ARM: common: edma: Fix xbar mapping
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60 struct shrink_control *sc);
61 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
64 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68 {
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
88 obj->fence_dirty = false;
89 obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 spin_lock(&dev_priv->mm.object_stat_lock);
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
108 spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114 int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
118 if (EXIT_COND)
119 return 0;
120
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
133 return ret;
134 }
135 #undef EXIT_COND
136
137 return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 int ret;
144
145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
153 WARN_ON(i915_verify_lists(dev));
154 return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160 return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_init *args = data;
169
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
176
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
181 mutex_lock(&dev->struct_mutex);
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
184 dev_priv->gtt.mappable_end = args->gtt_end;
185 mutex_unlock(&dev->struct_mutex);
186
187 return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_get_aperture *args = data;
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
198
199 pinned = 0;
200 mutex_lock(&dev->struct_mutex);
201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 if (i915_gem_obj_is_pinned(obj))
203 pinned += i915_gem_obj_ggtt_size(obj);
204 mutex_unlock(&dev->struct_mutex);
205
206 args->aper_size = dev_priv->gtt.base.total;
207 args->aper_available_size = args->aper_size - pinned;
208
209 return 0;
210 }
211
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214 struct drm_i915_private *dev_priv = dev->dev_private;
215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
216 }
217
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 kmem_cache_free(dev_priv->slab, obj);
222 }
223
224 static int
225 i915_gem_create(struct drm_file *file,
226 struct drm_device *dev,
227 uint64_t size,
228 uint32_t *handle_p)
229 {
230 struct drm_i915_gem_object *obj;
231 int ret;
232 u32 handle;
233
234 size = roundup(size, PAGE_SIZE);
235 if (size == 0)
236 return -EINVAL;
237
238 /* Allocate the new object */
239 obj = i915_gem_alloc_object(dev, size);
240 if (obj == NULL)
241 return -ENOMEM;
242
243 ret = drm_gem_handle_create(file, &obj->base, &handle);
244 /* drop reference from allocate - handle holds it now */
245 drm_gem_object_unreference_unlocked(&obj->base);
246 if (ret)
247 return ret;
248
249 *handle_p = handle;
250 return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255 struct drm_device *dev,
256 struct drm_mode_create_dumb *args)
257 {
258 /* have to work out size/pitch and return them */
259 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
260 args->size = args->pitch * args->height;
261 return i915_gem_create(file, dev,
262 args->size, &args->handle);
263 }
264
265 /**
266 * Creates a new mm object and returns a handle to it.
267 */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 struct drm_file *file)
271 {
272 struct drm_i915_gem_create *args = data;
273
274 return i915_gem_create(file, dev,
275 args->size, &args->handle);
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282 {
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
307 int length)
308 {
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328 }
329
330 /*
331 * Pins the specified object's pages and synchronizes the object with
332 * GPU accesses. Sets needs_clflush to non-zero if the caller should
333 * flush the object from the CPU cache.
334 */
335 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
336 int *needs_clflush)
337 {
338 int ret;
339
340 *needs_clflush = 0;
341
342 if (!obj->base.filp)
343 return -EINVAL;
344
345 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
346 /* If we're not in the cpu read domain, set ourself into the gtt
347 * read domain and manually flush cachelines (if required). This
348 * optimizes for the case when the gpu will dirty the data
349 * anyway again before the next pread happens. */
350 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
351 obj->cache_level);
352 ret = i915_gem_object_wait_rendering(obj, true);
353 if (ret)
354 return ret;
355 }
356
357 ret = i915_gem_object_get_pages(obj);
358 if (ret)
359 return ret;
360
361 i915_gem_object_pin_pages(obj);
362
363 return ret;
364 }
365
366 /* Per-page copy function for the shmem pread fastpath.
367 * Flushes invalid cachelines before reading the target if
368 * needs_clflush is set. */
369 static int
370 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
371 char __user *user_data,
372 bool page_do_bit17_swizzling, bool needs_clflush)
373 {
374 char *vaddr;
375 int ret;
376
377 if (unlikely(page_do_bit17_swizzling))
378 return -EINVAL;
379
380 vaddr = kmap_atomic(page);
381 if (needs_clflush)
382 drm_clflush_virt_range(vaddr + shmem_page_offset,
383 page_length);
384 ret = __copy_to_user_inatomic(user_data,
385 vaddr + shmem_page_offset,
386 page_length);
387 kunmap_atomic(vaddr);
388
389 return ret ? -EFAULT : 0;
390 }
391
392 static void
393 shmem_clflush_swizzled_range(char *addr, unsigned long length,
394 bool swizzled)
395 {
396 if (unlikely(swizzled)) {
397 unsigned long start = (unsigned long) addr;
398 unsigned long end = (unsigned long) addr + length;
399
400 /* For swizzling simply ensure that we always flush both
401 * channels. Lame, but simple and it works. Swizzled
402 * pwrite/pread is far from a hotpath - current userspace
403 * doesn't use it at all. */
404 start = round_down(start, 128);
405 end = round_up(end, 128);
406
407 drm_clflush_virt_range((void *)start, end - start);
408 } else {
409 drm_clflush_virt_range(addr, length);
410 }
411
412 }
413
414 /* Only difference to the fast-path function is that this can handle bit17
415 * and uses non-atomic copy and kmap functions. */
416 static int
417 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
418 char __user *user_data,
419 bool page_do_bit17_swizzling, bool needs_clflush)
420 {
421 char *vaddr;
422 int ret;
423
424 vaddr = kmap(page);
425 if (needs_clflush)
426 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
427 page_length,
428 page_do_bit17_swizzling);
429
430 if (page_do_bit17_swizzling)
431 ret = __copy_to_user_swizzled(user_data,
432 vaddr, shmem_page_offset,
433 page_length);
434 else
435 ret = __copy_to_user(user_data,
436 vaddr + shmem_page_offset,
437 page_length);
438 kunmap(page);
439
440 return ret ? - EFAULT : 0;
441 }
442
443 static int
444 i915_gem_shmem_pread(struct drm_device *dev,
445 struct drm_i915_gem_object *obj,
446 struct drm_i915_gem_pread *args,
447 struct drm_file *file)
448 {
449 char __user *user_data;
450 ssize_t remain;
451 loff_t offset;
452 int shmem_page_offset, page_length, ret = 0;
453 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
454 int prefaulted = 0;
455 int needs_clflush = 0;
456 struct sg_page_iter sg_iter;
457
458 user_data = to_user_ptr(args->data_ptr);
459 remain = args->size;
460
461 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
462
463 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
464 if (ret)
465 return ret;
466
467 offset = args->offset;
468
469 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
470 offset >> PAGE_SHIFT) {
471 struct page *page = sg_page_iter_page(&sg_iter);
472
473 if (remain <= 0)
474 break;
475
476 /* Operation in this page
477 *
478 * shmem_page_offset = offset within page in shmem file
479 * page_length = bytes to copy for this page
480 */
481 shmem_page_offset = offset_in_page(offset);
482 page_length = remain;
483 if ((shmem_page_offset + page_length) > PAGE_SIZE)
484 page_length = PAGE_SIZE - shmem_page_offset;
485
486 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
487 (page_to_phys(page) & (1 << 17)) != 0;
488
489 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492 if (ret == 0)
493 goto next_page;
494
495 mutex_unlock(&dev->struct_mutex);
496
497 if (likely(!i915.prefault_disable) && !prefaulted) {
498 ret = fault_in_multipages_writeable(user_data, remain);
499 /* Userspace is tricking us, but we've already clobbered
500 * its pages with the prefault and promised to write the
501 * data up to the first fault. Hence ignore any errors
502 * and just continue. */
503 (void)ret;
504 prefaulted = 1;
505 }
506
507 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
508 user_data, page_do_bit17_swizzling,
509 needs_clflush);
510
511 mutex_lock(&dev->struct_mutex);
512
513 if (ret)
514 goto out;
515
516 next_page:
517 remain -= page_length;
518 user_data += page_length;
519 offset += page_length;
520 }
521
522 out:
523 i915_gem_object_unpin_pages(obj);
524
525 return ret;
526 }
527
528 /**
529 * Reads data from the object referenced by handle.
530 *
531 * On error, the contents of *data are undefined.
532 */
533 int
534 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
535 struct drm_file *file)
536 {
537 struct drm_i915_gem_pread *args = data;
538 struct drm_i915_gem_object *obj;
539 int ret = 0;
540
541 if (args->size == 0)
542 return 0;
543
544 if (!access_ok(VERIFY_WRITE,
545 to_user_ptr(args->data_ptr),
546 args->size))
547 return -EFAULT;
548
549 ret = i915_mutex_lock_interruptible(dev);
550 if (ret)
551 return ret;
552
553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
554 if (&obj->base == NULL) {
555 ret = -ENOENT;
556 goto unlock;
557 }
558
559 /* Bounds check source. */
560 if (args->offset > obj->base.size ||
561 args->size > obj->base.size - args->offset) {
562 ret = -EINVAL;
563 goto out;
564 }
565
566 /* prime objects have no backing filp to GEM pread/pwrite
567 * pages from.
568 */
569 if (!obj->base.filp) {
570 ret = -EINVAL;
571 goto out;
572 }
573
574 trace_i915_gem_object_pread(obj, args->offset, args->size);
575
576 ret = i915_gem_shmem_pread(dev, obj, args, file);
577
578 out:
579 drm_gem_object_unreference(&obj->base);
580 unlock:
581 mutex_unlock(&dev->struct_mutex);
582 return ret;
583 }
584
585 /* This is the fast write path which cannot handle
586 * page faults in the source data
587 */
588
589 static inline int
590 fast_user_write(struct io_mapping *mapping,
591 loff_t page_base, int page_offset,
592 char __user *user_data,
593 int length)
594 {
595 void __iomem *vaddr_atomic;
596 void *vaddr;
597 unsigned long unwritten;
598
599 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
600 /* We can use the cpu mem copy function because this is X86. */
601 vaddr = (void __force*)vaddr_atomic + page_offset;
602 unwritten = __copy_from_user_inatomic_nocache(vaddr,
603 user_data, length);
604 io_mapping_unmap_atomic(vaddr_atomic);
605 return unwritten;
606 }
607
608 /**
609 * This is the fast pwrite path, where we copy the data directly from the
610 * user into the GTT, uncached.
611 */
612 static int
613 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
614 struct drm_i915_gem_object *obj,
615 struct drm_i915_gem_pwrite *args,
616 struct drm_file *file)
617 {
618 struct drm_i915_private *dev_priv = dev->dev_private;
619 ssize_t remain;
620 loff_t offset, page_base;
621 char __user *user_data;
622 int page_offset, page_length, ret;
623
624 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
625 if (ret)
626 goto out;
627
628 ret = i915_gem_object_set_to_gtt_domain(obj, true);
629 if (ret)
630 goto out_unpin;
631
632 ret = i915_gem_object_put_fence(obj);
633 if (ret)
634 goto out_unpin;
635
636 user_data = to_user_ptr(args->data_ptr);
637 remain = args->size;
638
639 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
640
641 while (remain > 0) {
642 /* Operation in this page
643 *
644 * page_base = page offset within aperture
645 * page_offset = offset within page
646 * page_length = bytes to copy for this page
647 */
648 page_base = offset & PAGE_MASK;
649 page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((page_offset + remain) > PAGE_SIZE)
652 page_length = PAGE_SIZE - page_offset;
653
654 /* If we get a fault while copying data, then (presumably) our
655 * source page isn't available. Return the error and we'll
656 * retry in the slow path.
657 */
658 if (fast_user_write(dev_priv->gtt.mappable, page_base,
659 page_offset, user_data, page_length)) {
660 ret = -EFAULT;
661 goto out_unpin;
662 }
663
664 remain -= page_length;
665 user_data += page_length;
666 offset += page_length;
667 }
668
669 out_unpin:
670 i915_gem_object_ggtt_unpin(obj);
671 out:
672 return ret;
673 }
674
675 /* Per-page copy function for the shmem pwrite fastpath.
676 * Flushes invalid cachelines before writing to the target if
677 * needs_clflush_before is set and flushes out any written cachelines after
678 * writing if needs_clflush is set. */
679 static int
680 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
681 char __user *user_data,
682 bool page_do_bit17_swizzling,
683 bool needs_clflush_before,
684 bool needs_clflush_after)
685 {
686 char *vaddr;
687 int ret;
688
689 if (unlikely(page_do_bit17_swizzling))
690 return -EINVAL;
691
692 vaddr = kmap_atomic(page);
693 if (needs_clflush_before)
694 drm_clflush_virt_range(vaddr + shmem_page_offset,
695 page_length);
696 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
697 user_data, page_length);
698 if (needs_clflush_after)
699 drm_clflush_virt_range(vaddr + shmem_page_offset,
700 page_length);
701 kunmap_atomic(vaddr);
702
703 return ret ? -EFAULT : 0;
704 }
705
706 /* Only difference to the fast-path function is that this can handle bit17
707 * and uses non-atomic copy and kmap functions. */
708 static int
709 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
710 char __user *user_data,
711 bool page_do_bit17_swizzling,
712 bool needs_clflush_before,
713 bool needs_clflush_after)
714 {
715 char *vaddr;
716 int ret;
717
718 vaddr = kmap(page);
719 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
723 if (page_do_bit17_swizzling)
724 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
725 user_data,
726 page_length);
727 else
728 ret = __copy_from_user(vaddr + shmem_page_offset,
729 user_data,
730 page_length);
731 if (needs_clflush_after)
732 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
733 page_length,
734 page_do_bit17_swizzling);
735 kunmap(page);
736
737 return ret ? -EFAULT : 0;
738 }
739
740 static int
741 i915_gem_shmem_pwrite(struct drm_device *dev,
742 struct drm_i915_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file)
745 {
746 ssize_t remain;
747 loff_t offset;
748 char __user *user_data;
749 int shmem_page_offset, page_length, ret = 0;
750 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
751 int hit_slowpath = 0;
752 int needs_clflush_after = 0;
753 int needs_clflush_before = 0;
754 struct sg_page_iter sg_iter;
755
756 user_data = to_user_ptr(args->data_ptr);
757 remain = args->size;
758
759 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
760
761 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
762 /* If we're not in the cpu write domain, set ourself into the gtt
763 * write domain and manually flush cachelines (if required). This
764 * optimizes for the case when the gpu will use the data
765 * right away and we therefore have to clflush anyway. */
766 needs_clflush_after = cpu_write_needs_clflush(obj);
767 ret = i915_gem_object_wait_rendering(obj, false);
768 if (ret)
769 return ret;
770 }
771 /* Same trick applies to invalidate partially written cachelines read
772 * before writing. */
773 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
774 needs_clflush_before =
775 !cpu_cache_is_coherent(dev, obj->cache_level);
776
777 ret = i915_gem_object_get_pages(obj);
778 if (ret)
779 return ret;
780
781 i915_gem_object_pin_pages(obj);
782
783 offset = args->offset;
784 obj->dirty = 1;
785
786 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
787 offset >> PAGE_SHIFT) {
788 struct page *page = sg_page_iter_page(&sg_iter);
789 int partial_cacheline_write;
790
791 if (remain <= 0)
792 break;
793
794 /* Operation in this page
795 *
796 * shmem_page_offset = offset within page in shmem file
797 * page_length = bytes to copy for this page
798 */
799 shmem_page_offset = offset_in_page(offset);
800
801 page_length = remain;
802 if ((shmem_page_offset + page_length) > PAGE_SIZE)
803 page_length = PAGE_SIZE - shmem_page_offset;
804
805 /* If we don't overwrite a cacheline completely we need to be
806 * careful to have up-to-date data by first clflushing. Don't
807 * overcomplicate things and flush the entire patch. */
808 partial_cacheline_write = needs_clflush_before &&
809 ((shmem_page_offset | page_length)
810 & (boot_cpu_data.x86_clflush_size - 1));
811
812 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
813 (page_to_phys(page) & (1 << 17)) != 0;
814
815 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
819 if (ret == 0)
820 goto next_page;
821
822 hit_slowpath = 1;
823 mutex_unlock(&dev->struct_mutex);
824 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
825 user_data, page_do_bit17_swizzling,
826 partial_cacheline_write,
827 needs_clflush_after);
828
829 mutex_lock(&dev->struct_mutex);
830
831 if (ret)
832 goto out;
833
834 next_page:
835 remain -= page_length;
836 user_data += page_length;
837 offset += page_length;
838 }
839
840 out:
841 i915_gem_object_unpin_pages(obj);
842
843 if (hit_slowpath) {
844 /*
845 * Fixup: Flush cpu caches in case we didn't flush the dirty
846 * cachelines in-line while writing and the object moved
847 * out of the cpu write domain while we've dropped the lock.
848 */
849 if (!needs_clflush_after &&
850 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
851 if (i915_gem_clflush_object(obj, obj->pin_display))
852 i915_gem_chipset_flush(dev);
853 }
854 }
855
856 if (needs_clflush_after)
857 i915_gem_chipset_flush(dev);
858
859 return ret;
860 }
861
862 /**
863 * Writes data to the object referenced by handle.
