6c8c6b6b91ca48742bde49eaeb297e1556e2c204
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int
42 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
43 struct i915_address_space *vm,
44 unsigned alignment,
45 bool map_and_fenceable,
46 bool nonblocking);
47 static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
49 struct drm_i915_gem_pwrite *args,
50 struct drm_file *file);
51
52 static void i915_gem_write_fence(struct drm_device *dev, int reg,
53 struct drm_i915_gem_object *obj);
54 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
55 struct drm_i915_fence_reg *fence,
56 bool enable);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
61 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
62 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
63
64 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
65 {
66 if (obj->tiling_mode)
67 i915_gem_release_mmap(obj);
68
69 /* As we do not have an associated fence register, we will force
70 * a tiling change if we ever need to acquire one.
71 */
72 obj->fence_dirty = false;
73 obj->fence_reg = I915_FENCE_REG_NONE;
74 }
75
76 /* some bookkeeping */
77 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
78 size_t size)
79 {
80 spin_lock(&dev_priv->mm.object_stat_lock);
81 dev_priv->mm.object_count++;
82 dev_priv->mm.object_memory += size;
83 spin_unlock(&dev_priv->mm.object_stat_lock);
84 }
85
86 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
87 size_t size)
88 {
89 spin_lock(&dev_priv->mm.object_stat_lock);
90 dev_priv->mm.object_count--;
91 dev_priv->mm.object_memory -= size;
92 spin_unlock(&dev_priv->mm.object_stat_lock);
93 }
94
95 static int
96 i915_gem_wait_for_error(struct i915_gpu_error *error)
97 {
98 int ret;
99
100 #define EXIT_COND (!i915_reset_in_progress(error) || \
101 i915_terminally_wedged(error))
102 if (EXIT_COND)
103 return 0;
104
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 EXIT_COND,
112 10*HZ);
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
117 return ret;
118 }
119 #undef EXIT_COND
120
121 return 0;
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 struct drm_i915_private *dev_priv = dev->dev_private;
127 int ret;
128
129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 WARN_ON(i915_verify_lists(dev));
138 return 0;
139 }
140
141 static inline bool
142 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143 {
144 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_private *dev_priv = dev->dev_private;
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
167 args->gtt_end);
168 dev_priv->gtt.mappable_end = args->gtt_end;
169 mutex_unlock(&dev->struct_mutex);
170
171 return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176 struct drm_file *file)
177 {
178 struct drm_i915_private *dev_priv = dev->dev_private;
179 struct drm_i915_gem_get_aperture *args = data;
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
182
183 pinned = 0;
184 mutex_lock(&dev->struct_mutex);
185 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
186 if (obj->pin_count)
187 pinned += i915_gem_obj_ggtt_size(obj);
188 mutex_unlock(&dev->struct_mutex);
189
190 args->aper_size = dev_priv->gtt.base.total;
191 args->aper_available_size = args->aper_size - pinned;
192
193 return 0;
194 }
195
196 void *i915_gem_object_alloc(struct drm_device *dev)
197 {
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
200 }
201
202 void i915_gem_object_free(struct drm_i915_gem_object *obj)
203 {
204 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
205 kmem_cache_free(dev_priv->slab, obj);
206 }
207
208 static int
209 i915_gem_create(struct drm_file *file,
210 struct drm_device *dev,
211 uint64_t size,
212 uint32_t *handle_p)
213 {
214 struct drm_i915_gem_object *obj;
215 int ret;
216 u32 handle;
217
218 size = roundup(size, PAGE_SIZE);
219 if (size == 0)
220 return -EINVAL;
221
222 /* Allocate the new object */
223 obj = i915_gem_alloc_object(dev, size);
224 if (obj == NULL)
225 return -ENOMEM;
226
227 ret = drm_gem_handle_create(file, &obj->base, &handle);
228 /* drop reference from allocate - handle holds it now */
229 drm_gem_object_unreference_unlocked(&obj->base);
230 if (ret)
231 return ret;
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (i915_gem_obj_ggtt_bound(obj)) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (likely(!i915_prefault_disable) && !prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (i915_gem_obj_ggtt_bound(obj)) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 if (likely(!i915_prefault_disable)) {
864 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
865 args->size);
866 if (ret)
867 return -EFAULT;
868 }
869
870 ret = i915_mutex_lock_interruptible(dev);
871 if (ret)
872 return ret;
873
874 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
875 if (&obj->base == NULL) {
876 ret = -ENOENT;
877 goto unlock;
878 }
879
880 /* Bounds check destination. */
881 if (args->offset > obj->base.size ||
882 args->size > obj->base.size - args->offset) {
883 ret = -EINVAL;
884 goto out;
885 }
886
887 /* prime objects have no backing filp to GEM pread/pwrite
888 * pages from.
889 */
890 if (!obj->base.filp) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
896
897 ret = -EFAULT;
898 /* We can only do the GTT pwrite on untiled buffers, as otherwise
899 * it would end up going through the fenced access, and we'll get
900 * different detiling behavior between reading and writing.
901 * pread/pwrite currently are reading and writing from the CPU
902 * perspective, requiring manual detiling by the client.
903 */
904 if (obj->phys_obj) {
905 ret = i915_gem_phys_pwrite(dev, obj, args, file);
906 goto out;
907 }
908
909 if (obj->cache_level == I915_CACHE_NONE &&
910 obj->tiling_mode == I915_TILING_NONE &&
911 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
913 /* Note that the gtt paths might fail with non-page-backed user
914 * pointers (e.g. gtt mappings when moving data between
915 * textures). Fallback to the shmem path in that case. */
916 }
917
918 if (ret == -EFAULT || ret == -ENOSPC)
919 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
920
921 out:
922 drm_gem_object_unreference(&obj->base);
923 unlock:
924 mutex_unlock(&dev->struct_mutex);
925 return ret;
926 }
927
928 int
929 i915_gem_check_wedge(struct i915_gpu_error *error,
930 bool interruptible)
931 {
932 if (i915_reset_in_progress(error)) {
933 /* Non-interruptible callers can't handle -EAGAIN, hence return
934 * -EIO unconditionally for these. */
935 if (!interruptible)
936 return -EIO;
937
938 /* Recovery complete, but the reset failed ... */
939 if (i915_terminally_wedged(error))
940 return -EIO;
941
942 return -EAGAIN;
943 }
944
945 return 0;
946 }
947
948 /*
949 * Compare seqno against outstanding lazy request. Emit a request if they are
950 * equal.
951 */
952 static int
953 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
954 {
955 int ret;
956
957 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
958
959 ret = 0;
960 if (seqno == ring->outstanding_lazy_request)
961 ret = i915_add_request(ring, NULL);
962
963 return ret;
964 }
965
966 /**
967 * __wait_seqno - wait until execution of seqno has finished
968 * @ring: the ring expected to report seqno
969 * @seqno: duh!
970 * @reset_counter: reset sequence associated with the given seqno
971 * @interruptible: do an interruptible wait (normally yes)
972 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
973 *
974 * Note: It is of utmost importance that the passed in seqno and reset_counter
975 * values have been read by the caller in an smp safe manner. Where read-side
976 * locks are involved, it is sufficient to read the reset_counter before
977 * unlocking the lock that protects the seqno. For lockless tricks, the
978 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
979 * inserted.
980 *
981 * Returns 0 if the seqno was found within the alloted time. Else returns the
982 * errno with remaining time filled in timeout argument.
983 */
984 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
985 unsigned reset_counter,
986 bool interruptible, struct timespec *timeout)
987 {
988 drm_i915_private_t *dev_priv = ring->dev->dev_private;
989 struct timespec before, now, wait_time={1,0};
990 unsigned long timeout_jiffies;
991 long end;
992 bool wait_forever = true;
993 int ret;
994
995 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
996 return 0;
997
998 trace_i915_gem_request_wait_begin(ring, seqno);
999
1000 if (timeout != NULL) {
1001 wait_time = *timeout;
1002 wait_forever = false;
1003 }
1004
1005 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1006
1007 if (WARN_ON(!ring->irq_get(ring)))
1008 return -ENODEV;
1009
1010 /* Record current time in case interrupted by signal, or wedged * */
1011 getrawmonotonic(&before);
1012
1013 #define EXIT_COND \
1014 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1015 i915_reset_in_progress(&dev_priv->gpu_error) || \
1016 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1017 do {
1018 if (interruptible)
1019 end = wait_event_interruptible_timeout(ring->irq_queue,
1020 EXIT_COND,
1021 timeout_jiffies);
1022 else
1023 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1024 timeout_jiffies);
1025
1026 /* We need to check whether any gpu reset happened in between
1027 * the caller grabbing the seqno and now ... */
1028 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1029 end = -EAGAIN;
1030
1031 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1032 * gone. */
1033 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1034 if (ret)
1035 end = ret;
1036 } while (end == 0 && wait_forever);
1037
1038 getrawmonotonic(&now);
1039
1040 ring->irq_put(ring);
1041 trace_i915_gem_request_wait_end(ring, seqno);
1042 #undef EXIT_COND
1043
1044 if (timeout) {
1045 struct timespec sleep_time = timespec_sub(now, before);
1046 *timeout = timespec_sub(*timeout, sleep_time);
1047 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1048 set_normalized_timespec(timeout, 0, 0);
1049 }
1050
1051 switch (end) {
1052 case -EIO:
1053 case -EAGAIN: /* Wedged */
1054 case -ERESTARTSYS: /* Signal */
1055 return (int)end;
1056 case 0: /* Timeout */
1057 return -ETIME;
1058 default: /* Completed */
1059 WARN_ON(end < 0); /* We're not aware of other errors */
1060 return 0;
1061 }
1062 }
1063
1064 /**
1065 * Waits for a sequence number to be signaled, and cleans up the
1066 * request and object lists appropriately for that event.
1067 */
1068 int
1069 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1070 {
1071 struct drm_device *dev = ring->dev;
1072 struct drm_i915_private *dev_priv = dev->dev_private;
1073 bool interruptible = dev_priv->mm.interruptible;
1074 int ret;
1075
1076 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1077 BUG_ON(seqno == 0);
1078
1079 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1080 if (ret)
1081 return ret;
1082
1083 ret = i915_gem_check_olr(ring, seqno);
1084 if (ret)
1085 return ret;
1086
1087 return __wait_seqno(ring, seqno,
1088 atomic_read(&dev_priv->gpu_error.reset_counter),
1089 interruptible, NULL);
1090 }
1091
1092 static int
1093 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1094 struct intel_ring_buffer *ring)
1095 {
1096 i915_gem_retire_requests_ring(ring);
1097
1098 /* Manually manage the write flush as we may have not yet
1099 * retired the buffer.
1100 *
1101 * Note that the last_write_seqno is always the earlier of
1102 * the two (read/write) seqno, so if we haved successfully waited,
1103 * we know we have passed the last write.
1104 */
1105 obj->last_write_seqno = 0;
1106 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1107
1108 return 0;
1109 }
1110
1111 /**
1112 * Ensures that all rendering to the object has completed and the object is
1113 * safe to unbind from the GTT or access from the CPU.
1114 */
1115 static __must_check int
1116 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1117 bool readonly)
1118 {
1119 struct intel_ring_buffer *ring = obj->ring;
1120 u32 seqno;
1121 int ret;
1122
1123 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1124 if (seqno == 0)
1125 return 0;
1126
1127 ret = i915_wait_seqno(ring, seqno);
1128 if (ret)
1129 return ret;
1130
1131 return i915_gem_object_wait_rendering__tail(obj, ring);
1132 }
1133
1134 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1135 * as the object state may change during this call.
1136 */
1137 static __must_check int
1138 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1139 bool readonly)
1140 {
1141 struct drm_device *dev = obj->base.dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 struct intel_ring_buffer *ring = obj->ring;
1144 unsigned reset_counter;
1145 u32 seqno;
1146 int ret;
1147
1148 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1149 BUG_ON(!dev_priv->mm.interruptible);
1150
1151 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1152 if (seqno == 0)
1153 return 0;
1154
1155 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1156 if (ret)
1157 return ret;
1158
1159 ret = i915_gem_check_olr(ring, seqno);
1160 if (ret)
1161 return ret;
1162
1163 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1164 mutex_unlock(&dev->struct_mutex);
1165 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1166 mutex_lock(&dev->struct_mutex);
1167 if (ret)
1168 return ret;
1169
1170 return i915_gem_object_wait_rendering__tail(obj, ring);
1171 }
1172
1173 /**
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
1176 */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179 struct drm_file *file)
1180 {
1181 struct drm_i915_gem_set_domain *args = data;
1182 struct drm_i915_gem_object *obj;
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
1185 int ret;
1186
1187 /* Only handle setting domains to types used by the CPU. */
1188 if (write_domain & I915_GEM_GPU_DOMAINS)
1189 return -EINVAL;
1190
1191 if (read_domains & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
1200 ret = i915_mutex_lock_interruptible(dev);
1201 if (ret)
1202 return ret;
1203
1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205 if (&obj->base == NULL) {
1206 ret = -ENOENT;
1207 goto unlock;
1208 }
1209
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
1227 } else {
1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229 }
1230
1231 unref:
1232 drm_gem_object_unreference(&obj->base);
1233 unlock:
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236 }
1237
1238 /**
1239 * Called when user space has done writes to this buffer
1240 */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243 struct drm_file *file)
1244 {
1245 struct drm_i915_gem_sw_finish *args = data;
1246 struct drm_i915_gem_object *obj;
1247 int ret = 0;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Pinned buffers may be scanout, so flush the cache */
1260 if (obj->pin_count)
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263 drm_gem_object_unreference(&obj->base);
1264 unlock:
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267 }
1268
1269 /**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278 struct drm_file *file)
1279 {
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
1282 unsigned long addr;
1283
1284 obj = drm_gem_object_lookup(dev, file, args->handle);
1285 if (obj == NULL)
1286 return -ENOENT;
1287
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
1296 addr = vm_mmap(obj->filp, 0, args->size,
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
1299 drm_gem_object_unreference_unlocked(obj);
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306 }
1307
1308 /**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
1328 drm_i915_private_t *dev_priv = dev->dev_private;
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
1341
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344 /* Access to snoopable pages through the GTT is incoherent. */
1345 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346 ret = -EINVAL;
1347 goto unlock;
1348 }
1349
1350 /* Now bind it into the GTT if needed */
1351 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1352 if (ret)
1353 goto unlock;
1354
1355 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356 if (ret)
1357 goto unpin;
1358
1359 ret = i915_gem_object_get_fence(obj);
1360 if (ret)
1361 goto unpin;
1362
1363 obj->fault_mappable = true;
1364
1365 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1366 pfn >>= PAGE_SHIFT;
1367 pfn += page_offset;
1368
1369 /* Finally, remap it using the new GTT offset */
1370 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1371 unpin:
1372 i915_gem_object_unpin(obj);
1373 unlock:
1374 mutex_unlock(&dev->struct_mutex);
1375 out:
1376 switch (ret) {
1377 case -EIO:
1378 /* If this -EIO is due to a gpu hang, give the reset code a
1379 * chance to clean up the mess. Otherwise return the proper
1380 * SIGBUS. */
1381 if (i915_terminally_wedged(&dev_priv->gpu_error))
1382 return VM_FAULT_SIGBUS;
1383 case -EAGAIN:
1384 /* Give the error handler a chance to run and move the
1385 * objects off the GPU active list. Next time we service the
1386 * fault, we should be able to transition the page into the
1387 * GTT without touching the GPU (and so avoid further
1388 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1389 * with coherency, just lost writes.
