71b5129947ba6a82856a86a92b95e3e7d8c86eb7
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
200 {
201 struct drm_i915_gem_object *obj;
202 int ret;
203 u32 handle;
204
205 size = roundup(size, PAGE_SIZE);
206 if (size == 0)
207 return -EINVAL;
208
209 /* Allocate the new object */
210 obj = i915_gem_alloc_object(dev, size);
211 if (obj == NULL)
212 return -ENOMEM;
213
214 ret = drm_gem_handle_create(file, &obj->base, &handle);
215 if (ret) {
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 kfree(obj);
219 return ret;
220 }
221
222 /* drop reference from allocate - handle holds it now */
223 drm_gem_object_unreference(&obj->base);
224 trace_i915_gem_object_create(obj);
225
226 *handle_p = handle;
227 return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234 {
235 /* have to work out size/pitch and return them */
236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245 {
246 return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250 * Creates a new mm object and returns a handle to it.
251 */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255 {
256 struct drm_i915_gem_create *args = data;
257
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 struct scatterlist *sg;
414 int i;
415
416 user_data = (char __user *) (uintptr_t) args->data_ptr;
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 struct page *page;
445
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
452 /* Operation in this page
453 *
454 * shmem_page_offset = offset within page in shmem file
455 * page_length = bytes to copy for this page
456 */
457 shmem_page_offset = offset_in_page(offset);
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
461
462 page = sg_page(sg);
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
471
472 hit_slowpath = 1;
473 mutex_unlock(&dev->struct_mutex);
474
475 if (!prefaulted) {
476 ret = fault_in_multipages_writeable(user_data, remain);
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
484
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
488
489 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492 mark_page_accessed(page);
493
494 if (ret)
495 goto out;
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 i915_gem_object_unpin_pages(obj);
504
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
510
511 return ret;
512 }
513
514 /**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 struct drm_file *file)
522 {
523 struct drm_i915_gem_pread *args = data;
524 struct drm_i915_gem_object *obj;
525 int ret = 0;
526
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
535 ret = i915_mutex_lock_interruptible(dev);
536 if (ret)
537 return ret;
538
539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 if (&obj->base == NULL) {
541 ret = -ENOENT;
542 goto unlock;
543 }
544
545 /* Bounds check source. */
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
548 ret = -EINVAL;
549 goto out;
550 }
551
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562 ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 void __iomem *vaddr_atomic;
582 void *vaddr;
583 unsigned long unwritten;
584
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 user_data, length);
590 io_mapping_unmap_atomic(vaddr_atomic);
591 return unwritten;
592 }
593
594 /**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
601 struct drm_i915_gem_pwrite *args,
602 struct drm_file *file)
603 {
604 drm_i915_private_t *dev_priv = dev->dev_private;
605 ssize_t remain;
606 loff_t offset, page_base;
607 char __user *user_data;
608 int page_offset, page_length, ret;
609
610 ret = i915_gem_object_pin(obj, 0, true, true);
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
624
625 offset = obj->gtt_offset + args->offset;
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
633 */
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
640 /* If we get a fault while copying data, then (presumably) our
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
643 */
644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
649
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
653 }
654
655 out_unpin:
656 i915_gem_object_unpin(obj);
657 out:
658 return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
671 {
672 char *vaddr;
673 int ret;
674
675 if (unlikely(page_do_bit17_swizzling))
676 return -EINVAL;
677
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
689
690 return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
701 {
702 char *vaddr;
703 int ret;
704
705 vaddr = kmap(page);
706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 user_data,
713 page_length);
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
722 kunmap(page);
723
724 return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
732 {
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int i;
742 struct scatterlist *sg;
743
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
746
747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
774 offset = args->offset;
775 obj->dirty = 1;
776
777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 struct page *page;
779 int partial_cacheline_write;
780
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
787 /* Operation in this page
788 *
789 * shmem_page_offset = offset within page in shmem file
790 * page_length = bytes to copy for this page
791 */
792 shmem_page_offset = offset_in_page(offset);
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
797
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
805 page = sg_page(sg);
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
815
816 hit_slowpath = 1;
817 mutex_unlock(&dev->struct_mutex);
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
822
823 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826 set_page_dirty(page);
827 mark_page_accessed(page);
828
829 if (ret)
830 goto out;
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out:
838 i915_gem_object_unpin_pages(obj);
839
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 i915_gem_chipset_flush(dev);
849 }
850 }
851
852 if (needs_clflush_after)
853 i915_gem_chipset_flush(dev);
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
930 }
931
932 if (ret == -EFAULT || ret == -ENOSPC)
933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936 drm_gem_object_unreference(&obj->base);
937 unlock:
938 mutex_unlock(&dev->struct_mutex);
939 return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945 {
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969 }
970
971 /*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987 }
988
989 /**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001 {
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068 }
1069
1070 /**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103 {
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136 {
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
1179 */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file)
1183 {
1184 struct drm_i915_gem_set_domain *args = data;
1185 struct drm_i915_gem_object *obj;
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
1188 int ret;
1189
1190 /* Only handle setting domains to types used by the CPU. */
1191 if (write_domain & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 if (read_domains & I915_GEM_GPU_DOMAINS)
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 return ret;
1206
1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 if (&obj->base == NULL) {
1209 ret = -ENOENT;
1210 goto unlock;
1211 }
1212
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
1230 } else {
1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 }
1233
1234 unref:
1235 drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239 }
1240
1241 /**
1242 * Called when user space has done writes to this buffer
1243 */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 struct drm_file *file)
1247 {
1248 struct drm_i915_gem_sw_finish *args = data;
1249 struct drm_i915_gem_object *obj;
1250 int ret = 0;
1251
1252 ret = i915_mutex_lock_interruptible(dev);
1253 if (ret)
1254 return ret;
1255
1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 if (&obj->base == NULL) {
1258 ret = -ENOENT;
1259 goto unlock;
1260 }
1261
1262 /* Pinned buffers may be scanout, so flush the cache */
1263 if (obj->pin_count)
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266 drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270 }
1271
1272 /**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 struct drm_file *file)
1282 {
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
1285 unsigned long addr;
1286
1287 obj = drm_gem_object_lookup(dev, file, args->handle);
1288 if (obj == NULL)
1289 return -ENOENT;
1290
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
1299 addr = vm_mmap(obj->filp, 0, args->size,
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
1302 drm_gem_object_unreference_unlocked(obj);
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
1331 drm_i915_private_t *dev_priv = dev->dev_private;
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
1344
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347 /* Now bind it into the GTT if needed */
1348 ret = i915_gem_object_pin(obj, 0, true, false);
1349 if (ret)
1350 goto unlock;
1351
1352 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353 if (ret)
1354 goto unpin;
1355
1356 ret = i915_gem_object_get_fence(obj);
1357 if (ret)
1358 goto unpin;
1359
1360 obj->fault_mappable = true;
1361
1362 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1363 page_offset;
1364
1365 /* Finally, remap it using the new GTT offset */
1366 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1367 unpin:
1368 i915_gem_object_unpin(obj);
1369 unlock:
1370 mutex_unlock(&dev->struct_mutex);
1371 out:
1372 switch (ret) {
1373 case -EIO:
1374 /* If this -EIO is due to a gpu hang, give the reset code a
1375 * chance to clean up the mess. Otherwise return the proper
1376 * SIGBUS. */
1377 if (!atomic_read(&dev_priv->mm.wedged))
1378 return VM_FAULT_SIGBUS;
1379 case -EAGAIN:
1380 /* Give the error handler a chance to run and move the
1381 * objects off the GPU active list. Next time we service the
1382 * fault, we should be able to transition the page into the
1383 * GTT without touching the GPU (and so avoid further
1384 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385 * with coherency, just lost writes.
1386 */
1387 set_need_resched();
1388 case 0:
1389 case -ERESTARTSYS:
1390 case -EINTR:
1391 case -EBUSY:
1392 /*
1393 * EBUSY is ok: this just means that another thread
1394 * already did the job.
1395 */
1396 return VM_FAULT_NOPAGE;
1397 case -ENOMEM:
1398 return VM_FAULT_OOM;
1399 case -ENOSPC:
1400 return VM_FAULT_SIGBUS;
1401 default:
1402 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1403 return VM_FAULT_SIGBUS;
1404 }
1405 }
1406
1407 /**
1408 * i915_gem_release_mmap - remove physical page mappings
1409 * @obj: obj in question
1410 *
1411 * Preserve the reservation of the mmapping with the DRM core code, but
1412 * relinquish ownership of the pages back to the system.
1413 *
1414 * It is vital that we remove the page mapping if we have mapped a tiled
1415 * object through the GTT and then lose the fence register due to
1416 * resource pressure. Similarly if the object has been moved out of the
1417 * aperture, than pages mapped into userspace must be revoked. Removing the
1418 * mapping will then trigger a page fault on the next user access, allowing
1419 * fixup by i915_gem_fault().
1420 */
1421 void
1422 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1423 {
1424 if (!obj->fault_mappable)
1425 return;
1426
1427 if (obj->base.dev->dev_mapping)
1428 unmap_mapping_range(obj->base.dev->dev_mapping,
1429 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430 obj->base.size, 1);
1431
1432 obj->fault_mappable = false;
1433 }
1434
1435 static uint32_t
1436 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1437 {
1438 uint32_t gtt_size;
1439
1440 if (INTEL_INFO(dev)->gen >= 4 ||
1441 tiling_mode == I915_TILING_NONE)
1442 return size;
1443
1444 /* Previous chips need a power-of-two fence region when tiling */
1445 if (INTEL_INFO(dev)->gen == 3)
1446 gtt_size = 1024*1024;
1447 else
1448 gtt_size = 512*1024;
1449
1450 while (gtt_size < size)
1451 gtt_size <<= 1;
1452
1453 return gtt_size;
1454 }
1455
1456 /**
1457 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458 * @obj: object to check
1459 *
1460 * Return the required GTT alignment for an object, taking into account
1461 * potential fence register mapping.
1462 */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_device *dev,
1465 uint32_t size,
1466 int tiling_mode)
1467 {
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 ||
1473 tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 /**
1484 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485 * unfenced object
1486 * @dev: the device
1487 * @size: size of the object
1488 * @tiling_mode: tiling mode of the object
1489 *
1490 * Return the required GTT alignment for an object, only taking into account
1491 * unfenced tiled surface requirements.
1492 */
1493 uint32_t
1494 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495 uint32_t size,
1496 int tiling_mode)
1497 {
1498 /*
1499 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502 tiling_mode == I915_TILING_NONE)
1503 return 4096;
1504
1505 /* Previous hardware however needs to be aligned to a power-of-two
1506 * tile height. The simplest method for determining this is to reuse
1507 * the power-of-tile object size.
1508 */
1509 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1510 }
1511
1512 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513 {
1514 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515 int ret;
1516
1517 if (obj->base.map_list.map)
1518 return 0;
1519
1520 ret = drm_gem_create_mmap_offset(&obj->base);
1521 if (ret != -ENOSPC)
1522 return ret;
1523
1524 /* Badly fragmented mmap space? The only way we can recover
1525 * space is by destroying unwanted objects. We can't randomly release
1526 * mmap_offsets as userspace expects them to be persistent for the
1527 * lifetime of the objects. The closest we can is to release the
1528 * offsets on purgeable objects by truncating it and marking it purged,
1529 * which prevents userspace from ever using that object again.
