drm/i915/gtt: Allow >= 4GB offsets in X86_32
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 i915_gem_chipset_flush(dev);
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014
1015 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1016 return ret;
1017 }
1018
1019 /**
1020 * Writes data to the object referenced by handle.
1021 *
1022 * On error, the contents of the buffer that were to be modified are undefined.
1023 */
1024 int
1025 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1026 struct drm_file *file)
1027 {
1028 struct drm_i915_private *dev_priv = dev->dev_private;
1029 struct drm_i915_gem_pwrite *args = data;
1030 struct drm_i915_gem_object *obj;
1031 int ret;
1032
1033 if (args->size == 0)
1034 return 0;
1035
1036 if (!access_ok(VERIFY_READ,
1037 to_user_ptr(args->data_ptr),
1038 args->size))
1039 return -EFAULT;
1040
1041 if (likely(!i915.prefault_disable)) {
1042 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1043 args->size);
1044 if (ret)
1045 return -EFAULT;
1046 }
1047
1048 intel_runtime_pm_get(dev_priv);
1049
1050 ret = i915_mutex_lock_interruptible(dev);
1051 if (ret)
1052 goto put_rpm;
1053
1054 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1055 if (&obj->base == NULL) {
1056 ret = -ENOENT;
1057 goto unlock;
1058 }
1059
1060 /* Bounds check destination. */
1061 if (args->offset > obj->base.size ||
1062 args->size > obj->base.size - args->offset) {
1063 ret = -EINVAL;
1064 goto out;
1065 }
1066
1067 /* prime objects have no backing filp to GEM pread/pwrite
1068 * pages from.
1069 */
1070 if (!obj->base.filp) {
1071 ret = -EINVAL;
1072 goto out;
1073 }
1074
1075 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1076
1077 ret = -EFAULT;
1078 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1079 * it would end up going through the fenced access, and we'll get
1080 * different detiling behavior between reading and writing.
1081 * pread/pwrite currently are reading and writing from the CPU
1082 * perspective, requiring manual detiling by the client.
1083 */
1084 if (obj->tiling_mode == I915_TILING_NONE &&
1085 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1086 cpu_write_needs_clflush(obj)) {
1087 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1088 /* Note that the gtt paths might fail with non-page-backed user
1089 * pointers (e.g. gtt mappings when moving data between
1090 * textures). Fallback to the shmem path in that case. */
1091 }
1092
1093 if (ret == -EFAULT || ret == -ENOSPC) {
1094 if (obj->phys_handle)
1095 ret = i915_gem_phys_pwrite(obj, args, file);
1096 else
1097 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1098 }
1099
1100 out:
1101 drm_gem_object_unreference(&obj->base);
1102 unlock:
1103 mutex_unlock(&dev->struct_mutex);
1104 put_rpm:
1105 intel_runtime_pm_put(dev_priv);
1106
1107 return ret;
1108 }
1109
1110 int
1111 i915_gem_check_wedge(struct i915_gpu_error *error,
1112 bool interruptible)
1113 {
1114 if (i915_reset_in_progress(error)) {
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
1120 /* Recovery complete, but the reset failed ... */
1121 if (i915_terminally_wedged(error))
1122 return -EIO;
1123
1124 /*
1125 * Check if GPU Reset is in progress - we need intel_ring_begin
1126 * to work properly to reinit the hw state while the gpu is
1127 * still marked as reset-in-progress. Handle this with a flag.
1128 */
1129 if (!error->reload_in_reset)
1130 return -EAGAIN;
1131 }
1132
1133 return 0;
1134 }
1135
1136 static void fake_irq(unsigned long data)
1137 {
1138 wake_up_process((struct task_struct *)data);
1139 }
1140
1141 static bool missed_irq(struct drm_i915_private *dev_priv,
1142 struct intel_engine_cs *ring)
1143 {
1144 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1145 }
1146
1147 static int __i915_spin_request(struct drm_i915_gem_request *req)
1148 {
1149 unsigned long timeout;
1150
1151 if (i915_gem_request_get_ring(req)->irq_refcount)
1152 return -EBUSY;
1153
1154 timeout = jiffies + 1;
1155 while (!need_resched()) {
1156 if (i915_gem_request_completed(req, true))
1157 return 0;
1158
1159 if (time_after_eq(jiffies, timeout))
1160 break;
1161
1162 cpu_relax_lowlatency();
1163 }
1164 if (i915_gem_request_completed(req, false))
1165 return 0;
1166
1167 return -EAGAIN;
1168 }
1169
1170 /**
1171 * __i915_wait_request - wait until execution of request has finished
1172 * @req: duh!
1173 * @reset_counter: reset sequence associated with the given request
1174 * @interruptible: do an interruptible wait (normally yes)
1175 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1176 *
1177 * Note: It is of utmost importance that the passed in seqno and reset_counter
1178 * values have been read by the caller in an smp safe manner. Where read-side
1179 * locks are involved, it is sufficient to read the reset_counter before
1180 * unlocking the lock that protects the seqno. For lockless tricks, the
1181 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1182 * inserted.
1183 *
1184 * Returns 0 if the request was found within the alloted time. Else returns the
1185 * errno with remaining time filled in timeout argument.
1186 */
1187 int __i915_wait_request(struct drm_i915_gem_request *req,
1188 unsigned reset_counter,
1189 bool interruptible,
1190 s64 *timeout,
1191 struct intel_rps_client *rps)
1192 {
1193 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1194 struct drm_device *dev = ring->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 const bool irq_test_in_progress =
1197 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1198 DEFINE_WAIT(wait);
1199 unsigned long timeout_expire;
1200 s64 before, now;
1201 int ret;
1202
1203 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1204
1205 if (list_empty(&req->list))
1206 return 0;
1207
1208 if (i915_gem_request_completed(req, true))
1209 return 0;
1210
1211 timeout_expire = timeout ?
1212 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1213
1214 if (INTEL_INFO(dev_priv)->gen >= 6)
1215 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1216
1217 /* Record current time in case interrupted by signal, or wedged */
1218 trace_i915_gem_request_wait_begin(req);
1219 before = ktime_get_raw_ns();
1220
1221 /* Optimistic spin for the next jiffie before touching IRQs */
1222 ret = __i915_spin_request(req);
1223 if (ret == 0)
1224 goto out;
1225
1226 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1227 ret = -ENODEV;
1228 goto out;
1229 }
1230
1231 for (;;) {
1232 struct timer_list timer;
1233
1234 prepare_to_wait(&ring->irq_queue, &wait,
1235 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1236
1237 /* We need to check whether any gpu reset happened in between
1238 * the caller grabbing the seqno and now ... */
1239 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1240 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1241 * is truely gone. */
1242 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1243 if (ret == 0)
1244 ret = -EAGAIN;
1245 break;
1246 }
1247
1248 if (i915_gem_request_completed(req, false)) {
1249 ret = 0;
1250 break;
1251 }
1252
1253 if (interruptible && signal_pending(current)) {
1254 ret = -ERESTARTSYS;
1255 break;
1256 }
1257
1258 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1259 ret = -ETIME;
1260 break;
1261 }
1262
1263 timer.function = NULL;
1264 if (timeout || missed_irq(dev_priv, ring)) {
1265 unsigned long expire;
1266
1267 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1268 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1269 mod_timer(&timer, expire);
1270 }
1271
1272 io_schedule();
1273
1274 if (timer.function) {
1275 del_singleshot_timer_sync(&timer);
1276 destroy_timer_on_stack(&timer);
1277 }
1278 }
1279 if (!irq_test_in_progress)
1280 ring->irq_put(ring);
1281
1282 finish_wait(&ring->irq_queue, &wait);
1283
1284 out:
1285 now = ktime_get_raw_ns();
1286 trace_i915_gem_request_wait_end(req);
1287
1288 if (timeout) {
1289 s64 tres = *timeout - (now - before);
1290
1291 *timeout = tres < 0 ? 0 : tres;
1292
1293 /*
1294 * Apparently ktime isn't accurate enough and occasionally has a
1295 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1296 * things up to make the test happy. We allow up to 1 jiffy.
1297 *
1298 * This is a regrssion from the timespec->ktime conversion.
1299 */
1300 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1301 *timeout = 0;
1302 }
1303
1304 return ret;
1305 }
1306
1307 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1308 struct drm_file *file)
1309 {
1310 struct drm_i915_private *dev_private;
1311 struct drm_i915_file_private *file_priv;
1312
1313 WARN_ON(!req || !file || req->file_priv);
1314
1315 if (!req || !file)
1316 return -EINVAL;
1317
1318 if (req->file_priv)
1319 return -EINVAL;
1320
1321 dev_private = req->ring->dev->dev_private;
1322 file_priv = file->driver_priv;
1323
1324 spin_lock(&file_priv->mm.lock);
1325 req->file_priv = file_priv;
1326 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1327 spin_unlock(&file_priv->mm.lock);
1328
1329 req->pid = get_pid(task_pid(current));
1330
1331 return 0;
1332 }
1333
1334 static inline void
1335 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1336 {
1337 struct drm_i915_file_private *file_priv = request->file_priv;
1338
1339 if (!file_priv)
1340 return;
1341
1342 spin_lock(&file_priv->mm.lock);
1343 list_del(&request->client_list);
1344 request->file_priv = NULL;
1345 spin_unlock(&file_priv->mm.lock);
1346
1347 put_pid(request->pid);
1348 request->pid = NULL;
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 i915_gem_request_unreference(request);
1369 }
1370
1371 static void
1372 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1373 {
1374 struct intel_engine_cs *engine = req->ring;
1375 struct drm_i915_gem_request *tmp;
1376
1377 lockdep_assert_held(&engine->dev->struct_mutex);
1378
1379 if (list_empty(&req->list))
1380 return;
1381
1382 do {
1383 tmp = list_first_entry(&engine->request_list,
1384 typeof(*tmp), list);
1385
1386 i915_gem_request_retire(tmp);
1387 } while (tmp != req);
1388
1389 WARN_ON(i915_verify_lists(engine->dev));
1390 }
1391
1392 /**
1393 * Waits for a request to be signaled, and cleans up the
1394 * request and object lists appropriately for that event.
1395 */
1396 int
1397 i915_wait_request(struct drm_i915_gem_request *req)
1398 {
1399 struct drm_device *dev;
1400 struct drm_i915_private *dev_priv;
1401 bool interruptible;
1402 int ret;
1403
1404 BUG_ON(req == NULL);
1405
1406 dev = req->ring->dev;
1407 dev_priv = dev->dev_private;
1408 interruptible = dev_priv->mm.interruptible;
1409
1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411
1412 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1413 if (ret)
1414 return ret;
1415
1416 ret = __i915_wait_request(req,
1417 atomic_read(&dev_priv->gpu_error.reset_counter),
1418 interruptible, NULL, NULL);
1419 if (ret)
1420 return ret;
1421
1422 __i915_gem_request_retire__upto(req);
1423 return 0;
1424 }
1425
1426 /**
1427 * Ensures that all rendering to the object has completed and the object is
1428 * safe to unbind from the GTT or access from the CPU.
1429 */
1430 int
1431 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1432 bool readonly)
1433 {
1434 int ret, i;
1435
1436 if (!obj->active)
1437 return 0;
1438
1439 if (readonly) {
1440 if (obj->last_write_req != NULL) {
1441 ret = i915_wait_request(obj->last_write_req);
1442 if (ret)
1443 return ret;
1444
1445 i = obj->last_write_req->ring->id;
1446 if (obj->last_read_req[i] == obj->last_write_req)
1447 i915_gem_object_retire__read(obj, i);
1448 else
1449 i915_gem_object_retire__write(obj);
1450 }
1451 } else {
1452 for (i = 0; i < I915_NUM_RINGS; i++) {
1453 if (obj->last_read_req[i] == NULL)
1454 continue;
1455
1456 ret = i915_wait_request(obj->last_read_req[i]);
1457 if (ret)
1458 return ret;
1459
1460 i915_gem_object_retire__read(obj, i);
1461 }
1462 RQ_BUG_ON(obj->active);
1463 }
1464
1465 return 0;
1466 }
1467
1468 static void
1469 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1470 struct drm_i915_gem_request *req)
1471 {
1472 int ring = req->ring->id;
1473
1474 if (obj->last_read_req[ring] == req)
1475 i915_gem_object_retire__read(obj, ring);
1476 else if (obj->last_write_req == req)
1477 i915_gem_object_retire__write(obj);
1478
1479 __i915_gem_request_retire__upto(req);
1480 }
1481
1482 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1483 * as the object state may change during this call.
1484 */
1485 static __must_check int
1486 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1487 struct intel_rps_client *rps,
1488 bool readonly)
1489 {
1490 struct drm_device *dev = obj->base.dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1493 unsigned reset_counter;
1494 int ret, i, n = 0;
1495
1496 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1497 BUG_ON(!dev_priv->mm.interruptible);
1498
1499 if (!obj->active)
1500 return 0;
1501
1502 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1503 if (ret)
1504 return ret;
1505
1506 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1507
1508 if (readonly) {
1509 struct drm_i915_gem_request *req;
1510
1511 req = obj->last_write_req;
1512 if (req == NULL)
1513 return 0;
1514
1515 requests[n++] = i915_gem_request_reference(req);
1516 } else {
1517 for (i = 0; i < I915_NUM_RINGS; i++) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_read_req[i];
1521 if (req == NULL)
1522 continue;
1523
1524 requests[n++] = i915_gem_request_reference(req);
1525 }
1526 }
1527
1528 mutex_unlock(&dev->struct_mutex);
1529 for (i = 0; ret == 0 && i < n; i++)
1530 ret = __i915_wait_request(requests[i], reset_counter, true,
1531 NULL, rps);
1532 mutex_lock(&dev->struct_mutex);
1533
1534 for (i = 0; i < n; i++) {
1535 if (ret == 0)
1536 i915_gem_object_retire_request(obj, requests[i]);
1537 i915_gem_request_unreference(requests[i]);
1538 }
1539
1540 return ret;
1541 }
1542
1543 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1544 {
1545 struct drm_i915_file_private *fpriv = file->driver_priv;
1546 return &fpriv->rps;
1547 }
1548
1549 /**
1550 * Called when user space prepares to use an object with the CPU, either
1551 * through the mmap ioctl's mapping or a GTT mapping.
1552 */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555 struct drm_file *file)
1556 {
1557 struct drm_i915_gem_set_domain *args = data;
1558 struct drm_i915_gem_object *obj;
1559 uint32_t read_domains = args->read_domains;
1560 uint32_t write_domain = args->write_domain;
1561 int ret;
1562
1563 /* Only handle setting domains to types used by the CPU. */
1564 if (write_domain & I915_GEM_GPU_DOMAINS)
1565 return -EINVAL;
1566
1567 if (read_domains & I915_GEM_GPU_DOMAINS)
1568 return -EINVAL;
1569
1570 /* Having something in the write domain implies it's in the read
1571 * domain, and only that read domain. Enforce that in the request.