1390 */
1391 set_need_resched();
1392 case 0:
1393 case -ERESTARTSYS:
1394 case -EINTR:
1395 case -EBUSY:
1396 /*
1397 * EBUSY is ok: this just means that another thread
1398 * already did the job.
1399 */
1400 return VM_FAULT_NOPAGE;
1401 case -ENOMEM:
1402 return VM_FAULT_OOM;
1403 case -ENOSPC:
1404 return VM_FAULT_SIGBUS;
1405 default:
1406 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1407 return VM_FAULT_SIGBUS;
1408 }
1409 }
1410
1411 /**
1412 * i915_gem_release_mmap - remove physical page mappings
1413 * @obj: obj in question
1414 *
1415 * Preserve the reservation of the mmapping with the DRM core code, but
1416 * relinquish ownership of the pages back to the system.
1417 *
1418 * It is vital that we remove the page mapping if we have mapped a tiled
1419 * object through the GTT and then lose the fence register due to
1420 * resource pressure. Similarly if the object has been moved out of the
1421 * aperture, than pages mapped into userspace must be revoked. Removing the
1422 * mapping will then trigger a page fault on the next user access, allowing
1423 * fixup by i915_gem_fault().
1424 */
1425 void
1426 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1427 {
1428 if (!obj->fault_mappable)
1429 return;
1430
1431 if (obj->base.dev->dev_mapping)
1432 unmap_mapping_range(obj->base.dev->dev_mapping,
1433 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1434 obj->base.size, 1);
1435
1436 obj->fault_mappable = false;
1437 }
1438
1439 uint32_t
1440 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1441 {
1442 uint32_t gtt_size;
1443
1444 if (INTEL_INFO(dev)->gen >= 4 ||
1445 tiling_mode == I915_TILING_NONE)
1446 return size;
1447
1448 /* Previous chips need a power-of-two fence region when tiling */
1449 if (INTEL_INFO(dev)->gen == 3)
1450 gtt_size = 1024*1024;
1451 else
1452 gtt_size = 512*1024;
1453
1454 while (gtt_size < size)
1455 gtt_size <<= 1;
1456
1457 return gtt_size;
1458 }
1459
1460 /**
1461 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1462 * @obj: object to check
1463 *
1464 * Return the required GTT alignment for an object, taking into account
1465 * potential fence register mapping.
1466 */
1467 uint32_t
1468 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1469 int tiling_mode, bool fenced)
1470 {
1471 /*
1472 * Minimum alignment is 4k (GTT page size), but might be greater
1473 * if a fence register is needed for the object.
1474 */
1475 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1476 tiling_mode == I915_TILING_NONE)
1477 return 4096;
1478
1479 /*
1480 * Previous chips need to be aligned to the size of the smallest
1481 * fence register that can contain the object.
1482 */
1483 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1484 }
1485
1486 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1487 {
1488 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1489 int ret;
1490
1491 if (obj->base.map_list.map)
1492 return 0;
1493
1494 dev_priv->mm.shrinker_no_lock_stealing = true;
1495
1496 ret = drm_gem_create_mmap_offset(&obj->base);
1497 if (ret != -ENOSPC)
1498 goto out;
1499
1500 /* Badly fragmented mmap space? The only way we can recover
1501 * space is by destroying unwanted objects. We can't randomly release
1502 * mmap_offsets as userspace expects them to be persistent for the
1503 * lifetime of the objects. The closest we can is to release the
1504 * offsets on purgeable objects by truncating it and marking it purged,
1505 * which prevents userspace from ever using that object again.
1506 */
1507 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1508 ret = drm_gem_create_mmap_offset(&obj->base);
1509 if (ret != -ENOSPC)
1510 goto out;
1511
1512 i915_gem_shrink_all(dev_priv);
1513 ret = drm_gem_create_mmap_offset(&obj->base);
1514 out:
1515 dev_priv->mm.shrinker_no_lock_stealing = false;
1516
1517 return ret;
1518 }
1519
1520 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1521 {
1522 if (!obj->base.map_list.map)
1523 return;
1524
1525 drm_gem_free_mmap_offset(&obj->base);
1526 }
1527
1528 int
1529 i915_gem_mmap_gtt(struct drm_file *file,
1530 struct drm_device *dev,
1531 uint32_t handle,
1532 uint64_t *offset)
1533 {
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 struct drm_i915_gem_object *obj;
1536 int ret;
1537
1538 ret = i915_mutex_lock_interruptible(dev);
1539 if (ret)
1540 return ret;
1541
1542 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1543 if (&obj->base == NULL) {
1544 ret = -ENOENT;
1545 goto unlock;
1546 }
1547
1548 if (obj->base.size > dev_priv->gtt.mappable_end) {
1549 ret = -E2BIG;
1550 goto out;
1551 }
1552
1553 if (obj->madv != I915_MADV_WILLNEED) {
1554 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1555 ret = -EINVAL;
1556 goto out;
1557 }
1558
1559 ret = i915_gem_object_create_mmap_offset(obj);
1560 if (ret)
1561 goto out;
1562
1563 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1564
1565 out:
1566 drm_gem_object_unreference(&obj->base);
1567 unlock:
1568 mutex_unlock(&dev->struct_mutex);
1569 return ret;
1570 }
1571
1572 /**
1573 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1574 * @dev: DRM device
1575 * @data: GTT mapping ioctl data
1576 * @file: GEM object info
1577 *
1578 * Simply returns the fake offset to userspace so it can mmap it.
1579 * The mmap call will end up in drm_gem_mmap(), which will set things
1580 * up so we can get faults in the handler above.
1581 *
1582 * The fault handler will take care of binding the object into the GTT
1583 * (since it may have been evicted to make room for something), allocating
1584 * a fence register, and mapping the appropriate aperture address into
1585 * userspace.
1586 */
1587 int
1588 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1589 struct drm_file *file)
1590 {
1591 struct drm_i915_gem_mmap_gtt *args = data;
1592
1593 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1594 }
1595
1596 /* Immediately discard the backing storage */
1597 static void
1598 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1599 {
1600 struct inode *inode;
1601
1602 i915_gem_object_free_mmap_offset(obj);
1603
1604 if (obj->base.filp == NULL)
1605 return;
1606
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*.
1611 */
1612 inode = file_inode(obj->base.filp);
1613 shmem_truncate_range(inode, 0, (loff_t)-1);
1614
1615 obj->madv = __I915_MADV_PURGED;
1616 }
1617
1618 static inline int
1619 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620 {
1621 return obj->madv == I915_MADV_DONTNEED;
1622 }
1623
1624 static void
1625 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1626 {
1627 struct sg_page_iter sg_iter;
1628 int ret;
1629
1630 BUG_ON(obj->madv == __I915_MADV_PURGED);
1631
1632 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633 if (ret) {
1634 /* In the event of a disaster, abandon all caches and
1635 * hope for the best.
1636 */
1637 WARN_ON(ret != -EIO);
1638 i915_gem_clflush_object(obj);
1639 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640 }
1641
1642 if (i915_gem_object_needs_bit17_swizzle(obj))
1643 i915_gem_object_save_bit_17_swizzle(obj);
1644
1645 if (obj->madv == I915_MADV_DONTNEED)
1646 obj->dirty = 0;
1647
1648 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1649 struct page *page = sg_page_iter_page(&sg_iter);
1650
1651 if (obj->dirty)
1652 set_page_dirty(page);
1653
1654 if (obj->madv == I915_MADV_WILLNEED)
1655 mark_page_accessed(page);
1656
1657 page_cache_release(page);
1658 }
1659 obj->dirty = 0;
1660
1661 sg_free_table(obj->pages);
1662 kfree(obj->pages);
1663 }
1664
1665 int
1666 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667 {
1668 const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
1670 if (obj->pages == NULL)
1671 return 0;
1672
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
1676 BUG_ON(i915_gem_obj_ggtt_bound(obj));
1677
1678 /* ->put_pages might need to allocate memory for the bit17 swizzle
1679 * array, hence protect them from being reaped by removing them from gtt
1680 * lists early. */
1681 list_del(&obj->global_list);
1682
1683 ops->put_pages(obj);
1684 obj->pages = NULL;
1685
1686 if (i915_gem_object_is_purgeable(obj))
1687 i915_gem_object_truncate(obj);
1688
1689 return 0;
1690 }
1691
1692 static long
1693 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1694 bool purgeable_only)
1695 {
1696 struct drm_i915_gem_object *obj, *next;
1697 long count = 0;
1698
1699 list_for_each_entry_safe(obj, next,
1700 &dev_priv->mm.unbound_list,
1701 global_list) {
1702 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1703 i915_gem_object_put_pages(obj) == 0) {
1704 count += obj->base.size >> PAGE_SHIFT;
1705 if (count >= target)
1706 return count;
1707 }
1708 }
1709
1710 list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1711 global_list) {
1712 struct i915_vma *vma, *v;
1713
1714 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1715 continue;
1716
1717 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1718 if (i915_vma_unbind(vma))
1719 break;
1720
1721 if (!i915_gem_object_put_pages(obj)) {
1722 count += obj->base.size >> PAGE_SHIFT;
1723 if (count >= target)
1724 return count;
1725 }
1726 }
1727
1728 return count;
1729 }
1730
1731 static long
1732 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1733 {
1734 return __i915_gem_shrink(dev_priv, target, true);
1735 }
1736
1737 static void
1738 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1739 {
1740 struct drm_i915_gem_object *obj, *next;
1741
1742 i915_gem_evict_everything(dev_priv->dev);
1743
1744 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1745 global_list)
1746 i915_gem_object_put_pages(obj);
1747 }
1748
1749 static int
1750 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1751 {
1752 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1753 int page_count, i;
1754 struct address_space *mapping;
1755 struct sg_table *st;
1756 struct scatterlist *sg;
1757 struct sg_page_iter sg_iter;
1758 struct page *page;
1759 unsigned long last_pfn = 0; /* suppress gcc warning */
1760 gfp_t gfp;
1761
1762 /* Assert that the object is not currently in any GPU domain. As it
1763 * wasn't in the GTT, there shouldn't be any way it could have been in
1764 * a GPU cache
1765 */
1766 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1767 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1768
1769 st = kmalloc(sizeof(*st), GFP_KERNEL);
1770 if (st == NULL)
1771 return -ENOMEM;
1772
1773 page_count = obj->base.size / PAGE_SIZE;
1774 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1775 sg_free_table(st);
1776 kfree(st);
1777 return -ENOMEM;
1778 }
1779
1780 /* Get the list of pages out of our struct file. They'll be pinned
1781 * at this point until we release them.
1782 *
1783 * Fail silently without starting the shrinker
1784 */
1785 mapping = file_inode(obj->base.filp)->i_mapping;
1786 gfp = mapping_gfp_mask(mapping);
1787 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1788 gfp &= ~(__GFP_IO | __GFP_WAIT);
1789 sg = st->sgl;
1790 st->nents = 0;
1791 for (i = 0; i < page_count; i++) {
1792 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1793 if (IS_ERR(page)) {
1794 i915_gem_purge(dev_priv, page_count);
1795 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796 }
1797 if (IS_ERR(page)) {
1798 /* We've tried hard to allocate the memory by reaping
1799 * our own buffer, now let the real VM do its job and
1800 * go down in flames if truly OOM.
1801 */
1802 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1803 gfp |= __GFP_IO | __GFP_WAIT;
1804
1805 i915_gem_shrink_all(dev_priv);
1806 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1807 if (IS_ERR(page))
1808 goto err_pages;
1809
1810 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1811 gfp &= ~(__GFP_IO | __GFP_WAIT);
1812 }
1813 #ifdef CONFIG_SWIOTLB
1814 if (swiotlb_nr_tbl()) {
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 sg = sg_next(sg);
1818 continue;
1819 }
1820 #endif
1821 if (!i || page_to_pfn(page) != last_pfn + 1) {
1822 if (i)
1823 sg = sg_next(sg);
1824 st->nents++;
1825 sg_set_page(sg, page, PAGE_SIZE, 0);
1826 } else {
1827 sg->length += PAGE_SIZE;
1828 }
1829 last_pfn = page_to_pfn(page);
1830 }
1831 #ifdef CONFIG_SWIOTLB
1832 if (!swiotlb_nr_tbl())
1833 #endif
1834 sg_mark_end(sg);
1835 obj->pages = st;
1836
1837 if (i915_gem_object_needs_bit17_swizzle(obj))
1838 i915_gem_object_do_bit_17_swizzle(obj);
1839
1840 return 0;
1841
1842 err_pages:
1843 sg_mark_end(sg);
1844 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1845 page_cache_release(sg_page_iter_page(&sg_iter));
1846 sg_free_table(st);
1847 kfree(st);
1848 return PTR_ERR(page);
1849 }
1850
1851 /* Ensure that the associated pages are gathered from the backing storage
1852 * and pinned into our object. i915_gem_object_get_pages() may be called
1853 * multiple times before they are released by a single call to
1854 * i915_gem_object_put_pages() - once the pages are no longer referenced
1855 * either as a result of memory pressure (reaping pages under the shrinker)
1856 * or as the object is itself released.
