drm/i915: don't hang userspace when the gpu reset is stuck
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62 {
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->fence_dirty = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71 }
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static int
89 i915_gem_wait_for_error(struct drm_device *dev)
90 {
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
105 if (ret == 0) {
106 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
107 return -EIO;
108 } else if (ret < 0) {
109 return ret;
110 }
111
112 if (atomic_read(&dev_priv->mm.wedged)) {
113 /* GPU is hung, bump the completion count to account for
114 * the token we just consumed so that we never hit zero and
115 * end up waiting upon a subsequent completion event that
116 * will never happen.
117 */
118 spin_lock_irqsave(&x->wait.lock, flags);
119 x->done++;
120 spin_unlock_irqrestore(&x->wait.lock, flags);
121 }
122 return 0;
123 }
124
125 int i915_mutex_lock_interruptible(struct drm_device *dev)
126 {
127 int ret;
128
129 ret = i915_gem_wait_for_error(dev);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 WARN_ON(i915_verify_lists(dev));
138 return 0;
139 }
140
141 static inline bool
142 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143 {
144 return !obj->active;
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_gem_init *args = data;
152
153 if (drm_core_check_feature(dev, DRIVER_MODESET))
154 return -ENODEV;
155
156 if (args->gtt_start >= args->gtt_end ||
157 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
158 return -EINVAL;
159
160 /* GEM with user mode setting was never supported on ilk and later. */
161 if (INTEL_INFO(dev)->gen >= 5)
162 return -ENODEV;
163
164 mutex_lock(&dev->struct_mutex);
165 i915_gem_init_global_gtt(dev, args->gtt_start,
166 args->gtt_end, args->gtt_end);
167 mutex_unlock(&dev->struct_mutex);
168
169 return 0;
170 }
171
172 int
173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174 struct drm_file *file)
175 {
176 struct drm_i915_private *dev_priv = dev->dev_private;
177 struct drm_i915_gem_get_aperture *args = data;
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
180
181 pinned = 0;
182 mutex_lock(&dev->struct_mutex);
183 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
184 if (obj->pin_count)
185 pinned += obj->gtt_space->size;
186 mutex_unlock(&dev->struct_mutex);
187
188 args->aper_size = dev_priv->mm.gtt_total;
189 args->aper_available_size = args->aper_size - pinned;
190
191 return 0;
192 }
193
194 static int
195 i915_gem_create(struct drm_file *file,
196 struct drm_device *dev,
197 uint64_t size,
198 uint32_t *handle_p)
199 {
200 struct drm_i915_gem_object *obj;
201 int ret;
202 u32 handle;
203
204 size = roundup(size, PAGE_SIZE);
205 if (size == 0)
206 return -EINVAL;
207
208 /* Allocate the new object */
209 obj = i915_gem_alloc_object(dev, size);
210 if (obj == NULL)
211 return -ENOMEM;
212
213 ret = drm_gem_handle_create(file, &obj->base, &handle);
214 if (ret) {
215 drm_gem_object_release(&obj->base);
216 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
217 kfree(obj);
218 return ret;
219 }
220
221 /* drop reference from allocate - handle holds it now */
222 drm_gem_object_unreference(&obj->base);
223 trace_i915_gem_object_create(obj);
224
225 *handle_p = handle;
226 return 0;
227 }
228
229 int
230 i915_gem_dumb_create(struct drm_file *file,
231 struct drm_device *dev,
232 struct drm_mode_create_dumb *args)
233 {
234 /* have to work out size/pitch and return them */
235 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
236 args->size = args->pitch * args->height;
237 return i915_gem_create(file, dev,
238 args->size, &args->handle);
239 }
240
241 int i915_gem_dumb_destroy(struct drm_file *file,
242 struct drm_device *dev,
243 uint32_t handle)
244 {
245 return drm_gem_handle_delete(file, handle);
246 }
247
248 /**
249 * Creates a new mm object and returns a handle to it.
