable_end);
3863
3864 obj->map_and_fenceable = mappable && fenceable;
3865 }
3866
3867 static int
3868 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3869 struct i915_address_space *vm,
3870 const struct i915_ggtt_view *ggtt_view,
3871 uint32_t alignment,
3872 uint64_t flags)
3873 {
3874 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3875 struct i915_vma *vma;
3876 unsigned bound;
3877 int ret;
3878
3879 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3880 return -ENODEV;
3881
3882 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3883 return -EINVAL;
3884
3885 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3886 return -EINVAL;
3887
3888 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3889 return -EINVAL;
3890
3891 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
3892 i915_gem_obj_to_vma(obj, vm);
3893
3894 if (vma) {
3895 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3896 return -EBUSY;
3897
3898 if (i915_vma_misplaced(vma, alignment, flags)) {
3899 WARN(vma->pin_count,
3900 "bo is already pinned in %s with incorrect alignment:"
3901 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3902 " obj->map_and_fenceable=%d\n",
3903 ggtt_view ? "ggtt" : "ppgtt",
3904 upper_32_bits(vma->node.start),
3905 lower_32_bits(vma->node.start),
3906 alignment,
3907 !!(flags & PIN_MAPPABLE),
3908 obj->map_and_fenceable);
3909 ret = i915_vma_unbind(vma);
3910 if (ret)
3911 return ret;
3912
3913 vma = NULL;
3914 }
3915 }
3916
3917 bound = vma ? vma->bound : 0;
3918 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3919 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
3920 flags);
3921 if (IS_ERR(vma))
3922 return PTR_ERR(vma);
3923 } else {
3924 ret = i915_vma_bind(vma, obj->cache_level, flags);
3925 if (ret)
3926 return ret;
3927 }
3928
3929 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
3930 (bound ^ vma->bound) & GLOBAL_BIND) {
3931 __i915_vma_set_map_and_fenceable(vma);
3932 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3933 }
3934
3935 vma->pin_count++;
3936 return 0;
3937 }
3938
3939 int
3940 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3941 struct i915_address_space *vm,
3942 uint32_t alignment,
3943 uint64_t flags)
3944 {
3945 return i915_gem_object_do_pin(obj, vm,
3946 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
3947 alignment, flags);
3948 }
3949
3950 int
3951 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3952 const struct i915_ggtt_view *view,
3953 uint32_t alignment,
3954 uint64_t flags)
3955 {
3956 struct drm_device *dev = obj->base.dev;
3957 struct drm_i915_private *dev_priv = to_i915(dev);
3958 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3959
3960 BUG_ON(!view);
3961
3962 return i915_gem_object_do_pin(obj, &ggtt->base, view,
3963 alignment, flags | PIN_GLOBAL);
3964 }
3965
3966 void
3967 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3968 const struct i915_ggtt_view *view)
3969 {
3970 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3971
3972 WARN_ON(vma->pin_count == 0);
3973 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
3974
3975 --vma->pin_count;
3976 }
3977
3978 int
3979 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3980 struct drm_file *file)
3981 {
3982 struct drm_i915_gem_busy *args = data;
3983 struct drm_i915_gem_object *obj;
3984 int ret;
3985
3986 ret = i915_mutex_lock_interruptible(dev);
3987 if (ret)
3988 return ret;
3989
3990 obj = i915_gem_object_lookup(file, args->handle);
3991 if (!obj) {
3992 ret = -ENOENT;
3993 goto unlock;
3994 }
3995
3996 /* Count all active objects as busy, even if they are currently not used
3997 * by the gpu. Users of this interface expect objects to eventually
3998 * become non-busy without any further actions, therefore emit any
3999 * necessary flushes here.
