Use drm_gem_object_[handle_]unreference_unlocked where possible
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
63 {
64 drm_i915_private_t *dev_priv = dev->dev_private;
65
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
74
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83 {
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
90
91 return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97 {
98 struct drm_i915_gem_get_aperture *args = data;
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
106
107 return 0;
108 }
109
110
111 /**
112 * Creates a new mm object and returns a handle to it.
113 */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117 {
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 drm_gem_object_handle_unreference_unlocked(obj);
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146 {
147 char __iomem *vaddr;
148 int unwritten;
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154 kunmap_atomic(vaddr, KM_USER0);
155
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177 {
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205 {
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254 }
255
256 /**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265 {
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
278 ret = i915_gem_object_get_pages(obj, 0);
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314 fail_put_pages:
315 i915_gem_object_put_pages(obj);
316 fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320 }
321
322 static int
323 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324 {
325 int ret;
326
327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
339 ret = i915_gem_object_get_pages(obj, 0);
340 }
341
342 return ret;
343 }
344
345 /**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351 static int
352 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355 {
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
367 int do_bit17_swizzling;
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
385 num_pages, 1, 0, user_pages, NULL);
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
394 mutex_lock(&dev->struct_mutex);
395
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450 fail_put_pages:
451 i915_gem_object_put_pages(obj);
452 fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454 fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
459 drm_free_large(user_pages);
460
461 return ret;
462 }
463
464 /**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469 int
470 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472 {
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
489 drm_gem_object_unreference_unlocked(obj);
490 return -EINVAL;
491 }
492
493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
501
502 drm_gem_object_unreference_unlocked(obj);
503
504 return ret;
505 }
506
507 /* This is the fast write path which cannot handle
508 * page faults in the source data
509 */
510
511 static inline int
512 fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
516 {
517 char *vaddr_atomic;
518 unsigned long unwritten;
519
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527 }
528
529 /* Here's the write path which can sleep for
530 * page faults
531 */
532
533 static inline int
534 slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
538 {
539 char *src_vaddr, *dst_vaddr;
540 unsigned long unwritten;
541
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
549 if (unwritten)
550 return -EFAULT;
551 return 0;
552 }
553
554 static inline int
555 fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559 {
560 char __iomem *vaddr;
561 unsigned long unwritten;
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
567 kunmap_atomic(vaddr, KM_USER0);
568
569 if (unwritten)
570 return -EFAULT;
571 return 0;
572 }
573
574 /**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
578 static int
579 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
582 {
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
584 drm_i915_private_t *dev_priv = dev->dev_private;
585 ssize_t remain;
586 loff_t offset, page_base;
587 char __user *user_data;
588 int page_offset, page_length;
589 int ret;
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
616 */
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
629 */
630 if (ret)
631 goto fail;
632
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
636 }
637
638 fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643 }
644
645 /**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
652 static int
653 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
656 {
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
666 int ret;
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
691
692 mutex_lock(&dev->struct_mutex);
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742 out_unpin_object:
743 i915_gem_object_unpin(obj);
744 out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746 out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
749 drm_free_large(user_pages);
750
751 return ret;
752 }
753
754 /**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
758 static int
759 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
762 {
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
768 int ret;
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
772
773 mutex_lock(&dev->struct_mutex);
774
775 ret = i915_gem_object_get_pages(obj, 0);
776 if (ret != 0)
777 goto fail_unlock;
778
779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811 fail_put_pages:
812 i915_gem_object_put_pages(obj);
813 fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817 }
818
819 /**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826 static int
827 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830 {
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
842 int do_bit17_swizzling;
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
865 }
866
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
869 mutex_lock(&dev->struct_mutex);
870
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
880 offset = args->offset;
881 obj_priv->dirty = 1;
882
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
923 }
924
925 fail_put_pages:
926 i915_gem_object_put_pages(obj);
927 fail_unlock:
928 mutex_unlock(&dev->struct_mutex);
929 fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
932 drm_free_large(user_pages);
933
934 return ret;
935 }
936
937 /**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942 int
943 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945 {
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
962 drm_gem_object_unreference_unlocked(obj);
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
990
991 #if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996 drm_gem_object_unreference_unlocked(obj);
997
998 return ret;
999 }
1000
1001 /**
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
1004 */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008 {
1009 struct drm_i915_private *dev_priv = dev->dev_private;
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
1012 struct drm_i915_gem_object *obj_priv;
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
1020 /* Only handle setting domains to types used by the CPU. */
1021 if (write_domain & I915_GEM_GPU_DOMAINS)
1022 return -EINVAL;
1023
1024 if (read_domains & I915_GEM_GPU_DOMAINS)
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
1036 obj_priv = obj->driver_private;
1037
1038 mutex_lock(&dev->struct_mutex);
1039
1040 intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044 obj, obj->size, read_domains, write_domain);
1045 #endif
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
1063 } else {
1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1065 }
1066
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space has done writes to this buffer
1074 */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094 #if WATCH_BUF
1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1096 __func__, args->handle, obj, obj->size);
1097 #endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107 }
1108
1109 /**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116 int
1117 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119 {
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
1139 drm_gem_object_unreference_unlocked(obj);
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146 }
1147
1148 /**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
1183 if (ret)
1184 goto unlock;
1185
1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1189 if (ret)
1190 goto unlock;
1191 }
1192
1193 /* Need a new fence register? */
1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1195 ret = i915_gem_object_get_fence_reg(obj);
1196 if (ret)
1197 goto unlock;
1198 }
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1205 unlock:
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
1215 default:
1216 return VM_FAULT_SIGBUS;
1217 }
1218 }
1219
1220 /**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231 static int
1232 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233 {
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
1238 struct drm_local_map *map;
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
1271 ret = -ENOMEM;
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281 out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283 out_free_list:
1284 kfree(list->map);
1285
1286 return ret;
1287 }
1288
1289 /**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
1293 * Preserve the reservation of the mmapping with the DRM core code, but
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
1303 void
1304 i915_gem_release_mmap(struct drm_gem_object *obj)
1305 {
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312 }
1313
1314 static void
1315 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316 {
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
1331 kfree(list->map);
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336 }
1337
1338 /**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345 static uint32_t
1346 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347 {
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372 }
1373
1374 /**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389 int
1390 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392 {
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447 }
1448
1449 void
1450 i915_gem_object_put_pages(struct drm_gem_object *obj)
1451 {
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
1456 BUG_ON(obj_priv->pages_refcount == 0);
1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1458
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
1461
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
1465 if (obj_priv->madv == I915_MADV_DONTNEED)
1466 obj_priv->dirty = 0;
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->pages[i] == NULL)
1470 break;
1471
1472 if (obj_priv->dirty)
1473 set_page_dirty(obj_priv->pages[i]);
1474
1475 if (obj_priv->madv == I915_MADV_WILLNEED)
1476 mark_page_accessed(obj_priv->pages[i]);
1477
1478 page_cache_release(obj_priv->pages[i]);
1479 }
1480 obj_priv->dirty = 0;
1481
1482 drm_free_large(obj_priv->pages);
1483 obj_priv->pages = NULL;
1484 }
1485
1486 static void
1487 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1488 {
1489 struct drm_device *dev = obj->dev;
1490 drm_i915_private_t *dev_priv = dev->dev_private;
1491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493 /* Add a reference if we're newly entering the active list. */
1494 if (!obj_priv->active) {
1495 drm_gem_object_reference(obj);
1496 obj_priv->active = 1;
1497 }
1498 /* Move from whatever list we were on to the tail of execution. */
1499 spin_lock(&dev_priv->mm.active_list_lock);
1500 list_move_tail(&obj_priv->list,
1501 &dev_priv->mm.active_list);
1502 spin_unlock(&dev_priv->mm.active_list_lock);
1503 obj_priv->last_rendering_seqno = seqno;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508 {
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516 }
1517
1518 /* Immediately discard the backing storage */
1519 static void
1520 i915_gem_object_truncate(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523 struct inode *inode;
1524
1525 inode = obj->filp->f_path.dentry->d_inode;
1526 if (inode->i_op->truncate)
1527 inode->i_op->truncate (inode);
1528
1529 obj_priv->madv = __I915_MADV_PURGED;
1530 }
1531
1532 static inline int
1533 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534 {
1535 return obj_priv->madv == I915_MADV_DONTNEED;
1536 }
1537
1538 static void
1539 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540 {
1541 struct drm_device *dev = obj->dev;
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545 i915_verify_inactive(dev, __FILE__, __LINE__);
1546 if (obj_priv->pin_count != 0)
1547 list_del_init(&obj_priv->list);
1548 else
1549 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
1551 obj_priv->last_rendering_seqno = 0;
1552 if (obj_priv->active) {
1553 obj_priv->active = 0;
1554 drm_gem_object_unreference(obj);
1555 }
1556 i915_verify_inactive(dev, __FILE__, __LINE__);
1557 }
1558
1559 /**
1560 * Creates a new sequence number, emitting a write of it to the status page
1561 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1562 *
1563 * Must be called with struct_lock held.
1564 *
1565 * Returned sequence numbers are nonzero on success.
1566 */
1567 uint32_t
1568 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1569 uint32_t flush_domains)
1570 {
1571 drm_i915_private_t *dev_priv = dev->dev_private;
1572 struct drm_i915_file_private *i915_file_priv = NULL;
1573 struct drm_i915_gem_request *request;
1574 uint32_t seqno;
1575 int was_empty;
1576 RING_LOCALS;
1577
1578 if (file_priv != NULL)
1579 i915_file_priv = file_priv->driver_priv;
1580
1581 request = kzalloc(sizeof(*request), GFP_KERNEL);
1582 if (request == NULL)
1583 return 0;
1584
1585 /* Grab the seqno we're going to make this request be, and bump the
1586 * next (skipping 0 so it can be the reserved no-seqno value).
1587 */
1588 seqno = dev_priv->mm.next_gem_seqno;
1589 dev_priv->mm.next_gem_seqno++;
1590 if (dev_priv->mm.next_gem_seqno == 0)
1591 dev_priv->mm.next_gem_seqno++;
1592
1593 BEGIN_LP_RING(4);
1594 OUT_RING(MI_STORE_DWORD_INDEX);
1595 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1596 OUT_RING(seqno);
1597
1598 OUT_RING(MI_USER_INTERRUPT);
1599 ADVANCE_LP_RING();
1600
1601 DRM_DEBUG_DRIVER("%d\n", seqno);
1602
1603 request->seqno = seqno;
1604 request->emitted_jiffies = jiffies;
1605 was_empty = list_empty(&dev_priv->mm.request_list);
1606 list_add_tail(&request->list, &dev_priv->mm.request_list);
1607 if (i915_file_priv) {
1608 list_add_tail(&request->client_list,
1609 &i915_file_priv->mm.request_list);
1610 } else {
1611 INIT_LIST_HEAD(&request->client_list);
1612 }
1613
1614 /* Associate any objects on the flushing list matching the write
1615 * domain we're flushing with our flush.
1616 */
1617 if (flush_domains != 0) {
1618 struct drm_i915_gem_object *obj_priv, *next;
1619
1620 list_for_each_entry_safe(obj_priv, next,
1621 &dev_priv->mm.flushing_list, list) {
1622 struct drm_gem_object *obj = obj_priv->obj;
1623
1624 if ((obj->write_domain & flush_domains) ==
1625 obj->write_domain) {
1626 uint32_t old_write_domain = obj->write_domain;
1627
1628 obj->write_domain = 0;
1629 i915_gem_object_move_to_active(obj, seqno);
1630
1631 trace_i915_gem_object_change_domain(obj,
1632 obj->read_domains,
1633 old_write_domain);
1634 }
1635 }
1636
1637 }
1638
1639 if (!dev_priv->mm.suspended) {
1640 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1641 if (was_empty)
1642 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1643 }
1644 return seqno;
1645 }
1646
1647 /**
1648 * Command execution barrier
1649 *
1650 * Ensures that all commands in the ring are finished
1651 * before signalling the CPU
1652 */
1653 static uint32_t
1654 i915_retire_commands(struct drm_device *dev)
1655 {
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1658 uint32_t flush_domains = 0;
1659 RING_LOCALS;
1660
1661 /* The sampler always gets flushed on i965 (sigh) */
1662 if (IS_I965G(dev))
1663 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1664 BEGIN_LP_RING(2);
1665 OUT_RING(cmd);
1666 OUT_RING(0); /* noop */
1667 ADVANCE_LP_RING();
1668 return flush_domains;
1669 }
1670
1671 /**
1672 * Moves buffers associated only with the given active seqno from the active
1673 * to inactive list, potentially freeing them.
1674 */
1675 static void
1676 i915_gem_retire_request(struct drm_device *dev,
1677 struct drm_i915_gem_request *request)
1678 {
1679 drm_i915_private_t *dev_priv = dev->dev_private;
1680
1681 trace_i915_gem_request_retire(dev, request->seqno);
1682
1683 /* Move any buffers on the active list that are no longer referenced
1684 * by the ringbuffer to the flushing/inactive lists as appropriate.
1685 */
1686 spin_lock(&dev_priv->mm.active_list_lock);
1687 while (!list_empty(&dev_priv->mm.active_list)) {
1688 struct drm_gem_object *obj;
1689 struct drm_i915_gem_object *obj_priv;
1690
1691 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1692 struct drm_i915_gem_object,
1693 list);
1694 obj = obj_priv->obj;
1695
1696 /* If the seqno being retired doesn't match the oldest in the
1697 * list, then the oldest in the list must still be newer than
1698 * this seqno.
1699 */
1700 if (obj_priv->last_rendering_seqno != request->seqno)
1701 goto out;
1702
1703 #if WATCH_LRU
1704 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1705 __func__, request->seqno, obj);
1706 #endif
1707
1708 if (obj->write_domain != 0)
1709 i915_gem_object_move_to_flushing(obj);
1710 else {
1711 /* Take a reference on the object so it won't be
1712 * freed while the spinlock is held. The list
1713 * protection for this spinlock is safe when breaking
1714 * the lock like this since the next thing we do
1715 * is just get the head of the list again.
1716 */
1717 drm_gem_object_reference(obj);
1718 i915_gem_object_move_to_inactive(obj);
1719 spin_unlock(&dev_priv->mm.active_list_lock);
1720 drm_gem_object_unreference(obj);
1721 spin_lock(&dev_priv->mm.active_list_lock);
1722 }
1723 }
1724 out:
1725 spin_unlock(&dev_priv->mm.active_list_lock);
1726 }
1727
1728 /**
1729 * Returns true if seq1 is later than seq2.
1730 */
1731 bool
1732 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1733 {
1734 return (int32_t)(seq1 - seq2) >= 0;
1735 }
1736
1737 uint32_t
1738 i915_get_gem_seqno(struct drm_device *dev)
1739 {
1740 drm_i915_private_t *dev_priv = dev->dev_private;
1741
1742 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1743 }
1744
1745 /**
1746 * This function clears the request list as sequence numbers are passed.