864 *
865 * On error, the contents of the buffer that were to be modified are undefined.
866 */
867 int
868 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
869 struct drm_file *file)
870 {
871 struct drm_i915_gem_pwrite *args = data;
872 struct drm_i915_gem_object *obj;
873 int ret;
874
875 if (args->size == 0)
876 return 0;
877
878 if (!access_ok(VERIFY_READ,
879 to_user_ptr(args->data_ptr),
880 args->size))
881 return -EFAULT;
882
883 if (likely(!i915.prefault_disable)) {
884 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
885 args->size);
886 if (ret)
887 return -EFAULT;
888 }
889
890 ret = i915_mutex_lock_interruptible(dev);
891 if (ret)
892 return ret;
893
894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895 if (&obj->base == NULL) {
896 ret = -ENOENT;
897 goto unlock;
898 }
899
900 /* Bounds check destination. */
901 if (args->offset > obj->base.size ||
902 args->size > obj->base.size - args->offset) {
903 ret = -EINVAL;
904 goto out;
905 }
906
907 /* prime objects have no backing filp to GEM pread/pwrite
908 * pages from.
909 */
910 if (!obj->base.filp) {
911 ret = -EINVAL;
912 goto out;
913 }
914
915 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
917 ret = -EFAULT;
918 /* We can only do the GTT pwrite on untiled buffers, as otherwise
919 * it would end up going through the fenced access, and we'll get
920 * different detiling behavior between reading and writing.
921 * pread/pwrite currently are reading and writing from the CPU
922 * perspective, requiring manual detiling by the client.
923 */
924 if (obj->phys_obj) {
925 ret = i915_gem_phys_pwrite(dev, obj, args, file);
926 goto out;
927 }
928
929 if (obj->tiling_mode == I915_TILING_NONE &&
930 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
931 cpu_write_needs_clflush(obj)) {
932 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
933 /* Note that the gtt paths might fail with non-page-backed user
934 * pointers (e.g. gtt mappings when moving data between
935 * textures). Fallback to the shmem path in that case. */
936 }
937
938 if (ret == -EFAULT || ret == -ENOSPC)
939 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940
941 out:
942 drm_gem_object_unreference(&obj->base);
943 unlock:
944 mutex_unlock(&dev->struct_mutex);
945 return ret;
946 }
947
948 int
949 i915_gem_check_wedge(struct i915_gpu_error *error,
950 bool interruptible)
951 {
952 if (i915_reset_in_progress(error)) {
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
958 /* Recovery complete, but the reset failed ... */
959 if (i915_terminally_wedged(error))
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966 }
967
968 /*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
980 if (seqno == ring->outstanding_lazy_seqno)
981 ret = i915_add_request(ring, NULL);
982
983 return ret;
984 }
985
986 static void fake_irq(unsigned long data)
987 {
988 wake_up_process((struct task_struct *)data);
989 }
990
991 static bool missed_irq(struct drm_i915_private *dev_priv,
992 struct intel_ring_buffer *ring)
993 {
994 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
995 }
996
997 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
998 {
999 if (file_priv == NULL)
1000 return true;
1001
1002 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1003 }
1004
1005 /**
1006 * __wait_seqno - wait until execution of seqno has finished
1007 * @ring: the ring expected to report seqno
1008 * @seqno: duh!
1009 * @reset_counter: reset sequence associated with the given seqno
1010 * @interruptible: do an interruptible wait (normally yes)
1011 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1012 *
1013 * Note: It is of utmost importance that the passed in seqno and reset_counter
1014 * values have been read by the caller in an smp safe manner. Where read-side
1015 * locks are involved, it is sufficient to read the reset_counter before
1016 * unlocking the lock that protects the seqno. For lockless tricks, the
1017 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1018 * inserted.
1019 *
1020 * Returns 0 if the seqno was found within the alloted time. Else returns the
1021 * errno with remaining time filled in timeout argument.
1022 */
1023 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1024 unsigned reset_counter,
1025 bool interruptible,
1026 struct timespec *timeout,
1027 struct drm_i915_file_private *file_priv)
1028 {
1029 struct drm_device *dev = ring->dev;
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 const bool irq_test_in_progress =
1032 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1033 struct timespec before, now;
1034 DEFINE_WAIT(wait);
1035 unsigned long timeout_expire;
1036 int ret;
1037
1038 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1039
1040 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1041 return 0;
1042
1043 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1044
1045 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1046 gen6_rps_boost(dev_priv);
1047 if (file_priv)
1048 mod_delayed_work(dev_priv->wq,
1049 &file_priv->mm.idle_work,
1050 msecs_to_jiffies(100));
1051 }
1052
1053 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1054 return -ENODEV;
1055
1056 /* Record current time in case interrupted by signal, or wedged */
1057 trace_i915_gem_request_wait_begin(ring, seqno);
1058 getrawmonotonic(&before);
1059 for (;;) {
1060 struct timer_list timer;
1061
1062 prepare_to_wait(&ring->irq_queue, &wait,
1063 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1064
1065 /* We need to check whether any gpu reset happened in between
1066 * the caller grabbing the seqno and now ... */
1067 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1068 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1069 * is truely gone. */
1070 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1071 if (ret == 0)
1072 ret = -EAGAIN;
1073 break;
1074 }
1075
1076 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1077 ret = 0;
1078 break;
1079 }
1080
1081 if (interruptible && signal_pending(current)) {
1082 ret = -ERESTARTSYS;
1083 break;
1084 }
1085
1086 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1087 ret = -ETIME;
1088 break;
1089 }
1090
1091 timer.function = NULL;
1092 if (timeout || missed_irq(dev_priv, ring)) {
1093 unsigned long expire;
1094
1095 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1096 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1097 mod_timer(&timer, expire);
1098 }
1099
1100 io_schedule();
1101
1102 if (timer.function) {
1103 del_singleshot_timer_sync(&timer);
1104 destroy_timer_on_stack(&timer);
1105 }
1106 }
1107 getrawmonotonic(&now);
1108 trace_i915_gem_request_wait_end(ring, seqno);
1109
1110 if (!irq_test_in_progress)
1111 ring->irq_put(ring);
1112
1113 finish_wait(&ring->irq_queue, &wait);
1114
1115 if (timeout) {
1116 struct timespec sleep_time = timespec_sub(now, before);
1117 *timeout = timespec_sub(*timeout, sleep_time);
1118 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1119 set_normalized_timespec(timeout, 0, 0);
1120 }
1121
1122 return ret;
1123 }
1124
1125 /**
1126 * Waits for a sequence number to be signaled, and cleans up the
1127 * request and object lists appropriately for that event.
1128 */
1129 int
1130 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1131 {
1132 struct drm_device *dev = ring->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 bool interruptible = dev_priv->mm.interruptible;
1135 int ret;
1136
1137 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1138 BUG_ON(seqno == 0);
1139
1140 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1141 if (ret)
1142 return ret;
1143
1144 ret = i915_gem_check_olr(ring, seqno);
1145 if (ret)
1146 return ret;
1147
1148 return __wait_seqno(ring, seqno,
1149 atomic_read(&dev_priv->gpu_error.reset_counter),
1150 interruptible, NULL, NULL);
1151 }
1152
1153 static int
1154 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1155 struct intel_ring_buffer *ring)
1156 {
1157 i915_gem_retire_requests_ring(ring);
1158
1159 /* Manually manage the write flush as we may have not yet
1160 * retired the buffer.
1161 *
1162 * Note that the last_write_seqno is always the earlier of
1163 * the two (read/write) seqno, so if we haved successfully waited,
1164 * we know we have passed the last write.
1165 */
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168
1169 return 0;
1170 }
1171
1172 /**
1173 * Ensures that all rendering to the object has completed and the object is
1174 * safe to unbind from the GTT or access from the CPU.
1175 */
1176 static __must_check int
1177 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1178 bool readonly)
1179 {
1180 struct intel_ring_buffer *ring = obj->ring;
1181 u32 seqno;
1182 int ret;
1183
1184 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1185 if (seqno == 0)
1186 return 0;
1187
1188 ret = i915_wait_seqno(ring, seqno);
1189 if (ret)
1190 return ret;
1191
1192 return i915_gem_object_wait_rendering__tail(obj, ring);
1193 }
1194
1195 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1196 * as the object state may change during this call.
1197 */
1198 static __must_check int
1199 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1200 struct drm_i915_file_private *file_priv,
1201 bool readonly)
1202 {
1203 struct drm_device *dev = obj->base.dev;
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 struct intel_ring_buffer *ring = obj->ring;
1206 unsigned reset_counter;
1207 u32 seqno;
1208 int ret;
1209
1210 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1211 BUG_ON(!dev_priv->mm.interruptible);
1212
1213 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1214 if (seqno == 0)
1215 return 0;
1216
1217 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1218 if (ret)
1219 return ret;
1220
1221 ret = i915_gem_check_olr(ring, seqno);
1222 if (ret)
1223 return ret;
1224
1225 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1226 mutex_unlock(&dev->struct_mutex);
1227 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1228 mutex_lock(&dev->struct_mutex);
1229 if (ret)
1230 return ret;
1231
1232 return i915_gem_object_wait_rendering__tail(obj, ring);
1233 }
1234
1235 /**
1236 * Called when user space prepares to use an object with the CPU, either
1237 * through the mmap ioctl's mapping or a GTT mapping.
1238 */
1239 int
1240 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_set_domain *args = data;
1244 struct drm_i915_gem_object *obj;
1245 uint32_t read_domains = args->read_domains;
1246 uint32_t write_domain = args->write_domain;
1247 int ret;
1248
1249 /* Only handle setting domains to types used by the CPU. */
1250 if (write_domain & I915_GEM_GPU_DOMAINS)
1251 return -EINVAL;
1252
1253 if (read_domains & I915_GEM_GPU_DOMAINS)
1254 return -EINVAL;
1255
1256 /* Having something in the write domain implies it's in the read
1257 * domain, and only that read domain. Enforce that in the request.
1258 */
1259 if (write_domain != 0 && read_domains != write_domain)
1260 return -EINVAL;
1261
1262 ret = i915_mutex_lock_interruptible(dev);
1263 if (ret)
1264 return ret;
1265
1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1267 if (&obj->base == NULL) {
1268 ret = -ENOENT;
1269 goto unlock;
1270 }
1271
1272 /* Try to flush the object off the GPU without holding the lock.
1273 * We will repeat the flush holding the lock in the normal manner
1274 * to catch cases where we are gazumped.
1275 */
1276 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1277 file->driver_priv,
1278 !write_domain);
1279 if (ret)
1280 goto unref;
1281
1282 if (read_domains & I915_GEM_DOMAIN_GTT) {
1283 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1284
1285 /* Silently promote "you're not bound, there was nothing to do"
1286 * to success, since the client was just asking us to
1287 * make sure everything was done.
1288 */
1289 if (ret == -EINVAL)
1290 ret = 0;
1291 } else {
1292 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1293 }
1294
1295 unref:
1296 drm_gem_object_unreference(&obj->base);
1297 unlock:
1298 mutex_unlock(&dev->struct_mutex);
1299 return ret;
1300 }
1301
1302 /**
1303 * Called when user space has done writes to this buffer
1304 */
1305 int
1306 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1307 struct drm_file *file)
1308 {
1309 struct drm_i915_gem_sw_finish *args = data;
1310 struct drm_i915_gem_object *obj;
1311 int ret = 0;
1312
1313 ret = i915_mutex_lock_interruptible(dev);
1314 if (ret)
1315 return ret;
1316
1317 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1318 if (&obj->base == NULL) {
1319 ret = -ENOENT;
1320 goto unlock;
1321 }
1322
1323 /* Pinned buffers may be scanout, so flush the cache */
1324 if (obj->pin_display)
1325 i915_gem_object_flush_cpu_write_domain(obj, true);
1326
1327 drm_gem_object_unreference(&obj->base);
1328 unlock:
1329 mutex_unlock(&dev->struct_mutex);
1330 return ret;
1331 }
1332
1333 /**
1334 * Maps the contents of an object, returning the address it is mapped
1335 * into.
1336 *
1337 * While the mapping holds a reference on the contents of the object, it doesn't
1338 * imply a ref on the object itself.
1339 */
1340 int
1341 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1342 struct drm_file *file)
1343 {
1344 struct drm_i915_gem_mmap *args = data;
1345 struct drm_gem_object *obj;
1346 unsigned long addr;
1347
1348 obj = drm_gem_object_lookup(dev, file, args->handle);
1349 if (obj == NULL)
1350 return -ENOENT;
1351
1352 /* prime objects have no backing filp to GEM mmap
1353 * pages from.
1354 */
1355 if (!obj->filp) {
1356 drm_gem_object_unreference_unlocked(obj);
1357 return -EINVAL;
1358 }
1359
1360 addr = vm_mmap(obj->filp, 0, args->size,
1361 PROT_READ | PROT_WRITE, MAP_SHARED,
1362 args->offset);
1363 drm_gem_object_unreference_unlocked(obj);
1364 if (IS_ERR((void *)addr))
1365 return addr;
1366
1367 args->addr_ptr = (uint64_t) addr;
1368
1369 return 0;
1370 }
1371
1372 /**
1373 * i915_gem_fault - fault a page into the GTT
1374 * vma: VMA in question
1375 * vmf: fault info
1376 *
1377 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1378 * from userspace. The fault handler takes care of binding the object to
1379 * the GTT (if needed), allocating and programming a fence register (again,
1380 * only if needed based on whether the old reg is still valid or the object
1381 * is tiled) and inserting a new PTE into the faulting process.
1382 *
1383 * Note that the faulting process may involve evicting existing objects
1384 * from the GTT and/or fence registers to make room. So performance may
1385 * suffer if the GTT working set is large or there are few fence registers
1386 * left.
1387 */
1388 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389 {
1390 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1391 struct drm_device *dev = obj->base.dev;
1392 struct drm_i915_private *dev_priv = dev->dev_private;
1393 pgoff_t page_offset;
1394 unsigned long pfn;
1395 int ret = 0;
1396 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1397
1398 intel_runtime_pm_get(dev_priv);
1399
1400 /* We don't use vmf->pgoff since that has the fake offset */
1401 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1402 PAGE_SHIFT;
1403
1404 ret = i915_mutex_lock_interruptible(dev);
1405 if (ret)
1406 goto out;
1407
1408 trace_i915_gem_object_fault(obj, page_offset, true, write);
1409
1410 /* Try to flush the object off the GPU first without holding the lock.
1411 * Upon reacquiring the lock, we will perform our sanity checks and then
1412 * repeat the flush holding the lock in the normal manner to catch cases
1413 * where we are gazumped.
1414 */
1415 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1416 if (ret)
1417 goto unlock;
1418
1419 /* Access to snoopable pages through the GTT is incoherent. */
1420 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1421 ret = -EINVAL;
1422 goto unlock;
1423 }
1424
1425 /* Now bind it into the GTT if needed */
1426 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1427 if (ret)
1428 goto unlock;
1429
1430 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1431 if (ret)
1432 goto unpin;
1433
1434 ret = i915_gem_object_get_fence(obj);
1435 if (ret)
1436 goto unpin;
1437
1438 obj->fault_mappable = true;
1439
1440 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1441 pfn >>= PAGE_SHIFT;
1442 pfn += page_offset;
1443
1444 /* Finally, remap it using the new GTT offset */
1445 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1446 unpin:
1447 i915_gem_object_ggtt_unpin(obj);
1448 unlock:
1449 mutex_unlock(&dev->struct_mutex);
1450 out:
1451 switch (ret) {
1452 case -EIO:
1453 /* If this -EIO is due to a gpu hang, give the reset code a
1454 * chance to clean up the mess. Otherwise return the proper
1455 * SIGBUS. */
1456 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1457 ret = VM_FAULT_SIGBUS;
1458 break;
1459 }
1460 case -EAGAIN:
1461 /*
1462 * EAGAIN means the gpu is hung and we'll wait for the error
1463 * handler to reset everything when re-faulting in
1464 * i915_mutex_lock_interruptible.
1465 */
1466 case 0:
1467 case -ERESTARTSYS:
1468 case -EINTR:
1469 case -EBUSY:
1470 /*
1471 * EBUSY is ok: this just means that another thread
1472 * already did the job.
1473 */
1474 ret = VM_FAULT_NOPAGE;
1475 break;
1476 case -ENOMEM:
1477 ret = VM_FAULT_OOM;
1478 break;
1479 case -ENOSPC:
1480 case -EFAULT:
1481 ret = VM_FAULT_SIGBUS;
1482 break;
1483 default:
1484 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1485 ret = VM_FAULT_SIGBUS;
1486 break;
1487 }
1488
1489 intel_runtime_pm_put(dev_priv);
1490 return ret;
1491 }
1492
1493 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1494 {
1495 struct i915_vma *vma;
1496
1497 /*
1498 * Only the global gtt is relevant for gtt memory mappings, so restrict
1499 * list traversal to objects bound into the global address space. Note
1500 * that the active list should be empty, but better safe than sorry.
