5bb370fdc99cd8a4d9cd0d0a774c53b940f97c63
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error))
95 if (EXIT_COND)
96 return 0;
97
98 /* GPU is already declared terminally dead, give up. */
99 if (i915_terminally_wedged(error))
100 return -EIO;
101
102 /*
103 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104 * userspace. If it takes that long something really bad is going on and
105 * we should simply try to bail out and fail as gracefully as possible.
106 */
107 ret = wait_event_interruptible_timeout(error->reset_queue,
108 EXIT_COND,
109 10*HZ);
110 if (ret == 0) {
111 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112 return -EIO;
113 } else if (ret < 0) {
114 return ret;
115 }
116 #undef EXIT_COND
117
118 return 0;
119 }
120
121 int i915_mutex_lock_interruptible(struct drm_device *dev)
122 {
123 struct drm_i915_private *dev_priv = dev->dev_private;
124 int ret;
125
126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
127 if (ret)
128 return ret;
129
130 ret = mutex_lock_interruptible(&dev->struct_mutex);
131 if (ret)
132 return ret;
133
134 WARN_ON(i915_verify_lists(dev));
135 return 0;
136 }
137
138 static inline bool
139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
140 {
141 return obj->gtt_space && !obj->active;
142 }
143
144 int
145 i915_gem_init_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file)
147 {
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 struct drm_i915_gem_init *args = data;
150
151 if (drm_core_check_feature(dev, DRIVER_MODESET))
152 return -ENODEV;
153
154 if (args->gtt_start >= args->gtt_end ||
155 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156 return -EINVAL;
157
158 /* GEM with user mode setting was never supported on ilk and later. */
159 if (INTEL_INFO(dev)->gen >= 5)
160 return -ENODEV;
161
162 mutex_lock(&dev->struct_mutex);
163 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164 args->gtt_end);
165 dev_priv->gtt.mappable_end = args->gtt_end;
166 mutex_unlock(&dev->struct_mutex);
167
168 return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173 struct drm_file *file)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct drm_i915_gem_get_aperture *args = data;
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
179
180 pinned = 0;
181 mutex_lock(&dev->struct_mutex);
182 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
185 mutex_unlock(&dev->struct_mutex);
186
187 args->aper_size = dev_priv->gtt.total;
188 args->aper_available_size = args->aper_size - pinned;
189
190 return 0;
191 }
192
193 void *i915_gem_object_alloc(struct drm_device *dev)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197 }
198
199 void i915_gem_object_free(struct drm_i915_gem_object *obj)
200 {
201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202 kmem_cache_free(dev_priv->slab, obj);
203 }
204
205 static int
206 i915_gem_create(struct drm_file *file,
207 struct drm_device *dev,
208 uint64_t size,
209 uint32_t *handle_p)
210 {
211 struct drm_i915_gem_object *obj;
212 int ret;
213 u32 handle;
214
215 size = roundup(size, PAGE_SIZE);
216 if (size == 0)
217 return -EINVAL;
218
219 /* Allocate the new object */
220 obj = i915_gem_alloc_object(dev, size);
221 if (obj == NULL)
222 return -ENOMEM;
223
224 ret = drm_gem_handle_create(file, &obj->base, &handle);
225 if (ret) {
226 drm_gem_object_release(&obj->base);
227 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
228 i915_gem_object_free(obj);
229 return ret;
230 }
231
232 /* drop reference from allocate - handle holds it now */
233 drm_gem_object_unreference(&obj->base);
234 trace_i915_gem_object_create(obj);
235
236 *handle_p = handle;
237 return 0;
238 }
239
240 int
241 i915_gem_dumb_create(struct drm_file *file,
242 struct drm_device *dev,
243 struct drm_mode_create_dumb *args)
244 {
245 /* have to work out size/pitch and return them */
246 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
247 args->size = args->pitch * args->height;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 int i915_gem_dumb_destroy(struct drm_file *file,
253 struct drm_device *dev,
254 uint32_t handle)
255 {
256 return drm_gem_handle_delete(file, handle);
257 }
258
259 /**
260 * Creates a new mm object and returns a handle to it.
261 */
262 int
263 i915_gem_create_ioctl(struct drm_device *dev, void *data,
264 struct drm_file *file)
265 {
266 struct drm_i915_gem_create *args = data;
267
268 return i915_gem_create(file, dev,
269 args->size, &args->handle);
270 }
271
272 static inline int
273 __copy_to_user_swizzled(char __user *cpu_vaddr,
274 const char *gpu_vaddr, int gpu_offset,
275 int length)
276 {
277 int ret, cpu_offset = 0;
278
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285 gpu_vaddr + swizzled_gpu_offset,
286 this_length);
287 if (ret)
288 return ret + length;
289
290 cpu_offset += this_length;
291 gpu_offset += this_length;
292 length -= this_length;
293 }
294
295 return 0;
296 }
297
298 static inline int
299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300 const char __user *cpu_vaddr,
301 int length)
302 {
303 int ret, cpu_offset = 0;
304
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311 cpu_vaddr + cpu_offset,
312 this_length);
313 if (ret)
314 return ret + length;
315
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
321 return 0;
322 }
323
324 /* Per-page copy function for the shmem pread fastpath.
325 * Flushes invalid cachelines before reading the target if
326 * needs_clflush is set. */
327 static int
328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329 char __user *user_data,
330 bool page_do_bit17_swizzling, bool needs_clflush)
331 {
332 char *vaddr;
333 int ret;
334
335 if (unlikely(page_do_bit17_swizzling))
336 return -EINVAL;
337
338 vaddr = kmap_atomic(page);
339 if (needs_clflush)
340 drm_clflush_virt_range(vaddr + shmem_page_offset,
341 page_length);
342 ret = __copy_to_user_inatomic(user_data,
343 vaddr + shmem_page_offset,
344 page_length);
345 kunmap_atomic(vaddr);
346
347 return ret ? -EFAULT : 0;
348 }
349
350 static void
351 shmem_clflush_swizzled_range(char *addr, unsigned long length,
352 bool swizzled)
353 {
354 if (unlikely(swizzled)) {
355 unsigned long start = (unsigned long) addr;
356 unsigned long end = (unsigned long) addr + length;
357
358 /* For swizzling simply ensure that we always flush both
359 * channels. Lame, but simple and it works. Swizzled
360 * pwrite/pread is far from a hotpath - current userspace
361 * doesn't use it at all. */
362 start = round_down(start, 128);
363 end = round_up(end, 128);
364
365 drm_clflush_virt_range((void *)start, end - start);
366 } else {
367 drm_clflush_virt_range(addr, length);
368 }
369
370 }
371
372 /* Only difference to the fast-path function is that this can handle bit17
373 * and uses non-atomic copy and kmap functions. */
374 static int
375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376 char __user *user_data,
377 bool page_do_bit17_swizzling, bool needs_clflush)
378 {
379 char *vaddr;
380 int ret;
381
382 vaddr = kmap(page);
383 if (needs_clflush)
384 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385 page_length,
386 page_do_bit17_swizzling);
387
388 if (page_do_bit17_swizzling)
389 ret = __copy_to_user_swizzled(user_data,
390 vaddr, shmem_page_offset,
391 page_length);
392 else
393 ret = __copy_to_user(user_data,
394 vaddr + shmem_page_offset,
395 page_length);
396 kunmap(page);
397
398 return ret ? - EFAULT : 0;
399 }
400
401 static int
402 i915_gem_shmem_pread(struct drm_device *dev,
403 struct drm_i915_gem_object *obj,
404 struct drm_i915_gem_pread *args,
405 struct drm_file *file)
406 {
407 char __user *user_data;
408 ssize_t remain;
409 loff_t offset;
410 int shmem_page_offset, page_length, ret = 0;
411 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412 int prefaulted = 0;
413 int needs_clflush = 0;
414 struct scatterlist *sg;
415 int i;
416
417 user_data = (char __user *) (uintptr_t) args->data_ptr;
418 remain = args->size;
419
420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
434 }
435
436 ret = i915_gem_object_get_pages(obj);
437 if (ret)
438 return ret;
439
440 i915_gem_object_pin_pages(obj);
441
442 offset = args->offset;
443
444 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445 struct page *page;
446
447 if (i < offset >> PAGE_SHIFT)
448 continue;
449
450 if (remain <= 0)
451 break;
452
453 /* Operation in this page
454 *
455 * shmem_page_offset = offset within page in shmem file
456 * page_length = bytes to copy for this page
457 */
458 shmem_page_offset = offset_in_page(offset);
459 page_length = remain;
460 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461 page_length = PAGE_SIZE - shmem_page_offset;
462
463 page = sg_page(sg);
464 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465 (page_to_phys(page) & (1 << 17)) != 0;
466
467 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468 user_data, page_do_bit17_swizzling,
469 needs_clflush);
470 if (ret == 0)
471 goto next_page;
472
473 mutex_unlock(&dev->struct_mutex);
474
475 if (!prefaulted) {
476 ret = fault_in_multipages_writeable(user_data, remain);
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
484
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
488
489 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492 mark_page_accessed(page);
493
494 if (ret)
495 goto out;
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 i915_gem_object_unpin_pages(obj);
504
505 return ret;
506 }
507
508 /**
509 * Reads data from the object referenced by handle.
510 *
511 * On error, the contents of *data are undefined.
512 */
513 int
514 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515 struct drm_file *file)
516 {
517 struct drm_i915_gem_pread *args = data;
518 struct drm_i915_gem_object *obj;
519 int ret = 0;
520
521 if (args->size == 0)
522 return 0;
523
524 if (!access_ok(VERIFY_WRITE,
525 (char __user *)(uintptr_t)args->data_ptr,
526 args->size))
527 return -EFAULT;
528
529 ret = i915_mutex_lock_interruptible(dev);
530 if (ret)
531 return ret;
532
533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
534 if (&obj->base == NULL) {
535 ret = -ENOENT;
536 goto unlock;
537 }
538
539 /* Bounds check source. */
540 if (args->offset > obj->base.size ||
541 args->size > obj->base.size - args->offset) {
542 ret = -EINVAL;
543 goto out;
544 }
545
546 /* prime objects have no backing filp to GEM pread/pwrite
547 * pages from.
548 */
549 if (!obj->base.filp) {
550 ret = -EINVAL;
551 goto out;
552 }
553
554 trace_i915_gem_object_pread(obj, args->offset, args->size);
555
556 ret = i915_gem_shmem_pread(dev, obj, args, file);
557
558 out:
559 drm_gem_object_unreference(&obj->base);
560 unlock:
561 mutex_unlock(&dev->struct_mutex);
562 return ret;
563 }
564
565 /* This is the fast write path which cannot handle
566 * page faults in the source data
567 */
568
569 static inline int
570 fast_user_write(struct io_mapping *mapping,
571 loff_t page_base, int page_offset,
572 char __user *user_data,
573 int length)
574 {
575 void __iomem *vaddr_atomic;
576 void *vaddr;
577 unsigned long unwritten;
578
579 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
580 /* We can use the cpu mem copy function because this is X86. */
581 vaddr = (void __force*)vaddr_atomic + page_offset;
582 unwritten = __copy_from_user_inatomic_nocache(vaddr,
583 user_data, length);
584 io_mapping_unmap_atomic(vaddr_atomic);
585 return unwritten;
586 }
587
588 /**
589 * This is the fast pwrite path, where we copy the data directly from the
590 * user into the GTT, uncached.
591 */
592 static int
593 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594 struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
597 {
598 drm_i915_private_t *dev_priv = dev->dev_private;
599 ssize_t remain;
600 loff_t offset, page_base;
601 char __user *user_data;
602 int page_offset, page_length, ret;
603
604 ret = i915_gem_object_pin(obj, 0, true, true);
605 if (ret)
606 goto out;
607
608 ret = i915_gem_object_set_to_gtt_domain(obj, true);
609 if (ret)
610 goto out_unpin;
611
612 ret = i915_gem_object_put_fence(obj);
613 if (ret)
614 goto out_unpin;
615
616 user_data = (char __user *) (uintptr_t) args->data_ptr;
617 remain = args->size;
618
619 offset = obj->gtt_offset + args->offset;
620
621 while (remain > 0) {
622 /* Operation in this page
623 *
624 * page_base = page offset within aperture
625 * page_offset = offset within page
626 * page_length = bytes to copy for this page
627 */
628 page_base = offset & PAGE_MASK;
629 page_offset = offset_in_page(offset);
630 page_length = remain;
631 if ((page_offset + remain) > PAGE_SIZE)
632 page_length = PAGE_SIZE - page_offset;
633
634 /* If we get a fault while copying data, then (presumably) our
635 * source page isn't available. Return the error and we'll
636 * retry in the slow path.
637 */
638 if (fast_user_write(dev_priv->gtt.mappable, page_base,
639 page_offset, user_data, page_length)) {
640 ret = -EFAULT;
641 goto out_unpin;
642 }
643
644 remain -= page_length;
645 user_data += page_length;
646 offset += page_length;
647 }
648
649 out_unpin:
650 i915_gem_object_unpin(obj);
651 out:
652 return ret;
653 }
654
655 /* Per-page copy function for the shmem pwrite fastpath.