1857 */
1858 int
1859 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1860 {
1861 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1862 const struct drm_i915_gem_object_ops *ops = obj->ops;
1863 int ret;
1864
1865 if (obj->pages)
1866 return 0;
1867
1868 if (obj->madv != I915_MADV_WILLNEED) {
1869 DRM_ERROR("Attempting to obtain a purgeable object\n");
1870 return -EINVAL;
1871 }
1872
1873 BUG_ON(obj->pages_pin_count);
1874
1875 ret = ops->get_pages(obj);
1876 if (ret)
1877 return ret;
1878
1879 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1880 return 0;
1881 }
1882
1883 void
1884 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1885 struct intel_ring_buffer *ring)
1886 {
1887 struct drm_device *dev = obj->base.dev;
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889 struct i915_address_space *vm = &dev_priv->gtt.base;
1890 u32 seqno = intel_ring_get_seqno(ring);
1891
1892 BUG_ON(ring == NULL);
1893 if (obj->ring != ring && obj->last_write_seqno) {
1894 /* Keep the seqno relative to the current ring */
1895 obj->last_write_seqno = seqno;
1896 }
1897 obj->ring = ring;
1898
1899 /* Add a reference if we're newly entering the active list. */
1900 if (!obj->active) {
1901 drm_gem_object_reference(&obj->base);
1902 obj->active = 1;
1903 }
1904
1905 /* Move from whatever list we were on to the tail of execution. */
1906 list_move_tail(&obj->mm_list, &vm->active_list);
1907 list_move_tail(&obj->ring_list, &ring->active_list);
1908
1909 obj->last_read_seqno = seqno;
1910
1911 if (obj->fenced_gpu_access) {
1912 obj->last_fenced_seqno = seqno;
1913
1914 /* Bump MRU to take account of the delayed flush */
1915 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1916 struct drm_i915_fence_reg *reg;
1917
1918 reg = &dev_priv->fence_regs[obj->fence_reg];
1919 list_move_tail(&reg->lru_list,
1920 &dev_priv->mm.fence_list);
1921 }
1922 }
1923 }
1924
1925 static void
1926 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1927 {
1928 struct drm_device *dev = obj->base.dev;
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 struct i915_address_space *vm = &dev_priv->gtt.base;
1931
1932 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1933 BUG_ON(!obj->active);
1934
1935 list_move_tail(&obj->mm_list, &vm->inactive_list);
1936
1937 list_del_init(&obj->ring_list);
1938 obj->ring = NULL;
1939
1940 obj->last_read_seqno = 0;
1941 obj->last_write_seqno = 0;
1942 obj->base.write_domain = 0;
1943
1944 obj->last_fenced_seqno = 0;
1945 obj->fenced_gpu_access = false;
1946
1947 obj->active = 0;
1948 drm_gem_object_unreference(&obj->base);
1949
1950 WARN_ON(i915_verify_lists(dev));
1951 }
1952
1953 static int
1954 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1955 {
1956 struct drm_i915_private *dev_priv = dev->dev_private;
1957 struct intel_ring_buffer *ring;
1958 int ret, i, j;
1959
1960 /* Carefully retire all requests without writing to the rings */
1961 for_each_ring(ring, dev_priv, i) {
1962 ret = intel_ring_idle(ring);
1963 if (ret)
1964 return ret;
1965 }
1966 i915_gem_retire_requests(dev);
1967
1968 /* Finally reset hw state */
1969 for_each_ring(ring, dev_priv, i) {
1970 intel_ring_init_seqno(ring, seqno);
1971
1972 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1973 ring->sync_seqno[j] = 0;
1974 }
1975
1976 return 0;
1977 }
1978
1979 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1980 {
1981 struct drm_i915_private *dev_priv = dev->dev_private;
1982 int ret;
1983
1984 if (seqno == 0)
1985 return -EINVAL;
1986
1987 /* HWS page needs to be set less than what we
1988 * will inject to ring
1989 */
1990 ret = i915_gem_init_seqno(dev, seqno - 1);
1991 if (ret)
1992 return ret;
1993
1994 /* Carefully set the last_seqno value so that wrap
1995 * detection still works
1996 */
1997 dev_priv->next_seqno = seqno;
1998 dev_priv->last_seqno = seqno - 1;
1999 if (dev_priv->last_seqno == 0)
2000 dev_priv->last_seqno--;
2001
2002 return 0;
2003 }
2004
2005 int
2006 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2007 {
2008 struct drm_i915_private *dev_priv = dev->dev_private;
2009
2010 /* reserve 0 for non-seqno */
2011 if (dev_priv->next_seqno == 0) {
2012 int ret = i915_gem_init_seqno(dev, 0);
2013 if (ret)
2014 return ret;
2015
2016 dev_priv->next_seqno = 1;
2017 }
2018
2019 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2020 return 0;
2021 }
2022
2023 int __i915_add_request(struct intel_ring_buffer *ring,
2024 struct drm_file *file,
2025 struct drm_i915_gem_object *obj,
2026 u32 *out_seqno)
2027 {
2028 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2029 struct drm_i915_gem_request *request;
2030 u32 request_ring_position, request_start;
2031 int was_empty;
2032 int ret;
2033
2034 request_start = intel_ring_get_tail(ring);
2035 /*
2036 * Emit any outstanding flushes - execbuf can fail to emit the flush
2037 * after having emitted the batchbuffer command. Hence we need to fix
2038 * things up similar to emitting the lazy request. The difference here
2039 * is that the flush _must_ happen before the next request, no matter
2040 * what.
2041 */
2042 ret = intel_ring_flush_all_caches(ring);
2043 if (ret)
2044 return ret;
2045
2046 request = kmalloc(sizeof(*request), GFP_KERNEL);
2047 if (request == NULL)
2048 return -ENOMEM;
2049
2050
2051 /* Record the position of the start of the request so that
2052 * should we detect the updated seqno part-way through the
2053 * GPU processing the request, we never over-estimate the
2054 * position of the head.
2055 */
2056 request_ring_position = intel_ring_get_tail(ring);
2057
2058 ret = ring->add_request(ring);
2059 if (ret) {
2060 kfree(request);
2061 return ret;
2062 }
2063
2064 request->seqno = intel_ring_get_seqno(ring);
2065 request->ring = ring;
2066 request->head = request_start;
2067 request->tail = request_ring_position;
2068 request->ctx = ring->last_context;
2069 request->batch_obj = obj;
2070
2071 /* Whilst this request exists, batch_obj will be on the
2072 * active_list, and so will hold the active reference. Only when this
2073 * request is retired will the the batch_obj be moved onto the
2074 * inactive_list and lose its active reference. Hence we do not need
2075 * to explicitly hold another reference here.
2076 */
2077
2078 if (request->ctx)
2079 i915_gem_context_reference(request->ctx);
2080
2081 request->emitted_jiffies = jiffies;
2082 was_empty = list_empty(&ring->request_list);
2083 list_add_tail(&request->list, &ring->request_list);
2084 request->file_priv = NULL;
2085
2086 if (file) {
2087 struct drm_i915_file_private *file_priv = file->driver_priv;
2088
2089 spin_lock(&file_priv->mm.lock);
2090 request->file_priv = file_priv;
2091 list_add_tail(&request->client_list,
2092 &file_priv->mm.request_list);
2093 spin_unlock(&file_priv->mm.lock);
2094 }
2095
2096 trace_i915_gem_request_add(ring, request->seqno);
2097 ring->outstanding_lazy_request = 0;
2098
2099 if (!dev_priv->ums.mm_suspended) {
2100 i915_queue_hangcheck(ring->dev);
2101
2102 if (was_empty) {
2103 queue_delayed_work(dev_priv->wq,
2104 &dev_priv->mm.retire_work,
2105 round_jiffies_up_relative(HZ));
2106 intel_mark_busy(dev_priv->dev);
2107 }
2108 }
2109
2110 if (out_seqno)
2111 *out_seqno = request->seqno;
2112 return 0;
2113 }
2114
2115 static inline void
2116 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2117 {
2118 struct drm_i915_file_private *file_priv = request->file_priv;
2119
2120 if (!file_priv)
2121 return;
2122
2123 spin_lock(&file_priv->mm.lock);
2124 if (request->file_priv) {
2125 list_del(&request->client_list);
2126 request->file_priv = NULL;
2127 }
2128 spin_unlock(&file_priv->mm.lock);
2129 }
2130
2131 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2132 struct i915_address_space *vm)
2133 {
2134 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2135 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2136 return true;
2137
2138 return false;
2139 }
2140
2141 static bool i915_head_inside_request(const u32 acthd_unmasked,
2142 const u32 request_start,
2143 const u32 request_end)
2144 {
2145 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2146
2147 if (request_start < request_end) {
2148 if (acthd >= request_start && acthd < request_end)
2149 return true;
2150 } else if (request_start > request_end) {
2151 if (acthd >= request_start || acthd < request_end)
2152 return true;
2153 }
2154
2155 return false;
2156 }
2157
2158 static struct i915_address_space *
2159 request_to_vm(struct drm_i915_gem_request *request)
2160 {
2161 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2162 struct i915_address_space *vm;
2163
2164 vm = &dev_priv->gtt.base;
2165
2166 return vm;
2167 }
2168
2169 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2170 const u32 acthd, bool *inside)
2171 {
2172 /* There is a possibility that unmasked head address
2173 * pointing inside the ring, matches the batch_obj address range.
2174 * However this is extremely unlikely.
2175 */
2176 if (request->batch_obj) {
2177 if (i915_head_inside_object(acthd, request->batch_obj,
2178 request_to_vm(request))) {
2179 *inside = true;
2180 return true;
2181 }
2182 }
2183
2184 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2185 *inside = false;
2186 return true;
2187 }
2188
2189 return false;
2190 }
2191
2192 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2193 struct drm_i915_gem_request *request,
2194 u32 acthd)
2195 {
2196 struct i915_ctx_hang_stats *hs = NULL;
2197 bool inside, guilty;
2198 unsigned long offset = 0;
2199
2200 /* Innocent until proven guilty */
2201 guilty = false;
2202
2203 if (request->batch_obj)
2204 offset = i915_gem_obj_offset(request->batch_obj,
2205 request_to_vm(request));
2206
2207 if (ring->hangcheck.action != wait &&
2208 i915_request_guilty(request, acthd, &inside)) {
2209 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2210 ring->name,
2211 inside ? "inside" : "flushing",
2212 offset,
2213 request->ctx ? request->ctx->id : 0,
2214 acthd);
2215
2216 guilty = true;
2217 }
2218
2219 /* If contexts are disabled or this is the default context, use
2220 * file_priv->reset_state
2221 */
2222 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2223 hs = &request->ctx->hang_stats;
2224 else if (request->file_priv)
2225 hs = &request->file_priv->hang_stats;
2226
2227 if (hs) {
2228 if (guilty)
2229 hs->batch_active++;
2230 else
2231 hs->batch_pending++;
2232 }
2233 }
2234
2235 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2236 {
2237 list_del(&request->list);
2238 i915_gem_request_remove_from_client(request);
2239
2240 if (request->ctx)
2241 i915_gem_context_unreference(request->ctx);
2242
2243 kfree(request);
2244 }
2245
2246 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2247 struct intel_ring_buffer *ring)
2248 {
2249 u32 completed_seqno;
2250 u32 acthd;
2251
2252 acthd = intel_ring_get_active_head(ring);
2253 completed_seqno = ring->get_seqno(ring, false);
2254
2255 while (!list_empty(&ring->request_list)) {
2256 struct drm_i915_gem_request *request;
2257
2258 request = list_first_entry(&ring->request_list,
2259 struct drm_i915_gem_request,
2260 list);
2261
2262 if (request->seqno > completed_seqno)
2263 i915_set_reset_status(ring, request, acthd);
2264
2265 i915_gem_free_request(request);
2266 }
2267
2268 while (!list_empty(&ring->active_list)) {
2269 struct drm_i915_gem_object *obj;
2270
2271 obj = list_first_entry(&ring->active_list,
2272 struct drm_i915_gem_object,
2273 ring_list);
2274
2275 i915_gem_object_move_to_inactive(obj);
2276 }
2277 }
2278
2279 void i915_gem_restore_fences(struct drm_device *dev)
2280 {
2281 struct drm_i915_private *dev_priv = dev->dev_private;
2282 int i;
2283
2284 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2285 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2286
2287 /*
2288 * Commit delayed tiling changes if we have an object still
2289 * attached to the fence, otherwise just clear the fence.
2290 */
2291 if (reg->obj) {
2292 i915_gem_object_update_fence(reg->obj, reg,
2293 reg->obj->tiling_mode);
2294 } else {
2295 i915_gem_write_fence(dev, i, NULL);
2296 }
2297 }
2298 }
2299
2300 void i915_gem_reset(struct drm_device *dev)
2301 {
2302 struct drm_i915_private *dev_priv = dev->dev_private;
2303 struct intel_ring_buffer *ring;
2304 int i;
2305
2306 for_each_ring(ring, dev_priv, i)
2307 i915_gem_reset_ring_lists(dev_priv, ring);
2308
2309 i915_gem_restore_fences(dev);
2310 }
2311
2312 /**
2313 * This function clears the request list as sequence numbers are passed.
2314 */
2315 void
2316 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2317 {
2318 uint32_t seqno;
2319
2320 if (list_empty(&ring->request_list))
2321 return;
2322
2323 WARN_ON(i915_verify_lists(ring->dev));
2324
2325 seqno = ring->get_seqno(ring, true);
2326
2327 while (!list_empty(&ring->request_list)) {
2328 struct drm_i915_gem_request *request;
2329
2330 request = list_first_entry(&ring->request_list,
2331 struct drm_i915_gem_request,
2332 list);
2333
2334 if (!i915_seqno_passed(seqno, request->seqno))
2335 break;
2336
2337 trace_i915_gem_request_retire(ring, request->seqno);
2338 /* We know the GPU must have read the request to have
2339 * sent us the seqno + interrupt, so use the position
2340 * of tail of the request to update the last known position
2341 * of the GPU head.