1530 */
1531 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1532 ret = drm_gem_create_mmap_offset(&obj->base);
1533 if (ret != -ENOSPC)
1534 return ret;
1535
1536 i915_gem_shrink_all(dev_priv);
1537 return drm_gem_create_mmap_offset(&obj->base);
1538 }
1539
1540 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1541 {
1542 if (!obj->base.map_list.map)
1543 return;
1544
1545 drm_gem_free_mmap_offset(&obj->base);
1546 }
1547
1548 int
1549 i915_gem_mmap_gtt(struct drm_file *file,
1550 struct drm_device *dev,
1551 uint32_t handle,
1552 uint64_t *offset)
1553 {
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_i915_gem_object *obj;
1556 int ret;
1557
1558 ret = i915_mutex_lock_interruptible(dev);
1559 if (ret)
1560 return ret;
1561
1562 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1563 if (&obj->base == NULL) {
1564 ret = -ENOENT;
1565 goto unlock;
1566 }
1567
1568 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1569 ret = -E2BIG;
1570 goto out;
1571 }
1572
1573 if (obj->madv != I915_MADV_WILLNEED) {
1574 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1575 ret = -EINVAL;
1576 goto out;
1577 }
1578
1579 ret = i915_gem_object_create_mmap_offset(obj);
1580 if (ret)
1581 goto out;
1582
1583 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1584
1585 out:
1586 drm_gem_object_unreference(&obj->base);
1587 unlock:
1588 mutex_unlock(&dev->struct_mutex);
1589 return ret;
1590 }
1591
1592 /**
1593 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1594 * @dev: DRM device
1595 * @data: GTT mapping ioctl data
1596 * @file: GEM object info
1597 *
1598 * Simply returns the fake offset to userspace so it can mmap it.
1599 * The mmap call will end up in drm_gem_mmap(), which will set things
1600 * up so we can get faults in the handler above.
1601 *
1602 * The fault handler will take care of binding the object into the GTT
1603 * (since it may have been evicted to make room for something), allocating
1604 * a fence register, and mapping the appropriate aperture address into
1605 * userspace.
1606 */
1607 int
1608 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1609 struct drm_file *file)
1610 {
1611 struct drm_i915_gem_mmap_gtt *args = data;
1612
1613 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1614 }
1615
1616 /* Immediately discard the backing storage */
1617 static void
1618 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1619 {
1620 struct inode *inode;
1621
1622 i915_gem_object_free_mmap_offset(obj);
1623
1624 if (obj->base.filp == NULL)
1625 return;
1626
1627 /* Our goal here is to return as much of the memory as
1628 * is possible back to the system as we are called from OOM.
1629 * To do this we must instruct the shmfs to drop all of its
1630 * backing pages, *now*.
1631 */
1632 inode = obj->base.filp->f_path.dentry->d_inode;
1633 shmem_truncate_range(inode, 0, (loff_t)-1);
1634
1635 obj->madv = __I915_MADV_PURGED;
1636 }
1637
1638 static inline int
1639 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1640 {
1641 return obj->madv == I915_MADV_DONTNEED;
1642 }
1643
1644 static void
1645 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1646 {
1647 int page_count = obj->base.size / PAGE_SIZE;
1648 struct scatterlist *sg;
1649 int ret, i;
1650
1651 BUG_ON(obj->madv == __I915_MADV_PURGED);
1652
1653 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1654 if (ret) {
1655 /* In the event of a disaster, abandon all caches and
1656 * hope for the best.
1657 */
1658 WARN_ON(ret != -EIO);
1659 i915_gem_clflush_object(obj);
1660 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1661 }
1662
1663 if (i915_gem_object_needs_bit17_swizzle(obj))
1664 i915_gem_object_save_bit_17_swizzle(obj);
1665
1666 if (obj->madv == I915_MADV_DONTNEED)
1667 obj->dirty = 0;
1668
1669 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1670 struct page *page = sg_page(sg);
1671
1672 if (obj->dirty)
1673 set_page_dirty(page);
1674
1675 if (obj->madv == I915_MADV_WILLNEED)
1676 mark_page_accessed(page);
1677
1678 page_cache_release(page);
1679 }
1680 obj->dirty = 0;
1681
1682 sg_free_table(obj->pages);
1683 kfree(obj->pages);
1684 }
1685
1686 static int
1687 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1688 {
1689 const struct drm_i915_gem_object_ops *ops = obj->ops;
1690
1691 if (obj->pages == NULL)
1692 return 0;
1693
1694 BUG_ON(obj->gtt_space);
1695
1696 if (obj->pages_pin_count)
1697 return -EBUSY;
1698
1699 ops->put_pages(obj);
1700 obj->pages = NULL;
1701
1702 list_del(&obj->gtt_list);
1703 if (i915_gem_object_is_purgeable(obj))
1704 i915_gem_object_truncate(obj);
1705
1706 return 0;
1707 }
1708
1709 static long
1710 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1711 {
1712 struct drm_i915_gem_object *obj, *next;
1713 long count = 0;
1714
1715 list_for_each_entry_safe(obj, next,
1716 &dev_priv->mm.unbound_list,
1717 gtt_list) {
1718 if (i915_gem_object_is_purgeable(obj) &&
1719 i915_gem_object_put_pages(obj) == 0) {
1720 count += obj->base.size >> PAGE_SHIFT;
1721 if (count >= target)
1722 return count;
1723 }
1724 }
1725
1726 list_for_each_entry_safe(obj, next,
1727 &dev_priv->mm.inactive_list,
1728 mm_list) {
1729 if (i915_gem_object_is_purgeable(obj) &&
1730 i915_gem_object_unbind(obj) == 0 &&
1731 i915_gem_object_put_pages(obj) == 0) {
1732 count += obj->base.size >> PAGE_SHIFT;
1733 if (count >= target)
1734 return count;
1735 }
1736 }
1737
1738 return count;
1739 }
1740
1741 static void
1742 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1743 {
1744 struct drm_i915_gem_object *obj, *next;
1745
1746 i915_gem_evict_everything(dev_priv->dev);
1747
1748 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1749 i915_gem_object_put_pages(obj);
1750 }
1751
1752 static int
1753 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1754 {
1755 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1756 int page_count, i;
1757 struct address_space *mapping;
1758 struct sg_table *st;
1759 struct scatterlist *sg;
1760 struct page *page;
1761 gfp_t gfp;
1762
1763 /* Assert that the object is not currently in any GPU domain. As it
1764 * wasn't in the GTT, there shouldn't be any way it could have been in
1765 * a GPU cache
1766 */
1767 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1768 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1769
1770 st = kmalloc(sizeof(*st), GFP_KERNEL);
1771 if (st == NULL)
1772 return -ENOMEM;
1773
1774 page_count = obj->base.size / PAGE_SIZE;
1775 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1776 sg_free_table(st);
1777 kfree(st);
1778 return -ENOMEM;
1779 }
1780
1781 /* Get the list of pages out of our struct file. They'll be pinned
1782 * at this point until we release them.
1783 *
1784 * Fail silently without starting the shrinker
1785 */
1786 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1787 gfp = mapping_gfp_mask(mapping);
1788 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1789 gfp &= ~(__GFP_IO | __GFP_WAIT);
1790 for_each_sg(st->sgl, sg, page_count, i) {
1791 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792 if (IS_ERR(page)) {
1793 i915_gem_purge(dev_priv, page_count);
1794 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795 }
1796 if (IS_ERR(page)) {
1797 /* We've tried hard to allocate the memory by reaping
1798 * our own buffer, now let the real VM do its job and
1799 * go down in flames if truly OOM.
1800 */
1801 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1802 gfp |= __GFP_IO | __GFP_WAIT;
1803
1804 i915_gem_shrink_all(dev_priv);
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 if (IS_ERR(page))
1807 goto err_pages;
1808
1809 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1810 gfp &= ~(__GFP_IO | __GFP_WAIT);
1811 }
1812
1813 sg_set_page(sg, page, PAGE_SIZE, 0);
1814 }
1815
1816 obj->pages = st;
1817
1818 if (i915_gem_object_needs_bit17_swizzle(obj))
1819 i915_gem_object_do_bit_17_swizzle(obj);
1820
1821 return 0;
1822
1823 err_pages:
1824 for_each_sg(st->sgl, sg, i, page_count)
1825 page_cache_release(sg_page(sg));
1826 sg_free_table(st);
1827 kfree(st);
1828 return PTR_ERR(page);
1829 }
1830
1831 /* Ensure that the associated pages are gathered from the backing storage
1832 * and pinned into our object. i915_gem_object_get_pages() may be called
1833 * multiple times before they are released by a single call to
1834 * i915_gem_object_put_pages() - once the pages are no longer referenced
1835 * either as a result of memory pressure (reaping pages under the shrinker)
1836 * or as the object is itself released.
1837 */
1838 int
1839 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1840 {
1841 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1842 const struct drm_i915_gem_object_ops *ops = obj->ops;
1843 int ret;
1844
1845 if (obj->pages)
1846 return 0;
1847
1848 BUG_ON(obj->pages_pin_count);
1849
1850 ret = ops->get_pages(obj);
1851 if (ret)
1852 return ret;
1853
1854 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1855 return 0;
1856 }
1857
1858 void
1859 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1860 struct intel_ring_buffer *ring,
1861 u32 seqno)
1862 {
1863 struct drm_device *dev = obj->base.dev;
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865
1866 BUG_ON(ring == NULL);
1867 obj->ring = ring;
1868
1869 /* Add a reference if we're newly entering the active list. */
1870 if (!obj->active) {
1871 drm_gem_object_reference(&obj->base);
1872 obj->active = 1;
1873 }
1874
1875 /* Move from whatever list we were on to the tail of execution. */
1876 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1877 list_move_tail(&obj->ring_list, &ring->active_list);
1878
1879 obj->last_read_seqno = seqno;
1880
1881 if (obj->fenced_gpu_access) {
1882 obj->last_fenced_seqno = seqno;
1883
1884 /* Bump MRU to take account of the delayed flush */
1885 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1886 struct drm_i915_fence_reg *reg;
1887
1888 reg = &dev_priv->fence_regs[obj->fence_reg];
1889 list_move_tail(&reg->lru_list,
1890 &dev_priv->mm.fence_list);
1891 }
1892 }
1893 }
1894
1895 static void
1896 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1897 {
1898 struct drm_device *dev = obj->base.dev;
1899 struct drm_i915_private *dev_priv = dev->dev_private;
1900
1901 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1902 BUG_ON(!obj->active);
1903
1904 if (obj->pin_count) /* are we a framebuffer? */
1905 intel_mark_fb_idle(obj);
1906
1907 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1908
1909 list_del_init(&obj->ring_list);
1910 obj->ring = NULL;
1911
1912 obj->last_read_seqno = 0;
1913 obj->last_write_seqno = 0;
1914 obj->base.write_domain = 0;
1915
1916 obj->last_fenced_seqno = 0;
1917 obj->fenced_gpu_access = false;
1918
1919 obj->active = 0;
1920 drm_gem_object_unreference(&obj->base);
1921
1922 WARN_ON(i915_verify_lists(dev));
1923 }
1924
1925 static u32
1926 i915_gem_get_seqno(struct drm_device *dev)
1927 {
1928 drm_i915_private_t *dev_priv = dev->dev_private;
1929 u32 seqno = dev_priv->next_seqno;
1930
1931 /* reserve 0 for non-seqno */
1932 if (++dev_priv->next_seqno == 0)
1933 dev_priv->next_seqno = 1;
1934
1935 return seqno;
1936 }
1937
1938 u32
1939 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1940 {
1941 if (ring->outstanding_lazy_request == 0)
1942 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1943
1944 return ring->outstanding_lazy_request;
1945 }
1946
1947 int
1948 i915_add_request(struct intel_ring_buffer *ring,
1949 struct drm_file *file,
1950 u32 *out_seqno)
1951 {
1952 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1953 struct drm_i915_gem_request *request;
1954 u32 request_ring_position;
1955 u32 seqno;
1956 int was_empty;
1957 int ret;
1958
1959 /*
1960 * Emit any outstanding flushes - execbuf can fail to emit the flush
1961 * after having emitted the batchbuffer command. Hence we need to fix
1962 * things up similar to emitting the lazy request. The difference here
1963 * is that the flush _must_ happen before the next request, no matter
1964 * what.