656 * Flushes invalid cachelines before writing to the target if
657 * needs_clflush_before is set and flushes out any written cachelines after
658 * writing if needs_clflush is set. */
659 static int
660 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
661 char __user *user_data,
662 bool page_do_bit17_swizzling,
663 bool needs_clflush_before,
664 bool needs_clflush_after)
665 {
666 char *vaddr;
667 int ret;
668
669 if (unlikely(page_do_bit17_swizzling))
670 return -EINVAL;
671
672 vaddr = kmap_atomic(page);
673 if (needs_clflush_before)
674 drm_clflush_virt_range(vaddr + shmem_page_offset,
675 page_length);
676 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
677 user_data,
678 page_length);
679 if (needs_clflush_after)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 kunmap_atomic(vaddr);
683
684 return ret ? -EFAULT : 0;
685 }
686
687 /* Only difference to the fast-path function is that this can handle bit17
688 * and uses non-atomic copy and kmap functions. */
689 static int
690 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
691 char __user *user_data,
692 bool page_do_bit17_swizzling,
693 bool needs_clflush_before,
694 bool needs_clflush_after)
695 {
696 char *vaddr;
697 int ret;
698
699 vaddr = kmap(page);
700 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
701 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
702 page_length,
703 page_do_bit17_swizzling);
704 if (page_do_bit17_swizzling)
705 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
706 user_data,
707 page_length);
708 else
709 ret = __copy_from_user(vaddr + shmem_page_offset,
710 user_data,
711 page_length);
712 if (needs_clflush_after)
713 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
714 page_length,
715 page_do_bit17_swizzling);
716 kunmap(page);
717
718 return ret ? -EFAULT : 0;
719 }
720
721 static int
722 i915_gem_shmem_pwrite(struct drm_device *dev,
723 struct drm_i915_gem_object *obj,
724 struct drm_i915_gem_pwrite *args,
725 struct drm_file *file)
726 {
727 ssize_t remain;
728 loff_t offset;
729 char __user *user_data;
730 int shmem_page_offset, page_length, ret = 0;
731 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
732 int hit_slowpath = 0;
733 int needs_clflush_after = 0;
734 int needs_clflush_before = 0;
735 int i;
736 struct scatterlist *sg;
737
738 user_data = (char __user *) (uintptr_t) args->data_ptr;
739 remain = args->size;
740
741 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742
743 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744 /* If we're not in the cpu write domain, set ourself into the gtt
745 * write domain and manually flush cachelines (if required). This
746 * optimizes for the case when the gpu will use the data
747 * right away and we therefore have to clflush anyway. */
748 if (obj->cache_level == I915_CACHE_NONE)
749 needs_clflush_after = 1;
750 if (obj->gtt_space) {
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 return ret;
754 }
755 }
756 /* Same trick applies for invalidate partially written cachelines before
757 * writing. */
758 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
759 && obj->cache_level == I915_CACHE_NONE)
760 needs_clflush_before = 1;
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
772 struct page *page;
773 int partial_cacheline_write;
774
775 if (i < offset >> PAGE_SHIFT)
776 continue;
777
778 if (remain <= 0)
779 break;
780
781 /* Operation in this page
782 *
783 * shmem_page_offset = offset within page in shmem file
784 * page_length = bytes to copy for this page
785 */
786 shmem_page_offset = offset_in_page(offset);
787
788 page_length = remain;
789 if ((shmem_page_offset + page_length) > PAGE_SIZE)
790 page_length = PAGE_SIZE - shmem_page_offset;
791
792 /* If we don't overwrite a cacheline completely we need to be
793 * careful to have up-to-date data by first clflushing. Don't
794 * overcomplicate things and flush the entire patch. */
795 partial_cacheline_write = needs_clflush_before &&
796 ((shmem_page_offset | page_length)
797 & (boot_cpu_data.x86_clflush_size - 1));
798
799 page = sg_page(sg);
800 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
801 (page_to_phys(page) & (1 << 17)) != 0;
802
803 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
804 user_data, page_do_bit17_swizzling,
805 partial_cacheline_write,
806 needs_clflush_after);
807 if (ret == 0)
808 goto next_page;
809
810 hit_slowpath = 1;
811 mutex_unlock(&dev->struct_mutex);
812 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
813 user_data, page_do_bit17_swizzling,
814 partial_cacheline_write,
815 needs_clflush_after);
816
817 mutex_lock(&dev->struct_mutex);
818
819 next_page:
820 set_page_dirty(page);
821 mark_page_accessed(page);
822
823 if (ret)
824 goto out;
825
826 remain -= page_length;
827 user_data += page_length;
828 offset += page_length;
829 }
830
831 out:
832 i915_gem_object_unpin_pages(obj);
833
834 if (hit_slowpath) {
835 /*
836 * Fixup: Flush cpu caches in case we didn't flush the dirty
837 * cachelines in-line while writing and the object moved
838 * out of the cpu write domain while we've dropped the lock.
839 */
840 if (!needs_clflush_after &&
841 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
842 i915_gem_clflush_object(obj);
843 i915_gem_chipset_flush(dev);
844 }
845 }
846
847 if (needs_clflush_after)
848 i915_gem_chipset_flush(dev);
849
850 return ret;
851 }
852
853 /**
854 * Writes data to the object referenced by handle.
855 *
856 * On error, the contents of the buffer that were to be modified are undefined.
857 */
858 int
859 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
860 struct drm_file *file)
861 {
862 struct drm_i915_gem_pwrite *args = data;
863 struct drm_i915_gem_object *obj;
864 int ret;
865
866 if (args->size == 0)
867 return 0;
868
869 if (!access_ok(VERIFY_READ,
870 (char __user *)(uintptr_t)args->data_ptr,
871 args->size))
872 return -EFAULT;
873
874 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
875 args->size);
876 if (ret)
877 return -EFAULT;
878
879 ret = i915_mutex_lock_interruptible(dev);
880 if (ret)
881 return ret;
882
883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
884 if (&obj->base == NULL) {
885 ret = -ENOENT;
886 goto unlock;
887 }
888
889 /* Bounds check destination. */
890 if (args->offset > obj->base.size ||
891 args->size > obj->base.size - args->offset) {
892 ret = -EINVAL;
893 goto out;
894 }
895
896 /* prime objects have no backing filp to GEM pread/pwrite
897 * pages from.
898 */
899 if (!obj->base.filp) {
900 ret = -EINVAL;
901 goto out;
902 }
903
904 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905
906 ret = -EFAULT;
907 /* We can only do the GTT pwrite on untiled buffers, as otherwise
908 * it would end up going through the fenced access, and we'll get
909 * different detiling behavior between reading and writing.
910 * pread/pwrite currently are reading and writing from the CPU
911 * perspective, requiring manual detiling by the client.
912 */
913 if (obj->phys_obj) {
914 ret = i915_gem_phys_pwrite(dev, obj, args, file);
915 goto out;
916 }
917
918 if (obj->cache_level == I915_CACHE_NONE &&
919 obj->tiling_mode == I915_TILING_NONE &&
920 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
921 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
922 /* Note that the gtt paths might fail with non-page-backed user
923 * pointers (e.g. gtt mappings when moving data between
924 * textures). Fallback to the shmem path in that case. */
925 }
926
927 if (ret == -EFAULT || ret == -ENOSPC)
928 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
929
930 out:
931 drm_gem_object_unreference(&obj->base);
932 unlock:
933 mutex_unlock(&dev->struct_mutex);
934 return ret;
935 }
936
937 int
938 i915_gem_check_wedge(struct i915_gpu_error *error,
939 bool interruptible)
940 {
941 if (i915_reset_in_progress(error)) {
942 /* Non-interruptible callers can't handle -EAGAIN, hence return
943 * -EIO unconditionally for these. */
944 if (!interruptible)
945 return -EIO;
946
947 /* Recovery complete, but the reset failed ... */
948 if (i915_terminally_wedged(error))
949 return -EIO;
950
951 return -EAGAIN;
952 }
953
954 return 0;
955 }
956
957 /*
958 * Compare seqno against outstanding lazy request. Emit a request if they are
959 * equal.
960 */
961 static int
962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963 {
964 int ret;
965
966 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967
968 ret = 0;
969 if (seqno == ring->outstanding_lazy_request)
970 ret = i915_add_request(ring, NULL, NULL);
971
972 return ret;
973 }
974
975 /**
976 * __wait_seqno - wait until execution of seqno has finished
977 * @ring: the ring expected to report seqno
978 * @seqno: duh!
979 * @interruptible: do an interruptible wait (normally yes)
980 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
981 *
982 * Returns 0 if the seqno was found within the alloted time. Else returns the
983 * errno with remaining time filled in timeout argument.
984 */
985 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
986 bool interruptible, struct timespec *timeout)
987 {
988 drm_i915_private_t *dev_priv = ring->dev->dev_private;
989 struct timespec before, now, wait_time={1,0};
990 unsigned long timeout_jiffies;
991 long end;
992 bool wait_forever = true;
993 int ret;
994
995 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
996 return 0;
997
998 trace_i915_gem_request_wait_begin(ring, seqno);
999
1000 if (timeout != NULL) {
1001 wait_time = *timeout;
1002 wait_forever = false;
1003 }
1004
1005 timeout_jiffies = timespec_to_jiffies(&wait_time);
1006
1007 if (WARN_ON(!ring->irq_get(ring)))
1008 return -ENODEV;
1009
1010 /* Record current time in case interrupted by signal, or wedged * */
1011 getrawmonotonic(&before);
1012
1013 #define EXIT_COND \
1014 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1015 i915_reset_in_progress(&dev_priv->gpu_error))
1016 do {
1017 if (interruptible)
1018 end = wait_event_interruptible_timeout(ring->irq_queue,
1019 EXIT_COND,
1020 timeout_jiffies);
1021 else
1022 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1023 timeout_jiffies);
1024
1025 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1026 if (ret)
1027 end = ret;
1028 } while (end == 0 && wait_forever);
1029
1030 getrawmonotonic(&now);
1031
1032 ring->irq_put(ring);
1033 trace_i915_gem_request_wait_end(ring, seqno);
1034 #undef EXIT_COND
1035
1036 if (timeout) {
1037 struct timespec sleep_time = timespec_sub(now, before);
1038 *timeout = timespec_sub(*timeout, sleep_time);
1039 }
1040
1041 switch (end) {
1042 case -EIO:
1043 case -EAGAIN: /* Wedged */
1044 case -ERESTARTSYS: /* Signal */
1045 return (int)end;
1046 case 0: /* Timeout */
1047 if (timeout)
1048 set_normalized_timespec(timeout, 0, 0);
1049 return -ETIME;
1050 default: /* Completed */
1051 WARN_ON(end < 0); /* We're not aware of other errors */
1052 return 0;
1053 }
1054 }
1055
1056 /**
1057 * Waits for a sequence number to be signaled, and cleans up the
1058 * request and object lists appropriately for that event.
1059 */
1060 int
1061 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1062 {
1063 struct drm_device *dev = ring->dev;
1064 struct drm_i915_private *dev_priv = dev->dev_private;
1065 bool interruptible = dev_priv->mm.interruptible;
1066 int ret;
1067
1068 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1069 BUG_ON(seqno == 0);
1070
1071 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1072 if (ret)
1073 return ret;
1074
1075 ret = i915_gem_check_olr(ring, seqno);
1076 if (ret)
1077 return ret;
1078
1079 return __wait_seqno(ring, seqno, interruptible, NULL);
1080 }
1081
1082 /**
1083 * Ensures that all rendering to the object has completed and the object is
1084 * safe to unbind from the GTT or access from the CPU.
1085 */
1086 static __must_check int
1087 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1088 bool readonly)
1089 {
1090 struct intel_ring_buffer *ring = obj->ring;
1091 u32 seqno;
1092 int ret;
1093
1094 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1095 if (seqno == 0)
1096 return 0;
1097
1098 ret = i915_wait_seqno(ring, seqno);
1099 if (ret)
1100 return ret;
1101
1102 i915_gem_retire_requests_ring(ring);
1103
1104 /* Manually manage the write flush as we may have not yet
1105 * retired the buffer.
1106 */
1107 if (obj->last_write_seqno &&
1108 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1109 obj->last_write_seqno = 0;
1110 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1111 }
1112
1113 return 0;
1114 }
1115
1116 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1117 * as the object state may change during this call.
1118 */
1119 static __must_check int
1120 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1121 bool readonly)
1122 {
1123 struct drm_device *dev = obj->base.dev;
1124 struct drm_i915_private *dev_priv = dev->dev_private;
1125 struct intel_ring_buffer *ring = obj->ring;
1126 u32 seqno;
1127 int ret;
1128
1129 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1130 BUG_ON(!dev_priv->mm.interruptible);
1131
1132 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133 if (seqno == 0)
1134 return 0;
1135
1136 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1137 if (ret)
1138 return ret;
1139
1140 ret = i915_gem_check_olr(ring, seqno);
1141 if (ret)
1142 return ret;
1143
1144 mutex_unlock(&dev->struct_mutex);
1145 ret = __wait_seqno(ring, seqno, true, NULL);
1146 mutex_lock(&dev->struct_mutex);
1147
1148 i915_gem_retire_requests_ring(ring);
1149
1150 /* Manually manage the write flush as we may have not yet
1151 * retired the buffer.
1152 */
1153 if (obj->last_write_seqno &&
1154 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1155 obj->last_write_seqno = 0;
1156 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1157 }
1158
1159 return ret;
1160 }
1161
1162 /**
1163 * Called when user space prepares to use an object with the CPU, either
1164 * through the mmap ioctl's mapping or a GTT mapping.
1165 */
1166 int
1167 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1168 struct drm_file *file)
1169 {
1170 struct drm_i915_gem_set_domain *args = data;
1171 struct drm_i915_gem_object *obj;
1172 uint32_t read_domains = args->read_domains;
1173 uint32_t write_domain = args->write_domain;
1174 int ret;
1175
1176 /* Only handle setting domains to types used by the CPU. */
1177 if (write_domain & I915_GEM_GPU_DOMAINS)
1178 return -EINVAL;
1179
1180 if (read_domains & I915_GEM_GPU_DOMAINS)
1181 return -EINVAL;
1182
1183 /* Having something in the write domain implies it's in the read
1184 * domain, and only that read domain. Enforce that in the request.
1185 */
1186 if (write_domain != 0 && read_domains != write_domain)
1187 return -EINVAL;
1188
1189 ret = i915_mutex_lock_interruptible(dev);
1190 if (ret)
1191 return ret;
1192
1193 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1194 if (&obj->base == NULL) {
1195 ret = -ENOENT;
1196 goto unlock;
1197 }
1198
1199 /* Try to flush the object off the GPU without holding the lock.
1200 * We will repeat the flush holding the lock in the normal manner
1201 * to catch cases where we are gazumped.
1202 */
1203 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1204 if (ret)
1205 goto unref;
1206
1207 if (read_domains & I915_GEM_DOMAIN_GTT) {
1208 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1209
1210 /* Silently promote "you're not bound, there was nothing to do"
1211 * to success, since the client was just asking us to
1212 * make sure everything was done.
1213 */
1214 if (ret == -EINVAL)
1215 ret = 0;
1216 } else {
1217 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1218 }
1219
1220 unref:
1221 drm_gem_object_unreference(&obj->base);
1222 unlock:
1223 mutex_unlock(&dev->struct_mutex);
1224 return ret;
1225 }
1226
1227 /**
1228 * Called when user space has done writes to this buffer
1229 */
1230 int
1231 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1232 struct drm_file *file)
1233 {
1234 struct drm_i915_gem_sw_finish *args = data;
1235 struct drm_i915_gem_object *obj;
1236 int ret = 0;
1237
1238 ret = i915_mutex_lock_interruptible(dev);
1239 if (ret)
1240 return ret;
1241
1242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1243 if (&obj->base == NULL) {
1244 ret = -ENOENT;
1245 goto unlock;
1246 }
1247
1248 /* Pinned buffers may be scanout, so flush the cache */
1249 if (obj->pin_count)
1250 i915_gem_object_flush_cpu_write_domain(obj);
1251
1252 drm_gem_object_unreference(&obj->base);
1253 unlock:
1254 mutex_unlock(&dev->struct_mutex);
1255 return ret;
1256 }
1257
1258 /**
1259 * Maps the contents of an object, returning the address it is mapped
1260 * into.