1747 */
1748 void
1749 i915_gem_retire_requests(struct drm_device *dev)
1750 {
1751 drm_i915_private_t *dev_priv = dev->dev_private;
1752 uint32_t seqno;
1753
1754 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1755 return;
1756
1757 seqno = i915_get_gem_seqno(dev);
1758
1759 while (!list_empty(&dev_priv->mm.request_list)) {
1760 struct drm_i915_gem_request *request;
1761 uint32_t retiring_seqno;
1762
1763 request = list_first_entry(&dev_priv->mm.request_list,
1764 struct drm_i915_gem_request,
1765 list);
1766 retiring_seqno = request->seqno;
1767
1768 if (i915_seqno_passed(seqno, retiring_seqno) ||
1769 atomic_read(&dev_priv->mm.wedged)) {
1770 i915_gem_retire_request(dev, request);
1771
1772 list_del(&request->list);
1773 list_del(&request->client_list);
1774 kfree(request);
1775 } else
1776 break;
1777 }
1778
1779 if (unlikely (dev_priv->trace_irq_seqno &&
1780 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1781 i915_user_irq_put(dev);
1782 dev_priv->trace_irq_seqno = 0;
1783 }
1784 }
1785
1786 void
1787 i915_gem_retire_work_handler(struct work_struct *work)
1788 {
1789 drm_i915_private_t *dev_priv;
1790 struct drm_device *dev;
1791
1792 dev_priv = container_of(work, drm_i915_private_t,
1793 mm.retire_work.work);
1794 dev = dev_priv->dev;
1795
1796 mutex_lock(&dev->struct_mutex);
1797 i915_gem_retire_requests(dev);
1798 if (!dev_priv->mm.suspended &&
1799 !list_empty(&dev_priv->mm.request_list))
1800 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1801 mutex_unlock(&dev->struct_mutex);
1802 }
1803
1804 int
1805 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1806 {
1807 drm_i915_private_t *dev_priv = dev->dev_private;
1808 u32 ier;
1809 int ret = 0;
1810
1811 BUG_ON(seqno == 0);
1812
1813 if (atomic_read(&dev_priv->mm.wedged))
1814 return -EIO;
1815
1816 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1817 if (IS_IRONLAKE(dev))
1818 ier = I915_READ(DEIER) | I915_READ(GTIER);
1819 else
1820 ier = I915_READ(IER);
1821 if (!ier) {
1822 DRM_ERROR("something (likely vbetool) disabled "
1823 "interrupts, re-enabling\n");
1824 i915_driver_irq_preinstall(dev);
1825 i915_driver_irq_postinstall(dev);
1826 }
1827
1828 trace_i915_gem_request_wait_begin(dev, seqno);
1829
1830 dev_priv->mm.waiting_gem_seqno = seqno;
1831 i915_user_irq_get(dev);
1832 if (interruptible)
1833 ret = wait_event_interruptible(dev_priv->irq_queue,
1834 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1835 atomic_read(&dev_priv->mm.wedged));
1836 else
1837 wait_event(dev_priv->irq_queue,
1838 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1839 atomic_read(&dev_priv->mm.wedged));
1840
1841 i915_user_irq_put(dev);
1842 dev_priv->mm.waiting_gem_seqno = 0;
1843
1844 trace_i915_gem_request_wait_end(dev, seqno);
1845 }
1846 if (atomic_read(&dev_priv->mm.wedged))
1847 ret = -EIO;
1848
1849 if (ret && ret != -ERESTARTSYS)
1850 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1851 __func__, ret, seqno, i915_get_gem_seqno(dev));
1852
1853 /* Directly dispatch request retiring. While we have the work queue
1854 * to handle this, the waiter on a request often wants an associated
1855 * buffer to have made it to the inactive list, and we would need
1856 * a separate wait queue to handle that.
1857 */
1858 if (ret == 0)
1859 i915_gem_retire_requests(dev);
1860
1861 return ret;
1862 }
1863
1864 /**
1865 * Waits for a sequence number to be signaled, and cleans up the
1866 * request and object lists appropriately for that event.
1867 */
1868 static int
1869 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1870 {
1871 return i915_do_wait_request(dev, seqno, 1);
1872 }
1873
1874 static void
1875 i915_gem_flush(struct drm_device *dev,
1876 uint32_t invalidate_domains,
1877 uint32_t flush_domains)
1878 {
1879 drm_i915_private_t *dev_priv = dev->dev_private;
1880 uint32_t cmd;
1881 RING_LOCALS;
1882
1883 #if WATCH_EXEC
1884 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1885 invalidate_domains, flush_domains);
1886 #endif
1887 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1888 invalidate_domains, flush_domains);
1889
1890 if (flush_domains & I915_GEM_DOMAIN_CPU)
1891 drm_agp_chipset_flush(dev);
1892
1893 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1894 /*
1895 * read/write caches:
1896 *
1897 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1898 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1899 * also flushed at 2d versus 3d pipeline switches.
1900 *
1901 * read-only caches:
1902 *
1903 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1904 * MI_READ_FLUSH is set, and is always flushed on 965.
1905 *
1906 * I915_GEM_DOMAIN_COMMAND may not exist?
1907 *
1908 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1909 * invalidated when MI_EXE_FLUSH is set.
1910 *
1911 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1912 * invalidated with every MI_FLUSH.
1913 *
1914 * TLBs:
1915 *
1916 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1917 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1918 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1919 * are flushed at any MI_FLUSH.
1920 */
1921
1922 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1923 if ((invalidate_domains|flush_domains) &
1924 I915_GEM_DOMAIN_RENDER)
1925 cmd &= ~MI_NO_WRITE_FLUSH;
1926 if (!IS_I965G(dev)) {
1927 /*
1928 * On the 965, the sampler cache always gets flushed
1929 * and this bit is reserved.
1930 */
1931 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1932 cmd |= MI_READ_FLUSH;
1933 }
1934 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1935 cmd |= MI_EXE_FLUSH;
1936
1937 #if WATCH_EXEC
1938 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1939 #endif
1940 BEGIN_LP_RING(2);
1941 OUT_RING(cmd);
1942 OUT_RING(MI_NOOP);
1943 ADVANCE_LP_RING();
1944 }
1945 }
1946
1947 /**
1948 * Ensures that all rendering to the object has completed and the object is
1949 * safe to unbind from the GTT or access from the CPU.
1950 */
1951 static int
1952 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1953 {
1954 struct drm_device *dev = obj->dev;
1955 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1956 int ret;
1957
1958 /* This function only exists to support waiting for existing rendering,
1959 * not for emitting required flushes.
1960 */
1961 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1962
1963 /* If there is rendering queued on the buffer being evicted, wait for
1964 * it.
1965 */
1966 if (obj_priv->active) {
1967 #if WATCH_BUF
1968 DRM_INFO("%s: object %p wait for seqno %08x\n",
1969 __func__, obj, obj_priv->last_rendering_seqno);
1970 #endif
1971 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1972 if (ret != 0)
1973 return ret;
1974 }
1975
1976 return 0;
1977 }
1978
1979 /**
1980 * Unbinds an object from the GTT aperture.
1981 */
1982 int
1983 i915_gem_object_unbind(struct drm_gem_object *obj)
1984 {
1985 struct drm_device *dev = obj->dev;
1986 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1987 int ret = 0;
1988
1989 #if WATCH_BUF
1990 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1991 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1992 #endif
1993 if (obj_priv->gtt_space == NULL)
1994 return 0;
1995
1996 if (obj_priv->pin_count != 0) {
1997 DRM_ERROR("Attempting to unbind pinned buffer\n");
1998 return -EINVAL;
1999 }
2000
2001 /* blow away mappings if mapped through GTT */
2002 i915_gem_release_mmap(obj);
2003
2004 /* Move the object to the CPU domain to ensure that
2005 * any possible CPU writes while it's not in the GTT
2006 * are flushed when we go to remap it. This will
2007 * also ensure that all pending GPU writes are finished
2008 * before we unbind.
2009 */
2010 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2011 if (ret) {
2012 if (ret != -ERESTARTSYS)
2013 DRM_ERROR("set_domain failed: %d\n", ret);
2014 return ret;
2015 }
2016
2017 BUG_ON(obj_priv->active);
2018
2019 /* release the fence reg _after_ flushing */
2020 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2021 i915_gem_clear_fence_reg(obj);
2022
2023 if (obj_priv->agp_mem != NULL) {
2024 drm_unbind_agp(obj_priv->agp_mem);
2025 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2026 obj_priv->agp_mem = NULL;
2027 }
2028
2029 i915_gem_object_put_pages(obj);
2030 BUG_ON(obj_priv->pages_refcount);
2031
2032 if (obj_priv->gtt_space) {
2033 atomic_dec(&dev->gtt_count);
2034 atomic_sub(obj->size, &dev->gtt_memory);
2035
2036 drm_mm_put_block(obj_priv->gtt_space);
2037 obj_priv->gtt_space = NULL;
2038 }
2039
2040 /* Remove ourselves from the LRU list if present. */
2041 if (!list_empty(&obj_priv->list))
2042 list_del_init(&obj_priv->list);
2043
2044 if (i915_gem_object_is_purgeable(obj_priv))
2045 i915_gem_object_truncate(obj);
2046
2047 trace_i915_gem_object_unbind(obj);
2048
2049 return 0;
2050 }
2051
2052 static struct drm_gem_object *
2053 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2054 {
2055 drm_i915_private_t *dev_priv = dev->dev_private;
2056 struct drm_i915_gem_object *obj_priv;
2057 struct drm_gem_object *best = NULL;
2058 struct drm_gem_object *first = NULL;
2059
2060 /* Try to find the smallest clean object */
2061 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2062 struct drm_gem_object *obj = obj_priv->obj;
2063 if (obj->size >= min_size) {
2064 if ((!obj_priv->dirty ||
2065 i915_gem_object_is_purgeable(obj_priv)) &&
2066 (!best || obj->size < best->size)) {
2067 best = obj;
2068 if (best->size == min_size)
2069 return best;
2070 }
2071 if (!first)
2072 first = obj;
2073 }
2074 }
2075
2076 return best ? best : first;
2077 }
2078
2079 static int
2080 i915_gem_evict_everything(struct drm_device *dev)
2081 {
2082 drm_i915_private_t *dev_priv = dev->dev_private;
2083 uint32_t seqno;
2084 int ret;
2085 bool lists_empty;
2086
2087 spin_lock(&dev_priv->mm.active_list_lock);
2088 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2089 list_empty(&dev_priv->mm.flushing_list) &&
2090 list_empty(&dev_priv->mm.active_list));
2091 spin_unlock(&dev_priv->mm.active_list_lock);
2092
2093 if (lists_empty)
2094 return -ENOSPC;
2095
2096 /* Flush everything (on to the inactive lists) and evict */
2097 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2098 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2099 if (seqno == 0)
2100 return -ENOMEM;
2101
2102 ret = i915_wait_request(dev, seqno);
2103 if (ret)
2104 return ret;
2105
2106 ret = i915_gem_evict_from_inactive_list(dev);
2107 if (ret)
2108 return ret;
2109
2110 spin_lock(&dev_priv->mm.active_list_lock);
2111 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2112 list_empty(&dev_priv->mm.flushing_list) &&
2113 list_empty(&dev_priv->mm.active_list));
2114 spin_unlock(&dev_priv->mm.active_list_lock);
2115 BUG_ON(!lists_empty);
2116
2117 return 0;
2118 }
2119
2120 static int
2121 i915_gem_evict_something(struct drm_device *dev, int min_size)
2122 {
2123 drm_i915_private_t *dev_priv = dev->dev_private;
2124 struct drm_gem_object *obj;
2125 int ret;
2126
2127 for (;;) {
2128 i915_gem_retire_requests(dev);
2129
2130 /* If there's an inactive buffer available now, grab it
2131 * and be done.
2132 */
2133 obj = i915_gem_find_inactive_object(dev, min_size);
2134 if (obj) {
2135 struct drm_i915_gem_object *obj_priv;
2136
2137 #if WATCH_LRU
2138 DRM_INFO("%s: evicting %p\n", __func__, obj);
2139 #endif
2140 obj_priv = obj->driver_private;
2141 BUG_ON(obj_priv->pin_count != 0);
2142 BUG_ON(obj_priv->active);
2143
2144 /* Wait on the rendering and unbind the buffer. */
2145 return i915_gem_object_unbind(obj);
2146 }
2147
2148 /* If we didn't get anything, but the ring is still processing
2149 * things, wait for the next to finish and hopefully leave us
2150 * a buffer to evict.
2151 */
2152 if (!list_empty(&dev_priv->mm.request_list)) {
2153 struct drm_i915_gem_request *request;
2154
2155 request = list_first_entry(&dev_priv->mm.request_list,
2156 struct drm_i915_gem_request,
2157 list);
2158
2159 ret = i915_wait_request(dev, request->seqno);
2160 if (ret)
2161 return ret;
2162
2163 continue;
2164 }
2165
2166 /* If we didn't have anything on the request list but there
2167 * are buffers awaiting a flush, emit one and try again.
2168 * When we wait on it, those buffers waiting for that flush
2169 * will get moved to inactive.
2170 */
2171 if (!list_empty(&dev_priv->mm.flushing_list)) {
2172 struct drm_i915_gem_object *obj_priv;
2173
2174 /* Find an object that we can immediately reuse */
2175 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2176 obj = obj_priv->obj;
2177 if (obj->size >= min_size)
2178 break;
2179
2180 obj = NULL;
2181 }
2182
2183 if (obj != NULL) {
2184 uint32_t seqno;
2185
2186 i915_gem_flush(dev,
2187 obj->write_domain,
2188 obj->write_domain);
2189 seqno = i915_add_request(dev, NULL, obj->write_domain);
2190 if (seqno == 0)
2191 return -ENOMEM;
2192
2193 ret = i915_wait_request(dev, seqno);
2194 if (ret)
2195 return ret;
2196
2197 continue;
2198 }
2199 }
2200
2201 /* If we didn't do any of the above, there's no single buffer
2202 * large enough to swap out for the new one, so just evict
2203 * everything and start again. (This should be rare.)
2204 */
2205 if (!list_empty (&dev_priv->mm.inactive_list))
2206 return i915_gem_evict_from_inactive_list(dev);
2207 else
2208 return i915_gem_evict_everything(dev);
2209 }
2210 }
2211
2212 int
2213 i915_gem_object_get_pages(struct drm_gem_object *obj,
2214 gfp_t gfpmask)
2215 {
2216 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2217 int page_count, i;
2218 struct address_space *mapping;
2219 struct inode *inode;
2220 struct page *page;
2221 int ret;
2222
2223 if (obj_priv->pages_refcount++ != 0)
2224 return 0;
2225
2226 /* Get the list of pages out of our struct file. They'll be pinned
2227 * at this point until we release them.
