drm/i915: Introduce for_each_ring() macro
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59
60 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61 {
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
68 obj->fence_dirty = false;
69 obj->fence_reg = I915_FENCE_REG_NONE;
70 }
71
72 /* some bookkeeping */
73 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78 }
79
80 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82 {
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85 }
86
87 static int
88 i915_gem_wait_for_error(struct drm_device *dev)
89 {
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
98 ret = wait_for_completion_interruptible(x);
99 if (ret)
100 return ret;
101
102 if (atomic_read(&dev_priv->mm.wedged)) {
103 /* GPU is hung, bump the completion count to account for
104 * the token we just consumed so that we never hit zero and
105 * end up waiting upon a subsequent completion event that
106 * will never happen.
107 */
108 spin_lock_irqsave(&x->wait.lock, flags);
109 x->done++;
110 spin_unlock_irqrestore(&x->wait.lock, flags);
111 }
112 return 0;
113 }
114
115 int i915_mutex_lock_interruptible(struct drm_device *dev)
116 {
117 int ret;
118
119 ret = i915_gem_wait_for_error(dev);
120 if (ret)
121 return ret;
122
123 ret = mutex_lock_interruptible(&dev->struct_mutex);
124 if (ret)
125 return ret;
126
127 WARN_ON(i915_verify_lists(dev));
128 return 0;
129 }
130
131 static inline bool
132 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
133 {
134 return !obj->active;
135 }
136
137 int
138 i915_gem_init_ioctl(struct drm_device *dev, void *data,
139 struct drm_file *file)
140 {
141 struct drm_i915_gem_init *args = data;
142
143 if (drm_core_check_feature(dev, DRIVER_MODESET))
144 return -ENODEV;
145
146 if (args->gtt_start >= args->gtt_end ||
147 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
148 return -EINVAL;
149
150 /* GEM with user mode setting was never supported on ilk and later. */
151 if (INTEL_INFO(dev)->gen >= 5)
152 return -ENODEV;
153
154 mutex_lock(&dev->struct_mutex);
155 i915_gem_init_global_gtt(dev, args->gtt_start,
156 args->gtt_end, args->gtt_end);
157 mutex_unlock(&dev->struct_mutex);
158
159 return 0;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_get_aperture *args = data;
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
170
171 pinned = 0;
172 mutex_lock(&dev->struct_mutex);
173 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
174 if (obj->pin_count)
175 pinned += obj->gtt_space->size;
176 mutex_unlock(&dev->struct_mutex);
177
178 args->aper_size = dev_priv->mm.gtt_total;
179 args->aper_available_size = args->aper_size - pinned;
180
181 return 0;
182 }
183
184 static int
185 i915_gem_create(struct drm_file *file,
186 struct drm_device *dev,
187 uint64_t size,
188 uint32_t *handle_p)
189 {
190 struct drm_i915_gem_object *obj;
191 int ret;
192 u32 handle;
193
194 size = roundup(size, PAGE_SIZE);
195 if (size == 0)
196 return -EINVAL;
197
198 /* Allocate the new object */
199 obj = i915_gem_alloc_object(dev, size);
200 if (obj == NULL)
201 return -ENOMEM;
202
203 ret = drm_gem_handle_create(file, &obj->base, &handle);
204 if (ret) {
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207 kfree(obj);
208 return ret;
209 }
210
211 /* drop reference from allocate - handle holds it now */
212 drm_gem_object_unreference(&obj->base);
213 trace_i915_gem_object_create(obj);
214
215 *handle_p = handle;
216 return 0;
217 }
218
219 int
220 i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223 {
224 /* have to work out size/pitch and return them */
225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229 }
230
231 int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234 {
235 return drm_gem_handle_delete(file, handle);
236 }
237
238 /**
239 * Creates a new mm object and returns a handle to it.
240 */
241 int
242 i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244 {
245 struct drm_i915_gem_create *args = data;
246
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
249 }
250
251 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252 {
253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256 obj->tiling_mode != I915_TILING_NONE;
257 }
258
259 static inline int
260 __copy_to_user_swizzled(char __user *cpu_vaddr,
261 const char *gpu_vaddr, int gpu_offset,
262 int length)
263 {
264 int ret, cpu_offset = 0;
265
266 while (length > 0) {
267 int cacheline_end = ALIGN(gpu_offset + 1, 64);
268 int this_length = min(cacheline_end - gpu_offset, length);
269 int swizzled_gpu_offset = gpu_offset ^ 64;
270
271 ret = __copy_to_user(cpu_vaddr + cpu_offset,
272 gpu_vaddr + swizzled_gpu_offset,
273 this_length);
274 if (ret)
275 return ret + length;
276
277 cpu_offset += this_length;
278 gpu_offset += this_length;
279 length -= this_length;
280 }
281
282 return 0;
283 }
284
285 static inline int
286 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
287 const char __user *cpu_vaddr,
288 int length)
289 {
290 int ret, cpu_offset = 0;
291
292 while (length > 0) {
293 int cacheline_end = ALIGN(gpu_offset + 1, 64);
294 int this_length = min(cacheline_end - gpu_offset, length);
295 int swizzled_gpu_offset = gpu_offset ^ 64;
296
297 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
298 cpu_vaddr + cpu_offset,
299 this_length);
300 if (ret)
301 return ret + length;
302
303 cpu_offset += this_length;
304 gpu_offset += this_length;
305 length -= this_length;
306 }
307
308 return 0;
309 }
310
311 /* Per-page copy function for the shmem pread fastpath.
312 * Flushes invalid cachelines before reading the target if
313 * needs_clflush is set. */
314 static int
315 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
316 char __user *user_data,
317 bool page_do_bit17_swizzling, bool needs_clflush)
318 {
319 char *vaddr;
320 int ret;
321
322 if (unlikely(page_do_bit17_swizzling))
323 return -EINVAL;
324
325 vaddr = kmap_atomic(page);
326 if (needs_clflush)
327 drm_clflush_virt_range(vaddr + shmem_page_offset,
328 page_length);
329 ret = __copy_to_user_inatomic(user_data,
330 vaddr + shmem_page_offset,
331 page_length);
332 kunmap_atomic(vaddr);
333
334 return ret;
335 }
336
337 static void
338 shmem_clflush_swizzled_range(char *addr, unsigned long length,
339 bool swizzled)
340 {
341 if (unlikely(swizzled)) {
342 unsigned long start = (unsigned long) addr;
343 unsigned long end = (unsigned long) addr + length;
344
345 /* For swizzling simply ensure that we always flush both
346 * channels. Lame, but simple and it works. Swizzled
347 * pwrite/pread is far from a hotpath - current userspace
348 * doesn't use it at all. */
349 start = round_down(start, 128);
350 end = round_up(end, 128);
351
352 drm_clflush_virt_range((void *)start, end - start);
353 } else {
354 drm_clflush_virt_range(addr, length);
355 }
356
357 }
358
359 /* Only difference to the fast-path function is that this can handle bit17
360 * and uses non-atomic copy and kmap functions. */
361 static int
362 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
363 char __user *user_data,
364 bool page_do_bit17_swizzling, bool needs_clflush)
365 {
366 char *vaddr;
367 int ret;
368
369 vaddr = kmap(page);
370 if (needs_clflush)
371 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
372 page_length,
373 page_do_bit17_swizzling);
374
375 if (page_do_bit17_swizzling)
376 ret = __copy_to_user_swizzled(user_data,
377 vaddr, shmem_page_offset,
378 page_length);
379 else
380 ret = __copy_to_user(user_data,
381 vaddr + shmem_page_offset,
382 page_length);
383 kunmap(page);
384
385 return ret;
386 }
387
388 static int
389 i915_gem_shmem_pread(struct drm_device *dev,
390 struct drm_i915_gem_object *obj,
391 struct drm_i915_gem_pread *args,
392 struct drm_file *file)
393 {
394 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
395 char __user *user_data;
396 ssize_t remain;
397 loff_t offset;
398 int shmem_page_offset, page_length, ret = 0;
399 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
400 int hit_slowpath = 0;
401 int prefaulted = 0;
402 int needs_clflush = 0;
403 int release_page;
404
405 user_data = (char __user *) (uintptr_t) args->data_ptr;
406 remain = args->size;
407
408 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
409
410 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
411 /* If we're not in the cpu read domain, set ourself into the gtt
412 * read domain and manually flush cachelines (if required). This
413 * optimizes for the case when the gpu will dirty the data
414 * anyway again before the next pread happens. */
415 if (obj->cache_level == I915_CACHE_NONE)
416 needs_clflush = 1;
417 ret = i915_gem_object_set_to_gtt_domain(obj, false);
418 if (ret)
419 return ret;
420 }
421
422 offset = args->offset;
423
424 while (remain > 0) {
425 struct page *page;
426
427 /* Operation in this page
428 *
429 * shmem_page_offset = offset within page in shmem file
430 * page_length = bytes to copy for this page
431 */
432 shmem_page_offset = offset_in_page(offset);
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
436
437 if (obj->pages) {
438 page = obj->pages[offset >> PAGE_SHIFT];
439 release_page = 0;
440 } else {
441 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
442 if (IS_ERR(page)) {
443 ret = PTR_ERR(page);
444 goto out;
445 }
446 release_page = 1;
447 }
448
449 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
450 (page_to_phys(page) & (1 << 17)) != 0;
451
452 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
453 user_data, page_do_bit17_swizzling,
454 needs_clflush);
455 if (ret == 0)
456 goto next_page;
457
458 hit_slowpath = 1;
459 page_cache_get(page);
460 mutex_unlock(&dev->struct_mutex);
461
462 if (!prefaulted) {
463 ret = fault_in_multipages_writeable(user_data, remain);
464 /* Userspace is tricking us, but we've already clobbered
465 * its pages with the prefault and promised to write the
466 * data up to the first fault. Hence ignore any errors
467 * and just continue. */
468 (void)ret;
469 prefaulted = 1;
470 }
471
472 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
473 user_data, page_do_bit17_swizzling,
474 needs_clflush);
475
476 mutex_lock(&dev->struct_mutex);
477 page_cache_release(page);
478 next_page:
479 mark_page_accessed(page);
480 if (release_page)
481 page_cache_release(page);
482
483 if (ret) {
484 ret = -EFAULT;
485 goto out;
486 }
487
488 remain -= page_length;
489 user_data += page_length;
490 offset += page_length;
491 }
492
493 out:
494 if (hit_slowpath) {
495 /* Fixup: Kill any reinstated backing storage pages */
496 if (obj->madv == __I915_MADV_PURGED)
497 i915_gem_object_truncate(obj);
498 }
499
500 return ret;
501 }
502
503 /**
504 * Reads data from the object referenced by handle.
505 *
506 * On error, the contents of *data are undefined.
507 */
508 int
509 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510 struct drm_file *file)
511 {
512 struct drm_i915_gem_pread *args = data;
513 struct drm_i915_gem_object *obj;
514 int ret = 0;
515
516 if (args->size == 0)
517 return 0;
518
519 if (!access_ok(VERIFY_WRITE,
520 (char __user *)(uintptr_t)args->data_ptr,
521 args->size))
522 return -EFAULT;
523
524 ret = i915_mutex_lock_interruptible(dev);
525 if (ret)
526 return ret;
527
528 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529 if (&obj->base == NULL) {
530 ret = -ENOENT;
531 goto unlock;
532 }
533
534 /* Bounds check source. */
535 if (args->offset > obj->base.size ||
536 args->size > obj->base.size - args->offset) {
537 ret = -EINVAL;
538 goto out;
539 }
540
541 trace_i915_gem_object_pread(obj, args->offset, args->size);
542
543 ret = i915_gem_shmem_pread(dev, obj, args, file);
544
545 out:
546 drm_gem_object_unreference(&obj->base);
547 unlock:
548 mutex_unlock(&dev->struct_mutex);
549 return ret;
550 }
551
552 /* This is the fast write path which cannot handle
553 * page faults in the source data
554 */
555
556 static inline int
557 fast_user_write(struct io_mapping *mapping,
558 loff_t page_base, int page_offset,
559 char __user *user_data,
560 int length)
561 {
562 void __iomem *vaddr_atomic;
563 void *vaddr;
564 unsigned long unwritten;
565
566 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567 /* We can use the cpu mem copy function because this is X86. */
568 vaddr = (void __force*)vaddr_atomic + page_offset;
569 unwritten = __copy_from_user_inatomic_nocache(vaddr,
570 user_data, length);
571 io_mapping_unmap_atomic(vaddr_atomic);
572 return unwritten;
573 }
574
575 /**
576 * This is the fast pwrite path, where we copy the data directly from the
577 * user into the GTT, uncached.
578 */
579 static int
580 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
581 struct drm_i915_gem_object *obj,
582 struct drm_i915_gem_pwrite *args,
583 struct drm_file *file)
584 {
585 drm_i915_private_t *dev_priv = dev->dev_private;
586 ssize_t remain;
587 loff_t offset, page_base;
588 char __user *user_data;
589 int page_offset, page_length, ret;
590
591 ret = i915_gem_object_pin(obj, 0, true);
592 if (ret)
593 goto out;
594
595 ret = i915_gem_object_set_to_gtt_domain(obj, true);
596 if (ret)
597 goto out_unpin;
598
599 ret = i915_gem_object_put_fence(obj);
600 if (ret)
601 goto out_unpin;
602
603 user_data = (char __user *) (uintptr_t) args->data_ptr;
604 remain = args->size;
605
606 offset = obj->gtt_offset + args->offset;
607
608 while (remain > 0) {
609 /* Operation in this page
610 *
611 * page_base = page offset within aperture
612 * page_offset = offset within page
613 * page_length = bytes to copy for this page
614 */
615 page_base = offset & PAGE_MASK;
616 page_offset = offset_in_page(offset);
617 page_length = remain;
618 if ((page_offset + remain) > PAGE_SIZE)
619 page_length = PAGE_SIZE - page_offset;
620
621 /* If we get a fault while copying data, then (presumably) our
622 * source page isn't available. Return the error and we'll
623 * retry in the slow path.