250 */
251 int
252 i915_gem_create_ioctl(struct drm_device *dev, void *data,
253 struct drm_file *file)
254 {
255 struct drm_i915_gem_create *args = data;
256
257 return i915_gem_create(file, dev,
258 args->size, &args->handle);
259 }
260
261 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
262 {
263 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
264
265 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
266 obj->tiling_mode != I915_TILING_NONE;
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 int release_page;
414
415 user_data = (char __user *) (uintptr_t) args->data_ptr;
416 remain = args->size;
417
418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
419
420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421 /* If we're not in the cpu read domain, set ourself into the gtt
422 * read domain and manually flush cachelines (if required). This
423 * optimizes for the case when the gpu will dirty the data
424 * anyway again before the next pread happens. */
425 if (obj->cache_level == I915_CACHE_NONE)
426 needs_clflush = 1;
427 ret = i915_gem_object_set_to_gtt_domain(obj, false);
428 if (ret)
429 return ret;
430 }
431
432 offset = args->offset;
433
434 while (remain > 0) {
435 struct page *page;
436
437 /* Operation in this page
438 *
439 * shmem_page_offset = offset within page in shmem file
440 * page_length = bytes to copy for this page
441 */
442 shmem_page_offset = offset_in_page(offset);
443 page_length = remain;
444 if ((shmem_page_offset + page_length) > PAGE_SIZE)
445 page_length = PAGE_SIZE - shmem_page_offset;
446
447 if (obj->pages) {
448 page = obj->pages[offset >> PAGE_SHIFT];
449 release_page = 0;
450 } else {
451 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
452 if (IS_ERR(page)) {
453 ret = PTR_ERR(page);
454 goto out;
455 }
456 release_page = 1;
457 }
458
459 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
460 (page_to_phys(page) & (1 << 17)) != 0;
461
462 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
463 user_data, page_do_bit17_swizzling,
464 needs_clflush);
465 if (ret == 0)
466 goto next_page;
467
468 hit_slowpath = 1;
469 page_cache_get(page);
470 mutex_unlock(&dev->struct_mutex);
471
472 if (!prefaulted) {
473 ret = fault_in_multipages_writeable(user_data, remain);
474 /* Userspace is tricking us, but we've already clobbered
475 * its pages with the prefault and promised to write the
476 * data up to the first fault. Hence ignore any errors
477 * and just continue. */
478 (void)ret;
479 prefaulted = 1;
480 }
481
482 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483 user_data, page_do_bit17_swizzling,
484 needs_clflush);
485
486 mutex_lock(&dev->struct_mutex);
487 page_cache_release(page);
488 next_page:
489 mark_page_accessed(page);
490 if (release_page)
491 page_cache_release(page);
492
493 if (ret) {
494 ret = -EFAULT;
495 goto out;
496 }
497
498 remain -= page_length;
499 user_data += page_length;
500 offset += page_length;
501 }
502
503 out:
504 if (hit_slowpath) {
505 /* Fixup: Kill any reinstated backing storage pages */
506 if (obj->madv == __I915_MADV_PURGED)
507 i915_gem_object_truncate(obj);
508 }
509
510 return ret;
511 }
512
513 /**
514 * Reads data from the object referenced by handle.
515 *
516 * On error, the contents of *data are undefined.
517 */
518 int
519 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
520 struct drm_file *file)
521 {
522 struct drm_i915_gem_pread *args = data;
523 struct drm_i915_gem_object *obj;
524 int ret = 0;
525
526 if (args->size == 0)
527 return 0;
528
529 if (!access_ok(VERIFY_WRITE,
530 (char __user *)(uintptr_t)args->data_ptr,
531 args->size))
532 return -EFAULT;
533
534 ret = i915_mutex_lock_interruptible(dev);
535 if (ret)
536 return ret;
537
538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539 if (&obj->base == NULL) {
540 ret = -ENOENT;
541 goto unlock;
542 }
543
544 /* Bounds check source. */
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
547 ret = -EINVAL;
548 goto out;
549 }
550
551 /* prime objects have no backing filp to GEM pread/pwrite
552 * pages from.
553 */
554 if (!obj->base.filp) {
555 ret = -EINVAL;
556 goto out;
557 }
558
559 trace_i915_gem_object_pread(obj, args->offset, args->size);
560
561 ret = i915_gem_shmem_pread(dev, obj, args, file);
562
563 out:
564 drm_gem_object_unreference(&obj->base);
565 unlock:
566 mutex_unlock(&dev->struct_mutex);
567 return ret;
568 }
569
570 /* This is the fast write path which cannot handle
571 * page faults in the source data
572 */
573
574 static inline int
575 fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
579 {
580 void __iomem *vaddr_atomic;
581 void *vaddr;
582 unsigned long unwritten;
583
584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 /* We can use the cpu mem copy function because this is X86. */
586 vaddr = (void __force*)vaddr_atomic + page_offset;
587 unwritten = __copy_from_user_inatomic_nocache(vaddr,
588 user_data, length);
589 io_mapping_unmap_atomic(vaddr_atomic);
590 return unwritten;
591 }
592
593 /**
594 * This is the fast pwrite path, where we copy the data directly from the
595 * user into the GTT, uncached.