2342 */
2343 ring->last_retired_head = request->tail;
2344
2345 i915_gem_free_request(request);
2346 }
2347
2348 /* Move any buffers on the active list that are no longer referenced
2349 * by the ringbuffer to the flushing/inactive lists as appropriate.
2350 */
2351 while (!list_empty(&ring->active_list)) {
2352 struct drm_i915_gem_object *obj;
2353
2354 obj = list_first_entry(&ring->active_list,
2355 struct drm_i915_gem_object,
2356 ring_list);
2357
2358 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2359 break;
2360
2361 i915_gem_object_move_to_inactive(obj);
2362 }
2363
2364 if (unlikely(ring->trace_irq_seqno &&
2365 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2366 ring->irq_put(ring);
2367 ring->trace_irq_seqno = 0;
2368 }
2369
2370 WARN_ON(i915_verify_lists(ring->dev));
2371 }
2372
2373 void
2374 i915_gem_retire_requests(struct drm_device *dev)
2375 {
2376 drm_i915_private_t *dev_priv = dev->dev_private;
2377 struct intel_ring_buffer *ring;
2378 int i;
2379
2380 for_each_ring(ring, dev_priv, i)
2381 i915_gem_retire_requests_ring(ring);
2382 }
2383
2384 static void
2385 i915_gem_retire_work_handler(struct work_struct *work)
2386 {
2387 drm_i915_private_t *dev_priv;
2388 struct drm_device *dev;
2389 struct intel_ring_buffer *ring;
2390 bool idle;
2391 int i;
2392
2393 dev_priv = container_of(work, drm_i915_private_t,
2394 mm.retire_work.work);
2395 dev = dev_priv->dev;
2396
2397 /* Come back later if the device is busy... */
2398 if (!mutex_trylock(&dev->struct_mutex)) {
2399 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2400 round_jiffies_up_relative(HZ));
2401 return;
2402 }
2403
2404 i915_gem_retire_requests(dev);
2405
2406 /* Send a periodic flush down the ring so we don't hold onto GEM
2407 * objects indefinitely.
2408 */
2409 idle = true;
2410 for_each_ring(ring, dev_priv, i) {
2411 if (ring->gpu_caches_dirty)
2412 i915_add_request(ring, NULL);
2413
2414 idle &= list_empty(&ring->request_list);
2415 }
2416
2417 if (!dev_priv->ums.mm_suspended && !idle)
2418 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2419 round_jiffies_up_relative(HZ));
2420 if (idle)
2421 intel_mark_idle(dev);
2422
2423 mutex_unlock(&dev->struct_mutex);
2424 }
2425
2426 /**
2427 * Ensures that an object will eventually get non-busy by flushing any required
2428 * write domains, emitting any outstanding lazy request and retiring and
2429 * completed requests.
2430 */
2431 static int
2432 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2433 {
2434 int ret;
2435
2436 if (obj->active) {
2437 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2438 if (ret)
2439 return ret;
2440
2441 i915_gem_retire_requests_ring(obj->ring);
2442 }
2443
2444 return 0;
2445 }
2446
2447 /**
2448 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2449 * @DRM_IOCTL_ARGS: standard ioctl arguments
2450 *
2451 * Returns 0 if successful, else an error is returned with the remaining time in
2452 * the timeout parameter.
2453 * -ETIME: object is still busy after timeout
2454 * -ERESTARTSYS: signal interrupted the wait
2455 * -ENONENT: object doesn't exist
2456 * Also possible, but rare:
2457 * -EAGAIN: GPU wedged
2458 * -ENOMEM: damn
2459 * -ENODEV: Internal IRQ fail
2460 * -E?: The add request failed
2461 *
2462 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2463 * non-zero timeout parameter the wait ioctl will wait for the given number of
2464 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2465 * without holding struct_mutex the object may become re-busied before this
2466 * function completes. A similar but shorter * race condition exists in the busy
2467 * ioctl
2468 */
2469 int
2470 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2471 {
2472 drm_i915_private_t *dev_priv = dev->dev_private;
2473 struct drm_i915_gem_wait *args = data;
2474 struct drm_i915_gem_object *obj;
2475 struct intel_ring_buffer *ring = NULL;
2476 struct timespec timeout_stack, *timeout = NULL;
2477 unsigned reset_counter;
2478 u32 seqno = 0;
2479 int ret = 0;
2480
2481 if (args->timeout_ns >= 0) {
2482 timeout_stack = ns_to_timespec(args->timeout_ns);
2483 timeout = &timeout_stack;
2484 }
2485
2486 ret = i915_mutex_lock_interruptible(dev);
2487 if (ret)
2488 return ret;
2489
2490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2491 if (&obj->base == NULL) {
2492 mutex_unlock(&dev->struct_mutex);
2493 return -ENOENT;
2494 }
2495
2496 /* Need to make sure the object gets inactive eventually. */
2497 ret = i915_gem_object_flush_active(obj);
2498 if (ret)
2499 goto out;
2500
2501 if (obj->active) {
2502 seqno = obj->last_read_seqno;
2503 ring = obj->ring;
2504 }
2505
2506 if (seqno == 0)
2507 goto out;
2508
2509 /* Do this after OLR check to make sure we make forward progress polling
2510 * on this IOCTL with a 0 timeout (like busy ioctl)
2511 */
2512 if (!args->timeout_ns) {
2513 ret = -ETIME;
2514 goto out;
2515 }
2516
2517 drm_gem_object_unreference(&obj->base);
2518 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2519 mutex_unlock(&dev->struct_mutex);
2520
2521 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2522 if (timeout)
2523 args->timeout_ns = timespec_to_ns(timeout);
2524 return ret;
2525
2526 out:
2527 drm_gem_object_unreference(&obj->base);
2528 mutex_unlock(&dev->struct_mutex);
2529 return ret;
2530 }
2531
2532 /**
2533 * i915_gem_object_sync - sync an object to a ring.
2534 *
2535 * @obj: object which may be in use on another ring.
2536 * @to: ring we wish to use the object on. May be NULL.
2537 *
2538 * This code is meant to abstract object synchronization with the GPU.
2539 * Calling with NULL implies synchronizing the object with the CPU
2540 * rather than a particular GPU ring.
2541 *
2542 * Returns 0 if successful, else propagates up the lower layer error.
2543 */
2544 int
2545 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2546 struct intel_ring_buffer *to)
2547 {
2548 struct intel_ring_buffer *from = obj->ring;
2549 u32 seqno;
2550 int ret, idx;
2551
2552 if (from == NULL || to == from)
2553 return 0;
2554
2555 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2556 return i915_gem_object_wait_rendering(obj, false);
2557
2558 idx = intel_ring_sync_index(from, to);
2559
2560 seqno = obj->last_read_seqno;
2561 if (seqno <= from->sync_seqno[idx])
2562 return 0;
2563
2564 ret = i915_gem_check_olr(obj->ring, seqno);
2565 if (ret)
2566 return ret;
2567
2568 ret = to->sync_to(to, from, seqno);
2569 if (!ret)
2570 /* We use last_read_seqno because sync_to()
2571 * might have just caused seqno wrap under
2572 * the radar.
2573 */
2574 from->sync_seqno[idx] = obj->last_read_seqno;
2575
2576 return ret;
2577 }
2578
2579 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2580 {
2581 u32 old_write_domain, old_read_domains;
2582
2583 /* Force a pagefault for domain tracking on next user access */
2584 i915_gem_release_mmap(obj);
2585
2586 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2587 return;
2588
2589 /* Wait for any direct GTT access to complete */
2590 mb();
2591
2592 old_read_domains = obj->base.read_domains;
2593 old_write_domain = obj->base.write_domain;
2594
2595 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2596 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2597
2598 trace_i915_gem_object_change_domain(obj,
2599 old_read_domains,
2600 old_write_domain);
2601 }
2602
2603 int i915_vma_unbind(struct i915_vma *vma)
2604 {
2605 struct drm_i915_gem_object *obj = vma->obj;
2606 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2607 int ret;
2608
2609 if (list_empty(&vma->vma_link))
2610 return 0;
2611
2612 if (obj->pin_count)
2613 return -EBUSY;
2614
2615 BUG_ON(obj->pages == NULL);
2616
2617 ret = i915_gem_object_finish_gpu(obj);
2618 if (ret)
2619 return ret;
2620 /* Continue on if we fail due to EIO, the GPU is hung so we
2621 * should be safe and we need to cleanup or else we might
2622 * cause memory corruption through use-after-free.
2623 */
2624
2625 i915_gem_object_finish_gtt(obj);
2626
2627 /* release the fence reg _after_ flushing */
2628 ret = i915_gem_object_put_fence(obj);
2629 if (ret)
2630 return ret;
2631
2632 trace_i915_vma_unbind(vma);
2633
2634 if (obj->has_global_gtt_mapping)
2635 i915_gem_gtt_unbind_object(obj);
2636 if (obj->has_aliasing_ppgtt_mapping) {
2637 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2638 obj->has_aliasing_ppgtt_mapping = 0;
2639 }
2640 i915_gem_gtt_finish_object(obj);
2641 i915_gem_object_unpin_pages(obj);
2642
2643 list_del(&obj->mm_list);
2644 /* Avoid an unnecessary call to unbind on rebind. */
2645 obj->map_and_fenceable = true;
2646
2647 list_del(&vma->vma_link);
2648 drm_mm_remove_node(&vma->node);
2649 i915_gem_vma_destroy(vma);
2650
2651 /* Since the unbound list is global, only move to that list if
2652 * no more VMAs exist.
2653 * NB: Until we have real VMAs there will only ever be one */
2654 WARN_ON(!list_empty(&obj->vma_list));
2655 if (list_empty(&obj->vma_list))
2656 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2657
2658 return 0;
2659 }
2660
2661 /**
2662 * Unbinds an object from the global GTT aperture.
2663 */
2664 int
2665 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2666 {
2667 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2668 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2669
2670 if (!i915_gem_obj_ggtt_bound(obj));
2671 return 0;
2672
2673 if (obj->pin_count)
2674 return -EBUSY;
2675
2676 BUG_ON(obj->pages == NULL);
2677
2678 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2679 }
2680
2681 int i915_gpu_idle(struct drm_device *dev)
2682 {
2683 drm_i915_private_t *dev_priv = dev->dev_private;
2684 struct intel_ring_buffer *ring;
2685 int ret, i;
2686
2687 /* Flush everything onto the inactive list. */
2688 for_each_ring(ring, dev_priv, i) {
2689 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2690 if (ret)
2691 return ret;
2692
2693 ret = intel_ring_idle(ring);
2694 if (ret)
2695 return ret;
2696 }
2697
2698 return 0;
2699 }
2700
2701 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2702 struct drm_i915_gem_object *obj)
2703 {
2704 drm_i915_private_t *dev_priv = dev->dev_private;
2705 int fence_reg;
2706 int fence_pitch_shift;
2707
2708 if (INTEL_INFO(dev)->gen >= 6) {
2709 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2710 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2711 } else {
2712 fence_reg = FENCE_REG_965_0;
2713 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2714 }
2715
2716 fence_reg += reg * 8;
2717
2718 /* To w/a incoherency with non-atomic 64-bit register updates,
2719 * we split the 64-bit update into two 32-bit writes. In order
2720 * for a partial fence not to be evaluated between writes, we
2721 * precede the update with write to turn off the fence register,
2722 * and only enable the fence as the last step.
2723 *
2724 * For extra levels of paranoia, we make sure each step lands
2725 * before applying the next step.
2726 */
2727 I915_WRITE(fence_reg, 0);
2728 POSTING_READ(fence_reg);
2729
2730 if (obj) {
2731 u32 size = i915_gem_obj_ggtt_size(obj);
2732 uint64_t val;
2733
2734 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2735 0xfffff000) << 32;
2736 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2737 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2738 if (obj->tiling_mode == I915_TILING_Y)
2739 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2740 val |= I965_FENCE_REG_VALID;
2741
2742 I915_WRITE(fence_reg + 4, val >> 32);
2743 POSTING_READ(fence_reg + 4);
2744
2745 I915_WRITE(fence_reg + 0, val);
2746 POSTING_READ(fence_reg);
2747 } else {
2748 I915_WRITE(fence_reg + 4, 0);
2749 POSTING_READ(fence_reg + 4);
2750 }
2751 }
2752
2753 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2754 struct drm_i915_gem_object *obj)
2755 {
2756 drm_i915_private_t *dev_priv = dev->dev_private;
2757 u32 val;
2758
2759 if (obj) {
2760 u32 size = i915_gem_obj_ggtt_size(obj);
2761 int pitch_val;
2762 int tile_width;
2763
2764 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2765 (size & -size) != size ||
2766 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2767 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2768 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2769
2770 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2771 tile_width = 128;
2772 else
2773 tile_width = 512;
2774
2775 /* Note: pitch better be a power of two tile widths */
2776 pitch_val = obj->stride / tile_width;
2777 pitch_val = ffs(pitch_val) - 1;
2778
2779 val = i915_gem_obj_ggtt_offset(obj);
2780 if (obj->tiling_mode == I915_TILING_Y)
2781 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2782 val |= I915_FENCE_SIZE_BITS(size);
2783 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2784 val |= I830_FENCE_REG_VALID;
2785 } else
2786 val = 0;
2787
2788 if (reg < 8)
2789 reg = FENCE_REG_830_0 + reg * 4;
2790 else
2791 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2792
2793 I915_WRITE(reg, val);
2794 POSTING_READ(reg);
2795 }
2796
2797 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2798 struct drm_i915_gem_object *obj)
2799 {
2800 drm_i915_private_t *dev_priv = dev->dev_private;
2801 uint32_t val;
2802
2803 if (obj) {
2804 u32 size = i915_gem_obj_ggtt_size(obj);
2805 uint32_t pitch_val;
2806
2807 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2808 (size & -size) != size ||
2809 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2810 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2811 i915_gem_obj_ggtt_offset(obj), size);
2812
2813 pitch_val = obj->stride / 128;
2814 pitch_val = ffs(pitch_val) - 1;
2815
2816 val = i915_gem_obj_ggtt_offset(obj);
2817 if (obj->tiling_mode == I915_TILING_Y)
2818 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2819 val |= I830_FENCE_SIZE_BITS(size);
2820 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2821 val |= I830_FENCE_REG_VALID;
2822 } else
2823 val = 0;
2824
2825 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2826 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2827 }
2828
2829 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2830 {
2831 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2832 }
2833
2834 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2835 struct drm_i915_gem_object *obj)
2836 {
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838
2839 /* Ensure that all CPU reads are completed before installing a fence
2840 * and all writes before removing the fence.