624 */
625 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
626 page_offset, user_data, page_length)) {
627 ret = -EFAULT;
628 goto out_unpin;
629 }
630
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
634 }
635
636 out_unpin:
637 i915_gem_object_unpin(obj);
638 out:
639 return ret;
640 }
641
642 /* Per-page copy function for the shmem pwrite fastpath.
643 * Flushes invalid cachelines before writing to the target if
644 * needs_clflush_before is set and flushes out any written cachelines after
645 * writing if needs_clflush is set. */
646 static int
647 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
648 char __user *user_data,
649 bool page_do_bit17_swizzling,
650 bool needs_clflush_before,
651 bool needs_clflush_after)
652 {
653 char *vaddr;
654 int ret;
655
656 if (unlikely(page_do_bit17_swizzling))
657 return -EINVAL;
658
659 vaddr = kmap_atomic(page);
660 if (needs_clflush_before)
661 drm_clflush_virt_range(vaddr + shmem_page_offset,
662 page_length);
663 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
664 user_data,
665 page_length);
666 if (needs_clflush_after)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 kunmap_atomic(vaddr);
670
671 return ret;
672 }
673
674 /* Only difference to the fast-path function is that this can handle bit17
675 * and uses non-atomic copy and kmap functions. */
676 static int
677 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
678 char __user *user_data,
679 bool page_do_bit17_swizzling,
680 bool needs_clflush_before,
681 bool needs_clflush_after)
682 {
683 char *vaddr;
684 int ret;
685
686 vaddr = kmap(page);
687 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
688 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
689 page_length,
690 page_do_bit17_swizzling);
691 if (page_do_bit17_swizzling)
692 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
693 user_data,
694 page_length);
695 else
696 ret = __copy_from_user(vaddr + shmem_page_offset,
697 user_data,
698 page_length);
699 if (needs_clflush_after)
700 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
701 page_length,
702 page_do_bit17_swizzling);
703 kunmap(page);
704
705 return ret;
706 }
707
708 static int
709 i915_gem_shmem_pwrite(struct drm_device *dev,
710 struct drm_i915_gem_object *obj,
711 struct drm_i915_gem_pwrite *args,
712 struct drm_file *file)
713 {
714 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
715 ssize_t remain;
716 loff_t offset;
717 char __user *user_data;
718 int shmem_page_offset, page_length, ret = 0;
719 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
720 int hit_slowpath = 0;
721 int needs_clflush_after = 0;
722 int needs_clflush_before = 0;
723 int release_page;
724
725 user_data = (char __user *) (uintptr_t) args->data_ptr;
726 remain = args->size;
727
728 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
729
730 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
731 /* If we're not in the cpu write domain, set ourself into the gtt
732 * write domain and manually flush cachelines (if required). This
733 * optimizes for the case when the gpu will use the data
734 * right away and we therefore have to clflush anyway. */
735 if (obj->cache_level == I915_CACHE_NONE)
736 needs_clflush_after = 1;
737 ret = i915_gem_object_set_to_gtt_domain(obj, true);
738 if (ret)
739 return ret;
740 }
741 /* Same trick applies for invalidate partially written cachelines before
742 * writing. */
743 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
744 && obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_before = 1;
746
747 offset = args->offset;
748 obj->dirty = 1;
749
750 while (remain > 0) {
751 struct page *page;
752 int partial_cacheline_write;
753
754 /* Operation in this page
755 *
756 * shmem_page_offset = offset within page in shmem file
757 * page_length = bytes to copy for this page
758 */
759 shmem_page_offset = offset_in_page(offset);
760
761 page_length = remain;
762 if ((shmem_page_offset + page_length) > PAGE_SIZE)
763 page_length = PAGE_SIZE - shmem_page_offset;
764
765 /* If we don't overwrite a cacheline completely we need to be
766 * careful to have up-to-date data by first clflushing. Don't
767 * overcomplicate things and flush the entire patch. */
768 partial_cacheline_write = needs_clflush_before &&
769 ((shmem_page_offset | page_length)
770 & (boot_cpu_data.x86_clflush_size - 1));
771
772 if (obj->pages) {
773 page = obj->pages[offset >> PAGE_SHIFT];
774 release_page = 0;
775 } else {
776 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
777 if (IS_ERR(page)) {
778 ret = PTR_ERR(page);
779 goto out;
780 }
781 release_page = 1;
782 }
783
784 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
785 (page_to_phys(page) & (1 << 17)) != 0;
786
787 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
788 user_data, page_do_bit17_swizzling,
789 partial_cacheline_write,
790 needs_clflush_after);
791 if (ret == 0)
792 goto next_page;
793
794 hit_slowpath = 1;
795 page_cache_get(page);
796 mutex_unlock(&dev->struct_mutex);
797
798 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
799 user_data, page_do_bit17_swizzling,
800 partial_cacheline_write,
801 needs_clflush_after);
802
803 mutex_lock(&dev->struct_mutex);
804 page_cache_release(page);
805 next_page:
806 set_page_dirty(page);
807 mark_page_accessed(page);
808 if (release_page)
809 page_cache_release(page);
810
811 if (ret) {
812 ret = -EFAULT;
813 goto out;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out:
822 if (hit_slowpath) {
823 /* Fixup: Kill any reinstated backing storage pages */
824 if (obj->madv == __I915_MADV_PURGED)
825 i915_gem_object_truncate(obj);
826 /* and flush dirty cachelines in case the object isn't in the cpu write
827 * domain anymore. */
828 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829 i915_gem_clflush_object(obj);
830 intel_gtt_chipset_flush();
831 }
832 }
833
834 if (needs_clflush_after)
835 intel_gtt_chipset_flush();
836
837 return ret;
838 }
839
840 /**
841 * Writes data to the object referenced by handle.
842 *
843 * On error, the contents of the buffer that were to be modified are undefined.
844 */
845 int
846 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847 struct drm_file *file)
848 {
849 struct drm_i915_gem_pwrite *args = data;
850 struct drm_i915_gem_object *obj;
851 int ret;
852
853 if (args->size == 0)
854 return 0;
855
856 if (!access_ok(VERIFY_READ,
857 (char __user *)(uintptr_t)args->data_ptr,
858 args->size))
859 return -EFAULT;
860
861 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
862 args->size);
863 if (ret)
864 return -EFAULT;
865
866 ret = i915_mutex_lock_interruptible(dev);
867 if (ret)
868 return ret;
869
870 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
871 if (&obj->base == NULL) {
872 ret = -ENOENT;
873 goto unlock;
874 }
875
876 /* Bounds check destination. */
877 if (args->offset > obj->base.size ||
878 args->size > obj->base.size - args->offset) {
879 ret = -EINVAL;
880 goto out;
881 }
882
883 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
885 ret = -EFAULT;
886 /* We can only do the GTT pwrite on untiled buffers, as otherwise
887 * it would end up going through the fenced access, and we'll get
888 * different detiling behavior between reading and writing.
889 * pread/pwrite currently are reading and writing from the CPU
890 * perspective, requiring manual detiling by the client.
891 */
892 if (obj->phys_obj) {
893 ret = i915_gem_phys_pwrite(dev, obj, args, file);
894 goto out;
895 }
896
897 if (obj->gtt_space &&
898 obj->cache_level == I915_CACHE_NONE &&
899 obj->tiling_mode == I915_TILING_NONE &&
900 obj->map_and_fenceable &&
901 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
902 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
903 /* Note that the gtt paths might fail with non-page-backed user
904 * pointers (e.g. gtt mappings when moving data between
905 * textures). Fallback to the shmem path in that case. */
906 }
907
908 if (ret == -EFAULT)
909 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
910
911 out:
912 drm_gem_object_unreference(&obj->base);
913 unlock:
914 mutex_unlock(&dev->struct_mutex);
915 return ret;
916 }
917
918 /**
919 * Called when user space prepares to use an object with the CPU, either
920 * through the mmap ioctl's mapping or a GTT mapping.
921 */
922 int
923 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
924 struct drm_file *file)
925 {
926 struct drm_i915_gem_set_domain *args = data;
927 struct drm_i915_gem_object *obj;
928 uint32_t read_domains = args->read_domains;
929 uint32_t write_domain = args->write_domain;
930 int ret;
931
932 /* Only handle setting domains to types used by the CPU. */
933 if (write_domain & I915_GEM_GPU_DOMAINS)
934 return -EINVAL;
935
936 if (read_domains & I915_GEM_GPU_DOMAINS)
937 return -EINVAL;
938
939 /* Having something in the write domain implies it's in the read
940 * domain, and only that read domain. Enforce that in the request.
941 */
942 if (write_domain != 0 && read_domains != write_domain)
943 return -EINVAL;
944
945 ret = i915_mutex_lock_interruptible(dev);
946 if (ret)
947 return ret;
948
949 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950 if (&obj->base == NULL) {
951 ret = -ENOENT;
952 goto unlock;
953 }
954
955 if (read_domains & I915_GEM_DOMAIN_GTT) {
956 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
957
958 /* Silently promote "you're not bound, there was nothing to do"
959 * to success, since the client was just asking us to
960 * make sure everything was done.
961 */
962 if (ret == -EINVAL)
963 ret = 0;
964 } else {
965 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
966 }
967
968 drm_gem_object_unreference(&obj->base);
969 unlock:
970 mutex_unlock(&dev->struct_mutex);
971 return ret;
972 }
973
974 /**
975 * Called when user space has done writes to this buffer
976 */
977 int
978 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
980 {
981 struct drm_i915_gem_sw_finish *args = data;
982 struct drm_i915_gem_object *obj;
983 int ret = 0;
984
985 ret = i915_mutex_lock_interruptible(dev);
986 if (ret)
987 return ret;
988
989 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
990 if (&obj->base == NULL) {
991 ret = -ENOENT;
992 goto unlock;
993 }
994
995 /* Pinned buffers may be scanout, so flush the cache */
996 if (obj->pin_count)
997 i915_gem_object_flush_cpu_write_domain(obj);
998
999 drm_gem_object_unreference(&obj->base);
1000 unlock:
1001 mutex_unlock(&dev->struct_mutex);
1002 return ret;
1003 }
1004
1005 /**
1006 * Maps the contents of an object, returning the address it is mapped
1007 * into.
1008 *
1009 * While the mapping holds a reference on the contents of the object, it doesn't
1010 * imply a ref on the object itself.
1011 */
1012 int
1013 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1014 struct drm_file *file)
1015 {
1016 struct drm_i915_gem_mmap *args = data;
1017 struct drm_gem_object *obj;
1018 unsigned long addr;
1019
1020 obj = drm_gem_object_lookup(dev, file, args->handle);
1021 if (obj == NULL)
1022 return -ENOENT;
1023
1024 addr = vm_mmap(obj->filp, 0, args->size,
1025 PROT_READ | PROT_WRITE, MAP_SHARED,
1026 args->offset);
1027 drm_gem_object_unreference_unlocked(obj);
1028 if (IS_ERR((void *)addr))
1029 return addr;
1030
1031 args->addr_ptr = (uint64_t) addr;
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * i915_gem_fault - fault a page into the GTT
1038 * vma: VMA in question
1039 * vmf: fault info
1040 *
1041 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1042 * from userspace. The fault handler takes care of binding the object to
1043 * the GTT (if needed), allocating and programming a fence register (again,
1044 * only if needed based on whether the old reg is still valid or the object
1045 * is tiled) and inserting a new PTE into the faulting process.
1046 *
1047 * Note that the faulting process may involve evicting existing objects
1048 * from the GTT and/or fence registers to make room. So performance may
1049 * suffer if the GTT working set is large or there are few fence registers
1050 * left.
1051 */
1052 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1053 {
1054 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1055 struct drm_device *dev = obj->base.dev;
1056 drm_i915_private_t *dev_priv = dev->dev_private;
1057 pgoff_t page_offset;
1058 unsigned long pfn;
1059 int ret = 0;
1060 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1061
1062 /* We don't use vmf->pgoff since that has the fake offset */
1063 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1064 PAGE_SHIFT;
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto out;
1069
1070 trace_i915_gem_object_fault(obj, page_offset, true, write);
1071
1072 /* Now bind it into the GTT if needed */
1073 if (!obj->map_and_fenceable) {
1074 ret = i915_gem_object_unbind(obj);
1075 if (ret)
1076 goto unlock;
1077 }
1078 if (!obj->gtt_space) {
1079 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1080 if (ret)
1081 goto unlock;
1082
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1084 if (ret)
1085 goto unlock;
1086 }
1087
1088 if (!obj->has_global_gtt_mapping)
1089 i915_gem_gtt_bind_object(obj, obj->cache_level);
1090
1091 ret = i915_gem_object_get_fence(obj);
1092 if (ret)
1093 goto unlock;
1094
1095 if (i915_gem_object_is_inactive(obj))
1096 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1097
1098 obj->fault_mappable = true;
1099
1100 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1101 page_offset;
1102
1103 /* Finally, remap it using the new GTT offset */
1104 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1105 unlock:
1106 mutex_unlock(&dev->struct_mutex);
1107 out:
1108 switch (ret) {
1109 case -EIO:
1110 case -EAGAIN:
1111 /* Give the error handler a chance to run and move the
1112 * objects off the GPU active list. Next time we service the
1113 * fault, we should be able to transition the page into the
1114 * GTT without touching the GPU (and so avoid further
1115 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1116 * with coherency, just lost writes.