4000 */
4001 ret = i915_gem_object_flush_active(obj);
4002 if (ret)
4003 goto unref;
4004
4005 args->busy = 0;
4006 if (obj->active) {
4007 int i;
4008
4009 for (i = 0; i < I915_NUM_ENGINES; i++) {
4010 struct drm_i915_gem_request *req;
4011
4012 req = obj->last_read_req[i];
4013 if (req)
4014 args->busy |= 1 << (16 + req->engine->exec_id);
4015 }
4016 if (obj->last_write_req)
4017 args->busy |= obj->last_write_req->engine->exec_id;
4018 }
4019
4020 unref:
4021 i915_gem_object_put(obj);
4022 unlock:
4023 mutex_unlock(&dev->struct_mutex);
4024 return ret;
4025 }
4026
4027 int
4028 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4029 struct drm_file *file_priv)
4030 {
4031 return i915_gem_ring_throttle(dev, file_priv);
4032 }
4033
4034 int
4035 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4036 struct drm_file *file_priv)
4037 {
4038 struct drm_i915_private *dev_priv = to_i915(dev);
4039 struct drm_i915_gem_madvise *args = data;
4040 struct drm_i915_gem_object *obj;
4041 int ret;
4042
4043 switch (args->madv) {
4044 case I915_MADV_DONTNEED:
4045 case I915_MADV_WILLNEED:
4046 break;
4047 default:
4048 return -EINVAL;
4049 }
4050
4051 ret = i915_mutex_lock_interruptible(dev);
4052 if (ret)
4053 return ret;
4054
4055 obj = i915_gem_object_lookup(file_priv, args->handle);
4056 if (!obj) {
4057 ret = -ENOENT;
4058 goto unlock;
4059 }
4060
4061 if (i915_gem_obj_is_pinned(obj)) {
4062 ret = -EINVAL;
4063 goto out;
4064 }
4065
4066 if (obj->pages &&
4067 obj->tiling_mode != I915_TILING_NONE &&
4068 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4069 if (obj->madv == I915_MADV_WILLNEED)
4070 i915_gem_object_unpin_pages(obj);
4071 if (args->madv == I915_MADV_WILLNEED)
4072 i915_gem_object_pin_pages(obj);
4073 }
4074
4075 if (obj->madv != __I915_MADV_PURGED)
4076 obj->madv = args->madv;
4077
4078 /* if the object is no longer attached, discard its backing storage */
4079 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4080 i915_gem_object_truncate(obj);
4081
4082 args->retained = obj->madv != __I915_MADV_PURGED;
4083
4084 out:
4085 i915_gem_object_put(obj);
4086 unlock:
4087 mutex_unlock(&dev->struct_mutex);
4088 return ret;
4089 }
4090
4091 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4092 const struct drm_i915_gem_object_ops *ops)
4093 {
4094 int i;
4095
4096 INIT_LIST_HEAD(&obj->global_list);
4097 for (i = 0; i < I915_NUM_ENGINES; i++)
4098 INIT_LIST_HEAD(&obj->engine_list[i]);
4099 INIT_LIST_HEAD(&obj->obj_exec_link);
4100 INIT_LIST_HEAD(&obj->vma_list);
4101 INIT_LIST_HEAD(&obj->batch_pool_link);
4102
4103 obj->ops = ops;
4104
4105 obj->fence_reg = I915_FENCE_REG_NONE;
4106 obj->madv = I915_MADV_WILLNEED;
4107
4108 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4109 }
4110
4111 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4112 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4113 .get_pages = i915_gem_object_get_pages_gtt,
4114 .put_pages = i915_gem_object_put_pages_gtt,
4115 };
4116
4117 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4118 size_t size)
4119 {
4120 struct drm_i915_gem_object *obj;
4121 struct address_space *mapping;
4122 gfp_t mask;
4123 int ret;
4124
4125 obj = i915_gem_object_alloc(dev);
4126 if (obj == NULL)
4127 return ERR_PTR(-ENOMEM);
4128
4129 ret = drm_gem_object_init(dev, &obj->base, size);
4130 if (ret)
4131 goto fail;
4132
4133 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4134 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4135 /* 965gm cannot relocate objects above 4GiB. */
4136 mask &= ~__GFP_HIGHMEM;
4137 mask |= __GFP_DMA32;
4138 }
4139
4140 mapping = file_inode(obj->base.filp)->i_mapping;
4141 mapping_set_gfp_mask(mapping, mask);
4142
4143 i915_gem_object_init(obj, &i915_gem_object_ops);
4144
4145 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4146 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4147
4148 if (HAS_LLC(dev)) {
4149 /* On some devices, we can have the GPU use the LLC (the CPU
4150 * cache) for about a 10% performance improvement
4151 * compared to uncached. Graphics requests other than
4152 * display scanout are coherent with the CPU in
4153 * accessing this cache. This means in this mode we
4154 * don't need to clflush on the CPU side, and on the
4155 * GPU side we only need to flush internal caches to
4156 * get data visible to the CPU.