1572 */
1573 if (write_domain != 0 && read_domains != write_domain)
1574 return -EINVAL;
1575
1576 ret = i915_mutex_lock_interruptible(dev);
1577 if (ret)
1578 return ret;
1579
1580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1581 if (&obj->base == NULL) {
1582 ret = -ENOENT;
1583 goto unlock;
1584 }
1585
1586 /* Try to flush the object off the GPU without holding the lock.
1587 * We will repeat the flush holding the lock in the normal manner
1588 * to catch cases where we are gazumped.
1589 */
1590 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1591 to_rps_client(file),
1592 !write_domain);
1593 if (ret)
1594 goto unref;
1595
1596 if (read_domains & I915_GEM_DOMAIN_GTT)
1597 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1598 else
1599 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1600
1601 if (write_domain != 0)
1602 intel_fb_obj_invalidate(obj,
1603 write_domain == I915_GEM_DOMAIN_GTT ?
1604 ORIGIN_GTT : ORIGIN_CPU);
1605
1606 unref:
1607 drm_gem_object_unreference(&obj->base);
1608 unlock:
1609 mutex_unlock(&dev->struct_mutex);
1610 return ret;
1611 }
1612
1613 /**
1614 * Called when user space has done writes to this buffer
1615 */
1616 int
1617 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619 {
1620 struct drm_i915_gem_sw_finish *args = data;
1621 struct drm_i915_gem_object *obj;
1622 int ret = 0;
1623
1624 ret = i915_mutex_lock_interruptible(dev);
1625 if (ret)
1626 return ret;
1627
1628 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1629 if (&obj->base == NULL) {
1630 ret = -ENOENT;
1631 goto unlock;
1632 }
1633
1634 /* Pinned buffers may be scanout, so flush the cache */
1635 if (obj->pin_display)
1636 i915_gem_object_flush_cpu_write_domain(obj);
1637
1638 drm_gem_object_unreference(&obj->base);
1639 unlock:
1640 mutex_unlock(&dev->struct_mutex);
1641 return ret;
1642 }
1643
1644 /**
1645 * Maps the contents of an object, returning the address it is mapped
1646 * into.
1647 *
1648 * While the mapping holds a reference on the contents of the object, it doesn't
1649 * imply a ref on the object itself.
1650 *
1651 * IMPORTANT:
1652 *
1653 * DRM driver writers who look a this function as an example for how to do GEM
1654 * mmap support, please don't implement mmap support like here. The modern way
1655 * to implement DRM mmap support is with an mmap offset ioctl (like
1656 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1657 * That way debug tooling like valgrind will understand what's going on, hiding
1658 * the mmap call in a driver private ioctl will break that. The i915 driver only
1659 * does cpu mmaps this way because we didn't know better.
1660 */
1661 int
1662 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1663 struct drm_file *file)
1664 {
1665 struct drm_i915_gem_mmap *args = data;
1666 struct drm_gem_object *obj;
1667 unsigned long addr;
1668
1669 if (args->flags & ~(I915_MMAP_WC))
1670 return -EINVAL;
1671
1672 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1673 return -ENODEV;
1674
1675 obj = drm_gem_object_lookup(dev, file, args->handle);
1676 if (obj == NULL)
1677 return -ENOENT;
1678
1679 /* prime objects have no backing filp to GEM mmap
1680 * pages from.
1681 */
1682 if (!obj->filp) {
1683 drm_gem_object_unreference_unlocked(obj);
1684 return -EINVAL;
1685 }
1686
1687 addr = vm_mmap(obj->filp, 0, args->size,
1688 PROT_READ | PROT_WRITE, MAP_SHARED,
1689 args->offset);
1690 if (args->flags & I915_MMAP_WC) {
1691 struct mm_struct *mm = current->mm;
1692 struct vm_area_struct *vma;
1693
1694 down_write(&mm->mmap_sem);
1695 vma = find_vma(mm, addr);
1696 if (vma)
1697 vma->vm_page_prot =
1698 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 else
1700 addr = -ENOMEM;
1701 up_write(&mm->mmap_sem);
1702 }
1703 drm_gem_object_unreference_unlocked(obj);
1704 if (IS_ERR((void *)addr))
1705 return addr;
1706
1707 args->addr_ptr = (uint64_t) addr;
1708
1709 return 0;
1710 }
1711
1712 /**
1713 * i915_gem_fault - fault a page into the GTT
1714 * vma: VMA in question
1715 * vmf: fault info
1716 *
1717 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1718 * from userspace. The fault handler takes care of binding the object to
1719 * the GTT (if needed), allocating and programming a fence register (again,
1720 * only if needed based on whether the old reg is still valid or the object
1721 * is tiled) and inserting a new PTE into the faulting process.
1722 *
1723 * Note that the faulting process may involve evicting existing objects
1724 * from the GTT and/or fence registers to make room. So performance may
1725 * suffer if the GTT working set is large or there are few fence registers
1726 * left.
1727 */
1728 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1729 {
1730 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1731 struct drm_device *dev = obj->base.dev;
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 struct i915_ggtt_view view = i915_ggtt_view_normal;
1734 pgoff_t page_offset;
1735 unsigned long pfn;
1736 int ret = 0;
1737 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1738
1739 intel_runtime_pm_get(dev_priv);
1740
1741 /* We don't use vmf->pgoff since that has the fake offset */
1742 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1743 PAGE_SHIFT;
1744
1745 ret = i915_mutex_lock_interruptible(dev);
1746 if (ret)
1747 goto out;
1748
1749 trace_i915_gem_object_fault(obj, page_offset, true, write);
1750
1751 /* Try to flush the object off the GPU first without holding the lock.
1752 * Upon reacquiring the lock, we will perform our sanity checks and then
1753 * repeat the flush holding the lock in the normal manner to catch cases
1754 * where we are gazumped.
1755 */
1756 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1757 if (ret)
1758 goto unlock;
1759
1760 /* Access to snoopable pages through the GTT is incoherent. */
1761 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1762 ret = -EFAULT;
1763 goto unlock;
1764 }
1765
1766 /* Use a partial view if the object is bigger than the aperture. */
1767 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1768 obj->tiling_mode == I915_TILING_NONE) {
1769 static const unsigned int chunk_size = 256; // 1 MiB
1770
1771 memset(&view, 0, sizeof(view));
1772 view.type = I915_GGTT_VIEW_PARTIAL;
1773 view.params.partial.offset = rounddown(page_offset, chunk_size);
1774 view.params.partial.size =
1775 min_t(unsigned int,
1776 chunk_size,
1777 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1778 view.params.partial.offset);
1779 }
1780
1781 /* Now pin it into the GTT if needed */
1782 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1783 if (ret)
1784 goto unlock;
1785
1786 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1787 if (ret)
1788 goto unpin;
1789
1790 ret = i915_gem_object_get_fence(obj);
1791 if (ret)
1792 goto unpin;
1793
1794 /* Finally, remap it using the new GTT offset */
1795 pfn = dev_priv->gtt.mappable_base +
1796 i915_gem_obj_ggtt_offset_view(obj, &view);
1797 pfn >>= PAGE_SHIFT;
1798
1799 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1800 /* Overriding existing pages in partial view does not cause
1801 * us any trouble as TLBs are still valid because the fault
1802 * is due to userspace losing part of the mapping or never
1803 * having accessed it before (at this partials' range).
1804 */
1805 unsigned long base = vma->vm_start +
1806 (view.params.partial.offset << PAGE_SHIFT);
1807 unsigned int i;
1808
1809 for (i = 0; i < view.params.partial.size; i++) {
1810 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1811 if (ret)
1812 break;
1813 }
1814
1815 obj->fault_mappable = true;
1816 } else {
1817 if (!obj->fault_mappable) {
1818 unsigned long size = min_t(unsigned long,
1819 vma->vm_end - vma->vm_start,
1820 obj->base.size);
1821 int i;
1822
1823 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1824 ret = vm_insert_pfn(vma,
1825 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1826 pfn + i);
1827 if (ret)
1828 break;
1829 }
1830
1831 obj->fault_mappable = true;
1832 } else
1833 ret = vm_insert_pfn(vma,
1834 (unsigned long)vmf->virtual_address,
1835 pfn + page_offset);
1836 }
1837 unpin:
1838 i915_gem_object_ggtt_unpin_view(obj, &view);
1839 unlock:
1840 mutex_unlock(&dev->struct_mutex);
1841 out:
1842 switch (ret) {
1843 case -EIO:
1844 /*
1845 * We eat errors when the gpu is terminally wedged to avoid
1846 * userspace unduly crashing (gl has no provisions for mmaps to
1847 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1848 * and so needs to be reported.
1849 */
1850 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1851 ret = VM_FAULT_SIGBUS;
1852 break;
1853 }
1854 case -EAGAIN:
1855 /*
1856 * EAGAIN means the gpu is hung and we'll wait for the error
1857 * handler to reset everything when re-faulting in
1858 * i915_mutex_lock_interruptible.
1859 */
1860 case 0:
1861 case -ERESTARTSYS:
1862 case -EINTR:
1863 case -EBUSY:
1864 /*
1865 * EBUSY is ok: this just means that another thread
1866 * already did the job.
1867 */
1868 ret = VM_FAULT_NOPAGE;
1869 break;
1870 case -ENOMEM:
1871 ret = VM_FAULT_OOM;
1872 break;
1873 case -ENOSPC:
1874 case -EFAULT:
1875 ret = VM_FAULT_SIGBUS;
1876 break;
1877 default:
1878 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1879 ret = VM_FAULT_SIGBUS;
1880 break;
1881 }
1882
1883 intel_runtime_pm_put(dev_priv);
1884 return ret;
1885 }
1886
1887 /**
1888 * i915_gem_release_mmap - remove physical page mappings
1889 * @obj: obj in question
1890 *
1891 * Preserve the reservation of the mmapping with the DRM core code, but
1892 * relinquish ownership of the pages back to the system.
1893 *
1894 * It is vital that we remove the page mapping if we have mapped a tiled
1895 * object through the GTT and then lose the fence register due to
1896 * resource pressure. Similarly if the object has been moved out of the
1897 * aperture, than pages mapped into userspace must be revoked. Removing the
1898 * mapping will then trigger a page fault on the next user access, allowing
1899 * fixup by i915_gem_fault().
1900 */
1901 void
1902 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1903 {
1904 if (!obj->fault_mappable)
1905 return;
1906
1907 drm_vma_node_unmap(&obj->base.vma_node,
1908 obj->base.dev->anon_inode->i_mapping);
1909 obj->fault_mappable = false;
1910 }
1911
1912 void
1913 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1914 {
1915 struct drm_i915_gem_object *obj;
1916
1917 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1918 i915_gem_release_mmap(obj);
1919 }
1920
1921 uint32_t
1922 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1923 {
1924 uint32_t gtt_size;
1925
1926 if (INTEL_INFO(dev)->gen >= 4 ||
1927 tiling_mode == I915_TILING_NONE)
1928 return size;
1929
1930 /* Previous chips need a power-of-two fence region when tiling */
1931 if (INTEL_INFO(dev)->gen == 3)
1932 gtt_size = 1024*1024;
1933 else
1934 gtt_size = 512*1024;
1935
1936 while (gtt_size < size)
1937 gtt_size <<= 1;
1938
1939 return gtt_size;
1940 }
1941
1942 /**
1943 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1944 * @obj: object to check
1945 *
1946 * Return the required GTT alignment for an object, taking into account
1947 * potential fence register mapping.
1948 */
1949 uint32_t
1950 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1951 int tiling_mode, bool fenced)
1952 {
1953 /*
1954 * Minimum alignment is 4k (GTT page size), but might be greater
1955 * if a fence register is needed for the object.
1956 */
1957 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1958 tiling_mode == I915_TILING_NONE)
1959 return 4096;
1960
1961 /*
1962 * Previous chips need to be aligned to the size of the smallest
1963 * fence register that can contain the object.
1964 */
1965 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1966 }
1967
1968 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1969 {
1970 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1971 int ret;
1972
1973 if (drm_vma_node_has_offset(&obj->base.vma_node))
1974 return 0;
1975
1976 dev_priv->mm.shrinker_no_lock_stealing = true;
1977
1978 ret = drm_gem_create_mmap_offset(&obj->base);
1979 if (ret != -ENOSPC)
1980 goto out;
1981
1982 /* Badly fragmented mmap space? The only way we can recover
1983 * space is by destroying unwanted objects. We can't randomly release
1984 * mmap_offsets as userspace expects them to be persistent for the
1985 * lifetime of the objects. The closest we can is to release the
1986 * offsets on purgeable objects by truncating it and marking it purged,
1987 * which prevents userspace from ever using that object again.
1988 */
1989 i915_gem_shrink(dev_priv,
1990 obj->base.size >> PAGE_SHIFT,
1991 I915_SHRINK_BOUND |
1992 I915_SHRINK_UNBOUND |
1993 I915_SHRINK_PURGEABLE);
1994 ret = drm_gem_create_mmap_offset(&obj->base);
1995 if (ret != -ENOSPC)
1996 goto out;
1997
1998 i915_gem_shrink_all(dev_priv);
1999 ret = drm_gem_create_mmap_offset(&obj->base);
2000 out:
2001 dev_priv->mm.shrinker_no_lock_stealing = false;
2002
2003 return ret;
2004 }
2005
2006 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2007 {
2008 drm_gem_free_mmap_offset(&obj->base);
2009 }
2010
2011 int
2012 i915_gem_mmap_gtt(struct drm_file *file,
2013 struct drm_device *dev,
2014 uint32_t handle,
2015 uint64_t *offset)
2016 {
2017 struct drm_i915_gem_object *obj;
2018 int ret;
2019
2020 ret = i915_mutex_lock_interruptible(dev);
2021 if (ret)
2022 return ret;
2023
2024 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2025 if (&obj->base == NULL) {
2026 ret = -ENOENT;
2027 goto unlock;
2028 }
2029
2030 if (obj->madv != I915_MADV_WILLNEED) {
2031 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2032 ret = -EFAULT;
2033 goto out;
2034 }
2035
2036 ret = i915_gem_object_create_mmap_offset(obj);
2037 if (ret)
2038 goto out;
2039
2040 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2041
2042 out:
2043 drm_gem_object_unreference(&obj->base);
2044 unlock:
2045 mutex_unlock(&dev->struct_mutex);
2046 return ret;
2047 }
2048
2049 /**
2050 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2051 * @dev: DRM device
2052 * @data: GTT mapping ioctl data
2053 * @file: GEM object info
2054 *
2055 * Simply returns the fake offset to userspace so it can mmap it.
2056 * The mmap call will end up in drm_gem_mmap(), which will set things
2057 * up so we can get faults in the handler above.