1117 */
1118 set_need_resched();
1119 case 0:
1120 case -ERESTARTSYS:
1121 case -EINTR:
1122 return VM_FAULT_NOPAGE;
1123 case -ENOMEM:
1124 return VM_FAULT_OOM;
1125 default:
1126 return VM_FAULT_SIGBUS;
1127 }
1128 }
1129
1130 /**
1131 * i915_gem_release_mmap - remove physical page mappings
1132 * @obj: obj in question
1133 *
1134 * Preserve the reservation of the mmapping with the DRM core code, but
1135 * relinquish ownership of the pages back to the system.
1136 *
1137 * It is vital that we remove the page mapping if we have mapped a tiled
1138 * object through the GTT and then lose the fence register due to
1139 * resource pressure. Similarly if the object has been moved out of the
1140 * aperture, than pages mapped into userspace must be revoked. Removing the
1141 * mapping will then trigger a page fault on the next user access, allowing
1142 * fixup by i915_gem_fault().
1143 */
1144 void
1145 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1146 {
1147 if (!obj->fault_mappable)
1148 return;
1149
1150 if (obj->base.dev->dev_mapping)
1151 unmap_mapping_range(obj->base.dev->dev_mapping,
1152 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1153 obj->base.size, 1);
1154
1155 obj->fault_mappable = false;
1156 }
1157
1158 static uint32_t
1159 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1160 {
1161 uint32_t gtt_size;
1162
1163 if (INTEL_INFO(dev)->gen >= 4 ||
1164 tiling_mode == I915_TILING_NONE)
1165 return size;
1166
1167 /* Previous chips need a power-of-two fence region when tiling */
1168 if (INTEL_INFO(dev)->gen == 3)
1169 gtt_size = 1024*1024;
1170 else
1171 gtt_size = 512*1024;
1172
1173 while (gtt_size < size)
1174 gtt_size <<= 1;
1175
1176 return gtt_size;
1177 }
1178
1179 /**
1180 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1181 * @obj: object to check
1182 *
1183 * Return the required GTT alignment for an object, taking into account
1184 * potential fence register mapping.
1185 */
1186 static uint32_t
1187 i915_gem_get_gtt_alignment(struct drm_device *dev,
1188 uint32_t size,
1189 int tiling_mode)
1190 {
1191 /*
1192 * Minimum alignment is 4k (GTT page size), but might be greater
1193 * if a fence register is needed for the object.
1194 */
1195 if (INTEL_INFO(dev)->gen >= 4 ||
1196 tiling_mode == I915_TILING_NONE)
1197 return 4096;
1198
1199 /*
1200 * Previous chips need to be aligned to the size of the smallest
1201 * fence register that can contain the object.
1202 */
1203 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1204 }
1205
1206 /**
1207 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1208 * unfenced object
1209 * @dev: the device
1210 * @size: size of the object
1211 * @tiling_mode: tiling mode of the object
1212 *
1213 * Return the required GTT alignment for an object, only taking into account
1214 * unfenced tiled surface requirements.
1215 */
1216 uint32_t
1217 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1218 uint32_t size,
1219 int tiling_mode)
1220 {
1221 /*
1222 * Minimum alignment is 4k (GTT page size) for sane hw.
1223 */
1224 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1225 tiling_mode == I915_TILING_NONE)
1226 return 4096;
1227
1228 /* Previous hardware however needs to be aligned to a power-of-two
1229 * tile height. The simplest method for determining this is to reuse
1230 * the power-of-tile object size.
1231 */
1232 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1233 }
1234
1235 int
1236 i915_gem_mmap_gtt(struct drm_file *file,
1237 struct drm_device *dev,
1238 uint32_t handle,
1239 uint64_t *offset)
1240 {
1241 struct drm_i915_private *dev_priv = dev->dev_private;
1242 struct drm_i915_gem_object *obj;
1243 int ret;
1244
1245 ret = i915_mutex_lock_interruptible(dev);
1246 if (ret)
1247 return ret;
1248
1249 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1250 if (&obj->base == NULL) {
1251 ret = -ENOENT;
1252 goto unlock;
1253 }
1254
1255 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1256 ret = -E2BIG;
1257 goto out;
1258 }
1259
1260 if (obj->madv != I915_MADV_WILLNEED) {
1261 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1262 ret = -EINVAL;
1263 goto out;
1264 }
1265
1266 if (!obj->base.map_list.map) {
1267 ret = drm_gem_create_mmap_offset(&obj->base);
1268 if (ret)
1269 goto out;
1270 }
1271
1272 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1273
1274 out:
1275 drm_gem_object_unreference(&obj->base);
1276 unlock:
1277 mutex_unlock(&dev->struct_mutex);
1278 return ret;
1279 }
1280
1281 /**
1282 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1283 * @dev: DRM device
1284 * @data: GTT mapping ioctl data
1285 * @file: GEM object info
1286 *
1287 * Simply returns the fake offset to userspace so it can mmap it.
1288 * The mmap call will end up in drm_gem_mmap(), which will set things
1289 * up so we can get faults in the handler above.
1290 *
1291 * The fault handler will take care of binding the object into the GTT
1292 * (since it may have been evicted to make room for something), allocating
1293 * a fence register, and mapping the appropriate aperture address into
1294 * userspace.
1295 */
1296 int
1297 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1298 struct drm_file *file)
1299 {
1300 struct drm_i915_gem_mmap_gtt *args = data;
1301
1302 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1303 }
1304
1305
1306 static int
1307 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1308 gfp_t gfpmask)
1309 {
1310 int page_count, i;
1311 struct address_space *mapping;
1312 struct inode *inode;
1313 struct page *page;
1314
1315 /* Get the list of pages out of our struct file. They'll be pinned
1316 * at this point until we release them.
1317 */
1318 page_count = obj->base.size / PAGE_SIZE;
1319 BUG_ON(obj->pages != NULL);
1320 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1321 if (obj->pages == NULL)
1322 return -ENOMEM;
1323
1324 inode = obj->base.filp->f_path.dentry->d_inode;
1325 mapping = inode->i_mapping;
1326 gfpmask |= mapping_gfp_mask(mapping);
1327
1328 for (i = 0; i < page_count; i++) {
1329 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1330 if (IS_ERR(page))
1331 goto err_pages;
1332
1333 obj->pages[i] = page;
1334 }
1335
1336 if (i915_gem_object_needs_bit17_swizzle(obj))
1337 i915_gem_object_do_bit_17_swizzle(obj);
1338
1339 return 0;
1340
1341 err_pages:
1342 while (i--)
1343 page_cache_release(obj->pages[i]);
1344
1345 drm_free_large(obj->pages);
1346 obj->pages = NULL;
1347 return PTR_ERR(page);
1348 }
1349
1350 static void
1351 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1352 {
1353 int page_count = obj->base.size / PAGE_SIZE;
1354 int i;
1355
1356 BUG_ON(obj->madv == __I915_MADV_PURGED);
1357
1358 if (i915_gem_object_needs_bit17_swizzle(obj))
1359 i915_gem_object_save_bit_17_swizzle(obj);
1360
1361 if (obj->madv == I915_MADV_DONTNEED)
1362 obj->dirty = 0;
1363
1364 for (i = 0; i < page_count; i++) {
1365 if (obj->dirty)
1366 set_page_dirty(obj->pages[i]);
1367
1368 if (obj->madv == I915_MADV_WILLNEED)
1369 mark_page_accessed(obj->pages[i]);
1370
1371 page_cache_release(obj->pages[i]);
1372 }
1373 obj->dirty = 0;
1374
1375 drm_free_large(obj->pages);
1376 obj->pages = NULL;
1377 }
1378
1379 void
1380 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1381 struct intel_ring_buffer *ring,
1382 u32 seqno)
1383 {
1384 struct drm_device *dev = obj->base.dev;
1385 struct drm_i915_private *dev_priv = dev->dev_private;
1386
1387 BUG_ON(ring == NULL);
1388 obj->ring = ring;
1389
1390 /* Add a reference if we're newly entering the active list. */
1391 if (!obj->active) {
1392 drm_gem_object_reference(&obj->base);
1393 obj->active = 1;
1394 }
1395
1396 /* Move from whatever list we were on to the tail of execution. */
1397 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1398 list_move_tail(&obj->ring_list, &ring->active_list);
1399
1400 obj->last_rendering_seqno = seqno;
1401
1402 if (obj->fenced_gpu_access) {
1403 obj->last_fenced_seqno = seqno;
1404
1405 /* Bump MRU to take account of the delayed flush */
1406 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1407 struct drm_i915_fence_reg *reg;
1408
1409 reg = &dev_priv->fence_regs[obj->fence_reg];
1410 list_move_tail(&reg->lru_list,
1411 &dev_priv->mm.fence_list);
1412 }
1413 }
1414 }
1415
1416 static void
1417 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1418 {
1419 list_del_init(&obj->ring_list);
1420 obj->last_rendering_seqno = 0;
1421 obj->last_fenced_seqno = 0;
1422 }
1423
1424 static void
1425 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1426 {
1427 struct drm_device *dev = obj->base.dev;
1428 drm_i915_private_t *dev_priv = dev->dev_private;
1429
1430 BUG_ON(!obj->active);
1431 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1432
1433 i915_gem_object_move_off_active(obj);
1434 }
1435
1436 static void
1437 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1438 {
1439 struct drm_device *dev = obj->base.dev;
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441
1442 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1443
1444 BUG_ON(!list_empty(&obj->gpu_write_list));
1445 BUG_ON(!obj->active);
1446 obj->ring = NULL;
1447
1448 i915_gem_object_move_off_active(obj);
1449 obj->fenced_gpu_access = false;
1450
1451 obj->active = 0;
1452 obj->pending_gpu_write = false;
1453 drm_gem_object_unreference(&obj->base);
1454
1455 WARN_ON(i915_verify_lists(dev));
1456 }
1457
1458 /* Immediately discard the backing storage */
1459 static void
1460 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1461 {
1462 struct inode *inode;
1463
1464 /* Our goal here is to return as much of the memory as
1465 * is possible back to the system as we are called from OOM.
1466 * To do this we must instruct the shmfs to drop all of its
1467 * backing pages, *now*.
1468 */
1469 inode = obj->base.filp->f_path.dentry->d_inode;
1470 shmem_truncate_range(inode, 0, (loff_t)-1);
1471
1472 if (obj->base.map_list.map)
1473 drm_gem_free_mmap_offset(&obj->base);
1474
1475 obj->madv = __I915_MADV_PURGED;
1476 }
1477
1478 static inline int
1479 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1480 {
1481 return obj->madv == I915_MADV_DONTNEED;
1482 }
1483
1484 static void
1485 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1486 uint32_t flush_domains)
1487 {
1488 struct drm_i915_gem_object *obj, *next;
1489
1490 list_for_each_entry_safe(obj, next,
1491 &ring->gpu_write_list,
1492 gpu_write_list) {
1493 if (obj->base.write_domain & flush_domains) {
1494 uint32_t old_write_domain = obj->base.write_domain;
1495
1496 obj->base.write_domain = 0;
1497 list_del_init(&obj->gpu_write_list);
1498 i915_gem_object_move_to_active(obj, ring,
1499 i915_gem_next_request_seqno(ring));
1500
1501 trace_i915_gem_object_change_domain(obj,
1502 obj->base.read_domains,
1503 old_write_domain);
1504 }
1505 }
1506 }
1507
1508 static u32
1509 i915_gem_get_seqno(struct drm_device *dev)
1510 {
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 u32 seqno = dev_priv->next_seqno;
1513
1514 /* reserve 0 for non-seqno */
1515 if (++dev_priv->next_seqno == 0)
1516 dev_priv->next_seqno = 1;
1517
1518 return seqno;
1519 }
1520
1521 u32
1522 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1523 {
1524 if (ring->outstanding_lazy_request == 0)
1525 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1526
1527 return ring->outstanding_lazy_request;
1528 }
1529
1530 int
1531 i915_add_request(struct intel_ring_buffer *ring,
1532 struct drm_file *file,
1533 struct drm_i915_gem_request *request)
1534 {
1535 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1536 uint32_t seqno;
1537 u32 request_ring_position;
1538 int was_empty;
1539 int ret;
1540
1541 BUG_ON(request == NULL);
1542 seqno = i915_gem_next_request_seqno(ring);
1543
1544 /* Record the position of the start of the request so that
1545 * should we detect the updated seqno part-way through the
1546 * GPU processing the request, we never over-estimate the
1547 * position of the head.