1501 */
1502 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1503 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1504 i915_gem_release_mmap(vma->obj);
1505 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1506 i915_gem_release_mmap(vma->obj);
1507 }
1508
1509 /**
1510 * i915_gem_release_mmap - remove physical page mappings
1511 * @obj: obj in question
1512 *
1513 * Preserve the reservation of the mmapping with the DRM core code, but
1514 * relinquish ownership of the pages back to the system.
1515 *
1516 * It is vital that we remove the page mapping if we have mapped a tiled
1517 * object through the GTT and then lose the fence register due to
1518 * resource pressure. Similarly if the object has been moved out of the
1519 * aperture, than pages mapped into userspace must be revoked. Removing the
1520 * mapping will then trigger a page fault on the next user access, allowing
1521 * fixup by i915_gem_fault().
1522 */
1523 void
1524 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1525 {
1526 if (!obj->fault_mappable)
1527 return;
1528
1529 drm_vma_node_unmap(&obj->base.vma_node,
1530 obj->base.dev->anon_inode->i_mapping);
1531 obj->fault_mappable = false;
1532 }
1533
1534 uint32_t
1535 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1536 {
1537 uint32_t gtt_size;
1538
1539 if (INTEL_INFO(dev)->gen >= 4 ||
1540 tiling_mode == I915_TILING_NONE)
1541 return size;
1542
1543 /* Previous chips need a power-of-two fence region when tiling */
1544 if (INTEL_INFO(dev)->gen == 3)
1545 gtt_size = 1024*1024;
1546 else
1547 gtt_size = 512*1024;
1548
1549 while (gtt_size < size)
1550 gtt_size <<= 1;
1551
1552 return gtt_size;
1553 }
1554
1555 /**
1556 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1557 * @obj: object to check
1558 *
1559 * Return the required GTT alignment for an object, taking into account
1560 * potential fence register mapping.
1561 */
1562 uint32_t
1563 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1564 int tiling_mode, bool fenced)
1565 {
1566 /*
1567 * Minimum alignment is 4k (GTT page size), but might be greater
1568 * if a fence register is needed for the object.
1569 */
1570 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1571 tiling_mode == I915_TILING_NONE)
1572 return 4096;
1573
1574 /*
1575 * Previous chips need to be aligned to the size of the smallest
1576 * fence register that can contain the object.
1577 */
1578 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1579 }
1580
1581 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1582 {
1583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1584 int ret;
1585
1586 if (drm_vma_node_has_offset(&obj->base.vma_node))
1587 return 0;
1588
1589 dev_priv->mm.shrinker_no_lock_stealing = true;
1590
1591 ret = drm_gem_create_mmap_offset(&obj->base);
1592 if (ret != -ENOSPC)
1593 goto out;
1594
1595 /* Badly fragmented mmap space? The only way we can recover
1596 * space is by destroying unwanted objects. We can't randomly release
1597 * mmap_offsets as userspace expects them to be persistent for the
1598 * lifetime of the objects. The closest we can is to release the
1599 * offsets on purgeable objects by truncating it and marking it purged,
1600 * which prevents userspace from ever using that object again.
1601 */
1602 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1603 ret = drm_gem_create_mmap_offset(&obj->base);
1604 if (ret != -ENOSPC)
1605 goto out;
1606
1607 i915_gem_shrink_all(dev_priv);
1608 ret = drm_gem_create_mmap_offset(&obj->base);
1609 out:
1610 dev_priv->mm.shrinker_no_lock_stealing = false;
1611
1612 return ret;
1613 }
1614
1615 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1616 {
1617 drm_gem_free_mmap_offset(&obj->base);
1618 }
1619
1620 int
1621 i915_gem_mmap_gtt(struct drm_file *file,
1622 struct drm_device *dev,
1623 uint32_t handle,
1624 uint64_t *offset)
1625 {
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 struct drm_i915_gem_object *obj;
1628 int ret;
1629
1630 ret = i915_mutex_lock_interruptible(dev);
1631 if (ret)
1632 return ret;
1633
1634 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1635 if (&obj->base == NULL) {
1636 ret = -ENOENT;
1637 goto unlock;
1638 }
1639
1640 if (obj->base.size > dev_priv->gtt.mappable_end) {
1641 ret = -E2BIG;
1642 goto out;
1643 }
1644
1645 if (obj->madv != I915_MADV_WILLNEED) {
1646 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1647 ret = -EFAULT;
1648 goto out;
1649 }
1650
1651 ret = i915_gem_object_create_mmap_offset(obj);
1652 if (ret)
1653 goto out;
1654
1655 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1656
1657 out:
1658 drm_gem_object_unreference(&obj->base);
1659 unlock:
1660 mutex_unlock(&dev->struct_mutex);
1661 return ret;
1662 }
1663
1664 /**
1665 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1666 * @dev: DRM device
1667 * @data: GTT mapping ioctl data
1668 * @file: GEM object info
1669 *
1670 * Simply returns the fake offset to userspace so it can mmap it.
1671 * The mmap call will end up in drm_gem_mmap(), which will set things
1672 * up so we can get faults in the handler above.
1673 *
1674 * The fault handler will take care of binding the object into the GTT
1675 * (since it may have been evicted to make room for something), allocating
1676 * a fence register, and mapping the appropriate aperture address into
1677 * userspace.
1678 */
1679 int
1680 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682 {
1683 struct drm_i915_gem_mmap_gtt *args = data;
1684
1685 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1686 }
1687
1688 /* Immediately discard the backing storage */
1689 static void
1690 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1691 {
1692 struct inode *inode;
1693
1694 i915_gem_object_free_mmap_offset(obj);
1695
1696 if (obj->base.filp == NULL)
1697 return;
1698
1699 /* Our goal here is to return as much of the memory as
1700 * is possible back to the system as we are called from OOM.
1701 * To do this we must instruct the shmfs to drop all of its
1702 * backing pages, *now*.
1703 */
1704 inode = file_inode(obj->base.filp);
1705 shmem_truncate_range(inode, 0, (loff_t)-1);
1706
1707 obj->madv = __I915_MADV_PURGED;
1708 }
1709
1710 static inline int
1711 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1712 {
1713 return obj->madv == I915_MADV_DONTNEED;
1714 }
1715
1716 static void
1717 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1718 {
1719 struct sg_page_iter sg_iter;
1720 int ret;
1721
1722 BUG_ON(obj->madv == __I915_MADV_PURGED);
1723
1724 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1725 if (ret) {
1726 /* In the event of a disaster, abandon all caches and
1727 * hope for the best.
1728 */
1729 WARN_ON(ret != -EIO);
1730 i915_gem_clflush_object(obj, true);
1731 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1732 }
1733
1734 if (i915_gem_object_needs_bit17_swizzle(obj))
1735 i915_gem_object_save_bit_17_swizzle(obj);
1736
1737 if (obj->madv == I915_MADV_DONTNEED)
1738 obj->dirty = 0;
1739
1740 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1741 struct page *page = sg_page_iter_page(&sg_iter);
1742
1743 if (obj->dirty)
1744 set_page_dirty(page);
1745
1746 if (obj->madv == I915_MADV_WILLNEED)
1747 mark_page_accessed(page);
1748
1749 page_cache_release(page);
1750 }
1751 obj->dirty = 0;
1752
1753 sg_free_table(obj->pages);
1754 kfree(obj->pages);
1755 }
1756
1757 int
1758 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1759 {
1760 const struct drm_i915_gem_object_ops *ops = obj->ops;
1761
1762 if (obj->pages == NULL)
1763 return 0;
1764
1765 if (obj->pages_pin_count)
1766 return -EBUSY;
1767
1768 BUG_ON(i915_gem_obj_bound_any(obj));
1769
1770 /* ->put_pages might need to allocate memory for the bit17 swizzle
1771 * array, hence protect them from being reaped by removing them from gtt
1772 * lists early. */
1773 list_del(&obj->global_list);
1774
1775 ops->put_pages(obj);
1776 obj->pages = NULL;
1777
1778 if (i915_gem_object_is_purgeable(obj))
1779 i915_gem_object_truncate(obj);
1780
1781 return 0;
1782 }
1783
1784 static unsigned long
1785 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1786 bool purgeable_only)
1787 {
1788 struct list_head still_bound_list;
1789 struct drm_i915_gem_object *obj, *next;
1790 unsigned long count = 0;
1791
1792 list_for_each_entry_safe(obj, next,
1793 &dev_priv->mm.unbound_list,
1794 global_list) {
1795 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1796 i915_gem_object_put_pages(obj) == 0) {
1797 count += obj->base.size >> PAGE_SHIFT;
1798 if (count >= target)
1799 return count;
1800 }
1801 }
1802
1803 /*
1804 * As we may completely rewrite the bound list whilst unbinding
1805 * (due to retiring requests) we have to strictly process only
1806 * one element of the list at the time, and recheck the list
1807 * on every iteration.
1808 */
1809 INIT_LIST_HEAD(&still_bound_list);
1810 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1811 struct i915_vma *vma, *v;
1812
1813 obj = list_first_entry(&dev_priv->mm.bound_list,
1814 typeof(*obj), global_list);
1815 list_move_tail(&obj->global_list, &still_bound_list);
1816
1817 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1818 continue;
1819
1820 /*
1821 * Hold a reference whilst we unbind this object, as we may
1822 * end up waiting for and retiring requests. This might
1823 * release the final reference (held by the active list)
1824 * and result in the object being freed from under us.
1825 * in this object being freed.
1826 *
1827 * Note 1: Shrinking the bound list is special since only active
1828 * (and hence bound objects) can contain such limbo objects, so
1829 * we don't need special tricks for shrinking the unbound list.
1830 * The only other place where we have to be careful with active
1831 * objects suddenly disappearing due to retiring requests is the
1832 * eviction code.
1833 *
1834 * Note 2: Even though the bound list doesn't hold a reference
1835 * to the object we can safely grab one here: The final object
1836 * unreferencing and the bound_list are both protected by the
1837 * dev->struct_mutex and so we won't ever be able to observe an
1838 * object on the bound_list with a reference count equals 0.
1839 */
1840 drm_gem_object_reference(&obj->base);
1841
1842 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1843 if (i915_vma_unbind(vma))
1844 break;
1845
1846 if (i915_gem_object_put_pages(obj) == 0)
1847 count += obj->base.size >> PAGE_SHIFT;
1848
1849 drm_gem_object_unreference(&obj->base);
1850 }
1851 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1852
1853 return count;
1854 }
1855
1856 static unsigned long
1857 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1858 {
1859 return __i915_gem_shrink(dev_priv, target, true);
1860 }
1861
1862 static unsigned long
1863 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1864 {
1865 struct drm_i915_gem_object *obj, *next;
1866 long freed = 0;
1867
1868 i915_gem_evict_everything(dev_priv->dev);
1869
1870 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1871 global_list) {
1872 if (i915_gem_object_put_pages(obj) == 0)
1873 freed += obj->base.size >> PAGE_SHIFT;
1874 }
1875 return freed;
1876 }
1877
1878 static int
1879 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1880 {
1881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1882 int page_count, i;
1883 struct address_space *mapping;
1884 struct sg_table *st;
1885 struct scatterlist *sg;
1886 struct sg_page_iter sg_iter;
1887 struct page *page;
1888 unsigned long last_pfn = 0; /* suppress gcc warning */
1889 gfp_t gfp;
1890
1891 /* Assert that the object is not currently in any GPU domain. As it
1892 * wasn't in the GTT, there shouldn't be any way it could have been in
1893 * a GPU cache
1894 */
1895 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1896 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1897
1898 st = kmalloc(sizeof(*st), GFP_KERNEL);
1899 if (st == NULL)
1900 return -ENOMEM;
1901
1902 page_count = obj->base.size / PAGE_SIZE;
1903 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1904 kfree(st);
1905 return -ENOMEM;
1906 }
1907
1908 /* Get the list of pages out of our struct file. They'll be pinned
1909 * at this point until we release them.
1910 *
1911 * Fail silently without starting the shrinker
1912 */
1913 mapping = file_inode(obj->base.filp)->i_mapping;
1914 gfp = mapping_gfp_mask(mapping);
1915 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1916 gfp &= ~(__GFP_IO | __GFP_WAIT);
1917 sg = st->sgl;
1918 st->nents = 0;
1919 for (i = 0; i < page_count; i++) {
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 if (IS_ERR(page)) {
1922 i915_gem_purge(dev_priv, page_count);
1923 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1924 }
1925 if (IS_ERR(page)) {
1926 /* We've tried hard to allocate the memory by reaping
1927 * our own buffer, now let the real VM do its job and
1928 * go down in flames if truly OOM.
1929 */
1930 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1931 gfp |= __GFP_IO | __GFP_WAIT;
1932
1933 i915_gem_shrink_all(dev_priv);
1934 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935 if (IS_ERR(page))
1936 goto err_pages;
1937
1938 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1939 gfp &= ~(__GFP_IO | __GFP_WAIT);
1940 }
1941 #ifdef CONFIG_SWIOTLB
1942 if (swiotlb_nr_tbl()) {
1943 st->nents++;
1944 sg_set_page(sg, page, PAGE_SIZE, 0);
1945 sg = sg_next(sg);
1946 continue;
1947 }
1948 #endif
1949 if (!i || page_to_pfn(page) != last_pfn + 1) {
1950 if (i)
1951 sg = sg_next(sg);
1952 st->nents++;
1953 sg_set_page(sg, page, PAGE_SIZE, 0);
1954 } else {
1955 sg->length += PAGE_SIZE;
1956 }
1957 last_pfn = page_to_pfn(page);
1958
1959 /* Check that the i965g/gm workaround works. */
1960 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1961 }
1962 #ifdef CONFIG_SWIOTLB
1963 if (!swiotlb_nr_tbl())
1964 #endif
1965 sg_mark_end(sg);
1966 obj->pages = st;
1967
1968 if (i915_gem_object_needs_bit17_swizzle(obj))
1969 i915_gem_object_do_bit_17_swizzle(obj);
1970
1971 return 0;
1972
1973 err_pages:
1974 sg_mark_end(sg);
1975 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1976 page_cache_release(sg_page_iter_page(&sg_iter));
1977 sg_free_table(st);
1978 kfree(st);
1979 return PTR_ERR(page);
1980 }
1981
1982 /* Ensure that the associated pages are gathered from the backing storage
1983 * and pinned into our object. i915_gem_object_get_pages() may be called
1984 * multiple times before they are released by a single call to
1985 * i915_gem_object_put_pages() - once the pages are no longer referenced
1986 * either as a result of memory pressure (reaping pages under the shrinker)
1987 * or as the object is itself released.