1261 *
1262 * While the mapping holds a reference on the contents of the object, it doesn't
1263 * imply a ref on the object itself.
1264 */
1265 int
1266 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1267 struct drm_file *file)
1268 {
1269 struct drm_i915_gem_mmap *args = data;
1270 struct drm_gem_object *obj;
1271 unsigned long addr;
1272
1273 obj = drm_gem_object_lookup(dev, file, args->handle);
1274 if (obj == NULL)
1275 return -ENOENT;
1276
1277 /* prime objects have no backing filp to GEM mmap
1278 * pages from.
1279 */
1280 if (!obj->filp) {
1281 drm_gem_object_unreference_unlocked(obj);
1282 return -EINVAL;
1283 }
1284
1285 addr = vm_mmap(obj->filp, 0, args->size,
1286 PROT_READ | PROT_WRITE, MAP_SHARED,
1287 args->offset);
1288 drm_gem_object_unreference_unlocked(obj);
1289 if (IS_ERR((void *)addr))
1290 return addr;
1291
1292 args->addr_ptr = (uint64_t) addr;
1293
1294 return 0;
1295 }
1296
1297 /**
1298 * i915_gem_fault - fault a page into the GTT
1299 * vma: VMA in question
1300 * vmf: fault info
1301 *
1302 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1303 * from userspace. The fault handler takes care of binding the object to
1304 * the GTT (if needed), allocating and programming a fence register (again,
1305 * only if needed based on whether the old reg is still valid or the object
1306 * is tiled) and inserting a new PTE into the faulting process.
1307 *
1308 * Note that the faulting process may involve evicting existing objects
1309 * from the GTT and/or fence registers to make room. So performance may
1310 * suffer if the GTT working set is large or there are few fence registers
1311 * left.
1312 */
1313 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1314 {
1315 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1316 struct drm_device *dev = obj->base.dev;
1317 drm_i915_private_t *dev_priv = dev->dev_private;
1318 pgoff_t page_offset;
1319 unsigned long pfn;
1320 int ret = 0;
1321 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1322
1323 /* We don't use vmf->pgoff since that has the fake offset */
1324 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1325 PAGE_SHIFT;
1326
1327 ret = i915_mutex_lock_interruptible(dev);
1328 if (ret)
1329 goto out;
1330
1331 trace_i915_gem_object_fault(obj, page_offset, true, write);
1332
1333 /* Access to snoopable pages through the GTT is incoherent. */
1334 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1335 ret = -EINVAL;
1336 goto unlock;
1337 }
1338
1339 /* Now bind it into the GTT if needed */
1340 ret = i915_gem_object_pin(obj, 0, true, false);
1341 if (ret)
1342 goto unlock;
1343
1344 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1345 if (ret)
1346 goto unpin;
1347
1348 ret = i915_gem_object_get_fence(obj);
1349 if (ret)
1350 goto unpin;
1351
1352 obj->fault_mappable = true;
1353
1354 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1355 page_offset;
1356
1357 /* Finally, remap it using the new GTT offset */
1358 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1359 unpin:
1360 i915_gem_object_unpin(obj);
1361 unlock:
1362 mutex_unlock(&dev->struct_mutex);
1363 out:
1364 switch (ret) {
1365 case -EIO:
1366 /* If this -EIO is due to a gpu hang, give the reset code a
1367 * chance to clean up the mess. Otherwise return the proper
1368 * SIGBUS. */
1369 if (i915_terminally_wedged(&dev_priv->gpu_error))
1370 return VM_FAULT_SIGBUS;
1371 case -EAGAIN:
1372 /* Give the error handler a chance to run and move the
1373 * objects off the GPU active list. Next time we service the
1374 * fault, we should be able to transition the page into the
1375 * GTT without touching the GPU (and so avoid further
1376 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1377 * with coherency, just lost writes.
1378 */
1379 set_need_resched();
1380 case 0:
1381 case -ERESTARTSYS:
1382 case -EINTR:
1383 case -EBUSY:
1384 /*
1385 * EBUSY is ok: this just means that another thread
1386 * already did the job.
1387 */
1388 return VM_FAULT_NOPAGE;
1389 case -ENOMEM:
1390 return VM_FAULT_OOM;
1391 case -ENOSPC:
1392 return VM_FAULT_SIGBUS;
1393 default:
1394 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1395 return VM_FAULT_SIGBUS;
1396 }
1397 }
1398
1399 /**
1400 * i915_gem_release_mmap - remove physical page mappings
1401 * @obj: obj in question
1402 *
1403 * Preserve the reservation of the mmapping with the DRM core code, but
1404 * relinquish ownership of the pages back to the system.
1405 *
1406 * It is vital that we remove the page mapping if we have mapped a tiled
1407 * object through the GTT and then lose the fence register due to
1408 * resource pressure. Similarly if the object has been moved out of the
1409 * aperture, than pages mapped into userspace must be revoked. Removing the
1410 * mapping will then trigger a page fault on the next user access, allowing
1411 * fixup by i915_gem_fault().
1412 */
1413 void
1414 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1415 {
1416 if (!obj->fault_mappable)
1417 return;
1418
1419 if (obj->base.dev->dev_mapping)
1420 unmap_mapping_range(obj->base.dev->dev_mapping,
1421 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1422 obj->base.size, 1);
1423
1424 obj->fault_mappable = false;
1425 }
1426
1427 uint32_t
1428 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1429 {
1430 uint32_t gtt_size;
1431
1432 if (INTEL_INFO(dev)->gen >= 4 ||
1433 tiling_mode == I915_TILING_NONE)
1434 return size;
1435
1436 /* Previous chips need a power-of-two fence region when tiling */
1437 if (INTEL_INFO(dev)->gen == 3)
1438 gtt_size = 1024*1024;
1439 else
1440 gtt_size = 512*1024;
1441
1442 while (gtt_size < size)
1443 gtt_size <<= 1;
1444
1445 return gtt_size;
1446 }
1447
1448 /**
1449 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1450 * @obj: object to check
1451 *
1452 * Return the required GTT alignment for an object, taking into account
1453 * potential fence register mapping.
1454 */
1455 uint32_t
1456 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1457 int tiling_mode, bool fenced)
1458 {
1459 /*
1460 * Minimum alignment is 4k (GTT page size), but might be greater
1461 * if a fence register is needed for the object.
1462 */
1463 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1464 tiling_mode == I915_TILING_NONE)
1465 return 4096;
1466
1467 /*
1468 * Previous chips need to be aligned to the size of the smallest
1469 * fence register that can contain the object.
1470 */
1471 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1472 }
1473
1474 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1475 {
1476 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1477 int ret;
1478
1479 if (obj->base.map_list.map)
1480 return 0;
1481
1482 dev_priv->mm.shrinker_no_lock_stealing = true;
1483
1484 ret = drm_gem_create_mmap_offset(&obj->base);
1485 if (ret != -ENOSPC)
1486 goto out;
1487
1488 /* Badly fragmented mmap space? The only way we can recover
1489 * space is by destroying unwanted objects. We can't randomly release
1490 * mmap_offsets as userspace expects them to be persistent for the
1491 * lifetime of the objects. The closest we can is to release the
1492 * offsets on purgeable objects by truncating it and marking it purged,
1493 * which prevents userspace from ever using that object again.
1494 */
1495 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1496 ret = drm_gem_create_mmap_offset(&obj->base);
1497 if (ret != -ENOSPC)
1498 goto out;
1499
1500 i915_gem_shrink_all(dev_priv);
1501 ret = drm_gem_create_mmap_offset(&obj->base);
1502 out:
1503 dev_priv->mm.shrinker_no_lock_stealing = false;
1504
1505 return ret;
1506 }
1507
1508 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1509 {
1510 if (!obj->base.map_list.map)
1511 return;
1512
1513 drm_gem_free_mmap_offset(&obj->base);
1514 }
1515
1516 int
1517 i915_gem_mmap_gtt(struct drm_file *file,
1518 struct drm_device *dev,
1519 uint32_t handle,
1520 uint64_t *offset)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct drm_i915_gem_object *obj;
1524 int ret;
1525
1526 ret = i915_mutex_lock_interruptible(dev);
1527 if (ret)
1528 return ret;
1529
1530 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1531 if (&obj->base == NULL) {
1532 ret = -ENOENT;
1533 goto unlock;
1534 }
1535
1536 if (obj->base.size > dev_priv->gtt.mappable_end) {
1537 ret = -E2BIG;
1538 goto out;
1539 }
1540
1541 if (obj->madv != I915_MADV_WILLNEED) {
1542 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1543 ret = -EINVAL;
1544 goto out;
1545 }
1546
1547 ret = i915_gem_object_create_mmap_offset(obj);
1548 if (ret)
1549 goto out;
1550
1551 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1552
1553 out:
1554 drm_gem_object_unreference(&obj->base);
1555 unlock:
1556 mutex_unlock(&dev->struct_mutex);
1557 return ret;
1558 }
1559
1560 /**
1561 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1562 * @dev: DRM device
1563 * @data: GTT mapping ioctl data
1564 * @file: GEM object info
1565 *
1566 * Simply returns the fake offset to userspace so it can mmap it.
1567 * The mmap call will end up in drm_gem_mmap(), which will set things
1568 * up so we can get faults in the handler above.
1569 *
1570 * The fault handler will take care of binding the object into the GTT
1571 * (since it may have been evicted to make room for something), allocating
1572 * a fence register, and mapping the appropriate aperture address into
1573 * userspace.
1574 */
1575 int
1576 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1577 struct drm_file *file)
1578 {
1579 struct drm_i915_gem_mmap_gtt *args = data;
1580
1581 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1582 }
1583
1584 /* Immediately discard the backing storage */
1585 static void
1586 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1587 {
1588 struct inode *inode;
1589
1590 i915_gem_object_free_mmap_offset(obj);
1591
1592 if (obj->base.filp == NULL)
1593 return;
1594
1595 /* Our goal here is to return as much of the memory as
1596 * is possible back to the system as we are called from OOM.
1597 * To do this we must instruct the shmfs to drop all of its
1598 * backing pages, *now*.
1599 */
1600 inode = obj->base.filp->f_path.dentry->d_inode;
1601 shmem_truncate_range(inode, 0, (loff_t)-1);
1602
1603 obj->madv = __I915_MADV_PURGED;
1604 }
1605
1606 static inline int
1607 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1608 {
1609 return obj->madv == I915_MADV_DONTNEED;
1610 }
1611
1612 static void
1613 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1614 {
1615 int page_count = obj->base.size / PAGE_SIZE;
1616 struct scatterlist *sg;
1617 int ret, i;
1618
1619 BUG_ON(obj->madv == __I915_MADV_PURGED);
1620
1621 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1622 if (ret) {
1623 /* In the event of a disaster, abandon all caches and
1624 * hope for the best.
1625 */
1626 WARN_ON(ret != -EIO);
1627 i915_gem_clflush_object(obj);
1628 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1629 }
1630
1631 if (i915_gem_object_needs_bit17_swizzle(obj))
1632 i915_gem_object_save_bit_17_swizzle(obj);
1633
1634 if (obj->madv == I915_MADV_DONTNEED)
1635 obj->dirty = 0;
1636
1637 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1638 struct page *page = sg_page(sg);
1639
1640 if (obj->dirty)
1641 set_page_dirty(page);
1642
1643 if (obj->madv == I915_MADV_WILLNEED)
1644 mark_page_accessed(page);
1645
1646 page_cache_release(page);
1647 }
1648 obj->dirty = 0;
1649
1650 sg_free_table(obj->pages);
1651 kfree(obj->pages);
1652 }
1653
1654 int
1655 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1656 {
1657 const struct drm_i915_gem_object_ops *ops = obj->ops;
1658
1659 if (obj->pages == NULL)
1660 return 0;
1661
1662 BUG_ON(obj->gtt_space);
1663
1664 if (obj->pages_pin_count)
1665 return -EBUSY;
1666
1667 /* ->put_pages might need to allocate memory for the bit17 swizzle
1668 * array, hence protect them from being reaped by removing them from gtt
1669 * lists early. */
1670 list_del(&obj->gtt_list);
1671
1672 ops->put_pages(obj);
1673 obj->pages = NULL;
1674
1675 if (i915_gem_object_is_purgeable(obj))
1676 i915_gem_object_truncate(obj);
1677
1678 return 0;
1679 }
1680
1681 static long
1682 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1683 {
1684 struct drm_i915_gem_object *obj, *next;
1685 long count = 0;
1686
1687 list_for_each_entry_safe(obj, next,
1688 &dev_priv->mm.unbound_list,
1689 gtt_list) {
1690 if (i915_gem_object_is_purgeable(obj) &&
1691 i915_gem_object_put_pages(obj) == 0) {
1692 count += obj->base.size >> PAGE_SHIFT;
1693 if (count >= target)
1694 return count;
1695 }
1696 }
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.inactive_list,
1700 mm_list) {
1701 if (i915_gem_object_is_purgeable(obj) &&
1702 i915_gem_object_unbind(obj) == 0 &&
1703 i915_gem_object_put_pages(obj) == 0) {
1704 count += obj->base.size >> PAGE_SHIFT;
1705 if (count >= target)
1706 return count;
1707 }
1708 }
1709
1710 return count;
1711 }
1712
1713 static void
1714 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1715 {
1716 struct drm_i915_gem_object *obj, *next;
1717
1718 i915_gem_evict_everything(dev_priv->dev);
1719
1720 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1721 i915_gem_object_put_pages(obj);
1722 }
1723
1724 static int
1725 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1726 {
1727 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1728 int page_count, i;
1729 struct address_space *mapping;
1730 struct sg_table *st;
1731 struct scatterlist *sg;
1732 struct page *page;
1733 gfp_t gfp;
1734
1735 /* Assert that the object is not currently in any GPU domain. As it
1736 * wasn't in the GTT, there shouldn't be any way it could have been in
1737 * a GPU cache
1738 */
1739 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1740 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1741
1742 st = kmalloc(sizeof(*st), GFP_KERNEL);
1743 if (st == NULL)
1744 return -ENOMEM;
1745
1746 page_count = obj->base.size / PAGE_SIZE;
1747 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1748 sg_free_table(st);
1749 kfree(st);
1750 return -ENOMEM;
1751 }
1752
1753 /* Get the list of pages out of our struct file. They'll be pinned
1754 * at this point until we release them.
1755 *
1756 * Fail silently without starting the shrinker
1757 */
1758 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1759 gfp = mapping_gfp_mask(mapping);
1760 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1761 gfp &= ~(__GFP_IO | __GFP_WAIT);
1762 for_each_sg(st->sgl, sg, page_count, i) {
1763 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1764 if (IS_ERR(page)) {
1765 i915_gem_purge(dev_priv, page_count);
1766 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1767 }
1768 if (IS_ERR(page)) {
1769 /* We've tried hard to allocate the memory by reaping
1770 * our own buffer, now let the real VM do its job and
1771 * go down in flames if truly OOM.