2058 *
2059 * The fault handler will take care of binding the object into the GTT
2060 * (since it may have been evicted to make room for something), allocating
2061 * a fence register, and mapping the appropriate aperture address into
2062 * userspace.
2063 */
2064 int
2065 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2066 struct drm_file *file)
2067 {
2068 struct drm_i915_gem_mmap_gtt *args = data;
2069
2070 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2071 }
2072
2073 /* Immediately discard the backing storage */
2074 static void
2075 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2076 {
2077 i915_gem_object_free_mmap_offset(obj);
2078
2079 if (obj->base.filp == NULL)
2080 return;
2081
2082 /* Our goal here is to return as much of the memory as
2083 * is possible back to the system as we are called from OOM.
2084 * To do this we must instruct the shmfs to drop all of its
2085 * backing pages, *now*.
2086 */
2087 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2088 obj->madv = __I915_MADV_PURGED;
2089 }
2090
2091 /* Try to discard unwanted pages */
2092 static void
2093 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2094 {
2095 struct address_space *mapping;
2096
2097 switch (obj->madv) {
2098 case I915_MADV_DONTNEED:
2099 i915_gem_object_truncate(obj);
2100 case __I915_MADV_PURGED:
2101 return;
2102 }
2103
2104 if (obj->base.filp == NULL)
2105 return;
2106
2107 mapping = file_inode(obj->base.filp)->i_mapping,
2108 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2109 }
2110
2111 static void
2112 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2113 {
2114 struct sg_page_iter sg_iter;
2115 int ret;
2116
2117 BUG_ON(obj->madv == __I915_MADV_PURGED);
2118
2119 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2120 if (ret) {
2121 /* In the event of a disaster, abandon all caches and
2122 * hope for the best.
2123 */
2124 WARN_ON(ret != -EIO);
2125 i915_gem_clflush_object(obj, true);
2126 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2127 }
2128
2129 i915_gem_gtt_finish_object(obj);
2130
2131 if (i915_gem_object_needs_bit17_swizzle(obj))
2132 i915_gem_object_save_bit_17_swizzle(obj);
2133
2134 if (obj->madv == I915_MADV_DONTNEED)
2135 obj->dirty = 0;
2136
2137 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2138 struct page *page = sg_page_iter_page(&sg_iter);
2139
2140 if (obj->dirty)
2141 set_page_dirty(page);
2142
2143 if (obj->madv == I915_MADV_WILLNEED)
2144 mark_page_accessed(page);
2145
2146 page_cache_release(page);
2147 }
2148 obj->dirty = 0;
2149
2150 sg_free_table(obj->pages);
2151 kfree(obj->pages);
2152 }
2153
2154 int
2155 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2156 {
2157 const struct drm_i915_gem_object_ops *ops = obj->ops;
2158
2159 if (obj->pages == NULL)
2160 return 0;
2161
2162 if (obj->pages_pin_count)
2163 return -EBUSY;
2164
2165 BUG_ON(i915_gem_obj_bound_any(obj));
2166
2167 /* ->put_pages might need to allocate memory for the bit17 swizzle
2168 * array, hence protect them from being reaped by removing them from gtt
2169 * lists early. */
2170 list_del(&obj->global_list);
2171
2172 ops->put_pages(obj);
2173 obj->pages = NULL;
2174
2175 i915_gem_object_invalidate(obj);
2176
2177 return 0;
2178 }
2179
2180 static int
2181 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2182 {
2183 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2184 int page_count, i;
2185 struct address_space *mapping;
2186 struct sg_table *st;
2187 struct scatterlist *sg;
2188 struct sg_page_iter sg_iter;
2189 struct page *page;
2190 unsigned long last_pfn = 0; /* suppress gcc warning */
2191 int ret;
2192 gfp_t gfp;
2193
2194 /* Assert that the object is not currently in any GPU domain. As it
2195 * wasn't in the GTT, there shouldn't be any way it could have been in
2196 * a GPU cache
2197 */
2198 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2199 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2200
2201 st = kmalloc(sizeof(*st), GFP_KERNEL);
2202 if (st == NULL)
2203 return -ENOMEM;
2204
2205 page_count = obj->base.size / PAGE_SIZE;
2206 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2207 kfree(st);
2208 return -ENOMEM;
2209 }
2210
2211 /* Get the list of pages out of our struct file. They'll be pinned
2212 * at this point until we release them.
2213 *
2214 * Fail silently without starting the shrinker
2215 */
2216 mapping = file_inode(obj->base.filp)->i_mapping;
2217 gfp = mapping_gfp_mask(mapping);
2218 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2219 gfp &= ~(__GFP_IO | __GFP_WAIT);
2220 sg = st->sgl;
2221 st->nents = 0;
2222 for (i = 0; i < page_count; i++) {
2223 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2224 if (IS_ERR(page)) {
2225 i915_gem_shrink(dev_priv,
2226 page_count,
2227 I915_SHRINK_BOUND |
2228 I915_SHRINK_UNBOUND |
2229 I915_SHRINK_PURGEABLE);
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 }
2232 if (IS_ERR(page)) {
2233 /* We've tried hard to allocate the memory by reaping
2234 * our own buffer, now let the real VM do its job and
2235 * go down in flames if truly OOM.
2236 */
2237 i915_gem_shrink_all(dev_priv);
2238 page = shmem_read_mapping_page(mapping, i);
2239 if (IS_ERR(page)) {
2240 ret = PTR_ERR(page);
2241 goto err_pages;
2242 }
2243 }
2244 #ifdef CONFIG_SWIOTLB
2245 if (swiotlb_nr_tbl()) {
2246 st->nents++;
2247 sg_set_page(sg, page, PAGE_SIZE, 0);
2248 sg = sg_next(sg);
2249 continue;
2250 }
2251 #endif
2252 if (!i || page_to_pfn(page) != last_pfn + 1) {
2253 if (i)
2254 sg = sg_next(sg);
2255 st->nents++;
2256 sg_set_page(sg, page, PAGE_SIZE, 0);
2257 } else {
2258 sg->length += PAGE_SIZE;
2259 }
2260 last_pfn = page_to_pfn(page);
2261
2262 /* Check that the i965g/gm workaround works. */
2263 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2264 }
2265 #ifdef CONFIG_SWIOTLB
2266 if (!swiotlb_nr_tbl())
2267 #endif
2268 sg_mark_end(sg);
2269 obj->pages = st;
2270
2271 ret = i915_gem_gtt_prepare_object(obj);
2272 if (ret)
2273 goto err_pages;
2274
2275 if (i915_gem_object_needs_bit17_swizzle(obj))
2276 i915_gem_object_do_bit_17_swizzle(obj);
2277
2278 if (obj->tiling_mode != I915_TILING_NONE &&
2279 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2280 i915_gem_object_pin_pages(obj);
2281
2282 return 0;
2283
2284 err_pages:
2285 sg_mark_end(sg);
2286 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2287 page_cache_release(sg_page_iter_page(&sg_iter));
2288 sg_free_table(st);
2289 kfree(st);
2290
2291 /* shmemfs first checks if there is enough memory to allocate the page
2292 * and reports ENOSPC should there be insufficient, along with the usual
2293 * ENOMEM for a genuine allocation failure.
2294 *
2295 * We use ENOSPC in our driver to mean that we have run out of aperture
2296 * space and so want to translate the error from shmemfs back to our
2297 * usual understanding of ENOMEM.
2298 */
2299 if (ret == -ENOSPC)
2300 ret = -ENOMEM;
2301
2302 return ret;
2303 }
2304
2305 /* Ensure that the associated pages are gathered from the backing storage
2306 * and pinned into our object. i915_gem_object_get_pages() may be called
2307 * multiple times before they are released by a single call to
2308 * i915_gem_object_put_pages() - once the pages are no longer referenced
2309 * either as a result of memory pressure (reaping pages under the shrinker)
2310 * or as the object is itself released.
2311 */
2312 int
2313 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2314 {
2315 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2316 const struct drm_i915_gem_object_ops *ops = obj->ops;
2317 int ret;
2318
2319 if (obj->pages)
2320 return 0;
2321
2322 if (obj->madv != I915_MADV_WILLNEED) {
2323 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2324 return -EFAULT;
2325 }
2326
2327 BUG_ON(obj->pages_pin_count);
2328
2329 ret = ops->get_pages(obj);
2330 if (ret)
2331 return ret;
2332
2333 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2334
2335 obj->get_page.sg = obj->pages->sgl;
2336 obj->get_page.last = 0;
2337
2338 return 0;
2339 }
2340
2341 void i915_vma_move_to_active(struct i915_vma *vma,
2342 struct drm_i915_gem_request *req)
2343 {
2344 struct drm_i915_gem_object *obj = vma->obj;
2345 struct intel_engine_cs *ring;
2346
2347 ring = i915_gem_request_get_ring(req);
2348
2349 /* Add a reference if we're newly entering the active list. */
2350 if (obj->active == 0)
2351 drm_gem_object_reference(&obj->base);
2352 obj->active |= intel_ring_flag(ring);
2353
2354 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2355 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2356
2357 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2358 }
2359
2360 static void
2361 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2362 {
2363 RQ_BUG_ON(obj->last_write_req == NULL);
2364 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2365
2366 i915_gem_request_assign(&obj->last_write_req, NULL);
2367 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2368 }
2369
2370 static void
2371 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2372 {
2373 struct i915_vma *vma;
2374
2375 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2376 RQ_BUG_ON(!(obj->active & (1 << ring)));
2377
2378 list_del_init(&obj->ring_list[ring]);
2379 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2380
2381 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2382 i915_gem_object_retire__write(obj);
2383
2384 obj->active &= ~(1 << ring);
2385 if (obj->active)
2386 return;
2387
2388 /* Bump our place on the bound list to keep it roughly in LRU order
2389 * so that we don't steal from recently used but inactive objects
2390 * (unless we are forced to ofc!)
2391 */
2392 list_move_tail(&obj->global_list,
2393 &to_i915(obj->base.dev)->mm.bound_list);
2394
2395 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2396 if (!list_empty(&vma->mm_list))
2397 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2398 }
2399
2400 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2401 drm_gem_object_unreference(&obj->base);
2402 }
2403
2404 static int
2405 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2406 {
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct intel_engine_cs *ring;
2409 int ret, i, j;
2410
2411 /* Carefully retire all requests without writing to the rings */
2412 for_each_ring(ring, dev_priv, i) {
2413 ret = intel_ring_idle(ring);
2414 if (ret)
2415 return ret;
2416 }
2417 i915_gem_retire_requests(dev);
2418
2419 /* Finally reset hw state */
2420 for_each_ring(ring, dev_priv, i) {
2421 intel_ring_init_seqno(ring, seqno);
2422
2423 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2424 ring->semaphore.sync_seqno[j] = 0;
2425 }
2426
2427 return 0;
2428 }
2429
2430 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2431 {
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 int ret;
2434
2435 if (seqno == 0)
2436 return -EINVAL;
2437
2438 /* HWS page needs to be set less than what we
2439 * will inject to ring
2440 */
2441 ret = i915_gem_init_seqno(dev, seqno - 1);
2442 if (ret)
2443 return ret;
2444
2445 /* Carefully set the last_seqno value so that wrap
2446 * detection still works
2447 */
2448 dev_priv->next_seqno = seqno;
2449 dev_priv->last_seqno = seqno - 1;
2450 if (dev_priv->last_seqno == 0)
2451 dev_priv->last_seqno--;
2452
2453 return 0;
2454 }
2455
2456 int
2457 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2458 {
2459 struct drm_i915_private *dev_priv = dev->dev_private;
2460
2461 /* reserve 0 for non-seqno */
2462 if (dev_priv->next_seqno == 0) {
2463 int ret = i915_gem_init_seqno(dev, 0);
2464 if (ret)
2465 return ret;
2466
2467 dev_priv->next_seqno = 1;
2468 }
2469
2470 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2471 return 0;
2472 }
2473
2474 /*
2475 * NB: This function is not allowed to fail. Doing so would mean the the
2476 * request is not being tracked for completion but the work itself is
2477 * going to happen on the hardware. This would be a Bad Thing(tm).
2478 */
2479 void __i915_add_request(struct drm_i915_gem_request *request,
2480 struct drm_i915_gem_object *obj,
2481 bool flush_caches)
2482 {
2483 struct intel_engine_cs *ring;
2484 struct drm_i915_private *dev_priv;
2485 struct intel_ringbuffer *ringbuf;
2486 u32 request_start;
2487 int ret;
2488
2489 if (WARN_ON(request == NULL))
2490 return;
2491
2492 ring = request->ring;
2493 dev_priv = ring->dev->dev_private;
2494 ringbuf = request->ringbuf;
2495
2496 /*
2497 * To ensure that this call will not fail, space for its emissions
2498 * should already have been reserved in the ring buffer. Let the ring
2499 * know that it is time to use that space up.
2500 */
2501 intel_ring_reserved_space_use(ringbuf);
2502
2503 request_start = intel_ring_get_tail(ringbuf);
2504 /*
2505 * Emit any outstanding flushes - execbuf can fail to emit the flush
2506 * after having emitted the batchbuffer command. Hence we need to fix
2507 * things up similar to emitting the lazy request. The difference here
2508 * is that the flush _must_ happen before the next request, no matter
2509 * what.
2510 */
2511 if (flush_caches) {
2512 if (i915.enable_execlists)
2513 ret = logical_ring_flush_all_caches(request);
2514 else
2515 ret = intel_ring_flush_all_caches(request);
2516 /* Not allowed to fail! */
2517 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2518 }
2519
2520 /* Record the position of the start of the request so that
2521 * should we detect the updated seqno part-way through the
2522 * GPU processing the request, we never over-estimate the
2523 * position of the head.
2524 */
2525 request->postfix = intel_ring_get_tail(ringbuf);
2526
2527 if (i915.enable_execlists)
2528 ret = ring->emit_request(request);
2529 else {
2530 ret = ring->add_request(request);
2531
2532 request->tail = intel_ring_get_tail(ringbuf);
2533 }
2534 /* Not allowed to fail! */
2535 WARN(ret, "emit|add_request failed: %d!\n", ret);
2536
2537 request->head = request_start;
2538
2539 /* Whilst this request exists, batch_obj will be on the
2540 * active_list, and so will hold the active reference. Only when this
2541 * request is retired will the the batch_obj be moved onto the
2542 * inactive_list and lose its active reference. Hence we do not need
2543 * to explicitly hold another reference here.