2841 */
2842 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2843 mb();
2844
2845 WARN(obj && (!obj->stride || !obj->tiling_mode),
2846 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2847 obj->stride, obj->tiling_mode);
2848
2849 switch (INTEL_INFO(dev)->gen) {
2850 case 7:
2851 case 6:
2852 case 5:
2853 case 4: i965_write_fence_reg(dev, reg, obj); break;
2854 case 3: i915_write_fence_reg(dev, reg, obj); break;
2855 case 2: i830_write_fence_reg(dev, reg, obj); break;
2856 default: BUG();
2857 }
2858
2859 /* And similarly be paranoid that no direct access to this region
2860 * is reordered to before the fence is installed.
2861 */
2862 if (i915_gem_object_needs_mb(obj))
2863 mb();
2864 }
2865
2866 static inline int fence_number(struct drm_i915_private *dev_priv,
2867 struct drm_i915_fence_reg *fence)
2868 {
2869 return fence - dev_priv->fence_regs;
2870 }
2871
2872 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2873 struct drm_i915_fence_reg *fence,
2874 bool enable)
2875 {
2876 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2877 int reg = fence_number(dev_priv, fence);
2878
2879 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2880
2881 if (enable) {
2882 obj->fence_reg = reg;
2883 fence->obj = obj;
2884 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2885 } else {
2886 obj->fence_reg = I915_FENCE_REG_NONE;
2887 fence->obj = NULL;
2888 list_del_init(&fence->lru_list);
2889 }
2890 obj->fence_dirty = false;
2891 }
2892
2893 static int
2894 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2895 {
2896 if (obj->last_fenced_seqno) {
2897 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2898 if (ret)
2899 return ret;
2900
2901 obj->last_fenced_seqno = 0;
2902 }
2903
2904 obj->fenced_gpu_access = false;
2905 return 0;
2906 }
2907
2908 int
2909 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2910 {
2911 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2912 struct drm_i915_fence_reg *fence;
2913 int ret;
2914
2915 ret = i915_gem_object_wait_fence(obj);
2916 if (ret)
2917 return ret;
2918
2919 if (obj->fence_reg == I915_FENCE_REG_NONE)
2920 return 0;
2921
2922 fence = &dev_priv->fence_regs[obj->fence_reg];
2923
2924 i915_gem_object_fence_lost(obj);
2925 i915_gem_object_update_fence(obj, fence, false);
2926
2927 return 0;
2928 }
2929
2930 static struct drm_i915_fence_reg *
2931 i915_find_fence_reg(struct drm_device *dev)
2932 {
2933 struct drm_i915_private *dev_priv = dev->dev_private;
2934 struct drm_i915_fence_reg *reg, *avail;
2935 int i;
2936
2937 /* First try to find a free reg */
2938 avail = NULL;
2939 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2940 reg = &dev_priv->fence_regs[i];
2941 if (!reg->obj)
2942 return reg;
2943
2944 if (!reg->pin_count)
2945 avail = reg;
2946 }
2947
2948 if (avail == NULL)
2949 return NULL;
2950
2951 /* None available, try to steal one or wait for a user to finish */
2952 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2953 if (reg->pin_count)
2954 continue;
2955
2956 return reg;
2957 }
2958
2959 return NULL;
2960 }
2961
2962 /**
2963 * i915_gem_object_get_fence - set up fencing for an object
2964 * @obj: object to map through a fence reg
2965 *
2966 * When mapping objects through the GTT, userspace wants to be able to write
2967 * to them without having to worry about swizzling if the object is tiled.
2968 * This function walks the fence regs looking for a free one for @obj,
2969 * stealing one if it can't find any.
2970 *
2971 * It then sets up the reg based on the object's properties: address, pitch
2972 * and tiling format.
2973 *
2974 * For an untiled surface, this removes any existing fence.
2975 */
2976 int
2977 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2978 {
2979 struct drm_device *dev = obj->base.dev;
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981 bool enable = obj->tiling_mode != I915_TILING_NONE;
2982 struct drm_i915_fence_reg *reg;
2983 int ret;
2984
2985 /* Have we updated the tiling parameters upon the object and so
2986 * will need to serialise the write to the associated fence register?
2987 */
2988 if (obj->fence_dirty) {
2989 ret = i915_gem_object_wait_fence(obj);
2990 if (ret)
2991 return ret;
2992 }
2993
2994 /* Just update our place in the LRU if our fence is getting reused. */
2995 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2996 reg = &dev_priv->fence_regs[obj->fence_reg];
2997 if (!obj->fence_dirty) {
2998 list_move_tail(&reg->lru_list,
2999 &dev_priv->mm.fence_list);
3000 return 0;
3001 }
3002 } else if (enable) {
3003 reg = i915_find_fence_reg(dev);
3004 if (reg == NULL)
3005 return -EDEADLK;
3006
3007 if (reg->obj) {
3008 struct drm_i915_gem_object *old = reg->obj;
3009
3010 ret = i915_gem_object_wait_fence(old);
3011 if (ret)
3012 return ret;
3013
3014 i915_gem_object_fence_lost(old);
3015 }
3016 } else
3017 return 0;
3018
3019 i915_gem_object_update_fence(obj, reg, enable);
3020
3021 return 0;
3022 }
3023
3024 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3025 struct drm_mm_node *gtt_space,
3026 unsigned long cache_level)
3027 {
3028 struct drm_mm_node *other;
3029
3030 /* On non-LLC machines we have to be careful when putting differing
3031 * types of snoopable memory together to avoid the prefetcher
3032 * crossing memory domains and dying.
3033 */
3034 if (HAS_LLC(dev))
3035 return true;
3036
3037 if (!drm_mm_node_allocated(gtt_space))
3038 return true;
3039
3040 if (list_empty(&gtt_space->node_list))
3041 return true;
3042
3043 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3044 if (other->allocated && !other->hole_follows && other->color != cache_level)
3045 return false;
3046
3047 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3048 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3049 return false;
3050
3051 return true;
3052 }
3053
3054 static void i915_gem_verify_gtt(struct drm_device *dev)
3055 {
3056 #if WATCH_GTT
3057 struct drm_i915_private *dev_priv = dev->dev_private;
3058 struct drm_i915_gem_object *obj;
3059 int err = 0;
3060
3061 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3062 if (obj->gtt_space == NULL) {
3063 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3064 err++;
3065 continue;
3066 }
3067
3068 if (obj->cache_level != obj->gtt_space->color) {
3069 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3070 i915_gem_obj_ggtt_offset(obj),
3071 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3072 obj->cache_level,
3073 obj->gtt_space->color);
3074 err++;
3075 continue;
3076 }
3077
3078 if (!i915_gem_valid_gtt_space(dev,
3079 obj->gtt_space,
3080 obj->cache_level)) {
3081 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3082 i915_gem_obj_ggtt_offset(obj),
3083 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3084 obj->cache_level);
3085 err++;
3086 continue;
3087 }
3088 }
3089
3090 WARN_ON(err);
3091 #endif
3092 }
3093
3094 /**
3095 * Finds free space in the GTT aperture and binds the object there.
3096 */
3097 static int
3098 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3099 struct i915_address_space *vm,
3100 unsigned alignment,
3101 bool map_and_fenceable,
3102 bool nonblocking)
3103 {
3104 struct drm_device *dev = obj->base.dev;
3105 drm_i915_private_t *dev_priv = dev->dev_private;
3106 u32 size, fence_size, fence_alignment, unfenced_alignment;
3107 bool mappable, fenceable;
3108 size_t gtt_max =
3109 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3110 struct i915_vma *vma;
3111 int ret;
3112
3113 if (WARN_ON(!list_empty(&obj->vma_list)))
3114 return -EBUSY;
3115
3116 fence_size = i915_gem_get_gtt_size(dev,
3117 obj->base.size,
3118 obj->tiling_mode);
3119 fence_alignment = i915_gem_get_gtt_alignment(dev,
3120 obj->base.size,
3121 obj->tiling_mode, true);
3122 unfenced_alignment =
3123 i915_gem_get_gtt_alignment(dev,
3124 obj->base.size,
3125 obj->tiling_mode, false);
3126
3127 if (alignment == 0)
3128 alignment = map_and_fenceable ? fence_alignment :
3129 unfenced_alignment;
3130 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3131 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3132 return -EINVAL;
3133 }
3134
3135 size = map_and_fenceable ? fence_size : obj->base.size;
3136
3137 /* If the object is bigger than the entire aperture, reject it early
3138 * before evicting everything in a vain attempt to find space.
3139 */
3140 if (obj->base.size > gtt_max) {
3141 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3142 obj->base.size,
3143 map_and_fenceable ? "mappable" : "total",
3144 gtt_max);
3145 return -E2BIG;
3146 }
3147
3148 ret = i915_gem_object_get_pages(obj);
3149 if (ret)
3150 return ret;
3151
3152 i915_gem_object_pin_pages(obj);
3153
3154 /* FIXME: For now we only ever use 1 VMA per object */
3155 BUG_ON(!i915_is_ggtt(vm));
3156 WARN_ON(!list_empty(&obj->vma_list));
3157
3158 vma = i915_gem_vma_create(obj, vm);
3159 if (IS_ERR(vma)) {
3160 ret = PTR_ERR(vma);
3161 goto err_unpin;
3162 }
3163
3164 search_free:
3165 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3166 size, alignment,
3167 obj->cache_level, 0, gtt_max);
3168 if (ret) {
3169 ret = i915_gem_evict_something(dev, vm, size, alignment,
3170 obj->cache_level,
3171 map_and_fenceable,
3172 nonblocking);
3173 if (ret == 0)
3174 goto search_free;
3175
3176 goto err_free_vma;
3177 }
3178 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3179 obj->cache_level))) {
3180 ret = -EINVAL;
3181 goto err_remove_node;
3182 }
3183
3184 ret = i915_gem_gtt_prepare_object(obj);
3185 if (ret)
3186 goto err_remove_node;
3187
3188 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3189 list_add_tail(&obj->mm_list, &vm->inactive_list);
3190
3191 /* Keep GGTT vmas first to make debug easier */
3192 if (i915_is_ggtt(vm))
3193 list_add(&vma->vma_link, &obj->vma_list);
3194 else
3195 list_add_tail(&vma->vma_link, &obj->vma_list);
3196
3197 fenceable =
3198 i915_is_ggtt(vm) &&
3199 i915_gem_obj_ggtt_size(obj) == fence_size &&
3200 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3201
3202 mappable =
3203 i915_is_ggtt(vm) &&
3204 vma->node.start + obj->base.size <= dev_priv->gtt.mappable_end;
3205
3206 obj->map_and_fenceable = mappable && fenceable;
3207
3208 trace_i915_vma_bind(vma, map_and_fenceable);
3209 i915_gem_verify_gtt(dev);
3210 return 0;
3211
3212 err_remove_node:
3213 drm_mm_remove_node(&vma->node);
3214 err_free_vma:
3215 i915_gem_vma_destroy(vma);
3216 err_unpin:
3217 i915_gem_object_unpin_pages(obj);
3218 return ret;
3219 }
3220
3221 void
3222 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3223 {
3224 /* If we don't have a page list set up, then we're not pinned
3225 * to GPU, and we can ignore the cache flush because it'll happen
3226 * again at bind time.
3227 */
3228 if (obj->pages == NULL)
3229 return;
3230
3231 /*
3232 * Stolen memory is always coherent with the GPU as it is explicitly
3233 * marked as wc by the system, or the system is cache-coherent.
3234 */
3235 if (obj->stolen)
3236 return;
3237
3238 /* If the GPU is snooping the contents of the CPU cache,
3239 * we do not need to manually clear the CPU cache lines. However,
3240 * the caches are only snooped when the render cache is
3241 * flushed/invalidated. As we always have to emit invalidations
3242 * and flushes when moving into and out of the RENDER domain, correct
3243 * snooping behaviour occurs naturally as the result of our domain
3244 * tracking.
3245 */
3246 if (obj->cache_level != I915_CACHE_NONE)
3247 return;
3248
3249 trace_i915_gem_object_clflush(obj);
3250
3251 drm_clflush_sg(obj->pages);
3252 }
3253
3254 /** Flushes the GTT write domain for the object if it's dirty. */
3255 static void
3256 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3257 {
3258 uint32_t old_write_domain;
3259
3260 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3261 return;
3262
3263 /* No actual flushing is required for the GTT write domain. Writes
3264 * to it immediately go to main memory as far as we know, so there's
3265 * no chipset flush. It also doesn't land in render cache.
3266 *
3267 * However, we do have to enforce the order so that all writes through
3268 * the GTT land before any writes to the device, such as updates to
3269 * the GATT itself.
3270 */
3271 wmb();
3272
3273 old_write_domain = obj->base.write_domain;
3274 obj->base.write_domain = 0;
3275
3276 trace_i915_gem_object_change_domain(obj,
3277 obj->base.read_domains,
3278 old_write_domain);
3279 }
3280
3281 /** Flushes the CPU write domain for the object if it's dirty. */
3282 static void
3283 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3284 {
3285 uint32_t old_write_domain;
3286
3287 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3288 return;
3289
3290 i915_gem_clflush_object(obj);
3291 i915_gem_chipset_flush(obj->base.dev);
3292 old_write_domain = obj->base.write_domain;
3293 obj->base.write_domain = 0;
3294
3295 trace_i915_gem_object_change_domain(obj,
3296 obj->base.read_domains,
3297 old_write_domain);
3298 }
3299
3300 /**
3301 * Moves a single object to the GTT read, and possibly write domain.