2228 */
2229 page_count = obj->size / PAGE_SIZE;
2230 BUG_ON(obj_priv->pages != NULL);
2231 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2232 if (obj_priv->pages == NULL) {
2233 obj_priv->pages_refcount--;
2234 return -ENOMEM;
2235 }
2236
2237 inode = obj->filp->f_path.dentry->d_inode;
2238 mapping = inode->i_mapping;
2239 for (i = 0; i < page_count; i++) {
2240 page = read_cache_page_gfp(mapping, i,
2241 mapping_gfp_mask (mapping) |
2242 __GFP_COLD |
2243 gfpmask);
2244 if (IS_ERR(page)) {
2245 ret = PTR_ERR(page);
2246 i915_gem_object_put_pages(obj);
2247 return ret;
2248 }
2249 obj_priv->pages[i] = page;
2250 }
2251
2252 if (obj_priv->tiling_mode != I915_TILING_NONE)
2253 i915_gem_object_do_bit_17_swizzle(obj);
2254
2255 return 0;
2256 }
2257
2258 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2259 {
2260 struct drm_gem_object *obj = reg->obj;
2261 struct drm_device *dev = obj->dev;
2262 drm_i915_private_t *dev_priv = dev->dev_private;
2263 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2264 int regnum = obj_priv->fence_reg;
2265 uint64_t val;
2266
2267 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2268 0xfffff000) << 32;
2269 val |= obj_priv->gtt_offset & 0xfffff000;
2270 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2271 if (obj_priv->tiling_mode == I915_TILING_Y)
2272 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2273 val |= I965_FENCE_REG_VALID;
2274
2275 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2276 }
2277
2278 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2279 {
2280 struct drm_gem_object *obj = reg->obj;
2281 struct drm_device *dev = obj->dev;
2282 drm_i915_private_t *dev_priv = dev->dev_private;
2283 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2284 int regnum = obj_priv->fence_reg;
2285 int tile_width;
2286 uint32_t fence_reg, val;
2287 uint32_t pitch_val;
2288
2289 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2290 (obj_priv->gtt_offset & (obj->size - 1))) {
2291 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2292 __func__, obj_priv->gtt_offset, obj->size);
2293 return;
2294 }
2295
2296 if (obj_priv->tiling_mode == I915_TILING_Y &&
2297 HAS_128_BYTE_Y_TILING(dev))
2298 tile_width = 128;
2299 else
2300 tile_width = 512;
2301
2302 /* Note: pitch better be a power of two tile widths */
2303 pitch_val = obj_priv->stride / tile_width;
2304 pitch_val = ffs(pitch_val) - 1;
2305
2306 val = obj_priv->gtt_offset;
2307 if (obj_priv->tiling_mode == I915_TILING_Y)
2308 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2309 val |= I915_FENCE_SIZE_BITS(obj->size);
2310 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2311 val |= I830_FENCE_REG_VALID;
2312
2313 if (regnum < 8)
2314 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2315 else
2316 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2317 I915_WRITE(fence_reg, val);
2318 }
2319
2320 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2321 {
2322 struct drm_gem_object *obj = reg->obj;
2323 struct drm_device *dev = obj->dev;
2324 drm_i915_private_t *dev_priv = dev->dev_private;
2325 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2326 int regnum = obj_priv->fence_reg;
2327 uint32_t val;
2328 uint32_t pitch_val;
2329 uint32_t fence_size_bits;
2330
2331 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2332 (obj_priv->gtt_offset & (obj->size - 1))) {
2333 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2334 __func__, obj_priv->gtt_offset);
2335 return;
2336 }
2337
2338 pitch_val = obj_priv->stride / 128;
2339 pitch_val = ffs(pitch_val) - 1;
2340 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2341
2342 val = obj_priv->gtt_offset;
2343 if (obj_priv->tiling_mode == I915_TILING_Y)
2344 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2345 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2346 WARN_ON(fence_size_bits & ~0x00000f00);
2347 val |= fence_size_bits;
2348 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2349 val |= I830_FENCE_REG_VALID;
2350
2351 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2352 }
2353
2354 /**
2355 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2356 * @obj: object to map through a fence reg
2357 *
2358 * When mapping objects through the GTT, userspace wants to be able to write
2359 * to them without having to worry about swizzling if the object is tiled.
2360 *
2361 * This function walks the fence regs looking for a free one for @obj,
2362 * stealing one if it can't find any.
2363 *
2364 * It then sets up the reg based on the object's properties: address, pitch
2365 * and tiling format.
2366 */
2367 int
2368 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2369 {
2370 struct drm_device *dev = obj->dev;
2371 struct drm_i915_private *dev_priv = dev->dev_private;
2372 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2373 struct drm_i915_fence_reg *reg = NULL;
2374 struct drm_i915_gem_object *old_obj_priv = NULL;
2375 int i, ret, avail;
2376
2377 /* Just update our place in the LRU if our fence is getting used. */
2378 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2379 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2380 return 0;
2381 }
2382
2383 switch (obj_priv->tiling_mode) {
2384 case I915_TILING_NONE:
2385 WARN(1, "allocating a fence for non-tiled object?\n");
2386 break;
2387 case I915_TILING_X:
2388 if (!obj_priv->stride)
2389 return -EINVAL;
2390 WARN((obj_priv->stride & (512 - 1)),
2391 "object 0x%08x is X tiled but has non-512B pitch\n",
2392 obj_priv->gtt_offset);
2393 break;
2394 case I915_TILING_Y:
2395 if (!obj_priv->stride)
2396 return -EINVAL;
2397 WARN((obj_priv->stride & (128 - 1)),
2398 "object 0x%08x is Y tiled but has non-128B pitch\n",
2399 obj_priv->gtt_offset);
2400 break;
2401 }
2402
2403 /* First try to find a free reg */
2404 avail = 0;
2405 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2406 reg = &dev_priv->fence_regs[i];
2407 if (!reg->obj)
2408 break;
2409
2410 old_obj_priv = reg->obj->driver_private;
2411 if (!old_obj_priv->pin_count)
2412 avail++;
2413 }
2414
2415 /* None available, try to steal one or wait for a user to finish */
2416 if (i == dev_priv->num_fence_regs) {
2417 struct drm_gem_object *old_obj = NULL;
2418
2419 if (avail == 0)
2420 return -ENOSPC;
2421
2422 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2423 fence_list) {
2424 old_obj = old_obj_priv->obj;
2425
2426 if (old_obj_priv->pin_count)
2427 continue;
2428
2429 /* Take a reference, as otherwise the wait_rendering
2430 * below may cause the object to get freed out from
2431 * under us.
2432 */
2433 drm_gem_object_reference(old_obj);
2434
2435 /* i915 uses fences for GPU access to tiled buffers */
2436 if (IS_I965G(dev) || !old_obj_priv->active)
2437 break;
2438
2439 /* This brings the object to the head of the LRU if it
2440 * had been written to. The only way this should
2441 * result in us waiting longer than the expected
2442 * optimal amount of time is if there was a
2443 * fence-using buffer later that was read-only.
2444 */
2445 i915_gem_object_flush_gpu_write_domain(old_obj);
2446 ret = i915_gem_object_wait_rendering(old_obj);
2447 if (ret != 0) {
2448 drm_gem_object_unreference(old_obj);
2449 return ret;
2450 }
2451
2452 break;
2453 }
2454
2455 /*
2456 * Zap this virtual mapping so we can set up a fence again
2457 * for this object next time we need it.
2458 */
2459 i915_gem_release_mmap(old_obj);
2460
2461 i = old_obj_priv->fence_reg;
2462 reg = &dev_priv->fence_regs[i];
2463
2464 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2465 list_del_init(&old_obj_priv->fence_list);
2466
2467 drm_gem_object_unreference(old_obj);
2468 }
2469
2470 obj_priv->fence_reg = i;
2471 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2472
2473 reg->obj = obj;
2474
2475 if (IS_I965G(dev))
2476 i965_write_fence_reg(reg);
2477 else if (IS_I9XX(dev))
2478 i915_write_fence_reg(reg);
2479 else
2480 i830_write_fence_reg(reg);
2481
2482 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2483
2484 return 0;
2485 }
2486
2487 /**
2488 * i915_gem_clear_fence_reg - clear out fence register info
2489 * @obj: object to clear
2490 *
2491 * Zeroes out the fence register itself and clears out the associated
2492 * data structures in dev_priv and obj_priv.
2493 */
2494 static void
2495 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2496 {
2497 struct drm_device *dev = obj->dev;
2498 drm_i915_private_t *dev_priv = dev->dev_private;
2499 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2500
2501 if (IS_I965G(dev))
2502 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2503 else {
2504 uint32_t fence_reg;
2505
2506 if (obj_priv->fence_reg < 8)
2507 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2508 else
2509 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2510 8) * 4;
2511
2512 I915_WRITE(fence_reg, 0);
2513 }
2514
2515 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2516 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2517 list_del_init(&obj_priv->fence_list);
2518 }
2519
2520 /**
2521 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2522 * to the buffer to finish, and then resets the fence register.
2523 * @obj: tiled object holding a fence register.
2524 *
2525 * Zeroes out the fence register itself and clears out the associated
2526 * data structures in dev_priv and obj_priv.
2527 */
2528 int
2529 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2530 {
2531 struct drm_device *dev = obj->dev;
2532 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2533
2534 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2535 return 0;
2536
2537 /* On the i915, GPU access to tiled buffers is via a fence,
2538 * therefore we must wait for any outstanding access to complete
2539 * before clearing the fence.
2540 */
2541 if (!IS_I965G(dev)) {
2542 int ret;
2543
2544 i915_gem_object_flush_gpu_write_domain(obj);
2545 i915_gem_object_flush_gtt_write_domain(obj);
2546 ret = i915_gem_object_wait_rendering(obj);
2547 if (ret != 0)
2548 return ret;
2549 }
2550
2551 i915_gem_clear_fence_reg (obj);
2552
2553 return 0;
2554 }
2555
2556 /**
2557 * Finds free space in the GTT aperture and binds the object there.
2558 */
2559 static int
2560 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2561 {
2562 struct drm_device *dev = obj->dev;
2563 drm_i915_private_t *dev_priv = dev->dev_private;
2564 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2565 struct drm_mm_node *free_space;
2566 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2567 int ret;
2568
2569 if (obj_priv->madv != I915_MADV_WILLNEED) {
2570 DRM_ERROR("Attempting to bind a purgeable object\n");
2571 return -EINVAL;
2572 }
2573
2574 if (alignment == 0)
2575 alignment = i915_gem_get_gtt_alignment(obj);
2576 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2577 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2578 return -EINVAL;
2579 }
2580
2581 search_free:
2582 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2583 obj->size, alignment, 0);
2584 if (free_space != NULL) {
2585 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2586 alignment);
2587 if (obj_priv->gtt_space != NULL) {
2588 obj_priv->gtt_space->private = obj;
2589 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2590 }
2591 }
2592 if (obj_priv->gtt_space == NULL) {
2593 /* If the gtt is empty and we're still having trouble
2594 * fitting our object in, we're out of memory.
2595 */
2596 #if WATCH_LRU
2597 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2598 #endif
2599 ret = i915_gem_evict_something(dev, obj->size);
2600 if (ret)
2601 return ret;
2602
2603 goto search_free;
2604 }
2605
2606 #if WATCH_BUF
2607 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2608 obj->size, obj_priv->gtt_offset);
2609 #endif
2610 ret = i915_gem_object_get_pages(obj, gfpmask);
2611 if (ret) {
2612 drm_mm_put_block(obj_priv->gtt_space);
2613 obj_priv->gtt_space = NULL;
2614
2615 if (ret == -ENOMEM) {
2616 /* first try to clear up some space from the GTT */
2617 ret = i915_gem_evict_something(dev, obj->size);
2618 if (ret) {
2619 /* now try to shrink everyone else */
2620 if (gfpmask) {
2621 gfpmask = 0;
2622 goto search_free;
2623 }
2624
2625 return ret;
2626 }
2627
2628 goto search_free;
2629 }
2630
2631 return ret;
2632 }
2633
2634 /* Create an AGP memory structure pointing at our pages, and bind it
2635 * into the GTT.
2636 */
2637 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2638 obj_priv->pages,
2639 obj->size >> PAGE_SHIFT,
2640 obj_priv->gtt_offset,
2641 obj_priv->agp_type);
2642 if (obj_priv->agp_mem == NULL) {
2643 i915_gem_object_put_pages(obj);
2644 drm_mm_put_block(obj_priv->gtt_space);
2645 obj_priv->gtt_space = NULL;
2646
2647 ret = i915_gem_evict_something(dev, obj->size);
2648 if (ret)
2649 return ret;
2650
2651 goto search_free;
2652 }
2653 atomic_inc(&dev->gtt_count);
2654 atomic_add(obj->size, &dev->gtt_memory);
2655
2656 /* Assert that the object is not currently in any GPU domain. As it
2657 * wasn't in the GTT, there shouldn't be any way it could have been in
2658 * a GPU cache
2659 */
2660 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2661 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2662
2663 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2664
2665 return 0;
2666 }
2667
2668 void
2669 i915_gem_clflush_object(struct drm_gem_object *obj)
2670 {
2671 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2672
2673 /* If we don't have a page list set up, then we're not pinned
2674 * to GPU, and we can ignore the cache flush because it'll happen
2675 * again at bind time.
2676 */
2677 if (obj_priv->pages == NULL)
2678 return;
2679
2680 trace_i915_gem_object_clflush(obj);
2681
2682 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2683 }
2684
2685 /** Flushes any GPU write domain for the object if it's dirty. */
2686 static void
2687 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2688 {
2689 struct drm_device *dev = obj->dev;
2690 uint32_t seqno;
2691 uint32_t old_write_domain;
2692
2693 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2694 return;
2695
2696 /* Queue the GPU write cache flushing we need. */
2697 old_write_domain = obj->write_domain;
2698 i915_gem_flush(dev, 0, obj->write_domain);
2699 seqno = i915_add_request(dev, NULL, obj->write_domain);
2700 obj->write_domain = 0;
2701 i915_gem_object_move_to_active(obj, seqno);
2702
2703 trace_i915_gem_object_change_domain(obj,
2704 obj->read_domains,
2705 old_write_domain);
2706 }
2707
2708 /** Flushes the GTT write domain for the object if it's dirty. */
2709 static void
2710 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2711 {
2712 uint32_t old_write_domain;
2713
2714 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2715 return;
2716
2717 /* No actual flushing is required for the GTT write domain. Writes
2718 * to it immediately go to main memory as far as we know, so there's
2719 * no chipset flush. It also doesn't land in render cache.
2720 */
2721 old_write_domain = obj->write_domain;
2722 obj->write_domain = 0;
2723
2724 trace_i915_gem_object_change_domain(obj,
2725 obj->read_domains,
2726 old_write_domain);
2727 }
2728
2729 /** Flushes the CPU write domain for the object if it's dirty. */
2730 static void
2731 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2732 {
2733 struct drm_device *dev = obj->dev;
2734 uint32_t old_write_domain;
2735
2736 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2737 return;
2738
2739 i915_gem_clflush_object(obj);
2740 drm_agp_chipset_flush(dev);
2741 old_write_domain = obj->write_domain;
2742 obj->write_domain = 0;
2743
2744 trace_i915_gem_object_change_domain(obj,
2745 obj->read_domains,
2746 old_write_domain);
2747 }
2748
2749 void
2750 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2751 {
2752 switch (obj->write_domain) {
2753 case I915_GEM_DOMAIN_GTT:
2754 i915_gem_object_flush_gtt_write_domain(obj);
2755 break;
2756 case I915_GEM_DOMAIN_CPU:
2757 i915_gem_object_flush_cpu_write_domain(obj);
2758 break;
2759 default:
2760 i915_gem_object_flush_gpu_write_domain(obj);
2761 break;
2762 }
2763 }
2764
2765 /**
2766 * Moves a single object to the GTT read, and possibly write domain.