1965 */
1966 ret = intel_ring_flush_all_caches(ring);
1967 if (ret)
1968 return ret;
1969
1970 request = kmalloc(sizeof(*request), GFP_KERNEL);
1971 if (request == NULL)
1972 return -ENOMEM;
1973
1974 seqno = i915_gem_next_request_seqno(ring);
1975
1976 /* Record the position of the start of the request so that
1977 * should we detect the updated seqno part-way through the
1978 * GPU processing the request, we never over-estimate the
1979 * position of the head.
1980 */
1981 request_ring_position = intel_ring_get_tail(ring);
1982
1983 ret = ring->add_request(ring, &seqno);
1984 if (ret) {
1985 kfree(request);
1986 return ret;
1987 }
1988
1989 trace_i915_gem_request_add(ring, seqno);
1990
1991 request->seqno = seqno;
1992 request->ring = ring;
1993 request->tail = request_ring_position;
1994 request->emitted_jiffies = jiffies;
1995 was_empty = list_empty(&ring->request_list);
1996 list_add_tail(&request->list, &ring->request_list);
1997 request->file_priv = NULL;
1998
1999 if (file) {
2000 struct drm_i915_file_private *file_priv = file->driver_priv;
2001
2002 spin_lock(&file_priv->mm.lock);
2003 request->file_priv = file_priv;
2004 list_add_tail(&request->client_list,
2005 &file_priv->mm.request_list);
2006 spin_unlock(&file_priv->mm.lock);
2007 }
2008
2009 ring->outstanding_lazy_request = 0;
2010
2011 if (!dev_priv->mm.suspended) {
2012 if (i915_enable_hangcheck) {
2013 mod_timer(&dev_priv->hangcheck_timer,
2014 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2015 }
2016 if (was_empty) {
2017 queue_delayed_work(dev_priv->wq,
2018 &dev_priv->mm.retire_work,
2019 round_jiffies_up_relative(HZ));
2020 intel_mark_busy(dev_priv->dev);
2021 }
2022 }
2023
2024 if (out_seqno)
2025 *out_seqno = seqno;
2026 return 0;
2027 }
2028
2029 static inline void
2030 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2031 {
2032 struct drm_i915_file_private *file_priv = request->file_priv;
2033
2034 if (!file_priv)
2035 return;
2036
2037 spin_lock(&file_priv->mm.lock);
2038 if (request->file_priv) {
2039 list_del(&request->client_list);
2040 request->file_priv = NULL;
2041 }
2042 spin_unlock(&file_priv->mm.lock);
2043 }
2044
2045 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2046 struct intel_ring_buffer *ring)
2047 {
2048 while (!list_empty(&ring->request_list)) {
2049 struct drm_i915_gem_request *request;
2050
2051 request = list_first_entry(&ring->request_list,
2052 struct drm_i915_gem_request,
2053 list);
2054
2055 list_del(&request->list);
2056 i915_gem_request_remove_from_client(request);
2057 kfree(request);
2058 }
2059
2060 while (!list_empty(&ring->active_list)) {
2061 struct drm_i915_gem_object *obj;
2062
2063 obj = list_first_entry(&ring->active_list,
2064 struct drm_i915_gem_object,
2065 ring_list);
2066
2067 i915_gem_object_move_to_inactive(obj);
2068 }
2069 }
2070
2071 static void i915_gem_reset_fences(struct drm_device *dev)
2072 {
2073 struct drm_i915_private *dev_priv = dev->dev_private;
2074 int i;
2075
2076 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2077 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2078
2079 i915_gem_write_fence(dev, i, NULL);
2080
2081 if (reg->obj)
2082 i915_gem_object_fence_lost(reg->obj);
2083
2084 reg->pin_count = 0;
2085 reg->obj = NULL;
2086 INIT_LIST_HEAD(&reg->lru_list);
2087 }
2088
2089 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2090 }
2091
2092 void i915_gem_reset(struct drm_device *dev)
2093 {
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095 struct drm_i915_gem_object *obj;
2096 struct intel_ring_buffer *ring;
2097 int i;
2098
2099 for_each_ring(ring, dev_priv, i)
2100 i915_gem_reset_ring_lists(dev_priv, ring);
2101
2102 /* Move everything out of the GPU domains to ensure we do any
2103 * necessary invalidation upon reuse.
2104 */
2105 list_for_each_entry(obj,
2106 &dev_priv->mm.inactive_list,
2107 mm_list)
2108 {
2109 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2110 }
2111
2112 /* The fence registers are invalidated so clear them out */
2113 i915_gem_reset_fences(dev);
2114 }
2115
2116 /**
2117 * This function clears the request list as sequence numbers are passed.
2118 */
2119 void
2120 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2121 {
2122 uint32_t seqno;
2123 int i;
2124
2125 if (list_empty(&ring->request_list))
2126 return;
2127
2128 WARN_ON(i915_verify_lists(ring->dev));
2129
2130 seqno = ring->get_seqno(ring, true);
2131
2132 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2133 if (seqno >= ring->sync_seqno[i])
2134 ring->sync_seqno[i] = 0;
2135
2136 while (!list_empty(&ring->request_list)) {
2137 struct drm_i915_gem_request *request;
2138
2139 request = list_first_entry(&ring->request_list,
2140 struct drm_i915_gem_request,
2141 list);
2142
2143 if (!i915_seqno_passed(seqno, request->seqno))
2144 break;
2145
2146 trace_i915_gem_request_retire(ring, request->seqno);
2147 /* We know the GPU must have read the request to have
2148 * sent us the seqno + interrupt, so use the position
2149 * of tail of the request to update the last known position
2150 * of the GPU head.
2151 */
2152 ring->last_retired_head = request->tail;
2153
2154 list_del(&request->list);
2155 i915_gem_request_remove_from_client(request);
2156 kfree(request);
2157 }
2158
2159 /* Move any buffers on the active list that are no longer referenced
2160 * by the ringbuffer to the flushing/inactive lists as appropriate.
2161 */
2162 while (!list_empty(&ring->active_list)) {
2163 struct drm_i915_gem_object *obj;
2164
2165 obj = list_first_entry(&ring->active_list,
2166 struct drm_i915_gem_object,
2167 ring_list);
2168
2169 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2170 break;
2171
2172 i915_gem_object_move_to_inactive(obj);
2173 }
2174
2175 if (unlikely(ring->trace_irq_seqno &&
2176 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2177 ring->irq_put(ring);
2178 ring->trace_irq_seqno = 0;
2179 }
2180
2181 WARN_ON(i915_verify_lists(ring->dev));
2182 }
2183
2184 void
2185 i915_gem_retire_requests(struct drm_device *dev)
2186 {
2187 drm_i915_private_t *dev_priv = dev->dev_private;
2188 struct intel_ring_buffer *ring;
2189 int i;
2190
2191 for_each_ring(ring, dev_priv, i)
2192 i915_gem_retire_requests_ring(ring);
2193 }
2194
2195 static void
2196 i915_gem_retire_work_handler(struct work_struct *work)
2197 {
2198 drm_i915_private_t *dev_priv;
2199 struct drm_device *dev;
2200 struct intel_ring_buffer *ring;
2201 bool idle;
2202 int i;
2203
2204 dev_priv = container_of(work, drm_i915_private_t,
2205 mm.retire_work.work);
2206 dev = dev_priv->dev;
2207
2208 /* Come back later if the device is busy... */
2209 if (!mutex_trylock(&dev->struct_mutex)) {
2210 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2211 round_jiffies_up_relative(HZ));
2212 return;
2213 }
2214
2215 i915_gem_retire_requests(dev);
2216
2217 /* Send a periodic flush down the ring so we don't hold onto GEM
2218 * objects indefinitely.
2219 */
2220 idle = true;
2221 for_each_ring(ring, dev_priv, i) {
2222 if (ring->gpu_caches_dirty)
2223 i915_add_request(ring, NULL, NULL);
2224
2225 idle &= list_empty(&ring->request_list);
2226 }
2227
2228 if (!dev_priv->mm.suspended && !idle)
2229 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2230 round_jiffies_up_relative(HZ));
2231 if (idle)
2232 intel_mark_idle(dev);
2233
2234 mutex_unlock(&dev->struct_mutex);
2235 }
2236
2237 /**
2238 * Ensures that an object will eventually get non-busy by flushing any required
2239 * write domains, emitting any outstanding lazy request and retiring and
2240 * completed requests.
2241 */
2242 static int
2243 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2244 {
2245 int ret;
2246
2247 if (obj->active) {
2248 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2249 if (ret)
2250 return ret;
2251
2252 i915_gem_retire_requests_ring(obj->ring);
2253 }
2254
2255 return 0;
2256 }
2257
2258 /**
2259 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2260 * @DRM_IOCTL_ARGS: standard ioctl arguments
2261 *
2262 * Returns 0 if successful, else an error is returned with the remaining time in
2263 * the timeout parameter.
2264 * -ETIME: object is still busy after timeout
2265 * -ERESTARTSYS: signal interrupted the wait
2266 * -ENONENT: object doesn't exist
2267 * Also possible, but rare:
2268 * -EAGAIN: GPU wedged
2269 * -ENOMEM: damn
2270 * -ENODEV: Internal IRQ fail
2271 * -E?: The add request failed
2272 *
2273 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2274 * non-zero timeout parameter the wait ioctl will wait for the given number of
2275 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2276 * without holding struct_mutex the object may become re-busied before this
2277 * function completes. A similar but shorter * race condition exists in the busy
2278 * ioctl
2279 */
2280 int
2281 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2282 {
2283 struct drm_i915_gem_wait *args = data;
2284 struct drm_i915_gem_object *obj;
2285 struct intel_ring_buffer *ring = NULL;
2286 struct timespec timeout_stack, *timeout = NULL;
2287 u32 seqno = 0;
2288 int ret = 0;
2289
2290 if (args->timeout_ns >= 0) {
2291 timeout_stack = ns_to_timespec(args->timeout_ns);
2292 timeout = &timeout_stack;
2293 }
2294
2295 ret = i915_mutex_lock_interruptible(dev);
2296 if (ret)
2297 return ret;
2298
2299 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2300 if (&obj->base == NULL) {
2301 mutex_unlock(&dev->struct_mutex);
2302 return -ENOENT;
2303 }
2304
2305 /* Need to make sure the object gets inactive eventually. */
2306 ret = i915_gem_object_flush_active(obj);
2307 if (ret)
2308 goto out;
2309
2310 if (obj->active) {
2311 seqno = obj->last_read_seqno;
2312 ring = obj->ring;
2313 }
2314
2315 if (seqno == 0)
2316 goto out;
2317
2318 /* Do this after OLR check to make sure we make forward progress polling
2319 * on this IOCTL with a 0 timeout (like busy ioctl)
2320 */
2321 if (!args->timeout_ns) {
2322 ret = -ETIME;
2323 goto out;
2324 }
2325
2326 drm_gem_object_unreference(&obj->base);
2327 mutex_unlock(&dev->struct_mutex);
2328
2329 ret = __wait_seqno(ring, seqno, true, timeout);
2330 if (timeout) {
2331 WARN_ON(!timespec_valid(timeout));
2332 args->timeout_ns = timespec_to_ns(timeout);
2333 }
2334 return ret;
2335
2336 out:
2337 drm_gem_object_unreference(&obj->base);
2338 mutex_unlock(&dev->struct_mutex);
2339 return ret;
2340 }
2341
2342 /**
2343 * i915_gem_object_sync - sync an object to a ring.