2544 */
2545 request->batch_obj = obj;
2546
2547 request->emitted_jiffies = jiffies;
2548 ring->last_submitted_seqno = request->seqno;
2549 list_add_tail(&request->list, &ring->request_list);
2550
2551 trace_i915_gem_request_add(request);
2552
2553 i915_queue_hangcheck(ring->dev);
2554
2555 queue_delayed_work(dev_priv->wq,
2556 &dev_priv->mm.retire_work,
2557 round_jiffies_up_relative(HZ));
2558 intel_mark_busy(dev_priv->dev);
2559
2560 /* Sanity check that the reserved size was large enough. */
2561 intel_ring_reserved_space_end(ringbuf);
2562 }
2563
2564 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2565 const struct intel_context *ctx)
2566 {
2567 unsigned long elapsed;
2568
2569 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2570
2571 if (ctx->hang_stats.banned)
2572 return true;
2573
2574 if (ctx->hang_stats.ban_period_seconds &&
2575 elapsed <= ctx->hang_stats.ban_period_seconds) {
2576 if (!i915_gem_context_is_default(ctx)) {
2577 DRM_DEBUG("context hanging too fast, banning!\n");
2578 return true;
2579 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2580 if (i915_stop_ring_allow_warn(dev_priv))
2581 DRM_ERROR("gpu hanging too fast, banning!\n");
2582 return true;
2583 }
2584 }
2585
2586 return false;
2587 }
2588
2589 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2590 struct intel_context *ctx,
2591 const bool guilty)
2592 {
2593 struct i915_ctx_hang_stats *hs;
2594
2595 if (WARN_ON(!ctx))
2596 return;
2597
2598 hs = &ctx->hang_stats;
2599
2600 if (guilty) {
2601 hs->banned = i915_context_is_banned(dev_priv, ctx);
2602 hs->batch_active++;
2603 hs->guilty_ts = get_seconds();
2604 } else {
2605 hs->batch_pending++;
2606 }
2607 }
2608
2609 void i915_gem_request_free(struct kref *req_ref)
2610 {
2611 struct drm_i915_gem_request *req = container_of(req_ref,
2612 typeof(*req), ref);
2613 struct intel_context *ctx = req->ctx;
2614
2615 if (req->file_priv)
2616 i915_gem_request_remove_from_client(req);
2617
2618 if (ctx) {
2619 if (i915.enable_execlists) {
2620 if (ctx != req->ring->default_context)
2621 intel_lr_context_unpin(req);
2622 }
2623
2624 i915_gem_context_unreference(ctx);
2625 }
2626
2627 kmem_cache_free(req->i915->requests, req);
2628 }
2629
2630 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2631 struct intel_context *ctx,
2632 struct drm_i915_gem_request **req_out)
2633 {
2634 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2635 struct drm_i915_gem_request *req;
2636 int ret;
2637
2638 if (!req_out)
2639 return -EINVAL;
2640
2641 *req_out = NULL;
2642
2643 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2644 if (req == NULL)
2645 return -ENOMEM;
2646
2647 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2648 if (ret)
2649 goto err;
2650
2651 kref_init(&req->ref);
2652 req->i915 = dev_priv;
2653 req->ring = ring;
2654 req->ctx = ctx;
2655 i915_gem_context_reference(req->ctx);
2656
2657 if (i915.enable_execlists)
2658 ret = intel_logical_ring_alloc_request_extras(req);
2659 else
2660 ret = intel_ring_alloc_request_extras(req);
2661 if (ret) {
2662 i915_gem_context_unreference(req->ctx);
2663 goto err;
2664 }
2665
2666 /*
2667 * Reserve space in the ring buffer for all the commands required to
2668 * eventually emit this request. This is to guarantee that the
2669 * i915_add_request() call can't fail. Note that the reserve may need
2670 * to be redone if the request is not actually submitted straight
2671 * away, e.g. because a GPU scheduler has deferred it.
2672 */
2673 if (i915.enable_execlists)
2674 ret = intel_logical_ring_reserve_space(req);
2675 else
2676 ret = intel_ring_reserve_space(req);
2677 if (ret) {
2678 /*
2679 * At this point, the request is fully allocated even if not
2680 * fully prepared. Thus it can be cleaned up using the proper
2681 * free code.
2682 */
2683 i915_gem_request_cancel(req);
2684 return ret;
2685 }
2686
2687 *req_out = req;
2688 return 0;
2689
2690 err:
2691 kmem_cache_free(dev_priv->requests, req);
2692 return ret;
2693 }
2694
2695 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2696 {
2697 intel_ring_reserved_space_cancel(req->ringbuf);
2698
2699 i915_gem_request_unreference(req);
2700 }
2701
2702 struct drm_i915_gem_request *
2703 i915_gem_find_active_request(struct intel_engine_cs *ring)
2704 {
2705 struct drm_i915_gem_request *request;
2706
2707 list_for_each_entry(request, &ring->request_list, list) {
2708 if (i915_gem_request_completed(request, false))
2709 continue;
2710
2711 return request;
2712 }
2713
2714 return NULL;
2715 }
2716
2717 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2718 struct intel_engine_cs *ring)
2719 {
2720 struct drm_i915_gem_request *request;
2721 bool ring_hung;
2722
2723 request = i915_gem_find_active_request(ring);
2724
2725 if (request == NULL)
2726 return;
2727
2728 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2729
2730 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2731
2732 list_for_each_entry_continue(request, &ring->request_list, list)
2733 i915_set_reset_status(dev_priv, request->ctx, false);
2734 }
2735
2736 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2737 struct intel_engine_cs *ring)
2738 {
2739 while (!list_empty(&ring->active_list)) {
2740 struct drm_i915_gem_object *obj;
2741
2742 obj = list_first_entry(&ring->active_list,
2743 struct drm_i915_gem_object,
2744 ring_list[ring->id]);
2745
2746 i915_gem_object_retire__read(obj, ring->id);
2747 }
2748
2749 /*
2750 * Clear the execlists queue up before freeing the requests, as those
2751 * are the ones that keep the context and ringbuffer backing objects
2752 * pinned in place.
2753 */
2754 while (!list_empty(&ring->execlist_queue)) {
2755 struct drm_i915_gem_request *submit_req;
2756
2757 submit_req = list_first_entry(&ring->execlist_queue,
2758 struct drm_i915_gem_request,
2759 execlist_link);
2760 list_del(&submit_req->execlist_link);
2761
2762 if (submit_req->ctx != ring->default_context)
2763 intel_lr_context_unpin(submit_req);
2764
2765 i915_gem_request_unreference(submit_req);
2766 }
2767
2768 /*
2769 * We must free the requests after all the corresponding objects have
2770 * been moved off active lists. Which is the same order as the normal
2771 * retire_requests function does. This is important if object hold
2772 * implicit references on things like e.g. ppgtt address spaces through
2773 * the request.
2774 */
2775 while (!list_empty(&ring->request_list)) {
2776 struct drm_i915_gem_request *request;
2777
2778 request = list_first_entry(&ring->request_list,
2779 struct drm_i915_gem_request,
2780 list);
2781
2782 i915_gem_request_retire(request);
2783 }
2784 }
2785
2786 void i915_gem_reset(struct drm_device *dev)
2787 {
2788 struct drm_i915_private *dev_priv = dev->dev_private;
2789 struct intel_engine_cs *ring;
2790 int i;
2791
2792 /*
2793 * Before we free the objects from the requests, we need to inspect
2794 * them for finding the guilty party. As the requests only borrow
2795 * their reference to the objects, the inspection must be done first.
2796 */
2797 for_each_ring(ring, dev_priv, i)
2798 i915_gem_reset_ring_status(dev_priv, ring);
2799
2800 for_each_ring(ring, dev_priv, i)
2801 i915_gem_reset_ring_cleanup(dev_priv, ring);
2802
2803 i915_gem_context_reset(dev);
2804
2805 i915_gem_restore_fences(dev);
2806
2807 WARN_ON(i915_verify_lists(dev));
2808 }
2809
2810 /**
2811 * This function clears the request list as sequence numbers are passed.
2812 */
2813 void
2814 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2815 {
2816 WARN_ON(i915_verify_lists(ring->dev));
2817
2818 /* Retire requests first as we use it above for the early return.
2819 * If we retire requests last, we may use a later seqno and so clear
2820 * the requests lists without clearing the active list, leading to
2821 * confusion.
2822 */
2823 while (!list_empty(&ring->request_list)) {
2824 struct drm_i915_gem_request *request;
2825
2826 request = list_first_entry(&ring->request_list,
2827 struct drm_i915_gem_request,
2828 list);
2829
2830 if (!i915_gem_request_completed(request, true))
2831 break;
2832
2833 i915_gem_request_retire(request);
2834 }
2835
2836 /* Move any buffers on the active list that are no longer referenced
2837 * by the ringbuffer to the flushing/inactive lists as appropriate,
2838 * before we free the context associated with the requests.
2839 */
2840 while (!list_empty(&ring->active_list)) {
2841 struct drm_i915_gem_object *obj;
2842
2843 obj = list_first_entry(&ring->active_list,
2844 struct drm_i915_gem_object,
2845 ring_list[ring->id]);
2846
2847 if (!list_empty(&obj->last_read_req[ring->id]->list))
2848 break;
2849
2850 i915_gem_object_retire__read(obj, ring->id);
2851 }
2852
2853 if (unlikely(ring->trace_irq_req &&
2854 i915_gem_request_completed(ring->trace_irq_req, true))) {
2855 ring->irq_put(ring);
2856 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2857 }
2858
2859 WARN_ON(i915_verify_lists(ring->dev));
2860 }
2861
2862 bool
2863 i915_gem_retire_requests(struct drm_device *dev)
2864 {
2865 struct drm_i915_private *dev_priv = dev->dev_private;
2866 struct intel_engine_cs *ring;
2867 bool idle = true;
2868 int i;
2869
2870 for_each_ring(ring, dev_priv, i) {
2871 i915_gem_retire_requests_ring(ring);
2872 idle &= list_empty(&ring->request_list);
2873 if (i915.enable_execlists) {
2874 unsigned long flags;
2875
2876 spin_lock_irqsave(&ring->execlist_lock, flags);
2877 idle &= list_empty(&ring->execlist_queue);
2878 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2879
2880 intel_execlists_retire_requests(ring);
2881 }
2882 }
2883
2884 if (idle)
2885 mod_delayed_work(dev_priv->wq,
2886 &dev_priv->mm.idle_work,
2887 msecs_to_jiffies(100));
2888
2889 return idle;
2890 }
2891
2892 static void
2893 i915_gem_retire_work_handler(struct work_struct *work)
2894 {
2895 struct drm_i915_private *dev_priv =
2896 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2897 struct drm_device *dev = dev_priv->dev;
2898 bool idle;
2899
2900 /* Come back later if the device is busy... */
2901 idle = false;
2902 if (mutex_trylock(&dev->struct_mutex)) {
2903 idle = i915_gem_retire_requests(dev);
2904 mutex_unlock(&dev->struct_mutex);
2905 }
2906 if (!idle)
2907 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2908 round_jiffies_up_relative(HZ));
2909 }
2910
2911 static void
2912 i915_gem_idle_work_handler(struct work_struct *work)
2913 {
2914 struct drm_i915_private *dev_priv =
2915 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2916 struct drm_device *dev = dev_priv->dev;
2917 struct intel_engine_cs *ring;
2918 int i;
2919
2920 for_each_ring(ring, dev_priv, i)
2921 if (!list_empty(&ring->request_list))
2922 return;
2923
2924 intel_mark_idle(dev);
2925
2926 if (mutex_trylock(&dev->struct_mutex)) {
2927 struct intel_engine_cs *ring;
2928 int i;
2929
2930 for_each_ring(ring, dev_priv, i)
2931 i915_gem_batch_pool_fini(&ring->batch_pool);
2932
2933 mutex_unlock(&dev->struct_mutex);
2934 }
2935 }
2936
2937 /**
2938 * Ensures that an object will eventually get non-busy by flushing any required
2939 * write domains, emitting any outstanding lazy request and retiring and
2940 * completed requests.
2941 */
2942 static int
2943 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2944 {
2945 int i;
2946
2947 if (!obj->active)
2948 return 0;
2949
2950 for (i = 0; i < I915_NUM_RINGS; i++) {
2951 struct drm_i915_gem_request *req;
2952
2953 req = obj->last_read_req[i];
2954 if (req == NULL)
2955 continue;
2956
2957 if (list_empty(&req->list))
2958 goto retire;
2959
2960 if (i915_gem_request_completed(req, true)) {
2961 __i915_gem_request_retire__upto(req);
2962 retire:
2963 i915_gem_object_retire__read(obj, i);
2964 }
2965 }
2966
2967 return 0;
2968 }
2969
2970 /**
2971 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2972 * @DRM_IOCTL_ARGS: standard ioctl arguments
2973 *
2974 * Returns 0 if successful, else an error is returned with the remaining time in
2975 * the timeout parameter.
2976 * -ETIME: object is still busy after timeout
2977 * -ERESTARTSYS: signal interrupted the wait
2978 * -ENONENT: object doesn't exist
2979 * Also possible, but rare:
2980 * -EAGAIN: GPU wedged
2981 * -ENOMEM: damn
2982 * -ENODEV: Internal IRQ fail
2983 * -E?: The add request failed
2984 *
2985 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2986 * non-zero timeout parameter the wait ioctl will wait for the given number of
2987 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2988 * without holding struct_mutex the object may become re-busied before this
2989 * function completes. A similar but shorter * race condition exists in the busy
2990 * ioctl
2991 */
2992 int
2993 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2994 {
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 struct drm_i915_gem_wait *args = data;
2997 struct drm_i915_gem_object *obj;
2998 struct drm_i915_gem_request *req[I915_NUM_RINGS];
2999 unsigned reset_counter;
3000 int i, n = 0;
3001 int ret;
3002
3003 if (args->flags != 0)
3004 return -EINVAL;
3005
3006 ret = i915_mutex_lock_interruptible(dev);
3007 if (ret)
3008 return ret;
3009
3010 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3011 if (&obj->base == NULL) {
3012 mutex_unlock(&dev->struct_mutex);
3013 return -ENOENT;
3014 }
3015
3016 /* Need to make sure the object gets inactive eventually. */
3017 ret = i915_gem_object_flush_active(obj);
3018 if (ret)
3019 goto out;
3020
3021 if (!obj->active)
3022 goto out;
3023
3024 /* Do this after OLR check to make sure we make forward progress polling
3025 * on this IOCTL with a timeout == 0 (like busy ioctl)
3026 */
3027 if (args->timeout_ns == 0) {
3028 ret = -ETIME;
3029 goto out;
3030 }
3031
3032 drm_gem_object_unreference(&obj->base);
3033 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3034
3035 for (i = 0; i < I915_NUM_RINGS; i++) {
3036 if (obj->last_read_req[i] == NULL)
3037 continue;
3038
3039 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3040 }
3041
3042 mutex_unlock(&dev->struct_mutex);
3043
3044 for (i = 0; i < n; i++) {
3045 if (ret == 0)
3046 ret = __i915_wait_request(req[i], reset_counter, true,
3047 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3048 file->driver_priv);
3049 i915_gem_request_unreference__unlocked(req[i]);
3050 }
3051 return ret;
3052
3053 out:
3054 drm_gem_object_unreference(&obj->base);
3055 mutex_unlock(&dev->struct_mutex);
3056 return ret;
3057 }
3058
3059 static int
3060 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3061 struct intel_engine_cs *to,
3062 struct drm_i915_gem_request *from_req,
3063 struct drm_i915_gem_request **to_req)
3064 {
3065 struct intel_engine_cs *from;
3066 int ret;
3067
3068 from = i915_gem_request_get_ring(from_req);
3069 if (to == from)
3070 return 0;
3071
3072 if (i915_gem_request_completed(from_req, true))
3073 return 0;
3074
3075 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3076 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3077 ret = __i915_wait_request(from_req,
3078 atomic_read(&i915->gpu_error.reset_counter),
3079 i915->mm.interruptible,
3080 NULL,
3081 &i915->rps.semaphores);
3082 if (ret)
3083 return ret;
3084
3085 i915_gem_object_retire_request(obj, from_req);
3086 } else {
3087 int idx = intel_ring_sync_index(from, to);
3088 u32 seqno = i915_gem_request_get_seqno(from_req);
3089
3090 WARN_ON(!to_req);
3091
3092 if (seqno <= from->semaphore.sync_seqno[idx])
3093 return 0;
3094
3095 if (*to_req == NULL) {
3096 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3097 if (ret)
3098 return ret;
3099 }
3100
3101 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3102 ret = to->semaphore.sync_to(*to_req, from, seqno);
3103 if (ret)
3104 return ret;
3105
3106 /* We use last_read_req because sync_to()
3107 * might have just caused seqno wrap under
3108 * the radar.