2767 *
2768 * This function returns when the move is complete, including waiting on
2769 * flushes to occur.
2770 */
2771 int
2772 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2773 {
2774 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2775 uint32_t old_write_domain, old_read_domains;
2776 int ret;
2777
2778 /* Not valid to be called on unbound objects. */
2779 if (obj_priv->gtt_space == NULL)
2780 return -EINVAL;
2781
2782 i915_gem_object_flush_gpu_write_domain(obj);
2783 /* Wait on any GPU rendering and flushing to occur. */
2784 ret = i915_gem_object_wait_rendering(obj);
2785 if (ret != 0)
2786 return ret;
2787
2788 old_write_domain = obj->write_domain;
2789 old_read_domains = obj->read_domains;
2790
2791 /* If we're writing through the GTT domain, then CPU and GPU caches
2792 * will need to be invalidated at next use.
2793 */
2794 if (write)
2795 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2796
2797 i915_gem_object_flush_cpu_write_domain(obj);
2798
2799 /* It should now be out of any other write domains, and we can update
2800 * the domain values for our changes.
2801 */
2802 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2803 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2804 if (write) {
2805 obj->write_domain = I915_GEM_DOMAIN_GTT;
2806 obj_priv->dirty = 1;
2807 }
2808
2809 trace_i915_gem_object_change_domain(obj,
2810 old_read_domains,
2811 old_write_domain);
2812
2813 return 0;
2814 }
2815
2816 /*
2817 * Prepare buffer for display plane. Use uninterruptible for possible flush
2818 * wait, as in modesetting process we're not supposed to be interrupted.
2819 */
2820 int
2821 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2822 {
2823 struct drm_device *dev = obj->dev;
2824 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2825 uint32_t old_write_domain, old_read_domains;
2826 int ret;
2827
2828 /* Not valid to be called on unbound objects. */
2829 if (obj_priv->gtt_space == NULL)
2830 return -EINVAL;
2831
2832 i915_gem_object_flush_gpu_write_domain(obj);
2833
2834 /* Wait on any GPU rendering and flushing to occur. */
2835 if (obj_priv->active) {
2836 #if WATCH_BUF
2837 DRM_INFO("%s: object %p wait for seqno %08x\n",
2838 __func__, obj, obj_priv->last_rendering_seqno);
2839 #endif
2840 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2841 if (ret != 0)
2842 return ret;
2843 }
2844
2845 old_write_domain = obj->write_domain;
2846 old_read_domains = obj->read_domains;
2847
2848 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2849
2850 i915_gem_object_flush_cpu_write_domain(obj);
2851
2852 /* It should now be out of any other write domains, and we can update
2853 * the domain values for our changes.
2854 */
2855 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2856 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2857 obj->write_domain = I915_GEM_DOMAIN_GTT;
2858 obj_priv->dirty = 1;
2859
2860 trace_i915_gem_object_change_domain(obj,
2861 old_read_domains,
2862 old_write_domain);
2863
2864 return 0;
2865 }
2866
2867 /**
2868 * Moves a single object to the CPU read, and possibly write domain.
2869 *
2870 * This function returns when the move is complete, including waiting on
2871 * flushes to occur.
2872 */
2873 static int
2874 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2875 {
2876 uint32_t old_write_domain, old_read_domains;
2877 int ret;
2878
2879 i915_gem_object_flush_gpu_write_domain(obj);
2880 /* Wait on any GPU rendering and flushing to occur. */
2881 ret = i915_gem_object_wait_rendering(obj);
2882 if (ret != 0)
2883 return ret;
2884
2885 i915_gem_object_flush_gtt_write_domain(obj);
2886
2887 /* If we have a partially-valid cache of the object in the CPU,
2888 * finish invalidating it and free the per-page flags.
2889 */
2890 i915_gem_object_set_to_full_cpu_read_domain(obj);
2891
2892 old_write_domain = obj->write_domain;
2893 old_read_domains = obj->read_domains;
2894
2895 /* Flush the CPU cache if it's still invalid. */
2896 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2897 i915_gem_clflush_object(obj);
2898
2899 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2900 }
2901
2902 /* It should now be out of any other write domains, and we can update
2903 * the domain values for our changes.
2904 */
2905 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2906
2907 /* If we're writing through the CPU, then the GPU read domains will
2908 * need to be invalidated at next use.
2909 */
2910 if (write) {
2911 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2912 obj->write_domain = I915_GEM_DOMAIN_CPU;
2913 }
2914
2915 trace_i915_gem_object_change_domain(obj,
2916 old_read_domains,
2917 old_write_domain);
2918
2919 return 0;
2920 }
2921
2922 /*
2923 * Set the next domain for the specified object. This
2924 * may not actually perform the necessary flushing/invaliding though,
2925 * as that may want to be batched with other set_domain operations
2926 *
2927 * This is (we hope) the only really tricky part of gem. The goal
2928 * is fairly simple -- track which caches hold bits of the object
2929 * and make sure they remain coherent. A few concrete examples may
2930 * help to explain how it works. For shorthand, we use the notation
2931 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2932 * a pair of read and write domain masks.
2933 *
2934 * Case 1: the batch buffer
2935 *
2936 * 1. Allocated
2937 * 2. Written by CPU
2938 * 3. Mapped to GTT
2939 * 4. Read by GPU
2940 * 5. Unmapped from GTT
2941 * 6. Freed
2942 *
2943 * Let's take these a step at a time
2944 *
2945 * 1. Allocated
2946 * Pages allocated from the kernel may still have
2947 * cache contents, so we set them to (CPU, CPU) always.
2948 * 2. Written by CPU (using pwrite)
2949 * The pwrite function calls set_domain (CPU, CPU) and
2950 * this function does nothing (as nothing changes)
2951 * 3. Mapped by GTT
2952 * This function asserts that the object is not
2953 * currently in any GPU-based read or write domains
2954 * 4. Read by GPU
2955 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2956 * As write_domain is zero, this function adds in the
2957 * current read domains (CPU+COMMAND, 0).
2958 * flush_domains is set to CPU.
2959 * invalidate_domains is set to COMMAND
2960 * clflush is run to get data out of the CPU caches
2961 * then i915_dev_set_domain calls i915_gem_flush to
2962 * emit an MI_FLUSH and drm_agp_chipset_flush
2963 * 5. Unmapped from GTT
2964 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2965 * flush_domains and invalidate_domains end up both zero
2966 * so no flushing/invalidating happens
2967 * 6. Freed
2968 * yay, done
2969 *
2970 * Case 2: The shared render buffer
2971 *
2972 * 1. Allocated
2973 * 2. Mapped to GTT
2974 * 3. Read/written by GPU
2975 * 4. set_domain to (CPU,CPU)
2976 * 5. Read/written by CPU
2977 * 6. Read/written by GPU
2978 *
2979 * 1. Allocated
2980 * Same as last example, (CPU, CPU)
2981 * 2. Mapped to GTT
2982 * Nothing changes (assertions find that it is not in the GPU)
2983 * 3. Read/written by GPU
2984 * execbuffer calls set_domain (RENDER, RENDER)
2985 * flush_domains gets CPU
2986 * invalidate_domains gets GPU
2987 * clflush (obj)
2988 * MI_FLUSH and drm_agp_chipset_flush
2989 * 4. set_domain (CPU, CPU)
2990 * flush_domains gets GPU
2991 * invalidate_domains gets CPU
2992 * wait_rendering (obj) to make sure all drawing is complete.
2993 * This will include an MI_FLUSH to get the data from GPU
2994 * to memory
2995 * clflush (obj) to invalidate the CPU cache
2996 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2997 * 5. Read/written by CPU
2998 * cache lines are loaded and dirtied
2999 * 6. Read written by GPU
3000 * Same as last GPU access
3001 *
3002 * Case 3: The constant buffer
3003 *
3004 * 1. Allocated
3005 * 2. Written by CPU
3006 * 3. Read by GPU
3007 * 4. Updated (written) by CPU again
3008 * 5. Read by GPU
3009 *
3010 * 1. Allocated
3011 * (CPU, CPU)
3012 * 2. Written by CPU
3013 * (CPU, CPU)
3014 * 3. Read by GPU
3015 * (CPU+RENDER, 0)
3016 * flush_domains = CPU
3017 * invalidate_domains = RENDER
3018 * clflush (obj)
3019 * MI_FLUSH
3020 * drm_agp_chipset_flush
3021 * 4. Updated (written) by CPU again
3022 * (CPU, CPU)
3023 * flush_domains = 0 (no previous write domain)
3024 * invalidate_domains = 0 (no new read domains)
3025 * 5. Read by GPU
3026 * (CPU+RENDER, 0)
3027 * flush_domains = CPU
3028 * invalidate_domains = RENDER
3029 * clflush (obj)
3030 * MI_FLUSH
3031 * drm_agp_chipset_flush
3032 */
3033 static void
3034 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3035 {
3036 struct drm_device *dev = obj->dev;
3037 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3038 uint32_t invalidate_domains = 0;
3039 uint32_t flush_domains = 0;
3040 uint32_t old_read_domains;
3041
3042 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3043 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3044
3045 intel_mark_busy(dev, obj);
3046
3047 #if WATCH_BUF
3048 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3049 __func__, obj,
3050 obj->read_domains, obj->pending_read_domains,
3051 obj->write_domain, obj->pending_write_domain);
3052 #endif
3053 /*
3054 * If the object isn't moving to a new write domain,
3055 * let the object stay in multiple read domains
3056 */
3057 if (obj->pending_write_domain == 0)
3058 obj->pending_read_domains |= obj->read_domains;
3059 else
3060 obj_priv->dirty = 1;
3061
3062 /*
3063 * Flush the current write domain if
3064 * the new read domains don't match. Invalidate
3065 * any read domains which differ from the old
3066 * write domain
3067 */
3068 if (obj->write_domain &&
3069 obj->write_domain != obj->pending_read_domains) {
3070 flush_domains |= obj->write_domain;
3071 invalidate_domains |=
3072 obj->pending_read_domains & ~obj->write_domain;
3073 }
3074 /*
3075 * Invalidate any read caches which may have
3076 * stale data. That is, any new read domains.
3077 */
3078 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3079 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3080 #if WATCH_BUF
3081 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3082 __func__, flush_domains, invalidate_domains);
3083 #endif
3084 i915_gem_clflush_object(obj);
3085 }
3086
3087 old_read_domains = obj->read_domains;
3088
3089 /* The actual obj->write_domain will be updated with
3090 * pending_write_domain after we emit the accumulated flush for all
3091 * of our domain changes in execbuffers (which clears objects'
3092 * write_domains). So if we have a current write domain that we
3093 * aren't changing, set pending_write_domain to that.
3094 */
3095 if (flush_domains == 0 && obj->pending_write_domain == 0)
3096 obj->pending_write_domain = obj->write_domain;
3097 obj->read_domains = obj->pending_read_domains;
3098
3099 dev->invalidate_domains |= invalidate_domains;
3100 dev->flush_domains |= flush_domains;
3101 #if WATCH_BUF
3102 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3103 __func__,
3104 obj->read_domains, obj->write_domain,
3105 dev->invalidate_domains, dev->flush_domains);
3106 #endif
3107
3108 trace_i915_gem_object_change_domain(obj,
3109 old_read_domains,
3110 obj->write_domain);
3111 }
3112
3113 /**
3114 * Moves the object from a partially CPU read to a full one.
3115 *
3116 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3117 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3118 */
3119 static void
3120 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3121 {
3122 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3123
3124 if (!obj_priv->page_cpu_valid)
3125 return;
3126
3127 /* If we're partially in the CPU read domain, finish moving it in.
3128 */
3129 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3130 int i;
3131
3132 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3133 if (obj_priv->page_cpu_valid[i])
3134 continue;
3135 drm_clflush_pages(obj_priv->pages + i, 1);
3136 }
3137 }
3138
3139 /* Free the page_cpu_valid mappings which are now stale, whether
3140 * or not we've got I915_GEM_DOMAIN_CPU.
3141 */
3142 kfree(obj_priv->page_cpu_valid);
3143 obj_priv->page_cpu_valid = NULL;
3144 }
3145
3146 /**
3147 * Set the CPU read domain on a range of the object.
3148 *
3149 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3150 * not entirely valid. The page_cpu_valid member of the object flags which
3151 * pages have been flushed, and will be respected by
3152 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3153 * of the whole object.
3154 *
3155 * This function returns when the move is complete, including waiting on
3156 * flushes to occur.
3157 */
3158 static int
3159 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3160 uint64_t offset, uint64_t size)
3161 {
3162 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3163 uint32_t old_read_domains;
3164 int i, ret;
3165
3166 if (offset == 0 && size == obj->size)
3167 return i915_gem_object_set_to_cpu_domain(obj, 0);
3168
3169 i915_gem_object_flush_gpu_write_domain(obj);
3170 /* Wait on any GPU rendering and flushing to occur. */
3171 ret = i915_gem_object_wait_rendering(obj);
3172 if (ret != 0)
3173 return ret;
3174 i915_gem_object_flush_gtt_write_domain(obj);
3175
3176 /* If we're already fully in the CPU read domain, we're done. */
3177 if (obj_priv->page_cpu_valid == NULL &&
3178 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3179 return 0;
3180
3181 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3182 * newly adding I915_GEM_DOMAIN_CPU
3183 */
3184 if (obj_priv->page_cpu_valid == NULL) {
3185 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3186 GFP_KERNEL);
3187 if (obj_priv->page_cpu_valid == NULL)
3188 return -ENOMEM;
3189 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3190 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3191
3192 /* Flush the cache on any pages that are still invalid from the CPU's
3193 * perspective.
3194 */
3195 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3196 i++) {
3197 if (obj_priv->page_cpu_valid[i])
3198 continue;
3199
3200 drm_clflush_pages(obj_priv->pages + i, 1);
3201
3202 obj_priv->page_cpu_valid[i] = 1;
3203 }
3204
3205 /* It should now be out of any other write domains, and we can update
3206 * the domain values for our changes.
3207 */
3208 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3209
3210 old_read_domains = obj->read_domains;
3211 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3212
3213 trace_i915_gem_object_change_domain(obj,
3214 old_read_domains,
3215 obj->write_domain);
3216
3217 return 0;
3218 }
3219
3220 /**
3221 * Pin an object to the GTT and evaluate the relocations landing in it.
3222 */
3223 static int
3224 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3225 struct drm_file *file_priv,
3226 struct drm_i915_gem_exec_object2 *entry,
3227 struct drm_i915_gem_relocation_entry *relocs)
3228 {
3229 struct drm_device *dev = obj->dev;
3230 drm_i915_private_t *dev_priv = dev->dev_private;
3231 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3232 int i, ret;
3233 void __iomem *reloc_page;
3234 bool need_fence;
3235
3236 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3237 obj_priv->tiling_mode != I915_TILING_NONE;
3238
3239 /* Check fence reg constraints and rebind if necessary */
3240 if (need_fence && !i915_obj_fenceable(dev, obj))
3241 i915_gem_object_unbind(obj);
3242
3243 /* Choose the GTT offset for our buffer and put it there. */
3244 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3245 if (ret)
3246 return ret;
3247
3248 /*
3249 * Pre-965 chips need a fence register set up in order to
3250 * properly handle blits to/from tiled surfaces.