1548 */
1549 request_ring_position = intel_ring_get_tail(ring);
1550
1551 ret = ring->add_request(ring, &seqno);
1552 if (ret)
1553 return ret;
1554
1555 trace_i915_gem_request_add(ring, seqno);
1556
1557 request->seqno = seqno;
1558 request->ring = ring;
1559 request->tail = request_ring_position;
1560 request->emitted_jiffies = jiffies;
1561 was_empty = list_empty(&ring->request_list);
1562 list_add_tail(&request->list, &ring->request_list);
1563
1564 if (file) {
1565 struct drm_i915_file_private *file_priv = file->driver_priv;
1566
1567 spin_lock(&file_priv->mm.lock);
1568 request->file_priv = file_priv;
1569 list_add_tail(&request->client_list,
1570 &file_priv->mm.request_list);
1571 spin_unlock(&file_priv->mm.lock);
1572 }
1573
1574 ring->outstanding_lazy_request = 0;
1575
1576 if (!dev_priv->mm.suspended) {
1577 if (i915_enable_hangcheck) {
1578 mod_timer(&dev_priv->hangcheck_timer,
1579 jiffies +
1580 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1581 }
1582 if (was_empty)
1583 queue_delayed_work(dev_priv->wq,
1584 &dev_priv->mm.retire_work, HZ);
1585 }
1586 return 0;
1587 }
1588
1589 static inline void
1590 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1591 {
1592 struct drm_i915_file_private *file_priv = request->file_priv;
1593
1594 if (!file_priv)
1595 return;
1596
1597 spin_lock(&file_priv->mm.lock);
1598 if (request->file_priv) {
1599 list_del(&request->client_list);
1600 request->file_priv = NULL;
1601 }
1602 spin_unlock(&file_priv->mm.lock);
1603 }
1604
1605 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1606 struct intel_ring_buffer *ring)
1607 {
1608 while (!list_empty(&ring->request_list)) {
1609 struct drm_i915_gem_request *request;
1610
1611 request = list_first_entry(&ring->request_list,
1612 struct drm_i915_gem_request,
1613 list);
1614
1615 list_del(&request->list);
1616 i915_gem_request_remove_from_client(request);
1617 kfree(request);
1618 }
1619
1620 while (!list_empty(&ring->active_list)) {
1621 struct drm_i915_gem_object *obj;
1622
1623 obj = list_first_entry(&ring->active_list,
1624 struct drm_i915_gem_object,
1625 ring_list);
1626
1627 obj->base.write_domain = 0;
1628 list_del_init(&obj->gpu_write_list);
1629 i915_gem_object_move_to_inactive(obj);
1630 }
1631 }
1632
1633 static void i915_gem_reset_fences(struct drm_device *dev)
1634 {
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 int i;
1637
1638 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1639 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1640
1641 i915_gem_write_fence(dev, i, NULL);
1642
1643 if (reg->obj)
1644 i915_gem_object_fence_lost(reg->obj);
1645
1646 reg->pin_count = 0;
1647 reg->obj = NULL;
1648 INIT_LIST_HEAD(&reg->lru_list);
1649 }
1650
1651 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1652 }
1653
1654 void i915_gem_reset(struct drm_device *dev)
1655 {
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 struct drm_i915_gem_object *obj;
1658 struct intel_ring_buffer *ring;
1659 int i;
1660
1661 for_each_ring(ring, dev_priv, i)
1662 i915_gem_reset_ring_lists(dev_priv, ring);
1663
1664 /* Remove anything from the flushing lists. The GPU cache is likely
1665 * to be lost on reset along with the data, so simply move the
1666 * lost bo to the inactive list.
1667 */
1668 while (!list_empty(&dev_priv->mm.flushing_list)) {
1669 obj = list_first_entry(&dev_priv->mm.flushing_list,
1670 struct drm_i915_gem_object,
1671 mm_list);
1672
1673 obj->base.write_domain = 0;
1674 list_del_init(&obj->gpu_write_list);
1675 i915_gem_object_move_to_inactive(obj);
1676 }
1677
1678 /* Move everything out of the GPU domains to ensure we do any
1679 * necessary invalidation upon reuse.
1680 */
1681 list_for_each_entry(obj,
1682 &dev_priv->mm.inactive_list,
1683 mm_list)
1684 {
1685 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1686 }
1687
1688 /* The fence registers are invalidated so clear them out */
1689 i915_gem_reset_fences(dev);
1690 }
1691
1692 /**
1693 * This function clears the request list as sequence numbers are passed.
1694 */
1695 void
1696 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1697 {
1698 uint32_t seqno;
1699 int i;
1700
1701 if (list_empty(&ring->request_list))
1702 return;
1703
1704 WARN_ON(i915_verify_lists(ring->dev));
1705
1706 seqno = ring->get_seqno(ring);
1707
1708 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1709 if (seqno >= ring->sync_seqno[i])
1710 ring->sync_seqno[i] = 0;
1711
1712 while (!list_empty(&ring->request_list)) {
1713 struct drm_i915_gem_request *request;
1714
1715 request = list_first_entry(&ring->request_list,
1716 struct drm_i915_gem_request,
1717 list);
1718
1719 if (!i915_seqno_passed(seqno, request->seqno))
1720 break;
1721
1722 trace_i915_gem_request_retire(ring, request->seqno);
1723 /* We know the GPU must have read the request to have
1724 * sent us the seqno + interrupt, so use the position
1725 * of tail of the request to update the last known position
1726 * of the GPU head.
1727 */
1728 ring->last_retired_head = request->tail;
1729
1730 list_del(&request->list);
1731 i915_gem_request_remove_from_client(request);
1732 kfree(request);
1733 }
1734
1735 /* Move any buffers on the active list that are no longer referenced
1736 * by the ringbuffer to the flushing/inactive lists as appropriate.
1737 */
1738 while (!list_empty(&ring->active_list)) {
1739 struct drm_i915_gem_object *obj;
1740
1741 obj = list_first_entry(&ring->active_list,
1742 struct drm_i915_gem_object,
1743 ring_list);
1744
1745 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1746 break;
1747
1748 if (obj->base.write_domain != 0)
1749 i915_gem_object_move_to_flushing(obj);
1750 else
1751 i915_gem_object_move_to_inactive(obj);
1752 }
1753
1754 if (unlikely(ring->trace_irq_seqno &&
1755 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1756 ring->irq_put(ring);
1757 ring->trace_irq_seqno = 0;
1758 }
1759
1760 WARN_ON(i915_verify_lists(ring->dev));
1761 }
1762
1763 void
1764 i915_gem_retire_requests(struct drm_device *dev)
1765 {
1766 drm_i915_private_t *dev_priv = dev->dev_private;
1767 struct intel_ring_buffer *ring;
1768 int i;
1769
1770 for_each_ring(ring, dev_priv, i)
1771 i915_gem_retire_requests_ring(ring);
1772 }
1773
1774 static void
1775 i915_gem_retire_work_handler(struct work_struct *work)
1776 {
1777 drm_i915_private_t *dev_priv;
1778 struct drm_device *dev;
1779 struct intel_ring_buffer *ring;
1780 bool idle;
1781 int i;
1782
1783 dev_priv = container_of(work, drm_i915_private_t,
1784 mm.retire_work.work);
1785 dev = dev_priv->dev;
1786
1787 /* Come back later if the device is busy... */
1788 if (!mutex_trylock(&dev->struct_mutex)) {
1789 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1790 return;
1791 }
1792
1793 i915_gem_retire_requests(dev);
1794
1795 /* Send a periodic flush down the ring so we don't hold onto GEM
1796 * objects indefinitely.
1797 */
1798 idle = true;
1799 for_each_ring(ring, dev_priv, i) {
1800 if (!list_empty(&ring->gpu_write_list)) {
1801 struct drm_i915_gem_request *request;
1802 int ret;
1803
1804 ret = i915_gem_flush_ring(ring,
1805 0, I915_GEM_GPU_DOMAINS);
1806 request = kzalloc(sizeof(*request), GFP_KERNEL);
1807 if (ret || request == NULL ||
1808 i915_add_request(ring, NULL, request))
1809 kfree(request);
1810 }
1811
1812 idle &= list_empty(&ring->request_list);
1813 }
1814
1815 if (!dev_priv->mm.suspended && !idle)
1816 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1817
1818 mutex_unlock(&dev->struct_mutex);
1819 }
1820
1821 static int
1822 i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1823 {
1824 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1825
1826 if (atomic_read(&dev_priv->mm.wedged)) {
1827 struct completion *x = &dev_priv->error_completion;
1828 bool recovery_complete;
1829 unsigned long flags;
1830
1831 /* Give the error handler a chance to run. */
1832 spin_lock_irqsave(&x->wait.lock, flags);
1833 recovery_complete = x->done > 0;
1834 spin_unlock_irqrestore(&x->wait.lock, flags);
1835
1836 return recovery_complete ? -EIO : -EAGAIN;
1837 }
1838
1839 return 0;
1840 }
1841
1842 /*
1843 * Compare seqno against outstanding lazy request. Emit a request if they are
1844 * equal.
1845 */
1846 static int
1847 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1848 {
1849 int ret = 0;
1850
1851 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1852
1853 if (seqno == ring->outstanding_lazy_request) {
1854 struct drm_i915_gem_request *request;
1855
1856 request = kzalloc(sizeof(*request), GFP_KERNEL);
1857 if (request == NULL)
1858 return -ENOMEM;
1859
1860 ret = i915_add_request(ring, NULL, request);
1861 if (ret) {
1862 kfree(request);
1863 return ret;
1864 }
1865
1866 BUG_ON(seqno != request->seqno);
1867 }
1868
1869 return ret;
1870 }
1871
1872 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1873 bool interruptible)
1874 {
1875 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1876 int ret = 0;
1877
1878 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1879 return 0;
1880
1881 trace_i915_gem_request_wait_begin(ring, seqno);
1882 if (WARN_ON(!ring->irq_get(ring)))
1883 return -ENODEV;
1884
1885 #define EXIT_COND \
1886 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1887 atomic_read(&dev_priv->mm.wedged))
1888
1889 if (interruptible)
1890 ret = wait_event_interruptible(ring->irq_queue,
1891 EXIT_COND);
1892 else
1893 wait_event(ring->irq_queue, EXIT_COND);
1894
1895 ring->irq_put(ring);
1896 trace_i915_gem_request_wait_end(ring, seqno);
1897 #undef EXIT_COND
1898
1899 return ret;
1900 }
1901
1902 /**
1903 * Waits for a sequence number to be signaled, and cleans up the
1904 * request and object lists appropriately for that event.
1905 */
1906 int
1907 i915_wait_request(struct intel_ring_buffer *ring,
1908 uint32_t seqno)
1909 {
1910 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1911 int ret = 0;
1912
1913 BUG_ON(seqno == 0);
1914
1915 ret = i915_gem_check_wedge(dev_priv);
1916 if (ret)
1917 return ret;
1918
1919 ret = i915_gem_check_olr(ring, seqno);
1920 if (ret)
1921 return ret;
1922
1923 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
1924 if (atomic_read(&dev_priv->mm.wedged))
1925 ret = -EAGAIN;
1926
1927 return ret;
1928 }
1929
1930 /**
1931 * Ensures that all rendering to the object has completed and the object is
1932 * safe to unbind from the GTT or access from the CPU.
1933 */
1934 int
1935 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1936 {
1937 int ret;
1938
1939 /* This function only exists to support waiting for existing rendering,
1940 * not for emitting required flushes.
1941 */
1942 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1943
1944 /* If there is rendering queued on the buffer being evicted, wait for
1945 * it.
1946 */
1947 if (obj->active) {
1948 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1949 if (ret)
1950 return ret;
1951 i915_gem_retire_requests_ring(obj->ring);
1952 }
1953
1954 return 0;
1955 }
1956
1957 /**
1958 * i915_gem_object_sync - sync an object to a ring.
1959 *
1960 * @obj: object which may be in use on another ring.
1961 * @to: ring we wish to use the object on. May be NULL.
1962 *
1963 * This code is meant to abstract object synchronization with the GPU.
1964 * Calling with NULL implies synchronizing the object with the CPU
1965 * rather than a particular GPU ring.
1966 *
1967 * Returns 0 if successful, else propagates up the lower layer error.
1968 */
1969 int
1970 i915_gem_object_sync(struct drm_i915_gem_object *obj,
1971 struct intel_ring_buffer *to)
1972 {
1973 struct intel_ring_buffer *from = obj->ring;
1974 u32 seqno;
1975 int ret, idx;
1976
1977 if (from == NULL || to == from)
1978 return 0;
1979
1980 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1981 return i915_gem_object_wait_rendering(obj);
1982
1983 idx = intel_ring_sync_index(from, to);
1984
1985 seqno = obj->last_rendering_seqno;
1986 if (seqno <= from->sync_seqno[idx])
1987 return 0;
1988
1989 ret = i915_gem_check_olr(obj->ring, seqno);
1990 if (ret)
1991 return ret;
1992
1993 ret = to->sync_to(to, from, seqno);
1994 if (!ret)
1995 from->sync_seqno[idx] = seqno;
1996
1997 return ret;
1998 }
1999
2000 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2001 {
2002 u32 old_write_domain, old_read_domains;
2003
2004 /* Act a barrier for all accesses through the GTT */
2005 mb();
2006
2007 /* Force a pagefault for domain tracking on next user access */
2008 i915_gem_release_mmap(obj);
2009
2010 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2011 return;
2012
2013 old_read_domains = obj->base.read_domains;
2014 old_write_domain = obj->base.write_domain;
2015
2016 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2017 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2018
2019 trace_i915_gem_object_change_domain(obj,
2020 old_read_domains,
2021 old_write_domain);
2022 }
2023
2024 /**
2025 * Unbinds an object from the GTT aperture.
2026 */
2027 int
2028 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2029 {
2030 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2031 int ret = 0;
2032
2033 if (obj->gtt_space == NULL)
2034 return 0;
2035
2036 if (obj->pin_count != 0) {
2037 DRM_ERROR("Attempting to unbind pinned buffer\n");
2038 return -EINVAL;
2039 }
2040
2041 ret = i915_gem_object_finish_gpu(obj);
2042 if (ret)
2043 return ret;
2044 /* Continue on if we fail due to EIO, the GPU is hung so we
2045 * should be safe and we need to cleanup or else we might
2046 * cause memory corruption through use-after-free.
2047 */
2048
2049 i915_gem_object_finish_gtt(obj);
2050
2051 /* Move the object to the CPU domain to ensure that
2052 * any possible CPU writes while it's not in the GTT
2053 * are flushed when we go to remap it.
2054 */
2055 if (ret == 0)
2056 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2057 if (ret == -ERESTARTSYS)
2058 return ret;
2059 if (ret) {
2060 /* In the event of a disaster, abandon all caches and
2061 * hope for the best.