596 */
597 static int
598 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
599 struct drm_i915_gem_object *obj,
600 struct drm_i915_gem_pwrite *args,
601 struct drm_file *file)
602 {
603 drm_i915_private_t *dev_priv = dev->dev_private;
604 ssize_t remain;
605 loff_t offset, page_base;
606 char __user *user_data;
607 int page_offset, page_length, ret;
608
609 ret = i915_gem_object_pin(obj, 0, true);
610 if (ret)
611 goto out;
612
613 ret = i915_gem_object_set_to_gtt_domain(obj, true);
614 if (ret)
615 goto out_unpin;
616
617 ret = i915_gem_object_put_fence(obj);
618 if (ret)
619 goto out_unpin;
620
621 user_data = (char __user *) (uintptr_t) args->data_ptr;
622 remain = args->size;
623
624 offset = obj->gtt_offset + args->offset;
625
626 while (remain > 0) {
627 /* Operation in this page
628 *
629 * page_base = page offset within aperture
630 * page_offset = offset within page
631 * page_length = bytes to copy for this page
632 */
633 page_base = offset & PAGE_MASK;
634 page_offset = offset_in_page(offset);
635 page_length = remain;
636 if ((page_offset + remain) > PAGE_SIZE)
637 page_length = PAGE_SIZE - page_offset;
638
639 /* If we get a fault while copying data, then (presumably) our
640 * source page isn't available. Return the error and we'll
641 * retry in the slow path.
642 */
643 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
644 page_offset, user_data, page_length)) {
645 ret = -EFAULT;
646 goto out_unpin;
647 }
648
649 remain -= page_length;
650 user_data += page_length;
651 offset += page_length;
652 }
653
654 out_unpin:
655 i915_gem_object_unpin(obj);
656 out:
657 return ret;
658 }
659
660 /* Per-page copy function for the shmem pwrite fastpath.
661 * Flushes invalid cachelines before writing to the target if
662 * needs_clflush_before is set and flushes out any written cachelines after
663 * writing if needs_clflush is set. */
664 static int
665 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
666 char __user *user_data,
667 bool page_do_bit17_swizzling,
668 bool needs_clflush_before,
669 bool needs_clflush_after)
670 {
671 char *vaddr;
672 int ret;
673
674 if (unlikely(page_do_bit17_swizzling))
675 return -EINVAL;
676
677 vaddr = kmap_atomic(page);
678 if (needs_clflush_before)
679 drm_clflush_virt_range(vaddr + shmem_page_offset,
680 page_length);
681 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
682 user_data,
683 page_length);
684 if (needs_clflush_after)
685 drm_clflush_virt_range(vaddr + shmem_page_offset,
686 page_length);
687 kunmap_atomic(vaddr);
688
689 return ret;
690 }
691
692 /* Only difference to the fast-path function is that this can handle bit17
693 * and uses non-atomic copy and kmap functions. */
694 static int
695 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
696 char __user *user_data,
697 bool page_do_bit17_swizzling,
698 bool needs_clflush_before,
699 bool needs_clflush_after)
700 {
701 char *vaddr;
702 int ret;
703
704 vaddr = kmap(page);
705 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 if (page_do_bit17_swizzling)
710 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
711 user_data,
712 page_length);
713 else
714 ret = __copy_from_user(vaddr + shmem_page_offset,
715 user_data,
716 page_length);
717 if (needs_clflush_after)
718 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
719 page_length,
720 page_do_bit17_swizzling);
721 kunmap(page);
722
723 return ret;
724 }
725
726 static int
727 i915_gem_shmem_pwrite(struct drm_device *dev,
728 struct drm_i915_gem_object *obj,
729 struct drm_i915_gem_pwrite *args,
730 struct drm_file *file)
731 {
732 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int release_page;
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
745
746 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
747
748 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
749 /* If we're not in the cpu write domain, set ourself into the gtt
750 * write domain and manually flush cachelines (if required). This
751 * optimizes for the case when the gpu will use the data
752 * right away and we therefore have to clflush anyway. */
753 if (obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_after = 1;
755 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756 if (ret)
757 return ret;
758 }
759 /* Same trick applies for invalidate partially written cachelines before
760 * writing. */
761 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
762 && obj->cache_level == I915_CACHE_NONE)
763 needs_clflush_before = 1;
764
765 offset = args->offset;
766 obj->dirty = 1;
767
768 while (remain > 0) {
769 struct page *page;
770 int partial_cacheline_write;
771
772 /* Operation in this page
773 *
774 * shmem_page_offset = offset within page in shmem file
775 * page_length = bytes to copy for this page
776 */
777 shmem_page_offset = offset_in_page(offset);
778
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
782
783 /* If we don't overwrite a cacheline completely we need to be