2344 *
2345 * @obj: object which may be in use on another ring.
2346 * @to: ring we wish to use the object on. May be NULL.
2347 *
2348 * This code is meant to abstract object synchronization with the GPU.
2349 * Calling with NULL implies synchronizing the object with the CPU
2350 * rather than a particular GPU ring.
2351 *
2352 * Returns 0 if successful, else propagates up the lower layer error.
2353 */
2354 int
2355 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2356 struct intel_ring_buffer *to)
2357 {
2358 struct intel_ring_buffer *from = obj->ring;
2359 u32 seqno;
2360 int ret, idx;
2361
2362 if (from == NULL || to == from)
2363 return 0;
2364
2365 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2366 return i915_gem_object_wait_rendering(obj, false);
2367
2368 idx = intel_ring_sync_index(from, to);
2369
2370 seqno = obj->last_read_seqno;
2371 if (seqno <= from->sync_seqno[idx])
2372 return 0;
2373
2374 ret = i915_gem_check_olr(obj->ring, seqno);
2375 if (ret)
2376 return ret;
2377
2378 ret = to->sync_to(to, from, seqno);
2379 if (!ret)
2380 from->sync_seqno[idx] = seqno;
2381
2382 return ret;
2383 }
2384
2385 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2386 {
2387 u32 old_write_domain, old_read_domains;
2388
2389 /* Act a barrier for all accesses through the GTT */
2390 mb();
2391
2392 /* Force a pagefault for domain tracking on next user access */
2393 i915_gem_release_mmap(obj);
2394
2395 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2396 return;
2397
2398 old_read_domains = obj->base.read_domains;
2399 old_write_domain = obj->base.write_domain;
2400
2401 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2402 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2403
2404 trace_i915_gem_object_change_domain(obj,
2405 old_read_domains,
2406 old_write_domain);
2407 }
2408
2409 /**
2410 * Unbinds an object from the GTT aperture.
2411 */
2412 int
2413 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2414 {
2415 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2416 int ret = 0;
2417
2418 if (obj->gtt_space == NULL)
2419 return 0;
2420
2421 if (obj->pin_count)
2422 return -EBUSY;
2423
2424 BUG_ON(obj->pages == NULL);
2425
2426 ret = i915_gem_object_finish_gpu(obj);
2427 if (ret)
2428 return ret;
2429 /* Continue on if we fail due to EIO, the GPU is hung so we
2430 * should be safe and we need to cleanup or else we might
2431 * cause memory corruption through use-after-free.
2432 */
2433
2434 i915_gem_object_finish_gtt(obj);
2435
2436 /* release the fence reg _after_ flushing */
2437 ret = i915_gem_object_put_fence(obj);
2438 if (ret)
2439 return ret;
2440
2441 trace_i915_gem_object_unbind(obj);
2442
2443 if (obj->has_global_gtt_mapping)
2444 i915_gem_gtt_unbind_object(obj);
2445 if (obj->has_aliasing_ppgtt_mapping) {
2446 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2447 obj->has_aliasing_ppgtt_mapping = 0;
2448 }
2449 i915_gem_gtt_finish_object(obj);
2450
2451 list_del(&obj->mm_list);
2452 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2453 /* Avoid an unnecessary call to unbind on rebind. */
2454 obj->map_and_fenceable = true;
2455
2456 drm_mm_put_block(obj->gtt_space);
2457 obj->gtt_space = NULL;
2458 obj->gtt_offset = 0;
2459
2460 return 0;
2461 }
2462
2463 static int i915_ring_idle(struct intel_ring_buffer *ring)
2464 {
2465 if (list_empty(&ring->active_list))
2466 return 0;
2467
2468 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2469 }
2470
2471 int i915_gpu_idle(struct drm_device *dev)
2472 {
2473 drm_i915_private_t *dev_priv = dev->dev_private;
2474 struct intel_ring_buffer *ring;
2475 int ret, i;
2476
2477 /* Flush everything onto the inactive list. */
2478 for_each_ring(ring, dev_priv, i) {
2479 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2480 if (ret)
2481 return ret;
2482
2483 ret = i915_ring_idle(ring);
2484 if (ret)
2485 return ret;
2486 }
2487
2488 return 0;
2489 }
2490
2491 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2492 struct drm_i915_gem_object *obj)
2493 {
2494 drm_i915_private_t *dev_priv = dev->dev_private;
2495 uint64_t val;
2496
2497 if (obj) {
2498 u32 size = obj->gtt_space->size;
2499
2500 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2501 0xfffff000) << 32;
2502 val |= obj->gtt_offset & 0xfffff000;
2503 val |= (uint64_t)((obj->stride / 128) - 1) <<
2504 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2505
2506 if (obj->tiling_mode == I915_TILING_Y)
2507 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2508 val |= I965_FENCE_REG_VALID;
2509 } else
2510 val = 0;
2511
2512 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2513 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2514 }
2515
2516 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2517 struct drm_i915_gem_object *obj)
2518 {
2519 drm_i915_private_t *dev_priv = dev->dev_private;
2520 uint64_t val;
2521
2522 if (obj) {
2523 u32 size = obj->gtt_space->size;
2524
2525 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2526 0xfffff000) << 32;
2527 val |= obj->gtt_offset & 0xfffff000;
2528 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2529 if (obj->tiling_mode == I915_TILING_Y)
2530 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2531 val |= I965_FENCE_REG_VALID;
2532 } else
2533 val = 0;
2534
2535 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2536 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2537 }
2538
2539 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2540 struct drm_i915_gem_object *obj)
2541 {
2542 drm_i915_private_t *dev_priv = dev->dev_private;
2543 u32 val;
2544
2545 if (obj) {
2546 u32 size = obj->gtt_space->size;
2547 int pitch_val;
2548 int tile_width;
2549
2550 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2551 (size & -size) != size ||
2552 (obj->gtt_offset & (size - 1)),
2553 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2554 obj->gtt_offset, obj->map_and_fenceable, size);
2555
2556 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2557 tile_width = 128;
2558 else
2559 tile_width = 512;
2560
2561 /* Note: pitch better be a power of two tile widths */
2562 pitch_val = obj->stride / tile_width;
2563 pitch_val = ffs(pitch_val) - 1;
2564
2565 val = obj->gtt_offset;
2566 if (obj->tiling_mode == I915_TILING_Y)
2567 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2568 val |= I915_FENCE_SIZE_BITS(size);
2569 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2570 val |= I830_FENCE_REG_VALID;
2571 } else
2572 val = 0;
2573
2574 if (reg < 8)
2575 reg = FENCE_REG_830_0 + reg * 4;
2576 else
2577 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2578
2579 I915_WRITE(reg, val);
2580 POSTING_READ(reg);
2581 }
2582
2583 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2584 struct drm_i915_gem_object *obj)
2585 {
2586 drm_i915_private_t *dev_priv = dev->dev_private;
2587 uint32_t val;
2588
2589 if (obj) {
2590 u32 size = obj->gtt_space->size;
2591 uint32_t pitch_val;
2592
2593 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2594 (size & -size) != size ||
2595 (obj->gtt_offset & (size - 1)),
2596 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2597 obj->gtt_offset, size);
2598
2599 pitch_val = obj->stride / 128;
2600 pitch_val = ffs(pitch_val) - 1;
2601
2602 val = obj->gtt_offset;
2603 if (obj->tiling_mode == I915_TILING_Y)
2604 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2605 val |= I830_FENCE_SIZE_BITS(size);
2606 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2607 val |= I830_FENCE_REG_VALID;
2608 } else
2609 val = 0;
2610
2611 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2612 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2613 }
2614
2615 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2616 struct drm_i915_gem_object *obj)
2617 {
2618 switch (INTEL_INFO(dev)->gen) {
2619 case 7:
2620 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2621 case 5:
2622 case 4: i965_write_fence_reg(dev, reg, obj); break;
2623 case 3: i915_write_fence_reg(dev, reg, obj); break;
2624 case 2: i830_write_fence_reg(dev, reg, obj); break;
2625 default: break;
2626 }
2627 }
2628
2629 static inline int fence_number(struct drm_i915_private *dev_priv,
2630 struct drm_i915_fence_reg *fence)
2631 {
2632 return fence - dev_priv->fence_regs;
2633 }
2634
2635 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2636 struct drm_i915_fence_reg *fence,
2637 bool enable)
2638 {
2639 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2640 int reg = fence_number(dev_priv, fence);
2641
2642 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2643
2644 if (enable) {
2645 obj->fence_reg = reg;
2646 fence->obj = obj;
2647 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2648 } else {
2649 obj->fence_reg = I915_FENCE_REG_NONE;
2650 fence->obj = NULL;
2651 list_del_init(&fence->lru_list);
2652 }
2653 }
2654
2655 static int
2656 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2657 {
2658 if (obj->last_fenced_seqno) {
2659 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2660 if (ret)
2661 return ret;
2662
2663 obj->last_fenced_seqno = 0;
2664 }
2665
2666 /* Ensure that all CPU reads are completed before installing a fence
2667 * and all writes before removing the fence.
2668 */
2669 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2670 mb();
2671
2672 obj->fenced_gpu_access = false;
2673 return 0;
2674 }
2675
2676 int
2677 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2678 {
2679 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2680 int ret;
2681
2682 ret = i915_gem_object_flush_fence(obj);
2683 if (ret)
2684 return ret;
2685
2686 if (obj->fence_reg == I915_FENCE_REG_NONE)
2687 return 0;
2688
2689 i915_gem_object_update_fence(obj,
2690 &dev_priv->fence_regs[obj->fence_reg],
2691 false);
2692 i915_gem_object_fence_lost(obj);
2693
2694 return 0;
2695 }
2696
2697 static struct drm_i915_fence_reg *
2698 i915_find_fence_reg(struct drm_device *dev)
2699 {
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 struct drm_i915_fence_reg *reg, *avail;
2702 int i;
2703
2704 /* First try to find a free reg */
2705 avail = NULL;
2706 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2707 reg = &dev_priv->fence_regs[i];
2708 if (!reg->obj)
2709 return reg;
2710
2711 if (!reg->pin_count)
2712 avail = reg;
2713 }
2714
2715 if (avail == NULL)
2716 return NULL;
2717
2718 /* None available, try to steal one or wait for a user to finish */
2719 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2720 if (reg->pin_count)
2721 continue;
2722
2723 return reg;
2724 }
2725
2726 return NULL;
2727 }
2728
2729 /**
2730 * i915_gem_object_get_fence - set up fencing for an object
2731 * @obj: object to map through a fence reg
2732 *
2733 * When mapping objects through the GTT, userspace wants to be able to write
2734 * to them without having to worry about swizzling if the object is tiled.
2735 * This function walks the fence regs looking for a free one for @obj,
2736 * stealing one if it can't find any.
2737 *
2738 * It then sets up the reg based on the object's properties: address, pitch
2739 * and tiling format.
2740 *
2741 * For an untiled surface, this removes any existing fence.