2062 */
2063 i915_gem_clflush_object(obj);
2064 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2065 }
2066
2067 /* release the fence reg _after_ flushing */
2068 ret = i915_gem_object_put_fence(obj);
2069 if (ret)
2070 return ret;
2071
2072 trace_i915_gem_object_unbind(obj);
2073
2074 if (obj->has_global_gtt_mapping)
2075 i915_gem_gtt_unbind_object(obj);
2076 if (obj->has_aliasing_ppgtt_mapping) {
2077 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2078 obj->has_aliasing_ppgtt_mapping = 0;
2079 }
2080 i915_gem_gtt_finish_object(obj);
2081
2082 i915_gem_object_put_pages_gtt(obj);
2083
2084 list_del_init(&obj->gtt_list);
2085 list_del_init(&obj->mm_list);
2086 /* Avoid an unnecessary call to unbind on rebind. */
2087 obj->map_and_fenceable = true;
2088
2089 drm_mm_put_block(obj->gtt_space);
2090 obj->gtt_space = NULL;
2091 obj->gtt_offset = 0;
2092
2093 if (i915_gem_object_is_purgeable(obj))
2094 i915_gem_object_truncate(obj);
2095
2096 return ret;
2097 }
2098
2099 int
2100 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2101 uint32_t invalidate_domains,
2102 uint32_t flush_domains)
2103 {
2104 int ret;
2105
2106 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2107 return 0;
2108
2109 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2110
2111 ret = ring->flush(ring, invalidate_domains, flush_domains);
2112 if (ret)
2113 return ret;
2114
2115 if (flush_domains & I915_GEM_GPU_DOMAINS)
2116 i915_gem_process_flushing_list(ring, flush_domains);
2117
2118 return 0;
2119 }
2120
2121 static int i915_ring_idle(struct intel_ring_buffer *ring)
2122 {
2123 int ret;
2124
2125 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2126 return 0;
2127
2128 if (!list_empty(&ring->gpu_write_list)) {
2129 ret = i915_gem_flush_ring(ring,
2130 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2131 if (ret)
2132 return ret;
2133 }
2134
2135 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2136 }
2137
2138 int i915_gpu_idle(struct drm_device *dev)
2139 {
2140 drm_i915_private_t *dev_priv = dev->dev_private;
2141 struct intel_ring_buffer *ring;
2142 int ret, i;
2143
2144 /* Flush everything onto the inactive list. */
2145 for_each_ring(ring, dev_priv, i) {
2146 ret = i915_ring_idle(ring);
2147 if (ret)
2148 return ret;
2149
2150 /* Is the device fubar? */
2151 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2152 return -EBUSY;
2153 }
2154
2155 return 0;
2156 }
2157
2158 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2159 struct drm_i915_gem_object *obj)
2160 {
2161 drm_i915_private_t *dev_priv = dev->dev_private;
2162 uint64_t val;
2163
2164 if (obj) {
2165 u32 size = obj->gtt_space->size;
2166
2167 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2168 0xfffff000) << 32;
2169 val |= obj->gtt_offset & 0xfffff000;
2170 val |= (uint64_t)((obj->stride / 128) - 1) <<
2171 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2172
2173 if (obj->tiling_mode == I915_TILING_Y)
2174 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2175 val |= I965_FENCE_REG_VALID;
2176 } else
2177 val = 0;
2178
2179 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2180 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2181 }
2182
2183 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2184 struct drm_i915_gem_object *obj)
2185 {
2186 drm_i915_private_t *dev_priv = dev->dev_private;
2187 uint64_t val;
2188
2189 if (obj) {
2190 u32 size = obj->gtt_space->size;
2191
2192 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2193 0xfffff000) << 32;
2194 val |= obj->gtt_offset & 0xfffff000;
2195 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2196 if (obj->tiling_mode == I915_TILING_Y)
2197 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2198 val |= I965_FENCE_REG_VALID;
2199 } else
2200 val = 0;
2201
2202 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2203 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2204 }
2205
2206 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2207 struct drm_i915_gem_object *obj)
2208 {
2209 drm_i915_private_t *dev_priv = dev->dev_private;
2210 u32 val;
2211
2212 if (obj) {
2213 u32 size = obj->gtt_space->size;
2214 int pitch_val;
2215 int tile_width;
2216
2217 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2218 (size & -size) != size ||
2219 (obj->gtt_offset & (size - 1)),
2220 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2221 obj->gtt_offset, obj->map_and_fenceable, size);
2222
2223 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2224 tile_width = 128;
2225 else
2226 tile_width = 512;
2227
2228 /* Note: pitch better be a power of two tile widths */
2229 pitch_val = obj->stride / tile_width;
2230 pitch_val = ffs(pitch_val) - 1;
2231
2232 val = obj->gtt_offset;
2233 if (obj->tiling_mode == I915_TILING_Y)
2234 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2235 val |= I915_FENCE_SIZE_BITS(size);
2236 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2237 val |= I830_FENCE_REG_VALID;
2238 } else
2239 val = 0;
2240
2241 if (reg < 8)
2242 reg = FENCE_REG_830_0 + reg * 4;
2243 else
2244 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2245
2246 I915_WRITE(reg, val);
2247 POSTING_READ(reg);
2248 }
2249
2250 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2251 struct drm_i915_gem_object *obj)
2252 {
2253 drm_i915_private_t *dev_priv = dev->dev_private;
2254 uint32_t val;
2255
2256 if (obj) {
2257 u32 size = obj->gtt_space->size;
2258 uint32_t pitch_val;
2259
2260 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2261 (size & -size) != size ||
2262 (obj->gtt_offset & (size - 1)),
2263 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2264 obj->gtt_offset, size);
2265
2266 pitch_val = obj->stride / 128;
2267 pitch_val = ffs(pitch_val) - 1;
2268
2269 val = obj->gtt_offset;
2270 if (obj->tiling_mode == I915_TILING_Y)
2271 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2272 val |= I830_FENCE_SIZE_BITS(size);
2273 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2274 val |= I830_FENCE_REG_VALID;
2275 } else
2276 val = 0;
2277
2278 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2279 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2280 }
2281
2282 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2283 struct drm_i915_gem_object *obj)
2284 {
2285 switch (INTEL_INFO(dev)->gen) {
2286 case 7:
2287 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2288 case 5:
2289 case 4: i965_write_fence_reg(dev, reg, obj); break;
2290 case 3: i915_write_fence_reg(dev, reg, obj); break;
2291 case 2: i830_write_fence_reg(dev, reg, obj); break;
2292 default: break;
2293 }
2294 }
2295
2296 static inline int fence_number(struct drm_i915_private *dev_priv,
2297 struct drm_i915_fence_reg *fence)
2298 {
2299 return fence - dev_priv->fence_regs;
2300 }
2301
2302 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2303 struct drm_i915_fence_reg *fence,
2304 bool enable)
2305 {
2306 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2307 int reg = fence_number(dev_priv, fence);
2308
2309 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2310
2311 if (enable) {
2312 obj->fence_reg = reg;
2313 fence->obj = obj;
2314 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2315 } else {
2316 obj->fence_reg = I915_FENCE_REG_NONE;
2317 fence->obj = NULL;
2318 list_del_init(&fence->lru_list);
2319 }
2320 }
2321
2322 static int
2323 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2324 {
2325 int ret;
2326
2327 if (obj->fenced_gpu_access) {
2328 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2329 ret = i915_gem_flush_ring(obj->ring,
2330 0, obj->base.write_domain);
2331 if (ret)
2332 return ret;
2333 }
2334
2335 obj->fenced_gpu_access = false;
2336 }
2337
2338 if (obj->last_fenced_seqno) {
2339 ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2340 if (ret)
2341 return ret;
2342
2343 obj->last_fenced_seqno = 0;
2344 }
2345
2346 /* Ensure that all CPU reads are completed before installing a fence
2347 * and all writes before removing the fence.
2348 */
2349 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2350 mb();
2351
2352 return 0;
2353 }
2354
2355 int
2356 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2357 {
2358 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2359 int ret;
2360
2361 ret = i915_gem_object_flush_fence(obj);
2362 if (ret)
2363 return ret;
2364
2365 if (obj->fence_reg == I915_FENCE_REG_NONE)
2366 return 0;
2367
2368 i915_gem_object_update_fence(obj,
2369 &dev_priv->fence_regs[obj->fence_reg],
2370 false);
2371 i915_gem_object_fence_lost(obj);
2372
2373 return 0;
2374 }
2375
2376 static struct drm_i915_fence_reg *
2377 i915_find_fence_reg(struct drm_device *dev)
2378 {
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380 struct drm_i915_fence_reg *reg, *avail;
2381 int i;
2382
2383 /* First try to find a free reg */
2384 avail = NULL;
2385 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2386 reg = &dev_priv->fence_regs[i];
2387 if (!reg->obj)
2388 return reg;
2389
2390 if (!reg->pin_count)
2391 avail = reg;
2392 }
2393
2394 if (avail == NULL)
2395 return NULL;
2396
2397 /* None available, try to steal one or wait for a user to finish */
2398 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2399 if (reg->pin_count)
2400 continue;
2401
2402 return reg;
2403 }
2404
2405 return NULL;
2406 }
2407
2408 /**
2409 * i915_gem_object_get_fence - set up fencing for an object
2410 * @obj: object to map through a fence reg
2411 *
2412 * When mapping objects through the GTT, userspace wants to be able to write
2413 * to them without having to worry about swizzling if the object is tiled.
2414 * This function walks the fence regs looking for a free one for @obj,
2415 * stealing one if it can't find any.
2416 *
2417 * It then sets up the reg based on the object's properties: address, pitch
2418 * and tiling format.
2419 *
2420 * For an untiled surface, this removes any existing fence.
2421 */
2422 int
2423 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2424 {
2425 struct drm_device *dev = obj->base.dev;
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 bool enable = obj->tiling_mode != I915_TILING_NONE;
2428 struct drm_i915_fence_reg *reg;
2429 int ret;
2430
2431 /* Have we updated the tiling parameters upon the object and so
2432 * will need to serialise the write to the associated fence register?
2433 */
2434 if (obj->fence_dirty) {
2435 ret = i915_gem_object_flush_fence(obj);
2436 if (ret)
2437 return ret;
2438 }
2439
2440 /* Just update our place in the LRU if our fence is getting reused. */
2441 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2442 reg = &dev_priv->fence_regs[obj->fence_reg];
2443 if (!obj->fence_dirty) {
2444 list_move_tail(&reg->lru_list,
2445 &dev_priv->mm.fence_list);
2446 return 0;
2447 }
2448 } else if (enable) {
2449 reg = i915_find_fence_reg(dev);
2450 if (reg == NULL)
2451 return -EDEADLK;
2452
2453 if (reg->obj) {
2454 struct drm_i915_gem_object *old = reg->obj;
2455
2456 ret = i915_gem_object_flush_fence(old);
2457 if (ret)
2458 return ret;
2459
2460 i915_gem_object_fence_lost(old);
2461 }
2462 } else
2463 return 0;
2464
2465 i915_gem_object_update_fence(obj, reg, enable);
2466 obj->fence_dirty = false;
2467
2468 return 0;
2469 }
2470
2471 /**
2472 * Finds free space in the GTT aperture and binds the object there.
2473 */
2474 static int
2475 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2476 unsigned alignment,
2477 bool map_and_fenceable)
2478 {
2479 struct drm_device *dev = obj->base.dev;
2480 drm_i915_private_t *dev_priv = dev->dev_private;
2481 struct drm_mm_node *free_space;
2482 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2483 u32 size, fence_size, fence_alignment, unfenced_alignment;
2484 bool mappable, fenceable;
2485 int ret;
2486
2487 if (obj->madv != I915_MADV_WILLNEED) {
2488 DRM_ERROR("Attempting to bind a purgeable object\n");
2489 return -EINVAL;
2490 }
2491
2492 fence_size = i915_gem_get_gtt_size(dev,
2493 obj->base.size,
2494 obj->tiling_mode);
2495 fence_alignment = i915_gem_get_gtt_alignment(dev,
2496 obj->base.size,
2497 obj->tiling_mode);
2498 unfenced_alignment =
2499 i915_gem_get_unfenced_gtt_alignment(dev,
2500 obj->base.size,
2501 obj->tiling_mode);
2502
2503 if (alignment == 0)
2504 alignment = map_and_fenceable ? fence_alignment :
2505 unfenced_alignment;
2506 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2507 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2508 return -EINVAL;
2509 }
2510
2511 size = map_and_fenceable ? fence_size : obj->base.size;
2512
2513 /* If the object is bigger than the entire aperture, reject it early
2514 * before evicting everything in a vain attempt to find space.
2515 */
2516 if (obj->base.size >
2517 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2518 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2519 return -E2BIG;
2520 }
2521
2522 search_free:
2523 if (map_and_fenceable)
2524 free_space =
2525 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2526 size, alignment, 0,
2527 dev_priv->mm.gtt_mappable_end,
2528 0);
2529 else
2530 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2531 size, alignment, 0);
2532
2533 if (free_space != NULL) {
2534 if (map_and_fenceable)
2535 obj->gtt_space =
2536 drm_mm_get_block_range_generic(free_space,
2537 size, alignment, 0,
2538 dev_priv->mm.gtt_mappable_end,
2539 0);
2540 else
2541 obj->gtt_space =
2542 drm_mm_get_block(free_space, size, alignment);
2543 }
2544 if (obj->gtt_space == NULL) {
2545 /* If the gtt is empty and we're still having trouble
2546 * fitting our object in, we're out of memory.