4157 *
4158 * However, we maintain the display planes as UC, and so
4159 * need to rebind when first used as such.
4160 */
4161 obj->cache_level = I915_CACHE_LLC;
4162 } else
4163 obj->cache_level = I915_CACHE_NONE;
4164
4165 trace_i915_gem_object_create(obj);
4166
4167 return obj;
4168
4169 fail:
4170 i915_gem_object_free(obj);
4171
4172 return ERR_PTR(ret);
4173 }
4174
4175 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4176 {
4177 /* If we are the last user of the backing storage (be it shmemfs
4178 * pages or stolen etc), we know that the pages are going to be
4179 * immediately released. In this case, we can then skip copying
4180 * back the contents from the GPU.
4181 */
4182
4183 if (obj->madv != I915_MADV_WILLNEED)
4184 return false;
4185
4186 if (obj->base.filp == NULL)
4187 return true;
4188
4189 /* At first glance, this looks racy, but then again so would be
4190 * userspace racing mmap against close. However, the first external
4191 * reference to the filp can only be obtained through the
4192 * i915_gem_mmap_ioctl() which safeguards us against the user
4193 * acquiring such a reference whilst we are in the middle of
4194 * freeing the object.
4195 */
4196 return atomic_long_read(&obj->base.filp->f_count) == 1;
4197 }
4198
4199 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4200 {
4201 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4202 struct drm_device *dev = obj->base.dev;
4203 struct drm_i915_private *dev_priv = to_i915(dev);
4204 struct i915_vma *vma, *next;
4205
4206 intel_runtime_pm_get(dev_priv);
4207
4208 trace_i915_gem_object_destroy(obj);
4209
4210 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4211 int ret;
4212
4213 vma->pin_count = 0;
4214 ret = __i915_vma_unbind_no_wait(vma);
4215 if (WARN_ON(ret == -ERESTARTSYS)) {
4216 bool was_interruptible;
4217
4218 was_interruptible = dev_priv->mm.interruptible;
4219 dev_priv->mm.interruptible = false;
4220
4221 WARN_ON(i915_vma_unbind(vma));
4222
4223 dev_priv->mm.interruptible = was_interruptible;
4224 }
4225 }
4226
4227 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4228 * before progressing. */
4229 if (obj->stolen)
4230 i915_gem_object_unpin_pages(obj);
4231
4232 WARN_ON(obj->frontbuffer_bits);
4233
4234 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4235 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4236 obj->tiling_mode != I915_TILING_NONE)
4237 i915_gem_object_unpin_pages(obj);
4238
4239 if (WARN_ON(obj->pages_pin_count))
4240 obj->pages_pin_count = 0;
4241 if (discard_backing_storage(obj))
4242 obj->madv = I915_MADV_DONTNEED;
4243 i915_gem_object_put_pages(obj);
4244
4245 BUG_ON(obj->pages);
4246
4247 if (obj->base.import_attach)
4248 drm_prime_gem_destroy(&obj->base, NULL);
4249
4250 if (obj->ops->release)
4251 obj->ops->release(obj);
4252
4253 drm_gem_object_release(&obj->base);
4254 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4255
4256 kfree(obj->bit_17);
4257 i915_gem_object_free(obj);
4258
4259 intel_runtime_pm_put(dev_priv);
4260 }
4261
4262 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4263 struct i915_address_space *vm)
4264 {
4265 struct i915_vma *vma;