2742 */
2743 int
2744 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2745 {
2746 struct drm_device *dev = obj->base.dev;
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 bool enable = obj->tiling_mode != I915_TILING_NONE;
2749 struct drm_i915_fence_reg *reg;
2750 int ret;
2751
2752 /* Have we updated the tiling parameters upon the object and so
2753 * will need to serialise the write to the associated fence register?
2754 */
2755 if (obj->fence_dirty) {
2756 ret = i915_gem_object_flush_fence(obj);
2757 if (ret)
2758 return ret;
2759 }
2760
2761 /* Just update our place in the LRU if our fence is getting reused. */
2762 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2763 reg = &dev_priv->fence_regs[obj->fence_reg];
2764 if (!obj->fence_dirty) {
2765 list_move_tail(&reg->lru_list,
2766 &dev_priv->mm.fence_list);
2767 return 0;
2768 }
2769 } else if (enable) {
2770 reg = i915_find_fence_reg(dev);
2771 if (reg == NULL)
2772 return -EDEADLK;
2773
2774 if (reg->obj) {
2775 struct drm_i915_gem_object *old = reg->obj;
2776
2777 ret = i915_gem_object_flush_fence(old);
2778 if (ret)
2779 return ret;
2780
2781 i915_gem_object_fence_lost(old);
2782 }
2783 } else
2784 return 0;
2785
2786 i915_gem_object_update_fence(obj, reg, enable);
2787 obj->fence_dirty = false;
2788
2789 return 0;
2790 }
2791
2792 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2793 struct drm_mm_node *gtt_space,
2794 unsigned long cache_level)
2795 {
2796 struct drm_mm_node *other;
2797
2798 /* On non-LLC machines we have to be careful when putting differing
2799 * types of snoopable memory together to avoid the prefetcher
2800 * crossing memory domains and dieing.
2801 */
2802 if (HAS_LLC(dev))
2803 return true;
2804
2805 if (gtt_space == NULL)
2806 return true;
2807
2808 if (list_empty(&gtt_space->node_list))
2809 return true;
2810
2811 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2812 if (other->allocated && !other->hole_follows && other->color != cache_level)
2813 return false;
2814
2815 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2816 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2817 return false;
2818
2819 return true;
2820 }
2821
2822 static void i915_gem_verify_gtt(struct drm_device *dev)
2823 {
2824 #if WATCH_GTT
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 struct drm_i915_gem_object *obj;
2827 int err = 0;
2828
2829 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2830 if (obj->gtt_space == NULL) {
2831 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2832 err++;
2833 continue;
2834 }
2835
2836 if (obj->cache_level != obj->gtt_space->color) {
2837 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2838 obj->gtt_space->start,
2839 obj->gtt_space->start + obj->gtt_space->size,
2840 obj->cache_level,
2841 obj->gtt_space->color);
2842 err++;
2843 continue;
2844 }
2845
2846 if (!i915_gem_valid_gtt_space(dev,
2847 obj->gtt_space,
2848 obj->cache_level)) {
2849 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2850 obj->gtt_space->start,
2851 obj->gtt_space->start + obj->gtt_space->size,
2852 obj->cache_level);
2853 err++;
2854 continue;
2855 }
2856 }
2857
2858 WARN_ON(err);
2859 #endif
2860 }
2861
2862 /**
2863 * Finds free space in the GTT aperture and binds the object there.
2864 */
2865 static int
2866 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2867 unsigned alignment,
2868 bool map_and_fenceable,
2869 bool nonblocking)
2870 {
2871 struct drm_device *dev = obj->base.dev;
2872 drm_i915_private_t *dev_priv = dev->dev_private;
2873 struct drm_mm_node *free_space;
2874 u32 size, fence_size, fence_alignment, unfenced_alignment;
2875 bool mappable, fenceable;
2876 int ret;
2877
2878 if (obj->madv != I915_MADV_WILLNEED) {
2879 DRM_ERROR("Attempting to bind a purgeable object\n");
2880 return -EINVAL;
2881 }
2882
2883 fence_size = i915_gem_get_gtt_size(dev,
2884 obj->base.size,
2885 obj->tiling_mode);
2886 fence_alignment = i915_gem_get_gtt_alignment(dev,
2887 obj->base.size,
2888 obj->tiling_mode);
2889 unfenced_alignment =
2890 i915_gem_get_unfenced_gtt_alignment(dev,
2891 obj->base.size,
2892 obj->tiling_mode);
2893
2894 if (alignment == 0)
2895 alignment = map_and_fenceable ? fence_alignment :
2896 unfenced_alignment;
2897 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2898 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2899 return -EINVAL;
2900 }
2901
2902 size = map_and_fenceable ? fence_size : obj->base.size;
2903
2904 /* If the object is bigger than the entire aperture, reject it early
2905 * before evicting everything in a vain attempt to find space.
2906 */
2907 if (obj->base.size >
2908 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2909 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2910 return -E2BIG;
2911 }
2912
2913 ret = i915_gem_object_get_pages(obj);
2914 if (ret)
2915 return ret;
2916
2917 i915_gem_object_pin_pages(obj);
2918
2919 search_free:
2920 if (map_and_fenceable)
2921 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2922 size, alignment, obj->cache_level,
2923 0, dev_priv->mm.gtt_mappable_end,
2924 false);
2925 else
2926 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2927 size, alignment, obj->cache_level,
2928 false);
2929
2930 if (free_space != NULL) {
2931 if (map_and_fenceable)
2932 free_space =
2933 drm_mm_get_block_range_generic(free_space,
2934 size, alignment, obj->cache_level,
2935 0, dev_priv->mm.gtt_mappable_end,
2936 false);
2937 else
2938 free_space =
2939 drm_mm_get_block_generic(free_space,
2940 size, alignment, obj->cache_level,
2941 false);
2942 }
2943 if (free_space == NULL) {
2944 ret = i915_gem_evict_something(dev, size, alignment,
2945 obj->cache_level,
2946 map_and_fenceable,
2947 nonblocking);
2948 if (ret) {
2949 i915_gem_object_unpin_pages(obj);
2950 return ret;
2951 }
2952
2953 goto search_free;
2954 }
2955 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2956 free_space,
2957 obj->cache_level))) {
2958 i915_gem_object_unpin_pages(obj);
2959 drm_mm_put_block(free_space);
2960 return -EINVAL;
2961 }
2962
2963 ret = i915_gem_gtt_prepare_object(obj);
2964 if (ret) {
2965 i915_gem_object_unpin_pages(obj);
2966 drm_mm_put_block(free_space);
2967 return ret;
2968 }
2969
2970 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2971 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2972
2973 obj->gtt_space = free_space;
2974 obj->gtt_offset = free_space->start;
2975
2976 fenceable =
2977 free_space->size == fence_size &&
2978 (free_space->start & (fence_alignment - 1)) == 0;
2979
2980 mappable =
2981 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2982
2983 obj->map_and_fenceable = mappable && fenceable;
2984
2985 i915_gem_object_unpin_pages(obj);
2986 trace_i915_gem_object_bind(obj, map_and_fenceable);
2987 i915_gem_verify_gtt(dev);
2988 return 0;
2989 }
2990
2991 void
2992 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2993 {
2994 /* If we don't have a page list set up, then we're not pinned
2995 * to GPU, and we can ignore the cache flush because it'll happen
2996 * again at bind time.
2997 */
2998 if (obj->pages == NULL)
2999 return;
3000
3001 /* If the GPU is snooping the contents of the CPU cache,
3002 * we do not need to manually clear the CPU cache lines. However,
3003 * the caches are only snooped when the render cache is
3004 * flushed/invalidated. As we always have to emit invalidations
3005 * and flushes when moving into and out of the RENDER domain, correct
3006 * snooping behaviour occurs naturally as the result of our domain
3007 * tracking.
3008 */
3009 if (obj->cache_level != I915_CACHE_NONE)
3010 return;
3011
3012 trace_i915_gem_object_clflush(obj);
3013
3014 drm_clflush_sg(obj->pages);
3015 }
3016
3017 /** Flushes the GTT write domain for the object if it's dirty. */
3018 static void
3019 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3020 {
3021 uint32_t old_write_domain;
3022
3023 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3024 return;
3025
3026 /* No actual flushing is required for the GTT write domain. Writes
3027 * to it immediately go to main memory as far as we know, so there's
3028 * no chipset flush. It also doesn't land in render cache.
3029 *
3030 * However, we do have to enforce the order so that all writes through
3031 * the GTT land before any writes to the device, such as updates to
3032 * the GATT itself.
3033 */
3034 wmb();
3035
3036 old_write_domain = obj->base.write_domain;
3037 obj->base.write_domain = 0;
3038
3039 trace_i915_gem_object_change_domain(obj,
3040 obj->base.read_domains,
3041 old_write_domain);
3042 }
3043
3044 /** Flushes the CPU write domain for the object if it's dirty. */
3045 static void
3046 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3047 {
3048 uint32_t old_write_domain;
3049
3050 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3051 return;
3052
3053 i915_gem_clflush_object(obj);
3054 i915_gem_chipset_flush(obj->base.dev);
3055 old_write_domain = obj->base.write_domain;
3056 obj->base.write_domain = 0;
3057
3058 trace_i915_gem_object_change_domain(obj,
3059 obj->base.read_domains,
3060 old_write_domain);
3061 }
3062
3063 /**
3064 * Moves a single object to the GTT read, and possibly write domain.
3065 *
3066 * This function returns when the move is complete, including waiting on
3067 * flushes to occur.
3068 */
3069 int
3070 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3071 {
3072 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3073 uint32_t old_write_domain, old_read_domains;
3074 int ret;
3075
3076 /* Not valid to be called on unbound objects. */
3077 if (obj->gtt_space == NULL)
3078 return -EINVAL;
3079
3080 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3081 return 0;
3082
3083 ret = i915_gem_object_wait_rendering(obj, !write);
3084 if (ret)
3085 return ret;
3086
3087 i915_gem_object_flush_cpu_write_domain(obj);
3088
3089 old_write_domain = obj->base.write_domain;
3090 old_read_domains = obj->base.read_domains;
3091
3092 /* It should now be out of any other write domains, and we can update
3093 * the domain values for our changes.
3094 */
3095 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3096 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3097 if (write) {
3098 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3099 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3100 obj->dirty = 1;
3101 }
3102
3103 trace_i915_gem_object_change_domain(obj,
3104 old_read_domains,
3105 old_write_domain);
3106
3107 /* And bump the LRU for this access */
3108 if (i915_gem_object_is_inactive(obj))
3109 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3110
3111 return 0;
3112 }
3113
3114 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3115 enum i915_cache_level cache_level)
3116 {
3117 struct drm_device *dev = obj->base.dev;
3118 drm_i915_private_t *dev_priv = dev->dev_private;
3119 int ret;
3120
3121 if (obj->cache_level == cache_level)
3122 return 0;
3123
3124 if (obj->pin_count) {
3125 DRM_DEBUG("can not change the cache level of pinned objects\n");
3126 return -EBUSY;
3127 }
3128
3129 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3130 ret = i915_gem_object_unbind(obj);
3131 if (ret)
3132 return ret;
3133 }
3134
3135 if (obj->gtt_space) {
3136 ret = i915_gem_object_finish_gpu(obj);
3137 if (ret)
3138 return ret;
3139
3140 i915_gem_object_finish_gtt(obj);
3141
3142 /* Before SandyBridge, you could not use tiling or fence
3143 * registers with snooped memory, so relinquish any fences
3144 * currently pointing to our region in the aperture.