2547 */
2548 ret = i915_gem_evict_something(dev, size, alignment,
2549 map_and_fenceable);
2550 if (ret)
2551 return ret;
2552
2553 goto search_free;
2554 }
2555
2556 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2557 if (ret) {
2558 drm_mm_put_block(obj->gtt_space);
2559 obj->gtt_space = NULL;
2560
2561 if (ret == -ENOMEM) {
2562 /* first try to reclaim some memory by clearing the GTT */
2563 ret = i915_gem_evict_everything(dev, false);
2564 if (ret) {
2565 /* now try to shrink everyone else */
2566 if (gfpmask) {
2567 gfpmask = 0;
2568 goto search_free;
2569 }
2570
2571 return -ENOMEM;
2572 }
2573
2574 goto search_free;
2575 }
2576
2577 return ret;
2578 }
2579
2580 ret = i915_gem_gtt_prepare_object(obj);
2581 if (ret) {
2582 i915_gem_object_put_pages_gtt(obj);
2583 drm_mm_put_block(obj->gtt_space);
2584 obj->gtt_space = NULL;
2585
2586 if (i915_gem_evict_everything(dev, false))
2587 return ret;
2588
2589 goto search_free;
2590 }
2591
2592 if (!dev_priv->mm.aliasing_ppgtt)
2593 i915_gem_gtt_bind_object(obj, obj->cache_level);
2594
2595 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2596 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2597
2598 /* Assert that the object is not currently in any GPU domain. As it
2599 * wasn't in the GTT, there shouldn't be any way it could have been in
2600 * a GPU cache
2601 */
2602 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2603 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2604
2605 obj->gtt_offset = obj->gtt_space->start;
2606
2607 fenceable =
2608 obj->gtt_space->size == fence_size &&
2609 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2610
2611 mappable =
2612 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2613
2614 obj->map_and_fenceable = mappable && fenceable;
2615
2616 trace_i915_gem_object_bind(obj, map_and_fenceable);
2617 return 0;
2618 }
2619
2620 void
2621 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2622 {
2623 /* If we don't have a page list set up, then we're not pinned
2624 * to GPU, and we can ignore the cache flush because it'll happen
2625 * again at bind time.
2626 */
2627 if (obj->pages == NULL)
2628 return;
2629
2630 /* If the GPU is snooping the contents of the CPU cache,
2631 * we do not need to manually clear the CPU cache lines. However,
2632 * the caches are only snooped when the render cache is
2633 * flushed/invalidated. As we always have to emit invalidations
2634 * and flushes when moving into and out of the RENDER domain, correct
2635 * snooping behaviour occurs naturally as the result of our domain
2636 * tracking.
2637 */
2638 if (obj->cache_level != I915_CACHE_NONE)
2639 return;
2640
2641 trace_i915_gem_object_clflush(obj);
2642
2643 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2644 }
2645
2646 /** Flushes any GPU write domain for the object if it's dirty. */
2647 static int
2648 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2649 {
2650 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2651 return 0;
2652
2653 /* Queue the GPU write cache flushing we need. */
2654 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2655 }
2656
2657 /** Flushes the GTT write domain for the object if it's dirty. */
2658 static void
2659 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2660 {
2661 uint32_t old_write_domain;
2662
2663 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2664 return;
2665
2666 /* No actual flushing is required for the GTT write domain. Writes
2667 * to it immediately go to main memory as far as we know, so there's
2668 * no chipset flush. It also doesn't land in render cache.
2669 *
2670 * However, we do have to enforce the order so that all writes through
2671 * the GTT land before any writes to the device, such as updates to
2672 * the GATT itself.
2673 */
2674 wmb();
2675
2676 old_write_domain = obj->base.write_domain;
2677 obj->base.write_domain = 0;
2678
2679 trace_i915_gem_object_change_domain(obj,
2680 obj->base.read_domains,
2681 old_write_domain);
2682 }
2683
2684 /** Flushes the CPU write domain for the object if it's dirty. */
2685 static void
2686 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2687 {
2688 uint32_t old_write_domain;
2689
2690 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2691 return;
2692
2693 i915_gem_clflush_object(obj);
2694 intel_gtt_chipset_flush();
2695 old_write_domain = obj->base.write_domain;
2696 obj->base.write_domain = 0;
2697
2698 trace_i915_gem_object_change_domain(obj,
2699 obj->base.read_domains,
2700 old_write_domain);
2701 }
2702
2703 /**
2704 * Moves a single object to the GTT read, and possibly write domain.
2705 *
2706 * This function returns when the move is complete, including waiting on
2707 * flushes to occur.
2708 */
2709 int
2710 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2711 {
2712 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2713 uint32_t old_write_domain, old_read_domains;
2714 int ret;
2715
2716 /* Not valid to be called on unbound objects. */
2717 if (obj->gtt_space == NULL)
2718 return -EINVAL;
2719
2720 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2721 return 0;
2722
2723 ret = i915_gem_object_flush_gpu_write_domain(obj);
2724 if (ret)
2725 return ret;
2726
2727 if (obj->pending_gpu_write || write) {
2728 ret = i915_gem_object_wait_rendering(obj);
2729 if (ret)
2730 return ret;
2731 }
2732
2733 i915_gem_object_flush_cpu_write_domain(obj);
2734
2735 old_write_domain = obj->base.write_domain;
2736 old_read_domains = obj->base.read_domains;
2737
2738 /* It should now be out of any other write domains, and we can update
2739 * the domain values for our changes.
2740 */
2741 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2742 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2743 if (write) {
2744 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2745 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2746 obj->dirty = 1;
2747 }
2748
2749 trace_i915_gem_object_change_domain(obj,
2750 old_read_domains,
2751 old_write_domain);
2752
2753 /* And bump the LRU for this access */
2754 if (i915_gem_object_is_inactive(obj))
2755 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2756
2757 return 0;
2758 }
2759
2760 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2761 enum i915_cache_level cache_level)
2762 {
2763 struct drm_device *dev = obj->base.dev;
2764 drm_i915_private_t *dev_priv = dev->dev_private;
2765 int ret;
2766
2767 if (obj->cache_level == cache_level)
2768 return 0;
2769
2770 if (obj->pin_count) {
2771 DRM_DEBUG("can not change the cache level of pinned objects\n");
2772 return -EBUSY;
2773 }
2774
2775 if (obj->gtt_space) {
2776 ret = i915_gem_object_finish_gpu(obj);
2777 if (ret)
2778 return ret;
2779
2780 i915_gem_object_finish_gtt(obj);
2781
2782 /* Before SandyBridge, you could not use tiling or fence
2783 * registers with snooped memory, so relinquish any fences
2784 * currently pointing to our region in the aperture.
2785 */
2786 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2787 ret = i915_gem_object_put_fence(obj);
2788 if (ret)
2789 return ret;
2790 }
2791
2792 if (obj->has_global_gtt_mapping)
2793 i915_gem_gtt_bind_object(obj, cache_level);
2794 if (obj->has_aliasing_ppgtt_mapping)
2795 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2796 obj, cache_level);
2797 }
2798
2799 if (cache_level == I915_CACHE_NONE) {
2800 u32 old_read_domains, old_write_domain;
2801
2802 /* If we're coming from LLC cached, then we haven't
2803 * actually been tracking whether the data is in the
2804 * CPU cache or not, since we only allow one bit set
2805 * in obj->write_domain and have been skipping the clflushes.
2806 * Just set it to the CPU cache for now.
2807 */
2808 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2809 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2810
2811 old_read_domains = obj->base.read_domains;
2812 old_write_domain = obj->base.write_domain;
2813
2814 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2815 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2816
2817 trace_i915_gem_object_change_domain(obj,
2818 old_read_domains,
2819 old_write_domain);
2820 }
2821
2822 obj->cache_level = cache_level;
2823 return 0;
2824 }
2825
2826 /*
2827 * Prepare buffer for display plane (scanout, cursors, etc).
2828 * Can be called from an uninterruptible phase (modesetting) and allows
2829 * any flushes to be pipelined (for pageflips).
2830 */
2831 int
2832 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2833 u32 alignment,
2834 struct intel_ring_buffer *pipelined)
2835 {
2836 u32 old_read_domains, old_write_domain;
2837 int ret;
2838
2839 ret = i915_gem_object_flush_gpu_write_domain(obj);
2840 if (ret)
2841 return ret;
2842
2843 if (pipelined != obj->ring) {
2844 ret = i915_gem_object_sync(obj, pipelined);
2845 if (ret)
2846 return ret;
2847 }
2848
2849 /* The display engine is not coherent with the LLC cache on gen6. As
2850 * a result, we make sure that the pinning that is about to occur is
2851 * done with uncached PTEs. This is lowest common denominator for all
2852 * chipsets.
2853 *
2854 * However for gen6+, we could do better by using the GFDT bit instead
2855 * of uncaching, which would allow us to flush all the LLC-cached data
2856 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2857 */
2858 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2859 if (ret)
2860 return ret;
2861
2862 /* As the user may map the buffer once pinned in the display plane
2863 * (e.g. libkms for the bootup splash), we have to ensure that we
2864 * always use map_and_fenceable for all scanout buffers.
2865 */
2866 ret = i915_gem_object_pin(obj, alignment, true);
2867 if (ret)
2868 return ret;
2869
2870 i915_gem_object_flush_cpu_write_domain(obj);
2871
2872 old_write_domain = obj->base.write_domain;
2873 old_read_domains = obj->base.read_domains;
2874
2875 /* It should now be out of any other write domains, and we can update
2876 * the domain values for our changes.
2877 */
2878 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2879 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2880
2881 trace_i915_gem_object_change_domain(obj,
2882 old_read_domains,
2883 old_write_domain);
2884
2885 return 0;
2886 }
2887
2888 int
2889 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2890 {
2891 int ret;
2892
2893 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2894 return 0;
2895
2896 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2897 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2898 if (ret)
2899 return ret;
2900 }
2901
2902 ret = i915_gem_object_wait_rendering(obj);
2903 if (ret)
2904 return ret;
2905
2906 /* Ensure that we invalidate the GPU's caches and TLBs. */
2907 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2908 return 0;
2909 }
2910
2911 /**
2912 * Moves a single object to the CPU read, and possibly write domain.
2913 *
2914 * This function returns when the move is complete, including waiting on
2915 * flushes to occur.
2916 */
2917 int
2918 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2919 {
2920 uint32_t old_write_domain, old_read_domains;
2921 int ret;
2922
2923 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2924 return 0;
2925
2926 ret = i915_gem_object_flush_gpu_write_domain(obj);
2927 if (ret)
2928 return ret;
2929
2930 if (write || obj->pending_gpu_write) {
2931 ret = i915_gem_object_wait_rendering(obj);
2932 if (ret)
2933 return ret;
2934 }
2935
2936 i915_gem_object_flush_gtt_write_domain(obj);
2937
2938 old_write_domain = obj->base.write_domain;
2939 old_read_domains = obj->base.read_domains;
2940
2941 /* Flush the CPU cache if it's still invalid. */
2942 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2943 i915_gem_clflush_object(obj);
2944
2945 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2946 }
2947
2948 /* It should now be out of any other write domains, and we can update
2949 * the domain values for our changes.
2950 */
2951 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2952
2953 /* If we're writing through the CPU, then the GPU read domains will
2954 * need to be invalidated at next use.
2955 */
2956 if (write) {
2957 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2958 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2959 }
2960
2961 trace_i915_gem_object_change_domain(obj,
2962 old_read_domains,
2963 old_write_domain);
2964
2965 return 0;
2966 }
2967
2968 /* Throttle our rendering by waiting until the ring has completed our requests
2969 * emitted over 20 msec ago.
2970 *
2971 * Note that if we were to use the current jiffies each time around the loop,
2972 * we wouldn't escape the function with any frames outstanding if the time to
2973 * render a frame was over 20ms.
2974 *
2975 * This should get us reasonable parallelism between CPU and GPU but also
2976 * relatively low latency when blocking on a particular request to finish.