4266 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4267 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4268 vma->vm == vm)
4269 return vma;
4270 }
4271 return NULL;
4272 }
4273
4274 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4275 const struct i915_ggtt_view *view)
4276 {
4277 struct i915_vma *vma;
4278
4279 GEM_BUG_ON(!view);
4280
4281 list_for_each_entry(vma, &obj->vma_list, obj_link)
4282 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4283 return vma;
4284 return NULL;
4285 }
4286
4287 void i915_gem_vma_destroy(struct i915_vma *vma)
4288 {
4289 WARN_ON(vma->node.allocated);
4290
4291 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4292 if (!list_empty(&vma->exec_list))
4293 return;
4294
4295 if (!vma->is_ggtt)
4296 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4297
4298 list_del(&vma->obj_link);
4299
4300 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4301 }
4302
4303 static void
4304 i915_gem_stop_engines(struct drm_device *dev)
4305 {
4306 struct drm_i915_private *dev_priv = to_i915(dev);
4307 struct intel_engine_cs *engine;
4308
4309 for_each_engine(engine, dev_priv)
4310 dev_priv->gt.stop_engine(engine);
4311 }
4312
4313 int
4314 i915_gem_suspend(struct drm_device *dev)
4315 {
4316 struct drm_i915_private *dev_priv = to_i915(dev);
4317 int ret = 0;
4318
4319 intel_suspend_gt_powersave(dev_priv);
4320
4321 mutex_lock(&dev->struct_mutex);
4322
4323 /* We have to flush all the executing contexts to main memory so
4324 * that they can saved in the hibernation image. To ensure the last
4325 * context image is coherent, we have to switch away from it. That
4326 * leaves the dev_priv->kernel_context still active when
4327 * we actually suspend, and its image in memory may not match the GPU
4328 * state. Fortunately, the kernel_context is disposable and we do
4329 * not rely on its state.
4330 */
4331 ret = i915_gem_switch_to_kernel_context(dev_priv);
4332 if (ret)
4333 goto err;
4334
4335 ret = i915_gem_wait_for_idle(dev_priv);
4336 if (ret)
4337 goto err;
4338
4339 i915_gem_retire_requests(dev_priv);
4340
4341 /* Note that rather than stopping the engines, all we have to do
4342 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
4343 * and similar for all logical context images (to ensure they are
4344 * all ready for hibernation).
4345 */
4346 i915_gem_stop_engines(dev);
4347 i915_gem_context_lost(dev_priv);
4348 mutex_unlock(&dev->struct_mutex);
4349
4350 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4351 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4352 flush_delayed_work(&dev_priv->gt.idle_work);
4353
4354 /* Assert that we sucessfully flushed all the work and
4355 * reset the GPU back to its idle, low power state.
4356 */
4357 WARN_ON(dev_priv->gt.awake);
4358
4359 return 0;
4360
4361 err:
4362 mutex_unlock(&dev->struct_mutex);
4363 return ret;
4364 }
4365
4366 void i915_gem_resume(struct drm_device *dev)
4367 {
4368 struct drm_i915_private *dev_priv = to_i915(dev);
4369
4370 mutex_lock(&dev->struct_mutex);
4371 i915_gem_restore_gtt_mappings(dev);
4372
4373 /* As we didn't flush the kernel context before suspend, we cannot
4374 * guarantee that the context image is complete. So let's just reset
4375 * it and start again.