1988 */
1989 int
1990 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1991 {
1992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1993 const struct drm_i915_gem_object_ops *ops = obj->ops;
1994 int ret;
1995
1996 if (obj->pages)
1997 return 0;
1998
1999 if (obj->madv != I915_MADV_WILLNEED) {
2000 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2001 return -EFAULT;
2002 }
2003
2004 BUG_ON(obj->pages_pin_count);
2005
2006 ret = ops->get_pages(obj);
2007 if (ret)
2008 return ret;
2009
2010 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2011 return 0;
2012 }
2013
2014 static void
2015 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2016 struct intel_ring_buffer *ring)
2017 {
2018 struct drm_device *dev = obj->base.dev;
2019 struct drm_i915_private *dev_priv = dev->dev_private;
2020 u32 seqno = intel_ring_get_seqno(ring);
2021
2022 BUG_ON(ring == NULL);
2023 if (obj->ring != ring && obj->last_write_seqno) {
2024 /* Keep the seqno relative to the current ring */
2025 obj->last_write_seqno = seqno;
2026 }
2027 obj->ring = ring;
2028
2029 /* Add a reference if we're newly entering the active list. */
2030 if (!obj->active) {
2031 drm_gem_object_reference(&obj->base);
2032 obj->active = 1;
2033 }
2034
2035 list_move_tail(&obj->ring_list, &ring->active_list);
2036
2037 obj->last_read_seqno = seqno;
2038
2039 if (obj->fenced_gpu_access) {
2040 obj->last_fenced_seqno = seqno;
2041
2042 /* Bump MRU to take account of the delayed flush */
2043 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2044 struct drm_i915_fence_reg *reg;
2045
2046 reg = &dev_priv->fence_regs[obj->fence_reg];
2047 list_move_tail(&reg->lru_list,
2048 &dev_priv->mm.fence_list);
2049 }
2050 }
2051 }
2052
2053 void i915_vma_move_to_active(struct i915_vma *vma,
2054 struct intel_ring_buffer *ring)
2055 {
2056 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2057 return i915_gem_object_move_to_active(vma->obj, ring);
2058 }
2059
2060 static void
2061 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2062 {
2063 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2064 struct i915_address_space *vm;
2065 struct i915_vma *vma;
2066
2067 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2068 BUG_ON(!obj->active);
2069
2070 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2071 vma = i915_gem_obj_to_vma(obj, vm);
2072 if (vma && !list_empty(&vma->mm_list))
2073 list_move_tail(&vma->mm_list, &vm->inactive_list);
2074 }
2075
2076 list_del_init(&obj->ring_list);
2077 obj->ring = NULL;
2078
2079 obj->last_read_seqno = 0;
2080 obj->last_write_seqno = 0;
2081 obj->base.write_domain = 0;
2082
2083 obj->last_fenced_seqno = 0;
2084 obj->fenced_gpu_access = false;
2085
2086 obj->active = 0;
2087 drm_gem_object_unreference(&obj->base);
2088
2089 WARN_ON(i915_verify_lists(dev));
2090 }
2091
2092 static int
2093 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2094 {
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct intel_ring_buffer *ring;
2097 int ret, i, j;
2098
2099 /* Carefully retire all requests without writing to the rings */
2100 for_each_ring(ring, dev_priv, i) {
2101 ret = intel_ring_idle(ring);
2102 if (ret)
2103 return ret;
2104 }
2105 i915_gem_retire_requests(dev);
2106
2107 /* Finally reset hw state */
2108 for_each_ring(ring, dev_priv, i) {
2109 intel_ring_init_seqno(ring, seqno);
2110
2111 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2112 ring->sync_seqno[j] = 0;
2113 }
2114
2115 return 0;
2116 }
2117
2118 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2119 {
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121 int ret;
2122
2123 if (seqno == 0)
2124 return -EINVAL;
2125
2126 /* HWS page needs to be set less than what we
2127 * will inject to ring
2128 */
2129 ret = i915_gem_init_seqno(dev, seqno - 1);
2130 if (ret)
2131 return ret;
2132
2133 /* Carefully set the last_seqno value so that wrap
2134 * detection still works
2135 */
2136 dev_priv->next_seqno = seqno;
2137 dev_priv->last_seqno = seqno - 1;
2138 if (dev_priv->last_seqno == 0)
2139 dev_priv->last_seqno--;
2140
2141 return 0;
2142 }
2143
2144 int
2145 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2146 {
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149 /* reserve 0 for non-seqno */
2150 if (dev_priv->next_seqno == 0) {
2151 int ret = i915_gem_init_seqno(dev, 0);
2152 if (ret)
2153 return ret;
2154
2155 dev_priv->next_seqno = 1;
2156 }
2157
2158 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2159 return 0;
2160 }
2161
2162 int __i915_add_request(struct intel_ring_buffer *ring,
2163 struct drm_file *file,
2164 struct drm_i915_gem_object *obj,
2165 u32 *out_seqno)
2166 {
2167 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2168 struct drm_i915_gem_request *request;
2169 u32 request_ring_position, request_start;
2170 int ret;
2171
2172 request_start = intel_ring_get_tail(ring);
2173 /*
2174 * Emit any outstanding flushes - execbuf can fail to emit the flush
2175 * after having emitted the batchbuffer command. Hence we need to fix
2176 * things up similar to emitting the lazy request. The difference here
2177 * is that the flush _must_ happen before the next request, no matter
2178 * what.
2179 */
2180 ret = intel_ring_flush_all_caches(ring);
2181 if (ret)
2182 return ret;
2183
2184 request = ring->preallocated_lazy_request;
2185 if (WARN_ON(request == NULL))
2186 return -ENOMEM;
2187
2188 /* Record the position of the start of the request so that
2189 * should we detect the updated seqno part-way through the
2190 * GPU processing the request, we never over-estimate the
2191 * position of the head.
2192 */
2193 request_ring_position = intel_ring_get_tail(ring);
2194
2195 ret = ring->add_request(ring);
2196 if (ret)
2197 return ret;
2198
2199 request->seqno = intel_ring_get_seqno(ring);
2200 request->ring = ring;
2201 request->head = request_start;
2202 request->tail = request_ring_position;
2203
2204 /* Whilst this request exists, batch_obj will be on the
2205 * active_list, and so will hold the active reference. Only when this
2206 * request is retired will the the batch_obj be moved onto the
2207 * inactive_list and lose its active reference. Hence we do not need
2208 * to explicitly hold another reference here.
2209 */
2210 request->batch_obj = obj;
2211
2212 /* Hold a reference to the current context so that we can inspect
2213 * it later in case a hangcheck error event fires.
2214 */
2215 request->ctx = ring->last_context;
2216 if (request->ctx)
2217 i915_gem_context_reference(request->ctx);
2218
2219 request->emitted_jiffies = jiffies;
2220 list_add_tail(&request->list, &ring->request_list);
2221 request->file_priv = NULL;
2222
2223 if (file) {
2224 struct drm_i915_file_private *file_priv = file->driver_priv;
2225
2226 spin_lock(&file_priv->mm.lock);
2227 request->file_priv = file_priv;
2228 list_add_tail(&request->client_list,
2229 &file_priv->mm.request_list);
2230 spin_unlock(&file_priv->mm.lock);
2231 }
2232
2233 trace_i915_gem_request_add(ring, request->seqno);
2234 ring->outstanding_lazy_seqno = 0;
2235 ring->preallocated_lazy_request = NULL;
2236
2237 if (!dev_priv->ums.mm_suspended) {
2238 i915_queue_hangcheck(ring->dev);
2239
2240 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2241 queue_delayed_work(dev_priv->wq,
2242 &dev_priv->mm.retire_work,
2243 round_jiffies_up_relative(HZ));
2244 intel_mark_busy(dev_priv->dev);
2245 }
2246
2247 if (out_seqno)
2248 *out_seqno = request->seqno;
2249 return 0;
2250 }
2251
2252 static inline void
2253 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2254 {
2255 struct drm_i915_file_private *file_priv = request->file_priv;
2256
2257 if (!file_priv)
2258 return;
2259
2260 spin_lock(&file_priv->mm.lock);
2261 list_del(&request->client_list);
2262 request->file_priv = NULL;
2263 spin_unlock(&file_priv->mm.lock);
2264 }
2265
2266 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2267 const struct i915_hw_context *ctx)
2268 {
2269 unsigned long elapsed;
2270
2271 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2272
2273 if (ctx->hang_stats.banned)
2274 return true;
2275
2276 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2277 if (!i915_gem_context_is_default(ctx)) {
2278 DRM_DEBUG("context hanging too fast, banning!\n");
2279 return true;
2280 } else if (dev_priv->gpu_error.stop_rings == 0) {
2281 DRM_ERROR("gpu hanging too fast, banning!\n");
2282 return true;
2283 }
2284 }
2285
2286 return false;
2287 }
2288
2289 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2290 struct i915_hw_context *ctx,
2291 const bool guilty)
2292 {
2293 struct i915_ctx_hang_stats *hs;
2294
2295 if (WARN_ON(!ctx))
2296 return;
2297
2298 hs = &ctx->hang_stats;
2299
2300 if (guilty) {
2301 hs->banned = i915_context_is_banned(dev_priv, ctx);
2302 hs->batch_active++;
2303 hs->guilty_ts = get_seconds();
2304 } else {
2305 hs->batch_pending++;
2306 }
2307 }
2308
2309 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2310 {
2311 list_del(&request->list);
2312 i915_gem_request_remove_from_client(request);
2313
2314 if (request->ctx)
2315 i915_gem_context_unreference(request->ctx);
2316
2317 kfree(request);
2318 }
2319
2320 struct drm_i915_gem_request *
2321 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2322 {
2323 struct drm_i915_gem_request *request;
2324 u32 completed_seqno;
2325
2326 completed_seqno = ring->get_seqno(ring, false);
2327
2328 list_for_each_entry(request, &ring->request_list, list) {
2329 if (i915_seqno_passed(completed_seqno, request->seqno))
2330 continue;
2331
2332 return request;
2333 }
2334
2335 return NULL;
2336 }
2337
2338 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2339 struct intel_ring_buffer *ring)
2340 {
2341 struct drm_i915_gem_request *request;
2342 bool ring_hung;
2343
2344 request = i915_gem_find_active_request(ring);
2345
2346 if (request == NULL)
2347 return;
2348
2349 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2350
2351 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2352
2353 list_for_each_entry_continue(request, &ring->request_list, list)
2354 i915_set_reset_status(dev_priv, request->ctx, false);
2355 }
2356
2357 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2358 struct intel_ring_buffer *ring)
2359 {
2360 while (!list_empty(&ring->active_list)) {
2361 struct drm_i915_gem_object *obj;
2362
2363 obj = list_first_entry(&ring->active_list,
2364 struct drm_i915_gem_object,
2365 ring_list);
2366
2367 i915_gem_object_move_to_inactive(obj);
2368 }
2369
2370 /*
2371 * We must free the requests after all the corresponding objects have
2372 * been moved off active lists. Which is the same order as the normal
2373 * retire_requests function does. This is important if object hold
2374 * implicit references on things like e.g. ppgtt address spaces through
2375 * the request.
2376 */
2377 while (!list_empty(&ring->request_list)) {
2378 struct drm_i915_gem_request *request;
2379
2380 request = list_first_entry(&ring->request_list,
2381 struct drm_i915_gem_request,
2382 list);
2383
2384 i915_gem_free_request(request);
2385 }
2386 }
2387
2388 void i915_gem_restore_fences(struct drm_device *dev)
2389 {
2390 struct drm_i915_private *dev_priv = dev->dev_private;
2391 int i;
2392
2393 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2394 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2395
2396 /*
2397 * Commit delayed tiling changes if we have an object still
2398 * attached to the fence, otherwise just clear the fence.
2399 */
2400 if (reg->obj) {
2401 i915_gem_object_update_fence(reg->obj, reg,
2402 reg->obj->tiling_mode);
2403 } else {
2404 i915_gem_write_fence(dev, i, NULL);
2405 }
2406 }
2407 }
2408
2409 void i915_gem_reset(struct drm_device *dev)
2410 {
2411 struct drm_i915_private *dev_priv = dev->dev_private;
2412 struct intel_ring_buffer *ring;
2413 int i;
2414
2415 /*
2416 * Before we free the objects from the requests, we need to inspect
2417 * them for finding the guilty party. As the requests only borrow
2418 * their reference to the objects, the inspection must be done first.
2419 */
2420 for_each_ring(ring, dev_priv, i)
2421 i915_gem_reset_ring_status(dev_priv, ring);
2422
2423 for_each_ring(ring, dev_priv, i)
2424 i915_gem_reset_ring_cleanup(dev_priv, ring);
2425
2426 i915_gem_cleanup_ringbuffer(dev);
2427
2428 i915_gem_context_reset(dev);
2429
2430 i915_gem_restore_fences(dev);
2431 }
2432
2433 /**
2434 * This function clears the request list as sequence numbers are passed.
2435 */
2436 static void
2437 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2438 {
2439 uint32_t seqno;
2440
2441 if (list_empty(&ring->request_list))
2442 return;
2443
2444 WARN_ON(i915_verify_lists(ring->dev));
2445
2446 seqno = ring->get_seqno(ring, true);
2447
2448 /* Move any buffers on the active list that are no longer referenced
2449 * by the ringbuffer to the flushing/inactive lists as appropriate,
2450 * before we free the context associated with the requests.
2451 */
2452 while (!list_empty(&ring->active_list)) {
2453 struct drm_i915_gem_object *obj;
2454
2455 obj = list_first_entry(&ring->active_list,
2456 struct drm_i915_gem_object,
2457 ring_list);
2458
2459 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2460 break;
2461
2462 i915_gem_object_move_to_inactive(obj);
2463 }
2464
2465
2466 while (!list_empty(&ring->request_list)) {
2467 struct drm_i915_gem_request *request;
2468
2469 request = list_first_entry(&ring->request_list,
2470 struct drm_i915_gem_request,
2471 list);
2472
2473 if (!i915_seqno_passed(seqno, request->seqno))
2474 break;
2475
2476 trace_i915_gem_request_retire(ring, request->seqno);
2477 /* We know the GPU must have read the request to have
2478 * sent us the seqno + interrupt, so use the position
2479 * of tail of the request to update the last known position
2480 * of the GPU head.
2481 */
2482 ring->last_retired_head = request->tail;
2483
2484 i915_gem_free_request(request);
2485 }
2486
2487 if (unlikely(ring->trace_irq_seqno &&
2488 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2489 ring->irq_put(ring);
2490 ring->trace_irq_seqno = 0;
2491 }
2492
2493 WARN_ON(i915_verify_lists(ring->dev));
2494 }
2495
2496 bool
2497 i915_gem_retire_requests(struct drm_device *dev)
2498 {
2499 struct drm_i915_private *dev_priv = dev->dev_private;
2500 struct intel_ring_buffer *ring;
2501 bool idle = true;
2502 int i;
2503
2504 for_each_ring(ring, dev_priv, i) {
2505 i915_gem_retire_requests_ring(ring);
2506 idle &= list_empty(&ring->request_list);
2507 }
2508
2509 if (idle)
2510 mod_delayed_work(dev_priv->wq,
2511 &dev_priv->mm.idle_work,
2512 msecs_to_jiffies(100));
2513
2514 return idle;
2515 }
2516
2517 static void
2518 i915_gem_retire_work_handler(struct work_struct *work)
2519 {
2520 struct drm_i915_private *dev_priv =
2521 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2522 struct drm_device *dev = dev_priv->dev;
2523 bool idle;
2524
2525 /* Come back later if the device is busy... */
2526 idle = false;
2527 if (mutex_trylock(&dev->struct_mutex)) {
2528 idle = i915_gem_retire_requests(dev);
2529 mutex_unlock(&dev->struct_mutex);
2530 }
2531 if (!idle)
2532 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2533 round_jiffies_up_relative(HZ));
2534 }
2535
2536 static void
2537 i915_gem_idle_work_handler(struct work_struct *work)
2538 {
2539 struct drm_i915_private *dev_priv =
2540 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2541
2542 intel_mark_idle(dev_priv->dev);
2543 }
2544
2545 /**
2546 * Ensures that an object will eventually get non-busy by flushing any required
2547 * write domains, emitting any outstanding lazy request and retiring and
2548 * completed requests.
2549 */
2550 static int
2551 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2552 {
2553 int ret;
2554
2555 if (obj->active) {
2556 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2557 if (ret)
2558 return ret;
2559
2560 i915_gem_retire_requests_ring(obj->ring);
2561 }
2562
2563 return 0;
2564 }
2565
2566 /**
2567 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2568 * @DRM_IOCTL_ARGS: standard ioctl arguments
2569 *
2570 * Returns 0 if successful, else an error is returned with the remaining time in
2571 * the timeout parameter.
2572 * -ETIME: object is still busy after timeout
2573 * -ERESTARTSYS: signal interrupted the wait
2574 * -ENONENT: object doesn't exist
2575 * Also possible, but rare:
2576 * -EAGAIN: GPU wedged
2577 * -ENOMEM: damn
2578 * -ENODEV: Internal IRQ fail
2579 * -E?: The add request failed
2580 *
2581 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2582 * non-zero timeout parameter the wait ioctl will wait for the given number of
2583 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2584 * without holding struct_mutex the object may become re-busied before this
2585 * function completes. A similar but shorter * race condition exists in the busy
2586 * ioctl
2587 */
2588 int
2589 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2590 {
2591 struct drm_i915_private *dev_priv = dev->dev_private;
2592 struct drm_i915_gem_wait *args = data;
2593 struct drm_i915_gem_object *obj;
2594 struct intel_ring_buffer *ring = NULL;
2595 struct timespec timeout_stack, *timeout = NULL;
2596 unsigned reset_counter;
2597 u32 seqno = 0;
2598 int ret = 0;
2599
2600 if (args->timeout_ns >= 0) {
2601 timeout_stack = ns_to_timespec(args->timeout_ns);
2602 timeout = &timeout_stack;
2603 }
2604
2605 ret = i915_mutex_lock_interruptible(dev);
2606 if (ret)
2607 return ret;
2608
2609 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2610 if (&obj->base == NULL) {
2611 mutex_unlock(&dev->struct_mutex);
2612 return -ENOENT;
2613 }
2614
2615 /* Need to make sure the object gets inactive eventually. */
2616 ret = i915_gem_object_flush_active(obj);
2617 if (ret)
2618 goto out;
2619
2620 if (obj->active) {
2621 seqno = obj->last_read_seqno;
2622 ring = obj->ring;
2623 }
2624
2625 if (seqno == 0)
2626 goto out;
2627
2628 /* Do this after OLR check to make sure we make forward progress polling
2629 * on this IOCTL with a 0 timeout (like busy ioctl)
2630 */
2631 if (!args->timeout_ns) {
2632 ret = -ETIME;
2633 goto out;
2634 }
2635
2636 drm_gem_object_unreference(&obj->base);
2637 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2638 mutex_unlock(&dev->struct_mutex);
2639
2640 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2641 if (timeout)
2642 args->timeout_ns = timespec_to_ns(timeout);
2643 return ret;
2644
2645 out:
2646 drm_gem_object_unreference(&obj->base);
2647 mutex_unlock(&dev->struct_mutex);
2648 return ret;
2649 }
2650
2651 /**
2652 * i915_gem_object_sync - sync an object to a ring.