784 * careful to have up-to-date data by first clflushing. Don't
785 * overcomplicate things and flush the entire patch. */
786 partial_cacheline_write = needs_clflush_before &&
787 ((shmem_page_offset | page_length)
788 & (boot_cpu_data.x86_clflush_size - 1));
789
790 if (obj->pages) {
791 page = obj->pages[offset >> PAGE_SHIFT];
792 release_page = 0;
793 } else {
794 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
795 if (IS_ERR(page)) {
796 ret = PTR_ERR(page);
797 goto out;
798 }
799 release_page = 1;
800 }
801
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
811
812 hit_slowpath = 1;
813 page_cache_get(page);
814 mutex_unlock(&dev->struct_mutex);
815
816 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
817 user_data, page_do_bit17_swizzling,
818 partial_cacheline_write,
819 needs_clflush_after);
820
821 mutex_lock(&dev->struct_mutex);
822 page_cache_release(page);
823 next_page:
824 set_page_dirty(page);
825 mark_page_accessed(page);
826 if (release_page)
827 page_cache_release(page);
828
829 if (ret) {
830 ret = -EFAULT;
831 goto out;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out:
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
850 }
851
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->gtt_space &&
924 obj->cache_level == I915_CACHE_NONE &&
925 obj->tiling_mode == I915_TILING_NONE &&
926 obj->map_and_fenceable &&
927 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
928 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
929 /* Note that the gtt paths might fail with non-page-backed user
930 * pointers (e.g. gtt mappings when moving data between
931 * textures). Fallback to the shmem path in that case. */
932 }
933
934 if (ret == -EFAULT)
935 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
936
937 out:
938 drm_gem_object_unreference(&obj->base);
939 unlock:
940 mutex_unlock(&dev->struct_mutex);
941 return ret;
942 }
943
944 /**
945 * Called when user space prepares to use an object with the CPU, either
946 * through the mmap ioctl's mapping or a GTT mapping.
947 */
948 int
949 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
950 struct drm_file *file)
951 {
952 struct drm_i915_gem_set_domain *args = data;
953 struct drm_i915_gem_object *obj;
954 uint32_t read_domains = args->read_domains;
955 uint32_t write_domain = args->write_domain;
956 int ret;
957
958 /* Only handle setting domains to types used by the CPU. */
959 if (write_domain & I915_GEM_GPU_DOMAINS)
960 return -EINVAL;
961
962 if (read_domains & I915_GEM_GPU_DOMAINS)
963 return -EINVAL;
964
965 /* Having something in the write domain implies it's in the read
966 * domain, and only that read domain. Enforce that in the request.
967 */
968 if (write_domain != 0 && read_domains != write_domain)
969 return -EINVAL;
970
971 ret = i915_mutex_lock_interruptible(dev);
972 if (ret)
973 return ret;
974
975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976 if (&obj->base == NULL) {
977 ret = -ENOENT;
978 goto unlock;
979 }
980
981 if (read_domains & I915_GEM_DOMAIN_GTT) {
982 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
983
984 /* Silently promote "you're not bound, there was nothing to do"
985 * to success, since the client was just asking us to
986 * make sure everything was done.
987 */
988 if (ret == -EINVAL)
989 ret = 0;
990 } else {
991 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
992 }
993
994 drm_gem_object_unreference(&obj->base);
995 unlock:
996 mutex_unlock(&dev->struct_mutex);
997 return ret;
998 }
999
1000 /**
1001 * Called when user space has done writes to this buffer
1002 */
1003 int
1004 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1005 struct drm_file *file)
1006 {
1007 struct drm_i915_gem_sw_finish *args = data;
1008 struct drm_i915_gem_object *obj;
1009 int ret = 0;
1010
1011 ret = i915_mutex_lock_interruptible(dev);
1012 if (ret)
1013 return ret;
1014
1015 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1016 if (&obj->base == NULL) {
1017 ret = -ENOENT;
1018 goto unlock;
1019 }
1020
1021 /* Pinned buffers may be scanout, so flush the cache */
1022 if (obj->pin_count)
1023 i915_gem_object_flush_cpu_write_domain(obj);
1024
1025 drm_gem_object_unreference(&obj->base);
1026 unlock:
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029 }
1030
1031 /**
1032 * Maps the contents of an object, returning the address it is mapped
1033 * into.
1034 *
1035 * While the mapping holds a reference on the contents of the object, it doesn't
1036 * imply a ref on the object itself.
1037 */
1038 int
1039 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1040 struct drm_file *file)
1041 {
1042 struct drm_i915_gem_mmap *args = data;
1043 struct drm_gem_object *obj;
1044 unsigned long addr;
1045
1046 obj = drm_gem_object_lookup(dev, file, args->handle);
1047 if (obj == NULL)
1048 return -ENOENT;
1049
1050 /* prime objects have no backing filp to GEM mmap
1051 * pages from.