3302 *
3303 * This function returns when the move is complete, including waiting on
3304 * flushes to occur.
3305 */
3306 int
3307 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3308 {
3309 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3310 uint32_t old_write_domain, old_read_domains;
3311 int ret;
3312
3313 /* Not valid to be called on unbound objects. */
3314 if (!i915_gem_obj_ggtt_bound(obj))
3315 return -EINVAL;
3316
3317 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3318 return 0;
3319
3320 ret = i915_gem_object_wait_rendering(obj, !write);
3321 if (ret)
3322 return ret;
3323
3324 i915_gem_object_flush_cpu_write_domain(obj);
3325
3326 /* Serialise direct access to this object with the barriers for
3327 * coherent writes from the GPU, by effectively invalidating the
3328 * GTT domain upon first access.
3329 */
3330 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3331 mb();
3332
3333 old_write_domain = obj->base.write_domain;
3334 old_read_domains = obj->base.read_domains;
3335
3336 /* It should now be out of any other write domains, and we can update
3337 * the domain values for our changes.
3338 */
3339 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3340 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3341 if (write) {
3342 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3343 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3344 obj->dirty = 1;
3345 }
3346
3347 trace_i915_gem_object_change_domain(obj,
3348 old_read_domains,
3349 old_write_domain);
3350
3351 /* And bump the LRU for this access */
3352 if (i915_gem_object_is_inactive(obj))
3353 list_move_tail(&obj->mm_list,
3354 &dev_priv->gtt.base.inactive_list);
3355
3356 return 0;
3357 }
3358
3359 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3360 enum i915_cache_level cache_level)
3361 {
3362 struct drm_device *dev = obj->base.dev;
3363 drm_i915_private_t *dev_priv = dev->dev_private;
3364 struct i915_vma *vma;
3365 int ret;
3366
3367 if (obj->cache_level == cache_level)
3368 return 0;
3369
3370 if (obj->pin_count) {
3371 DRM_DEBUG("can not change the cache level of pinned objects\n");
3372 return -EBUSY;
3373 }
3374
3375 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3376 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3377 ret = i915_vma_unbind(vma);
3378 if (ret)
3379 return ret;
3380
3381 break;
3382 }
3383 }
3384
3385 if (i915_gem_obj_bound_any(obj)) {
3386 ret = i915_gem_object_finish_gpu(obj);
3387 if (ret)
3388 return ret;
3389
3390 i915_gem_object_finish_gtt(obj);
3391
3392 /* Before SandyBridge, you could not use tiling or fence
3393 * registers with snooped memory, so relinquish any fences
3394 * currently pointing to our region in the aperture.
3395 */
3396 if (INTEL_INFO(dev)->gen < 6) {
3397 ret = i915_gem_object_put_fence(obj);
3398 if (ret)
3399 return ret;
3400 }
3401
3402 if (obj->has_global_gtt_mapping)
3403 i915_gem_gtt_bind_object(obj, cache_level);
3404 if (obj->has_aliasing_ppgtt_mapping)
3405 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3406 obj, cache_level);
3407 }
3408
3409 if (cache_level == I915_CACHE_NONE) {
3410 u32 old_read_domains, old_write_domain;
3411
3412 /* If we're coming from LLC cached, then we haven't
3413 * actually been tracking whether the data is in the
3414 * CPU cache or not, since we only allow one bit set
3415 * in obj->write_domain and have been skipping the clflushes.
3416 * Just set it to the CPU cache for now.
3417 */
3418 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3419 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3420
3421 old_read_domains = obj->base.read_domains;
3422 old_write_domain = obj->base.write_domain;
3423
3424 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3425 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3426
3427 trace_i915_gem_object_change_domain(obj,
3428 old_read_domains,
3429 old_write_domain);
3430 }
3431
3432 list_for_each_entry(vma, &obj->vma_list, vma_link)
3433 vma->node.color = cache_level;
3434 obj->cache_level = cache_level;
3435 i915_gem_verify_gtt(dev);
3436 return 0;
3437 }
3438
3439 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3440 struct drm_file *file)
3441 {
3442 struct drm_i915_gem_caching *args = data;
3443 struct drm_i915_gem_object *obj;
3444 int ret;
3445
3446 ret = i915_mutex_lock_interruptible(dev);
3447 if (ret)
3448 return ret;
3449
3450 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3451 if (&obj->base == NULL) {
3452 ret = -ENOENT;
3453 goto unlock;
3454 }
3455
3456 args->caching = obj->cache_level != I915_CACHE_NONE;
3457
3458 drm_gem_object_unreference(&obj->base);
3459 unlock:
3460 mutex_unlock(&dev->struct_mutex);
3461 return ret;
3462 }
3463
3464 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3465 struct drm_file *file)
3466 {
3467 struct drm_i915_gem_caching *args = data;
3468 struct drm_i915_gem_object *obj;
3469 enum i915_cache_level level;
3470 int ret;
3471
3472 switch (args->caching) {
3473 case I915_CACHING_NONE:
3474 level = I915_CACHE_NONE;
3475 break;
3476 case I915_CACHING_CACHED:
3477 level = I915_CACHE_LLC;
3478 break;
3479 default:
3480 return -EINVAL;
3481 }
3482
3483 ret = i915_mutex_lock_interruptible(dev);
3484 if (ret)
3485 return ret;
3486
3487 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3488 if (&obj->base == NULL) {
3489 ret = -ENOENT;
3490 goto unlock;
3491 }
3492
3493 ret = i915_gem_object_set_cache_level(obj, level);
3494
3495 drm_gem_object_unreference(&obj->base);
3496 unlock:
3497 mutex_unlock(&dev->struct_mutex);
3498 return ret;
3499 }
3500
3501 /*
3502 * Prepare buffer for display plane (scanout, cursors, etc).
3503 * Can be called from an uninterruptible phase (modesetting) and allows
3504 * any flushes to be pipelined (for pageflips).
3505 */
3506 int
3507 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3508 u32 alignment,
3509 struct intel_ring_buffer *pipelined)
3510 {
3511 u32 old_read_domains, old_write_domain;
3512 int ret;
3513
3514 if (pipelined != obj->ring) {
3515 ret = i915_gem_object_sync(obj, pipelined);
3516 if (ret)
3517 return ret;
3518 }
3519
3520 /* The display engine is not coherent with the LLC cache on gen6. As
3521 * a result, we make sure that the pinning that is about to occur is
3522 * done with uncached PTEs. This is lowest common denominator for all
3523 * chipsets.
3524 *
3525 * However for gen6+, we could do better by using the GFDT bit instead
3526 * of uncaching, which would allow us to flush all the LLC-cached data
3527 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3528 */
3529 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3530 if (ret)
3531 return ret;
3532
3533 /* As the user may map the buffer once pinned in the display plane
3534 * (e.g. libkms for the bootup splash), we have to ensure that we
3535 * always use map_and_fenceable for all scanout buffers.
3536 */
3537 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3538 if (ret)
3539 return ret;
3540
3541 i915_gem_object_flush_cpu_write_domain(obj);
3542
3543 old_write_domain = obj->base.write_domain;
3544 old_read_domains = obj->base.read_domains;
3545
3546 /* It should now be out of any other write domains, and we can update
3547 * the domain values for our changes.
3548 */
3549 obj->base.write_domain = 0;
3550 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3551
3552 trace_i915_gem_object_change_domain(obj,
3553 old_read_domains,
3554 old_write_domain);
3555
3556 return 0;
3557 }
3558
3559 int
3560 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3561 {
3562 int ret;
3563
3564 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3565 return 0;
3566
3567 ret = i915_gem_object_wait_rendering(obj, false);
3568 if (ret)
3569 return ret;
3570
3571 /* Ensure that we invalidate the GPU's caches and TLBs. */
3572 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3573 return 0;
3574 }
3575
3576 /**
3577 * Moves a single object to the CPU read, and possibly write domain.
3578 *
3579 * This function returns when the move is complete, including waiting on
3580 * flushes to occur.
3581 */
3582 int
3583 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3584 {
3585 uint32_t old_write_domain, old_read_domains;
3586 int ret;
3587
3588 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3589 return 0;
3590
3591 ret = i915_gem_object_wait_rendering(obj, !write);
3592 if (ret)
3593 return ret;
3594
3595 i915_gem_object_flush_gtt_write_domain(obj);
3596
3597 old_write_domain = obj->base.write_domain;
3598 old_read_domains = obj->base.read_domains;
3599
3600 /* Flush the CPU cache if it's still invalid. */
3601 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3602 i915_gem_clflush_object(obj);
3603
3604 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3605 }
3606
3607 /* It should now be out of any other write domains, and we can update
3608 * the domain values for our changes.
3609 */
3610 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3611
3612 /* If we're writing through the CPU, then the GPU read domains will
3613 * need to be invalidated at next use.
3614 */
3615 if (write) {
3616 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3617 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3618 }
3619
3620 trace_i915_gem_object_change_domain(obj,
3621 old_read_domains,
3622 old_write_domain);
3623
3624 return 0;
3625 }
3626
3627 /* Throttle our rendering by waiting until the ring has completed our requests
3628 * emitted over 20 msec ago.
3629 *
3630 * Note that if we were to use the current jiffies each time around the loop,
3631 * we wouldn't escape the function with any frames outstanding if the time to
3632 * render a frame was over 20ms.
3633 *
3634 * This should get us reasonable parallelism between CPU and GPU but also
3635 * relatively low latency when blocking on a particular request to finish.
3636 */
3637 static int
3638 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3639 {
3640 struct drm_i915_private *dev_priv = dev->dev_private;
3641 struct drm_i915_file_private *file_priv = file->driver_priv;
3642 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3643 struct drm_i915_gem_request *request;
3644 struct intel_ring_buffer *ring = NULL;
3645 unsigned reset_counter;
3646 u32 seqno = 0;
3647 int ret;
3648
3649 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3650 if (ret)
3651 return ret;
3652
3653 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3654 if (ret)
3655 return ret;
3656
3657 spin_lock(&file_priv->mm.lock);
3658 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3659 if (time_after_eq(request->emitted_jiffies, recent_enough))
3660 break;
3661
3662 ring = request->ring;
3663 seqno = request->seqno;
3664 }
3665 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3666 spin_unlock(&file_priv->mm.lock);
3667
3668 if (seqno == 0)
3669 return 0;
3670
3671 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3672 if (ret == 0)
3673 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3674
3675 return ret;
3676 }
3677
3678 int
3679 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3680 struct i915_address_space *vm,
3681 uint32_t alignment,
3682 bool map_and_fenceable,
3683 bool nonblocking)
3684 {
3685 struct i915_vma *vma;
3686 int ret;
3687
3688 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3689 return -EBUSY;
3690
3691 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3692
3693 vma = i915_gem_obj_to_vma(obj, vm);
3694
3695 if (vma) {
3696 if ((alignment &&
3697 vma->node.start & (alignment - 1)) ||
3698 (map_and_fenceable && !obj->map_and_fenceable)) {
3699 WARN(obj->pin_count,
3700 "bo is already pinned with incorrect alignment:"
3701 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3702 " obj->map_and_fenceable=%d\n",
3703 i915_gem_obj_offset(obj, vm), alignment,
3704 map_and_fenceable,
3705 obj->map_and_fenceable);
3706 ret = i915_vma_unbind(vma);
3707 if (ret)
3708 return ret;
3709 }
3710 }
3711
3712 if (!i915_gem_obj_bound(obj, vm)) {
3713 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3714
3715 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3716 map_and_fenceable,
3717 nonblocking);
3718 if (ret)
3719 return ret;
3720
3721 if (!dev_priv->mm.aliasing_ppgtt)
3722 i915_gem_gtt_bind_object(obj, obj->cache_level);
3723 }
3724
3725 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3726 i915_gem_gtt_bind_object(obj, obj->cache_level);
3727
3728 obj->pin_count++;
3729 obj->pin_mappable |= map_and_fenceable;
3730
3731 return 0;
3732 }
3733
3734 void
3735 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3736 {
3737 BUG_ON(obj->pin_count == 0);
3738 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3739
3740 if (--obj->pin_count == 0)
3741 obj->pin_mappable = false;
3742 }
3743
3744 int
3745 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3746 struct drm_file *file)
3747 {
3748 struct drm_i915_gem_pin *args = data;
3749 struct drm_i915_gem_object *obj;
3750 int ret;
3751
3752 ret = i915_mutex_lock_interruptible(dev);
3753 if (ret)
3754 return ret;
3755
3756 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3757 if (&obj->base == NULL) {
3758 ret = -ENOENT;
3759 goto unlock;
3760 }
3761
3762 if (obj->madv != I915_MADV_WILLNEED) {
3763 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3764 ret = -EINVAL;
3765 goto out;
3766 }
3767
3768 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3769 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3770 args->handle);
3771 ret = -EINVAL;
3772 goto out;
3773 }
3774
3775 if (obj->user_pin_count == 0) {
3776 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3777 if (ret)
3778 goto out;
3779 }
3780
3781 obj->user_pin_count++;
3782 obj->pin_filp = file;
3783
3784 /* XXX - flush the CPU caches for pinned objects
3785 * as the X server doesn't manage domains yet
3786 */
3787 i915_gem_object_flush_cpu_write_domain(obj);
3788 args->offset = i915_gem_obj_ggtt_offset(obj);
3789 out:
3790 drm_gem_object_unreference(&obj->base);
3791 unlock:
3792 mutex_unlock(&dev->struct_mutex);
3793 return ret;
3794 }
3795
3796 int
3797 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3798 struct drm_file *file)
3799 {
3800 struct drm_i915_gem_pin *args = data;
3801 struct drm_i915_gem_object *obj;
3802 int ret;
3803
3804 ret = i915_mutex_lock_interruptible(dev);
3805 if (ret)
3806 return ret;
3807
3808 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3809 if (&obj->base == NULL) {
3810 ret = -ENOENT;
3811 goto unlock;
3812 }
3813
3814 if (obj->pin_filp != file) {
3815 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3816 args->handle);
3817 ret = -EINVAL;
3818 goto out;
3819 }
3820 obj->user_pin_count--;
3821 if (obj->user_pin_count == 0) {
3822 obj->pin_filp = NULL;
3823 i915_gem_object_unpin(obj);
3824 }
3825
3826 out:
3827 drm_gem_object_unreference(&obj->base);
3828 unlock:
3829 mutex_unlock(&dev->struct_mutex);
3830 return ret;
3831 }
3832
3833 int
3834 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3835 struct drm_file *file)
3836 {
3837 struct drm_i915_gem_busy *args = data;
3838 struct drm_i915_gem_object *obj;
3839 int ret;
3840
3841 ret = i915_mutex_lock_interruptible(dev);
3842 if (ret)
3843 return ret;
3844
3845 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3846 if (&obj->base == NULL) {
3847 ret = -ENOENT;
3848 goto unlock;
3849 }
3850
3851 /* Count all active objects as busy, even if they are currently not used
3852 * by the gpu. Users of this interface expect objects to eventually
3853 * become non-busy without any further actions, therefore emit any
3854 * necessary flushes here.