1772 */
1773 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1774 gfp |= __GFP_IO | __GFP_WAIT;
1775
1776 i915_gem_shrink_all(dev_priv);
1777 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1778 if (IS_ERR(page))
1779 goto err_pages;
1780
1781 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1782 gfp &= ~(__GFP_IO | __GFP_WAIT);
1783 }
1784
1785 sg_set_page(sg, page, PAGE_SIZE, 0);
1786 }
1787
1788 obj->pages = st;
1789
1790 if (i915_gem_object_needs_bit17_swizzle(obj))
1791 i915_gem_object_do_bit_17_swizzle(obj);
1792
1793 return 0;
1794
1795 err_pages:
1796 for_each_sg(st->sgl, sg, i, page_count)
1797 page_cache_release(sg_page(sg));
1798 sg_free_table(st);
1799 kfree(st);
1800 return PTR_ERR(page);
1801 }
1802
1803 /* Ensure that the associated pages are gathered from the backing storage
1804 * and pinned into our object. i915_gem_object_get_pages() may be called
1805 * multiple times before they are released by a single call to
1806 * i915_gem_object_put_pages() - once the pages are no longer referenced
1807 * either as a result of memory pressure (reaping pages under the shrinker)
1808 * or as the object is itself released.
1809 */
1810 int
1811 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1812 {
1813 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1814 const struct drm_i915_gem_object_ops *ops = obj->ops;
1815 int ret;
1816
1817 if (obj->pages)
1818 return 0;
1819
1820 if (obj->madv != I915_MADV_WILLNEED) {
1821 DRM_ERROR("Attempting to obtain a purgeable object\n");
1822 return -EINVAL;
1823 }
1824
1825 BUG_ON(obj->pages_pin_count);
1826
1827 ret = ops->get_pages(obj);
1828 if (ret)
1829 return ret;
1830
1831 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1832 return 0;
1833 }
1834
1835 void
1836 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1837 struct intel_ring_buffer *ring)
1838 {
1839 struct drm_device *dev = obj->base.dev;
1840 struct drm_i915_private *dev_priv = dev->dev_private;
1841 u32 seqno = intel_ring_get_seqno(ring);
1842
1843 BUG_ON(ring == NULL);
1844 obj->ring = ring;
1845
1846 /* Add a reference if we're newly entering the active list. */
1847 if (!obj->active) {
1848 drm_gem_object_reference(&obj->base);
1849 obj->active = 1;
1850 }
1851
1852 /* Move from whatever list we were on to the tail of execution. */
1853 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1854 list_move_tail(&obj->ring_list, &ring->active_list);
1855
1856 obj->last_read_seqno = seqno;
1857
1858 if (obj->fenced_gpu_access) {
1859 obj->last_fenced_seqno = seqno;
1860
1861 /* Bump MRU to take account of the delayed flush */
1862 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1863 struct drm_i915_fence_reg *reg;
1864
1865 reg = &dev_priv->fence_regs[obj->fence_reg];
1866 list_move_tail(&reg->lru_list,
1867 &dev_priv->mm.fence_list);
1868 }
1869 }
1870 }
1871
1872 static void
1873 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1874 {
1875 struct drm_device *dev = obj->base.dev;
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877
1878 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1879 BUG_ON(!obj->active);
1880
1881 if (obj->pin_count) /* are we a framebuffer? */
1882 intel_mark_fb_idle(obj);
1883
1884 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1885
1886 list_del_init(&obj->ring_list);
1887 obj->ring = NULL;
1888
1889 obj->last_read_seqno = 0;
1890 obj->last_write_seqno = 0;
1891 obj->base.write_domain = 0;
1892
1893 obj->last_fenced_seqno = 0;
1894 obj->fenced_gpu_access = false;
1895
1896 obj->active = 0;
1897 drm_gem_object_unreference(&obj->base);
1898
1899 WARN_ON(i915_verify_lists(dev));
1900 }
1901
1902 static int
1903 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1904 {
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 struct intel_ring_buffer *ring;
1907 int ret, i, j;
1908
1909 /* Carefully retire all requests without writing to the rings */
1910 for_each_ring(ring, dev_priv, i) {
1911 ret = intel_ring_idle(ring);
1912 if (ret)
1913 return ret;
1914 }
1915 i915_gem_retire_requests(dev);
1916
1917 /* Finally reset hw state */
1918 for_each_ring(ring, dev_priv, i) {
1919 intel_ring_init_seqno(ring, seqno);
1920
1921 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1922 ring->sync_seqno[j] = 0;
1923 }
1924
1925 return 0;
1926 }
1927
1928 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1929 {
1930 struct drm_i915_private *dev_priv = dev->dev_private;
1931 int ret;
1932
1933 if (seqno == 0)
1934 return -EINVAL;
1935
1936 /* HWS page needs to be set less than what we
1937 * will inject to ring
1938 */
1939 ret = i915_gem_init_seqno(dev, seqno - 1);
1940 if (ret)
1941 return ret;
1942
1943 /* Carefully set the last_seqno value so that wrap
1944 * detection still works
1945 */
1946 dev_priv->next_seqno = seqno;
1947 dev_priv->last_seqno = seqno - 1;
1948 if (dev_priv->last_seqno == 0)
1949 dev_priv->last_seqno--;
1950
1951 return 0;
1952 }
1953
1954 int
1955 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1956 {
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958
1959 /* reserve 0 for non-seqno */
1960 if (dev_priv->next_seqno == 0) {
1961 int ret = i915_gem_init_seqno(dev, 0);
1962 if (ret)
1963 return ret;
1964
1965 dev_priv->next_seqno = 1;
1966 }
1967
1968 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1969 return 0;
1970 }
1971
1972 int
1973 i915_add_request(struct intel_ring_buffer *ring,
1974 struct drm_file *file,
1975 u32 *out_seqno)
1976 {
1977 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1978 struct drm_i915_gem_request *request;
1979 u32 request_ring_position;
1980 int was_empty;
1981 int ret;
1982
1983 /*
1984 * Emit any outstanding flushes - execbuf can fail to emit the flush
1985 * after having emitted the batchbuffer command. Hence we need to fix
1986 * things up similar to emitting the lazy request. The difference here
1987 * is that the flush _must_ happen before the next request, no matter
1988 * what.
1989 */
1990 ret = intel_ring_flush_all_caches(ring);
1991 if (ret)
1992 return ret;
1993
1994 request = kmalloc(sizeof(*request), GFP_KERNEL);
1995 if (request == NULL)
1996 return -ENOMEM;
1997
1998
1999 /* Record the position of the start of the request so that
2000 * should we detect the updated seqno part-way through the
2001 * GPU processing the request, we never over-estimate the
2002 * position of the head.
2003 */
2004 request_ring_position = intel_ring_get_tail(ring);
2005
2006 ret = ring->add_request(ring);
2007 if (ret) {
2008 kfree(request);
2009 return ret;
2010 }
2011
2012 request->seqno = intel_ring_get_seqno(ring);
2013 request->ring = ring;
2014 request->tail = request_ring_position;
2015 request->emitted_jiffies = jiffies;
2016 was_empty = list_empty(&ring->request_list);
2017 list_add_tail(&request->list, &ring->request_list);
2018 request->file_priv = NULL;
2019
2020 if (file) {
2021 struct drm_i915_file_private *file_priv = file->driver_priv;
2022
2023 spin_lock(&file_priv->mm.lock);
2024 request->file_priv = file_priv;
2025 list_add_tail(&request->client_list,
2026 &file_priv->mm.request_list);
2027 spin_unlock(&file_priv->mm.lock);
2028 }
2029
2030 trace_i915_gem_request_add(ring, request->seqno);
2031 ring->outstanding_lazy_request = 0;
2032
2033 if (!dev_priv->mm.suspended) {
2034 if (i915_enable_hangcheck) {
2035 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2036 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2037 }
2038 if (was_empty) {
2039 queue_delayed_work(dev_priv->wq,
2040 &dev_priv->mm.retire_work,
2041 round_jiffies_up_relative(HZ));
2042 intel_mark_busy(dev_priv->dev);
2043 }
2044 }
2045
2046 if (out_seqno)
2047 *out_seqno = request->seqno;
2048 return 0;
2049 }
2050
2051 static inline void
2052 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2053 {
2054 struct drm_i915_file_private *file_priv = request->file_priv;
2055
2056 if (!file_priv)
2057 return;
2058
2059 spin_lock(&file_priv->mm.lock);
2060 if (request->file_priv) {
2061 list_del(&request->client_list);
2062 request->file_priv = NULL;
2063 }
2064 spin_unlock(&file_priv->mm.lock);
2065 }
2066
2067 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2068 struct intel_ring_buffer *ring)
2069 {
2070 while (!list_empty(&ring->request_list)) {
2071 struct drm_i915_gem_request *request;
2072
2073 request = list_first_entry(&ring->request_list,
2074 struct drm_i915_gem_request,
2075 list);
2076
2077 list_del(&request->list);
2078 i915_gem_request_remove_from_client(request);
2079 kfree(request);
2080 }
2081
2082 while (!list_empty(&ring->active_list)) {
2083 struct drm_i915_gem_object *obj;
2084
2085 obj = list_first_entry(&ring->active_list,
2086 struct drm_i915_gem_object,
2087 ring_list);
2088
2089 i915_gem_object_move_to_inactive(obj);
2090 }
2091 }
2092
2093 static void i915_gem_reset_fences(struct drm_device *dev)
2094 {
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 int i;
2097
2098 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2099 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2100
2101 i915_gem_write_fence(dev, i, NULL);
2102
2103 if (reg->obj)
2104 i915_gem_object_fence_lost(reg->obj);
2105
2106 reg->pin_count = 0;
2107 reg->obj = NULL;
2108 INIT_LIST_HEAD(&reg->lru_list);
2109 }
2110
2111 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2112 }
2113
2114 void i915_gem_reset(struct drm_device *dev)
2115 {
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 struct drm_i915_gem_object *obj;
2118 struct intel_ring_buffer *ring;
2119 int i;
2120
2121 for_each_ring(ring, dev_priv, i)
2122 i915_gem_reset_ring_lists(dev_priv, ring);
2123
2124 /* Move everything out of the GPU domains to ensure we do any
2125 * necessary invalidation upon reuse.
2126 */
2127 list_for_each_entry(obj,
2128 &dev_priv->mm.inactive_list,
2129 mm_list)
2130 {
2131 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2132 }
2133
2134 /* The fence registers are invalidated so clear them out */
2135 i915_gem_reset_fences(dev);
2136 }
2137
2138 /**
2139 * This function clears the request list as sequence numbers are passed.
2140 */
2141 void
2142 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2143 {
2144 uint32_t seqno;
2145
2146 if (list_empty(&ring->request_list))
2147 return;
2148
2149 WARN_ON(i915_verify_lists(ring->dev));
2150
2151 seqno = ring->get_seqno(ring, true);
2152
2153 while (!list_empty(&ring->request_list)) {
2154 struct drm_i915_gem_request *request;
2155
2156 request = list_first_entry(&ring->request_list,
2157 struct drm_i915_gem_request,
2158 list);
2159
2160 if (!i915_seqno_passed(seqno, request->seqno))
2161 break;
2162
2163 trace_i915_gem_request_retire(ring, request->seqno);
2164 /* We know the GPU must have read the request to have
2165 * sent us the seqno + interrupt, so use the position
2166 * of tail of the request to update the last known position
2167 * of the GPU head.
2168 */
2169 ring->last_retired_head = request->tail;
2170
2171 list_del(&request->list);
2172 i915_gem_request_remove_from_client(request);
2173 kfree(request);
2174 }
2175
2176 /* Move any buffers on the active list that are no longer referenced
2177 * by the ringbuffer to the flushing/inactive lists as appropriate.
2178 */
2179 while (!list_empty(&ring->active_list)) {
2180 struct drm_i915_gem_object *obj;
2181
2182 obj = list_first_entry(&ring->active_list,
2183 struct drm_i915_gem_object,
2184 ring_list);
2185
2186 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2187 break;
2188
2189 i915_gem_object_move_to_inactive(obj);
2190 }
2191
2192 if (unlikely(ring->trace_irq_seqno &&
2193 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2194 ring->irq_put(ring);
2195 ring->trace_irq_seqno = 0;
2196 }
2197
2198 WARN_ON(i915_verify_lists(ring->dev));
2199 }
2200
2201 void
2202 i915_gem_retire_requests(struct drm_device *dev)
2203 {
2204 drm_i915_private_t *dev_priv = dev->dev_private;
2205 struct intel_ring_buffer *ring;
2206 int i;
2207
2208 for_each_ring(ring, dev_priv, i)
2209 i915_gem_retire_requests_ring(ring);
2210 }
2211
2212 static void
2213 i915_gem_retire_work_handler(struct work_struct *work)
2214 {
2215 drm_i915_private_t *dev_priv;
2216 struct drm_device *dev;
2217 struct intel_ring_buffer *ring;
2218 bool idle;
2219 int i;
2220
2221 dev_priv = container_of(work, drm_i915_private_t,
2222 mm.retire_work.work);
2223 dev = dev_priv->dev;
2224
2225 /* Come back later if the device is busy... */
2226 if (!mutex_trylock(&dev->struct_mutex)) {
2227 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2228 round_jiffies_up_relative(HZ));
2229 return;
2230 }
2231
2232 i915_gem_retire_requests(dev);
2233
2234 /* Send a periodic flush down the ring so we don't hold onto GEM
2235 * objects indefinitely.
2236 */
2237 idle = true;
2238 for_each_ring(ring, dev_priv, i) {
2239 if (ring->gpu_caches_dirty)
2240 i915_add_request(ring, NULL, NULL);
2241
2242 idle &= list_empty(&ring->request_list);
2243 }
2244
2245 if (!dev_priv->mm.suspended && !idle)
2246 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2247 round_jiffies_up_relative(HZ));
2248 if (idle)
2249 intel_mark_idle(dev);
2250
2251 mutex_unlock(&dev->struct_mutex);
2252 }
2253
2254 /**
2255 * Ensures that an object will eventually get non-busy by flushing any required
2256 * write domains, emitting any outstanding lazy request and retiring and
2257 * completed requests.
2258 */
2259 static int
2260 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2261 {
2262 int ret;
2263
2264 if (obj->active) {
2265 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2266 if (ret)
2267 return ret;
2268
2269 i915_gem_retire_requests_ring(obj->ring);
2270 }
2271
2272 return 0;
2273 }
2274
2275 /**
2276 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2277 * @DRM_IOCTL_ARGS: standard ioctl arguments
2278 *
2279 * Returns 0 if successful, else an error is returned with the remaining time in
2280 * the timeout parameter.