1052 */
1053 if (!obj->filp) {
1054 drm_gem_object_unreference_unlocked(obj);
1055 return -EINVAL;
1056 }
1057
1058 addr = vm_mmap(obj->filp, 0, args->size,
1059 PROT_READ | PROT_WRITE, MAP_SHARED,
1060 args->offset);
1061 drm_gem_object_unreference_unlocked(obj);
1062 if (IS_ERR((void *)addr))
1063 return addr;
1064
1065 args->addr_ptr = (uint64_t) addr;
1066
1067 return 0;
1068 }
1069
1070 /**
1071 * i915_gem_fault - fault a page into the GTT
1072 * vma: VMA in question
1073 * vmf: fault info
1074 *
1075 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1076 * from userspace. The fault handler takes care of binding the object to
1077 * the GTT (if needed), allocating and programming a fence register (again,
1078 * only if needed based on whether the old reg is still valid or the object
1079 * is tiled) and inserting a new PTE into the faulting process.
1080 *
1081 * Note that the faulting process may involve evicting existing objects
1082 * from the GTT and/or fence registers to make room. So performance may
1083 * suffer if the GTT working set is large or there are few fence registers
1084 * left.
1085 */
1086 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1087 {
1088 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1089 struct drm_device *dev = obj->base.dev;
1090 drm_i915_private_t *dev_priv = dev->dev_private;
1091 pgoff_t page_offset;
1092 unsigned long pfn;
1093 int ret = 0;
1094 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1095
1096 /* We don't use vmf->pgoff since that has the fake offset */
1097 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1098 PAGE_SHIFT;
1099
1100 ret = i915_mutex_lock_interruptible(dev);
1101 if (ret)
1102 goto out;
1103
1104 trace_i915_gem_object_fault(obj, page_offset, true, write);
1105
1106 /* Now bind it into the GTT if needed */
1107 if (!obj->map_and_fenceable) {
1108 ret = i915_gem_object_unbind(obj);
1109 if (ret)
1110 goto unlock;
1111 }
1112 if (!obj->gtt_space) {
1113 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1114 if (ret)
1115 goto unlock;
1116
1117 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1118 if (ret)
1119 goto unlock;
1120 }
1121
1122 if (!obj->has_global_gtt_mapping)
1123 i915_gem_gtt_bind_object(obj, obj->cache_level);
1124
1125 ret = i915_gem_object_get_fence(obj);
1126 if (ret)
1127 goto unlock;
1128
1129 if (i915_gem_object_is_inactive(obj))
1130 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1131
1132 obj->fault_mappable = true;
1133
1134 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1135 page_offset;
1136
1137 /* Finally, remap it using the new GTT offset */
1138 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1139 unlock:
1140 mutex_unlock(&dev->struct_mutex);
1141 out:
1142 switch (ret) {
1143 case -EIO:
1144 case -EAGAIN:
1145 /* Give the error handler a chance to run and move the
1146 * objects off the GPU active list. Next time we service the
1147 * fault, we should be able to transition the page into the
1148 * GTT without touching the GPU (and so avoid further
1149 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1150 * with coherency, just lost writes.
1151 */
1152 set_need_resched();
1153 case 0:
1154 case -ERESTARTSYS:
1155 case -EINTR:
1156 return VM_FAULT_NOPAGE;
1157 case -ENOMEM:
1158 return VM_FAULT_OOM;
1159 default:
1160 return VM_FAULT_SIGBUS;
1161 }
1162 }
1163
1164 /**
1165 * i915_gem_release_mmap - remove physical page mappings
1166 * @obj: obj in question
1167 *
1168 * Preserve the reservation of the mmapping with the DRM core code, but
1169 * relinquish ownership of the pages back to the system.
1170 *
1171 * It is vital that we remove the page mapping if we have mapped a tiled
1172 * object through the GTT and then lose the fence register due to
1173 * resource pressure. Similarly if the object has been moved out of the
1174 * aperture, than pages mapped into userspace must be revoked. Removing the
1175 * mapping will then trigger a page fault on the next user access, allowing
1176 * fixup by i915_gem_fault().
1177 */
1178 void
1179 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1180 {
1181 if (!obj->fault_mappable)
1182 return;
1183
1184 if (obj->base.dev->dev_mapping)
1185 unmap_mapping_range(obj->base.dev->dev_mapping,
1186 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1187 obj->base.size, 1);
1188
1189 obj->fault_mappable = false;
1190 }
1191
1192 static uint32_t
1193 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1194 {
1195 uint32_t gtt_size;
1196
1197 if (INTEL_INFO(dev)->gen >= 4 ||
1198 tiling_mode == I915_TILING_NONE)
1199 return size;
1200
1201 /* Previous chips need a power-of-two fence region when tiling */
1202 if (INTEL_INFO(dev)->gen == 3)
1203 gtt_size = 1024*1024;
1204 else
1205 gtt_size = 512*1024;
1206
1207 while (gtt_size < size)
1208 gtt_size <<= 1;
1209
1210 return gtt_size;
1211 }
1212
1213 /**
1214 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1215 * @obj: object to check
1216 *
1217 * Return the required GTT alignment for an object, taking into account
1218 * potential fence register mapping.