2653 *
2654 * @obj: object which may be in use on another ring.
2655 * @to: ring we wish to use the object on. May be NULL.
2656 *
2657 * This code is meant to abstract object synchronization with the GPU.
2658 * Calling with NULL implies synchronizing the object with the CPU
2659 * rather than a particular GPU ring.
2660 *
2661 * Returns 0 if successful, else propagates up the lower layer error.
2662 */
2663 int
2664 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2665 struct intel_ring_buffer *to)
2666 {
2667 struct intel_ring_buffer *from = obj->ring;
2668 u32 seqno;
2669 int ret, idx;
2670
2671 if (from == NULL || to == from)
2672 return 0;
2673
2674 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2675 return i915_gem_object_wait_rendering(obj, false);
2676
2677 idx = intel_ring_sync_index(from, to);
2678
2679 seqno = obj->last_read_seqno;
2680 if (seqno <= from->sync_seqno[idx])
2681 return 0;
2682
2683 ret = i915_gem_check_olr(obj->ring, seqno);
2684 if (ret)
2685 return ret;
2686
2687 trace_i915_gem_ring_sync_to(from, to, seqno);
2688 ret = to->sync_to(to, from, seqno);
2689 if (!ret)
2690 /* We use last_read_seqno because sync_to()
2691 * might have just caused seqno wrap under
2692 * the radar.
2693 */
2694 from->sync_seqno[idx] = obj->last_read_seqno;
2695
2696 return ret;
2697 }
2698
2699 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2700 {
2701 u32 old_write_domain, old_read_domains;
2702
2703 /* Force a pagefault for domain tracking on next user access */
2704 i915_gem_release_mmap(obj);
2705
2706 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2707 return;
2708
2709 /* Wait for any direct GTT access to complete */
2710 mb();
2711
2712 old_read_domains = obj->base.read_domains;
2713 old_write_domain = obj->base.write_domain;
2714
2715 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2716 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2717
2718 trace_i915_gem_object_change_domain(obj,
2719 old_read_domains,
2720 old_write_domain);
2721 }
2722
2723 int i915_vma_unbind(struct i915_vma *vma)
2724 {
2725 struct drm_i915_gem_object *obj = vma->obj;
2726 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2727 int ret;
2728
2729 if (list_empty(&vma->vma_link))
2730 return 0;
2731
2732 if (!drm_mm_node_allocated(&vma->node)) {
2733 i915_gem_vma_destroy(vma);
2734 return 0;
2735 }
2736
2737 if (vma->pin_count)
2738 return -EBUSY;
2739
2740 BUG_ON(obj->pages == NULL);
2741
2742 ret = i915_gem_object_finish_gpu(obj);
2743 if (ret)
2744 return ret;
2745 /* Continue on if we fail due to EIO, the GPU is hung so we
2746 * should be safe and we need to cleanup or else we might
2747 * cause memory corruption through use-after-free.
2748 */
2749
2750 i915_gem_object_finish_gtt(obj);
2751
2752 /* release the fence reg _after_ flushing */
2753 ret = i915_gem_object_put_fence(obj);
2754 if (ret)
2755 return ret;
2756
2757 trace_i915_vma_unbind(vma);
2758
2759 vma->unbind_vma(vma);
2760
2761 i915_gem_gtt_finish_object(obj);
2762
2763 list_del_init(&vma->mm_list);
2764 /* Avoid an unnecessary call to unbind on rebind. */
2765 if (i915_is_ggtt(vma->vm))
2766 obj->map_and_fenceable = true;
2767
2768 drm_mm_remove_node(&vma->node);
2769 i915_gem_vma_destroy(vma);
2770
2771 /* Since the unbound list is global, only move to that list if
2772 * no more VMAs exist. */
2773 if (list_empty(&obj->vma_list))
2774 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2775
2776 /* And finally now the object is completely decoupled from this vma,
2777 * we can drop its hold on the backing storage and allow it to be
2778 * reaped by the shrinker.
2779 */
2780 i915_gem_object_unpin_pages(obj);
2781
2782 return 0;
2783 }
2784
2785 int i915_gpu_idle(struct drm_device *dev)
2786 {
2787 struct drm_i915_private *dev_priv = dev->dev_private;
2788 struct intel_ring_buffer *ring;
2789 int ret, i;
2790
2791 /* Flush everything onto the inactive list. */
2792 for_each_ring(ring, dev_priv, i) {
2793 ret = i915_switch_context(ring, NULL, ring->default_context);
2794 if (ret)
2795 return ret;
2796
2797 ret = intel_ring_idle(ring);
2798 if (ret)
2799 return ret;
2800 }
2801
2802 return 0;
2803 }
2804
2805 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2806 struct drm_i915_gem_object *obj)
2807 {
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 int fence_reg;
2810 int fence_pitch_shift;
2811
2812 if (INTEL_INFO(dev)->gen >= 6) {
2813 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2814 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2815 } else {
2816 fence_reg = FENCE_REG_965_0;
2817 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2818 }
2819
2820 fence_reg += reg * 8;
2821
2822 /* To w/a incoherency with non-atomic 64-bit register updates,
2823 * we split the 64-bit update into two 32-bit writes. In order
2824 * for a partial fence not to be evaluated between writes, we
2825 * precede the update with write to turn off the fence register,
2826 * and only enable the fence as the last step.
2827 *
2828 * For extra levels of paranoia, we make sure each step lands
2829 * before applying the next step.
2830 */
2831 I915_WRITE(fence_reg, 0);
2832 POSTING_READ(fence_reg);
2833
2834 if (obj) {
2835 u32 size = i915_gem_obj_ggtt_size(obj);
2836 uint64_t val;
2837
2838 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2839 0xfffff000) << 32;
2840 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2841 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2842 if (obj->tiling_mode == I915_TILING_Y)
2843 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2844 val |= I965_FENCE_REG_VALID;
2845
2846 I915_WRITE(fence_reg + 4, val >> 32);
2847 POSTING_READ(fence_reg + 4);
2848
2849 I915_WRITE(fence_reg + 0, val);
2850 POSTING_READ(fence_reg);
2851 } else {
2852 I915_WRITE(fence_reg + 4, 0);
2853 POSTING_READ(fence_reg + 4);
2854 }
2855 }
2856
2857 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2858 struct drm_i915_gem_object *obj)
2859 {
2860 struct drm_i915_private *dev_priv = dev->dev_private;
2861 u32 val;
2862
2863 if (obj) {
2864 u32 size = i915_gem_obj_ggtt_size(obj);
2865 int pitch_val;
2866 int tile_width;
2867
2868 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2869 (size & -size) != size ||
2870 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2872 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2873
2874 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2875 tile_width = 128;
2876 else
2877 tile_width = 512;
2878
2879 /* Note: pitch better be a power of two tile widths */
2880 pitch_val = obj->stride / tile_width;
2881 pitch_val = ffs(pitch_val) - 1;
2882
2883 val = i915_gem_obj_ggtt_offset(obj);
2884 if (obj->tiling_mode == I915_TILING_Y)
2885 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2886 val |= I915_FENCE_SIZE_BITS(size);
2887 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2888 val |= I830_FENCE_REG_VALID;
2889 } else
2890 val = 0;
2891
2892 if (reg < 8)
2893 reg = FENCE_REG_830_0 + reg * 4;
2894 else
2895 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2896
2897 I915_WRITE(reg, val);
2898 POSTING_READ(reg);
2899 }
2900
2901 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2902 struct drm_i915_gem_object *obj)
2903 {
2904 struct drm_i915_private *dev_priv = dev->dev_private;
2905 uint32_t val;
2906
2907 if (obj) {
2908 u32 size = i915_gem_obj_ggtt_size(obj);
2909 uint32_t pitch_val;
2910
2911 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2912 (size & -size) != size ||
2913 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2914 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2915 i915_gem_obj_ggtt_offset(obj), size);
2916
2917 pitch_val = obj->stride / 128;
2918 pitch_val = ffs(pitch_val) - 1;
2919
2920 val = i915_gem_obj_ggtt_offset(obj);
2921 if (obj->tiling_mode == I915_TILING_Y)
2922 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2923 val |= I830_FENCE_SIZE_BITS(size);
2924 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2925 val |= I830_FENCE_REG_VALID;
2926 } else
2927 val = 0;
2928
2929 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2930 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2931 }
2932
2933 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2934 {
2935 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2936 }
2937
2938 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2939 struct drm_i915_gem_object *obj)
2940 {
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942
2943 /* Ensure that all CPU reads are completed before installing a fence
2944 * and all writes before removing the fence.
2945 */
2946 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2947 mb();
2948
2949 WARN(obj && (!obj->stride || !obj->tiling_mode),
2950 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2951 obj->stride, obj->tiling_mode);
2952
2953 switch (INTEL_INFO(dev)->gen) {
2954 case 8:
2955 case 7:
2956 case 6:
2957 case 5:
2958 case 4: i965_write_fence_reg(dev, reg, obj); break;
2959 case 3: i915_write_fence_reg(dev, reg, obj); break;
2960 case 2: i830_write_fence_reg(dev, reg, obj); break;
2961 default: BUG();
2962 }
2963
2964 /* And similarly be paranoid that no direct access to this region
2965 * is reordered to before the fence is installed.
2966 */
2967 if (i915_gem_object_needs_mb(obj))
2968 mb();
2969 }
2970
2971 static inline int fence_number(struct drm_i915_private *dev_priv,
2972 struct drm_i915_fence_reg *fence)
2973 {
2974 return fence - dev_priv->fence_regs;
2975 }
2976
2977 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2978 struct drm_i915_fence_reg *fence,
2979 bool enable)
2980 {
2981 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2982 int reg = fence_number(dev_priv, fence);
2983
2984 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2985
2986 if (enable) {
2987 obj->fence_reg = reg;
2988 fence->obj = obj;
2989 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2990 } else {
2991 obj->fence_reg = I915_FENCE_REG_NONE;
2992 fence->obj = NULL;
2993 list_del_init(&fence->lru_list);
2994 }
2995 obj->fence_dirty = false;
2996 }
2997
2998 static int
2999 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3000 {
3001 if (obj->last_fenced_seqno) {
3002 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3003 if (ret)
3004 return ret;
3005
3006 obj->last_fenced_seqno = 0;
3007 }
3008
3009 obj->fenced_gpu_access = false;
3010 return 0;
3011 }
3012
3013 int
3014 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015 {
3016 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3017 struct drm_i915_fence_reg *fence;
3018 int ret;
3019
3020 ret = i915_gem_object_wait_fence(obj);
3021 if (ret)
3022 return ret;
3023
3024 if (obj->fence_reg == I915_FENCE_REG_NONE)
3025 return 0;
3026
3027 fence = &dev_priv->fence_regs[obj->fence_reg];
3028
3029 i915_gem_object_fence_lost(obj);
3030 i915_gem_object_update_fence(obj, fence, false);
3031
3032 return 0;
3033 }
3034
3035 static struct drm_i915_fence_reg *
3036 i915_find_fence_reg(struct drm_device *dev)
3037 {
3038 struct drm_i915_private *dev_priv = dev->dev_private;
3039 struct drm_i915_fence_reg *reg, *avail;
3040 int i;
3041
3042 /* First try to find a free reg */
3043 avail = NULL;
3044 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3045 reg = &dev_priv->fence_regs[i];
3046 if (!reg->obj)
3047 return reg;
3048
3049 if (!reg->pin_count)
3050 avail = reg;
3051 }
3052
3053 if (avail == NULL)
3054 goto deadlock;
3055
3056 /* None available, try to steal one or wait for a user to finish */
3057 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3058 if (reg->pin_count)
3059 continue;
3060
3061 return reg;
3062 }
3063
3064 deadlock:
3065 /* Wait for completion of pending flips which consume fences */
3066 if (intel_has_pending_fb_unpin(dev))
3067 return ERR_PTR(-EAGAIN);
3068
3069 return ERR_PTR(-EDEADLK);
3070 }
3071
3072 /**
3073 * i915_gem_object_get_fence - set up fencing for an object
3074 * @obj: object to map through a fence reg
3075 *
3076 * When mapping objects through the GTT, userspace wants to be able to write
3077 * to them without having to worry about swizzling if the object is tiled.
3078 * This function walks the fence regs looking for a free one for @obj,
3079 * stealing one if it can't find any.
3080 *
3081 * It then sets up the reg based on the object's properties: address, pitch
3082 * and tiling format.
3083 *
3084 * For an untiled surface, this removes any existing fence.
3085 */
3086 int
3087 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3088 {
3089 struct drm_device *dev = obj->base.dev;
3090 struct drm_i915_private *dev_priv = dev->dev_private;
3091 bool enable = obj->tiling_mode != I915_TILING_NONE;
3092 struct drm_i915_fence_reg *reg;
3093 int ret;
3094
3095 /* Have we updated the tiling parameters upon the object and so
3096 * will need to serialise the write to the associated fence register?
3097 */
3098 if (obj->fence_dirty) {
3099 ret = i915_gem_object_wait_fence(obj);
3100 if (ret)
3101 return ret;
3102 }
3103
3104 /* Just update our place in the LRU if our fence is getting reused. */
3105 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3106 reg = &dev_priv->fence_regs[obj->fence_reg];
3107 if (!obj->fence_dirty) {
3108 list_move_tail(&reg->lru_list,
3109 &dev_priv->mm.fence_list);
3110 return 0;
3111 }
3112 } else if (enable) {
3113 reg = i915_find_fence_reg(dev);
3114 if (IS_ERR(reg))
3115 return PTR_ERR(reg);
3116
3117 if (reg->obj) {
3118 struct drm_i915_gem_object *old = reg->obj;
3119
3120 ret = i915_gem_object_wait_fence(old);
3121 if (ret)
3122 return ret;
3123
3124 i915_gem_object_fence_lost(old);
3125 }
3126 } else
3127 return 0;
3128
3129 i915_gem_object_update_fence(obj, reg, enable);
3130
3131 return 0;
3132 }
3133
3134 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3135 struct drm_mm_node *gtt_space,
3136 unsigned long cache_level)
3137 {
3138 struct drm_mm_node *other;
3139
3140 /* On non-LLC machines we have to be careful when putting differing
3141 * types of snoopable memory together to avoid the prefetcher
3142 * crossing memory domains and dying.
3143 */
3144 if (HAS_LLC(dev))
3145 return true;
3146
3147 if (!drm_mm_node_allocated(gtt_space))
3148 return true;
3149
3150 if (list_empty(&gtt_space->node_list))
3151 return true;
3152
3153 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3154 if (other->allocated && !other->hole_follows && other->color != cache_level)
3155 return false;
3156
3157 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3158 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3159 return false;
3160
3161 return true;
3162 }
3163
3164 static void i915_gem_verify_gtt(struct drm_device *dev)
3165 {
3166 #if WATCH_GTT
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 struct drm_i915_gem_object *obj;
3169 int err = 0;
3170
3171 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3172 if (obj->gtt_space == NULL) {
3173 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3174 err++;
3175 continue;
3176 }
3177
3178 if (obj->cache_level != obj->gtt_space->color) {
3179 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3180 i915_gem_obj_ggtt_offset(obj),
3181 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3182 obj->cache_level,
3183 obj->gtt_space->color);
3184 err++;
3185 continue;
3186 }
3187
3188 if (!i915_gem_valid_gtt_space(dev,
3189 obj->gtt_space,
3190 obj->cache_level)) {
3191 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3192 i915_gem_obj_ggtt_offset(obj),
3193 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3194 obj->cache_level);
3195 err++;
3196 continue;
3197 }
3198 }
3199
3200 WARN_ON(err);
3201 #endif
3202 }
3203
3204 /**
3205 * Finds free space in the GTT aperture and binds the object there.
3206 */
3207 static struct i915_vma *
3208 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3209 struct i915_address_space *vm,
3210 unsigned alignment,
3211 unsigned flags)
3212 {
3213 struct drm_device *dev = obj->base.dev;
3214 struct drm_i915_private *dev_priv = dev->dev_private;
3215 u32 size, fence_size, fence_alignment, unfenced_alignment;
3216 size_t gtt_max =
3217 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3218 struct i915_vma *vma;
3219 int ret;
3220
3221 fence_size = i915_gem_get_gtt_size(dev,
3222 obj->base.size,
3223 obj->tiling_mode);
3224 fence_alignment = i915_gem_get_gtt_alignment(dev,
3225 obj->base.size,
3226 obj->tiling_mode, true);
3227 unfenced_alignment =
3228 i915_gem_get_gtt_alignment(dev,
3229 obj->base.size,
3230 obj->tiling_mode, false);
3231
3232 if (alignment == 0)
3233 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3234 unfenced_alignment;
3235 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3236 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3237 return ERR_PTR(-EINVAL);
3238 }
3239
3240 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3241
3242 /* If the object is bigger than the entire aperture, reject it early
3243 * before evicting everything in a vain attempt to find space.