2281 * -ETIME: object is still busy after timeout
2282 * -ERESTARTSYS: signal interrupted the wait
2283 * -ENONENT: object doesn't exist
2284 * Also possible, but rare:
2285 * -EAGAIN: GPU wedged
2286 * -ENOMEM: damn
2287 * -ENODEV: Internal IRQ fail
2288 * -E?: The add request failed
2289 *
2290 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2291 * non-zero timeout parameter the wait ioctl will wait for the given number of
2292 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2293 * without holding struct_mutex the object may become re-busied before this
2294 * function completes. A similar but shorter * race condition exists in the busy
2295 * ioctl
2296 */
2297 int
2298 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2299 {
2300 struct drm_i915_gem_wait *args = data;
2301 struct drm_i915_gem_object *obj;
2302 struct intel_ring_buffer *ring = NULL;
2303 struct timespec timeout_stack, *timeout = NULL;
2304 u32 seqno = 0;
2305 int ret = 0;
2306
2307 if (args->timeout_ns >= 0) {
2308 timeout_stack = ns_to_timespec(args->timeout_ns);
2309 timeout = &timeout_stack;
2310 }
2311
2312 ret = i915_mutex_lock_interruptible(dev);
2313 if (ret)
2314 return ret;
2315
2316 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2317 if (&obj->base == NULL) {
2318 mutex_unlock(&dev->struct_mutex);
2319 return -ENOENT;
2320 }
2321
2322 /* Need to make sure the object gets inactive eventually. */
2323 ret = i915_gem_object_flush_active(obj);
2324 if (ret)
2325 goto out;
2326
2327 if (obj->active) {
2328 seqno = obj->last_read_seqno;
2329 ring = obj->ring;
2330 }
2331
2332 if (seqno == 0)
2333 goto out;
2334
2335 /* Do this after OLR check to make sure we make forward progress polling
2336 * on this IOCTL with a 0 timeout (like busy ioctl)
2337 */
2338 if (!args->timeout_ns) {
2339 ret = -ETIME;
2340 goto out;
2341 }
2342
2343 drm_gem_object_unreference(&obj->base);
2344 mutex_unlock(&dev->struct_mutex);
2345
2346 ret = __wait_seqno(ring, seqno, true, timeout);
2347 if (timeout) {
2348 WARN_ON(!timespec_valid(timeout));
2349 args->timeout_ns = timespec_to_ns(timeout);
2350 }
2351 return ret;
2352
2353 out:
2354 drm_gem_object_unreference(&obj->base);
2355 mutex_unlock(&dev->struct_mutex);
2356 return ret;
2357 }
2358
2359 /**
2360 * i915_gem_object_sync - sync an object to a ring.
2361 *
2362 * @obj: object which may be in use on another ring.
2363 * @to: ring we wish to use the object on. May be NULL.
2364 *
2365 * This code is meant to abstract object synchronization with the GPU.
2366 * Calling with NULL implies synchronizing the object with the CPU
2367 * rather than a particular GPU ring.
2368 *
2369 * Returns 0 if successful, else propagates up the lower layer error.
2370 */
2371 int
2372 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2373 struct intel_ring_buffer *to)
2374 {
2375 struct intel_ring_buffer *from = obj->ring;
2376 u32 seqno;
2377 int ret, idx;
2378
2379 if (from == NULL || to == from)
2380 return 0;
2381
2382 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2383 return i915_gem_object_wait_rendering(obj, false);
2384
2385 idx = intel_ring_sync_index(from, to);
2386
2387 seqno = obj->last_read_seqno;
2388 if (seqno <= from->sync_seqno[idx])
2389 return 0;
2390
2391 ret = i915_gem_check_olr(obj->ring, seqno);
2392 if (ret)
2393 return ret;
2394
2395 ret = to->sync_to(to, from, seqno);
2396 if (!ret)
2397 /* We use last_read_seqno because sync_to()
2398 * might have just caused seqno wrap under
2399 * the radar.
2400 */
2401 from->sync_seqno[idx] = obj->last_read_seqno;
2402
2403 return ret;
2404 }
2405
2406 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2407 {
2408 u32 old_write_domain, old_read_domains;
2409
2410 /* Force a pagefault for domain tracking on next user access */
2411 i915_gem_release_mmap(obj);
2412
2413 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2414 return;
2415
2416 /* Wait for any direct GTT access to complete */
2417 mb();
2418
2419 old_read_domains = obj->base.read_domains;
2420 old_write_domain = obj->base.write_domain;
2421
2422 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2423 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2424
2425 trace_i915_gem_object_change_domain(obj,
2426 old_read_domains,
2427 old_write_domain);
2428 }
2429
2430 /**
2431 * Unbinds an object from the GTT aperture.
2432 */
2433 int
2434 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2435 {
2436 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2437 int ret;
2438
2439 if (obj->gtt_space == NULL)
2440 return 0;
2441
2442 if (obj->pin_count)
2443 return -EBUSY;
2444
2445 BUG_ON(obj->pages == NULL);
2446
2447 ret = i915_gem_object_finish_gpu(obj);
2448 if (ret)
2449 return ret;
2450 /* Continue on if we fail due to EIO, the GPU is hung so we
2451 * should be safe and we need to cleanup or else we might
2452 * cause memory corruption through use-after-free.
2453 */
2454
2455 i915_gem_object_finish_gtt(obj);
2456
2457 /* release the fence reg _after_ flushing */
2458 ret = i915_gem_object_put_fence(obj);
2459 if (ret)
2460 return ret;
2461
2462 trace_i915_gem_object_unbind(obj);
2463
2464 if (obj->has_global_gtt_mapping)
2465 i915_gem_gtt_unbind_object(obj);
2466 if (obj->has_aliasing_ppgtt_mapping) {
2467 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2468 obj->has_aliasing_ppgtt_mapping = 0;
2469 }
2470 i915_gem_gtt_finish_object(obj);
2471
2472 list_del(&obj->mm_list);
2473 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2474 /* Avoid an unnecessary call to unbind on rebind. */
2475 obj->map_and_fenceable = true;
2476
2477 drm_mm_put_block(obj->gtt_space);
2478 obj->gtt_space = NULL;
2479 obj->gtt_offset = 0;
2480
2481 return 0;
2482 }
2483
2484 int i915_gpu_idle(struct drm_device *dev)
2485 {
2486 drm_i915_private_t *dev_priv = dev->dev_private;
2487 struct intel_ring_buffer *ring;
2488 int ret, i;
2489
2490 /* Flush everything onto the inactive list. */
2491 for_each_ring(ring, dev_priv, i) {
2492 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2493 if (ret)
2494 return ret;
2495
2496 ret = intel_ring_idle(ring);
2497 if (ret)
2498 return ret;
2499 }
2500
2501 return 0;
2502 }
2503
2504 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2505 struct drm_i915_gem_object *obj)
2506 {
2507 drm_i915_private_t *dev_priv = dev->dev_private;
2508 int fence_reg;
2509 int fence_pitch_shift;
2510 uint64_t val;
2511
2512 if (INTEL_INFO(dev)->gen >= 6) {
2513 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2514 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2515 } else {
2516 fence_reg = FENCE_REG_965_0;
2517 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2518 }
2519
2520 if (obj) {
2521 u32 size = obj->gtt_space->size;
2522
2523 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2524 0xfffff000) << 32;
2525 val |= obj->gtt_offset & 0xfffff000;
2526 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2527 if (obj->tiling_mode == I915_TILING_Y)
2528 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2529 val |= I965_FENCE_REG_VALID;
2530 } else
2531 val = 0;
2532
2533 fence_reg += reg * 8;
2534 I915_WRITE64(fence_reg, val);
2535 POSTING_READ(fence_reg);
2536 }
2537
2538 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2539 struct drm_i915_gem_object *obj)
2540 {
2541 drm_i915_private_t *dev_priv = dev->dev_private;
2542 u32 val;
2543
2544 if (obj) {
2545 u32 size = obj->gtt_space->size;
2546 int pitch_val;
2547 int tile_width;
2548
2549 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2550 (size & -size) != size ||
2551 (obj->gtt_offset & (size - 1)),
2552 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2553 obj->gtt_offset, obj->map_and_fenceable, size);
2554
2555 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2556 tile_width = 128;
2557 else
2558 tile_width = 512;
2559
2560 /* Note: pitch better be a power of two tile widths */
2561 pitch_val = obj->stride / tile_width;
2562 pitch_val = ffs(pitch_val) - 1;
2563
2564 val = obj->gtt_offset;
2565 if (obj->tiling_mode == I915_TILING_Y)
2566 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2567 val |= I915_FENCE_SIZE_BITS(size);
2568 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2569 val |= I830_FENCE_REG_VALID;
2570 } else
2571 val = 0;
2572
2573 if (reg < 8)
2574 reg = FENCE_REG_830_0 + reg * 4;
2575 else
2576 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2577
2578 I915_WRITE(reg, val);
2579 POSTING_READ(reg);
2580 }
2581
2582 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2583 struct drm_i915_gem_object *obj)
2584 {
2585 drm_i915_private_t *dev_priv = dev->dev_private;
2586 uint32_t val;
2587
2588 if (obj) {
2589 u32 size = obj->gtt_space->size;
2590 uint32_t pitch_val;
2591
2592 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2593 (size & -size) != size ||
2594 (obj->gtt_offset & (size - 1)),
2595 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2596 obj->gtt_offset, size);
2597
2598 pitch_val = obj->stride / 128;
2599 pitch_val = ffs(pitch_val) - 1;
2600
2601 val = obj->gtt_offset;
2602 if (obj->tiling_mode == I915_TILING_Y)
2603 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2604 val |= I830_FENCE_SIZE_BITS(size);
2605 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2606 val |= I830_FENCE_REG_VALID;
2607 } else
2608 val = 0;
2609
2610 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2611 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2612 }
2613
2614 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2615 {
2616 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2617 }
2618
2619 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2620 struct drm_i915_gem_object *obj)
2621 {
2622 struct drm_i915_private *dev_priv = dev->dev_private;
2623
2624 /* Ensure that all CPU reads are completed before installing a fence
2625 * and all writes before removing the fence.
2626 */
2627 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2628 mb();
2629
2630 switch (INTEL_INFO(dev)->gen) {
2631 case 7:
2632 case 6:
2633 case 5:
2634 case 4: i965_write_fence_reg(dev, reg, obj); break;
2635 case 3: i915_write_fence_reg(dev, reg, obj); break;
2636 case 2: i830_write_fence_reg(dev, reg, obj); break;
2637 default: BUG();
2638 }
2639
2640 /* And similarly be paranoid that no direct access to this region
2641 * is reordered to before the fence is installed.
2642 */
2643 if (i915_gem_object_needs_mb(obj))
2644 mb();
2645 }
2646
2647 static inline int fence_number(struct drm_i915_private *dev_priv,
2648 struct drm_i915_fence_reg *fence)
2649 {
2650 return fence - dev_priv->fence_regs;
2651 }
2652
2653 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2654 struct drm_i915_fence_reg *fence,
2655 bool enable)
2656 {
2657 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2658 int reg = fence_number(dev_priv, fence);
2659
2660 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2661
2662 if (enable) {
2663 obj->fence_reg = reg;
2664 fence->obj = obj;
2665 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2666 } else {
2667 obj->fence_reg = I915_FENCE_REG_NONE;
2668 fence->obj = NULL;
2669 list_del_init(&fence->lru_list);
2670 }
2671 }
2672
2673 static int
2674 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2675 {
2676 if (obj->last_fenced_seqno) {
2677 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2678 if (ret)
2679 return ret;
2680
2681 obj->last_fenced_seqno = 0;
2682 }
2683
2684 obj->fenced_gpu_access = false;
2685 return 0;
2686 }
2687
2688 int
2689 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2690 {
2691 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2692 int ret;
2693
2694 ret = i915_gem_object_wait_fence(obj);
2695 if (ret)
2696 return ret;
2697
2698 if (obj->fence_reg == I915_FENCE_REG_NONE)
2699 return 0;
2700
2701 i915_gem_object_update_fence(obj,
2702 &dev_priv->fence_regs[obj->fence_reg],
2703 false);
2704 i915_gem_object_fence_lost(obj);
2705
2706 return 0;
2707 }
2708
2709 static struct drm_i915_fence_reg *
2710 i915_find_fence_reg(struct drm_device *dev)
2711 {
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 struct drm_i915_fence_reg *reg, *avail;
2714 int i;
2715
2716 /* First try to find a free reg */
2717 avail = NULL;
2718 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2719 reg = &dev_priv->fence_regs[i];
2720 if (!reg->obj)
2721 return reg;
2722
2723 if (!reg->pin_count)
2724 avail = reg;
2725 }
2726
2727 if (avail == NULL)
2728 return NULL;
2729
2730 /* None available, try to steal one or wait for a user to finish */
2731 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2732 if (reg->pin_count)
2733 continue;
2734
2735 return reg;
2736 }
2737
2738 return NULL;
2739 }
2740
2741 /**
2742 * i915_gem_object_get_fence - set up fencing for an object
2743 * @obj: object to map through a fence reg
2744 *
2745 * When mapping objects through the GTT, userspace wants to be able to write
2746 * to them without having to worry about swizzling if the object is tiled.
2747 * This function walks the fence regs looking for a free one for @obj,
2748 * stealing one if it can't find any.
2749 *
2750 * It then sets up the reg based on the object's properties: address, pitch
2751 * and tiling format.
2752 *
2753 * For an untiled surface, this removes any existing fence.
2754 */
2755 int
2756 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2757 {
2758 struct drm_device *dev = obj->base.dev;
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 bool enable = obj->tiling_mode != I915_TILING_NONE;
2761 struct drm_i915_fence_reg *reg;
2762 int ret;
2763
2764 /* Have we updated the tiling parameters upon the object and so
2765 * will need to serialise the write to the associated fence register?
2766 */
2767 if (obj->fence_dirty) {
2768 ret = i915_gem_object_wait_fence(obj);
2769 if (ret)
2770 return ret;
2771 }
2772
2773 /* Just update our place in the LRU if our fence is getting reused. */
2774 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2775 reg = &dev_priv->fence_regs[obj->fence_reg];
2776 if (!obj->fence_dirty) {
2777 list_move_tail(&reg->lru_list,
2778 &dev_priv->mm.fence_list);
2779 return 0;
2780 }
2781 } else if (enable) {
2782 reg = i915_find_fence_reg(dev);
2783 if (reg == NULL)
2784 return -EDEADLK;
2785
2786 if (reg->obj) {
2787 struct drm_i915_gem_object *old = reg->obj;
2788
2789 ret = i915_gem_object_wait_fence(old);
2790 if (ret)
2791 return ret;
2792
2793 i915_gem_object_fence_lost(old);
2794 }
2795 } else
2796 return 0;
2797
2798 i915_gem_object_update_fence(obj, reg, enable);
2799 obj->fence_dirty = false;
2800
2801 return 0;
2802 }
2803
2804 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2805 struct drm_mm_node *gtt_space,
2806 unsigned long cache_level)
2807 {
2808 struct drm_mm_node *other;
2809
2810 /* On non-LLC machines we have to be careful when putting differing
2811 * types of snoopable memory together to avoid the prefetcher
2812 * crossing memory domains and dying.