3109 */
3110 from->semaphore.sync_seqno[idx] =
3111 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3112 }
3113
3114 return 0;
3115 }
3116
3117 /**
3118 * i915_gem_object_sync - sync an object to a ring.
3119 *
3120 * @obj: object which may be in use on another ring.
3121 * @to: ring we wish to use the object on. May be NULL.
3122 * @to_req: request we wish to use the object for. See below.
3123 * This will be allocated and returned if a request is
3124 * required but not passed in.
3125 *
3126 * This code is meant to abstract object synchronization with the GPU.
3127 * Calling with NULL implies synchronizing the object with the CPU
3128 * rather than a particular GPU ring. Conceptually we serialise writes
3129 * between engines inside the GPU. We only allow one engine to write
3130 * into a buffer at any time, but multiple readers. To ensure each has
3131 * a coherent view of memory, we must:
3132 *
3133 * - If there is an outstanding write request to the object, the new
3134 * request must wait for it to complete (either CPU or in hw, requests
3135 * on the same ring will be naturally ordered).
3136 *
3137 * - If we are a write request (pending_write_domain is set), the new
3138 * request must wait for outstanding read requests to complete.
3139 *
3140 * For CPU synchronisation (NULL to) no request is required. For syncing with
3141 * rings to_req must be non-NULL. However, a request does not have to be
3142 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3143 * request will be allocated automatically and returned through *to_req. Note
3144 * that it is not guaranteed that commands will be emitted (because the system
3145 * might already be idle). Hence there is no need to create a request that
3146 * might never have any work submitted. Note further that if a request is
3147 * returned in *to_req, it is the responsibility of the caller to submit
3148 * that request (after potentially adding more work to it).
3149 *
3150 * Returns 0 if successful, else propagates up the lower layer error.
3151 */
3152 int
3153 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3154 struct intel_engine_cs *to,
3155 struct drm_i915_gem_request **to_req)
3156 {
3157 const bool readonly = obj->base.pending_write_domain == 0;
3158 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3159 int ret, i, n;
3160
3161 if (!obj->active)
3162 return 0;
3163
3164 if (to == NULL)
3165 return i915_gem_object_wait_rendering(obj, readonly);
3166
3167 n = 0;
3168 if (readonly) {
3169 if (obj->last_write_req)
3170 req[n++] = obj->last_write_req;
3171 } else {
3172 for (i = 0; i < I915_NUM_RINGS; i++)
3173 if (obj->last_read_req[i])
3174 req[n++] = obj->last_read_req[i];
3175 }
3176 for (i = 0; i < n; i++) {
3177 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3178 if (ret)
3179 return ret;
3180 }
3181
3182 return 0;
3183 }
3184
3185 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3186 {
3187 u32 old_write_domain, old_read_domains;
3188
3189 /* Force a pagefault for domain tracking on next user access */
3190 i915_gem_release_mmap(obj);
3191
3192 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3193 return;
3194
3195 /* Wait for any direct GTT access to complete */
3196 mb();
3197
3198 old_read_domains = obj->base.read_domains;
3199 old_write_domain = obj->base.write_domain;
3200
3201 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3202 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3203
3204 trace_i915_gem_object_change_domain(obj,
3205 old_read_domains,
3206 old_write_domain);
3207 }
3208
3209 int i915_vma_unbind(struct i915_vma *vma)
3210 {
3211 struct drm_i915_gem_object *obj = vma->obj;
3212 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3213 int ret;
3214
3215 if (list_empty(&vma->vma_link))
3216 return 0;
3217
3218 if (!drm_mm_node_allocated(&vma->node)) {
3219 i915_gem_vma_destroy(vma);
3220 return 0;
3221 }
3222
3223 if (vma->pin_count)
3224 return -EBUSY;
3225
3226 BUG_ON(obj->pages == NULL);
3227
3228 ret = i915_gem_object_wait_rendering(obj, false);
3229 if (ret)
3230 return ret;
3231 /* Continue on if we fail due to EIO, the GPU is hung so we
3232 * should be safe and we need to cleanup or else we might
3233 * cause memory corruption through use-after-free.
3234 */
3235
3236 if (i915_is_ggtt(vma->vm) &&
3237 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3238 i915_gem_object_finish_gtt(obj);
3239
3240 /* release the fence reg _after_ flushing */
3241 ret = i915_gem_object_put_fence(obj);
3242 if (ret)
3243 return ret;
3244 }
3245
3246 trace_i915_vma_unbind(vma);
3247
3248 vma->vm->unbind_vma(vma);
3249 vma->bound = 0;
3250
3251 list_del_init(&vma->mm_list);
3252 if (i915_is_ggtt(vma->vm)) {
3253 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254 obj->map_and_fenceable = false;
3255 } else if (vma->ggtt_view.pages) {
3256 sg_free_table(vma->ggtt_view.pages);
3257 kfree(vma->ggtt_view.pages);
3258 }
3259 vma->ggtt_view.pages = NULL;
3260 }
3261
3262 drm_mm_remove_node(&vma->node);
3263 i915_gem_vma_destroy(vma);
3264
3265 /* Since the unbound list is global, only move to that list if
3266 * no more VMAs exist. */
3267 if (list_empty(&obj->vma_list))
3268 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3269
3270 /* And finally now the object is completely decoupled from this vma,
3271 * we can drop its hold on the backing storage and allow it to be
3272 * reaped by the shrinker.
3273 */
3274 i915_gem_object_unpin_pages(obj);
3275
3276 return 0;
3277 }
3278
3279 int i915_gpu_idle(struct drm_device *dev)
3280 {
3281 struct drm_i915_private *dev_priv = dev->dev_private;
3282 struct intel_engine_cs *ring;
3283 int ret, i;
3284
3285 /* Flush everything onto the inactive list. */
3286 for_each_ring(ring, dev_priv, i) {
3287 if (!i915.enable_execlists) {
3288 struct drm_i915_gem_request *req;
3289
3290 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3291 if (ret)
3292 return ret;
3293
3294 ret = i915_switch_context(req);
3295 if (ret) {
3296 i915_gem_request_cancel(req);
3297 return ret;
3298 }
3299
3300 i915_add_request_no_flush(req);
3301 }
3302
3303 ret = intel_ring_idle(ring);
3304 if (ret)
3305 return ret;
3306 }
3307
3308 WARN_ON(i915_verify_lists(dev));
3309 return 0;
3310 }
3311
3312 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3313 unsigned long cache_level)
3314 {
3315 struct drm_mm_node *gtt_space = &vma->node;
3316 struct drm_mm_node *other;
3317
3318 /*
3319 * On some machines we have to be careful when putting differing types
3320 * of snoopable memory together to avoid the prefetcher crossing memory
3321 * domains and dying. During vm initialisation, we decide whether or not
3322 * these constraints apply and set the drm_mm.color_adjust
3323 * appropriately.
3324 */
3325 if (vma->vm->mm.color_adjust == NULL)
3326 return true;
3327
3328 if (!drm_mm_node_allocated(gtt_space))
3329 return true;
3330
3331 if (list_empty(&gtt_space->node_list))
3332 return true;
3333
3334 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3335 if (other->allocated && !other->hole_follows && other->color != cache_level)
3336 return false;
3337
3338 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3339 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3340 return false;
3341
3342 return true;
3343 }
3344
3345 /**
3346 * Finds free space in the GTT aperture and binds the object or a view of it
3347 * there.
3348 */
3349 static struct i915_vma *
3350 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3351 struct i915_address_space *vm,
3352 const struct i915_ggtt_view *ggtt_view,
3353 unsigned alignment,
3354 uint64_t flags)
3355 {
3356 struct drm_device *dev = obj->base.dev;
3357 struct drm_i915_private *dev_priv = dev->dev_private;
3358 u32 fence_alignment, unfenced_alignment;
3359 u64 size, fence_size;
3360 u64 start =
3361 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3362 u64 end =
3363 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3364 struct i915_vma *vma;
3365 int ret;
3366
3367 if (i915_is_ggtt(vm)) {
3368 u32 view_size;
3369
3370 if (WARN_ON(!ggtt_view))
3371 return ERR_PTR(-EINVAL);
3372
3373 view_size = i915_ggtt_view_size(obj, ggtt_view);
3374
3375 fence_size = i915_gem_get_gtt_size(dev,
3376 view_size,
3377 obj->tiling_mode);
3378 fence_alignment = i915_gem_get_gtt_alignment(dev,
3379 view_size,
3380 obj->tiling_mode,
3381 true);
3382 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3383 view_size,
3384 obj->tiling_mode,
3385 false);
3386 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3387 } else {
3388 fence_size = i915_gem_get_gtt_size(dev,
3389 obj->base.size,
3390 obj->tiling_mode);
3391 fence_alignment = i915_gem_get_gtt_alignment(dev,
3392 obj->base.size,
3393 obj->tiling_mode,
3394 true);
3395 unfenced_alignment =
3396 i915_gem_get_gtt_alignment(dev,
3397 obj->base.size,
3398 obj->tiling_mode,
3399 false);
3400 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3401 }
3402
3403 if (alignment == 0)
3404 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3405 unfenced_alignment;
3406 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3407 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3408 ggtt_view ? ggtt_view->type : 0,
3409 alignment);
3410 return ERR_PTR(-EINVAL);
3411 }
3412
3413 /* If binding the object/GGTT view requires more space than the entire
3414 * aperture has, reject it early before evicting everything in a vain
3415 * attempt to find space.
3416 */
3417 if (size > end) {
3418 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3419 ggtt_view ? ggtt_view->type : 0,
3420 size,
3421 flags & PIN_MAPPABLE ? "mappable" : "total",
3422 end);
3423 return ERR_PTR(-E2BIG);
3424 }
3425
3426 ret = i915_gem_object_get_pages(obj);
3427 if (ret)
3428 return ERR_PTR(ret);
3429
3430 i915_gem_object_pin_pages(obj);
3431
3432 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3433 i915_gem_obj_lookup_or_create_vma(obj, vm);
3434
3435 if (IS_ERR(vma))
3436 goto err_unpin;
3437
3438 search_free:
3439 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3440 size, alignment,
3441 obj->cache_level,
3442 start, end,
3443 DRM_MM_SEARCH_DEFAULT,
3444 DRM_MM_CREATE_DEFAULT);
3445 if (ret) {
3446 ret = i915_gem_evict_something(dev, vm, size, alignment,
3447 obj->cache_level,
3448 start, end,
3449 flags);
3450 if (ret == 0)
3451 goto search_free;
3452
3453 goto err_free_vma;
3454 }
3455 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3456 ret = -EINVAL;
3457 goto err_remove_node;
3458 }
3459
3460 trace_i915_vma_bind(vma, flags);
3461 ret = i915_vma_bind(vma, obj->cache_level, flags);
3462 if (ret)
3463 goto err_remove_node;
3464
3465 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3466 list_add_tail(&vma->mm_list, &vm->inactive_list);
3467
3468 return vma;
3469
3470 err_remove_node:
3471 drm_mm_remove_node(&vma->node);
3472 err_free_vma:
3473 i915_gem_vma_destroy(vma);
3474 vma = ERR_PTR(ret);
3475 err_unpin:
3476 i915_gem_object_unpin_pages(obj);
3477 return vma;
3478 }
3479
3480 bool
3481 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3482 bool force)
3483 {
3484 /* If we don't have a page list set up, then we're not pinned
3485 * to GPU, and we can ignore the cache flush because it'll happen
3486 * again at bind time.
3487 */
3488 if (obj->pages == NULL)
3489 return false;
3490
3491 /*
3492 * Stolen memory is always coherent with the GPU as it is explicitly
3493 * marked as wc by the system, or the system is cache-coherent.
3494 */
3495 if (obj->stolen || obj->phys_handle)
3496 return false;
3497
3498 /* If the GPU is snooping the contents of the CPU cache,
3499 * we do not need to manually clear the CPU cache lines. However,
3500 * the caches are only snooped when the render cache is
3501 * flushed/invalidated. As we always have to emit invalidations
3502 * and flushes when moving into and out of the RENDER domain, correct
3503 * snooping behaviour occurs naturally as the result of our domain
3504 * tracking.
3505 */
3506 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3507 obj->cache_dirty = true;
3508 return false;
3509 }
3510
3511 trace_i915_gem_object_clflush(obj);
3512 drm_clflush_sg(obj->pages);
3513 obj->cache_dirty = false;
3514
3515 return true;
3516 }
3517
3518 /** Flushes the GTT write domain for the object if it's dirty. */
3519 static void
3520 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3521 {
3522 uint32_t old_write_domain;
3523
3524 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3525 return;
3526
3527 /* No actual flushing is required for the GTT write domain. Writes
3528 * to it immediately go to main memory as far as we know, so there's
3529 * no chipset flush. It also doesn't land in render cache.
3530 *
3531 * However, we do have to enforce the order so that all writes through
3532 * the GTT land before any writes to the device, such as updates to
3533 * the GATT itself.