1219 */
1220 static uint32_t
1221 i915_gem_get_gtt_alignment(struct drm_device *dev,
1222 uint32_t size,
1223 int tiling_mode)
1224 {
1225 /*
1226 * Minimum alignment is 4k (GTT page size), but might be greater
1227 * if a fence register is needed for the object.
1228 */
1229 if (INTEL_INFO(dev)->gen >= 4 ||
1230 tiling_mode == I915_TILING_NONE)
1231 return 4096;
1232
1233 /*
1234 * Previous chips need to be aligned to the size of the smallest
1235 * fence register that can contain the object.
1236 */
1237 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1238 }
1239
1240 /**
1241 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1242 * unfenced object
1243 * @dev: the device
1244 * @size: size of the object
1245 * @tiling_mode: tiling mode of the object
1246 *
1247 * Return the required GTT alignment for an object, only taking into account
1248 * unfenced tiled surface requirements.
1249 */
1250 uint32_t
1251 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1252 uint32_t size,
1253 int tiling_mode)
1254 {
1255 /*
1256 * Minimum alignment is 4k (GTT page size) for sane hw.
1257 */
1258 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1259 tiling_mode == I915_TILING_NONE)
1260 return 4096;
1261
1262 /* Previous hardware however needs to be aligned to a power-of-two
1263 * tile height. The simplest method for determining this is to reuse
1264 * the power-of-tile object size.
1265 */
1266 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1267 }
1268
1269 int
1270 i915_gem_mmap_gtt(struct drm_file *file,
1271 struct drm_device *dev,
1272 uint32_t handle,
1273 uint64_t *offset)
1274 {
1275 struct drm_i915_private *dev_priv = dev->dev_private;
1276 struct drm_i915_gem_object *obj;
1277 int ret;
1278
1279 ret = i915_mutex_lock_interruptible(dev);
1280 if (ret)
1281 return ret;
1282
1283 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1284 if (&obj->base == NULL) {
1285 ret = -ENOENT;
1286 goto unlock;
1287 }
1288
1289 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1290 ret = -E2BIG;
1291 goto out;
1292 }
1293
1294 if (obj->madv != I915_MADV_WILLNEED) {
1295 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1296 ret = -EINVAL;
1297 goto out;
1298 }
1299
1300 if (!obj->base.map_list.map) {
1301 ret = drm_gem_create_mmap_offset(&obj->base);
1302 if (ret)
1303 goto out;
1304 }
1305
1306 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1307
1308 out:
1309 drm_gem_object_unreference(&obj->base);
1310 unlock:
1311 mutex_unlock(&dev->struct_mutex);
1312 return ret;
1313 }
1314
1315 /**
1316 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1317 * @dev: DRM device
1318 * @data: GTT mapping ioctl data
1319 * @file: GEM object info
1320 *
1321 * Simply returns the fake offset to userspace so it can mmap it.
1322 * The mmap call will end up in drm_gem_mmap(), which will set things
1323 * up so we can get faults in the handler above.
1324 *
1325 * The fault handler will take care of binding the object into the GTT
1326 * (since it may have been evicted to make room for something), allocating
1327 * a fence register, and mapping the appropriate aperture address into
1328 * userspace.
1329 */
1330 int
1331 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1332 struct drm_file *file)
1333 {
1334 struct drm_i915_gem_mmap_gtt *args = data;
1335
1336 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1337 }
1338
1339 int
1340 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1341 gfp_t gfpmask)
1342 {
1343 int page_count, i;
1344 struct address_space *mapping;
1345 struct inode *inode;
1346 struct page *page;
1347
1348 if (obj->pages || obj->sg_table)
1349 return 0;
1350
1351 /* Get the list of pages out of our struct file. They'll be pinned
1352 * at this point until we release them.