2977 */
2978 static int
2979 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2980 {
2981 struct drm_i915_private *dev_priv = dev->dev_private;
2982 struct drm_i915_file_private *file_priv = file->driver_priv;
2983 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
2984 struct drm_i915_gem_request *request;
2985 struct intel_ring_buffer *ring = NULL;
2986 u32 seqno = 0;
2987 int ret;
2988
2989 if (atomic_read(&dev_priv->mm.wedged))
2990 return -EIO;
2991
2992 spin_lock(&file_priv->mm.lock);
2993 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
2994 if (time_after_eq(request->emitted_jiffies, recent_enough))
2995 break;
2996
2997 ring = request->ring;
2998 seqno = request->seqno;
2999 }
3000 spin_unlock(&file_priv->mm.lock);
3001
3002 if (seqno == 0)
3003 return 0;
3004
3005 ret = __wait_seqno(ring, seqno, true);
3006 if (ret == 0)
3007 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3008
3009 return ret;
3010 }
3011
3012 int
3013 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3014 uint32_t alignment,
3015 bool map_and_fenceable)
3016 {
3017 int ret;
3018
3019 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3020
3021 if (obj->gtt_space != NULL) {
3022 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3023 (map_and_fenceable && !obj->map_and_fenceable)) {
3024 WARN(obj->pin_count,
3025 "bo is already pinned with incorrect alignment:"
3026 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3027 " obj->map_and_fenceable=%d\n",
3028 obj->gtt_offset, alignment,
3029 map_and_fenceable,
3030 obj->map_and_fenceable);
3031 ret = i915_gem_object_unbind(obj);
3032 if (ret)
3033 return ret;
3034 }
3035 }
3036
3037 if (obj->gtt_space == NULL) {
3038 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3039 map_and_fenceable);
3040 if (ret)
3041 return ret;
3042 }
3043
3044 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3045 i915_gem_gtt_bind_object(obj, obj->cache_level);
3046
3047 obj->pin_count++;
3048 obj->pin_mappable |= map_and_fenceable;
3049
3050 return 0;
3051 }
3052
3053 void
3054 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3055 {
3056 BUG_ON(obj->pin_count == 0);
3057 BUG_ON(obj->gtt_space == NULL);
3058
3059 if (--obj->pin_count == 0)
3060 obj->pin_mappable = false;
3061 }
3062
3063 int
3064 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3065 struct drm_file *file)
3066 {
3067 struct drm_i915_gem_pin *args = data;
3068 struct drm_i915_gem_object *obj;
3069 int ret;
3070
3071 ret = i915_mutex_lock_interruptible(dev);
3072 if (ret)
3073 return ret;
3074
3075 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3076 if (&obj->base == NULL) {
3077 ret = -ENOENT;
3078 goto unlock;
3079 }
3080
3081 if (obj->madv != I915_MADV_WILLNEED) {
3082 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3083 ret = -EINVAL;
3084 goto out;
3085 }
3086
3087 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3088 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3089 args->handle);
3090 ret = -EINVAL;
3091 goto out;
3092 }
3093
3094 obj->user_pin_count++;
3095 obj->pin_filp = file;
3096 if (obj->user_pin_count == 1) {
3097 ret = i915_gem_object_pin(obj, args->alignment, true);
3098 if (ret)
3099 goto out;
3100 }
3101
3102 /* XXX - flush the CPU caches for pinned objects
3103 * as the X server doesn't manage domains yet
3104 */
3105 i915_gem_object_flush_cpu_write_domain(obj);
3106 args->offset = obj->gtt_offset;
3107 out:
3108 drm_gem_object_unreference(&obj->base);
3109 unlock:
3110 mutex_unlock(&dev->struct_mutex);
3111 return ret;
3112 }
3113
3114 int
3115 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3116 struct drm_file *file)
3117 {
3118 struct drm_i915_gem_pin *args = data;
3119 struct drm_i915_gem_object *obj;
3120 int ret;
3121
3122 ret = i915_mutex_lock_interruptible(dev);
3123 if (ret)
3124 return ret;
3125
3126 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3127 if (&obj->base == NULL) {
3128 ret = -ENOENT;
3129 goto unlock;
3130 }
3131
3132 if (obj->pin_filp != file) {
3133 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3134 args->handle);
3135 ret = -EINVAL;
3136 goto out;
3137 }
3138 obj->user_pin_count--;
3139 if (obj->user_pin_count == 0) {
3140 obj->pin_filp = NULL;
3141 i915_gem_object_unpin(obj);
3142 }
3143
3144 out:
3145 drm_gem_object_unreference(&obj->base);
3146 unlock:
3147 mutex_unlock(&dev->struct_mutex);
3148 return ret;
3149 }
3150
3151 int
3152 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3153 struct drm_file *file)
3154 {
3155 struct drm_i915_gem_busy *args = data;
3156 struct drm_i915_gem_object *obj;
3157 int ret;
3158
3159 ret = i915_mutex_lock_interruptible(dev);
3160 if (ret)
3161 return ret;
3162
3163 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3164 if (&obj->base == NULL) {
3165 ret = -ENOENT;
3166 goto unlock;
3167 }
3168
3169 /* Count all active objects as busy, even if they are currently not used
3170 * by the gpu. Users of this interface expect objects to eventually
3171 * become non-busy without any further actions, therefore emit any
3172 * necessary flushes here.
3173 */
3174 args->busy = obj->active;
3175 if (args->busy) {
3176 /* Unconditionally flush objects, even when the gpu still uses this
3177 * object. Userspace calling this function indicates that it wants to
3178 * use this buffer rather sooner than later, so issuing the required
3179 * flush earlier is beneficial.
3180 */
3181 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3182 ret = i915_gem_flush_ring(obj->ring,
3183 0, obj->base.write_domain);
3184 } else {
3185 ret = i915_gem_check_olr(obj->ring,
3186 obj->last_rendering_seqno);
3187 }
3188
3189 /* Update the active list for the hardware's current position.
3190 * Otherwise this only updates on a delayed timer or when irqs
3191 * are actually unmasked, and our working set ends up being
3192 * larger than required.
3193 */
3194 i915_gem_retire_requests_ring(obj->ring);
3195
3196 args->busy = obj->active;
3197 }
3198
3199 drm_gem_object_unreference(&obj->base);
3200 unlock:
3201 mutex_unlock(&dev->struct_mutex);
3202 return ret;
3203 }
3204
3205 int
3206 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3207 struct drm_file *file_priv)
3208 {
3209 return i915_gem_ring_throttle(dev, file_priv);
3210 }
3211
3212 int
3213 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3214 struct drm_file *file_priv)
3215 {
3216 struct drm_i915_gem_madvise *args = data;
3217 struct drm_i915_gem_object *obj;
3218 int ret;
3219
3220 switch (args->madv) {
3221 case I915_MADV_DONTNEED:
3222 case I915_MADV_WILLNEED:
3223 break;
3224 default:
3225 return -EINVAL;
3226 }
3227
3228 ret = i915_mutex_lock_interruptible(dev);
3229 if (ret)
3230 return ret;
3231
3232 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3233 if (&obj->base == NULL) {
3234 ret = -ENOENT;
3235 goto unlock;
3236 }
3237
3238 if (obj->pin_count) {
3239 ret = -EINVAL;
3240 goto out;
3241 }
3242
3243 if (obj->madv != __I915_MADV_PURGED)
3244 obj->madv = args->madv;
3245
3246 /* if the object is no longer bound, discard its backing storage */
3247 if (i915_gem_object_is_purgeable(obj) &&
3248 obj->gtt_space == NULL)
3249 i915_gem_object_truncate(obj);
3250
3251 args->retained = obj->madv != __I915_MADV_PURGED;
3252
3253 out:
3254 drm_gem_object_unreference(&obj->base);
3255 unlock:
3256 mutex_unlock(&dev->struct_mutex);
3257 return ret;
3258 }
3259
3260 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3261 size_t size)
3262 {
3263 struct drm_i915_private *dev_priv = dev->dev_private;
3264 struct drm_i915_gem_object *obj;
3265 struct address_space *mapping;
3266
3267 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3268 if (obj == NULL)
3269 return NULL;
3270
3271 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3272 kfree(obj);
3273 return NULL;
3274 }
3275
3276 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3277 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3278
3279 i915_gem_info_add_obj(dev_priv, size);
3280
3281 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3282 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3283
3284 if (HAS_LLC(dev)) {
3285 /* On some devices, we can have the GPU use the LLC (the CPU
3286 * cache) for about a 10% performance improvement
3287 * compared to uncached. Graphics requests other than
3288 * display scanout are coherent with the CPU in
3289 * accessing this cache. This means in this mode we
3290 * don't need to clflush on the CPU side, and on the
3291 * GPU side we only need to flush internal caches to
3292 * get data visible to the CPU.
3293 *
3294 * However, we maintain the display planes as UC, and so
3295 * need to rebind when first used as such.
3296 */
3297 obj->cache_level = I915_CACHE_LLC;
3298 } else
3299 obj->cache_level = I915_CACHE_NONE;
3300
3301 obj->base.driver_private = NULL;
3302 obj->fence_reg = I915_FENCE_REG_NONE;
3303 INIT_LIST_HEAD(&obj->mm_list);
3304 INIT_LIST_HEAD(&obj->gtt_list);
3305 INIT_LIST_HEAD(&obj->ring_list);
3306 INIT_LIST_HEAD(&obj->exec_list);
3307 INIT_LIST_HEAD(&obj->gpu_write_list);
3308 obj->madv = I915_MADV_WILLNEED;
3309 /* Avoid an unnecessary call to unbind on the first bind. */
3310 obj->map_and_fenceable = true;
3311
3312 return obj;
3313 }
3314
3315 int i915_gem_init_object(struct drm_gem_object *obj)
3316 {
3317 BUG();
3318
3319 return 0;
3320 }
3321
3322 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3323 {
3324 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3325 struct drm_device *dev = obj->base.dev;
3326 drm_i915_private_t *dev_priv = dev->dev_private;
3327
3328 trace_i915_gem_object_destroy(obj);
3329
3330 if (obj->phys_obj)
3331 i915_gem_detach_phys_object(dev, obj);
3332
3333 obj->pin_count = 0;
3334 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3335 bool was_interruptible;
3336
3337 was_interruptible = dev_priv->mm.interruptible;
3338 dev_priv->mm.interruptible = false;
3339
3340 WARN_ON(i915_gem_object_unbind(obj));
3341
3342 dev_priv->mm.interruptible = was_interruptible;
3343 }
3344
3345 if (obj->base.map_list.map)
3346 drm_gem_free_mmap_offset(&obj->base);
3347
3348 drm_gem_object_release(&obj->base);
3349 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3350
3351 kfree(obj->bit_17);
3352 kfree(obj);
3353 }
3354
3355 int
3356 i915_gem_idle(struct drm_device *dev)
3357 {
3358 drm_i915_private_t *dev_priv = dev->dev_private;
3359 int ret;
3360
3361 mutex_lock(&dev->struct_mutex);
3362
3363 if (dev_priv->mm.suspended) {
3364 mutex_unlock(&dev->struct_mutex);
3365 return 0;
3366 }
3367
3368 ret = i915_gpu_idle(dev);
3369 if (ret) {
3370 mutex_unlock(&dev->struct_mutex);
3371 return ret;
3372 }
3373 i915_gem_retire_requests(dev);
3374
3375 /* Under UMS, be paranoid and evict. */
3376 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3377 i915_gem_evict_everything(dev, false);
3378
3379 i915_gem_reset_fences(dev);
3380
3381 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3382 * We need to replace this with a semaphore, or something.
3383 * And not confound mm.suspended!
3384 */
3385 dev_priv->mm.suspended = 1;
3386 del_timer_sync(&dev_priv->hangcheck_timer);
3387
3388 i915_kernel_lost_context(dev);
3389 i915_gem_cleanup_ringbuffer(dev);
3390
3391 mutex_unlock(&dev->struct_mutex);
3392
3393 /* Cancel the retire work handler, which should be idle now. */
3394 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3395
3396 return 0;
3397 }
3398
3399 void i915_gem_init_swizzling(struct drm_device *dev)
3400 {
3401 drm_i915_private_t *dev_priv = dev->dev_private;
3402
3403 if (INTEL_INFO(dev)->gen < 5 ||
3404 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3405 return;
3406
3407 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3408 DISP_TILE_SURFACE_SWIZZLING);
3409
3410 if (IS_GEN5(dev))
3411 return;
3412
3413 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3414 if (IS_GEN6(dev))
3415 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3416 else
3417 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3418 }
3419
3420 void i915_gem_init_ppgtt(struct drm_device *dev)
3421 {
3422 drm_i915_private_t *dev_priv = dev->dev_private;
3423 uint32_t pd_offset;
3424 struct intel_ring_buffer *ring;
3425 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3426 uint32_t __iomem *pd_addr;
3427 uint32_t pd_entry;
3428 int i;
3429
3430 if (!dev_priv->mm.aliasing_ppgtt)
3431 return;
3432
3433
3434 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3435 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3436 dma_addr_t pt_addr;
3437
3438 if (dev_priv->mm.gtt->needs_dmar)
3439 pt_addr = ppgtt->pt_dma_addr[i];
3440 else
3441 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3442
3443 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3444 pd_entry |= GEN6_PDE_VALID;
3445
3446 writel(pd_entry, pd_addr + i);
3447 }
3448 readl(pd_addr);
3449
3450 pd_offset = ppgtt->pd_offset;
3451 pd_offset /= 64; /* in cachelines, */
3452 pd_offset <<= 16;
3453
3454 if (INTEL_INFO(dev)->gen == 6) {
3455 uint32_t ecochk, gab_ctl, ecobits;
3456
3457 ecobits = I915_READ(GAC_ECO_BITS);
3458 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3459
3460 gab_ctl = I915_READ(GAB_CTL);
3461 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3462
3463 ecochk = I915_READ(GAM_ECOCHK);
3464 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3465 ECOCHK_PPGTT_CACHE64B);
3466 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3467 } else if (INTEL_INFO(dev)->gen >= 7) {
3468 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3469 /* GFX_MODE is per-ring on gen7+ */
3470 }
3471
3472 for_each_ring(ring, dev_priv, i) {
3473 if (INTEL_INFO(dev)->gen >= 7)
3474 I915_WRITE(RING_MODE_GEN7(ring),
3475 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3476
3477 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3478 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3479 }
3480 }
3481
3482 int
3483 i915_gem_init_hw(struct drm_device *dev)
3484 {
3485 drm_i915_private_t *dev_priv = dev->dev_private;
3486 int ret;
3487
3488 i915_gem_init_swizzling(dev);
3489
3490 ret = intel_init_render_ring_buffer(dev);
3491 if (ret)
3492 return ret;
3493
3494 if (HAS_BSD(dev)) {
3495 ret = intel_init_bsd_ring_buffer(dev);
3496 if (ret)
3497 goto cleanup_render_ring;
3498 }
3499
3500 if (HAS_BLT(dev)) {
3501 ret = intel_init_blt_ring_buffer(dev);
3502 if (ret)
3503 goto cleanup_bsd_ring;
3504 }
3505
3506 dev_priv->next_seqno = 1;
3507
3508 i915_gem_init_ppgtt(dev);
3509
3510 return 0;
3511
3512 cleanup_bsd_ring:
3513 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3514 cleanup_render_ring:
3515 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3516 return ret;
3517 }
3518
3519 static bool
3520 intel_enable_ppgtt(struct drm_device *dev)
3521 {
3522 if (i915_enable_ppgtt >= 0)
3523 return i915_enable_ppgtt;
3524
3525 #ifdef CONFIG_INTEL_IOMMU
3526 /* Disable ppgtt on SNB if VT-d is on. */
3527 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3528 return false;
3529 #endif
3530
3531 return true;
3532 }
3533
3534 int i915_gem_init(struct drm_device *dev)
3535 {
3536 struct drm_i915_private *dev_priv = dev->dev_private;
3537 unsigned long gtt_size, mappable_size;
3538 int ret;
3539
3540 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3541 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3542
3543 mutex_lock(&dev->struct_mutex);
3544 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3545 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3546 * aperture accordingly when using aliasing ppgtt. */
3547 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3548
3549 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3550
3551 ret = i915_gem_init_aliasing_ppgtt(dev);
3552 if (ret) {
3553 mutex_unlock(&dev->struct_mutex);
3554 return ret;
3555 }
3556 } else {
3557 /* Let GEM Manage all of the aperture.