3534 */
3535 wmb();
3536
3537 old_write_domain = obj->base.write_domain;
3538 obj->base.write_domain = 0;
3539
3540 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3541
3542 trace_i915_gem_object_change_domain(obj,
3543 obj->base.read_domains,
3544 old_write_domain);
3545 }
3546
3547 /** Flushes the CPU write domain for the object if it's dirty. */
3548 static void
3549 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3550 {
3551 uint32_t old_write_domain;
3552
3553 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3554 return;
3555
3556 if (i915_gem_clflush_object(obj, obj->pin_display))
3557 i915_gem_chipset_flush(obj->base.dev);
3558
3559 old_write_domain = obj->base.write_domain;
3560 obj->base.write_domain = 0;
3561
3562 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3563
3564 trace_i915_gem_object_change_domain(obj,
3565 obj->base.read_domains,
3566 old_write_domain);
3567 }
3568
3569 /**
3570 * Moves a single object to the GTT read, and possibly write domain.
3571 *
3572 * This function returns when the move is complete, including waiting on
3573 * flushes to occur.
3574 */
3575 int
3576 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3577 {
3578 uint32_t old_write_domain, old_read_domains;
3579 struct i915_vma *vma;
3580 int ret;
3581
3582 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3583 return 0;
3584
3585 ret = i915_gem_object_wait_rendering(obj, !write);
3586 if (ret)
3587 return ret;
3588
3589 /* Flush and acquire obj->pages so that we are coherent through
3590 * direct access in memory with previous cached writes through
3591 * shmemfs and that our cache domain tracking remains valid.
3592 * For example, if the obj->filp was moved to swap without us
3593 * being notified and releasing the pages, we would mistakenly
3594 * continue to assume that the obj remained out of the CPU cached
3595 * domain.
3596 */
3597 ret = i915_gem_object_get_pages(obj);
3598 if (ret)
3599 return ret;
3600
3601 i915_gem_object_flush_cpu_write_domain(obj);
3602
3603 /* Serialise direct access to this object with the barriers for
3604 * coherent writes from the GPU, by effectively invalidating the
3605 * GTT domain upon first access.
3606 */
3607 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3608 mb();
3609
3610 old_write_domain = obj->base.write_domain;
3611 old_read_domains = obj->base.read_domains;
3612
3613 /* It should now be out of any other write domains, and we can update
3614 * the domain values for our changes.
3615 */
3616 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3617 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3618 if (write) {
3619 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3620 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3621 obj->dirty = 1;
3622 }
3623
3624 trace_i915_gem_object_change_domain(obj,
3625 old_read_domains,
3626 old_write_domain);
3627
3628 /* And bump the LRU for this access */
3629 vma = i915_gem_obj_to_ggtt(obj);
3630 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3631 list_move_tail(&vma->mm_list,
3632 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3633
3634 return 0;
3635 }
3636
3637 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3638 enum i915_cache_level cache_level)
3639 {
3640 struct drm_device *dev = obj->base.dev;
3641 struct i915_vma *vma, *next;
3642 int ret;
3643
3644 if (obj->cache_level == cache_level)
3645 return 0;
3646
3647 if (i915_gem_obj_is_pinned(obj)) {
3648 DRM_DEBUG("can not change the cache level of pinned objects\n");
3649 return -EBUSY;
3650 }
3651
3652 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3653 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3654 ret = i915_vma_unbind(vma);
3655 if (ret)
3656 return ret;
3657 }
3658 }
3659
3660 if (i915_gem_obj_bound_any(obj)) {
3661 ret = i915_gem_object_wait_rendering(obj, false);
3662 if (ret)
3663 return ret;
3664
3665 i915_gem_object_finish_gtt(obj);
3666
3667 /* Before SandyBridge, you could not use tiling or fence
3668 * registers with snooped memory, so relinquish any fences
3669 * currently pointing to our region in the aperture.
3670 */
3671 if (INTEL_INFO(dev)->gen < 6) {
3672 ret = i915_gem_object_put_fence(obj);
3673 if (ret)
3674 return ret;
3675 }
3676
3677 list_for_each_entry(vma, &obj->vma_list, vma_link)
3678 if (drm_mm_node_allocated(&vma->node)) {
3679 ret = i915_vma_bind(vma, cache_level,
3680 PIN_UPDATE);
3681 if (ret)
3682 return ret;
3683 }
3684 }
3685
3686 list_for_each_entry(vma, &obj->vma_list, vma_link)
3687 vma->node.color = cache_level;
3688 obj->cache_level = cache_level;
3689
3690 if (obj->cache_dirty &&
3691 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3692 cpu_write_needs_clflush(obj)) {
3693 if (i915_gem_clflush_object(obj, true))
3694 i915_gem_chipset_flush(obj->base.dev);
3695 }
3696
3697 return 0;
3698 }
3699
3700 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3701 struct drm_file *file)
3702 {
3703 struct drm_i915_gem_caching *args = data;
3704 struct drm_i915_gem_object *obj;
3705
3706 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3707 if (&obj->base == NULL)
3708 return -ENOENT;
3709
3710 switch (obj->cache_level) {
3711 case I915_CACHE_LLC:
3712 case I915_CACHE_L3_LLC:
3713 args->caching = I915_CACHING_CACHED;
3714 break;
3715
3716 case I915_CACHE_WT:
3717 args->caching = I915_CACHING_DISPLAY;
3718 break;
3719
3720 default:
3721 args->caching = I915_CACHING_NONE;
3722 break;
3723 }
3724
3725 drm_gem_object_unreference_unlocked(&obj->base);
3726 return 0;
3727 }
3728
3729 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3730 struct drm_file *file)
3731 {
3732 struct drm_i915_gem_caching *args = data;
3733 struct drm_i915_gem_object *obj;
3734 enum i915_cache_level level;
3735 int ret;
3736
3737 switch (args->caching) {
3738 case I915_CACHING_NONE:
3739 level = I915_CACHE_NONE;
3740 break;
3741 case I915_CACHING_CACHED:
3742 level = I915_CACHE_LLC;
3743 break;
3744 case I915_CACHING_DISPLAY:
3745 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3746 break;
3747 default:
3748 return -EINVAL;
3749 }
3750
3751 ret = i915_mutex_lock_interruptible(dev);
3752 if (ret)
3753 return ret;
3754
3755 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3756 if (&obj->base == NULL) {
3757 ret = -ENOENT;
3758 goto unlock;
3759 }
3760
3761 ret = i915_gem_object_set_cache_level(obj, level);
3762
3763 drm_gem_object_unreference(&obj->base);
3764 unlock:
3765 mutex_unlock(&dev->struct_mutex);
3766 return ret;
3767 }
3768
3769 /*
3770 * Prepare buffer for display plane (scanout, cursors, etc).
3771 * Can be called from an uninterruptible phase (modesetting) and allows
3772 * any flushes to be pipelined (for pageflips).
3773 */
3774 int
3775 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3776 u32 alignment,
3777 struct intel_engine_cs *pipelined,
3778 struct drm_i915_gem_request **pipelined_request,
3779 const struct i915_ggtt_view *view)
3780 {
3781 u32 old_read_domains, old_write_domain;
3782 int ret;
3783
3784 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3785 if (ret)
3786 return ret;
3787
3788 /* Mark the pin_display early so that we account for the
3789 * display coherency whilst setting up the cache domains.
3790 */
3791 obj->pin_display++;
3792
3793 /* The display engine is not coherent with the LLC cache on gen6. As
3794 * a result, we make sure that the pinning that is about to occur is
3795 * done with uncached PTEs. This is lowest common denominator for all
3796 * chipsets.
3797 *
3798 * However for gen6+, we could do better by using the GFDT bit instead
3799 * of uncaching, which would allow us to flush all the LLC-cached data
3800 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3801 */
3802 ret = i915_gem_object_set_cache_level(obj,
3803 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3804 if (ret)
3805 goto err_unpin_display;
3806
3807 /* As the user may map the buffer once pinned in the display plane
3808 * (e.g. libkms for the bootup splash), we have to ensure that we
3809 * always use map_and_fenceable for all scanout buffers.
3810 */
3811 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3812 view->type == I915_GGTT_VIEW_NORMAL ?
3813 PIN_MAPPABLE : 0);
3814 if (ret)
3815 goto err_unpin_display;
3816
3817 i915_gem_object_flush_cpu_write_domain(obj);
3818
3819 old_write_domain = obj->base.write_domain;
3820 old_read_domains = obj->base.read_domains;
3821
3822 /* It should now be out of any other write domains, and we can update
3823 * the domain values for our changes.
3824 */
3825 obj->base.write_domain = 0;
3826 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3827
3828 trace_i915_gem_object_change_domain(obj,
3829 old_read_domains,
3830 old_write_domain);
3831
3832 return 0;
3833
3834 err_unpin_display:
3835 obj->pin_display--;
3836 return ret;
3837 }
3838
3839 void
3840 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3841 const struct i915_ggtt_view *view)
3842 {
3843 if (WARN_ON(obj->pin_display == 0))
3844 return;
3845
3846 i915_gem_object_ggtt_unpin_view(obj, view);
3847
3848 obj->pin_display--;
3849 }
3850
3851 /**
3852 * Moves a single object to the CPU read, and possibly write domain.
3853 *
3854 * This function returns when the move is complete, including waiting on
3855 * flushes to occur.
3856 */
3857 int
3858 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3859 {
3860 uint32_t old_write_domain, old_read_domains;
3861 int ret;
3862
3863 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3864 return 0;
3865
3866 ret = i915_gem_object_wait_rendering(obj, !write);
3867 if (ret)
3868 return ret;
3869
3870 i915_gem_object_flush_gtt_write_domain(obj);
3871
3872 old_write_domain = obj->base.write_domain;
3873 old_read_domains = obj->base.read_domains;
3874
3875 /* Flush the CPU cache if it's still invalid. */
3876 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3877 i915_gem_clflush_object(obj, false);
3878
3879 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3880 }
3881
3882 /* It should now be out of any other write domains, and we can update
3883 * the domain values for our changes.
3884 */
3885 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3886
3887 /* If we're writing through the CPU, then the GPU read domains will
3888 * need to be invalidated at next use.
3889 */
3890 if (write) {
3891 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3892 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3893 }
3894
3895 trace_i915_gem_object_change_domain(obj,
3896 old_read_domains,
3897 old_write_domain);
3898
3899 return 0;
3900 }
3901
3902 /* Throttle our rendering by waiting until the ring has completed our requests
3903 * emitted over 20 msec ago.
3904 *
3905 * Note that if we were to use the current jiffies each time around the loop,
3906 * we wouldn't escape the function with any frames outstanding if the time to
3907 * render a frame was over 20ms.
3908 *
3909 * This should get us reasonable parallelism between CPU and GPU but also
3910 * relatively low latency when blocking on a particular request to finish.
3911 */
3912 static int
3913 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3914 {
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916 struct drm_i915_file_private *file_priv = file->driver_priv;
3917 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3918 struct drm_i915_gem_request *request, *target = NULL;
3919 unsigned reset_counter;
3920 int ret;
3921
3922 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3923 if (ret)
3924 return ret;
3925
3926 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3927 if (ret)
3928 return ret;
3929
3930 spin_lock(&file_priv->mm.lock);
3931 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3932 if (time_after_eq(request->emitted_jiffies, recent_enough))
3933 break;
3934
3935 /*
3936 * Note that the request might not have been submitted yet.
3937 * In which case emitted_jiffies will be zero.
3938 */
3939 if (!request->emitted_jiffies)
3940 continue;
3941
3942 target = request;
3943 }
3944 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3945 if (target)
3946 i915_gem_request_reference(target);
3947 spin_unlock(&file_priv->mm.lock);
3948
3949 if (target == NULL)
3950 return 0;
3951
3952 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
3953 if (ret == 0)
3954 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3955
3956 i915_gem_request_unreference__unlocked(target);
3957
3958 return ret;
3959 }
3960
3961 static bool
3962 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3963 {
3964 struct drm_i915_gem_object *obj = vma->obj;
3965
3966 if (alignment &&
3967 vma->node.start & (alignment - 1))
3968 return true;
3969
3970 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3971 return true;
3972
3973 if (flags & PIN_OFFSET_BIAS &&
3974 vma->node.start < (flags & PIN_OFFSET_MASK))
3975 return true;
3976
3977 return false;
3978 }
3979
3980 static int
3981 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3982 struct i915_address_space *vm,
3983 const struct i915_ggtt_view *ggtt_view,
3984 uint32_t alignment,
3985 uint64_t flags)
3986 {
3987 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3988 struct i915_vma *vma;
3989 unsigned bound;
3990 int ret;
3991
3992 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3993 return -ENODEV;
3994
3995 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3996 return -EINVAL;
3997
3998 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3999 return -EINVAL;
4000
4001 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4002 return -EINVAL;
4003
4004 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4005 i915_gem_obj_to_vma(obj, vm);
4006
4007 if (IS_ERR(vma))
4008 return PTR_ERR(vma);
4009
4010 if (vma) {
4011 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4012 return -EBUSY;
4013
4014 if (i915_vma_misplaced(vma, alignment, flags)) {
4015 WARN(vma->pin_count,
4016 "bo is already pinned in %s with incorrect alignment:"
4017 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4018 " obj->map_and_fenceable=%d\n",
4019 ggtt_view ? "ggtt" : "ppgtt",
4020 upper_32_bits(vma->node.start),
4021 lower_32_bits(vma->node.start),
4022 alignment,
4023 !!(flags & PIN_MAPPABLE),
4024 obj->map_and_fenceable);
4025 ret = i915_vma_unbind(vma);
4026 if (ret)
4027 return ret;
4028
4029 vma = NULL;
4030 }
4031 }
4032
4033 bound = vma ? vma->bound : 0;
4034 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4035 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4036 flags);
4037 if (IS_ERR(vma))
4038 return PTR_ERR(vma);
4039 } else {
4040 ret = i915_vma_bind(vma, obj->cache_level, flags);
4041 if (ret)
4042 return ret;
4043 }
4044
4045 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4046 (bound ^ vma->bound) & GLOBAL_BIND) {
4047 bool mappable, fenceable;
4048 u32 fence_size, fence_alignment;
4049
4050 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4051 obj->base.size,
4052 obj->tiling_mode);
4053 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4054 obj->base.size,
4055 obj->tiling_mode,
4056 true);
4057
4058 fenceable = (vma->node.size == fence_size &&
4059 (vma->node.start & (fence_alignment - 1)) == 0);
4060
4061 mappable = (vma->node.start + fence_size <=
4062 dev_priv->gtt.mappable_end);
4063
4064 obj->map_and_fenceable = mappable && fenceable;
4065
4066 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4067 }
4068
4069 vma->pin_count++;
4070 return 0;
4071 }
4072
4073 int
4074 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4075 struct i915_address_space *vm,
4076 uint32_t alignment,
4077 uint64_t flags)
4078 {
4079 return i915_gem_object_do_pin(obj, vm,
4080 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4081 alignment, flags);
4082 }
4083
4084 int
4085 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4086 const struct i915_ggtt_view *view,
4087 uint32_t alignment,
4088 uint64_t flags)
4089 {
4090 if (WARN_ONCE(!view, "no view specified"))
4091 return -EINVAL;
4092
4093 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4094 alignment, flags | PIN_GLOBAL);
4095 }
4096
4097 void
4098 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4099 const struct i915_ggtt_view *view)
4100 {
4101 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4102
4103 BUG_ON(!vma);
4104 WARN_ON(vma->pin_count == 0);
4105 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4106
4107 --vma->pin_count;
4108 }
4109
4110 int
4111 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4112 struct drm_file *file)
4113 {
4114 struct drm_i915_gem_busy *args = data;
4115 struct drm_i915_gem_object *obj;
4116 int ret;
4117
4118 ret = i915_mutex_lock_interruptible(dev);
4119 if (ret)
4120 return ret;
4121
4122 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4123 if (&obj->base == NULL) {
4124 ret = -ENOENT;
4125 goto unlock;
4126 }
4127
4128 /* Count all active objects as busy, even if they are currently not used
4129 * by the gpu. Users of this interface expect objects to eventually
4130 * become non-busy without any further actions, therefore emit any
4131 * necessary flushes here.