3145 */
3146 if (INTEL_INFO(dev)->gen < 6) {
3147 ret = i915_gem_object_put_fence(obj);
3148 if (ret)
3149 return ret;
3150 }
3151
3152 if (obj->has_global_gtt_mapping)
3153 i915_gem_gtt_bind_object(obj, cache_level);
3154 if (obj->has_aliasing_ppgtt_mapping)
3155 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3156 obj, cache_level);
3157
3158 obj->gtt_space->color = cache_level;
3159 }
3160
3161 if (cache_level == I915_CACHE_NONE) {
3162 u32 old_read_domains, old_write_domain;
3163
3164 /* If we're coming from LLC cached, then we haven't
3165 * actually been tracking whether the data is in the
3166 * CPU cache or not, since we only allow one bit set
3167 * in obj->write_domain and have been skipping the clflushes.
3168 * Just set it to the CPU cache for now.
3169 */
3170 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3171 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3172
3173 old_read_domains = obj->base.read_domains;
3174 old_write_domain = obj->base.write_domain;
3175
3176 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3177 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3178
3179 trace_i915_gem_object_change_domain(obj,
3180 old_read_domains,
3181 old_write_domain);
3182 }
3183
3184 obj->cache_level = cache_level;
3185 i915_gem_verify_gtt(dev);
3186 return 0;
3187 }
3188
3189 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3190 struct drm_file *file)
3191 {
3192 struct drm_i915_gem_caching *args = data;
3193 struct drm_i915_gem_object *obj;
3194 int ret;
3195
3196 ret = i915_mutex_lock_interruptible(dev);
3197 if (ret)
3198 return ret;
3199
3200 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3201 if (&obj->base == NULL) {
3202 ret = -ENOENT;
3203 goto unlock;
3204 }
3205
3206 args->caching = obj->cache_level != I915_CACHE_NONE;
3207
3208 drm_gem_object_unreference(&obj->base);
3209 unlock:
3210 mutex_unlock(&dev->struct_mutex);
3211 return ret;
3212 }
3213
3214 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3215 struct drm_file *file)
3216 {
3217 struct drm_i915_gem_caching *args = data;
3218 struct drm_i915_gem_object *obj;
3219 enum i915_cache_level level;
3220 int ret;
3221
3222 switch (args->caching) {
3223 case I915_CACHING_NONE:
3224 level = I915_CACHE_NONE;
3225 break;
3226 case I915_CACHING_CACHED:
3227 level = I915_CACHE_LLC;
3228 break;
3229 default:
3230 return -EINVAL;
3231 }
3232
3233 ret = i915_mutex_lock_interruptible(dev);
3234 if (ret)
3235 return ret;
3236
3237 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3238 if (&obj->base == NULL) {
3239 ret = -ENOENT;
3240 goto unlock;
3241 }
3242
3243 ret = i915_gem_object_set_cache_level(obj, level);
3244
3245 drm_gem_object_unreference(&obj->base);
3246 unlock:
3247 mutex_unlock(&dev->struct_mutex);
3248 return ret;
3249 }
3250
3251 /*
3252 * Prepare buffer for display plane (scanout, cursors, etc).
3253 * Can be called from an uninterruptible phase (modesetting) and allows
3254 * any flushes to be pipelined (for pageflips).
3255 */
3256 int
3257 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3258 u32 alignment,
3259 struct intel_ring_buffer *pipelined)
3260 {
3261 u32 old_read_domains, old_write_domain;
3262 int ret;
3263
3264 if (pipelined != obj->ring) {
3265 ret = i915_gem_object_sync(obj, pipelined);
3266 if (ret)
3267 return ret;
3268 }
3269
3270 /* The display engine is not coherent with the LLC cache on gen6. As
3271 * a result, we make sure that the pinning that is about to occur is
3272 * done with uncached PTEs. This is lowest common denominator for all
3273 * chipsets.
3274 *
3275 * However for gen6+, we could do better by using the GFDT bit instead
3276 * of uncaching, which would allow us to flush all the LLC-cached data
3277 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3278 */
3279 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3280 if (ret)
3281 return ret;
3282
3283 /* As the user may map the buffer once pinned in the display plane
3284 * (e.g. libkms for the bootup splash), we have to ensure that we
3285 * always use map_and_fenceable for all scanout buffers.
3286 */
3287 ret = i915_gem_object_pin(obj, alignment, true, false);
3288 if (ret)
3289 return ret;
3290
3291 i915_gem_object_flush_cpu_write_domain(obj);
3292
3293 old_write_domain = obj->base.write_domain;
3294 old_read_domains = obj->base.read_domains;
3295
3296 /* It should now be out of any other write domains, and we can update
3297 * the domain values for our changes.
3298 */
3299 obj->base.write_domain = 0;
3300 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3301
3302 trace_i915_gem_object_change_domain(obj,
3303 old_read_domains,
3304 old_write_domain);
3305
3306 return 0;
3307 }
3308
3309 int
3310 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3311 {
3312 int ret;
3313
3314 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3315 return 0;
3316
3317 ret = i915_gem_object_wait_rendering(obj, false);
3318 if (ret)
3319 return ret;
3320
3321 /* Ensure that we invalidate the GPU's caches and TLBs. */
3322 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3323 return 0;
3324 }
3325
3326 /**
3327 * Moves a single object to the CPU read, and possibly write domain.
3328 *
3329 * This function returns when the move is complete, including waiting on
3330 * flushes to occur.
3331 */
3332 int
3333 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3334 {
3335 uint32_t old_write_domain, old_read_domains;
3336 int ret;
3337
3338 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3339 return 0;
3340
3341 ret = i915_gem_object_wait_rendering(obj, !write);
3342 if (ret)
3343 return ret;
3344
3345 i915_gem_object_flush_gtt_write_domain(obj);
3346
3347 old_write_domain = obj->base.write_domain;
3348 old_read_domains = obj->base.read_domains;
3349
3350 /* Flush the CPU cache if it's still invalid. */
3351 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3352 i915_gem_clflush_object(obj);
3353
3354 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3355 }
3356
3357 /* It should now be out of any other write domains, and we can update
3358 * the domain values for our changes.
3359 */
3360 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3361
3362 /* If we're writing through the CPU, then the GPU read domains will
3363 * need to be invalidated at next use.
3364 */
3365 if (write) {
3366 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3367 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3368 }
3369
3370 trace_i915_gem_object_change_domain(obj,
3371 old_read_domains,
3372 old_write_domain);
3373
3374 return 0;
3375 }
3376
3377 /* Throttle our rendering by waiting until the ring has completed our requests
3378 * emitted over 20 msec ago.
3379 *
3380 * Note that if we were to use the current jiffies each time around the loop,
3381 * we wouldn't escape the function with any frames outstanding if the time to
3382 * render a frame was over 20ms.
3383 *
3384 * This should get us reasonable parallelism between CPU and GPU but also
3385 * relatively low latency when blocking on a particular request to finish.
3386 */
3387 static int
3388 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3389 {
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 struct drm_i915_file_private *file_priv = file->driver_priv;
3392 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3393 struct drm_i915_gem_request *request;
3394 struct intel_ring_buffer *ring = NULL;
3395 u32 seqno = 0;
3396 int ret;
3397
3398 if (atomic_read(&dev_priv->mm.wedged))
3399 return -EIO;
3400
3401 spin_lock(&file_priv->mm.lock);
3402 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3403 if (time_after_eq(request->emitted_jiffies, recent_enough))
3404 break;
3405
3406 ring = request->ring;
3407 seqno = request->seqno;
3408 }
3409 spin_unlock(&file_priv->mm.lock);
3410
3411 if (seqno == 0)
3412 return 0;
3413
3414 ret = __wait_seqno(ring, seqno, true, NULL);
3415 if (ret == 0)
3416 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3417
3418 return ret;
3419 }
3420
3421 int
3422 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3423 uint32_t alignment,
3424 bool map_and_fenceable,
3425 bool nonblocking)
3426 {
3427 int ret;
3428
3429 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3430 return -EBUSY;
3431
3432 if (obj->gtt_space != NULL) {
3433 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3434 (map_and_fenceable && !obj->map_and_fenceable)) {
3435 WARN(obj->pin_count,
3436 "bo is already pinned with incorrect alignment:"
3437 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3438 " obj->map_and_fenceable=%d\n",
3439 obj->gtt_offset, alignment,
3440 map_and_fenceable,
3441 obj->map_and_fenceable);
3442 ret = i915_gem_object_unbind(obj);
3443 if (ret)
3444 return ret;
3445 }
3446 }
3447
3448 if (obj->gtt_space == NULL) {
3449 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3450
3451 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3452 map_and_fenceable,
3453 nonblocking);
3454 if (ret)
3455 return ret;
3456
3457 if (!dev_priv->mm.aliasing_ppgtt)
3458 i915_gem_gtt_bind_object(obj, obj->cache_level);
3459 }
3460
3461 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3462 i915_gem_gtt_bind_object(obj, obj->cache_level);
3463
3464 obj->pin_count++;
3465 obj->pin_mappable |= map_and_fenceable;
3466
3467 return 0;
3468 }
3469
3470 void
3471 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3472 {
3473 BUG_ON(obj->pin_count == 0);
3474 BUG_ON(obj->gtt_space == NULL);
3475
3476 if (--obj->pin_count == 0)
3477 obj->pin_mappable = false;
3478 }
3479
3480 int
3481 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3482 struct drm_file *file)
3483 {
3484 struct drm_i915_gem_pin *args = data;
3485 struct drm_i915_gem_object *obj;
3486 int ret;
3487
3488 ret = i915_mutex_lock_interruptible(dev);
3489 if (ret)
3490 return ret;
3491
3492 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3493 if (&obj->base == NULL) {
3494 ret = -ENOENT;
3495 goto unlock;
3496 }
3497
3498 if (obj->madv != I915_MADV_WILLNEED) {
3499 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3500 ret = -EINVAL;
3501 goto out;
3502 }
3503
3504 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3505 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3506 args->handle);
3507 ret = -EINVAL;
3508 goto out;
3509 }
3510
3511 obj->user_pin_count++;
3512 obj->pin_filp = file;
3513 if (obj->user_pin_count == 1) {
3514 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3515 if (ret)
3516 goto out;
3517 }
3518
3519 /* XXX - flush the CPU caches for pinned objects
3520 * as the X server doesn't manage domains yet
3521 */
3522 i915_gem_object_flush_cpu_write_domain(obj);
3523 args->offset = obj->gtt_offset;
3524 out:
3525 drm_gem_object_unreference(&obj->base);
3526 unlock:
3527 mutex_unlock(&dev->struct_mutex);
3528 return ret;
3529 }
3530
3531 int
3532 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3533 struct drm_file *file)
3534 {
3535 struct drm_i915_gem_pin *args = data;
3536 struct drm_i915_gem_object *obj;
3537 int ret;
3538
3539 ret = i915_mutex_lock_interruptible(dev);
3540 if (ret)
3541 return ret;
3542
3543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3544 if (&obj->base == NULL) {
3545 ret = -ENOENT;
3546 goto unlock;
3547 }
3548
3549 if (obj->pin_filp != file) {
3550 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3551 args->handle);
3552 ret = -EINVAL;
3553 goto out;
3554 }
3555 obj->user_pin_count--;
3556 if (obj->user_pin_count == 0) {
3557 obj->pin_filp = NULL;
3558 i915_gem_object_unpin(obj);
3559 }
3560
3561 out:
3562 drm_gem_object_unreference(&obj->base);
3563 unlock:
3564 mutex_unlock(&dev->struct_mutex);
3565 return ret;
3566 }
3567
3568 int
3569 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3570 struct drm_file *file)
3571 {
3572 struct drm_i915_gem_busy *args = data;
3573 struct drm_i915_gem_object *obj;
3574 int ret;
3575
3576 ret = i915_mutex_lock_interruptible(dev);
3577 if (ret)
3578 return ret;
3579
3580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3581 if (&obj->base == NULL) {
3582 ret = -ENOENT;
3583 goto unlock;
3584 }
3585
3586 /* Count all active objects as busy, even if they are currently not used
3587 * by the gpu. Users of this interface expect objects to eventually
3588 * become non-busy without any further actions, therefore emit any
3589 * necessary flushes here.