3251 */
3252 if (need_fence) {
3253 ret = i915_gem_object_get_fence_reg(obj);
3254 if (ret != 0) {
3255 if (ret != -EBUSY && ret != -ERESTARTSYS)
3256 DRM_ERROR("Failure to install fence: %d\n",
3257 ret);
3258 i915_gem_object_unpin(obj);
3259 return ret;
3260 }
3261 }
3262
3263 entry->offset = obj_priv->gtt_offset;
3264
3265 /* Apply the relocations, using the GTT aperture to avoid cache
3266 * flushing requirements.
3267 */
3268 for (i = 0; i < entry->relocation_count; i++) {
3269 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3270 struct drm_gem_object *target_obj;
3271 struct drm_i915_gem_object *target_obj_priv;
3272 uint32_t reloc_val, reloc_offset;
3273 uint32_t __iomem *reloc_entry;
3274
3275 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3276 reloc->target_handle);
3277 if (target_obj == NULL) {
3278 i915_gem_object_unpin(obj);
3279 return -EBADF;
3280 }
3281 target_obj_priv = target_obj->driver_private;
3282
3283 #if WATCH_RELOC
3284 DRM_INFO("%s: obj %p offset %08x target %d "
3285 "read %08x write %08x gtt %08x "
3286 "presumed %08x delta %08x\n",
3287 __func__,
3288 obj,
3289 (int) reloc->offset,
3290 (int) reloc->target_handle,
3291 (int) reloc->read_domains,
3292 (int) reloc->write_domain,
3293 (int) target_obj_priv->gtt_offset,
3294 (int) reloc->presumed_offset,
3295 reloc->delta);
3296 #endif
3297
3298 /* The target buffer should have appeared before us in the
3299 * exec_object list, so it should have a GTT space bound by now.
3300 */
3301 if (target_obj_priv->gtt_space == NULL) {
3302 DRM_ERROR("No GTT space found for object %d\n",
3303 reloc->target_handle);
3304 drm_gem_object_unreference(target_obj);
3305 i915_gem_object_unpin(obj);
3306 return -EINVAL;
3307 }
3308
3309 /* Validate that the target is in a valid r/w GPU domain */
3310 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3311 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3312 DRM_ERROR("reloc with read/write CPU domains: "
3313 "obj %p target %d offset %d "
3314 "read %08x write %08x",
3315 obj, reloc->target_handle,
3316 (int) reloc->offset,
3317 reloc->read_domains,
3318 reloc->write_domain);
3319 drm_gem_object_unreference(target_obj);
3320 i915_gem_object_unpin(obj);
3321 return -EINVAL;
3322 }
3323 if (reloc->write_domain && target_obj->pending_write_domain &&
3324 reloc->write_domain != target_obj->pending_write_domain) {
3325 DRM_ERROR("Write domain conflict: "
3326 "obj %p target %d offset %d "
3327 "new %08x old %08x\n",
3328 obj, reloc->target_handle,
3329 (int) reloc->offset,
3330 reloc->write_domain,
3331 target_obj->pending_write_domain);
3332 drm_gem_object_unreference(target_obj);
3333 i915_gem_object_unpin(obj);
3334 return -EINVAL;
3335 }
3336
3337 target_obj->pending_read_domains |= reloc->read_domains;
3338 target_obj->pending_write_domain |= reloc->write_domain;
3339
3340 /* If the relocation already has the right value in it, no
3341 * more work needs to be done.
3342 */
3343 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3344 drm_gem_object_unreference(target_obj);
3345 continue;
3346 }
3347
3348 /* Check that the relocation address is valid... */
3349 if (reloc->offset > obj->size - 4) {
3350 DRM_ERROR("Relocation beyond object bounds: "
3351 "obj %p target %d offset %d size %d.\n",
3352 obj, reloc->target_handle,
3353 (int) reloc->offset, (int) obj->size);
3354 drm_gem_object_unreference(target_obj);
3355 i915_gem_object_unpin(obj);
3356 return -EINVAL;
3357 }
3358 if (reloc->offset & 3) {
3359 DRM_ERROR("Relocation not 4-byte aligned: "
3360 "obj %p target %d offset %d.\n",
3361 obj, reloc->target_handle,
3362 (int) reloc->offset);
3363 drm_gem_object_unreference(target_obj);
3364 i915_gem_object_unpin(obj);
3365 return -EINVAL;
3366 }
3367
3368 /* and points to somewhere within the target object. */
3369 if (reloc->delta >= target_obj->size) {
3370 DRM_ERROR("Relocation beyond target object bounds: "
3371 "obj %p target %d delta %d size %d.\n",
3372 obj, reloc->target_handle,
3373 (int) reloc->delta, (int) target_obj->size);
3374 drm_gem_object_unreference(target_obj);
3375 i915_gem_object_unpin(obj);
3376 return -EINVAL;
3377 }
3378
3379 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3380 if (ret != 0) {
3381 drm_gem_object_unreference(target_obj);
3382 i915_gem_object_unpin(obj);
3383 return -EINVAL;
3384 }
3385
3386 /* Map the page containing the relocation we're going to
3387 * perform.
3388 */
3389 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3390 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3391 (reloc_offset &
3392 ~(PAGE_SIZE - 1)));
3393 reloc_entry = (uint32_t __iomem *)(reloc_page +
3394 (reloc_offset & (PAGE_SIZE - 1)));
3395 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3396
3397 #if WATCH_BUF
3398 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3399 obj, (unsigned int) reloc->offset,
3400 readl(reloc_entry), reloc_val);
3401 #endif
3402 writel(reloc_val, reloc_entry);
3403 io_mapping_unmap_atomic(reloc_page);
3404
3405 /* The updated presumed offset for this entry will be
3406 * copied back out to the user.
3407 */
3408 reloc->presumed_offset = target_obj_priv->gtt_offset;
3409
3410 drm_gem_object_unreference(target_obj);
3411 }
3412
3413 #if WATCH_BUF
3414 if (0)
3415 i915_gem_dump_object(obj, 128, __func__, ~0);
3416 #endif
3417 return 0;
3418 }
3419
3420 /** Dispatch a batchbuffer to the ring
3421 */
3422 static int
3423 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3424 struct drm_i915_gem_execbuffer2 *exec,
3425 struct drm_clip_rect *cliprects,
3426 uint64_t exec_offset)
3427 {
3428 drm_i915_private_t *dev_priv = dev->dev_private;
3429 int nbox = exec->num_cliprects;
3430 int i = 0, count;
3431 uint32_t exec_start, exec_len;
3432 RING_LOCALS;
3433
3434 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3435 exec_len = (uint32_t) exec->batch_len;
3436
3437 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3438
3439 count = nbox ? nbox : 1;
3440
3441 for (i = 0; i < count; i++) {
3442 if (i < nbox) {
3443 int ret = i915_emit_box(dev, cliprects, i,
3444 exec->DR1, exec->DR4);
3445 if (ret)
3446 return ret;
3447 }
3448
3449 if (IS_I830(dev) || IS_845G(dev)) {
3450 BEGIN_LP_RING(4);
3451 OUT_RING(MI_BATCH_BUFFER);
3452 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3453 OUT_RING(exec_start + exec_len - 4);
3454 OUT_RING(0);
3455 ADVANCE_LP_RING();
3456 } else {
3457 BEGIN_LP_RING(2);
3458 if (IS_I965G(dev)) {
3459 OUT_RING(MI_BATCH_BUFFER_START |
3460 (2 << 6) |
3461 MI_BATCH_NON_SECURE_I965);
3462 OUT_RING(exec_start);
3463 } else {
3464 OUT_RING(MI_BATCH_BUFFER_START |
3465 (2 << 6));
3466 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3467 }
3468 ADVANCE_LP_RING();
3469 }
3470 }
3471
3472 /* XXX breadcrumb */
3473 return 0;
3474 }
3475
3476 /* Throttle our rendering by waiting until the ring has completed our requests
3477 * emitted over 20 msec ago.
3478 *
3479 * Note that if we were to use the current jiffies each time around the loop,
3480 * we wouldn't escape the function with any frames outstanding if the time to
3481 * render a frame was over 20ms.
3482 *
3483 * This should get us reasonable parallelism between CPU and GPU but also
3484 * relatively low latency when blocking on a particular request to finish.
3485 */
3486 static int
3487 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3488 {
3489 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3490 int ret = 0;
3491 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3492
3493 mutex_lock(&dev->struct_mutex);
3494 while (!list_empty(&i915_file_priv->mm.request_list)) {
3495 struct drm_i915_gem_request *request;
3496
3497 request = list_first_entry(&i915_file_priv->mm.request_list,
3498 struct drm_i915_gem_request,
3499 client_list);
3500
3501 if (time_after_eq(request->emitted_jiffies, recent_enough))
3502 break;
3503
3504 ret = i915_wait_request(dev, request->seqno);
3505 if (ret != 0)
3506 break;
3507 }
3508 mutex_unlock(&dev->struct_mutex);
3509
3510 return ret;
3511 }
3512
3513 static int
3514 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3515 uint32_t buffer_count,
3516 struct drm_i915_gem_relocation_entry **relocs)
3517 {
3518 uint32_t reloc_count = 0, reloc_index = 0, i;
3519 int ret;
3520
3521 *relocs = NULL;
3522 for (i = 0; i < buffer_count; i++) {
3523 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3524 return -EINVAL;
3525 reloc_count += exec_list[i].relocation_count;
3526 }
3527
3528 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3529 if (*relocs == NULL) {
3530 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3531 return -ENOMEM;
3532 }
3533
3534 for (i = 0; i < buffer_count; i++) {
3535 struct drm_i915_gem_relocation_entry __user *user_relocs;
3536
3537 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3538
3539 ret = copy_from_user(&(*relocs)[reloc_index],
3540 user_relocs,
3541 exec_list[i].relocation_count *
3542 sizeof(**relocs));
3543 if (ret != 0) {
3544 drm_free_large(*relocs);
3545 *relocs = NULL;
3546 return -EFAULT;
3547 }
3548
3549 reloc_index += exec_list[i].relocation_count;
3550 }
3551
3552 return 0;
3553 }
3554
3555 static int
3556 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3557 uint32_t buffer_count,
3558 struct drm_i915_gem_relocation_entry *relocs)
3559 {
3560 uint32_t reloc_count = 0, i;
3561 int ret = 0;
3562
3563 if (relocs == NULL)
3564 return 0;
3565
3566 for (i = 0; i < buffer_count; i++) {
3567 struct drm_i915_gem_relocation_entry __user *user_relocs;
3568 int unwritten;
3569
3570 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3571
3572 unwritten = copy_to_user(user_relocs,
3573 &relocs[reloc_count],
3574 exec_list[i].relocation_count *
3575 sizeof(*relocs));
3576
3577 if (unwritten) {
3578 ret = -EFAULT;
3579 goto err;
3580 }
3581
3582 reloc_count += exec_list[i].relocation_count;
3583 }
3584
3585 err:
3586 drm_free_large(relocs);
3587
3588 return ret;
3589 }
3590
3591 static int
3592 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3593 uint64_t exec_offset)
3594 {
3595 uint32_t exec_start, exec_len;
3596
3597 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3598 exec_len = (uint32_t) exec->batch_len;
3599
3600 if ((exec_start | exec_len) & 0x7)
3601 return -EINVAL;
3602
3603 if (!exec_start)
3604 return -EINVAL;
3605
3606 return 0;
3607 }
3608
3609 static int
3610 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3611 struct drm_gem_object **object_list,
3612 int count)
3613 {
3614 drm_i915_private_t *dev_priv = dev->dev_private;
3615 struct drm_i915_gem_object *obj_priv;
3616 DEFINE_WAIT(wait);
3617 int i, ret = 0;
3618
3619 for (;;) {
3620 prepare_to_wait(&dev_priv->pending_flip_queue,
3621 &wait, TASK_INTERRUPTIBLE);
3622 for (i = 0; i < count; i++) {
3623 obj_priv = object_list[i]->driver_private;
3624 if (atomic_read(&obj_priv->pending_flip) > 0)
3625 break;
3626 }
3627 if (i == count)
3628 break;
3629
3630 if (!signal_pending(current)) {
3631 mutex_unlock(&dev->struct_mutex);
3632 schedule();
3633 mutex_lock(&dev->struct_mutex);
3634 continue;
3635 }
3636 ret = -ERESTARTSYS;
3637 break;
3638 }
3639 finish_wait(&dev_priv->pending_flip_queue, &wait);
3640
3641 return ret;
3642 }
3643
3644 int
3645 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3646 struct drm_file *file_priv,
3647 struct drm_i915_gem_execbuffer2 *args,
3648 struct drm_i915_gem_exec_object2 *exec_list)
3649 {
3650 drm_i915_private_t *dev_priv = dev->dev_private;
3651 struct drm_gem_object **object_list = NULL;
3652 struct drm_gem_object *batch_obj;
3653 struct drm_i915_gem_object *obj_priv;
3654 struct drm_clip_rect *cliprects = NULL;
3655 struct drm_i915_gem_relocation_entry *relocs = NULL;
3656 int ret = 0, ret2, i, pinned = 0;
3657 uint64_t exec_offset;
3658 uint32_t seqno, flush_domains, reloc_index;
3659 int pin_tries, flips;
3660
3661 #if WATCH_EXEC
3662 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3663 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3664 #endif
3665
3666 if (args->buffer_count < 1) {
3667 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3668 return -EINVAL;
3669 }
3670 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3671 if (object_list == NULL) {
3672 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3673 args->buffer_count);
3674 ret = -ENOMEM;
3675 goto pre_mutex_err;
3676 }
3677
3678 if (args->num_cliprects != 0) {
3679 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3680 GFP_KERNEL);
3681 if (cliprects == NULL)
3682 goto pre_mutex_err;
3683
3684 ret = copy_from_user(cliprects,
3685 (struct drm_clip_rect __user *)
3686 (uintptr_t) args->cliprects_ptr,
3687 sizeof(*cliprects) * args->num_cliprects);
3688 if (ret != 0) {
3689 DRM_ERROR("copy %d cliprects failed: %d\n",
3690 args->num_cliprects, ret);
3691 goto pre_mutex_err;
3692 }
3693 }
3694
3695 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3696 &relocs);
3697 if (ret != 0)
3698 goto pre_mutex_err;
3699
3700 mutex_lock(&dev->struct_mutex);
3701
3702 i915_verify_inactive(dev, __FILE__, __LINE__);
3703
3704 if (atomic_read(&dev_priv->mm.wedged)) {
3705 mutex_unlock(&dev->struct_mutex);
3706 ret = -EIO;
3707 goto pre_mutex_err;
3708 }
3709
3710 if (dev_priv->mm.suspended) {
3711 mutex_unlock(&dev->struct_mutex);
3712 ret = -EBUSY;
3713 goto pre_mutex_err;
3714 }
3715
3716 /* Look up object handles */
3717 flips = 0;
3718 for (i = 0; i < args->buffer_count; i++) {
3719 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3720 exec_list[i].handle);
3721 if (object_list[i] == NULL) {
3722 DRM_ERROR("Invalid object handle %d at index %d\n",
3723 exec_list[i].handle, i);
3724 /* prevent error path from reading uninitialized data */
3725 args->buffer_count = i + 1;
3726 ret = -EBADF;
3727 goto err;
3728 }
3729
3730 obj_priv = object_list[i]->driver_private;
3731 if (obj_priv->in_execbuffer) {
3732 DRM_ERROR("Object %p appears more than once in object list\n",
3733 object_list[i]);
3734 /* prevent error path from reading uninitialized data */
3735 args->buffer_count = i + 1;
3736 ret = -EBADF;
3737 goto err;
3738 }
3739 obj_priv->in_execbuffer = true;
3740 flips += atomic_read(&obj_priv->pending_flip);
3741 }
3742
3743 if (flips > 0) {
3744 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3745 args->buffer_count);
3746 if (ret)
3747 goto err;
3748 }
3749
3750 /* Pin and relocate */
3751 for (pin_tries = 0; ; pin_tries++) {
3752 ret = 0;
3753 reloc_index = 0;
3754
3755 for (i = 0; i < args->buffer_count; i++) {
3756 object_list[i]->pending_read_domains = 0;
3757 object_list[i]->pending_write_domain = 0;
3758 ret = i915_gem_object_pin_and_relocate(object_list[i],
3759 file_priv,
3760 &exec_list[i],
3761 &relocs[reloc_index]);
3762 if (ret)
3763 break;
3764 pinned = i + 1;
3765 reloc_index += exec_list[i].relocation_count;
3766 }
3767 /* success */
3768 if (ret == 0)
3769 break;
3770
3771 /* error other than GTT full, or we've already tried again */
3772 if (ret != -ENOSPC || pin_tries >= 1) {