3855 */
3856 ret = i915_gem_object_flush_active(obj);
3857
3858 args->busy = obj->active;
3859 if (obj->ring) {
3860 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3861 args->busy |= intel_ring_flag(obj->ring) << 16;
3862 }
3863
3864 drm_gem_object_unreference(&obj->base);
3865 unlock:
3866 mutex_unlock(&dev->struct_mutex);
3867 return ret;
3868 }
3869
3870 int
3871 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3872 struct drm_file *file_priv)
3873 {
3874 return i915_gem_ring_throttle(dev, file_priv);
3875 }
3876
3877 int
3878 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3879 struct drm_file *file_priv)
3880 {
3881 struct drm_i915_gem_madvise *args = data;
3882 struct drm_i915_gem_object *obj;
3883 int ret;
3884
3885 switch (args->madv) {
3886 case I915_MADV_DONTNEED:
3887 case I915_MADV_WILLNEED:
3888 break;
3889 default:
3890 return -EINVAL;
3891 }
3892
3893 ret = i915_mutex_lock_interruptible(dev);
3894 if (ret)
3895 return ret;
3896
3897 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3898 if (&obj->base == NULL) {
3899 ret = -ENOENT;
3900 goto unlock;
3901 }
3902
3903 if (obj->pin_count) {
3904 ret = -EINVAL;
3905 goto out;
3906 }
3907
3908 if (obj->madv != __I915_MADV_PURGED)
3909 obj->madv = args->madv;
3910
3911 /* if the object is no longer attached, discard its backing storage */
3912 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3913 i915_gem_object_truncate(obj);
3914
3915 args->retained = obj->madv != __I915_MADV_PURGED;
3916
3917 out:
3918 drm_gem_object_unreference(&obj->base);
3919 unlock:
3920 mutex_unlock(&dev->struct_mutex);
3921 return ret;
3922 }
3923
3924 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3925 const struct drm_i915_gem_object_ops *ops)
3926 {
3927 INIT_LIST_HEAD(&obj->mm_list);
3928 INIT_LIST_HEAD(&obj->global_list);
3929 INIT_LIST_HEAD(&obj->ring_list);
3930 INIT_LIST_HEAD(&obj->exec_list);
3931 INIT_LIST_HEAD(&obj->vma_list);
3932
3933 obj->ops = ops;
3934
3935 obj->fence_reg = I915_FENCE_REG_NONE;
3936 obj->madv = I915_MADV_WILLNEED;
3937 /* Avoid an unnecessary call to unbind on the first bind. */
3938 obj->map_and_fenceable = true;
3939
3940 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3941 }
3942
3943 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3944 .get_pages = i915_gem_object_get_pages_gtt,
3945 .put_pages = i915_gem_object_put_pages_gtt,
3946 };
3947
3948 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3949 size_t size)
3950 {
3951 struct drm_i915_gem_object *obj;
3952 struct address_space *mapping;
3953 gfp_t mask;
3954
3955 obj = i915_gem_object_alloc(dev);
3956 if (obj == NULL)
3957 return NULL;
3958
3959 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3960 i915_gem_object_free(obj);
3961 return NULL;
3962 }
3963
3964 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3965 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3966 /* 965gm cannot relocate objects above 4GiB. */
3967 mask &= ~__GFP_HIGHMEM;
3968 mask |= __GFP_DMA32;
3969 }
3970
3971 mapping = file_inode(obj->base.filp)->i_mapping;
3972 mapping_set_gfp_mask(mapping, mask);
3973
3974 i915_gem_object_init(obj, &i915_gem_object_ops);
3975
3976 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3977 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3978
3979 if (HAS_LLC(dev)) {
3980 /* On some devices, we can have the GPU use the LLC (the CPU
3981 * cache) for about a 10% performance improvement
3982 * compared to uncached. Graphics requests other than
3983 * display scanout are coherent with the CPU in
3984 * accessing this cache. This means in this mode we
3985 * don't need to clflush on the CPU side, and on the
3986 * GPU side we only need to flush internal caches to
3987 * get data visible to the CPU.
3988 *
3989 * However, we maintain the display planes as UC, and so
3990 * need to rebind when first used as such.
3991 */
3992 obj->cache_level = I915_CACHE_LLC;
3993 } else
3994 obj->cache_level = I915_CACHE_NONE;
3995
3996 trace_i915_gem_object_create(obj);
3997
3998 return obj;
3999 }
4000
4001 int i915_gem_init_object(struct drm_gem_object *obj)
4002 {
4003 BUG();
4004
4005 return 0;
4006 }
4007
4008 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4009 {
4010 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4011 struct drm_device *dev = obj->base.dev;
4012 drm_i915_private_t *dev_priv = dev->dev_private;
4013 struct i915_vma *vma, *next;
4014
4015 trace_i915_gem_object_destroy(obj);
4016
4017 if (obj->phys_obj)
4018 i915_gem_detach_phys_object(dev, obj);
4019
4020 obj->pin_count = 0;
4021 /* NB: 0 or 1 elements */
4022 WARN_ON(!list_empty(&obj->vma_list) &&
4023 !list_is_singular(&obj->vma_list));
4024 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4025 int ret = i915_vma_unbind(vma);
4026 if (WARN_ON(ret == -ERESTARTSYS)) {
4027 bool was_interruptible;
4028
4029 was_interruptible = dev_priv->mm.interruptible;
4030 dev_priv->mm.interruptible = false;
4031
4032 WARN_ON(i915_vma_unbind(vma));
4033
4034 dev_priv->mm.interruptible = was_interruptible;
4035 }
4036 }
4037
4038 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4039 * before progressing. */
4040 if (obj->stolen)
4041 i915_gem_object_unpin_pages(obj);
4042
4043 if (WARN_ON(obj->pages_pin_count))
4044 obj->pages_pin_count = 0;
4045 i915_gem_object_put_pages(obj);
4046 i915_gem_object_free_mmap_offset(obj);
4047 i915_gem_object_release_stolen(obj);
4048
4049 BUG_ON(obj->pages);
4050
4051 if (obj->base.import_attach)
4052 drm_prime_gem_destroy(&obj->base, NULL);
4053
4054 drm_gem_object_release(&obj->base);
4055 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4056
4057 kfree(obj->bit_17);
4058 i915_gem_object_free(obj);
4059 }
4060
4061 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4062 struct i915_address_space *vm)
4063 {
4064 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4065 if (vma == NULL)
4066 return ERR_PTR(-ENOMEM);
4067
4068 INIT_LIST_HEAD(&vma->vma_link);
4069 vma->vm = vm;
4070 vma->obj = obj;
4071
4072 return vma;
4073 }
4074
4075 void i915_gem_vma_destroy(struct i915_vma *vma)
4076 {
4077 WARN_ON(vma->node.allocated);
4078 kfree(vma);
4079 }
4080
4081 int
4082 i915_gem_idle(struct drm_device *dev)
4083 {
4084 drm_i915_private_t *dev_priv = dev->dev_private;
4085 int ret;
4086
4087 if (dev_priv->ums.mm_suspended) {
4088 mutex_unlock(&dev->struct_mutex);
4089 return 0;
4090 }
4091
4092 ret = i915_gpu_idle(dev);
4093 if (ret) {
4094 mutex_unlock(&dev->struct_mutex);
4095 return ret;
4096 }
4097 i915_gem_retire_requests(dev);
4098
4099 /* Under UMS, be paranoid and evict. */
4100 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4101 i915_gem_evict_everything(dev);
4102
4103 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4104
4105 i915_kernel_lost_context(dev);
4106 i915_gem_cleanup_ringbuffer(dev);
4107
4108 /* Cancel the retire work handler, which should be idle now. */
4109 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4110
4111 return 0;
4112 }
4113
4114 void i915_gem_l3_remap(struct drm_device *dev)
4115 {
4116 drm_i915_private_t *dev_priv = dev->dev_private;
4117 u32 misccpctl;
4118 int i;
4119
4120 if (!HAS_L3_GPU_CACHE(dev))
4121 return;
4122
4123 if (!dev_priv->l3_parity.remap_info)
4124 return;
4125
4126 misccpctl = I915_READ(GEN7_MISCCPCTL);
4127 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4128 POSTING_READ(GEN7_MISCCPCTL);
4129
4130 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4131 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4132 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4133 DRM_DEBUG("0x%x was already programmed to %x\n",
4134 GEN7_L3LOG_BASE + i, remap);
4135 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4136 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4137 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4138 }
4139
4140 /* Make sure all the writes land before disabling dop clock gating */
4141 POSTING_READ(GEN7_L3LOG_BASE);
4142
4143 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4144 }
4145
4146 void i915_gem_init_swizzling(struct drm_device *dev)
4147 {
4148 drm_i915_private_t *dev_priv = dev->dev_private;
4149
4150 if (INTEL_INFO(dev)->gen < 5 ||
4151 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4152 return;
4153
4154 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4155 DISP_TILE_SURFACE_SWIZZLING);
4156
4157 if (IS_GEN5(dev))
4158 return;
4159
4160 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4161 if (IS_GEN6(dev))
4162 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4163 else if (IS_GEN7(dev))
4164 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4165 else
4166 BUG();
4167 }
4168
4169 static bool
4170 intel_enable_blt(struct drm_device *dev)
4171 {
4172 if (!HAS_BLT(dev))
4173 return false;
4174
4175 /* The blitter was dysfunctional on early prototypes */
4176 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4177 DRM_INFO("BLT not supported on this pre-production hardware;"
4178 " graphics performance will be degraded.\n");
4179 return false;
4180 }
4181
4182 return true;
4183 }
4184
4185 static int i915_gem_init_rings(struct drm_device *dev)
4186 {
4187 struct drm_i915_private *dev_priv = dev->dev_private;
4188 int ret;
4189
4190 ret = intel_init_render_ring_buffer(dev);
4191 if (ret)
4192 return ret;
4193
4194 if (HAS_BSD(dev)) {
4195 ret = intel_init_bsd_ring_buffer(dev);
4196 if (ret)
4197 goto cleanup_render_ring;
4198 }
4199
4200 if (intel_enable_blt(dev)) {
4201 ret = intel_init_blt_ring_buffer(dev);
4202 if (ret)
4203 goto cleanup_bsd_ring;
4204 }
4205
4206 if (HAS_VEBOX(dev)) {
4207 ret = intel_init_vebox_ring_buffer(dev);
4208 if (ret)
4209 goto cleanup_blt_ring;
4210 }
4211
4212
4213 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4214 if (ret)
4215 goto cleanup_vebox_ring;
4216
4217 return 0;
4218
4219 cleanup_vebox_ring:
4220 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4221 cleanup_blt_ring:
4222 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4223 cleanup_bsd_ring:
4224 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4225 cleanup_render_ring:
4226 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4227
4228 return ret;
4229 }
4230
4231 int
4232 i915_gem_init_hw(struct drm_device *dev)
4233 {
4234 drm_i915_private_t *dev_priv = dev->dev_private;
4235 int ret;
4236
4237 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4238 return -EIO;
4239
4240 if (dev_priv->ellc_size)
4241 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4242
4243 if (HAS_PCH_NOP(dev)) {
4244 u32 temp = I915_READ(GEN7_MSG_CTL);
4245 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4246 I915_WRITE(GEN7_MSG_CTL, temp);
4247 }
4248
4249 i915_gem_l3_remap(dev);
4250
4251 i915_gem_init_swizzling(dev);
4252
4253 ret = i915_gem_init_rings(dev);
4254 if (ret)
4255 return ret;
4256
4257 /*
4258 * XXX: There was some w/a described somewhere suggesting loading
4259 * contexts before PPGTT.