3590 */
3591 ret = i915_gem_object_flush_active(obj);
3592
3593 args->busy = obj->active;
3594 if (obj->ring) {
3595 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3596 args->busy |= intel_ring_flag(obj->ring) << 16;
3597 }
3598
3599 drm_gem_object_unreference(&obj->base);
3600 unlock:
3601 mutex_unlock(&dev->struct_mutex);
3602 return ret;
3603 }
3604
3605 int
3606 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3607 struct drm_file *file_priv)
3608 {
3609 return i915_gem_ring_throttle(dev, file_priv);
3610 }
3611
3612 int
3613 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3614 struct drm_file *file_priv)
3615 {
3616 struct drm_i915_gem_madvise *args = data;
3617 struct drm_i915_gem_object *obj;
3618 int ret;
3619
3620 switch (args->madv) {
3621 case I915_MADV_DONTNEED:
3622 case I915_MADV_WILLNEED:
3623 break;
3624 default:
3625 return -EINVAL;
3626 }
3627
3628 ret = i915_mutex_lock_interruptible(dev);
3629 if (ret)
3630 return ret;
3631
3632 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3633 if (&obj->base == NULL) {
3634 ret = -ENOENT;
3635 goto unlock;
3636 }
3637
3638 if (obj->pin_count) {
3639 ret = -EINVAL;
3640 goto out;
3641 }
3642
3643 if (obj->madv != __I915_MADV_PURGED)
3644 obj->madv = args->madv;
3645
3646 /* if the object is no longer attached, discard its backing storage */
3647 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3648 i915_gem_object_truncate(obj);
3649
3650 args->retained = obj->madv != __I915_MADV_PURGED;
3651
3652 out:
3653 drm_gem_object_unreference(&obj->base);
3654 unlock:
3655 mutex_unlock(&dev->struct_mutex);
3656 return ret;
3657 }
3658
3659 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3660 const struct drm_i915_gem_object_ops *ops)
3661 {
3662 INIT_LIST_HEAD(&obj->mm_list);
3663 INIT_LIST_HEAD(&obj->gtt_list);
3664 INIT_LIST_HEAD(&obj->ring_list);
3665 INIT_LIST_HEAD(&obj->exec_list);
3666
3667 obj->ops = ops;
3668
3669 obj->fence_reg = I915_FENCE_REG_NONE;
3670 obj->madv = I915_MADV_WILLNEED;
3671 /* Avoid an unnecessary call to unbind on the first bind. */
3672 obj->map_and_fenceable = true;
3673
3674 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3675 }
3676
3677 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3678 .get_pages = i915_gem_object_get_pages_gtt,
3679 .put_pages = i915_gem_object_put_pages_gtt,
3680 };
3681
3682 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3683 size_t size)
3684 {
3685 struct drm_i915_gem_object *obj;
3686 struct address_space *mapping;
3687 u32 mask;
3688
3689 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3690 if (obj == NULL)
3691 return NULL;
3692
3693 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3694 kfree(obj);
3695 return NULL;
3696 }
3697
3698 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3699 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3700 /* 965gm cannot relocate objects above 4GiB. */
3701 mask &= ~__GFP_HIGHMEM;
3702 mask |= __GFP_DMA32;
3703 }
3704
3705 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3706 mapping_set_gfp_mask(mapping, mask);
3707
3708 i915_gem_object_init(obj, &i915_gem_object_ops);
3709
3710 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3711 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3712
3713 if (HAS_LLC(dev)) {
3714 /* On some devices, we can have the GPU use the LLC (the CPU
3715 * cache) for about a 10% performance improvement
3716 * compared to uncached. Graphics requests other than
3717 * display scanout are coherent with the CPU in
3718 * accessing this cache. This means in this mode we
3719 * don't need to clflush on the CPU side, and on the
3720 * GPU side we only need to flush internal caches to
3721 * get data visible to the CPU.
3722 *
3723 * However, we maintain the display planes as UC, and so
3724 * need to rebind when first used as such.
3725 */
3726 obj->cache_level = I915_CACHE_LLC;
3727 } else
3728 obj->cache_level = I915_CACHE_NONE;
3729
3730 return obj;
3731 }
3732
3733 int i915_gem_init_object(struct drm_gem_object *obj)
3734 {
3735 BUG();
3736
3737 return 0;
3738 }
3739
3740 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3741 {
3742 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3743 struct drm_device *dev = obj->base.dev;
3744 drm_i915_private_t *dev_priv = dev->dev_private;
3745
3746 trace_i915_gem_object_destroy(obj);
3747
3748 if (obj->phys_obj)
3749 i915_gem_detach_phys_object(dev, obj);
3750
3751 obj->pin_count = 0;
3752 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3753 bool was_interruptible;
3754
3755 was_interruptible = dev_priv->mm.interruptible;
3756 dev_priv->mm.interruptible = false;
3757
3758 WARN_ON(i915_gem_object_unbind(obj));
3759
3760 dev_priv->mm.interruptible = was_interruptible;
3761 }
3762
3763 obj->pages_pin_count = 0;
3764 i915_gem_object_put_pages(obj);
3765 i915_gem_object_free_mmap_offset(obj);
3766
3767 BUG_ON(obj->pages);
3768
3769 if (obj->base.import_attach)
3770 drm_prime_gem_destroy(&obj->base, NULL);
3771
3772 drm_gem_object_release(&obj->base);
3773 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3774
3775 kfree(obj->bit_17);
3776 kfree(obj);
3777 }
3778
3779 int
3780 i915_gem_idle(struct drm_device *dev)
3781 {
3782 drm_i915_private_t *dev_priv = dev->dev_private;
3783 int ret;
3784
3785 mutex_lock(&dev->struct_mutex);
3786
3787 if (dev_priv->mm.suspended) {
3788 mutex_unlock(&dev->struct_mutex);
3789 return 0;
3790 }
3791
3792 ret = i915_gpu_idle(dev);
3793 if (ret) {
3794 mutex_unlock(&dev->struct_mutex);
3795 return ret;
3796 }
3797 i915_gem_retire_requests(dev);
3798
3799 /* Under UMS, be paranoid and evict. */
3800 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3801 i915_gem_evict_everything(dev);
3802
3803 i915_gem_reset_fences(dev);
3804
3805 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3806 * We need to replace this with a semaphore, or something.
3807 * And not confound mm.suspended!
3808 */
3809 dev_priv->mm.suspended = 1;
3810 del_timer_sync(&dev_priv->hangcheck_timer);
3811
3812 i915_kernel_lost_context(dev);
3813 i915_gem_cleanup_ringbuffer(dev);
3814
3815 mutex_unlock(&dev->struct_mutex);
3816
3817 /* Cancel the retire work handler, which should be idle now. */
3818 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3819
3820 return 0;
3821 }
3822
3823 void i915_gem_l3_remap(struct drm_device *dev)
3824 {
3825 drm_i915_private_t *dev_priv = dev->dev_private;
3826 u32 misccpctl;
3827 int i;
3828
3829 if (!IS_IVYBRIDGE(dev))
3830 return;
3831
3832 if (!dev_priv->l3_parity.remap_info)
3833 return;
3834
3835 misccpctl = I915_READ(GEN7_MISCCPCTL);
3836 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3837 POSTING_READ(GEN7_MISCCPCTL);
3838
3839 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3840 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3841 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3842 DRM_DEBUG("0x%x was already programmed to %x\n",
3843 GEN7_L3LOG_BASE + i, remap);
3844 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3845 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3846 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3847 }
3848
3849 /* Make sure all the writes land before disabling dop clock gating */
3850 POSTING_READ(GEN7_L3LOG_BASE);
3851
3852 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3853 }
3854
3855 void i915_gem_init_swizzling(struct drm_device *dev)
3856 {
3857 drm_i915_private_t *dev_priv = dev->dev_private;
3858
3859 if (INTEL_INFO(dev)->gen < 5 ||
3860 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3861 return;
3862
3863 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3864 DISP_TILE_SURFACE_SWIZZLING);
3865
3866 if (IS_GEN5(dev))
3867 return;
3868
3869 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3870 if (IS_GEN6(dev))
3871 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3872 else
3873 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3874 }
3875
3876 static bool
3877 intel_enable_blt(struct drm_device *dev)
3878 {
3879 if (!HAS_BLT(dev))
3880 return false;
3881
3882 /* The blitter was dysfunctional on early prototypes */
3883 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3884 DRM_INFO("BLT not supported on this pre-production hardware;"
3885 " graphics performance will be degraded.\n");
3886 return false;
3887 }
3888
3889 return true;
3890 }
3891
3892 int
3893 i915_gem_init_hw(struct drm_device *dev)
3894 {
3895 drm_i915_private_t *dev_priv = dev->dev_private;
3896 int ret;
3897
3898 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3899 return -EIO;
3900
3901 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3902 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3903
3904 i915_gem_l3_remap(dev);
3905
3906 i915_gem_init_swizzling(dev);
3907
3908 ret = intel_init_render_ring_buffer(dev);
3909 if (ret)
3910 return ret;
3911
3912 if (HAS_BSD(dev)) {
3913 ret = intel_init_bsd_ring_buffer(dev);
3914 if (ret)
3915 goto cleanup_render_ring;
3916 }
3917
3918 if (intel_enable_blt(dev)) {
3919 ret = intel_init_blt_ring_buffer(dev);
3920 if (ret)
3921 goto cleanup_bsd_ring;
3922 }
3923
3924 dev_priv->next_seqno = 1;
3925
3926 /*
3927 * XXX: There was some w/a described somewhere suggesting loading
3928 * contexts before PPGTT.
3929 */
3930 i915_gem_context_init(dev);
3931 i915_gem_init_ppgtt(dev);
3932
3933 return 0;
3934
3935 cleanup_bsd_ring:
3936 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3937 cleanup_render_ring:
3938 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3939 return ret;
3940 }
3941
3942 static bool
3943 intel_enable_ppgtt(struct drm_device *dev)
3944 {
3945 if (i915_enable_ppgtt >= 0)
3946 return i915_enable_ppgtt;
3947
3948 #ifdef CONFIG_INTEL_IOMMU
3949 /* Disable ppgtt on SNB if VT-d is on. */
3950 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3951 return false;
3952 #endif
3953
3954 return true;
3955 }
3956
3957 int i915_gem_init(struct drm_device *dev)
3958 {
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 unsigned long gtt_size, mappable_size;
3961 int ret;
3962
3963 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3964 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3965
3966 mutex_lock(&dev->struct_mutex);
3967 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3968 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3969 * aperture accordingly when using aliasing ppgtt. */
3970 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3971
3972 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3973
3974 ret = i915_gem_init_aliasing_ppgtt(dev);
3975 if (ret) {
3976 mutex_unlock(&dev->struct_mutex);
3977 return ret;
3978 }
3979 } else {
3980 /* Let GEM Manage all of the aperture.
3981 *
3982 * However, leave one page at the end still bound to the scratch
3983 * page. There are a number of places where the hardware
3984 * apparently prefetches past the end of the object, and we've
3985 * seen multiple hangs with the GPU head pointer stuck in a
3986 * batchbuffer bound at the last page of the aperture. One page
3987 * should be enough to keep any prefetching inside of the
3988 * aperture.