3773 if (ret != -ERESTARTSYS) {
3774 unsigned long long total_size = 0;
3775 for (i = 0; i < args->buffer_count; i++)
3776 total_size += object_list[i]->size;
3777 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3778 pinned+1, args->buffer_count,
3779 total_size, ret);
3780 DRM_ERROR("%d objects [%d pinned], "
3781 "%d object bytes [%d pinned], "
3782 "%d/%d gtt bytes\n",
3783 atomic_read(&dev->object_count),
3784 atomic_read(&dev->pin_count),
3785 atomic_read(&dev->object_memory),
3786 atomic_read(&dev->pin_memory),
3787 atomic_read(&dev->gtt_memory),
3788 dev->gtt_total);
3789 }
3790 goto err;
3791 }
3792
3793 /* unpin all of our buffers */
3794 for (i = 0; i < pinned; i++)
3795 i915_gem_object_unpin(object_list[i]);
3796 pinned = 0;
3797
3798 /* evict everyone we can from the aperture */
3799 ret = i915_gem_evict_everything(dev);
3800 if (ret && ret != -ENOSPC)
3801 goto err;
3802 }
3803
3804 /* Set the pending read domains for the batch buffer to COMMAND */
3805 batch_obj = object_list[args->buffer_count-1];
3806 if (batch_obj->pending_write_domain) {
3807 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3808 ret = -EINVAL;
3809 goto err;
3810 }
3811 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3812
3813 /* Sanity check the batch buffer, prior to moving objects */
3814 exec_offset = exec_list[args->buffer_count - 1].offset;
3815 ret = i915_gem_check_execbuffer (args, exec_offset);
3816 if (ret != 0) {
3817 DRM_ERROR("execbuf with invalid offset/length\n");
3818 goto err;
3819 }
3820
3821 i915_verify_inactive(dev, __FILE__, __LINE__);
3822
3823 /* Zero the global flush/invalidate flags. These
3824 * will be modified as new domains are computed
3825 * for each object
3826 */
3827 dev->invalidate_domains = 0;
3828 dev->flush_domains = 0;
3829
3830 for (i = 0; i < args->buffer_count; i++) {
3831 struct drm_gem_object *obj = object_list[i];
3832
3833 /* Compute new gpu domains and update invalidate/flush */
3834 i915_gem_object_set_to_gpu_domain(obj);
3835 }
3836
3837 i915_verify_inactive(dev, __FILE__, __LINE__);
3838
3839 if (dev->invalidate_domains | dev->flush_domains) {
3840 #if WATCH_EXEC
3841 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3842 __func__,
3843 dev->invalidate_domains,
3844 dev->flush_domains);
3845 #endif
3846 i915_gem_flush(dev,
3847 dev->invalidate_domains,
3848 dev->flush_domains);
3849 if (dev->flush_domains)
3850 (void)i915_add_request(dev, file_priv,
3851 dev->flush_domains);
3852 }
3853
3854 for (i = 0; i < args->buffer_count; i++) {
3855 struct drm_gem_object *obj = object_list[i];
3856 uint32_t old_write_domain = obj->write_domain;
3857
3858 obj->write_domain = obj->pending_write_domain;
3859 trace_i915_gem_object_change_domain(obj,
3860 obj->read_domains,
3861 old_write_domain);
3862 }
3863
3864 i915_verify_inactive(dev, __FILE__, __LINE__);
3865
3866 #if WATCH_COHERENCY
3867 for (i = 0; i < args->buffer_count; i++) {
3868 i915_gem_object_check_coherency(object_list[i],
3869 exec_list[i].handle);
3870 }
3871 #endif
3872
3873 #if WATCH_EXEC
3874 i915_gem_dump_object(batch_obj,
3875 args->batch_len,
3876 __func__,
3877 ~0);
3878 #endif
3879
3880 /* Exec the batchbuffer */
3881 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3882 if (ret) {
3883 DRM_ERROR("dispatch failed %d\n", ret);
3884 goto err;
3885 }
3886
3887 /*
3888 * Ensure that the commands in the batch buffer are
3889 * finished before the interrupt fires
3890 */
3891 flush_domains = i915_retire_commands(dev);
3892
3893 i915_verify_inactive(dev, __FILE__, __LINE__);
3894
3895 /*
3896 * Get a seqno representing the execution of the current buffer,
3897 * which we can wait on. We would like to mitigate these interrupts,
3898 * likely by only creating seqnos occasionally (so that we have
3899 * *some* interrupts representing completion of buffers that we can
3900 * wait on when trying to clear up gtt space).
3901 */
3902 seqno = i915_add_request(dev, file_priv, flush_domains);
3903 BUG_ON(seqno == 0);
3904 for (i = 0; i < args->buffer_count; i++) {
3905 struct drm_gem_object *obj = object_list[i];
3906
3907 i915_gem_object_move_to_active(obj, seqno);
3908 #if WATCH_LRU
3909 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3910 #endif
3911 }
3912 #if WATCH_LRU
3913 i915_dump_lru(dev, __func__);
3914 #endif
3915
3916 i915_verify_inactive(dev, __FILE__, __LINE__);
3917
3918 err:
3919 for (i = 0; i < pinned; i++)
3920 i915_gem_object_unpin(object_list[i]);
3921
3922 for (i = 0; i < args->buffer_count; i++) {
3923 if (object_list[i]) {
3924 obj_priv = object_list[i]->driver_private;
3925 obj_priv->in_execbuffer = false;
3926 }
3927 drm_gem_object_unreference(object_list[i]);
3928 }
3929
3930 mutex_unlock(&dev->struct_mutex);
3931
3932 pre_mutex_err:
3933 /* Copy the updated relocations out regardless of current error
3934 * state. Failure to update the relocs would mean that the next
3935 * time userland calls execbuf, it would do so with presumed offset
3936 * state that didn't match the actual object state.
3937 */
3938 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3939 relocs);
3940 if (ret2 != 0) {
3941 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3942
3943 if (ret == 0)
3944 ret = ret2;
3945 }
3946
3947 drm_free_large(object_list);
3948 kfree(cliprects);
3949
3950 return ret;
3951 }
3952
3953 /*
3954 * Legacy execbuffer just creates an exec2 list from the original exec object
3955 * list array and passes it to the real function.
3956 */
3957 int
3958 i915_gem_execbuffer(struct drm_device *dev, void *data,
3959 struct drm_file *file_priv)
3960 {
3961 struct drm_i915_gem_execbuffer *args = data;
3962 struct drm_i915_gem_execbuffer2 exec2;
3963 struct drm_i915_gem_exec_object *exec_list = NULL;
3964 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3965 int ret, i;
3966
3967 #if WATCH_EXEC
3968 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3969 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3970 #endif
3971
3972 if (args->buffer_count < 1) {
3973 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3974 return -EINVAL;
3975 }
3976
3977 /* Copy in the exec list from userland */
3978 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3979 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3980 if (exec_list == NULL || exec2_list == NULL) {
3981 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3982 args->buffer_count);
3983 drm_free_large(exec_list);
3984 drm_free_large(exec2_list);
3985 return -ENOMEM;
3986 }
3987 ret = copy_from_user(exec_list,
3988 (struct drm_i915_relocation_entry __user *)
3989 (uintptr_t) args->buffers_ptr,
3990 sizeof(*exec_list) * args->buffer_count);
3991 if (ret != 0) {
3992 DRM_ERROR("copy %d exec entries failed %d\n",
3993 args->buffer_count, ret);
3994 drm_free_large(exec_list);
3995 drm_free_large(exec2_list);
3996 return -EFAULT;
3997 }
3998
3999 for (i = 0; i < args->buffer_count; i++) {
4000 exec2_list[i].handle = exec_list[i].handle;
4001 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4002 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4003 exec2_list[i].alignment = exec_list[i].alignment;
4004 exec2_list[i].offset = exec_list[i].offset;
4005 if (!IS_I965G(dev))
4006 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4007 else
4008 exec2_list[i].flags = 0;
4009 }
4010
4011 exec2.buffers_ptr = args->buffers_ptr;
4012 exec2.buffer_count = args->buffer_count;
4013 exec2.batch_start_offset = args->batch_start_offset;
4014 exec2.batch_len = args->batch_len;
4015 exec2.DR1 = args->DR1;
4016 exec2.DR4 = args->DR4;
4017 exec2.num_cliprects = args->num_cliprects;
4018 exec2.cliprects_ptr = args->cliprects_ptr;
4019 exec2.flags = 0;
4020
4021 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4022 if (!ret) {
4023 /* Copy the new buffer offsets back to the user's exec list. */
4024 for (i = 0; i < args->buffer_count; i++)
4025 exec_list[i].offset = exec2_list[i].offset;
4026 /* ... and back out to userspace */
4027 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4028 (uintptr_t) args->buffers_ptr,
4029 exec_list,
4030 sizeof(*exec_list) * args->buffer_count);
4031 if (ret) {
4032 ret = -EFAULT;
4033 DRM_ERROR("failed to copy %d exec entries "
4034 "back to user (%d)\n",
4035 args->buffer_count, ret);
4036 }
4037 }
4038
4039 drm_free_large(exec_list);
4040 drm_free_large(exec2_list);
4041 return ret;
4042 }
4043
4044 int
4045 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4046 struct drm_file *file_priv)
4047 {
4048 struct drm_i915_gem_execbuffer2 *args = data;
4049 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4050 int ret;
4051
4052 #if WATCH_EXEC
4053 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4054 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4055 #endif
4056
4057 if (args->buffer_count < 1) {
4058 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4059 return -EINVAL;
4060 }
4061
4062 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4063 if (exec2_list == NULL) {
4064 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4065 args->buffer_count);
4066 return -ENOMEM;
4067 }
4068 ret = copy_from_user(exec2_list,
4069 (struct drm_i915_relocation_entry __user *)
4070 (uintptr_t) args->buffers_ptr,
4071 sizeof(*exec2_list) * args->buffer_count);
4072 if (ret != 0) {
4073 DRM_ERROR("copy %d exec entries failed %d\n",
4074 args->buffer_count, ret);
4075 drm_free_large(exec2_list);
4076 return -EFAULT;
4077 }
4078
4079 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4080 if (!ret) {
4081 /* Copy the new buffer offsets back to the user's exec list. */
4082 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4083 (uintptr_t) args->buffers_ptr,
4084 exec2_list,
4085 sizeof(*exec2_list) * args->buffer_count);
4086 if (ret) {
4087 ret = -EFAULT;
4088 DRM_ERROR("failed to copy %d exec entries "
4089 "back to user (%d)\n",
4090 args->buffer_count, ret);
4091 }
4092 }
4093
4094 drm_free_large(exec2_list);
4095 return ret;
4096 }
4097
4098 int
4099 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4100 {
4101 struct drm_device *dev = obj->dev;
4102 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4103 int ret;
4104
4105 i915_verify_inactive(dev, __FILE__, __LINE__);
4106 if (obj_priv->gtt_space == NULL) {
4107 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4108 if (ret)
4109 return ret;
4110 }
4111
4112 obj_priv->pin_count++;
4113
4114 /* If the object is not active and not pending a flush,
4115 * remove it from the inactive list
4116 */
4117 if (obj_priv->pin_count == 1) {
4118 atomic_inc(&dev->pin_count);
4119 atomic_add(obj->size, &dev->pin_memory);
4120 if (!obj_priv->active &&
4121 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4122 !list_empty(&obj_priv->list))
4123 list_del_init(&obj_priv->list);
4124 }
4125 i915_verify_inactive(dev, __FILE__, __LINE__);
4126
4127 return 0;
4128 }
4129
4130 void
4131 i915_gem_object_unpin(struct drm_gem_object *obj)
4132 {
4133 struct drm_device *dev = obj->dev;
4134 drm_i915_private_t *dev_priv = dev->dev_private;
4135 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4136
4137 i915_verify_inactive(dev, __FILE__, __LINE__);
4138 obj_priv->pin_count--;
4139 BUG_ON(obj_priv->pin_count < 0);
4140 BUG_ON(obj_priv->gtt_space == NULL);
4141
4142 /* If the object is no longer pinned, and is
4143 * neither active nor being flushed, then stick it on
4144 * the inactive list
4145 */
4146 if (obj_priv->pin_count == 0) {
4147 if (!obj_priv->active &&
4148 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4149 list_move_tail(&obj_priv->list,
4150 &dev_priv->mm.inactive_list);
4151 atomic_dec(&dev->pin_count);
4152 atomic_sub(obj->size, &dev->pin_memory);
4153 }
4154 i915_verify_inactive(dev, __FILE__, __LINE__);
4155 }
4156
4157 int
4158 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4159 struct drm_file *file_priv)
4160 {
4161 struct drm_i915_gem_pin *args = data;
4162 struct drm_gem_object *obj;
4163 struct drm_i915_gem_object *obj_priv;
4164 int ret;
4165
4166 mutex_lock(&dev->struct_mutex);
4167
4168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4169 if (obj == NULL) {
4170 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4171 args->handle);
4172 mutex_unlock(&dev->struct_mutex);
4173 return -EBADF;
4174 }
4175 obj_priv = obj->driver_private;
4176
4177 if (obj_priv->madv != I915_MADV_WILLNEED) {
4178 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4179 drm_gem_object_unreference(obj);
4180 mutex_unlock(&dev->struct_mutex);
4181 return -EINVAL;
4182 }
4183
4184 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4185 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4186 args->handle);
4187 drm_gem_object_unreference(obj);
4188 mutex_unlock(&dev->struct_mutex);
4189 return -EINVAL;
4190 }
4191
4192 obj_priv->user_pin_count++;
4193 obj_priv->pin_filp = file_priv;
4194 if (obj_priv->user_pin_count == 1) {
4195 ret = i915_gem_object_pin(obj, args->alignment);
4196 if (ret != 0) {
4197 drm_gem_object_unreference(obj);
4198 mutex_unlock(&dev->struct_mutex);
4199 return ret;
4200 }
4201 }
4202
4203 /* XXX - flush the CPU caches for pinned objects
4204 * as the X server doesn't manage domains yet
4205 */
4206 i915_gem_object_flush_cpu_write_domain(obj);
4207 args->offset = obj_priv->gtt_offset;
4208 drm_gem_object_unreference(obj);
4209 mutex_unlock(&dev->struct_mutex);
4210
4211 return 0;
4212 }
4213
4214 int
4215 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4216 struct drm_file *file_priv)
4217 {
4218 struct drm_i915_gem_pin *args = data;
4219 struct drm_gem_object *obj;
4220 struct drm_i915_gem_object *obj_priv;
4221
4222 mutex_lock(&dev->struct_mutex);
4223
4224 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4225 if (obj == NULL) {
4226 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4227 args->handle);
4228 mutex_unlock(&dev->struct_mutex);
4229 return -EBADF;
4230 }
4231
4232 obj_priv = obj->driver_private;
4233 if (obj_priv->pin_filp != file_priv) {
4234 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4235 args->handle);
4236 drm_gem_object_unreference(obj);
4237 mutex_unlock(&dev->struct_mutex);
4238 return -EINVAL;
4239 }
4240 obj_priv->user_pin_count--;
4241 if (obj_priv->user_pin_count == 0) {
4242 obj_priv->pin_filp = NULL;
4243 i915_gem_object_unpin(obj);
4244 }
4245
4246 drm_gem_object_unreference(obj);
4247 mutex_unlock(&dev->struct_mutex);
4248 return 0;
4249 }
4250
4251 int
4252 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4253 struct drm_file *file_priv)
4254 {
4255 struct drm_i915_gem_busy *args = data;
4256 struct drm_gem_object *obj;
4257 struct drm_i915_gem_object *obj_priv;
4258
4259 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4260 if (obj == NULL) {
4261 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4262 args->handle);
4263 return -EBADF;
4264 }
4265
4266 mutex_lock(&dev->struct_mutex);
4267 /* Update the active list for the hardware's current position.