3244 */
3245 if (obj->base.size > gtt_max) {
3246 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3247 obj->base.size,
3248 flags & PIN_MAPPABLE ? "mappable" : "total",
3249 gtt_max);
3250 return ERR_PTR(-E2BIG);
3251 }
3252
3253 ret = i915_gem_object_get_pages(obj);
3254 if (ret)
3255 return ERR_PTR(ret);
3256
3257 i915_gem_object_pin_pages(obj);
3258
3259 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3260 if (IS_ERR(vma))
3261 goto err_unpin;
3262
3263 search_free:
3264 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3265 size, alignment,
3266 obj->cache_level, 0, gtt_max,
3267 DRM_MM_SEARCH_DEFAULT,
3268 DRM_MM_CREATE_DEFAULT);
3269 if (ret) {
3270 ret = i915_gem_evict_something(dev, vm, size, alignment,
3271 obj->cache_level, flags);
3272 if (ret == 0)
3273 goto search_free;
3274
3275 goto err_free_vma;
3276 }
3277 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3278 obj->cache_level))) {
3279 ret = -EINVAL;
3280 goto err_remove_node;
3281 }
3282
3283 ret = i915_gem_gtt_prepare_object(obj);
3284 if (ret)
3285 goto err_remove_node;
3286
3287 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3288 list_add_tail(&vma->mm_list, &vm->inactive_list);
3289
3290 if (i915_is_ggtt(vm)) {
3291 bool mappable, fenceable;
3292
3293 fenceable = (vma->node.size == fence_size &&
3294 (vma->node.start & (fence_alignment - 1)) == 0);
3295
3296 mappable = (vma->node.start + obj->base.size <=
3297 dev_priv->gtt.mappable_end);
3298
3299 obj->map_and_fenceable = mappable && fenceable;
3300 }
3301
3302 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3303
3304 trace_i915_vma_bind(vma, flags);
3305 vma->bind_vma(vma, obj->cache_level,
3306 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3307
3308 i915_gem_verify_gtt(dev);
3309 return vma;
3310
3311 err_remove_node:
3312 drm_mm_remove_node(&vma->node);
3313 err_free_vma:
3314 i915_gem_vma_destroy(vma);
3315 vma = ERR_PTR(ret);
3316 err_unpin:
3317 i915_gem_object_unpin_pages(obj);
3318 return vma;
3319 }
3320
3321 bool
3322 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3323 bool force)
3324 {
3325 /* If we don't have a page list set up, then we're not pinned
3326 * to GPU, and we can ignore the cache flush because it'll happen
3327 * again at bind time.
3328 */
3329 if (obj->pages == NULL)
3330 return false;
3331
3332 /*
3333 * Stolen memory is always coherent with the GPU as it is explicitly
3334 * marked as wc by the system, or the system is cache-coherent.
3335 */
3336 if (obj->stolen)
3337 return false;
3338
3339 /* If the GPU is snooping the contents of the CPU cache,
3340 * we do not need to manually clear the CPU cache lines. However,
3341 * the caches are only snooped when the render cache is
3342 * flushed/invalidated. As we always have to emit invalidations
3343 * and flushes when moving into and out of the RENDER domain, correct
3344 * snooping behaviour occurs naturally as the result of our domain
3345 * tracking.
3346 */
3347 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3348 return false;
3349
3350 trace_i915_gem_object_clflush(obj);
3351 drm_clflush_sg(obj->pages);
3352
3353 return true;
3354 }
3355
3356 /** Flushes the GTT write domain for the object if it's dirty. */
3357 static void
3358 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3359 {
3360 uint32_t old_write_domain;
3361
3362 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3363 return;
3364
3365 /* No actual flushing is required for the GTT write domain. Writes
3366 * to it immediately go to main memory as far as we know, so there's
3367 * no chipset flush. It also doesn't land in render cache.
3368 *
3369 * However, we do have to enforce the order so that all writes through
3370 * the GTT land before any writes to the device, such as updates to
3371 * the GATT itself.
3372 */
3373 wmb();
3374
3375 old_write_domain = obj->base.write_domain;
3376 obj->base.write_domain = 0;
3377
3378 trace_i915_gem_object_change_domain(obj,
3379 obj->base.read_domains,
3380 old_write_domain);
3381 }
3382
3383 /** Flushes the CPU write domain for the object if it's dirty. */
3384 static void
3385 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3386 bool force)
3387 {
3388 uint32_t old_write_domain;
3389
3390 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3391 return;
3392
3393 if (i915_gem_clflush_object(obj, force))
3394 i915_gem_chipset_flush(obj->base.dev);
3395
3396 old_write_domain = obj->base.write_domain;
3397 obj->base.write_domain = 0;
3398
3399 trace_i915_gem_object_change_domain(obj,
3400 obj->base.read_domains,
3401 old_write_domain);
3402 }
3403
3404 /**
3405 * Moves a single object to the GTT read, and possibly write domain.
3406 *
3407 * This function returns when the move is complete, including waiting on
3408 * flushes to occur.
3409 */
3410 int
3411 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3412 {
3413 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3414 uint32_t old_write_domain, old_read_domains;
3415 int ret;
3416
3417 /* Not valid to be called on unbound objects. */
3418 if (!i915_gem_obj_bound_any(obj))
3419 return -EINVAL;
3420
3421 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3422 return 0;
3423
3424 ret = i915_gem_object_wait_rendering(obj, !write);
3425 if (ret)
3426 return ret;
3427
3428 i915_gem_object_flush_cpu_write_domain(obj, false);
3429
3430 /* Serialise direct access to this object with the barriers for
3431 * coherent writes from the GPU, by effectively invalidating the
3432 * GTT domain upon first access.
3433 */
3434 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3435 mb();
3436
3437 old_write_domain = obj->base.write_domain;
3438 old_read_domains = obj->base.read_domains;
3439
3440 /* It should now be out of any other write domains, and we can update
3441 * the domain values for our changes.
3442 */
3443 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3444 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3445 if (write) {
3446 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3447 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3448 obj->dirty = 1;
3449 }
3450
3451 trace_i915_gem_object_change_domain(obj,
3452 old_read_domains,
3453 old_write_domain);
3454
3455 /* And bump the LRU for this access */
3456 if (i915_gem_object_is_inactive(obj)) {
3457 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3458 if (vma)
3459 list_move_tail(&vma->mm_list,
3460 &dev_priv->gtt.base.inactive_list);
3461
3462 }
3463
3464 return 0;
3465 }
3466
3467 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3468 enum i915_cache_level cache_level)
3469 {
3470 struct drm_device *dev = obj->base.dev;
3471 struct i915_vma *vma, *next;
3472 int ret;
3473
3474 if (obj->cache_level == cache_level)
3475 return 0;
3476
3477 if (i915_gem_obj_is_pinned(obj)) {
3478 DRM_DEBUG("can not change the cache level of pinned objects\n");
3479 return -EBUSY;
3480 }
3481
3482 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3483 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3484 ret = i915_vma_unbind(vma);
3485 if (ret)
3486 return ret;
3487 }
3488 }
3489
3490 if (i915_gem_obj_bound_any(obj)) {
3491 ret = i915_gem_object_finish_gpu(obj);
3492 if (ret)
3493 return ret;
3494
3495 i915_gem_object_finish_gtt(obj);
3496
3497 /* Before SandyBridge, you could not use tiling or fence
3498 * registers with snooped memory, so relinquish any fences
3499 * currently pointing to our region in the aperture.
3500 */
3501 if (INTEL_INFO(dev)->gen < 6) {
3502 ret = i915_gem_object_put_fence(obj);
3503 if (ret)
3504 return ret;
3505 }
3506
3507 list_for_each_entry(vma, &obj->vma_list, vma_link)
3508 if (drm_mm_node_allocated(&vma->node))
3509 vma->bind_vma(vma, cache_level,
3510 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3511 }
3512
3513 list_for_each_entry(vma, &obj->vma_list, vma_link)
3514 vma->node.color = cache_level;
3515 obj->cache_level = cache_level;
3516
3517 if (cpu_write_needs_clflush(obj)) {
3518 u32 old_read_domains, old_write_domain;
3519
3520 /* If we're coming from LLC cached, then we haven't
3521 * actually been tracking whether the data is in the
3522 * CPU cache or not, since we only allow one bit set
3523 * in obj->write_domain and have been skipping the clflushes.
3524 * Just set it to the CPU cache for now.
3525 */
3526 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3527
3528 old_read_domains = obj->base.read_domains;
3529 old_write_domain = obj->base.write_domain;
3530
3531 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3532 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3533
3534 trace_i915_gem_object_change_domain(obj,
3535 old_read_domains,
3536 old_write_domain);
3537 }
3538
3539 i915_gem_verify_gtt(dev);
3540 return 0;
3541 }
3542
3543 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3544 struct drm_file *file)
3545 {
3546 struct drm_i915_gem_caching *args = data;
3547 struct drm_i915_gem_object *obj;
3548 int ret;
3549
3550 ret = i915_mutex_lock_interruptible(dev);
3551 if (ret)
3552 return ret;
3553
3554 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3555 if (&obj->base == NULL) {
3556 ret = -ENOENT;
3557 goto unlock;
3558 }
3559
3560 switch (obj->cache_level) {
3561 case I915_CACHE_LLC:
3562 case I915_CACHE_L3_LLC:
3563 args->caching = I915_CACHING_CACHED;
3564 break;
3565
3566 case I915_CACHE_WT:
3567 args->caching = I915_CACHING_DISPLAY;
3568 break;
3569
3570 default:
3571 args->caching = I915_CACHING_NONE;
3572 break;
3573 }
3574
3575 drm_gem_object_unreference(&obj->base);
3576 unlock:
3577 mutex_unlock(&dev->struct_mutex);
3578 return ret;
3579 }
3580
3581 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3582 struct drm_file *file)
3583 {
3584 struct drm_i915_gem_caching *args = data;
3585 struct drm_i915_gem_object *obj;
3586 enum i915_cache_level level;
3587 int ret;
3588
3589 switch (args->caching) {
3590 case I915_CACHING_NONE:
3591 level = I915_CACHE_NONE;
3592 break;
3593 case I915_CACHING_CACHED:
3594 level = I915_CACHE_LLC;
3595 break;
3596 case I915_CACHING_DISPLAY:
3597 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3598 break;
3599 default:
3600 return -EINVAL;
3601 }
3602
3603 ret = i915_mutex_lock_interruptible(dev);
3604 if (ret)
3605 return ret;
3606
3607 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3608 if (&obj->base == NULL) {
3609 ret = -ENOENT;
3610 goto unlock;
3611 }
3612
3613 ret = i915_gem_object_set_cache_level(obj, level);
3614
3615 drm_gem_object_unreference(&obj->base);
3616 unlock:
3617 mutex_unlock(&dev->struct_mutex);
3618 return ret;
3619 }
3620
3621 static bool is_pin_display(struct drm_i915_gem_object *obj)
3622 {
3623 /* There are 3 sources that pin objects:
3624 * 1. The display engine (scanouts, sprites, cursors);
3625 * 2. Reservations for execbuffer;
3626 * 3. The user.
3627 *
3628 * We can ignore reservations as we hold the struct_mutex and
3629 * are only called outside of the reservation path. The user
3630 * can only increment pin_count once, and so if after
3631 * subtracting the potential reference by the user, any pin_count
3632 * remains, it must be due to another use by the display engine.
3633 */
3634 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3635 }
3636
3637 /*
3638 * Prepare buffer for display plane (scanout, cursors, etc).
3639 * Can be called from an uninterruptible phase (modesetting) and allows
3640 * any flushes to be pipelined (for pageflips).
3641 */
3642 int
3643 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3644 u32 alignment,
3645 struct intel_ring_buffer *pipelined)
3646 {
3647 u32 old_read_domains, old_write_domain;
3648 int ret;
3649
3650 if (pipelined != obj->ring) {
3651 ret = i915_gem_object_sync(obj, pipelined);
3652 if (ret)
3653 return ret;
3654 }
3655
3656 /* Mark the pin_display early so that we account for the
3657 * display coherency whilst setting up the cache domains.
3658 */
3659 obj->pin_display = true;
3660
3661 /* The display engine is not coherent with the LLC cache on gen6. As
3662 * a result, we make sure that the pinning that is about to occur is
3663 * done with uncached PTEs. This is lowest common denominator for all
3664 * chipsets.
3665 *
3666 * However for gen6+, we could do better by using the GFDT bit instead
3667 * of uncaching, which would allow us to flush all the LLC-cached data
3668 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3669 */
3670 ret = i915_gem_object_set_cache_level(obj,
3671 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3672 if (ret)
3673 goto err_unpin_display;
3674
3675 /* As the user may map the buffer once pinned in the display plane
3676 * (e.g. libkms for the bootup splash), we have to ensure that we
3677 * always use map_and_fenceable for all scanout buffers.
3678 */
3679 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3680 if (ret)
3681 goto err_unpin_display;
3682
3683 i915_gem_object_flush_cpu_write_domain(obj, true);
3684
3685 old_write_domain = obj->base.write_domain;
3686 old_read_domains = obj->base.read_domains;
3687
3688 /* It should now be out of any other write domains, and we can update
3689 * the domain values for our changes.
3690 */
3691 obj->base.write_domain = 0;
3692 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3693
3694 trace_i915_gem_object_change_domain(obj,
3695 old_read_domains,
3696 old_write_domain);
3697
3698 return 0;
3699
3700 err_unpin_display:
3701 obj->pin_display = is_pin_display(obj);
3702 return ret;
3703 }
3704
3705 void
3706 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3707 {
3708 i915_gem_object_ggtt_unpin(obj);
3709 obj->pin_display = is_pin_display(obj);
3710 }
3711
3712 int
3713 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3714 {
3715 int ret;
3716
3717 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3718 return 0;
3719
3720 ret = i915_gem_object_wait_rendering(obj, false);
3721 if (ret)
3722 return ret;
3723
3724 /* Ensure that we invalidate the GPU's caches and TLBs. */
3725 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3726 return 0;
3727 }
3728
3729 /**
3730 * Moves a single object to the CPU read, and possibly write domain.
3731 *
3732 * This function returns when the move is complete, including waiting on
3733 * flushes to occur.
3734 */
3735 int
3736 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3737 {
3738 uint32_t old_write_domain, old_read_domains;
3739 int ret;
3740
3741 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3742 return 0;
3743
3744 ret = i915_gem_object_wait_rendering(obj, !write);
3745 if (ret)
3746 return ret;
3747
3748 i915_gem_object_flush_gtt_write_domain(obj);
3749
3750 old_write_domain = obj->base.write_domain;
3751 old_read_domains = obj->base.read_domains;
3752
3753 /* Flush the CPU cache if it's still invalid. */
3754 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3755 i915_gem_clflush_object(obj, false);
3756
3757 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3758 }
3759
3760 /* It should now be out of any other write domains, and we can update
3761 * the domain values for our changes.
3762 */
3763 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3764
3765 /* If we're writing through the CPU, then the GPU read domains will
3766 * need to be invalidated at next use.
3767 */
3768 if (write) {
3769 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3770 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3771 }
3772
3773 trace_i915_gem_object_change_domain(obj,
3774 old_read_domains,
3775 old_write_domain);
3776
3777 return 0;
3778 }
3779
3780 /* Throttle our rendering by waiting until the ring has completed our requests
3781 * emitted over 20 msec ago.
3782 *
3783 * Note that if we were to use the current jiffies each time around the loop,
3784 * we wouldn't escape the function with any frames outstanding if the time to
3785 * render a frame was over 20ms.
3786 *
3787 * This should get us reasonable parallelism between CPU and GPU but also
3788 * relatively low latency when blocking on a particular request to finish.