1353 */
1354 page_count = obj->base.size / PAGE_SIZE;
1355 BUG_ON(obj->pages != NULL);
1356 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1357 if (obj->pages == NULL)
1358 return -ENOMEM;
1359
1360 inode = obj->base.filp->f_path.dentry->d_inode;
1361 mapping = inode->i_mapping;
1362 gfpmask |= mapping_gfp_mask(mapping);
1363
1364 for (i = 0; i < page_count; i++) {
1365 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1366 if (IS_ERR(page))
1367 goto err_pages;
1368
1369 obj->pages[i] = page;
1370 }
1371
1372 if (i915_gem_object_needs_bit17_swizzle(obj))
1373 i915_gem_object_do_bit_17_swizzle(obj);
1374
1375 return 0;
1376
1377 err_pages:
1378 while (i--)
1379 page_cache_release(obj->pages[i]);
1380
1381 drm_free_large(obj->pages);
1382 obj->pages = NULL;
1383 return PTR_ERR(page);
1384 }
1385
1386 static void
1387 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1388 {
1389 int page_count = obj->base.size / PAGE_SIZE;
1390 int i;
1391
1392 if (!obj->pages)
1393 return;
1394
1395 BUG_ON(obj->madv == __I915_MADV_PURGED);
1396
1397 if (i915_gem_object_needs_bit17_swizzle(obj))
1398 i915_gem_object_save_bit_17_swizzle(obj);
1399
1400 if (obj->madv == I915_MADV_DONTNEED)
1401 obj->dirty = 0;
1402
1403 for (i = 0; i < page_count; i++) {
1404 if (obj->dirty)
1405 set_page_dirty(obj->pages[i]);
1406
1407 if (obj->madv == I915_MADV_WILLNEED)
1408 mark_page_accessed(obj->pages[i]);
1409
1410 page_cache_release(obj->pages[i]);
1411 }
1412 obj->dirty = 0;
1413
1414 drm_free_large(obj->pages);
1415 obj->pages = NULL;
1416 }
1417
1418 void
1419 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1420 struct intel_ring_buffer *ring,
1421 u32 seqno)
1422 {
1423 struct drm_device *dev = obj->base.dev;
1424 struct drm_i915_private *dev_priv = dev->dev_private;
1425
1426 BUG_ON(ring == NULL);
1427 obj->ring = ring;
1428
1429 /* Add a reference if we're newly entering the active list. */
1430 if (!obj->active) {
1431 drm_gem_object_reference(&obj->base);
1432 obj->active = 1;
1433 }
1434
1435 /* Move from whatever list we were on to the tail of execution. */
1436 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1437 list_move_tail(&obj->ring_list, &ring->active_list);
1438
1439 obj->last_rendering_seqno = seqno;
1440
1441 if (obj->fenced_gpu_access) {
1442 obj->last_fenced_seqno = seqno;
1443
1444 /* Bump MRU to take account of the delayed flush */
1445 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1446 struct drm_i915_fence_reg *reg;
1447
1448 reg = &dev_priv->fence_regs[obj->fence_reg];
1449 list_move_tail(&reg->lru_list,
1450 &dev_priv->mm.fence_list);
1451 }
1452 }
1453 }
1454
1455 static void
1456 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1457 {
1458 list_del_init(&obj->ring_list);
1459 obj->last_rendering_seqno = 0;
1460 obj->last_fenced_seqno = 0;
1461 }
1462
1463 static void
1464 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1465 {
1466 struct drm_device *dev = obj->base.dev;
1467 drm_i915_private_t *dev_priv = dev->dev_private;
1468
1469 BUG_ON(!obj->active);
1470 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1471
1472 i915_gem_object_move_off_active(obj);
1473 }
1474
1475 static void
1476 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1477 {
1478 struct drm_device *dev = obj->base.dev;
1479 struct drm_i915_private *dev_priv = dev->dev_private;
1480
1481 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1482
1483 BUG_ON(!list_empty(&obj->gpu_write_list));
1484 BUG_ON(!obj->active);
1485 obj->ring = NULL;
1486
1487 i915_gem_object_move_off_active(obj);
1488 obj->fenced_gpu_access = false;
1489
1490 obj->active = 0;
1491 obj->pending_gpu_write = false;
1492 drm_gem_object_unreference(&obj->base);
1493
1494 WARN_ON(i915_verify_lists(dev));
1495 }
1496
1497 /* Immediately discard the backing storage */
1498 static void
1499 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1500 {
1501 struct inode *inode;
1502
1503 /* Our goal here is to return as much of the memory as
1504 * is possible back to the system as we are called from OOM.
1505 * To do this we must instruct the shmfs to drop all of its
1506 * backing pages, *now*.