3558 *
3559 * However, leave one page at the end still bound to the scratch
3560 * page. There are a number of places where the hardware
3561 * apparently prefetches past the end of the object, and we've
3562 * seen multiple hangs with the GPU head pointer stuck in a
3563 * batchbuffer bound at the last page of the aperture. One page
3564 * should be enough to keep any prefetching inside of the
3565 * aperture.
3566 */
3567 i915_gem_init_global_gtt(dev, 0, mappable_size,
3568 gtt_size);
3569 }
3570
3571 ret = i915_gem_init_hw(dev);
3572 mutex_unlock(&dev->struct_mutex);
3573 if (ret) {
3574 i915_gem_cleanup_aliasing_ppgtt(dev);
3575 return ret;
3576 }
3577
3578 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3579 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3580 dev_priv->dri1.allow_batchbuffer = 1;
3581 return 0;
3582 }
3583
3584 void
3585 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3586 {
3587 drm_i915_private_t *dev_priv = dev->dev_private;
3588 struct intel_ring_buffer *ring;
3589 int i;
3590
3591 for_each_ring(ring, dev_priv, i)
3592 intel_cleanup_ring_buffer(ring);
3593 }
3594
3595 int
3596 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3597 struct drm_file *file_priv)
3598 {
3599 drm_i915_private_t *dev_priv = dev->dev_private;
3600 int ret;
3601
3602 if (drm_core_check_feature(dev, DRIVER_MODESET))
3603 return 0;
3604
3605 if (atomic_read(&dev_priv->mm.wedged)) {
3606 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3607 atomic_set(&dev_priv->mm.wedged, 0);
3608 }
3609
3610 mutex_lock(&dev->struct_mutex);
3611 dev_priv->mm.suspended = 0;
3612
3613 ret = i915_gem_init_hw(dev);
3614 if (ret != 0) {
3615 mutex_unlock(&dev->struct_mutex);
3616 return ret;
3617 }
3618
3619 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3620 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3621 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3622 mutex_unlock(&dev->struct_mutex);
3623
3624 ret = drm_irq_install(dev);
3625 if (ret)
3626 goto cleanup_ringbuffer;
3627
3628 return 0;
3629
3630 cleanup_ringbuffer:
3631 mutex_lock(&dev->struct_mutex);
3632 i915_gem_cleanup_ringbuffer(dev);
3633 dev_priv->mm.suspended = 1;
3634 mutex_unlock(&dev->struct_mutex);
3635
3636 return ret;
3637 }
3638
3639 int
3640 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3641 struct drm_file *file_priv)
3642 {
3643 if (drm_core_check_feature(dev, DRIVER_MODESET))
3644 return 0;
3645
3646 drm_irq_uninstall(dev);
3647 return i915_gem_idle(dev);
3648 }
3649
3650 void
3651 i915_gem_lastclose(struct drm_device *dev)
3652 {
3653 int ret;
3654
3655 if (drm_core_check_feature(dev, DRIVER_MODESET))
3656 return;
3657
3658 ret = i915_gem_idle(dev);
3659 if (ret)
3660 DRM_ERROR("failed to idle hardware: %d\n", ret);
3661 }
3662
3663 static void
3664 init_ring_lists(struct intel_ring_buffer *ring)
3665 {
3666 INIT_LIST_HEAD(&ring->active_list);
3667 INIT_LIST_HEAD(&ring->request_list);
3668 INIT_LIST_HEAD(&ring->gpu_write_list);
3669 }
3670
3671 void
3672 i915_gem_load(struct drm_device *dev)
3673 {
3674 int i;
3675 drm_i915_private_t *dev_priv = dev->dev_private;
3676
3677 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3678 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3679 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3680 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3681 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3682 for (i = 0; i < I915_NUM_RINGS; i++)
3683 init_ring_lists(&dev_priv->ring[i]);
3684 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3685 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3686 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3687 i915_gem_retire_work_handler);
3688 init_completion(&dev_priv->error_completion);
3689
3690 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3691 if (IS_GEN3(dev)) {
3692 I915_WRITE(MI_ARB_STATE,
3693 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3694 }
3695
3696 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3697
3698 /* Old X drivers will take 0-2 for front, back, depth buffers */
3699 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3700 dev_priv->fence_reg_start = 3;
3701
3702 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3703 dev_priv->num_fence_regs = 16;
3704 else
3705 dev_priv->num_fence_regs = 8;
3706
3707 /* Initialize fence registers to zero */
3708 i915_gem_reset_fences(dev);
3709
3710 i915_gem_detect_bit_6_swizzle(dev);
3711 init_waitqueue_head(&dev_priv->pending_flip_queue);
3712
3713 dev_priv->mm.interruptible = true;
3714
3715 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3716 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3717 register_shrinker(&dev_priv->mm.inactive_shrinker);
3718 }
3719
3720 /*
3721 * Create a physically contiguous memory object for this object
3722 * e.g. for cursor + overlay regs
3723 */
3724 static int i915_gem_init_phys_object(struct drm_device *dev,
3725 int id, int size, int align)
3726 {
3727 drm_i915_private_t *dev_priv = dev->dev_private;
3728 struct drm_i915_gem_phys_object *phys_obj;
3729 int ret;
3730
3731 if (dev_priv->mm.phys_objs[id - 1] || !size)
3732 return 0;
3733
3734 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3735 if (!phys_obj)
3736 return -ENOMEM;
3737
3738 phys_obj->id = id;
3739
3740 phys_obj->handle = drm_pci_alloc(dev, size, align);
3741 if (!phys_obj->handle) {
3742 ret = -ENOMEM;
3743 goto kfree_obj;
3744 }
3745 #ifdef CONFIG_X86
3746 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3747 #endif
3748
3749 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3750
3751 return 0;
3752 kfree_obj:
3753 kfree(phys_obj);
3754 return ret;
3755 }
3756
3757 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3758 {
3759 drm_i915_private_t *dev_priv = dev->dev_private;
3760 struct drm_i915_gem_phys_object *phys_obj;
3761
3762 if (!dev_priv->mm.phys_objs[id - 1])
3763 return;
3764
3765 phys_obj = dev_priv->mm.phys_objs[id - 1];
3766 if (phys_obj->cur_obj) {
3767 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3768 }
3769
3770 #ifdef CONFIG_X86
3771 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3772 #endif
3773 drm_pci_free(dev, phys_obj->handle);
3774 kfree(phys_obj);
3775 dev_priv->mm.phys_objs[id - 1] = NULL;
3776 }
3777
3778 void i915_gem_free_all_phys_object(struct drm_device *dev)
3779 {
3780 int i;
3781
3782 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3783 i915_gem_free_phys_object(dev, i);
3784 }
3785
3786 void i915_gem_detach_phys_object(struct drm_device *dev,
3787 struct drm_i915_gem_object *obj)
3788 {
3789 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3790 char *vaddr;
3791 int i;
3792 int page_count;
3793
3794 if (!obj->phys_obj)
3795 return;
3796 vaddr = obj->phys_obj->handle->vaddr;
3797
3798 page_count = obj->base.size / PAGE_SIZE;
3799 for (i = 0; i < page_count; i++) {
3800 struct page *page = shmem_read_mapping_page(mapping, i);
3801 if (!IS_ERR(page)) {
3802 char *dst = kmap_atomic(page);
3803 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3804 kunmap_atomic(dst);
3805
3806 drm_clflush_pages(&page, 1);
3807
3808 set_page_dirty(page);
3809 mark_page_accessed(page);
3810 page_cache_release(page);
3811 }
3812 }
3813 intel_gtt_chipset_flush();
3814
3815 obj->phys_obj->cur_obj = NULL;
3816 obj->phys_obj = NULL;
3817 }
3818
3819 int
3820 i915_gem_attach_phys_object(struct drm_device *dev,
3821 struct drm_i915_gem_object *obj,
3822 int id,
3823 int align)
3824 {
3825 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3826 drm_i915_private_t *dev_priv = dev->dev_private;
3827 int ret = 0;
3828 int page_count;
3829 int i;
3830
3831 if (id > I915_MAX_PHYS_OBJECT)
3832 return -EINVAL;
3833
3834 if (obj->phys_obj) {
3835 if (obj->phys_obj->id == id)
3836 return 0;
3837 i915_gem_detach_phys_object(dev, obj);
3838 }
3839
3840 /* create a new object */
3841 if (!dev_priv->mm.phys_objs[id - 1]) {
3842 ret = i915_gem_init_phys_object(dev, id,
3843 obj->base.size, align);
3844 if (ret) {
3845 DRM_ERROR("failed to init phys object %d size: %zu\n",
3846 id, obj->base.size);
3847 return ret;
3848 }
3849 }
3850
3851 /* bind to the object */
3852 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3853 obj->phys_obj->cur_obj = obj;
3854
3855 page_count = obj->base.size / PAGE_SIZE;
3856
3857 for (i = 0; i < page_count; i++) {
3858 struct page *page;
3859 char *dst, *src;
3860
3861 page = shmem_read_mapping_page(mapping, i);
3862 if (IS_ERR(page))
3863 return PTR_ERR(page);
3864
3865 src = kmap_atomic(page);
3866 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3867 memcpy(dst, src, PAGE_SIZE);
3868 kunmap_atomic(src);
3869
3870 mark_page_accessed(page);
3871 page_cache_release(page);
3872 }
3873
3874 return 0;
3875 }
3876
3877 static int
3878 i915_gem_phys_pwrite(struct drm_device *dev,
3879 struct drm_i915_gem_object *obj,
3880 struct drm_i915_gem_pwrite *args,
3881 struct drm_file *file_priv)
3882 {
3883 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3884 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3885
3886 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3887 unsigned long unwritten;
3888
3889 /* The physical object once assigned is fixed for the lifetime
3890 * of the obj, so we can safely drop the lock and continue
3891 * to access vaddr.
3892 */
3893 mutex_unlock(&dev->struct_mutex);
3894 unwritten = copy_from_user(vaddr, user_data, args->size);
3895 mutex_lock(&dev->struct_mutex);
3896 if (unwritten)
3897 return -EFAULT;
3898 }
3899
3900 intel_gtt_chipset_flush();
3901 return 0;
3902 }
3903
3904 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3905 {
3906 struct drm_i915_file_private *file_priv = file->driver_priv;
3907
3908 /* Clean up our request list when the client is going away, so that
3909 * later retire_requests won't dereference our soon-to-be-gone
3910 * file_priv.
3911 */
3912 spin_lock(&file_priv->mm.lock);
3913 while (!list_empty(&file_priv->mm.request_list)) {
3914 struct drm_i915_gem_request *request;
3915
3916 request = list_first_entry(&file_priv->mm.request_list,
3917 struct drm_i915_gem_request,
3918 client_list);
3919 list_del(&request->client_list);
3920 request->file_priv = NULL;
3921 }
3922 spin_unlock(&file_priv->mm.lock);
3923 }
3924
3925 static int
3926 i915_gpu_is_active(struct drm_device *dev)
3927 {
3928 drm_i915_private_t *dev_priv = dev->dev_private;
3929 int lists_empty;
3930
3931 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3932 list_empty(&dev_priv->mm.active_list);
3933
3934 return !lists_empty;
3935 }
3936
3937 static int
3938 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3939 {
3940 struct drm_i915_private *dev_priv =
3941 container_of(shrinker,
3942 struct drm_i915_private,
3943 mm.inactive_shrinker);
3944 struct drm_device *dev = dev_priv->dev;
3945 struct drm_i915_gem_object *obj, *next;
3946 int nr_to_scan = sc->nr_to_scan;
3947 int cnt;
3948
3949 if (!mutex_trylock(&dev->struct_mutex))
3950 return 0;
3951
3952 /* "fast-path" to count number of available objects */
3953 if (nr_to_scan == 0) {
3954 cnt = 0;
3955 list_for_each_entry(obj,
3956 &dev_priv->mm.inactive_list,
3957 mm_list)
3958 cnt++;
3959 mutex_unlock(&dev->struct_mutex);
3960 return cnt / 100 * sysctl_vfs_cache_pressure;
3961 }
3962
3963 rescan:
3964 /* first scan for clean buffers */
3965 i915_gem_retire_requests(dev);
3966
3967 list_for_each_entry_safe(obj, next,
3968 &dev_priv->mm.inactive_list,
3969 mm_list) {
3970 if (i915_gem_object_is_purgeable(obj)) {
3971 if (i915_gem_object_unbind(obj) == 0 &&
3972 --nr_to_scan == 0)
3973 break;
3974 }
3975 }
3976
3977 /* second pass, evict/count anything still on the inactive list */
3978 cnt = 0;
3979 list_for_each_entry_safe(obj, next,
3980 &dev_priv->mm.inactive_list,
3981 mm_list) {
3982 if (nr_to_scan &&
3983 i915_gem_object_unbind(obj) == 0)
3984 nr_to_scan--;
3985 else
3986 cnt++;
3987 }
3988
3989 if (nr_to_scan && i915_gpu_is_active(dev)) {
3990 /*
3991 * We are desperate for pages, so as a last resort, wait
3992 * for the GPU to finish and discard whatever we can.
3993 * This has a dramatic impact to reduce the number of
3994 * OOM-killer events whilst running the GPU aggressively.
3995 */
3996 if (i915_gpu_idle(dev) == 0)
3997 goto rescan;
3998 }
3999 mutex_unlock(&dev->struct_mutex);
4000 return cnt / 100 * sysctl_vfs_cache_pressure;
4001 }
This page took 0.569416 seconds and 5 git commands to generate.