3789 */
3790 static int
3791 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3792 {
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 struct drm_i915_file_private *file_priv = file->driver_priv;
3795 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3796 struct drm_i915_gem_request *request;
3797 struct intel_ring_buffer *ring = NULL;
3798 unsigned reset_counter;
3799 u32 seqno = 0;
3800 int ret;
3801
3802 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3803 if (ret)
3804 return ret;
3805
3806 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3807 if (ret)
3808 return ret;
3809
3810 spin_lock(&file_priv->mm.lock);
3811 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3812 if (time_after_eq(request->emitted_jiffies, recent_enough))
3813 break;
3814
3815 ring = request->ring;
3816 seqno = request->seqno;
3817 }
3818 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3819 spin_unlock(&file_priv->mm.lock);
3820
3821 if (seqno == 0)
3822 return 0;
3823
3824 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3825 if (ret == 0)
3826 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3827
3828 return ret;
3829 }
3830
3831 int
3832 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3833 struct i915_address_space *vm,
3834 uint32_t alignment,
3835 unsigned flags)
3836 {
3837 struct i915_vma *vma;
3838 int ret;
3839
3840 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3841 return -EINVAL;
3842
3843 vma = i915_gem_obj_to_vma(obj, vm);
3844 if (vma) {
3845 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3846 return -EBUSY;
3847
3848 if ((alignment &&
3849 vma->node.start & (alignment - 1)) ||
3850 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3851 WARN(vma->pin_count,
3852 "bo is already pinned with incorrect alignment:"
3853 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3854 " obj->map_and_fenceable=%d\n",
3855 i915_gem_obj_offset(obj, vm), alignment,
3856 flags & PIN_MAPPABLE,
3857 obj->map_and_fenceable);
3858 ret = i915_vma_unbind(vma);
3859 if (ret)
3860 return ret;
3861
3862 vma = NULL;
3863 }
3864 }
3865
3866 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3867 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3868 if (IS_ERR(vma))
3869 return PTR_ERR(vma);
3870 }
3871
3872 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3873 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3874
3875 vma->pin_count++;
3876 if (flags & PIN_MAPPABLE)
3877 obj->pin_mappable |= true;
3878
3879 return 0;
3880 }
3881
3882 void
3883 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3884 {
3885 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3886
3887 BUG_ON(!vma);
3888 BUG_ON(vma->pin_count == 0);
3889 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3890
3891 if (--vma->pin_count == 0)
3892 obj->pin_mappable = false;
3893 }
3894
3895 int
3896 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3897 struct drm_file *file)
3898 {
3899 struct drm_i915_gem_pin *args = data;
3900 struct drm_i915_gem_object *obj;
3901 int ret;
3902
3903 if (INTEL_INFO(dev)->gen >= 6)
3904 return -ENODEV;
3905
3906 ret = i915_mutex_lock_interruptible(dev);
3907 if (ret)
3908 return ret;
3909
3910 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3911 if (&obj->base == NULL) {
3912 ret = -ENOENT;
3913 goto unlock;
3914 }
3915
3916 if (obj->madv != I915_MADV_WILLNEED) {
3917 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3918 ret = -EFAULT;
3919 goto out;
3920 }
3921
3922 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3923 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3924 args->handle);
3925 ret = -EINVAL;
3926 goto out;
3927 }
3928
3929 if (obj->user_pin_count == ULONG_MAX) {
3930 ret = -EBUSY;
3931 goto out;
3932 }
3933
3934 if (obj->user_pin_count == 0) {
3935 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
3936 if (ret)
3937 goto out;
3938 }
3939
3940 obj->user_pin_count++;
3941 obj->pin_filp = file;
3942
3943 args->offset = i915_gem_obj_ggtt_offset(obj);
3944 out:
3945 drm_gem_object_unreference(&obj->base);
3946 unlock:
3947 mutex_unlock(&dev->struct_mutex);
3948 return ret;
3949 }
3950
3951 int
3952 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3953 struct drm_file *file)
3954 {
3955 struct drm_i915_gem_pin *args = data;
3956 struct drm_i915_gem_object *obj;
3957 int ret;
3958
3959 ret = i915_mutex_lock_interruptible(dev);
3960 if (ret)
3961 return ret;
3962
3963 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3964 if (&obj->base == NULL) {
3965 ret = -ENOENT;
3966 goto unlock;
3967 }
3968
3969 if (obj->pin_filp != file) {
3970 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3971 args->handle);
3972 ret = -EINVAL;
3973 goto out;
3974 }
3975 obj->user_pin_count--;
3976 if (obj->user_pin_count == 0) {
3977 obj->pin_filp = NULL;
3978 i915_gem_object_ggtt_unpin(obj);
3979 }
3980
3981 out:
3982 drm_gem_object_unreference(&obj->base);
3983 unlock:
3984 mutex_unlock(&dev->struct_mutex);
3985 return ret;
3986 }
3987
3988 int
3989 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3990 struct drm_file *file)
3991 {
3992 struct drm_i915_gem_busy *args = data;
3993 struct drm_i915_gem_object *obj;
3994 int ret;
3995
3996 ret = i915_mutex_lock_interruptible(dev);
3997 if (ret)
3998 return ret;
3999
4000 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4001 if (&obj->base == NULL) {
4002 ret = -ENOENT;
4003 goto unlock;
4004 }
4005
4006 /* Count all active objects as busy, even if they are currently not used
4007 * by the gpu. Users of this interface expect objects to eventually
4008 * become non-busy without any further actions, therefore emit any
4009 * necessary flushes here.
4010 */
4011 ret = i915_gem_object_flush_active(obj);
4012
4013 args->busy = obj->active;
4014 if (obj->ring) {
4015 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4016 args->busy |= intel_ring_flag(obj->ring) << 16;
4017 }
4018
4019 drm_gem_object_unreference(&obj->base);
4020 unlock:
4021 mutex_unlock(&dev->struct_mutex);
4022 return ret;
4023 }
4024
4025 int
4026 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4027 struct drm_file *file_priv)
4028 {
4029 return i915_gem_ring_throttle(dev, file_priv);
4030 }
4031
4032 int
4033 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4034 struct drm_file *file_priv)
4035 {
4036 struct drm_i915_gem_madvise *args = data;
4037 struct drm_i915_gem_object *obj;
4038 int ret;
4039
4040 switch (args->madv) {
4041 case I915_MADV_DONTNEED:
4042 case I915_MADV_WILLNEED:
4043 break;
4044 default:
4045 return -EINVAL;
4046 }
4047
4048 ret = i915_mutex_lock_interruptible(dev);
4049 if (ret)
4050 return ret;
4051
4052 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4053 if (&obj->base == NULL) {
4054 ret = -ENOENT;
4055 goto unlock;
4056 }
4057
4058 if (i915_gem_obj_is_pinned(obj)) {
4059 ret = -EINVAL;
4060 goto out;
4061 }
4062
4063 if (obj->madv != __I915_MADV_PURGED)
4064 obj->madv = args->madv;
4065
4066 /* if the object is no longer attached, discard its backing storage */
4067 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4068 i915_gem_object_truncate(obj);
4069
4070 args->retained = obj->madv != __I915_MADV_PURGED;
4071
4072 out:
4073 drm_gem_object_unreference(&obj->base);
4074 unlock:
4075 mutex_unlock(&dev->struct_mutex);
4076 return ret;
4077 }
4078
4079 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4080 const struct drm_i915_gem_object_ops *ops)
4081 {
4082 INIT_LIST_HEAD(&obj->global_list);
4083 INIT_LIST_HEAD(&obj->ring_list);
4084 INIT_LIST_HEAD(&obj->obj_exec_link);
4085 INIT_LIST_HEAD(&obj->vma_list);
4086
4087 obj->ops = ops;
4088
4089 obj->fence_reg = I915_FENCE_REG_NONE;
4090 obj->madv = I915_MADV_WILLNEED;
4091 /* Avoid an unnecessary call to unbind on the first bind. */
4092 obj->map_and_fenceable = true;
4093
4094 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4095 }
4096
4097 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4098 .get_pages = i915_gem_object_get_pages_gtt,
4099 .put_pages = i915_gem_object_put_pages_gtt,
4100 };
4101
4102 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4103 size_t size)
4104 {
4105 struct drm_i915_gem_object *obj;
4106 struct address_space *mapping;
4107 gfp_t mask;
4108
4109 obj = i915_gem_object_alloc(dev);
4110 if (obj == NULL)
4111 return NULL;
4112
4113 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4114 i915_gem_object_free(obj);
4115 return NULL;
4116 }
4117
4118 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4119 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4120 /* 965gm cannot relocate objects above 4GiB. */
4121 mask &= ~__GFP_HIGHMEM;
4122 mask |= __GFP_DMA32;
4123 }
4124
4125 mapping = file_inode(obj->base.filp)->i_mapping;
4126 mapping_set_gfp_mask(mapping, mask);
4127
4128 i915_gem_object_init(obj, &i915_gem_object_ops);
4129
4130 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4131 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4132
4133 if (HAS_LLC(dev)) {
4134 /* On some devices, we can have the GPU use the LLC (the CPU
4135 * cache) for about a 10% performance improvement
4136 * compared to uncached. Graphics requests other than
4137 * display scanout are coherent with the CPU in
4138 * accessing this cache. This means in this mode we
4139 * don't need to clflush on the CPU side, and on the
4140 * GPU side we only need to flush internal caches to
4141 * get data visible to the CPU.
4142 *
4143 * However, we maintain the display planes as UC, and so
4144 * need to rebind when first used as such.
4145 */
4146 obj->cache_level = I915_CACHE_LLC;
4147 } else
4148 obj->cache_level = I915_CACHE_NONE;
4149
4150 trace_i915_gem_object_create(obj);
4151
4152 return obj;
4153 }
4154
4155 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4156 {
4157 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4158 struct drm_device *dev = obj->base.dev;
4159 struct drm_i915_private *dev_priv = dev->dev_private;
4160 struct i915_vma *vma, *next;
4161
4162 intel_runtime_pm_get(dev_priv);
4163
4164 trace_i915_gem_object_destroy(obj);
4165
4166 if (obj->phys_obj)
4167 i915_gem_detach_phys_object(dev, obj);
4168
4169 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4170 int ret;
4171
4172 vma->pin_count = 0;
4173 ret = i915_vma_unbind(vma);
4174 if (WARN_ON(ret == -ERESTARTSYS)) {
4175 bool was_interruptible;
4176
4177 was_interruptible = dev_priv->mm.interruptible;
4178 dev_priv->mm.interruptible = false;
4179
4180 WARN_ON(i915_vma_unbind(vma));
4181
4182 dev_priv->mm.interruptible = was_interruptible;
4183 }
4184 }
4185
4186 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4187 * before progressing. */
4188 if (obj->stolen)
4189 i915_gem_object_unpin_pages(obj);
4190
4191 if (WARN_ON(obj->pages_pin_count))
4192 obj->pages_pin_count = 0;
4193 i915_gem_object_put_pages(obj);
4194 i915_gem_object_free_mmap_offset(obj);
4195 i915_gem_object_release_stolen(obj);
4196
4197 BUG_ON(obj->pages);
4198
4199 if (obj->base.import_attach)
4200 drm_prime_gem_destroy(&obj->base, NULL);
4201
4202 drm_gem_object_release(&obj->base);
4203 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4204
4205 kfree(obj->bit_17);
4206 i915_gem_object_free(obj);
4207
4208 intel_runtime_pm_put(dev_priv);
4209 }
4210
4211 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4212 struct i915_address_space *vm)
4213 {
4214 struct i915_vma *vma;
4215 list_for_each_entry(vma, &obj->vma_list, vma_link)
4216 if (vma->vm == vm)
4217 return vma;
4218
4219 return NULL;
4220 }
4221
4222 void i915_gem_vma_destroy(struct i915_vma *vma)
4223 {
4224 WARN_ON(vma->node.allocated);
4225
4226 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4227 if (!list_empty(&vma->exec_list))
4228 return;
4229
4230 list_del(&vma->vma_link);
4231
4232 kfree(vma);
4233 }
4234
4235 int
4236 i915_gem_suspend(struct drm_device *dev)
4237 {
4238 struct drm_i915_private *dev_priv = dev->dev_private;
4239 int ret = 0;
4240
4241 mutex_lock(&dev->struct_mutex);
4242 if (dev_priv->ums.mm_suspended)
4243 goto err;
4244
4245 ret = i915_gpu_idle(dev);
4246 if (ret)
4247 goto err;
4248
4249 i915_gem_retire_requests(dev);
4250
4251 /* Under UMS, be paranoid and evict. */
4252 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4253 i915_gem_evict_everything(dev);
4254
4255 i915_kernel_lost_context(dev);
4256 i915_gem_cleanup_ringbuffer(dev);
4257
4258 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4259 * We need to replace this with a semaphore, or something.
4260 * And not confound ums.mm_suspended!
4261 */
4262 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4263 DRIVER_MODESET);
4264 mutex_unlock(&dev->struct_mutex);
4265
4266 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4267 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4268 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4269
4270 return 0;
4271
4272 err:
4273 mutex_unlock(&dev->struct_mutex);
4274 return ret;
4275 }
4276
4277 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4278 {
4279 struct drm_device *dev = ring->dev;
4280 struct drm_i915_private *dev_priv = dev->dev_private;
4281 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4282 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4283 int i, ret;
4284
4285 if (!HAS_L3_DPF(dev) || !remap_info)
4286 return 0;
4287
4288 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4289 if (ret)
4290 return ret;
4291
4292 /*
4293 * Note: We do not worry about the concurrent register cacheline hang
4294 * here because no other code should access these registers other than
4295 * at initialization time.
4296 */
4297 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4298 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4299 intel_ring_emit(ring, reg_base + i);
4300 intel_ring_emit(ring, remap_info[i/4]);
4301 }
4302
4303 intel_ring_advance(ring);
4304
4305 return ret;
4306 }
4307
4308 void i915_gem_init_swizzling(struct drm_device *dev)
4309 {
4310 struct drm_i915_private *dev_priv = dev->dev_private;
4311
4312 if (INTEL_INFO(dev)->gen < 5 ||
4313 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4314 return;
4315
4316 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4317 DISP_TILE_SURFACE_SWIZZLING);
4318
4319 if (IS_GEN5(dev))
4320 return;
4321
4322 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4323 if (IS_GEN6(dev))
4324 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4325 else if (IS_GEN7(dev))
4326 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4327 else if (IS_GEN8(dev))
4328 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4329 else
4330 BUG();
4331 }
4332
4333 static bool
4334 intel_enable_blt(struct drm_device *dev)
4335 {
4336 if (!HAS_BLT(dev))
4337 return false;
4338
4339 /* The blitter was dysfunctional on early prototypes */
4340 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4341 DRM_INFO("BLT not supported on this pre-production hardware;"
4342 " graphics performance will be degraded.\n");
4343 return false;
4344 }
4345
4346 return true;
4347 }
4348
4349 static int i915_gem_init_rings(struct drm_device *dev)
4350 {
4351 struct drm_i915_private *dev_priv = dev->dev_private;
4352 int ret;
4353
4354 ret = intel_init_render_ring_buffer(dev);
4355 if (ret)
4356 return ret;
4357
4358 if (HAS_BSD(dev)) {
4359 ret = intel_init_bsd_ring_buffer(dev);
4360 if (ret)
4361 goto cleanup_render_ring;
4362 }
4363
4364 if (intel_enable_blt(dev)) {
4365 ret = intel_init_blt_ring_buffer(dev);
4366 if (ret)
4367 goto cleanup_bsd_ring;
4368 }
4369
4370 if (HAS_VEBOX(dev)) {
4371 ret = intel_init_vebox_ring_buffer(dev);
4372 if (ret)
4373 goto cleanup_blt_ring;
4374 }
4375
4376
4377 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4378 if (ret)
4379 goto cleanup_vebox_ring;
4380
4381 return 0;
4382
4383 cleanup_vebox_ring:
4384 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4385 cleanup_blt_ring:
4386 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4387 cleanup_bsd_ring:
4388 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4389 cleanup_render_ring:
4390 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4391
4392 return ret;
4393 }
4394
4395 int
4396 i915_gem_init_hw(struct drm_device *dev)
4397 {
4398 struct drm_i915_private *dev_priv = dev->dev_private;
4399 int ret, i;
4400
4401 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4402 return -EIO;
4403
4404 if (dev_priv->ellc_size)
4405 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4406
4407 if (IS_HASWELL(dev))
4408 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4409 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4410
4411 if (HAS_PCH_NOP(dev)) {
4412 if (IS_IVYBRIDGE(dev)) {
4413 u32 temp = I915_READ(GEN7_MSG_CTL);
4414 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4415 I915_WRITE(GEN7_MSG_CTL, temp);
4416 } else if (INTEL_INFO(dev)->gen >= 7) {
4417 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4418 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4419 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4420 }
4421 }
4422
4423 i915_gem_init_swizzling(dev);
4424
4425 ret = i915_gem_init_rings(dev);
4426 if (ret)
4427 return ret;
4428
4429 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4430 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4431
4432 /*
4433 * XXX: Contexts should only be initialized once. Doing a switch to the
4434 * default context switch however is something we'd like to do after
4435 * reset or thaw (the latter may not actually be necessary for HW, but
4436 * goes with our code better). Context switching requires rings (for
4437 * the do_switch), but before enabling PPGTT. So don't move this.