4376 */
4377 if (i915.enable_execlists)
4378 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4379
4380 mutex_unlock(&dev->struct_mutex);
4381 }
4382
4383 void i915_gem_init_swizzling(struct drm_device *dev)
4384 {
4385 struct drm_i915_private *dev_priv = to_i915(dev);
4386
4387 if (INTEL_INFO(dev)->gen < 5 ||
4388 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4389 return;
4390
4391 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4392 DISP_TILE_SURFACE_SWIZZLING);
4393
4394 if (IS_GEN5(dev))
4395 return;
4396
4397 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4398 if (IS_GEN6(dev))
4399 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4400 else if (IS_GEN7(dev))
4401 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4402 else if (IS_GEN8(dev))
4403 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4404 else
4405 BUG();
4406 }
4407
4408 static void init_unused_ring(struct drm_device *dev, u32 base)
4409 {
4410 struct drm_i915_private *dev_priv = to_i915(dev);
4411
4412 I915_WRITE(RING_CTL(base), 0);
4413 I915_WRITE(RING_HEAD(base), 0);
4414 I915_WRITE(RING_TAIL(base), 0);
4415 I915_WRITE(RING_START(base), 0);
4416 }
4417
4418 static void init_unused_rings(struct drm_device *dev)
4419 {
4420 if (IS_I830(dev)) {
4421 init_unused_ring(dev, PRB1_BASE);
4422 init_unused_ring(dev, SRB0_BASE);
4423 init_unused_ring(dev, SRB1_BASE);
4424 init_unused_ring(dev, SRB2_BASE);
4425 init_unused_ring(dev, SRB3_BASE);
4426 } else if (IS_GEN2(dev)) {
4427 init_unused_ring(dev, SRB0_BASE);
4428 init_unused_ring(dev, SRB1_BASE);
4429 } else if (IS_GEN3(dev)) {
4430 init_unused_ring(dev, PRB1_BASE);
4431 init_unused_ring(dev, PRB2_BASE);
4432 }
4433 }
4434
4435 int
4436 i915_gem_init_hw(struct drm_device *dev)
4437 {
4438 struct drm_i915_private *dev_priv = to_i915(dev);
4439 struct intel_engine_cs *engine;
4440 int ret;
4441
4442 /* Double layer security blanket, see i915_gem_init() */
4443 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4444
4445 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4446 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4447
4448 if (IS_HASWELL(dev))
4449 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4450 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4451
4452 if (HAS_PCH_NOP(dev)) {
4453 if (IS_IVYBRIDGE(dev)) {
4454 u32 temp = I915_READ(GEN7_MSG_CTL);
4455 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4456 I915_WRITE(GEN7_MSG_CTL, temp);
4457 } else if (INTEL_INFO(dev)->gen >= 7) {
4458 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4459 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4460 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4461 }
4462 }
4463
4464 i915_gem_init_swizzling(dev);
4465
4466 /*
4467 * At least 830 can leave some of the unused rings
4468 * "active" (ie. head != tail) after resume which
4469 * will prevent c3 entry. Makes sure all unused rings
4470 * are totally idle.
4471 */
4472 init_unused_rings(dev);
4473
4474 BUG_ON(!dev_priv->kernel_context);
4475
4476 ret = i915_ppgtt_init_hw(dev);
4477 if (ret) {
4478 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4479 goto out;
4480 }
4481
4482 /* Need to do basic initialisation of all rings first: */
4483 for_each_engine(engine, dev_priv) {
4484 ret = engine->init_hw(engine);
4485 if (ret)
4486 goto out;
4487 }
4488
4489 intel_mocs_init_l3cc_table(dev);
4490
4491 /* We can't enable contexts until all firmware is loaded */
4492 ret = intel_guc_setup(dev);
4493 if (ret)
4494 goto out;
4495
4496 out:
4497 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4498 return ret;
4499 }
4500
4501 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4502 {
4503 if (INTEL_INFO(dev_priv)->gen < 6)
4504 return false;
4505
4506 /* TODO: make semaphores and Execlists play nicely together */
4507 if (i915.enable_execlists)
4508 return false;
4509
4510 if (value >= 0)
4511 return value;
4512
4513 #ifdef CONFIG_INTEL_IOMMU
4514 /* Enable semaphores on SNB when IO remapping is off */
4515 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4516 return false;
4517 #endif
4518
4519 return true;
4520 }
4521
4522 int i915_gem_init(struct drm_device *dev)
4523 {
4524 struct drm_i915_private *dev_priv = to_i915(dev);
4525 int ret;
4526
4527 mutex_lock(&dev->struct_mutex);
4528
4529 if (!i915.enable_execlists) {
4530 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4531 dev_priv->gt.stop_engine = intel_engine_stop;
4532 } else {
4533 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4534 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4535 }
4536
4537 /* This is just a security blanket to placate dragons.