4268 * Otherwise this only updates on a delayed timer or when irqs are
4269 * actually unmasked, and our working set ends up being larger than
4270 * required.
4271 */
4272 i915_gem_retire_requests(dev);
4273
4274 obj_priv = obj->driver_private;
4275 /* Don't count being on the flushing list against the object being
4276 * done. Otherwise, a buffer left on the flushing list but not getting
4277 * flushed (because nobody's flushing that domain) won't ever return
4278 * unbusy and get reused by libdrm's bo cache. The other expected
4279 * consumer of this interface, OpenGL's occlusion queries, also specs
4280 * that the objects get unbusy "eventually" without any interference.
4281 */
4282 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4283
4284 drm_gem_object_unreference(obj);
4285 mutex_unlock(&dev->struct_mutex);
4286 return 0;
4287 }
4288
4289 int
4290 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4291 struct drm_file *file_priv)
4292 {
4293 return i915_gem_ring_throttle(dev, file_priv);
4294 }
4295
4296 int
4297 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4298 struct drm_file *file_priv)
4299 {
4300 struct drm_i915_gem_madvise *args = data;
4301 struct drm_gem_object *obj;
4302 struct drm_i915_gem_object *obj_priv;
4303
4304 switch (args->madv) {
4305 case I915_MADV_DONTNEED:
4306 case I915_MADV_WILLNEED:
4307 break;
4308 default:
4309 return -EINVAL;
4310 }
4311
4312 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4313 if (obj == NULL) {
4314 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4315 args->handle);
4316 return -EBADF;
4317 }
4318
4319 mutex_lock(&dev->struct_mutex);
4320 obj_priv = obj->driver_private;
4321
4322 if (obj_priv->pin_count) {
4323 drm_gem_object_unreference(obj);
4324 mutex_unlock(&dev->struct_mutex);
4325
4326 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4327 return -EINVAL;
4328 }
4329
4330 if (obj_priv->madv != __I915_MADV_PURGED)
4331 obj_priv->madv = args->madv;
4332
4333 /* if the object is no longer bound, discard its backing storage */
4334 if (i915_gem_object_is_purgeable(obj_priv) &&
4335 obj_priv->gtt_space == NULL)
4336 i915_gem_object_truncate(obj);
4337
4338 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4339
4340 drm_gem_object_unreference(obj);
4341 mutex_unlock(&dev->struct_mutex);
4342
4343 return 0;
4344 }
4345
4346 int i915_gem_init_object(struct drm_gem_object *obj)
4347 {
4348 struct drm_i915_gem_object *obj_priv;
4349
4350 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4351 if (obj_priv == NULL)
4352 return -ENOMEM;
4353
4354 /*
4355 * We've just allocated pages from the kernel,
4356 * so they've just been written by the CPU with
4357 * zeros. They'll need to be clflushed before we
4358 * use them with the GPU.
4359 */
4360 obj->write_domain = I915_GEM_DOMAIN_CPU;
4361 obj->read_domains = I915_GEM_DOMAIN_CPU;
4362
4363 obj_priv->agp_type = AGP_USER_MEMORY;
4364
4365 obj->driver_private = obj_priv;
4366 obj_priv->obj = obj;
4367 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4368 INIT_LIST_HEAD(&obj_priv->list);
4369 INIT_LIST_HEAD(&obj_priv->fence_list);
4370 obj_priv->madv = I915_MADV_WILLNEED;
4371
4372 trace_i915_gem_object_create(obj);
4373
4374 return 0;
4375 }
4376
4377 void i915_gem_free_object(struct drm_gem_object *obj)
4378 {
4379 struct drm_device *dev = obj->dev;
4380 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4381
4382 trace_i915_gem_object_destroy(obj);
4383
4384 while (obj_priv->pin_count > 0)
4385 i915_gem_object_unpin(obj);
4386
4387 if (obj_priv->phys_obj)
4388 i915_gem_detach_phys_object(dev, obj);
4389
4390 i915_gem_object_unbind(obj);
4391
4392 if (obj_priv->mmap_offset)
4393 i915_gem_free_mmap_offset(obj);
4394
4395 kfree(obj_priv->page_cpu_valid);
4396 kfree(obj_priv->bit_17);
4397 kfree(obj->driver_private);
4398 }
4399
4400 /** Unbinds all inactive objects. */
4401 static int
4402 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4403 {
4404 drm_i915_private_t *dev_priv = dev->dev_private;
4405
4406 while (!list_empty(&dev_priv->mm.inactive_list)) {
4407 struct drm_gem_object *obj;
4408 int ret;
4409
4410 obj = list_first_entry(&dev_priv->mm.inactive_list,
4411 struct drm_i915_gem_object,
4412 list)->obj;
4413
4414 ret = i915_gem_object_unbind(obj);
4415 if (ret != 0) {
4416 DRM_ERROR("Error unbinding object: %d\n", ret);
4417 return ret;
4418 }
4419 }
4420
4421 return 0;
4422 }
4423
4424 int
4425 i915_gem_idle(struct drm_device *dev)
4426 {
4427 drm_i915_private_t *dev_priv = dev->dev_private;
4428 uint32_t seqno, cur_seqno, last_seqno;
4429 int stuck, ret;
4430
4431 mutex_lock(&dev->struct_mutex);
4432
4433 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4434 mutex_unlock(&dev->struct_mutex);
4435 return 0;
4436 }
4437
4438 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4439 * We need to replace this with a semaphore, or something.
4440 */
4441 dev_priv->mm.suspended = 1;
4442 del_timer(&dev_priv->hangcheck_timer);
4443
4444 /* Cancel the retire work handler, wait for it to finish if running
4445 */
4446 mutex_unlock(&dev->struct_mutex);
4447 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4448 mutex_lock(&dev->struct_mutex);
4449
4450 i915_kernel_lost_context(dev);
4451
4452 /* Flush the GPU along with all non-CPU write domains
4453 */
4454 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4455 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4456
4457 if (seqno == 0) {
4458 mutex_unlock(&dev->struct_mutex);
4459 return -ENOMEM;
4460 }
4461
4462 dev_priv->mm.waiting_gem_seqno = seqno;
4463 last_seqno = 0;
4464 stuck = 0;
4465 for (;;) {
4466 cur_seqno = i915_get_gem_seqno(dev);
4467 if (i915_seqno_passed(cur_seqno, seqno))
4468 break;
4469 if (last_seqno == cur_seqno) {
4470 if (stuck++ > 100) {
4471 DRM_ERROR("hardware wedged\n");
4472 atomic_set(&dev_priv->mm.wedged, 1);
4473 DRM_WAKEUP(&dev_priv->irq_queue);
4474 break;
4475 }
4476 }
4477 msleep(10);
4478 last_seqno = cur_seqno;
4479 }
4480 dev_priv->mm.waiting_gem_seqno = 0;
4481
4482 i915_gem_retire_requests(dev);
4483
4484 spin_lock(&dev_priv->mm.active_list_lock);
4485 if (!atomic_read(&dev_priv->mm.wedged)) {
4486 /* Active and flushing should now be empty as we've
4487 * waited for a sequence higher than any pending execbuffer
4488 */
4489 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4490 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4491 /* Request should now be empty as we've also waited
4492 * for the last request in the list
4493 */
4494 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4495 }
4496
4497 /* Empty the active and flushing lists to inactive. If there's
4498 * anything left at this point, it means that we're wedged and
4499 * nothing good's going to happen by leaving them there. So strip
4500 * the GPU domains and just stuff them onto inactive.
4501 */
4502 while (!list_empty(&dev_priv->mm.active_list)) {
4503 struct drm_gem_object *obj;
4504 uint32_t old_write_domain;
4505
4506 obj = list_first_entry(&dev_priv->mm.active_list,
4507 struct drm_i915_gem_object,
4508 list)->obj;
4509 old_write_domain = obj->write_domain;
4510 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4511 i915_gem_object_move_to_inactive(obj);
4512
4513 trace_i915_gem_object_change_domain(obj,
4514 obj->read_domains,
4515 old_write_domain);
4516 }
4517 spin_unlock(&dev_priv->mm.active_list_lock);
4518
4519 while (!list_empty(&dev_priv->mm.flushing_list)) {
4520 struct drm_gem_object *obj;
4521 uint32_t old_write_domain;
4522
4523 obj = list_first_entry(&dev_priv->mm.flushing_list,
4524 struct drm_i915_gem_object,
4525 list)->obj;
4526 old_write_domain = obj->write_domain;
4527 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4528 i915_gem_object_move_to_inactive(obj);
4529
4530 trace_i915_gem_object_change_domain(obj,
4531 obj->read_domains,
4532 old_write_domain);
4533 }
4534
4535
4536 /* Move all inactive buffers out of the GTT. */
4537 ret = i915_gem_evict_from_inactive_list(dev);
4538 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4539 if (ret) {
4540 mutex_unlock(&dev->struct_mutex);
4541 return ret;
4542 }
4543
4544 i915_gem_cleanup_ringbuffer(dev);
4545 mutex_unlock(&dev->struct_mutex);
4546
4547 return 0;
4548 }
4549
4550 static int
4551 i915_gem_init_hws(struct drm_device *dev)
4552 {
4553 drm_i915_private_t *dev_priv = dev->dev_private;
4554 struct drm_gem_object *obj;
4555 struct drm_i915_gem_object *obj_priv;
4556 int ret;
4557
4558 /* If we need a physical address for the status page, it's already
4559 * initialized at driver load time.