4132 */
4133 ret = i915_gem_object_flush_active(obj);
4134 if (ret)
4135 goto unref;
4136
4137 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4138 args->busy = obj->active << 16;
4139 if (obj->last_write_req)
4140 args->busy |= obj->last_write_req->ring->id;
4141
4142 unref:
4143 drm_gem_object_unreference(&obj->base);
4144 unlock:
4145 mutex_unlock(&dev->struct_mutex);
4146 return ret;
4147 }
4148
4149 int
4150 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4151 struct drm_file *file_priv)
4152 {
4153 return i915_gem_ring_throttle(dev, file_priv);
4154 }
4155
4156 int
4157 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4158 struct drm_file *file_priv)
4159 {
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161 struct drm_i915_gem_madvise *args = data;
4162 struct drm_i915_gem_object *obj;
4163 int ret;
4164
4165 switch (args->madv) {
4166 case I915_MADV_DONTNEED:
4167 case I915_MADV_WILLNEED:
4168 break;
4169 default:
4170 return -EINVAL;
4171 }
4172
4173 ret = i915_mutex_lock_interruptible(dev);
4174 if (ret)
4175 return ret;
4176
4177 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4178 if (&obj->base == NULL) {
4179 ret = -ENOENT;
4180 goto unlock;
4181 }
4182
4183 if (i915_gem_obj_is_pinned(obj)) {
4184 ret = -EINVAL;
4185 goto out;
4186 }
4187
4188 if (obj->pages &&
4189 obj->tiling_mode != I915_TILING_NONE &&
4190 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4191 if (obj->madv == I915_MADV_WILLNEED)
4192 i915_gem_object_unpin_pages(obj);
4193 if (args->madv == I915_MADV_WILLNEED)
4194 i915_gem_object_pin_pages(obj);
4195 }
4196
4197 if (obj->madv != __I915_MADV_PURGED)
4198 obj->madv = args->madv;
4199
4200 /* if the object is no longer attached, discard its backing storage */
4201 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4202 i915_gem_object_truncate(obj);
4203
4204 args->retained = obj->madv != __I915_MADV_PURGED;
4205
4206 out:
4207 drm_gem_object_unreference(&obj->base);
4208 unlock:
4209 mutex_unlock(&dev->struct_mutex);
4210 return ret;
4211 }
4212
4213 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4214 const struct drm_i915_gem_object_ops *ops)
4215 {
4216 int i;
4217
4218 INIT_LIST_HEAD(&obj->global_list);
4219 for (i = 0; i < I915_NUM_RINGS; i++)
4220 INIT_LIST_HEAD(&obj->ring_list[i]);
4221 INIT_LIST_HEAD(&obj->obj_exec_link);
4222 INIT_LIST_HEAD(&obj->vma_list);
4223 INIT_LIST_HEAD(&obj->batch_pool_link);
4224
4225 obj->ops = ops;
4226
4227 obj->fence_reg = I915_FENCE_REG_NONE;
4228 obj->madv = I915_MADV_WILLNEED;
4229
4230 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4231 }
4232
4233 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4234 .get_pages = i915_gem_object_get_pages_gtt,
4235 .put_pages = i915_gem_object_put_pages_gtt,
4236 };
4237
4238 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4239 size_t size)
4240 {
4241 struct drm_i915_gem_object *obj;
4242 struct address_space *mapping;
4243 gfp_t mask;
4244
4245 obj = i915_gem_object_alloc(dev);
4246 if (obj == NULL)
4247 return NULL;
4248
4249 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4250 i915_gem_object_free(obj);
4251 return NULL;
4252 }
4253
4254 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4255 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4256 /* 965gm cannot relocate objects above 4GiB. */
4257 mask &= ~__GFP_HIGHMEM;
4258 mask |= __GFP_DMA32;
4259 }
4260
4261 mapping = file_inode(obj->base.filp)->i_mapping;
4262 mapping_set_gfp_mask(mapping, mask);
4263
4264 i915_gem_object_init(obj, &i915_gem_object_ops);
4265
4266 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4267 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4268
4269 if (HAS_LLC(dev)) {
4270 /* On some devices, we can have the GPU use the LLC (the CPU
4271 * cache) for about a 10% performance improvement
4272 * compared to uncached. Graphics requests other than
4273 * display scanout are coherent with the CPU in
4274 * accessing this cache. This means in this mode we
4275 * don't need to clflush on the CPU side, and on the
4276 * GPU side we only need to flush internal caches to
4277 * get data visible to the CPU.
4278 *
4279 * However, we maintain the display planes as UC, and so
4280 * need to rebind when first used as such.
4281 */
4282 obj->cache_level = I915_CACHE_LLC;
4283 } else
4284 obj->cache_level = I915_CACHE_NONE;
4285
4286 trace_i915_gem_object_create(obj);
4287
4288 return obj;
4289 }
4290
4291 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4292 {
4293 /* If we are the last user of the backing storage (be it shmemfs
4294 * pages or stolen etc), we know that the pages are going to be
4295 * immediately released. In this case, we can then skip copying
4296 * back the contents from the GPU.
4297 */
4298
4299 if (obj->madv != I915_MADV_WILLNEED)
4300 return false;
4301
4302 if (obj->base.filp == NULL)
4303 return true;
4304
4305 /* At first glance, this looks racy, but then again so would be
4306 * userspace racing mmap against close. However, the first external
4307 * reference to the filp can only be obtained through the
4308 * i915_gem_mmap_ioctl() which safeguards us against the user
4309 * acquiring such a reference whilst we are in the middle of
4310 * freeing the object.
4311 */
4312 return atomic_long_read(&obj->base.filp->f_count) == 1;
4313 }
4314
4315 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4316 {
4317 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4318 struct drm_device *dev = obj->base.dev;
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 struct i915_vma *vma, *next;
4321
4322 intel_runtime_pm_get(dev_priv);
4323
4324 trace_i915_gem_object_destroy(obj);
4325
4326 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4327 int ret;
4328
4329 vma->pin_count = 0;
4330 ret = i915_vma_unbind(vma);
4331 if (WARN_ON(ret == -ERESTARTSYS)) {
4332 bool was_interruptible;
4333
4334 was_interruptible = dev_priv->mm.interruptible;
4335 dev_priv->mm.interruptible = false;
4336
4337 WARN_ON(i915_vma_unbind(vma));
4338
4339 dev_priv->mm.interruptible = was_interruptible;
4340 }
4341 }
4342
4343 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4344 * before progressing. */
4345 if (obj->stolen)
4346 i915_gem_object_unpin_pages(obj);
4347
4348 WARN_ON(obj->frontbuffer_bits);
4349
4350 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4351 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4352 obj->tiling_mode != I915_TILING_NONE)
4353 i915_gem_object_unpin_pages(obj);
4354
4355 if (WARN_ON(obj->pages_pin_count))
4356 obj->pages_pin_count = 0;
4357 if (discard_backing_storage(obj))
4358 obj->madv = I915_MADV_DONTNEED;
4359 i915_gem_object_put_pages(obj);
4360 i915_gem_object_free_mmap_offset(obj);
4361
4362 BUG_ON(obj->pages);
4363
4364 if (obj->base.import_attach)
4365 drm_prime_gem_destroy(&obj->base, NULL);
4366
4367 if (obj->ops->release)
4368 obj->ops->release(obj);
4369
4370 drm_gem_object_release(&obj->base);
4371 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4372
4373 kfree(obj->bit_17);
4374 i915_gem_object_free(obj);
4375
4376 intel_runtime_pm_put(dev_priv);
4377 }
4378
4379 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4380 struct i915_address_space *vm)
4381 {
4382 struct i915_vma *vma;
4383 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4384 if (i915_is_ggtt(vma->vm) &&
4385 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4386 continue;
4387 if (vma->vm == vm)
4388 return vma;
4389 }
4390 return NULL;
4391 }
4392
4393 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4394 const struct i915_ggtt_view *view)
4395 {
4396 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4397 struct i915_vma *vma;
4398
4399 if (WARN_ONCE(!view, "no view specified"))
4400 return ERR_PTR(-EINVAL);
4401
4402 list_for_each_entry(vma, &obj->vma_list, vma_link)
4403 if (vma->vm == ggtt &&
4404 i915_ggtt_view_equal(&vma->ggtt_view, view))
4405 return vma;
4406 return NULL;
4407 }
4408
4409 void i915_gem_vma_destroy(struct i915_vma *vma)
4410 {
4411 struct i915_address_space *vm = NULL;
4412 WARN_ON(vma->node.allocated);
4413
4414 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4415 if (!list_empty(&vma->exec_list))
4416 return;
4417
4418 vm = vma->vm;
4419
4420 if (!i915_is_ggtt(vm))
4421 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4422
4423 list_del(&vma->vma_link);
4424
4425 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4426 }
4427
4428 static void
4429 i915_gem_stop_ringbuffers(struct drm_device *dev)
4430 {
4431 struct drm_i915_private *dev_priv = dev->dev_private;
4432 struct intel_engine_cs *ring;
4433 int i;
4434
4435 for_each_ring(ring, dev_priv, i)
4436 dev_priv->gt.stop_ring(ring);
4437 }
4438
4439 int
4440 i915_gem_suspend(struct drm_device *dev)
4441 {
4442 struct drm_i915_private *dev_priv = dev->dev_private;
4443 int ret = 0;
4444
4445 mutex_lock(&dev->struct_mutex);
4446 ret = i915_gpu_idle(dev);
4447 if (ret)
4448 goto err;
4449
4450 i915_gem_retire_requests(dev);
4451
4452 i915_gem_stop_ringbuffers(dev);
4453 mutex_unlock(&dev->struct_mutex);
4454
4455 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4456 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4457 flush_delayed_work(&dev_priv->mm.idle_work);
4458
4459 /* Assert that we sucessfully flushed all the work and
4460 * reset the GPU back to its idle, low power state.
4461 */
4462 WARN_ON(dev_priv->mm.busy);
4463
4464 return 0;
4465
4466 err:
4467 mutex_unlock(&dev->struct_mutex);
4468 return ret;
4469 }
4470
4471 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4472 {
4473 struct intel_engine_cs *ring = req->ring;
4474 struct drm_device *dev = ring->dev;
4475 struct drm_i915_private *dev_priv = dev->dev_private;
4476 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4477 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4478 int i, ret;
4479
4480 if (!HAS_L3_DPF(dev) || !remap_info)
4481 return 0;
4482
4483 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4484 if (ret)
4485 return ret;
4486
4487 /*
4488 * Note: We do not worry about the concurrent register cacheline hang
4489 * here because no other code should access these registers other than
4490 * at initialization time.
4491 */
4492 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4493 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4494 intel_ring_emit(ring, reg_base + i);
4495 intel_ring_emit(ring, remap_info[i/4]);
4496 }
4497
4498 intel_ring_advance(ring);
4499
4500 return ret;
4501 }
4502
4503 void i915_gem_init_swizzling(struct drm_device *dev)
4504 {
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506
4507 if (INTEL_INFO(dev)->gen < 5 ||
4508 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4509 return;
4510
4511 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4512 DISP_TILE_SURFACE_SWIZZLING);
4513
4514 if (IS_GEN5(dev))
4515 return;
4516
4517 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4518 if (IS_GEN6(dev))
4519 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4520 else if (IS_GEN7(dev))
4521 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4522 else if (IS_GEN8(dev))
4523 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4524 else
4525 BUG();
4526 }
4527
4528 static bool
4529 intel_enable_blt(struct drm_device *dev)
4530 {
4531 if (!HAS_BLT(dev))
4532 return false;
4533
4534 /* The blitter was dysfunctional on early prototypes */
4535 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4536 DRM_INFO("BLT not supported on this pre-production hardware;"
4537 " graphics performance will be degraded.\n");
4538 return false;
4539 }
4540
4541 return true;
4542 }
4543
4544 static void init_unused_ring(struct drm_device *dev, u32 base)
4545 {
4546 struct drm_i915_private *dev_priv = dev->dev_private;
4547
4548 I915_WRITE(RING_CTL(base), 0);
4549 I915_WRITE(RING_HEAD(base), 0);
4550 I915_WRITE(RING_TAIL(base), 0);
4551 I915_WRITE(RING_START(base), 0);
4552 }
4553
4554 static void init_unused_rings(struct drm_device *dev)
4555 {
4556 if (IS_I830(dev)) {
4557 init_unused_ring(dev, PRB1_BASE);
4558 init_unused_ring(dev, SRB0_BASE);
4559 init_unused_ring(dev, SRB1_BASE);
4560 init_unused_ring(dev, SRB2_BASE);
4561 init_unused_ring(dev, SRB3_BASE);
4562 } else if (IS_GEN2(dev)) {
4563 init_unused_ring(dev, SRB0_BASE);
4564 init_unused_ring(dev, SRB1_BASE);
4565 } else if (IS_GEN3(dev)) {
4566 init_unused_ring(dev, PRB1_BASE);
4567 init_unused_ring(dev, PRB2_BASE);
4568 }
4569 }
4570
4571 int i915_gem_init_rings(struct drm_device *dev)
4572 {
4573 struct drm_i915_private *dev_priv = dev->dev_private;
4574 int ret;
4575
4576 ret = intel_init_render_ring_buffer(dev);
4577 if (ret)
4578 return ret;
4579
4580 if (HAS_BSD(dev)) {
4581 ret = intel_init_bsd_ring_buffer(dev);
4582 if (ret)
4583 goto cleanup_render_ring;
4584 }
4585
4586 if (intel_enable_blt(dev)) {
4587 ret = intel_init_blt_ring_buffer(dev);
4588 if (ret)
4589 goto cleanup_bsd_ring;
4590 }
4591
4592 if (HAS_VEBOX(dev)) {
4593 ret = intel_init_vebox_ring_buffer(dev);
4594 if (ret)
4595 goto cleanup_blt_ring;
4596 }
4597
4598 if (HAS_BSD2(dev)) {
4599 ret = intel_init_bsd2_ring_buffer(dev);
4600 if (ret)
4601 goto cleanup_vebox_ring;
4602 }
4603
4604 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4605 if (ret)
4606 goto cleanup_bsd2_ring;
4607
4608 return 0;
4609
4610 cleanup_bsd2_ring:
4611 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4612 cleanup_vebox_ring:
4613 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4614 cleanup_blt_ring:
4615 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4616 cleanup_bsd_ring:
4617 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4618 cleanup_render_ring:
4619 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4620
4621 return ret;
4622 }
4623
4624 int
4625 i915_gem_init_hw(struct drm_device *dev)
4626 {
4627 struct drm_i915_private *dev_priv = dev->dev_private;
4628 struct intel_engine_cs *ring;
4629 int ret, i, j;
4630
4631 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4632 return -EIO;
4633
4634 /* Double layer security blanket, see i915_gem_init() */
4635 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4636
4637 if (dev_priv->ellc_size)
4638 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4639
4640 if (IS_HASWELL(dev))
4641 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4642 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4643
4644 if (HAS_PCH_NOP(dev)) {
4645 if (IS_IVYBRIDGE(dev)) {
4646 u32 temp = I915_READ(GEN7_MSG_CTL);
4647 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4648 I915_WRITE(GEN7_MSG_CTL, temp);
4649 } else if (INTEL_INFO(dev)->gen >= 7) {
4650 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4651 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4652 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4653 }
4654 }
4655
4656 i915_gem_init_swizzling(dev);
4657
4658 /*
4659 * At least 830 can leave some of the unused rings
4660 * "active" (ie. head != tail) after resume which
4661 * will prevent c3 entry. Makes sure all unused rings
4662 * are totally idle.