4538 * On some systems, we very sporadically observe that the first TLBs
4539 * used by the CS may be stale, despite us poking the TLB reset. If
4540 * we hold the forcewake during initialisation these problems
4541 * just magically go away.
4542 */
4543 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4544
4545 i915_gem_init_userptr(dev_priv);
4546
4547 ret = i915_gem_init_ggtt(dev_priv);
4548 if (ret)
4549 goto out_unlock;
4550
4551 ret = i915_gem_context_init(dev);
4552 if (ret)
4553 goto out_unlock;
4554
4555 ret = intel_engines_init(dev);
4556 if (ret)
4557 goto out_unlock;
4558
4559 ret = i915_gem_init_hw(dev);
4560 if (ret == -EIO) {
4561 /* Allow engine initialisation to fail by marking the GPU as
4562 * wedged. But we only want to do this where the GPU is angry,
4563 * for all other failure, such as an allocation failure, bail.
4564 */
4565 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4566 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4567 ret = 0;
4568 }
4569
4570 out_unlock:
4571 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4572 mutex_unlock(&dev->struct_mutex);
4573
4574 return ret;
4575 }
4576
4577 void
4578 i915_gem_cleanup_engines(struct drm_device *dev)
4579 {
4580 struct drm_i915_private *dev_priv = to_i915(dev);
4581 struct intel_engine_cs *engine;
4582
4583 for_each_engine(engine, dev_priv)
4584 dev_priv->gt.cleanup_engine(engine);
4585 }
4586
4587 static void
4588 init_engine_lists(struct intel_engine_cs *engine)
4589 {
4590 INIT_LIST_HEAD(&engine->active_list);
4591 INIT_LIST_HEAD(&engine->request_list);
4592 }
4593
4594 void
4595 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4596 {
4597 struct drm_device *dev = &dev_priv->drm;
4598
4599 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4600 !IS_CHERRYVIEW(dev_priv))
4601 dev_priv->num_fence_regs = 32;
4602 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4603 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4604 dev_priv->num_fence_regs = 16;
4605 else
4606 dev_priv->num_fence_regs = 8;
4607
4608 if (intel_vgpu_active(dev_priv))
4609 dev_priv->num_fence_regs =
4610 I915_READ(vgtif_reg(avail_rs.fence_num));
4611
4612 /* Initialize fence registers to zero */
4613 i915_gem_restore_fences(dev);
4614
4615 i915_gem_detect_bit_6_swizzle(dev);
4616 }
4617
4618 void
4619 i915_gem_load_init(struct drm_device *dev)
4620 {
4621 struct drm_i915_private *dev_priv = to_i915(dev);
4622 int i;
4623
4624 dev_priv->objects =
4625 kmem_cache_create("i915_gem_object",
4626 sizeof(struct drm_i915_gem_object), 0,
4627 SLAB_HWCACHE_ALIGN,
4628 NULL);
4629 dev_priv->vmas =
4630 kmem_cache_create("i915_gem_vma",
4631 sizeof(struct i915_vma), 0,
4632 SLAB_HWCACHE_ALIGN,
4633 NULL);
4634 dev_priv->requests =
4635 kmem_cache_create("i915_gem_request",
4636 sizeof(struct drm_i915_gem_request), 0,
4637 SLAB_HWCACHE_ALIGN,
4638 NULL);
4639
4640 INIT_LIST_HEAD(&dev_priv->context_list);
4641 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4642 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4643 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4644 for (i = 0; i < I915_NUM_ENGINES; i++)
4645 init_engine_lists(&dev_priv->engine[i]);
4646 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4647 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4648 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4649 i915_gem_retire_work_handler);
4650 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4651 i915_gem_idle_work_handler);
4652 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4653 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4654
4655 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4656
4657 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4658
4659 init_waitqueue_head(&dev_priv->pending_flip_queue);
4660
4661 dev_priv->mm.interruptible = true;
4662
4663 mutex_init(&dev_priv->fb_tracking.lock);
4664 }
4665
4666 void i915_gem_load_cleanup(struct drm_device *dev)
4667 {
4668 struct drm_i915_private *dev_priv = to_i915(dev);
4669
4670 kmem_cache_destroy(dev_priv->requests);
4671 kmem_cache_destroy(dev_priv->vmas);
4672 kmem_cache_destroy(dev_priv->objects);
4673 }
4674
4675 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4676 {
4677 struct drm_i915_gem_object *obj;
4678
4679 /* Called just before we write the hibernation image.