4560 */
4561 if (!I915_NEED_GFX_HWS(dev))
4562 return 0;
4563
4564 obj = drm_gem_object_alloc(dev, 4096);
4565 if (obj == NULL) {
4566 DRM_ERROR("Failed to allocate status page\n");
4567 return -ENOMEM;
4568 }
4569 obj_priv = obj->driver_private;
4570 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4571
4572 ret = i915_gem_object_pin(obj, 4096);
4573 if (ret != 0) {
4574 drm_gem_object_unreference(obj);
4575 return ret;
4576 }
4577
4578 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4579
4580 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4581 if (dev_priv->hw_status_page == NULL) {
4582 DRM_ERROR("Failed to map status page.\n");
4583 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4584 i915_gem_object_unpin(obj);
4585 drm_gem_object_unreference(obj);
4586 return -EINVAL;
4587 }
4588 dev_priv->hws_obj = obj;
4589 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4590 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4591 I915_READ(HWS_PGA); /* posting read */
4592 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4593
4594 return 0;
4595 }
4596
4597 static void
4598 i915_gem_cleanup_hws(struct drm_device *dev)
4599 {
4600 drm_i915_private_t *dev_priv = dev->dev_private;
4601 struct drm_gem_object *obj;
4602 struct drm_i915_gem_object *obj_priv;
4603
4604 if (dev_priv->hws_obj == NULL)
4605 return;
4606
4607 obj = dev_priv->hws_obj;
4608 obj_priv = obj->driver_private;
4609
4610 kunmap(obj_priv->pages[0]);
4611 i915_gem_object_unpin(obj);
4612 drm_gem_object_unreference(obj);
4613 dev_priv->hws_obj = NULL;
4614
4615 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4616 dev_priv->hw_status_page = NULL;
4617
4618 /* Write high address into HWS_PGA when disabling. */
4619 I915_WRITE(HWS_PGA, 0x1ffff000);
4620 }
4621
4622 int
4623 i915_gem_init_ringbuffer(struct drm_device *dev)
4624 {
4625 drm_i915_private_t *dev_priv = dev->dev_private;
4626 struct drm_gem_object *obj;
4627 struct drm_i915_gem_object *obj_priv;
4628 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4629 int ret;
4630 u32 head;
4631
4632 ret = i915_gem_init_hws(dev);
4633 if (ret != 0)
4634 return ret;
4635
4636 obj = drm_gem_object_alloc(dev, 128 * 1024);
4637 if (obj == NULL) {
4638 DRM_ERROR("Failed to allocate ringbuffer\n");
4639 i915_gem_cleanup_hws(dev);
4640 return -ENOMEM;
4641 }
4642 obj_priv = obj->driver_private;
4643
4644 ret = i915_gem_object_pin(obj, 4096);
4645 if (ret != 0) {
4646 drm_gem_object_unreference(obj);
4647 i915_gem_cleanup_hws(dev);
4648 return ret;
4649 }
4650
4651 /* Set up the kernel mapping for the ring. */
4652 ring->Size = obj->size;
4653
4654 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4655 ring->map.size = obj->size;
4656 ring->map.type = 0;
4657 ring->map.flags = 0;
4658 ring->map.mtrr = 0;
4659
4660 drm_core_ioremap_wc(&ring->map, dev);
4661 if (ring->map.handle == NULL) {
4662 DRM_ERROR("Failed to map ringbuffer.\n");
4663 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4664 i915_gem_object_unpin(obj);
4665 drm_gem_object_unreference(obj);
4666 i915_gem_cleanup_hws(dev);
4667 return -EINVAL;
4668 }
4669 ring->ring_obj = obj;
4670 ring->virtual_start = ring->map.handle;
4671
4672 /* Stop the ring if it's running. */
4673 I915_WRITE(PRB0_CTL, 0);
4674 I915_WRITE(PRB0_TAIL, 0);
4675 I915_WRITE(PRB0_HEAD, 0);
4676
4677 /* Initialize the ring. */
4678 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4679 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4680
4681 /* G45 ring initialization fails to reset head to zero */
4682 if (head != 0) {
4683 DRM_ERROR("Ring head not reset to zero "
4684 "ctl %08x head %08x tail %08x start %08x\n",
4685 I915_READ(PRB0_CTL),
4686 I915_READ(PRB0_HEAD),
4687 I915_READ(PRB0_TAIL),
4688 I915_READ(PRB0_START));
4689 I915_WRITE(PRB0_HEAD, 0);
4690
4691 DRM_ERROR("Ring head forced to zero "
4692 "ctl %08x head %08x tail %08x start %08x\n",
4693 I915_READ(PRB0_CTL),
4694 I915_READ(PRB0_HEAD),
4695 I915_READ(PRB0_TAIL),
4696 I915_READ(PRB0_START));
4697 }
4698
4699 I915_WRITE(PRB0_CTL,
4700 ((obj->size - 4096) & RING_NR_PAGES) |
4701 RING_NO_REPORT |
4702 RING_VALID);
4703
4704 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4705
4706 /* If the head is still not zero, the ring is dead */
4707 if (head != 0) {
4708 DRM_ERROR("Ring initialization failed "
4709 "ctl %08x head %08x tail %08x start %08x\n",
4710 I915_READ(PRB0_CTL),
4711 I915_READ(PRB0_HEAD),
4712 I915_READ(PRB0_TAIL),
4713 I915_READ(PRB0_START));
4714 return -EIO;
4715 }
4716
4717 /* Update our cache of the ring state */
4718 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4719 i915_kernel_lost_context(dev);
4720 else {
4721 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4722 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4723 ring->space = ring->head - (ring->tail + 8);
4724 if (ring->space < 0)
4725 ring->space += ring->Size;
4726 }
4727
4728 return 0;
4729 }
4730
4731 void
4732 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4733 {
4734 drm_i915_private_t *dev_priv = dev->dev_private;
4735
4736 if (dev_priv->ring.ring_obj == NULL)
4737 return;
4738
4739 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4740
4741 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4742 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4743 dev_priv->ring.ring_obj = NULL;
4744 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4745
4746 i915_gem_cleanup_hws(dev);
4747 }
4748
4749 int
4750 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4751 struct drm_file *file_priv)
4752 {
4753 drm_i915_private_t *dev_priv = dev->dev_private;
4754 int ret;
4755
4756 if (drm_core_check_feature(dev, DRIVER_MODESET))
4757 return 0;
4758
4759 if (atomic_read(&dev_priv->mm.wedged)) {
4760 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4761 atomic_set(&dev_priv->mm.wedged, 0);
4762 }
4763
4764 mutex_lock(&dev->struct_mutex);
4765 dev_priv->mm.suspended = 0;
4766
4767 ret = i915_gem_init_ringbuffer(dev);
4768 if (ret != 0) {
4769 mutex_unlock(&dev->struct_mutex);
4770 return ret;
4771 }
4772
4773 spin_lock(&dev_priv->mm.active_list_lock);
4774 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4775 spin_unlock(&dev_priv->mm.active_list_lock);
4776
4777 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4778 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4779 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4780 mutex_unlock(&dev->struct_mutex);
4781
4782 drm_irq_install(dev);
4783
4784 return 0;
4785 }
4786
4787 int
4788 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4789 struct drm_file *file_priv)
4790 {
4791 if (drm_core_check_feature(dev, DRIVER_MODESET))
4792 return 0;
4793
4794 drm_irq_uninstall(dev);
4795 return i915_gem_idle(dev);
4796 }
4797
4798 void
4799 i915_gem_lastclose(struct drm_device *dev)
4800 {
4801 int ret;
4802
4803 if (drm_core_check_feature(dev, DRIVER_MODESET))
4804 return;
4805
4806 ret = i915_gem_idle(dev);
4807 if (ret)
4808 DRM_ERROR("failed to idle hardware: %d\n", ret);
4809 }
4810
4811 void
4812 i915_gem_load(struct drm_device *dev)
4813 {
4814 int i;
4815 drm_i915_private_t *dev_priv = dev->dev_private;
4816
4817 spin_lock_init(&dev_priv->mm.active_list_lock);
4818 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4819 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4820 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4821 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4822 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4823 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4824 i915_gem_retire_work_handler);
4825 dev_priv->mm.next_gem_seqno = 1;
4826
4827 spin_lock(&shrink_list_lock);
4828 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4829 spin_unlock(&shrink_list_lock);
4830
4831 /* Old X drivers will take 0-2 for front, back, depth buffers */
4832 dev_priv->fence_reg_start = 3;
4833
4834 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4835 dev_priv->num_fence_regs = 16;
4836 else
4837 dev_priv->num_fence_regs = 8;
4838
4839 /* Initialize fence registers to zero */
4840 if (IS_I965G(dev)) {
4841 for (i = 0; i < 16; i++)
4842 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4843 } else {
4844 for (i = 0; i < 8; i++)
4845 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4846 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4847 for (i = 0; i < 8; i++)
4848 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4849 }
4850 i915_gem_detect_bit_6_swizzle(dev);
4851 init_waitqueue_head(&dev_priv->pending_flip_queue);
4852 }
4853
4854 /*
4855 * Create a physically contiguous memory object for this object
4856 * e.g. for cursor + overlay regs
4857 */
4858 int i915_gem_init_phys_object(struct drm_device *dev,
4859 int id, int size)
4860 {
4861 drm_i915_private_t *dev_priv = dev->dev_private;
4862 struct drm_i915_gem_phys_object *phys_obj;
4863 int ret;
4864
4865 if (dev_priv->mm.phys_objs[id - 1] || !size)
4866 return 0;
4867
4868 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4869 if (!phys_obj)
4870 return -ENOMEM;
4871
4872 phys_obj->id = id;
4873
4874 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4875 if (!phys_obj->handle) {
4876 ret = -ENOMEM;
4877 goto kfree_obj;
4878 }
4879 #ifdef CONFIG_X86
4880 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4881 #endif
4882
4883 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4884
4885 return 0;
4886 kfree_obj:
4887 kfree(phys_obj);
4888 return ret;
4889 }
4890
4891 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4892 {
4893 drm_i915_private_t *dev_priv = dev->dev_private;
4894 struct drm_i915_gem_phys_object *phys_obj;
4895
4896 if (!dev_priv->mm.phys_objs[id - 1])
4897 return;
4898
4899 phys_obj = dev_priv->mm.phys_objs[id - 1];
4900 if (phys_obj->cur_obj) {
4901 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4902 }
4903
4904 #ifdef CONFIG_X86
4905 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4906 #endif
4907 drm_pci_free(dev, phys_obj->handle);
4908 kfree(phys_obj);
4909 dev_priv->mm.phys_objs[id - 1] = NULL;
4910 }
4911
4912 void i915_gem_free_all_phys_object(struct drm_device *dev)
4913 {
4914 int i;
4915
4916 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4917 i915_gem_free_phys_object(dev, i);
4918 }
4919
4920 void i915_gem_detach_phys_object(struct drm_device *dev,
4921 struct drm_gem_object *obj)
4922 {
4923 struct drm_i915_gem_object *obj_priv;
4924 int i;
4925 int ret;
4926 int page_count;
4927
4928 obj_priv = obj->driver_private;
4929 if (!obj_priv->phys_obj)
4930 return;
4931
4932 ret = i915_gem_object_get_pages(obj, 0);
4933 if (ret)
4934 goto out;
4935
4936 page_count = obj->size / PAGE_SIZE;
4937
4938 for (i = 0; i < page_count; i++) {
4939 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4940 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4941
4942 memcpy(dst, src, PAGE_SIZE);
4943 kunmap_atomic(dst, KM_USER0);
4944 }
4945 drm_clflush_pages(obj_priv->pages, page_count);
4946 drm_agp_chipset_flush(dev);
4947
4948 i915_gem_object_put_pages(obj);
4949 out:
4950 obj_priv->phys_obj->cur_obj = NULL;
4951 obj_priv->phys_obj = NULL;
4952 }
4953
4954 int
4955 i915_gem_attach_phys_object(struct drm_device *dev,
4956 struct drm_gem_object *obj, int id)
4957 {
4958 drm_i915_private_t *dev_priv = dev->dev_private;
4959 struct drm_i915_gem_object *obj_priv;
4960 int ret = 0;
4961 int page_count;
4962 int i;
4963
4964 if (id > I915_MAX_PHYS_OBJECT)
4965 return -EINVAL;
4966
4967 obj_priv = obj->driver_private;
4968
4969 if (obj_priv->phys_obj) {
4970 if (obj_priv->phys_obj->id == id)
4971 return 0;
4972 i915_gem_detach_phys_object(dev, obj);
4973 }
4974
4975
4976 /* create a new object */
4977 if (!dev_priv->mm.phys_objs[id - 1]) {
4978 ret = i915_gem_init_phys_object(dev, id,
4979 obj->size);
4980 if (ret) {
4981 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4982 goto out;
4983 }
4984 }
4985
4986 /* bind to the object */
4987 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4988 obj_priv->phys_obj->cur_obj = obj;
4989
4990 ret = i915_gem_object_get_pages(obj, 0);
4991 if (ret) {
4992 DRM_ERROR("failed to get page list\n");
4993 goto out;
4994 }
4995
4996 page_count = obj->size / PAGE_SIZE;
4997
4998 for (i = 0; i < page_count; i++) {
4999 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5000 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5001
5002 memcpy(dst, src, PAGE_SIZE);
5003 kunmap_atomic(src, KM_USER0);
5004 }
5005
5006 i915_gem_object_put_pages(obj);
5007
5008 return 0;
5009 out:
5010 return ret;
5011 }
5012
5013 static int
5014 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5015 struct drm_i915_gem_pwrite *args,
5016 struct drm_file *file_priv)
5017 {
5018 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5019 void *obj_addr;
5020 int ret;
5021 char __user *user_data;
5022
5023 user_data = (char __user *) (uintptr_t) args->data_ptr;
5024 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5025
5026 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5027 ret = copy_from_user(obj_addr, user_data, args->size);
5028 if (ret)
5029 return -EFAULT;
5030
5031 drm_agp_chipset_flush(dev);
5032 return 0;
5033 }
5034
5035 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5036 {
5037 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5038
5039 /* Clean up our request list when the client is going away, so that
5040 * later retire_requests won't dereference our soon-to-be-gone
5041 * file_priv.
5042 */
5043 mutex_lock(&dev->struct_mutex);
5044 while (!list_empty(&i915_file_priv->mm.request_list))
5045 list_del_init(i915_file_priv->mm.request_list.next);
5046 mutex_unlock(&dev->struct_mutex);
5047 }
5048
5049 static int
5050 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5051 {
5052 drm_i915_private_t *dev_priv, *next_dev;
5053 struct drm_i915_gem_object *obj_priv, *next_obj;
5054 int cnt = 0;
5055 int would_deadlock = 1;
5056
5057 /* "fast-path" to count number of available objects */
5058 if (nr_to_scan == 0) {
5059 spin_lock(&shrink_list_lock);
5060 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5061 struct drm_device *dev = dev_priv->dev;
5062
5063 if (mutex_trylock(&dev->struct_mutex)) {
5064 list_for_each_entry(obj_priv,
5065 &dev_priv->mm.inactive_list,
5066 list)
5067 cnt++;
5068 mutex_unlock(&dev->struct_mutex);
5069 }
5070 }
5071 spin_unlock(&shrink_list_lock);
5072
5073 return (cnt / 100) * sysctl_vfs_cache_pressure;
5074 }
5075
5076 spin_lock(&shrink_list_lock);
5077
5078 /* first scan for clean buffers */
5079 list_for_each_entry_safe(dev_priv, next_dev,
5080 &shrink_list, mm.shrink_list) {
5081 struct drm_device *dev = dev_priv->dev;
5082
5083 if (! mutex_trylock(&dev->struct_mutex))
5084 continue;
5085
5086 spin_unlock(&shrink_list_lock);
5087
5088 i915_gem_retire_requests(dev);
5089
5090 list_for_each_entry_safe(obj_priv, next_obj,
5091 &dev_priv->mm.inactive_list,
5092 list) {
5093 if (i915_gem_object_is_purgeable(obj_priv)) {
5094 i915_gem_object_unbind(obj_priv->obj);
5095 if (--nr_to_scan <= 0)
5096 break;
5097 }
5098 }
5099
5100 spin_lock(&shrink_list_lock);
5101 mutex_unlock(&dev->struct_mutex);
5102
5103 would_deadlock = 0;
5104
5105 if (nr_to_scan <= 0)
5106 break;
5107 }
5108
5109 /* second pass, evict/count anything still on the inactive list */
5110 list_for_each_entry_safe(dev_priv, next_dev,
5111 &shrink_list, mm.shrink_list) {
5112 struct drm_device *dev = dev_priv->dev;
5113
5114 if (! mutex_trylock(&dev->struct_mutex))
5115 continue;
5116
5117 spin_unlock(&shrink_list_lock);
5118
5119 list_for_each_entry_safe(obj_priv, next_obj,
5120 &dev_priv->mm.inactive_list,
5121 list) {
5122 if (nr_to_scan > 0) {
5123 i915_gem_object_unbind(obj_priv->obj);
5124 nr_to_scan--;
5125 } else
5126 cnt++;
5127 }
5128
5129 spin_lock(&shrink_list_lock);
5130 mutex_unlock(&dev->struct_mutex);
5131
5132 would_deadlock = 0;
5133 }
5134
5135 spin_unlock(&shrink_list_lock);
5136
5137 if (would_deadlock)
5138 return -1;
5139 else if (cnt > 0)
5140 return (cnt / 100) * sysctl_vfs_cache_pressure;
5141 else
5142 return 0;
5143 }
5144
5145 static struct shrinker shrinker = {
5146 .shrink = i915_gem_shrink,
5147 .seeks = DEFAULT_SEEKS,
5148 };
5149
5150 __init void
5151 i915_gem_shrinker_init(void)
5152 {
5153 register_shrinker(&shrinker);
5154 }
5155
5156 __exit void
5157 i915_gem_shrinker_exit(void)
5158 {
5159 unregister_shrinker(&shrinker);
5160 }
This page took 0.151366 seconds and 5 git commands to generate.