2813 */
2814 if (HAS_LLC(dev))
2815 return true;
2816
2817 if (gtt_space == NULL)
2818 return true;
2819
2820 if (list_empty(&gtt_space->node_list))
2821 return true;
2822
2823 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2824 if (other->allocated && !other->hole_follows && other->color != cache_level)
2825 return false;
2826
2827 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2828 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2829 return false;
2830
2831 return true;
2832 }
2833
2834 static void i915_gem_verify_gtt(struct drm_device *dev)
2835 {
2836 #if WATCH_GTT
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 struct drm_i915_gem_object *obj;
2839 int err = 0;
2840
2841 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2842 if (obj->gtt_space == NULL) {
2843 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2844 err++;
2845 continue;
2846 }
2847
2848 if (obj->cache_level != obj->gtt_space->color) {
2849 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2850 obj->gtt_space->start,
2851 obj->gtt_space->start + obj->gtt_space->size,
2852 obj->cache_level,
2853 obj->gtt_space->color);
2854 err++;
2855 continue;
2856 }
2857
2858 if (!i915_gem_valid_gtt_space(dev,
2859 obj->gtt_space,
2860 obj->cache_level)) {
2861 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2862 obj->gtt_space->start,
2863 obj->gtt_space->start + obj->gtt_space->size,
2864 obj->cache_level);
2865 err++;
2866 continue;
2867 }
2868 }
2869
2870 WARN_ON(err);
2871 #endif
2872 }
2873
2874 /**
2875 * Finds free space in the GTT aperture and binds the object there.
2876 */
2877 static int
2878 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2879 unsigned alignment,
2880 bool map_and_fenceable,
2881 bool nonblocking)
2882 {
2883 struct drm_device *dev = obj->base.dev;
2884 drm_i915_private_t *dev_priv = dev->dev_private;
2885 struct drm_mm_node *node;
2886 u32 size, fence_size, fence_alignment, unfenced_alignment;
2887 bool mappable, fenceable;
2888 int ret;
2889
2890 fence_size = i915_gem_get_gtt_size(dev,
2891 obj->base.size,
2892 obj->tiling_mode);
2893 fence_alignment = i915_gem_get_gtt_alignment(dev,
2894 obj->base.size,
2895 obj->tiling_mode, true);
2896 unfenced_alignment =
2897 i915_gem_get_gtt_alignment(dev,
2898 obj->base.size,
2899 obj->tiling_mode, false);
2900
2901 if (alignment == 0)
2902 alignment = map_and_fenceable ? fence_alignment :
2903 unfenced_alignment;
2904 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2905 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2906 return -EINVAL;
2907 }
2908
2909 size = map_and_fenceable ? fence_size : obj->base.size;
2910
2911 /* If the object is bigger than the entire aperture, reject it early
2912 * before evicting everything in a vain attempt to find space.
2913 */
2914 if (obj->base.size >
2915 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2916 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2917 return -E2BIG;
2918 }
2919
2920 ret = i915_gem_object_get_pages(obj);
2921 if (ret)
2922 return ret;
2923
2924 i915_gem_object_pin_pages(obj);
2925
2926 node = kzalloc(sizeof(*node), GFP_KERNEL);
2927 if (node == NULL) {
2928 i915_gem_object_unpin_pages(obj);
2929 return -ENOMEM;
2930 }
2931
2932 search_free:
2933 if (map_and_fenceable)
2934 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2935 size, alignment, obj->cache_level,
2936 0, dev_priv->gtt.mappable_end);
2937 else
2938 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2939 size, alignment, obj->cache_level);
2940 if (ret) {
2941 ret = i915_gem_evict_something(dev, size, alignment,
2942 obj->cache_level,
2943 map_and_fenceable,
2944 nonblocking);
2945 if (ret == 0)
2946 goto search_free;
2947
2948 i915_gem_object_unpin_pages(obj);
2949 kfree(node);
2950 return ret;
2951 }
2952 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2953 i915_gem_object_unpin_pages(obj);
2954 drm_mm_put_block(node);
2955 return -EINVAL;
2956 }
2957
2958 ret = i915_gem_gtt_prepare_object(obj);
2959 if (ret) {
2960 i915_gem_object_unpin_pages(obj);
2961 drm_mm_put_block(node);
2962 return ret;
2963 }
2964
2965 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2966 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2967
2968 obj->gtt_space = node;
2969 obj->gtt_offset = node->start;
2970
2971 fenceable =
2972 node->size == fence_size &&
2973 (node->start & (fence_alignment - 1)) == 0;
2974
2975 mappable =
2976 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2977
2978 obj->map_and_fenceable = mappable && fenceable;
2979
2980 i915_gem_object_unpin_pages(obj);
2981 trace_i915_gem_object_bind(obj, map_and_fenceable);
2982 i915_gem_verify_gtt(dev);
2983 return 0;
2984 }
2985
2986 void
2987 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2988 {
2989 /* If we don't have a page list set up, then we're not pinned
2990 * to GPU, and we can ignore the cache flush because it'll happen
2991 * again at bind time.
2992 */
2993 if (obj->pages == NULL)
2994 return;
2995
2996 /* If the GPU is snooping the contents of the CPU cache,
2997 * we do not need to manually clear the CPU cache lines. However,
2998 * the caches are only snooped when the render cache is
2999 * flushed/invalidated. As we always have to emit invalidations
3000 * and flushes when moving into and out of the RENDER domain, correct
3001 * snooping behaviour occurs naturally as the result of our domain
3002 * tracking.
3003 */
3004 if (obj->cache_level != I915_CACHE_NONE)
3005 return;
3006
3007 trace_i915_gem_object_clflush(obj);
3008
3009 drm_clflush_sg(obj->pages);
3010 }
3011
3012 /** Flushes the GTT write domain for the object if it's dirty. */
3013 static void
3014 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3015 {
3016 uint32_t old_write_domain;
3017
3018 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3019 return;
3020
3021 /* No actual flushing is required for the GTT write domain. Writes
3022 * to it immediately go to main memory as far as we know, so there's
3023 * no chipset flush. It also doesn't land in render cache.
3024 *
3025 * However, we do have to enforce the order so that all writes through
3026 * the GTT land before any writes to the device, such as updates to
3027 * the GATT itself.
3028 */
3029 wmb();
3030
3031 old_write_domain = obj->base.write_domain;
3032 obj->base.write_domain = 0;
3033
3034 trace_i915_gem_object_change_domain(obj,
3035 obj->base.read_domains,
3036 old_write_domain);
3037 }
3038
3039 /** Flushes the CPU write domain for the object if it's dirty. */
3040 static void
3041 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3042 {
3043 uint32_t old_write_domain;
3044
3045 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3046 return;
3047
3048 i915_gem_clflush_object(obj);
3049 i915_gem_chipset_flush(obj->base.dev);
3050 old_write_domain = obj->base.write_domain;
3051 obj->base.write_domain = 0;
3052
3053 trace_i915_gem_object_change_domain(obj,
3054 obj->base.read_domains,
3055 old_write_domain);
3056 }
3057
3058 /**
3059 * Moves a single object to the GTT read, and possibly write domain.
3060 *
3061 * This function returns when the move is complete, including waiting on
3062 * flushes to occur.
3063 */
3064 int
3065 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3066 {
3067 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3068 uint32_t old_write_domain, old_read_domains;
3069 int ret;
3070
3071 /* Not valid to be called on unbound objects. */
3072 if (obj->gtt_space == NULL)
3073 return -EINVAL;
3074
3075 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3076 return 0;
3077
3078 ret = i915_gem_object_wait_rendering(obj, !write);
3079 if (ret)
3080 return ret;
3081
3082 i915_gem_object_flush_cpu_write_domain(obj);
3083
3084 /* Serialise direct access to this object with the barriers for
3085 * coherent writes from the GPU, by effectively invalidating the
3086 * GTT domain upon first access.
3087 */
3088 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3089 mb();
3090
3091 old_write_domain = obj->base.write_domain;
3092 old_read_domains = obj->base.read_domains;
3093
3094 /* It should now be out of any other write domains, and we can update
3095 * the domain values for our changes.
3096 */
3097 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3098 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3099 if (write) {
3100 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3101 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3102 obj->dirty = 1;
3103 }
3104
3105 trace_i915_gem_object_change_domain(obj,
3106 old_read_domains,
3107 old_write_domain);
3108
3109 /* And bump the LRU for this access */
3110 if (i915_gem_object_is_inactive(obj))
3111 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3112
3113 return 0;
3114 }
3115
3116 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3117 enum i915_cache_level cache_level)
3118 {
3119 struct drm_device *dev = obj->base.dev;
3120 drm_i915_private_t *dev_priv = dev->dev_private;
3121 int ret;
3122
3123 if (obj->cache_level == cache_level)
3124 return 0;
3125
3126 if (obj->pin_count) {
3127 DRM_DEBUG("can not change the cache level of pinned objects\n");
3128 return -EBUSY;
3129 }
3130
3131 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3132 ret = i915_gem_object_unbind(obj);
3133 if (ret)
3134 return ret;
3135 }
3136
3137 if (obj->gtt_space) {
3138 ret = i915_gem_object_finish_gpu(obj);
3139 if (ret)
3140 return ret;
3141
3142 i915_gem_object_finish_gtt(obj);
3143
3144 /* Before SandyBridge, you could not use tiling or fence
3145 * registers with snooped memory, so relinquish any fences
3146 * currently pointing to our region in the aperture.
3147 */
3148 if (INTEL_INFO(dev)->gen < 6) {
3149 ret = i915_gem_object_put_fence(obj);
3150 if (ret)
3151 return ret;
3152 }
3153
3154 if (obj->has_global_gtt_mapping)
3155 i915_gem_gtt_bind_object(obj, cache_level);
3156 if (obj->has_aliasing_ppgtt_mapping)
3157 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3158 obj, cache_level);
3159
3160 obj->gtt_space->color = cache_level;
3161 }
3162
3163 if (cache_level == I915_CACHE_NONE) {
3164 u32 old_read_domains, old_write_domain;
3165
3166 /* If we're coming from LLC cached, then we haven't
3167 * actually been tracking whether the data is in the
3168 * CPU cache or not, since we only allow one bit set
3169 * in obj->write_domain and have been skipping the clflushes.
3170 * Just set it to the CPU cache for now.
3171 */
3172 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3173 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3174
3175 old_read_domains = obj->base.read_domains;
3176 old_write_domain = obj->base.write_domain;
3177
3178 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3179 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3180
3181 trace_i915_gem_object_change_domain(obj,
3182 old_read_domains,
3183 old_write_domain);
3184 }
3185
3186 obj->cache_level = cache_level;
3187 i915_gem_verify_gtt(dev);
3188 return 0;
3189 }
3190
3191 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3192 struct drm_file *file)
3193 {
3194 struct drm_i915_gem_caching *args = data;
3195 struct drm_i915_gem_object *obj;
3196 int ret;
3197
3198 ret = i915_mutex_lock_interruptible(dev);
3199 if (ret)
3200 return ret;
3201
3202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3203 if (&obj->base == NULL) {
3204 ret = -ENOENT;
3205 goto unlock;
3206 }
3207
3208 args->caching = obj->cache_level != I915_CACHE_NONE;
3209
3210 drm_gem_object_unreference(&obj->base);
3211 unlock:
3212 mutex_unlock(&dev->struct_mutex);
3213 return ret;
3214 }
3215
3216 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3217 struct drm_file *file)
3218 {
3219 struct drm_i915_gem_caching *args = data;
3220 struct drm_i915_gem_object *obj;
3221 enum i915_cache_level level;
3222 int ret;
3223
3224 switch (args->caching) {
3225 case I915_CACHING_NONE:
3226 level = I915_CACHE_NONE;
3227 break;
3228 case I915_CACHING_CACHED:
3229 level = I915_CACHE_LLC;
3230 break;
3231 default:
3232 return -EINVAL;
3233 }
3234
3235 ret = i915_mutex_lock_interruptible(dev);
3236 if (ret)
3237 return ret;
3238
3239 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3240 if (&obj->base == NULL) {
3241 ret = -ENOENT;
3242 goto unlock;
3243 }
3244
3245 ret = i915_gem_object_set_cache_level(obj, level);
3246
3247 drm_gem_object_unreference(&obj->base);
3248 unlock:
3249 mutex_unlock(&dev->struct_mutex);
3250 return ret;
3251 }
3252
3253 /*
3254 * Prepare buffer for display plane (scanout, cursors, etc).
3255 * Can be called from an uninterruptible phase (modesetting) and allows
3256 * any flushes to be pipelined (for pageflips).
3257 */
3258 int
3259 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3260 u32 alignment,
3261 struct intel_ring_buffer *pipelined)
3262 {
3263 u32 old_read_domains, old_write_domain;
3264 int ret;
3265
3266 if (pipelined != obj->ring) {
3267 ret = i915_gem_object_sync(obj, pipelined);
3268 if (ret)
3269 return ret;
3270 }
3271
3272 /* The display engine is not coherent with the LLC cache on gen6. As
3273 * a result, we make sure that the pinning that is about to occur is
3274 * done with uncached PTEs. This is lowest common denominator for all
3275 * chipsets.
3276 *
3277 * However for gen6+, we could do better by using the GFDT bit instead
3278 * of uncaching, which would allow us to flush all the LLC-cached data
3279 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3280 */
3281 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3282 if (ret)
3283 return ret;
3284
3285 /* As the user may map the buffer once pinned in the display plane
3286 * (e.g. libkms for the bootup splash), we have to ensure that we
3287 * always use map_and_fenceable for all scanout buffers.
3288 */
3289 ret = i915_gem_object_pin(obj, alignment, true, false);
3290 if (ret)
3291 return ret;
3292
3293 i915_gem_object_flush_cpu_write_domain(obj);
3294
3295 old_write_domain = obj->base.write_domain;
3296 old_read_domains = obj->base.read_domains;
3297
3298 /* It should now be out of any other write domains, and we can update
3299 * the domain values for our changes.