4680 *
4681 * We need to update the domain tracking to reflect that the CPU
4682 * will be accessing all the pages to create and restore from the
4683 * hibernation, and so upon restoration those pages will be in the
4684 * CPU domain.
4685 *
4686 * To make sure the hibernation image contains the latest state,
4687 * we update that state just before writing out the image.
4688 */
4689
4690 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4691 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4692 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4693 }
4694
4695 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4696 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4697 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4698 }
4699
4700 return 0;
4701 }
4702
4703 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4704 {
4705 struct drm_i915_file_private *file_priv = file->driver_priv;
4706 struct drm_i915_gem_request *request;
4707
4708 /* Clean up our request list when the client is going away, so that
4709 * later retire_requests won't dereference our soon-to-be-gone
4710 * file_priv.
4711 */
4712 spin_lock(&file_priv->mm.lock);
4713 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4714 request->file_priv = NULL;
4715 spin_unlock(&file_priv->mm.lock);
4716
4717 if (!list_empty(&file_priv->rps.link)) {
4718 spin_lock(&to_i915(dev)->rps.client_lock);
4719 list_del(&file_priv->rps.link);
4720 spin_unlock(&to_i915(dev)->rps.client_lock);
4721 }
4722 }
4723
4724 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4725 {
4726 struct drm_i915_file_private *file_priv;
4727 int ret;
4728
4729 DRM_DEBUG_DRIVER("\n");
4730
4731 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4732 if (!file_priv)
4733 return -ENOMEM;
4734
4735 file->driver_priv = file_priv;
4736 file_priv->dev_priv = to_i915(dev);
4737 file_priv->file = file;
4738 INIT_LIST_HEAD(&file_priv->rps.link);
4739
4740 spin_lock_init(&file_priv->mm.lock);
4741 INIT_LIST_HEAD(&file_priv->mm.request_list);
4742
4743 file_priv->bsd_engine = -1;
4744
4745 ret = i915_gem_context_open(dev, file);
4746 if (ret)
4747 kfree(file_priv);
4748
4749 return ret;
4750 }
4751
4752 /**
4753 * i915_gem_track_fb - update frontbuffer tracking
4754 * @old: current GEM buffer for the frontbuffer slots
4755 * @new: new GEM buffer for the frontbuffer slots
4756 * @frontbuffer_bits: bitmask of frontbuffer slots
4757 *
4758 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4759 * from @old and setting them in @new. Both @old and @new can be NULL.