3989 */
3990 i915_gem_init_global_gtt(dev, 0, mappable_size,
3991 gtt_size);
3992 }
3993
3994 ret = i915_gem_init_hw(dev);
3995 mutex_unlock(&dev->struct_mutex);
3996 if (ret) {
3997 i915_gem_cleanup_aliasing_ppgtt(dev);
3998 return ret;
3999 }
4000
4001 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4002 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4003 dev_priv->dri1.allow_batchbuffer = 1;
4004 return 0;
4005 }
4006
4007 void
4008 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4009 {
4010 drm_i915_private_t *dev_priv = dev->dev_private;
4011 struct intel_ring_buffer *ring;
4012 int i;
4013
4014 for_each_ring(ring, dev_priv, i)
4015 intel_cleanup_ring_buffer(ring);
4016 }
4017
4018 int
4019 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4020 struct drm_file *file_priv)
4021 {
4022 drm_i915_private_t *dev_priv = dev->dev_private;
4023 int ret;
4024
4025 if (drm_core_check_feature(dev, DRIVER_MODESET))
4026 return 0;
4027
4028 if (atomic_read(&dev_priv->mm.wedged)) {
4029 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4030 atomic_set(&dev_priv->mm.wedged, 0);
4031 }
4032
4033 mutex_lock(&dev->struct_mutex);
4034 dev_priv->mm.suspended = 0;
4035
4036 ret = i915_gem_init_hw(dev);
4037 if (ret != 0) {
4038 mutex_unlock(&dev->struct_mutex);
4039 return ret;
4040 }
4041
4042 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4043 mutex_unlock(&dev->struct_mutex);
4044
4045 ret = drm_irq_install(dev);
4046 if (ret)
4047 goto cleanup_ringbuffer;
4048
4049 return 0;
4050
4051 cleanup_ringbuffer:
4052 mutex_lock(&dev->struct_mutex);
4053 i915_gem_cleanup_ringbuffer(dev);
4054 dev_priv->mm.suspended = 1;
4055 mutex_unlock(&dev->struct_mutex);
4056
4057 return ret;
4058 }
4059
4060 int
4061 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4062 struct drm_file *file_priv)
4063 {
4064 if (drm_core_check_feature(dev, DRIVER_MODESET))
4065 return 0;
4066
4067 drm_irq_uninstall(dev);
4068 return i915_gem_idle(dev);
4069 }
4070
4071 void
4072 i915_gem_lastclose(struct drm_device *dev)
4073 {
4074 int ret;
4075
4076 if (drm_core_check_feature(dev, DRIVER_MODESET))
4077 return;
4078
4079 ret = i915_gem_idle(dev);
4080 if (ret)
4081 DRM_ERROR("failed to idle hardware: %d\n", ret);
4082 }
4083
4084 static void
4085 init_ring_lists(struct intel_ring_buffer *ring)
4086 {
4087 INIT_LIST_HEAD(&ring->active_list);
4088 INIT_LIST_HEAD(&ring->request_list);
4089 }
4090
4091 void
4092 i915_gem_load(struct drm_device *dev)
4093 {
4094 int i;
4095 drm_i915_private_t *dev_priv = dev->dev_private;
4096
4097 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4098 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4099 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4100 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4101 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4102 for (i = 0; i < I915_NUM_RINGS; i++)
4103 init_ring_lists(&dev_priv->ring[i]);
4104 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4105 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4106 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4107 i915_gem_retire_work_handler);
4108 init_completion(&dev_priv->error_completion);
4109
4110 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4111 if (IS_GEN3(dev)) {
4112 I915_WRITE(MI_ARB_STATE,
4113 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4114 }
4115
4116 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4117
4118 /* Old X drivers will take 0-2 for front, back, depth buffers */
4119 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4120 dev_priv->fence_reg_start = 3;
4121
4122 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4123 dev_priv->num_fence_regs = 16;
4124 else
4125 dev_priv->num_fence_regs = 8;
4126
4127 /* Initialize fence registers to zero */
4128 i915_gem_reset_fences(dev);
4129
4130 i915_gem_detect_bit_6_swizzle(dev);
4131 init_waitqueue_head(&dev_priv->pending_flip_queue);
4132
4133 dev_priv->mm.interruptible = true;
4134
4135 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4136 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4137 register_shrinker(&dev_priv->mm.inactive_shrinker);
4138 }
4139
4140 /*
4141 * Create a physically contiguous memory object for this object
4142 * e.g. for cursor + overlay regs
4143 */
4144 static int i915_gem_init_phys_object(struct drm_device *dev,
4145 int id, int size, int align)
4146 {
4147 drm_i915_private_t *dev_priv = dev->dev_private;
4148 struct drm_i915_gem_phys_object *phys_obj;
4149 int ret;
4150
4151 if (dev_priv->mm.phys_objs[id - 1] || !size)
4152 return 0;
4153
4154 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4155 if (!phys_obj)
4156 return -ENOMEM;
4157
4158 phys_obj->id = id;
4159
4160 phys_obj->handle = drm_pci_alloc(dev, size, align);
4161 if (!phys_obj->handle) {
4162 ret = -ENOMEM;
4163 goto kfree_obj;
4164 }
4165 #ifdef CONFIG_X86
4166 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4167 #endif
4168
4169 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4170
4171 return 0;
4172 kfree_obj:
4173 kfree(phys_obj);
4174 return ret;
4175 }
4176
4177 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4178 {
4179 drm_i915_private_t *dev_priv = dev->dev_private;
4180 struct drm_i915_gem_phys_object *phys_obj;
4181
4182 if (!dev_priv->mm.phys_objs[id - 1])
4183 return;
4184
4185 phys_obj = dev_priv->mm.phys_objs[id - 1];
4186 if (phys_obj->cur_obj) {
4187 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4188 }
4189
4190 #ifdef CONFIG_X86
4191 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4192 #endif
4193 drm_pci_free(dev, phys_obj->handle);
4194 kfree(phys_obj);
4195 dev_priv->mm.phys_objs[id - 1] = NULL;
4196 }
4197
4198 void i915_gem_free_all_phys_object(struct drm_device *dev)
4199 {
4200 int i;
4201
4202 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4203 i915_gem_free_phys_object(dev, i);
4204 }
4205
4206 void i915_gem_detach_phys_object(struct drm_device *dev,
4207 struct drm_i915_gem_object *obj)
4208 {
4209 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4210 char *vaddr;
4211 int i;
4212 int page_count;
4213
4214 if (!obj->phys_obj)
4215 return;
4216 vaddr = obj->phys_obj->handle->vaddr;
4217
4218 page_count = obj->base.size / PAGE_SIZE;
4219 for (i = 0; i < page_count; i++) {
4220 struct page *page = shmem_read_mapping_page(mapping, i);
4221 if (!IS_ERR(page)) {
4222 char *dst = kmap_atomic(page);
4223 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4224 kunmap_atomic(dst);
4225
4226 drm_clflush_pages(&page, 1);
4227
4228 set_page_dirty(page);
4229 mark_page_accessed(page);
4230 page_cache_release(page);
4231 }
4232 }
4233 i915_gem_chipset_flush(dev);
4234
4235 obj->phys_obj->cur_obj = NULL;
4236 obj->phys_obj = NULL;
4237 }
4238
4239 int
4240 i915_gem_attach_phys_object(struct drm_device *dev,
4241 struct drm_i915_gem_object *obj,
4242 int id,
4243 int align)
4244 {
4245 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4246 drm_i915_private_t *dev_priv = dev->dev_private;
4247 int ret = 0;
4248 int page_count;
4249 int i;
4250
4251 if (id > I915_MAX_PHYS_OBJECT)
4252 return -EINVAL;
4253
4254 if (obj->phys_obj) {
4255 if (obj->phys_obj->id == id)
4256 return 0;
4257 i915_gem_detach_phys_object(dev, obj);
4258 }
4259
4260 /* create a new object */
4261 if (!dev_priv->mm.phys_objs[id - 1]) {
4262 ret = i915_gem_init_phys_object(dev, id,
4263 obj->base.size, align);
4264 if (ret) {
4265 DRM_ERROR("failed to init phys object %d size: %zu\n",
4266 id, obj->base.size);
4267 return ret;
4268 }
4269 }
4270
4271 /* bind to the object */
4272 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4273 obj->phys_obj->cur_obj = obj;
4274
4275 page_count = obj->base.size / PAGE_SIZE;
4276
4277 for (i = 0; i < page_count; i++) {
4278 struct page *page;
4279 char *dst, *src;
4280
4281 page = shmem_read_mapping_page(mapping, i);
4282 if (IS_ERR(page))
4283 return PTR_ERR(page);
4284
4285 src = kmap_atomic(page);
4286 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4287 memcpy(dst, src, PAGE_SIZE);
4288 kunmap_atomic(src);
4289
4290 mark_page_accessed(page);
4291 page_cache_release(page);
4292 }
4293
4294 return 0;
4295 }
4296
4297 static int
4298 i915_gem_phys_pwrite(struct drm_device *dev,
4299 struct drm_i915_gem_object *obj,
4300 struct drm_i915_gem_pwrite *args,
4301 struct drm_file *file_priv)
4302 {
4303 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4304 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4305
4306 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4307 unsigned long unwritten;
4308
4309 /* The physical object once assigned is fixed for the lifetime
4310 * of the obj, so we can safely drop the lock and continue
4311 * to access vaddr.
4312 */
4313 mutex_unlock(&dev->struct_mutex);
4314 unwritten = copy_from_user(vaddr, user_data, args->size);
4315 mutex_lock(&dev->struct_mutex);
4316 if (unwritten)
4317 return -EFAULT;
4318 }
4319
4320 i915_gem_chipset_flush(dev);
4321 return 0;
4322 }
4323
4324 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4325 {
4326 struct drm_i915_file_private *file_priv = file->driver_priv;
4327
4328 /* Clean up our request list when the client is going away, so that
4329 * later retire_requests won't dereference our soon-to-be-gone
4330 * file_priv.
4331 */
4332 spin_lock(&file_priv->mm.lock);
4333 while (!list_empty(&file_priv->mm.request_list)) {
4334 struct drm_i915_gem_request *request;
4335
4336 request = list_first_entry(&file_priv->mm.request_list,
4337 struct drm_i915_gem_request,
4338 client_list);
4339 list_del(&request->client_list);
4340 request->file_priv = NULL;
4341 }
4342 spin_unlock(&file_priv->mm.lock);
4343 }
4344
4345 static int
4346 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4347 {
4348 struct drm_i915_private *dev_priv =
4349 container_of(shrinker,
4350 struct drm_i915_private,
4351 mm.inactive_shrinker);
4352 struct drm_device *dev = dev_priv->dev;
4353 struct drm_i915_gem_object *obj;
4354 int nr_to_scan = sc->nr_to_scan;
4355 int cnt;
4356
4357 if (!mutex_trylock(&dev->struct_mutex))
4358 return 0;
4359
4360 if (nr_to_scan) {
4361 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4362 if (nr_to_scan > 0)
4363 i915_gem_shrink_all(dev_priv);
4364 }
4365
4366 cnt = 0;
4367 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4368 if (obj->pages_pin_count == 0)
4369 cnt += obj->base.size >> PAGE_SHIFT;
4370 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4371 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4372 cnt += obj->base.size >> PAGE_SHIFT;
4373
4374 mutex_unlock(&dev->struct_mutex);
4375 return cnt;
4376 }
This page took 0.140141 seconds and 4 git commands to generate.