3300 */
3301 obj->base.write_domain = 0;
3302 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3303
3304 trace_i915_gem_object_change_domain(obj,
3305 old_read_domains,
3306 old_write_domain);
3307
3308 return 0;
3309 }
3310
3311 int
3312 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3313 {
3314 int ret;
3315
3316 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3317 return 0;
3318
3319 ret = i915_gem_object_wait_rendering(obj, false);
3320 if (ret)
3321 return ret;
3322
3323 /* Ensure that we invalidate the GPU's caches and TLBs. */
3324 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3325 return 0;
3326 }
3327
3328 /**
3329 * Moves a single object to the CPU read, and possibly write domain.
3330 *
3331 * This function returns when the move is complete, including waiting on
3332 * flushes to occur.
3333 */
3334 int
3335 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3336 {
3337 uint32_t old_write_domain, old_read_domains;
3338 int ret;
3339
3340 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3341 return 0;
3342
3343 ret = i915_gem_object_wait_rendering(obj, !write);
3344 if (ret)
3345 return ret;
3346
3347 i915_gem_object_flush_gtt_write_domain(obj);
3348
3349 old_write_domain = obj->base.write_domain;
3350 old_read_domains = obj->base.read_domains;
3351
3352 /* Flush the CPU cache if it's still invalid. */
3353 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3354 i915_gem_clflush_object(obj);
3355
3356 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3357 }
3358
3359 /* It should now be out of any other write domains, and we can update
3360 * the domain values for our changes.
3361 */
3362 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3363
3364 /* If we're writing through the CPU, then the GPU read domains will
3365 * need to be invalidated at next use.
3366 */
3367 if (write) {
3368 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3369 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3370 }
3371
3372 trace_i915_gem_object_change_domain(obj,
3373 old_read_domains,
3374 old_write_domain);
3375
3376 return 0;
3377 }
3378
3379 /* Throttle our rendering by waiting until the ring has completed our requests
3380 * emitted over 20 msec ago.
3381 *
3382 * Note that if we were to use the current jiffies each time around the loop,
3383 * we wouldn't escape the function with any frames outstanding if the time to
3384 * render a frame was over 20ms.
3385 *
3386 * This should get us reasonable parallelism between CPU and GPU but also
3387 * relatively low latency when blocking on a particular request to finish.
3388 */
3389 static int
3390 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3391 {
3392 struct drm_i915_private *dev_priv = dev->dev_private;
3393 struct drm_i915_file_private *file_priv = file->driver_priv;
3394 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3395 struct drm_i915_gem_request *request;
3396 struct intel_ring_buffer *ring = NULL;
3397 u32 seqno = 0;
3398 int ret;
3399
3400 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3401 if (ret)
3402 return ret;
3403
3404 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3405 if (ret)
3406 return ret;
3407
3408 spin_lock(&file_priv->mm.lock);
3409 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3410 if (time_after_eq(request->emitted_jiffies, recent_enough))
3411 break;
3412
3413 ring = request->ring;
3414 seqno = request->seqno;
3415 }
3416 spin_unlock(&file_priv->mm.lock);
3417
3418 if (seqno == 0)
3419 return 0;
3420
3421 ret = __wait_seqno(ring, seqno, true, NULL);
3422 if (ret == 0)
3423 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3424
3425 return ret;
3426 }
3427
3428 int
3429 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3430 uint32_t alignment,
3431 bool map_and_fenceable,
3432 bool nonblocking)
3433 {
3434 int ret;
3435
3436 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3437 return -EBUSY;
3438
3439 if (obj->gtt_space != NULL) {
3440 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3441 (map_and_fenceable && !obj->map_and_fenceable)) {
3442 WARN(obj->pin_count,
3443 "bo is already pinned with incorrect alignment:"
3444 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3445 " obj->map_and_fenceable=%d\n",
3446 obj->gtt_offset, alignment,
3447 map_and_fenceable,
3448 obj->map_and_fenceable);
3449 ret = i915_gem_object_unbind(obj);
3450 if (ret)
3451 return ret;
3452 }
3453 }
3454
3455 if (obj->gtt_space == NULL) {
3456 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3457
3458 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3459 map_and_fenceable,
3460 nonblocking);
3461 if (ret)
3462 return ret;
3463
3464 if (!dev_priv->mm.aliasing_ppgtt)
3465 i915_gem_gtt_bind_object(obj, obj->cache_level);
3466 }
3467
3468 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3469 i915_gem_gtt_bind_object(obj, obj->cache_level);
3470
3471 obj->pin_count++;
3472 obj->pin_mappable |= map_and_fenceable;
3473
3474 return 0;
3475 }
3476
3477 void
3478 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3479 {
3480 BUG_ON(obj->pin_count == 0);
3481 BUG_ON(obj->gtt_space == NULL);
3482
3483 if (--obj->pin_count == 0)
3484 obj->pin_mappable = false;
3485 }
3486
3487 int
3488 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3489 struct drm_file *file)
3490 {
3491 struct drm_i915_gem_pin *args = data;
3492 struct drm_i915_gem_object *obj;
3493 int ret;
3494
3495 ret = i915_mutex_lock_interruptible(dev);
3496 if (ret)
3497 return ret;
3498
3499 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3500 if (&obj->base == NULL) {
3501 ret = -ENOENT;
3502 goto unlock;
3503 }
3504
3505 if (obj->madv != I915_MADV_WILLNEED) {
3506 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3507 ret = -EINVAL;
3508 goto out;
3509 }
3510
3511 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3512 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3513 args->handle);
3514 ret = -EINVAL;
3515 goto out;
3516 }
3517
3518 obj->user_pin_count++;
3519 obj->pin_filp = file;
3520 if (obj->user_pin_count == 1) {
3521 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3522 if (ret)
3523 goto out;
3524 }
3525
3526 /* XXX - flush the CPU caches for pinned objects
3527 * as the X server doesn't manage domains yet
3528 */
3529 i915_gem_object_flush_cpu_write_domain(obj);
3530 args->offset = obj->gtt_offset;
3531 out:
3532 drm_gem_object_unreference(&obj->base);
3533 unlock:
3534 mutex_unlock(&dev->struct_mutex);
3535 return ret;
3536 }
3537
3538 int
3539 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3540 struct drm_file *file)
3541 {
3542 struct drm_i915_gem_pin *args = data;
3543 struct drm_i915_gem_object *obj;
3544 int ret;
3545
3546 ret = i915_mutex_lock_interruptible(dev);
3547 if (ret)
3548 return ret;
3549
3550 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3551 if (&obj->base == NULL) {
3552 ret = -ENOENT;
3553 goto unlock;
3554 }
3555
3556 if (obj->pin_filp != file) {
3557 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3558 args->handle);
3559 ret = -EINVAL;
3560 goto out;
3561 }
3562 obj->user_pin_count--;
3563 if (obj->user_pin_count == 0) {
3564 obj->pin_filp = NULL;
3565 i915_gem_object_unpin(obj);
3566 }
3567
3568 out:
3569 drm_gem_object_unreference(&obj->base);
3570 unlock:
3571 mutex_unlock(&dev->struct_mutex);
3572 return ret;
3573 }
3574
3575 int
3576 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3577 struct drm_file *file)
3578 {
3579 struct drm_i915_gem_busy *args = data;
3580 struct drm_i915_gem_object *obj;
3581 int ret;
3582
3583 ret = i915_mutex_lock_interruptible(dev);
3584 if (ret)
3585 return ret;
3586
3587 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3588 if (&obj->base == NULL) {
3589 ret = -ENOENT;
3590 goto unlock;
3591 }
3592
3593 /* Count all active objects as busy, even if they are currently not used
3594 * by the gpu. Users of this interface expect objects to eventually
3595 * become non-busy without any further actions, therefore emit any
3596 * necessary flushes here.
3597 */
3598 ret = i915_gem_object_flush_active(obj);
3599
3600 args->busy = obj->active;
3601 if (obj->ring) {
3602 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3603 args->busy |= intel_ring_flag(obj->ring) << 16;
3604 }
3605
3606 drm_gem_object_unreference(&obj->base);
3607 unlock:
3608 mutex_unlock(&dev->struct_mutex);
3609 return ret;
3610 }
3611
3612 int
3613 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3614 struct drm_file *file_priv)
3615 {
3616 return i915_gem_ring_throttle(dev, file_priv);
3617 }
3618
3619 int
3620 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3621 struct drm_file *file_priv)
3622 {
3623 struct drm_i915_gem_madvise *args = data;
3624 struct drm_i915_gem_object *obj;
3625 int ret;
3626
3627 switch (args->madv) {
3628 case I915_MADV_DONTNEED:
3629 case I915_MADV_WILLNEED:
3630 break;
3631 default:
3632 return -EINVAL;
3633 }
3634
3635 ret = i915_mutex_lock_interruptible(dev);
3636 if (ret)
3637 return ret;
3638
3639 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3640 if (&obj->base == NULL) {
3641 ret = -ENOENT;
3642 goto unlock;
3643 }
3644
3645 if (obj->pin_count) {
3646 ret = -EINVAL;
3647 goto out;
3648 }
3649
3650 if (obj->madv != __I915_MADV_PURGED)
3651 obj->madv = args->madv;
3652
3653 /* if the object is no longer attached, discard its backing storage */
3654 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3655 i915_gem_object_truncate(obj);
3656
3657 args->retained = obj->madv != __I915_MADV_PURGED;
3658
3659 out:
3660 drm_gem_object_unreference(&obj->base);
3661 unlock:
3662 mutex_unlock(&dev->struct_mutex);
3663 return ret;
3664 }
3665
3666 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3667 const struct drm_i915_gem_object_ops *ops)
3668 {
3669 INIT_LIST_HEAD(&obj->mm_list);
3670 INIT_LIST_HEAD(&obj->gtt_list);
3671 INIT_LIST_HEAD(&obj->ring_list);
3672 INIT_LIST_HEAD(&obj->exec_list);
3673
3674 obj->ops = ops;
3675
3676 obj->fence_reg = I915_FENCE_REG_NONE;
3677 obj->madv = I915_MADV_WILLNEED;
3678 /* Avoid an unnecessary call to unbind on the first bind. */
3679 obj->map_and_fenceable = true;
3680
3681 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3682 }
3683
3684 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3685 .get_pages = i915_gem_object_get_pages_gtt,
3686 .put_pages = i915_gem_object_put_pages_gtt,
3687 };
3688
3689 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3690 size_t size)
3691 {
3692 struct drm_i915_gem_object *obj;
3693 struct address_space *mapping;
3694 gfp_t mask;
3695
3696 obj = i915_gem_object_alloc(dev);
3697 if (obj == NULL)
3698 return NULL;
3699
3700 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3701 i915_gem_object_free(obj);
3702 return NULL;
3703 }
3704
3705 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3706 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3707 /* 965gm cannot relocate objects above 4GiB. */
3708 mask &= ~__GFP_HIGHMEM;
3709 mask |= __GFP_DMA32;
3710 }
3711
3712 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3713 mapping_set_gfp_mask(mapping, mask);
3714
3715 i915_gem_object_init(obj, &i915_gem_object_ops);
3716
3717 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3718 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3719
3720 if (HAS_LLC(dev)) {
3721 /* On some devices, we can have the GPU use the LLC (the CPU
3722 * cache) for about a 10% performance improvement
3723 * compared to uncached. Graphics requests other than
3724 * display scanout are coherent with the CPU in
3725 * accessing this cache. This means in this mode we
3726 * don't need to clflush on the CPU side, and on the
3727 * GPU side we only need to flush internal caches to
3728 * get data visible to the CPU.
3729 *
3730 * However, we maintain the display planes as UC, and so
3731 * need to rebind when first used as such.
3732 */
3733 obj->cache_level = I915_CACHE_LLC;
3734 } else
3735 obj->cache_level = I915_CACHE_NONE;
3736
3737 return obj;
3738 }
3739
3740 int i915_gem_init_object(struct drm_gem_object *obj)
3741 {
3742 BUG();
3743
3744 return 0;
3745 }
3746
3747 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3748 {
3749 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3750 struct drm_device *dev = obj->base.dev;
3751 drm_i915_private_t *dev_priv = dev->dev_private;
3752
3753 trace_i915_gem_object_destroy(obj);
3754
3755 if (obj->phys_obj)
3756 i915_gem_detach_phys_object(dev, obj);
3757
3758 obj->pin_count = 0;
3759 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3760 bool was_interruptible;
3761
3762 was_interruptible = dev_priv->mm.interruptible;
3763 dev_priv->mm.interruptible = false;
3764
3765 WARN_ON(i915_gem_object_unbind(obj));
3766
3767 dev_priv->mm.interruptible = was_interruptible;
3768 }
3769
3770 obj->pages_pin_count = 0;
3771 i915_gem_object_put_pages(obj);
3772 i915_gem_object_free_mmap_offset(obj);
3773 i915_gem_object_release_stolen(obj);
3774
3775 BUG_ON(obj->pages);
3776
3777 if (obj->base.import_attach)
3778 drm_prime_gem_destroy(&obj->base, NULL);
3779
3780 drm_gem_object_release(&obj->base);
3781 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3782
3783 kfree(obj->bit_17);
3784 i915_gem_object_free(obj);
3785 }
3786
3787 int
3788 i915_gem_idle(struct drm_device *dev)
3789 {
3790 drm_i915_private_t *dev_priv = dev->dev_private;
3791 int ret;
3792
3793 mutex_lock(&dev->struct_mutex);
3794
3795 if (dev_priv->mm.suspended) {
3796 mutex_unlock(&dev->struct_mutex);
3797 return 0;
3798 }
3799
3800 ret = i915_gpu_idle(dev);
3801 if (ret) {
3802 mutex_unlock(&dev->struct_mutex);
3803 return ret;
3804 }
3805 i915_gem_retire_requests(dev);
3806
3807 /* Under UMS, be paranoid and evict. */
3808 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3809 i915_gem_evict_everything(dev);
3810
3811 i915_gem_reset_fences(dev);
3812
3813 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3814 * We need to replace this with a semaphore, or something.
3815 * And not confound mm.suspended!