4760 */
4761 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4762 struct drm_i915_gem_object *new,
4763 unsigned frontbuffer_bits)
4764 {
4765 if (old) {
4766 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4767 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4768 old->frontbuffer_bits &= ~frontbuffer_bits;
4769 }
4770
4771 if (new) {
4772 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4773 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4774 new->frontbuffer_bits |= frontbuffer_bits;
4775 }
4776 }
4777
4778 /* All the new VM stuff */
4779 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4780 struct i915_address_space *vm)
4781 {
4782 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4783 struct i915_vma *vma;
4784
4785 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4786
4787 list_for_each_entry(vma, &o->vma_list, obj_link) {
4788 if (vma->is_ggtt &&
4789 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4790 continue;
4791 if (vma->vm == vm)
4792 return vma->node.start;
4793 }
4794
4795 WARN(1, "%s vma for this object not found.\n",
4796 i915_is_ggtt(vm) ? "global" : "ppgtt");
4797 return -1;
4798 }
4799
4800 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4801 const struct i915_ggtt_view *view)
4802 {
4803 struct i915_vma *vma;
4804
4805 list_for_each_entry(vma, &o->vma_list, obj_link)
4806 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4807 return vma->node.start;
4808
4809 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4810 return -1;
4811 }
4812
4813 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4814 struct i915_address_space *vm)
4815 {
4816 struct i915_vma *vma;
4817
4818 list_for_each_entry(vma, &o->vma_list, obj_link) {
4819 if (vma->is_ggtt &&
4820 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4821 continue;
4822 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4823 return true;
4824 }
4825
4826 return false;
4827 }
4828
4829 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4830 const struct i915_ggtt_view *view)
4831 {
4832 struct i915_vma *vma;
4833
4834 list_for_each_entry(vma, &o->vma_list, obj_link)
4835 if (vma->is_ggtt &&
4836 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4837 drm_mm_node_allocated(&vma->node))
4838 return true;
4839
4840 return false;
4841 }
4842
4843 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4844 {
4845 struct i915_vma *vma;
4846
4847 list_for_each_entry(vma, &o->vma_list, obj_link)
4848 if (drm_mm_node_allocated(&vma->node))
4849 return true;
4850
4851 return false;
4852 }
4853
4854 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4855 {
4856 struct i915_vma *vma;
4857
4858 GEM_BUG_ON(list_empty(&o->vma_list));
4859
4860 list_for_each_entry(vma, &o->vma_list, obj_link) {
4861 if (vma->is_ggtt &&
4862 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4863 return vma->node.size;
4864 }
4865
4866 return 0;
4867 }
4868
4869 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4870 {
4871 struct i915_vma *vma;
4872 list_for_each_entry(vma, &obj->vma_list, obj_link)
4873 if (vma->pin_count > 0)
4874 return true;
4875
4876 return false;
4877 }
4878
4879 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4880 struct page *
4881 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4882 {
4883 struct page *page;
4884
4885 /* Only default objects have per-page dirty tracking */
4886 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4887 return NULL;
4888
4889 page = i915_gem_object_get_page(obj, n);
4890 set_page_dirty(page);
4891 return page;
4892 }
4893
4894 /* Allocate a new GEM object and fill it with the supplied data */
4895 struct drm_i915_gem_object *
4896 i915_gem_object_create_from_data(struct drm_device *dev,
4897 const void *data, size_t size)
4898 {
4899 struct drm_i915_gem_object *obj;
4900 struct sg_table *sg;
4901 size_t bytes;
4902 int ret;
4903
4904 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4905 if (IS_ERR(obj))
4906 return obj;
4907
4908 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4909 if (ret)
4910 goto fail;
4911
4912 ret = i915_gem_object_get_pages(obj);
4913 if (ret)
4914 goto fail;
4915
4916 i915_gem_object_pin_pages(obj);
4917 sg = obj->pages;
4918 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4919 obj->dirty = 1; /* Backing store is now out of date */
4920 i915_gem_object_unpin_pages(obj);
4921
4922 if (WARN_ON(bytes != size)) {
4923 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4924 ret = -EFAULT;
4925 goto fail;
4926 }
4927
4928 return obj;
4929
4930 fail:
4931 i915_gem_object_put(obj);
4932 return ERR_PTR(ret);
4933 }
This page took 0.200851 seconds and 5 git commands to generate.