4438 */
4439 ret = i915_gem_context_enable(dev_priv);
4440 if (ret) {
4441 DRM_ERROR("Context enable failed %d\n", ret);
4442 goto err_out;
4443 }
4444
4445 return 0;
4446
4447 err_out:
4448 i915_gem_cleanup_ringbuffer(dev);
4449 return ret;
4450 }
4451
4452 int i915_gem_init(struct drm_device *dev)
4453 {
4454 struct drm_i915_private *dev_priv = dev->dev_private;
4455 int ret;
4456
4457 mutex_lock(&dev->struct_mutex);
4458
4459 if (IS_VALLEYVIEW(dev)) {
4460 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4461 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4462 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4463 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4464 }
4465
4466 i915_gem_init_global_gtt(dev);
4467
4468 ret = i915_gem_context_init(dev);
4469 if (ret) {
4470 mutex_unlock(&dev->struct_mutex);
4471 return ret;
4472 }
4473
4474 ret = i915_gem_init_hw(dev);
4475 mutex_unlock(&dev->struct_mutex);
4476 if (ret) {
4477 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4478 i915_gem_context_fini(dev);
4479 drm_mm_takedown(&dev_priv->gtt.base.mm);
4480 return ret;
4481 }
4482
4483 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4484 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4485 dev_priv->dri1.allow_batchbuffer = 1;
4486 return 0;
4487 }
4488
4489 void
4490 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4491 {
4492 struct drm_i915_private *dev_priv = dev->dev_private;
4493 struct intel_ring_buffer *ring;
4494 int i;
4495
4496 for_each_ring(ring, dev_priv, i)
4497 intel_cleanup_ring_buffer(ring);
4498 }
4499
4500 int
4501 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4502 struct drm_file *file_priv)
4503 {
4504 struct drm_i915_private *dev_priv = dev->dev_private;
4505 int ret;
4506
4507 if (drm_core_check_feature(dev, DRIVER_MODESET))
4508 return 0;
4509
4510 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4511 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4512 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4513 }
4514
4515 mutex_lock(&dev->struct_mutex);
4516 dev_priv->ums.mm_suspended = 0;
4517
4518 ret = i915_gem_init_hw(dev);
4519 if (ret != 0) {
4520 mutex_unlock(&dev->struct_mutex);
4521 return ret;
4522 }
4523
4524 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4525 mutex_unlock(&dev->struct_mutex);
4526
4527 ret = drm_irq_install(dev);
4528 if (ret)
4529 goto cleanup_ringbuffer;
4530
4531 return 0;
4532
4533 cleanup_ringbuffer:
4534 mutex_lock(&dev->struct_mutex);
4535 i915_gem_cleanup_ringbuffer(dev);
4536 dev_priv->ums.mm_suspended = 1;
4537 mutex_unlock(&dev->struct_mutex);
4538
4539 return ret;
4540 }
4541
4542 int
4543 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4544 struct drm_file *file_priv)
4545 {
4546 if (drm_core_check_feature(dev, DRIVER_MODESET))
4547 return 0;
4548
4549 drm_irq_uninstall(dev);
4550
4551 return i915_gem_suspend(dev);
4552 }
4553
4554 void
4555 i915_gem_lastclose(struct drm_device *dev)
4556 {
4557 int ret;
4558
4559 if (drm_core_check_feature(dev, DRIVER_MODESET))
4560 return;
4561
4562 ret = i915_gem_suspend(dev);
4563 if (ret)
4564 DRM_ERROR("failed to idle hardware: %d\n", ret);
4565 }
4566
4567 static void
4568 init_ring_lists(struct intel_ring_buffer *ring)
4569 {
4570 INIT_LIST_HEAD(&ring->active_list);
4571 INIT_LIST_HEAD(&ring->request_list);
4572 }
4573
4574 void i915_init_vm(struct drm_i915_private *dev_priv,
4575 struct i915_address_space *vm)
4576 {
4577 if (!i915_is_ggtt(vm))
4578 drm_mm_init(&vm->mm, vm->start, vm->total);
4579 vm->dev = dev_priv->dev;
4580 INIT_LIST_HEAD(&vm->active_list);
4581 INIT_LIST_HEAD(&vm->inactive_list);
4582 INIT_LIST_HEAD(&vm->global_link);
4583 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4584 }
4585
4586 void
4587 i915_gem_load(struct drm_device *dev)
4588 {
4589 struct drm_i915_private *dev_priv = dev->dev_private;
4590 int i;
4591
4592 dev_priv->slab =
4593 kmem_cache_create("i915_gem_object",
4594 sizeof(struct drm_i915_gem_object), 0,
4595 SLAB_HWCACHE_ALIGN,
4596 NULL);
4597
4598 INIT_LIST_HEAD(&dev_priv->vm_list);
4599 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4600
4601 INIT_LIST_HEAD(&dev_priv->context_list);
4602 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4603 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4604 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4605 for (i = 0; i < I915_NUM_RINGS; i++)
4606 init_ring_lists(&dev_priv->ring[i]);
4607 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4608 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4609 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4610 i915_gem_retire_work_handler);
4611 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4612 i915_gem_idle_work_handler);
4613 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4614
4615 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4616 if (IS_GEN3(dev)) {
4617 I915_WRITE(MI_ARB_STATE,
4618 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4619 }
4620
4621 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4622
4623 /* Old X drivers will take 0-2 for front, back, depth buffers */
4624 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4625 dev_priv->fence_reg_start = 3;
4626
4627 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4628 dev_priv->num_fence_regs = 32;
4629 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4630 dev_priv->num_fence_regs = 16;
4631 else
4632 dev_priv->num_fence_regs = 8;
4633
4634 /* Initialize fence registers to zero */
4635 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4636 i915_gem_restore_fences(dev);
4637
4638 i915_gem_detect_bit_6_swizzle(dev);
4639 init_waitqueue_head(&dev_priv->pending_flip_queue);
4640
4641 dev_priv->mm.interruptible = true;
4642
4643 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4644 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4645 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4646 register_shrinker(&dev_priv->mm.inactive_shrinker);
4647 }
4648
4649 /*
4650 * Create a physically contiguous memory object for this object
4651 * e.g. for cursor + overlay regs
4652 */
4653 static int i915_gem_init_phys_object(struct drm_device *dev,
4654 int id, int size, int align)
4655 {
4656 struct drm_i915_private *dev_priv = dev->dev_private;
4657 struct drm_i915_gem_phys_object *phys_obj;
4658 int ret;
4659
4660 if (dev_priv->mm.phys_objs[id - 1] || !size)
4661 return 0;
4662
4663 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4664 if (!phys_obj)
4665 return -ENOMEM;
4666
4667 phys_obj->id = id;
4668
4669 phys_obj->handle = drm_pci_alloc(dev, size, align);
4670 if (!phys_obj->handle) {
4671 ret = -ENOMEM;
4672 goto kfree_obj;
4673 }
4674 #ifdef CONFIG_X86
4675 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4676 #endif
4677
4678 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4679
4680 return 0;
4681 kfree_obj:
4682 kfree(phys_obj);
4683 return ret;
4684 }
4685
4686 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4687 {
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689 struct drm_i915_gem_phys_object *phys_obj;
4690
4691 if (!dev_priv->mm.phys_objs[id - 1])
4692 return;
4693
4694 phys_obj = dev_priv->mm.phys_objs[id - 1];
4695 if (phys_obj->cur_obj) {
4696 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4697 }
4698
4699 #ifdef CONFIG_X86
4700 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4701 #endif
4702 drm_pci_free(dev, phys_obj->handle);
4703 kfree(phys_obj);
4704 dev_priv->mm.phys_objs[id - 1] = NULL;
4705 }
4706
4707 void i915_gem_free_all_phys_object(struct drm_device *dev)
4708 {
4709 int i;
4710
4711 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4712 i915_gem_free_phys_object(dev, i);
4713 }
4714
4715 void i915_gem_detach_phys_object(struct drm_device *dev,
4716 struct drm_i915_gem_object *obj)
4717 {
4718 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4719 char *vaddr;
4720 int i;
4721 int page_count;
4722
4723 if (!obj->phys_obj)
4724 return;
4725 vaddr = obj->phys_obj->handle->vaddr;
4726
4727 page_count = obj->base.size / PAGE_SIZE;
4728 for (i = 0; i < page_count; i++) {
4729 struct page *page = shmem_read_mapping_page(mapping, i);
4730 if (!IS_ERR(page)) {
4731 char *dst = kmap_atomic(page);
4732 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4733 kunmap_atomic(dst);
4734
4735 drm_clflush_pages(&page, 1);
4736
4737 set_page_dirty(page);
4738 mark_page_accessed(page);
4739 page_cache_release(page);
4740 }
4741 }
4742 i915_gem_chipset_flush(dev);
4743
4744 obj->phys_obj->cur_obj = NULL;
4745 obj->phys_obj = NULL;
4746 }
4747
4748 int
4749 i915_gem_attach_phys_object(struct drm_device *dev,
4750 struct drm_i915_gem_object *obj,
4751 int id,
4752 int align)
4753 {
4754 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4755 struct drm_i915_private *dev_priv = dev->dev_private;
4756 int ret = 0;
4757 int page_count;
4758 int i;
4759
4760 if (id > I915_MAX_PHYS_OBJECT)
4761 return -EINVAL;
4762
4763 if (obj->phys_obj) {
4764 if (obj->phys_obj->id == id)
4765 return 0;
4766 i915_gem_detach_phys_object(dev, obj);
4767 }
4768
4769 /* create a new object */
4770 if (!dev_priv->mm.phys_objs[id - 1]) {
4771 ret = i915_gem_init_phys_object(dev, id,
4772 obj->base.size, align);
4773 if (ret) {
4774 DRM_ERROR("failed to init phys object %d size: %zu\n",
4775 id, obj->base.size);
4776 return ret;
4777 }
4778 }
4779
4780 /* bind to the object */
4781 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4782 obj->phys_obj->cur_obj = obj;
4783
4784 page_count = obj->base.size / PAGE_SIZE;
4785
4786 for (i = 0; i < page_count; i++) {
4787 struct page *page;
4788 char *dst, *src;
4789
4790 page = shmem_read_mapping_page(mapping, i);
4791 if (IS_ERR(page))
4792 return PTR_ERR(page);
4793
4794 src = kmap_atomic(page);
4795 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4796 memcpy(dst, src, PAGE_SIZE);
4797 kunmap_atomic(src);
4798
4799 mark_page_accessed(page);
4800 page_cache_release(page);
4801 }
4802
4803 return 0;
4804 }
4805
4806 static int
4807 i915_gem_phys_pwrite(struct drm_device *dev,
4808 struct drm_i915_gem_object *obj,
4809 struct drm_i915_gem_pwrite *args,
4810 struct drm_file *file_priv)
4811 {
4812 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4813 char __user *user_data = to_user_ptr(args->data_ptr);
4814
4815 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4816 unsigned long unwritten;
4817
4818 /* The physical object once assigned is fixed for the lifetime
4819 * of the obj, so we can safely drop the lock and continue
4820 * to access vaddr.
4821 */
4822 mutex_unlock(&dev->struct_mutex);
4823 unwritten = copy_from_user(vaddr, user_data, args->size);
4824 mutex_lock(&dev->struct_mutex);
4825 if (unwritten)
4826 return -EFAULT;
4827 }
4828
4829 i915_gem_chipset_flush(dev);
4830 return 0;
4831 }
4832
4833 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4834 {
4835 struct drm_i915_file_private *file_priv = file->driver_priv;
4836
4837 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4838
4839 /* Clean up our request list when the client is going away, so that
4840 * later retire_requests won't dereference our soon-to-be-gone
4841 * file_priv.
4842 */
4843 spin_lock(&file_priv->mm.lock);
4844 while (!list_empty(&file_priv->mm.request_list)) {
4845 struct drm_i915_gem_request *request;
4846
4847 request = list_first_entry(&file_priv->mm.request_list,
4848 struct drm_i915_gem_request,
4849 client_list);
4850 list_del(&request->client_list);
4851 request->file_priv = NULL;
4852 }
4853 spin_unlock(&file_priv->mm.lock);
4854 }
4855
4856 static void
4857 i915_gem_file_idle_work_handler(struct work_struct *work)
4858 {
4859 struct drm_i915_file_private *file_priv =
4860 container_of(work, typeof(*file_priv), mm.idle_work.work);
4861
4862 atomic_set(&file_priv->rps_wait_boost, false);
4863 }
4864
4865 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4866 {
4867 struct drm_i915_file_private *file_priv;
4868 int ret;
4869
4870 DRM_DEBUG_DRIVER("\n");
4871
4872 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4873 if (!file_priv)
4874 return -ENOMEM;
4875
4876 file->driver_priv = file_priv;
4877 file_priv->dev_priv = dev->dev_private;
4878 file_priv->file = file;
4879
4880 spin_lock_init(&file_priv->mm.lock);
4881 INIT_LIST_HEAD(&file_priv->mm.request_list);
4882 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4883 i915_gem_file_idle_work_handler);
4884
4885 ret = i915_gem_context_open(dev, file);
4886 if (ret)
4887 kfree(file_priv);
4888
4889 return ret;
4890 }
4891
4892 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4893 {
4894 if (!mutex_is_locked(mutex))
4895 return false;
4896
4897 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4898 return mutex->owner == task;
4899 #else
4900 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4901 return false;
4902 #endif
4903 }
4904
4905 static unsigned long
4906 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4907 {
4908 struct drm_i915_private *dev_priv =
4909 container_of(shrinker,
4910 struct drm_i915_private,
4911 mm.inactive_shrinker);
4912 struct drm_device *dev = dev_priv->dev;
4913 struct drm_i915_gem_object *obj;
4914 bool unlock = true;
4915 unsigned long count;
4916
4917 if (!mutex_trylock(&dev->struct_mutex)) {
4918 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4919 return 0;
4920
4921 if (dev_priv->mm.shrinker_no_lock_stealing)
4922 return 0;
4923
4924 unlock = false;
4925 }
4926
4927 count = 0;
4928 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4929 if (obj->pages_pin_count == 0)
4930 count += obj->base.size >> PAGE_SHIFT;
4931
4932 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4933 if (obj->active)
4934 continue;
4935
4936 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4937 count += obj->base.size >> PAGE_SHIFT;
4938 }
4939
4940 if (unlock)
4941 mutex_unlock(&dev->struct_mutex);
4942
4943 return count;
4944 }
4945
4946 /* All the new VM stuff */
4947 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4948 struct i915_address_space *vm)
4949 {
4950 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4951 struct i915_vma *vma;
4952
4953 if (!dev_priv->mm.aliasing_ppgtt ||
4954 vm == &dev_priv->mm.aliasing_ppgtt->base)
4955 vm = &dev_priv->gtt.base;
4956
4957 BUG_ON(list_empty(&o->vma_list));
4958 list_for_each_entry(vma, &o->vma_list, vma_link) {
4959 if (vma->vm == vm)
4960 return vma->node.start;
4961
4962 }
4963 return -1;
4964 }
4965
4966 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4967 struct i915_address_space *vm)
4968 {
4969 struct i915_vma *vma;
4970
4971 list_for_each_entry(vma, &o->vma_list, vma_link)
4972 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4973 return true;
4974
4975 return false;
4976 }
4977
4978 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4979 {
4980 struct i915_vma *vma;
4981
4982 list_for_each_entry(vma, &o->vma_list, vma_link)
4983 if (drm_mm_node_allocated(&vma->node))
4984 return true;
4985
4986 return false;
4987 }
4988
4989 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4990 struct i915_address_space *vm)
4991 {
4992 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4993 struct i915_vma *vma;
4994
4995 if (!dev_priv->mm.aliasing_ppgtt ||
4996 vm == &dev_priv->mm.aliasing_ppgtt->base)
4997 vm = &dev_priv->gtt.base;
4998
4999 BUG_ON(list_empty(&o->vma_list));
5000
5001 list_for_each_entry(vma, &o->vma_list, vma_link)
5002 if (vma->vm == vm)
5003 return vma->node.size;
5004
5005 return 0;
5006 }
5007
5008 static unsigned long
5009 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5010 {
5011 struct drm_i915_private *dev_priv =
5012 container_of(shrinker,
5013 struct drm_i915_private,
5014 mm.inactive_shrinker);
5015 struct drm_device *dev = dev_priv->dev;
5016 unsigned long freed;
5017 bool unlock = true;
5018
5019 if (!mutex_trylock(&dev->struct_mutex)) {
5020 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5021 return SHRINK_STOP;
5022
5023 if (dev_priv->mm.shrinker_no_lock_stealing)
5024 return SHRINK_STOP;
5025
5026 unlock = false;
5027 }
5028
5029 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5030 if (freed < sc->nr_to_scan)
5031 freed += __i915_gem_shrink(dev_priv,
5032 sc->nr_to_scan - freed,
5033 false);
5034 if (freed < sc->nr_to_scan)
5035 freed += i915_gem_shrink_all(dev_priv);
5036
5037 if (unlock)
5038 mutex_unlock(&dev->struct_mutex);
5039
5040 return freed;
5041 }
5042
5043 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5044 {
5045 struct i915_vma *vma;
5046
5047 if (WARN_ON(list_empty(&obj->vma_list)))
5048 return NULL;
5049
5050 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5051 if (vma->vm != obj_to_ggtt(obj))
5052 return NULL;
5053
5054 return vma;
5055 }
This page took 0.138213 seconds and 5 git commands to generate.