3816 */
3817 dev_priv->mm.suspended = 1;
3818 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3819
3820 i915_kernel_lost_context(dev);
3821 i915_gem_cleanup_ringbuffer(dev);
3822
3823 mutex_unlock(&dev->struct_mutex);
3824
3825 /* Cancel the retire work handler, which should be idle now. */
3826 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3827
3828 return 0;
3829 }
3830
3831 void i915_gem_l3_remap(struct drm_device *dev)
3832 {
3833 drm_i915_private_t *dev_priv = dev->dev_private;
3834 u32 misccpctl;
3835 int i;
3836
3837 if (!IS_IVYBRIDGE(dev))
3838 return;
3839
3840 if (!dev_priv->l3_parity.remap_info)
3841 return;
3842
3843 misccpctl = I915_READ(GEN7_MISCCPCTL);
3844 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3845 POSTING_READ(GEN7_MISCCPCTL);
3846
3847 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3848 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3849 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3850 DRM_DEBUG("0x%x was already programmed to %x\n",
3851 GEN7_L3LOG_BASE + i, remap);
3852 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3853 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3854 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3855 }
3856
3857 /* Make sure all the writes land before disabling dop clock gating */
3858 POSTING_READ(GEN7_L3LOG_BASE);
3859
3860 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3861 }
3862
3863 void i915_gem_init_swizzling(struct drm_device *dev)
3864 {
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866
3867 if (INTEL_INFO(dev)->gen < 5 ||
3868 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3869 return;
3870
3871 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3872 DISP_TILE_SURFACE_SWIZZLING);
3873
3874 if (IS_GEN5(dev))
3875 return;
3876
3877 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3878 if (IS_GEN6(dev))
3879 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3880 else if (IS_GEN7(dev))
3881 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3882 else
3883 BUG();
3884 }
3885
3886 static bool
3887 intel_enable_blt(struct drm_device *dev)
3888 {
3889 if (!HAS_BLT(dev))
3890 return false;
3891
3892 /* The blitter was dysfunctional on early prototypes */
3893 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3894 DRM_INFO("BLT not supported on this pre-production hardware;"
3895 " graphics performance will be degraded.\n");
3896 return false;
3897 }
3898
3899 return true;
3900 }
3901
3902 int
3903 i915_gem_init_hw(struct drm_device *dev)
3904 {
3905 drm_i915_private_t *dev_priv = dev->dev_private;
3906 int ret;
3907
3908 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3909 return -EIO;
3910
3911 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3912 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3913
3914 i915_gem_l3_remap(dev);
3915
3916 i915_gem_init_swizzling(dev);
3917
3918 dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3919
3920 ret = intel_init_render_ring_buffer(dev);
3921 if (ret)
3922 return ret;
3923
3924 if (HAS_BSD(dev)) {
3925 ret = intel_init_bsd_ring_buffer(dev);
3926 if (ret)
3927 goto cleanup_render_ring;
3928 }
3929
3930 if (intel_enable_blt(dev)) {
3931 ret = intel_init_blt_ring_buffer(dev);
3932 if (ret)
3933 goto cleanup_bsd_ring;
3934 }
3935
3936 /*
3937 * XXX: There was some w/a described somewhere suggesting loading
3938 * contexts before PPGTT.
3939 */
3940 i915_gem_context_init(dev);
3941 i915_gem_init_ppgtt(dev);
3942
3943 return 0;
3944
3945 cleanup_bsd_ring:
3946 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3947 cleanup_render_ring:
3948 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3949 return ret;
3950 }
3951
3952 int i915_gem_init(struct drm_device *dev)
3953 {
3954 struct drm_i915_private *dev_priv = dev->dev_private;
3955 int ret;
3956
3957 mutex_lock(&dev->struct_mutex);
3958 i915_gem_init_global_gtt(dev);
3959 ret = i915_gem_init_hw(dev);
3960 mutex_unlock(&dev->struct_mutex);
3961 if (ret) {
3962 i915_gem_cleanup_aliasing_ppgtt(dev);
3963 return ret;
3964 }
3965
3966 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3967 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3968 dev_priv->dri1.allow_batchbuffer = 1;
3969 return 0;
3970 }
3971
3972 void
3973 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3974 {
3975 drm_i915_private_t *dev_priv = dev->dev_private;
3976 struct intel_ring_buffer *ring;
3977 int i;
3978
3979 for_each_ring(ring, dev_priv, i)
3980 intel_cleanup_ring_buffer(ring);
3981 }
3982
3983 int
3984 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3985 struct drm_file *file_priv)
3986 {
3987 drm_i915_private_t *dev_priv = dev->dev_private;
3988 int ret;
3989
3990 if (drm_core_check_feature(dev, DRIVER_MODESET))
3991 return 0;
3992
3993 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
3994 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3995 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
3996 }
3997
3998 mutex_lock(&dev->struct_mutex);
3999 dev_priv->mm.suspended = 0;
4000
4001 ret = i915_gem_init_hw(dev);
4002 if (ret != 0) {
4003 mutex_unlock(&dev->struct_mutex);
4004 return ret;
4005 }
4006
4007 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4008 mutex_unlock(&dev->struct_mutex);
4009
4010 ret = drm_irq_install(dev);
4011 if (ret)
4012 goto cleanup_ringbuffer;
4013
4014 return 0;
4015
4016 cleanup_ringbuffer:
4017 mutex_lock(&dev->struct_mutex);
4018 i915_gem_cleanup_ringbuffer(dev);
4019 dev_priv->mm.suspended = 1;
4020 mutex_unlock(&dev->struct_mutex);
4021
4022 return ret;
4023 }
4024
4025 int
4026 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4027 struct drm_file *file_priv)
4028 {
4029 if (drm_core_check_feature(dev, DRIVER_MODESET))
4030 return 0;
4031
4032 drm_irq_uninstall(dev);
4033 return i915_gem_idle(dev);
4034 }
4035
4036 void
4037 i915_gem_lastclose(struct drm_device *dev)
4038 {
4039 int ret;
4040
4041 if (drm_core_check_feature(dev, DRIVER_MODESET))
4042 return;
4043
4044 ret = i915_gem_idle(dev);
4045 if (ret)
4046 DRM_ERROR("failed to idle hardware: %d\n", ret);
4047 }
4048
4049 static void
4050 init_ring_lists(struct intel_ring_buffer *ring)
4051 {
4052 INIT_LIST_HEAD(&ring->active_list);
4053 INIT_LIST_HEAD(&ring->request_list);
4054 }
4055
4056 void
4057 i915_gem_load(struct drm_device *dev)
4058 {
4059 drm_i915_private_t *dev_priv = dev->dev_private;
4060 int i;
4061
4062 dev_priv->slab =
4063 kmem_cache_create("i915_gem_object",
4064 sizeof(struct drm_i915_gem_object), 0,
4065 SLAB_HWCACHE_ALIGN,
4066 NULL);
4067
4068 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4069 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4070 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4071 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4072 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4073 for (i = 0; i < I915_NUM_RINGS; i++)
4074 init_ring_lists(&dev_priv->ring[i]);
4075 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4076 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4077 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4078 i915_gem_retire_work_handler);
4079 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4080
4081 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4082 if (IS_GEN3(dev)) {
4083 I915_WRITE(MI_ARB_STATE,
4084 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4085 }
4086
4087 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4088
4089 /* Old X drivers will take 0-2 for front, back, depth buffers */
4090 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4091 dev_priv->fence_reg_start = 3;
4092
4093 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4094 dev_priv->num_fence_regs = 16;
4095 else
4096 dev_priv->num_fence_regs = 8;
4097
4098 /* Initialize fence registers to zero */
4099 i915_gem_reset_fences(dev);
4100
4101 i915_gem_detect_bit_6_swizzle(dev);
4102 init_waitqueue_head(&dev_priv->pending_flip_queue);
4103
4104 dev_priv->mm.interruptible = true;
4105
4106 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4107 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4108 register_shrinker(&dev_priv->mm.inactive_shrinker);
4109 }
4110
4111 /*
4112 * Create a physically contiguous memory object for this object
4113 * e.g. for cursor + overlay regs
4114 */
4115 static int i915_gem_init_phys_object(struct drm_device *dev,
4116 int id, int size, int align)
4117 {
4118 drm_i915_private_t *dev_priv = dev->dev_private;
4119 struct drm_i915_gem_phys_object *phys_obj;
4120 int ret;
4121
4122 if (dev_priv->mm.phys_objs[id - 1] || !size)
4123 return 0;
4124
4125 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4126 if (!phys_obj)
4127 return -ENOMEM;
4128
4129 phys_obj->id = id;
4130
4131 phys_obj->handle = drm_pci_alloc(dev, size, align);
4132 if (!phys_obj->handle) {
4133 ret = -ENOMEM;
4134 goto kfree_obj;
4135 }
4136 #ifdef CONFIG_X86
4137 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4138 #endif
4139
4140 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4141
4142 return 0;
4143 kfree_obj:
4144 kfree(phys_obj);
4145 return ret;
4146 }
4147
4148 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4149 {
4150 drm_i915_private_t *dev_priv = dev->dev_private;
4151 struct drm_i915_gem_phys_object *phys_obj;
4152
4153 if (!dev_priv->mm.phys_objs[id - 1])
4154 return;
4155
4156 phys_obj = dev_priv->mm.phys_objs[id - 1];
4157 if (phys_obj->cur_obj) {
4158 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4159 }
4160
4161 #ifdef CONFIG_X86
4162 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4163 #endif
4164 drm_pci_free(dev, phys_obj->handle);
4165 kfree(phys_obj);
4166 dev_priv->mm.phys_objs[id - 1] = NULL;
4167 }
4168
4169 void i915_gem_free_all_phys_object(struct drm_device *dev)
4170 {
4171 int i;
4172
4173 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4174 i915_gem_free_phys_object(dev, i);
4175 }
4176
4177 void i915_gem_detach_phys_object(struct drm_device *dev,
4178 struct drm_i915_gem_object *obj)
4179 {
4180 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4181 char *vaddr;
4182 int i;
4183 int page_count;
4184
4185 if (!obj->phys_obj)
4186 return;
4187 vaddr = obj->phys_obj->handle->vaddr;
4188
4189 page_count = obj->base.size / PAGE_SIZE;
4190 for (i = 0; i < page_count; i++) {
4191 struct page *page = shmem_read_mapping_page(mapping, i);
4192 if (!IS_ERR(page)) {
4193 char *dst = kmap_atomic(page);
4194 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4195 kunmap_atomic(dst);
4196
4197 drm_clflush_pages(&page, 1);
4198
4199 set_page_dirty(page);
4200 mark_page_accessed(page);
4201 page_cache_release(page);
4202 }
4203 }
4204 i915_gem_chipset_flush(dev);
4205
4206 obj->phys_obj->cur_obj = NULL;
4207 obj->phys_obj = NULL;
4208 }
4209
4210 int
4211 i915_gem_attach_phys_object(struct drm_device *dev,
4212 struct drm_i915_gem_object *obj,
4213 int id,
4214 int align)
4215 {
4216 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4217 drm_i915_private_t *dev_priv = dev->dev_private;
4218 int ret = 0;
4219 int page_count;
4220 int i;
4221
4222 if (id > I915_MAX_PHYS_OBJECT)
4223 return -EINVAL;
4224
4225 if (obj->phys_obj) {
4226 if (obj->phys_obj->id == id)
4227 return 0;
4228 i915_gem_detach_phys_object(dev, obj);
4229 }
4230
4231 /* create a new object */
4232 if (!dev_priv->mm.phys_objs[id - 1]) {
4233 ret = i915_gem_init_phys_object(dev, id,
4234 obj->base.size, align);
4235 if (ret) {
4236 DRM_ERROR("failed to init phys object %d size: %zu\n",
4237 id, obj->base.size);
4238 return ret;
4239 }
4240 }
4241
4242 /* bind to the object */
4243 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4244 obj->phys_obj->cur_obj = obj;
4245
4246 page_count = obj->base.size / PAGE_SIZE;
4247
4248 for (i = 0; i < page_count; i++) {
4249 struct page *page;
4250 char *dst, *src;
4251
4252 page = shmem_read_mapping_page(mapping, i);
4253 if (IS_ERR(page))
4254 return PTR_ERR(page);
4255
4256 src = kmap_atomic(page);
4257 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4258 memcpy(dst, src, PAGE_SIZE);
4259 kunmap_atomic(src);
4260
4261 mark_page_accessed(page);
4262 page_cache_release(page);
4263 }
4264
4265 return 0;
4266 }
4267
4268 static int
4269 i915_gem_phys_pwrite(struct drm_device *dev,
4270 struct drm_i915_gem_object *obj,
4271 struct drm_i915_gem_pwrite *args,
4272 struct drm_file *file_priv)
4273 {
4274 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4275 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4276
4277 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4278 unsigned long unwritten;
4279
4280 /* The physical object once assigned is fixed for the lifetime
4281 * of the obj, so we can safely drop the lock and continue
4282 * to access vaddr.
4283 */
4284 mutex_unlock(&dev->struct_mutex);
4285 unwritten = copy_from_user(vaddr, user_data, args->size);
4286 mutex_lock(&dev->struct_mutex);
4287 if (unwritten)
4288 return -EFAULT;
4289 }
4290
4291 i915_gem_chipset_flush(dev);
4292 return 0;
4293 }
4294
4295 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4296 {
4297 struct drm_i915_file_private *file_priv = file->driver_priv;
4298
4299 /* Clean up our request list when the client is going away, so that
4300 * later retire_requests won't dereference our soon-to-be-gone
4301 * file_priv.
4302 */
4303 spin_lock(&file_priv->mm.lock);
4304 while (!list_empty(&file_priv->mm.request_list)) {
4305 struct drm_i915_gem_request *request;
4306
4307 request = list_first_entry(&file_priv->mm.request_list,
4308 struct drm_i915_gem_request,
4309 client_list);
4310 list_del(&request->client_list);
4311 request->file_priv = NULL;
4312 }
4313 spin_unlock(&file_priv->mm.lock);
4314 }
4315
4316 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4317 {
4318 if (!mutex_is_locked(mutex))
4319 return false;
4320
4321 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4322 return mutex->owner == task;
4323 #else
4324 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4325 return false;
4326 #endif
4327 }
4328
4329 static int
4330 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4331 {
4332 struct drm_i915_private *dev_priv =
4333 container_of(shrinker,
4334 struct drm_i915_private,
4335 mm.inactive_shrinker);
4336 struct drm_device *dev = dev_priv->dev;
4337 struct drm_i915_gem_object *obj;
4338 int nr_to_scan = sc->nr_to_scan;
4339 bool unlock = true;
4340 int cnt;
4341
4342 if (!mutex_trylock(&dev->struct_mutex)) {
4343 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4344 return 0;
4345
4346 if (dev_priv->mm.shrinker_no_lock_stealing)
4347 return 0;
4348
4349 unlock = false;
4350 }
4351
4352 if (nr_to_scan) {
4353 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4354 if (nr_to_scan > 0)
4355 i915_gem_shrink_all(dev_priv);
4356 }
4357
4358 cnt = 0;
4359 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4360 if (obj->pages_pin_count == 0)
4361 cnt += obj->base.size >> PAGE_SHIFT;
4362 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4363 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4364 cnt += obj->base.size >> PAGE_SHIFT;
4365
4366 if (unlock)
4367 mutex_unlock(&dev->struct_mutex);
4368 return cnt;
4369 }
This page took 0.115453 seconds and 4 git commands to generate.