4663 */
4664 init_unused_rings(dev);
4665
4666 BUG_ON(!dev_priv->ring[RCS].default_context);
4667
4668 ret = i915_ppgtt_init_hw(dev);
4669 if (ret) {
4670 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4671 goto out;
4672 }
4673
4674 /* Need to do basic initialisation of all rings first: */
4675 for_each_ring(ring, dev_priv, i) {
4676 ret = ring->init_hw(ring);
4677 if (ret)
4678 goto out;
4679 }
4680
4681 /* Now it is safe to go back round and do everything else: */
4682 for_each_ring(ring, dev_priv, i) {
4683 struct drm_i915_gem_request *req;
4684
4685 WARN_ON(!ring->default_context);
4686
4687 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4688 if (ret) {
4689 i915_gem_cleanup_ringbuffer(dev);
4690 goto out;
4691 }
4692
4693 if (ring->id == RCS) {
4694 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4695 i915_gem_l3_remap(req, j);
4696 }
4697
4698 ret = i915_ppgtt_init_ring(req);
4699 if (ret && ret != -EIO) {
4700 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4701 i915_gem_request_cancel(req);
4702 i915_gem_cleanup_ringbuffer(dev);
4703 goto out;
4704 }
4705
4706 ret = i915_gem_context_enable(req);
4707 if (ret && ret != -EIO) {
4708 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4709 i915_gem_request_cancel(req);
4710 i915_gem_cleanup_ringbuffer(dev);
4711 goto out;
4712 }
4713
4714 i915_add_request_no_flush(req);
4715 }
4716
4717 out:
4718 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4719 return ret;
4720 }
4721
4722 int i915_gem_init(struct drm_device *dev)
4723 {
4724 struct drm_i915_private *dev_priv = dev->dev_private;
4725 int ret;
4726
4727 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4728 i915.enable_execlists);
4729
4730 mutex_lock(&dev->struct_mutex);
4731
4732 if (IS_VALLEYVIEW(dev)) {
4733 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4734 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4735 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4736 VLV_GTLC_ALLOWWAKEACK), 10))
4737 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4738 }
4739
4740 if (!i915.enable_execlists) {
4741 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4742 dev_priv->gt.init_rings = i915_gem_init_rings;
4743 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4744 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4745 } else {
4746 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4747 dev_priv->gt.init_rings = intel_logical_rings_init;
4748 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4749 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4750 }
4751
4752 /* This is just a security blanket to placate dragons.
4753 * On some systems, we very sporadically observe that the first TLBs
4754 * used by the CS may be stale, despite us poking the TLB reset. If
4755 * we hold the forcewake during initialisation these problems
4756 * just magically go away.
4757 */
4758 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4759
4760 ret = i915_gem_init_userptr(dev);
4761 if (ret)
4762 goto out_unlock;
4763
4764 i915_gem_init_global_gtt(dev);
4765
4766 ret = i915_gem_context_init(dev);
4767 if (ret)
4768 goto out_unlock;
4769
4770 ret = dev_priv->gt.init_rings(dev);
4771 if (ret)
4772 goto out_unlock;
4773
4774 ret = i915_gem_init_hw(dev);
4775 if (ret == -EIO) {
4776 /* Allow ring initialisation to fail by marking the GPU as
4777 * wedged. But we only want to do this where the GPU is angry,
4778 * for all other failure, such as an allocation failure, bail.
4779 */
4780 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4781 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4782 ret = 0;
4783 }
4784
4785 out_unlock:
4786 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4787 mutex_unlock(&dev->struct_mutex);
4788
4789 return ret;
4790 }
4791
4792 void
4793 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4794 {
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796 struct intel_engine_cs *ring;
4797 int i;
4798
4799 for_each_ring(ring, dev_priv, i)
4800 dev_priv->gt.cleanup_ring(ring);
4801
4802 if (i915.enable_execlists)
4803 /*
4804 * Neither the BIOS, ourselves or any other kernel
4805 * expects the system to be in execlists mode on startup,
4806 * so we need to reset the GPU back to legacy mode.
4807 */
4808 intel_gpu_reset(dev);
4809 }
4810
4811 static void
4812 init_ring_lists(struct intel_engine_cs *ring)
4813 {
4814 INIT_LIST_HEAD(&ring->active_list);
4815 INIT_LIST_HEAD(&ring->request_list);
4816 }
4817
4818 void i915_init_vm(struct drm_i915_private *dev_priv,
4819 struct i915_address_space *vm)
4820 {
4821 if (!i915_is_ggtt(vm))
4822 drm_mm_init(&vm->mm, vm->start, vm->total);
4823 vm->dev = dev_priv->dev;
4824 INIT_LIST_HEAD(&vm->active_list);
4825 INIT_LIST_HEAD(&vm->inactive_list);
4826 INIT_LIST_HEAD(&vm->global_link);
4827 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4828 }
4829
4830 void
4831 i915_gem_load(struct drm_device *dev)
4832 {
4833 struct drm_i915_private *dev_priv = dev->dev_private;
4834 int i;
4835
4836 dev_priv->objects =
4837 kmem_cache_create("i915_gem_object",
4838 sizeof(struct drm_i915_gem_object), 0,
4839 SLAB_HWCACHE_ALIGN,
4840 NULL);
4841 dev_priv->vmas =
4842 kmem_cache_create("i915_gem_vma",
4843 sizeof(struct i915_vma), 0,
4844 SLAB_HWCACHE_ALIGN,
4845 NULL);
4846 dev_priv->requests =
4847 kmem_cache_create("i915_gem_request",
4848 sizeof(struct drm_i915_gem_request), 0,
4849 SLAB_HWCACHE_ALIGN,
4850 NULL);
4851
4852 INIT_LIST_HEAD(&dev_priv->vm_list);
4853 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4854
4855 INIT_LIST_HEAD(&dev_priv->context_list);
4856 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4857 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4858 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4859 for (i = 0; i < I915_NUM_RINGS; i++)
4860 init_ring_lists(&dev_priv->ring[i]);
4861 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4862 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4863 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4864 i915_gem_retire_work_handler);
4865 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4866 i915_gem_idle_work_handler);
4867 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4868
4869 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4870
4871 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4872 dev_priv->num_fence_regs = 32;
4873 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4874 dev_priv->num_fence_regs = 16;
4875 else
4876 dev_priv->num_fence_regs = 8;
4877
4878 if (intel_vgpu_active(dev))
4879 dev_priv->num_fence_regs =
4880 I915_READ(vgtif_reg(avail_rs.fence_num));
4881
4882 /* Initialize fence registers to zero */
4883 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4884 i915_gem_restore_fences(dev);
4885
4886 i915_gem_detect_bit_6_swizzle(dev);
4887 init_waitqueue_head(&dev_priv->pending_flip_queue);
4888
4889 dev_priv->mm.interruptible = true;
4890
4891 i915_gem_shrinker_init(dev_priv);
4892
4893 mutex_init(&dev_priv->fb_tracking.lock);
4894 }
4895
4896 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4897 {
4898 struct drm_i915_file_private *file_priv = file->driver_priv;
4899
4900 /* Clean up our request list when the client is going away, so that
4901 * later retire_requests won't dereference our soon-to-be-gone
4902 * file_priv.
4903 */
4904 spin_lock(&file_priv->mm.lock);
4905 while (!list_empty(&file_priv->mm.request_list)) {
4906 struct drm_i915_gem_request *request;
4907
4908 request = list_first_entry(&file_priv->mm.request_list,
4909 struct drm_i915_gem_request,
4910 client_list);
4911 list_del(&request->client_list);
4912 request->file_priv = NULL;
4913 }
4914 spin_unlock(&file_priv->mm.lock);
4915
4916 if (!list_empty(&file_priv->rps.link)) {
4917 spin_lock(&to_i915(dev)->rps.client_lock);
4918 list_del(&file_priv->rps.link);
4919 spin_unlock(&to_i915(dev)->rps.client_lock);
4920 }
4921 }
4922
4923 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4924 {
4925 struct drm_i915_file_private *file_priv;
4926 int ret;
4927
4928 DRM_DEBUG_DRIVER("\n");
4929
4930 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4931 if (!file_priv)
4932 return -ENOMEM;
4933
4934 file->driver_priv = file_priv;
4935 file_priv->dev_priv = dev->dev_private;
4936 file_priv->file = file;
4937 INIT_LIST_HEAD(&file_priv->rps.link);
4938
4939 spin_lock_init(&file_priv->mm.lock);
4940 INIT_LIST_HEAD(&file_priv->mm.request_list);
4941
4942 ret = i915_gem_context_open(dev, file);
4943 if (ret)
4944 kfree(file_priv);
4945
4946 return ret;
4947 }
4948
4949 /**
4950 * i915_gem_track_fb - update frontbuffer tracking
4951 * old: current GEM buffer for the frontbuffer slots
4952 * new: new GEM buffer for the frontbuffer slots
4953 * frontbuffer_bits: bitmask of frontbuffer slots
4954 *
4955 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4956 * from @old and setting them in @new. Both @old and @new can be NULL.
4957 */
4958 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4959 struct drm_i915_gem_object *new,
4960 unsigned frontbuffer_bits)
4961 {
4962 if (old) {
4963 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4964 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4965 old->frontbuffer_bits &= ~frontbuffer_bits;
4966 }
4967
4968 if (new) {
4969 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4970 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4971 new->frontbuffer_bits |= frontbuffer_bits;
4972 }
4973 }
4974
4975 /* All the new VM stuff */
4976 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4977 struct i915_address_space *vm)
4978 {
4979 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4980 struct i915_vma *vma;
4981
4982 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4983
4984 list_for_each_entry(vma, &o->vma_list, vma_link) {
4985 if (i915_is_ggtt(vma->vm) &&
4986 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4987 continue;
4988 if (vma->vm == vm)
4989 return vma->node.start;
4990 }
4991
4992 WARN(1, "%s vma for this object not found.\n",
4993 i915_is_ggtt(vm) ? "global" : "ppgtt");
4994 return -1;
4995 }
4996
4997 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4998 const struct i915_ggtt_view *view)
4999 {
5000 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5001 struct i915_vma *vma;
5002
5003 list_for_each_entry(vma, &o->vma_list, vma_link)
5004 if (vma->vm == ggtt &&
5005 i915_ggtt_view_equal(&vma->ggtt_view, view))
5006 return vma->node.start;
5007
5008 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5009 return -1;
5010 }
5011
5012 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5013 struct i915_address_space *vm)
5014 {
5015 struct i915_vma *vma;
5016
5017 list_for_each_entry(vma, &o->vma_list, vma_link) {
5018 if (i915_is_ggtt(vma->vm) &&
5019 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5020 continue;
5021 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5022 return true;
5023 }
5024
5025 return false;
5026 }
5027
5028 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5029 const struct i915_ggtt_view *view)
5030 {
5031 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5032 struct i915_vma *vma;
5033
5034 list_for_each_entry(vma, &o->vma_list, vma_link)
5035 if (vma->vm == ggtt &&
5036 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5037 drm_mm_node_allocated(&vma->node))
5038 return true;
5039
5040 return false;
5041 }
5042
5043 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5044 {
5045 struct i915_vma *vma;
5046
5047 list_for_each_entry(vma, &o->vma_list, vma_link)
5048 if (drm_mm_node_allocated(&vma->node))
5049 return true;
5050
5051 return false;
5052 }
5053
5054 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5055 struct i915_address_space *vm)
5056 {
5057 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5058 struct i915_vma *vma;
5059
5060 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5061
5062 BUG_ON(list_empty(&o->vma_list));
5063
5064 list_for_each_entry(vma, &o->vma_list, vma_link) {
5065 if (i915_is_ggtt(vma->vm) &&
5066 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5067 continue;
5068 if (vma->vm == vm)
5069 return vma->node.size;
5070 }
5071 return 0;
5072 }
5073
5074 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5075 {
5076 struct i915_vma *vma;
5077 list_for_each_entry(vma, &obj->vma_list, vma_link)
5078 if (vma->pin_count > 0)
5079 return true;
5080
5081 return false;
5082 }
5083
5084 /* Allocate a new GEM object and fill it with the supplied data */
5085 struct drm_i915_gem_object *
5086 i915_gem_object_create_from_data(struct drm_device *dev,
5087 const void *data, size_t size)
5088 {
5089 struct drm_i915_gem_object *obj;
5090 struct sg_table *sg;
5091 size_t bytes;
5092 int ret;
5093
5094 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5095 if (IS_ERR_OR_NULL(obj))
5096 return obj;
5097
5098 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5099 if (ret)
5100 goto fail;
5101
5102 ret = i915_gem_object_get_pages(obj);
5103 if (ret)
5104 goto fail;
5105
5106 i915_gem_object_pin_pages(obj);
5107 sg = obj->pages;
5108 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5109 i915_gem_object_unpin_pages(obj);
5110
5111 if (WARN_ON(bytes != size)) {
5112 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5113 ret = -EFAULT;
5114 goto fail;
5115 }
5116
5117 return obj;
5118
5119 fail:
5120 drm_gem_object_unreference(&obj->base);
5121 return ERR_PTR(ret);
5122 }
This page took 0.148575 seconds and 5 git commands to generate.