4260 */
4261 i915_gem_context_init(dev);
4262 if (dev_priv->mm.aliasing_ppgtt) {
4263 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4264 if (ret) {
4265 i915_gem_cleanup_aliasing_ppgtt(dev);
4266 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4267 }
4268 }
4269
4270 return 0;
4271 }
4272
4273 int i915_gem_init(struct drm_device *dev)
4274 {
4275 struct drm_i915_private *dev_priv = dev->dev_private;
4276 int ret;
4277
4278 mutex_lock(&dev->struct_mutex);
4279
4280 if (IS_VALLEYVIEW(dev)) {
4281 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4282 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4283 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4284 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4285 }
4286
4287 i915_gem_init_global_gtt(dev);
4288
4289 ret = i915_gem_init_hw(dev);
4290 mutex_unlock(&dev->struct_mutex);
4291 if (ret) {
4292 i915_gem_cleanup_aliasing_ppgtt(dev);
4293 return ret;
4294 }
4295
4296 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4297 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4298 dev_priv->dri1.allow_batchbuffer = 1;
4299 return 0;
4300 }
4301
4302 void
4303 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4304 {
4305 drm_i915_private_t *dev_priv = dev->dev_private;
4306 struct intel_ring_buffer *ring;
4307 int i;
4308
4309 for_each_ring(ring, dev_priv, i)
4310 intel_cleanup_ring_buffer(ring);
4311 }
4312
4313 int
4314 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4315 struct drm_file *file_priv)
4316 {
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 int ret;
4319
4320 if (drm_core_check_feature(dev, DRIVER_MODESET))
4321 return 0;
4322
4323 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4324 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4325 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4326 }
4327
4328 mutex_lock(&dev->struct_mutex);
4329 dev_priv->ums.mm_suspended = 0;
4330
4331 ret = i915_gem_init_hw(dev);
4332 if (ret != 0) {
4333 mutex_unlock(&dev->struct_mutex);
4334 return ret;
4335 }
4336
4337 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4338 mutex_unlock(&dev->struct_mutex);
4339
4340 ret = drm_irq_install(dev);
4341 if (ret)
4342 goto cleanup_ringbuffer;
4343
4344 return 0;
4345
4346 cleanup_ringbuffer:
4347 mutex_lock(&dev->struct_mutex);
4348 i915_gem_cleanup_ringbuffer(dev);
4349 dev_priv->ums.mm_suspended = 1;
4350 mutex_unlock(&dev->struct_mutex);
4351
4352 return ret;
4353 }
4354
4355 int
4356 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4357 struct drm_file *file_priv)
4358 {
4359 struct drm_i915_private *dev_priv = dev->dev_private;
4360 int ret;
4361
4362 if (drm_core_check_feature(dev, DRIVER_MODESET))
4363 return 0;
4364
4365 drm_irq_uninstall(dev);
4366
4367 mutex_lock(&dev->struct_mutex);
4368 ret = i915_gem_idle(dev);
4369
4370 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4371 * We need to replace this with a semaphore, or something.
4372 * And not confound ums.mm_suspended!
4373 */
4374 if (ret != 0)
4375 dev_priv->ums.mm_suspended = 1;
4376 mutex_unlock(&dev->struct_mutex);
4377
4378 return ret;
4379 }
4380
4381 void
4382 i915_gem_lastclose(struct drm_device *dev)
4383 {
4384 int ret;
4385
4386 if (drm_core_check_feature(dev, DRIVER_MODESET))
4387 return;
4388
4389 mutex_lock(&dev->struct_mutex);
4390 ret = i915_gem_idle(dev);
4391 if (ret)
4392 DRM_ERROR("failed to idle hardware: %d\n", ret);
4393 mutex_unlock(&dev->struct_mutex);
4394 }
4395
4396 static void
4397 init_ring_lists(struct intel_ring_buffer *ring)
4398 {
4399 INIT_LIST_HEAD(&ring->active_list);
4400 INIT_LIST_HEAD(&ring->request_list);
4401 }
4402
4403 static void i915_init_vm(struct drm_i915_private *dev_priv,
4404 struct i915_address_space *vm)
4405 {
4406 vm->dev = dev_priv->dev;
4407 INIT_LIST_HEAD(&vm->active_list);
4408 INIT_LIST_HEAD(&vm->inactive_list);
4409 INIT_LIST_HEAD(&vm->global_link);
4410 list_add(&vm->global_link, &dev_priv->vm_list);
4411 }
4412
4413 void
4414 i915_gem_load(struct drm_device *dev)
4415 {
4416 drm_i915_private_t *dev_priv = dev->dev_private;
4417 int i;
4418
4419 dev_priv->slab =
4420 kmem_cache_create("i915_gem_object",
4421 sizeof(struct drm_i915_gem_object), 0,
4422 SLAB_HWCACHE_ALIGN,
4423 NULL);
4424
4425 INIT_LIST_HEAD(&dev_priv->vm_list);
4426 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4427
4428 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4429 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4430 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4431 for (i = 0; i < I915_NUM_RINGS; i++)
4432 init_ring_lists(&dev_priv->ring[i]);
4433 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4434 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4435 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4436 i915_gem_retire_work_handler);
4437 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4438
4439 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4440 if (IS_GEN3(dev)) {
4441 I915_WRITE(MI_ARB_STATE,
4442 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4443 }
4444
4445 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4446
4447 /* Old X drivers will take 0-2 for front, back, depth buffers */
4448 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4449 dev_priv->fence_reg_start = 3;
4450
4451 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4452 dev_priv->num_fence_regs = 32;
4453 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4454 dev_priv->num_fence_regs = 16;
4455 else
4456 dev_priv->num_fence_regs = 8;
4457
4458 /* Initialize fence registers to zero */
4459 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4460 i915_gem_restore_fences(dev);
4461
4462 i915_gem_detect_bit_6_swizzle(dev);
4463 init_waitqueue_head(&dev_priv->pending_flip_queue);
4464
4465 dev_priv->mm.interruptible = true;
4466
4467 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4468 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4469 register_shrinker(&dev_priv->mm.inactive_shrinker);
4470 }
4471
4472 /*
4473 * Create a physically contiguous memory object for this object
4474 * e.g. for cursor + overlay regs
4475 */
4476 static int i915_gem_init_phys_object(struct drm_device *dev,
4477 int id, int size, int align)
4478 {
4479 drm_i915_private_t *dev_priv = dev->dev_private;
4480 struct drm_i915_gem_phys_object *phys_obj;
4481 int ret;
4482
4483 if (dev_priv->mm.phys_objs[id - 1] || !size)
4484 return 0;
4485
4486 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4487 if (!phys_obj)
4488 return -ENOMEM;
4489
4490 phys_obj->id = id;
4491
4492 phys_obj->handle = drm_pci_alloc(dev, size, align);
4493 if (!phys_obj->handle) {
4494 ret = -ENOMEM;
4495 goto kfree_obj;
4496 }
4497 #ifdef CONFIG_X86
4498 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4499 #endif
4500
4501 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4502
4503 return 0;
4504 kfree_obj:
4505 kfree(phys_obj);
4506 return ret;
4507 }
4508
4509 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4510 {
4511 drm_i915_private_t *dev_priv = dev->dev_private;
4512 struct drm_i915_gem_phys_object *phys_obj;
4513
4514 if (!dev_priv->mm.phys_objs[id - 1])
4515 return;
4516
4517 phys_obj = dev_priv->mm.phys_objs[id - 1];
4518 if (phys_obj->cur_obj) {
4519 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4520 }
4521
4522 #ifdef CONFIG_X86
4523 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4524 #endif
4525 drm_pci_free(dev, phys_obj->handle);
4526 kfree(phys_obj);
4527 dev_priv->mm.phys_objs[id - 1] = NULL;
4528 }
4529
4530 void i915_gem_free_all_phys_object(struct drm_device *dev)
4531 {
4532 int i;
4533
4534 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4535 i915_gem_free_phys_object(dev, i);
4536 }
4537
4538 void i915_gem_detach_phys_object(struct drm_device *dev,
4539 struct drm_i915_gem_object *obj)
4540 {
4541 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4542 char *vaddr;
4543 int i;
4544 int page_count;
4545
4546 if (!obj->phys_obj)
4547 return;
4548 vaddr = obj->phys_obj->handle->vaddr;
4549
4550 page_count = obj->base.size / PAGE_SIZE;
4551 for (i = 0; i < page_count; i++) {
4552 struct page *page = shmem_read_mapping_page(mapping, i);
4553 if (!IS_ERR(page)) {
4554 char *dst = kmap_atomic(page);
4555 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4556 kunmap_atomic(dst);
4557
4558 drm_clflush_pages(&page, 1);
4559
4560 set_page_dirty(page);
4561 mark_page_accessed(page);
4562 page_cache_release(page);
4563 }
4564 }
4565 i915_gem_chipset_flush(dev);
4566
4567 obj->phys_obj->cur_obj = NULL;
4568 obj->phys_obj = NULL;
4569 }
4570
4571 int
4572 i915_gem_attach_phys_object(struct drm_device *dev,
4573 struct drm_i915_gem_object *obj,
4574 int id,
4575 int align)
4576 {
4577 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4578 drm_i915_private_t *dev_priv = dev->dev_private;
4579 int ret = 0;
4580 int page_count;
4581 int i;
4582
4583 if (id > I915_MAX_PHYS_OBJECT)
4584 return -EINVAL;
4585
4586 if (obj->phys_obj) {
4587 if (obj->phys_obj->id == id)
4588 return 0;
4589 i915_gem_detach_phys_object(dev, obj);
4590 }
4591
4592 /* create a new object */
4593 if (!dev_priv->mm.phys_objs[id - 1]) {
4594 ret = i915_gem_init_phys_object(dev, id,
4595 obj->base.size, align);
4596 if (ret) {
4597 DRM_ERROR("failed to init phys object %d size: %zu\n",
4598 id, obj->base.size);
4599 return ret;
4600 }
4601 }
4602
4603 /* bind to the object */
4604 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4605 obj->phys_obj->cur_obj = obj;
4606
4607 page_count = obj->base.size / PAGE_SIZE;
4608
4609 for (i = 0; i < page_count; i++) {
4610 struct page *page;
4611 char *dst, *src;
4612
4613 page = shmem_read_mapping_page(mapping, i);
4614 if (IS_ERR(page))
4615 return PTR_ERR(page);
4616
4617 src = kmap_atomic(page);
4618 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4619 memcpy(dst, src, PAGE_SIZE);
4620 kunmap_atomic(src);
4621
4622 mark_page_accessed(page);
4623 page_cache_release(page);
4624 }
4625
4626 return 0;
4627 }
4628
4629 static int
4630 i915_gem_phys_pwrite(struct drm_device *dev,
4631 struct drm_i915_gem_object *obj,
4632 struct drm_i915_gem_pwrite *args,
4633 struct drm_file *file_priv)
4634 {
4635 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4636 char __user *user_data = to_user_ptr(args->data_ptr);
4637
4638 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4639 unsigned long unwritten;
4640
4641 /* The physical object once assigned is fixed for the lifetime
4642 * of the obj, so we can safely drop the lock and continue
4643 * to access vaddr.
4644 */
4645 mutex_unlock(&dev->struct_mutex);
4646 unwritten = copy_from_user(vaddr, user_data, args->size);
4647 mutex_lock(&dev->struct_mutex);
4648 if (unwritten)
4649 return -EFAULT;
4650 }
4651
4652 i915_gem_chipset_flush(dev);
4653 return 0;
4654 }
4655
4656 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4657 {
4658 struct drm_i915_file_private *file_priv = file->driver_priv;
4659
4660 /* Clean up our request list when the client is going away, so that
4661 * later retire_requests won't dereference our soon-to-be-gone
4662 * file_priv.
4663 */
4664 spin_lock(&file_priv->mm.lock);
4665 while (!list_empty(&file_priv->mm.request_list)) {
4666 struct drm_i915_gem_request *request;
4667
4668 request = list_first_entry(&file_priv->mm.request_list,
4669 struct drm_i915_gem_request,
4670 client_list);
4671 list_del(&request->client_list);
4672 request->file_priv = NULL;
4673 }
4674 spin_unlock(&file_priv->mm.lock);
4675 }
4676
4677 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4678 {
4679 if (!mutex_is_locked(mutex))
4680 return false;
4681
4682 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4683 return mutex->owner == task;
4684 #else
4685 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4686 return false;
4687 #endif
4688 }
4689
4690 static int
4691 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4692 {
4693 struct drm_i915_private *dev_priv =
4694 container_of(shrinker,
4695 struct drm_i915_private,
4696 mm.inactive_shrinker);
4697 struct drm_device *dev = dev_priv->dev;
4698 struct drm_i915_gem_object *obj;
4699 int nr_to_scan = sc->nr_to_scan;
4700 bool unlock = true;
4701 int cnt;
4702
4703 if (!mutex_trylock(&dev->struct_mutex)) {
4704 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4705 return 0;
4706
4707 if (dev_priv->mm.shrinker_no_lock_stealing)
4708 return 0;
4709
4710 unlock = false;
4711 }
4712
4713 if (nr_to_scan) {
4714 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4715 if (nr_to_scan > 0)
4716 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4717 false);
4718 if (nr_to_scan > 0)
4719 i915_gem_shrink_all(dev_priv);
4720 }
4721
4722 cnt = 0;
4723 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4724 if (obj->pages_pin_count == 0)
4725 cnt += obj->base.size >> PAGE_SHIFT;
4726
4727 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4728 if (obj->active)
4729 continue;
4730
4731 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4732 cnt += obj->base.size >> PAGE_SHIFT;
4733 }
4734
4735 if (unlock)
4736 mutex_unlock(&dev->struct_mutex);
4737 return cnt;
4738 }
4739
4740 /* All the new VM stuff */
4741 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4742 struct i915_address_space *vm)
4743 {
4744 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4745 struct i915_vma *vma;
4746
4747 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4748 vm = &dev_priv->gtt.base;
4749
4750 BUG_ON(list_empty(&o->vma_list));
4751 list_for_each_entry(vma, &o->vma_list, vma_link) {
4752 if (vma->vm == vm)
4753 return vma->node.start;
4754
4755 }
4756 return -1;
4757 }
4758
4759 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4760 struct i915_address_space *vm)
4761 {
4762 struct i915_vma *vma;
4763
4764 list_for_each_entry(vma, &o->vma_list, vma_link)
4765 if (vma->vm == vm)
4766 return true;
4767
4768 return false;
4769 }
4770
4771 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4772 {
4773 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4774 struct i915_address_space *vm;
4775
4776 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4777 if (i915_gem_obj_bound(o, vm))
4778 return true;
4779
4780 return false;
4781 }
4782
4783 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4784 struct i915_address_space *vm)
4785 {
4786 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4787 struct i915_vma *vma;
4788
4789 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4790 vm = &dev_priv->gtt.base;
4791
4792 BUG_ON(list_empty(&o->vma_list));
4793
4794 list_for_each_entry(vma, &o->vma_list, vma_link)
4795 if (vma->vm == vm)
4796 return vma->node.size;
4797
4798 return 0;
4799 }
4800
4801 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4802 struct i915_address_space *vm)
4803 {
4804 struct i915_vma *vma;
4805 list_for_each_entry(vma, &obj->vma_list, vma_link)
4806 if (vma->vm == vm)
4807 return vma;
4808
4809 return NULL;
4810 }
This page took 0.166051 seconds and 4 git commands to generate.