1507 */
1508 inode = obj->base.filp->f_path.dentry->d_inode;
1509 shmem_truncate_range(inode, 0, (loff_t)-1);
1510
1511 if (obj->base.map_list.map)
1512 drm_gem_free_mmap_offset(&obj->base);
1513
1514 obj->madv = __I915_MADV_PURGED;
1515 }
1516
1517 static inline int
1518 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1519 {
1520 return obj->madv == I915_MADV_DONTNEED;
1521 }
1522
1523 static void
1524 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1525 uint32_t flush_domains)
1526 {
1527 struct drm_i915_gem_object *obj, *next;
1528
1529 list_for_each_entry_safe(obj, next,
1530 &ring->gpu_write_list,
1531 gpu_write_list) {
1532 if (obj->base.write_domain & flush_domains) {
1533 uint32_t old_write_domain = obj->base.write_domain;
1534
1535 obj->base.write_domain = 0;
1536 list_del_init(&obj->gpu_write_list);
1537 i915_gem_object_move_to_active(obj, ring,
1538 i915_gem_next_request_seqno(ring));
1539
1540 trace_i915_gem_object_change_domain(obj,
1541 obj->base.read_domains,
1542 old_write_domain);
1543 }
1544 }
1545 }
1546
1547 static u32
1548 i915_gem_get_seqno(struct drm_device *dev)
1549 {
1550 drm_i915_private_t *dev_priv = dev->dev_private;
1551 u32 seqno = dev_priv->next_seqno;
1552
1553 /* reserve 0 for non-seqno */
1554 if (++dev_priv->next_seqno == 0)
1555 dev_priv->next_seqno = 1;
1556
1557 return seqno;
1558 }
1559
1560 u32
1561 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1562 {
1563 if (ring->outstanding_lazy_request == 0)
1564 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1565
1566 return ring->outstanding_lazy_request;
1567 }
1568
1569 int
1570 i915_add_request(struct intel_ring_buffer *ring,
1571 struct drm_file *file,
1572 struct drm_i915_gem_request *request)
1573 {
1574 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1575 uint32_t seqno;
1576 u32 request_ring_position;
1577 int was_empty;
1578 int ret;
1579
1580 /*
1581 * Emit any outstanding flushes - execbuf can fail to emit the flush
1582 * after having emitted the batchbuffer command. Hence we need to fix
1583 * things up similar to emitting the lazy request. The difference here
1584 * is that the flush _must_ happen before the next request, no matter
1585 * what.
1586 */
1587 if (ring->gpu_caches_dirty) {
1588 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1589 if (ret)
1590 return ret;
1591
1592 ring->gpu_caches_dirty = false;
1593 }
1594
1595 BUG_ON(request == NULL);
1596 seqno = i915_gem_next_request_seqno(ring);
1597
1598 /* Record the position of the start of the request so that
1599 * should we detect the updated seqno part-way through the
1600 * GPU processing the request, we never over-estimate the
1601 * position of the head.
1602 */
1603 request_ring_position = intel_ring_get_tail(ring);
1604
1605 ret = ring->add_request(ring, &seqno);
1606 if (ret)
1607 return ret;
1608
1609 trace_i915_gem_request_add(ring, seqno);
1610
1611 request->seqno = seqno;
1612 request->ring = ring;
1613 request->tail = request_ring_position;
1614 request->emitted_jiffies = jiffies;
1615 was_empty = list_empty(&ring->request_list);
1616 list_add_tail(&request->list, &ring->request_list);
1617
1618 if (file) {
1619 struct drm_i915_file_private *file_priv = file->driver_priv;
1620
1621 spin_lock(&file_priv->mm.lock);
1622 request->file_priv = file_priv;
1623 list_add_tail(&request->client_list,
1624 &file_priv->mm.request_list);
1625 spin_unlock(&file_priv->mm.lock);
1626 }
1627
1628 ring->outstanding_lazy_request = 0;
1629
1630 if (!dev_priv->mm.suspended) {
1631 if (i915_enable_hangcheck) {
1632 mod_timer(&dev_priv->hangcheck_timer,
1633 jiffies +
1634 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1635 }
1636 if (was_empty)
1637 queue_delayed_work(dev_priv->wq,
1638 &dev_priv->mm.retire_work, HZ);
1639 }
1640
1641 WARN_ON(!list_empty(&ring->gpu_write_list));
1642
1643 return 0;
1644 }
1645
1646 static inline void
1647 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1648 {
1649 struct drm_i915_file_private *file_priv = request->file_priv;
1650
1651 if (!file_priv)
1652 return;
1653
1654 spin_lock(&file_priv->mm.lock);
1655 if (request->file_priv) {
1656 list_del(&request->client_list);
1657 request->file_priv = NULL;
1658 }
1659 spin_unlock(&file_priv->mm.lock);
1660 }
1661
1662 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1663 struct intel_ring_buffer *ring)
1664 {
1665 while (!list_empty(&ring->request_list)) {
1666 struct drm_i915_gem_request *request;
1667
1668 request = list_first_entry(&ring->request_list,
1669 struct drm_i915_gem_request,
1670 list);
1671
1672 list_del(&request->list);
1673 i915_gem_request_remove_from_client(request);
1674 kfree(request);
1675 }
1676
1677 while (!list_empty(&ring->active_list)) {
1678 struct drm_i915_gem_object *obj;
1679
1680 obj = list_first_entry(&ring->active_list,
1681 struct drm_i915_gem_object,
1682 ring_list);
1683
1684 obj->base.write_domain = 0;
1685 list_del_init(&obj->gpu_write_list);
1686 i915_gem_object_move_to_inactive(obj);
1687 }
1688 }
1689
1690 static void i915_gem_reset_fences(struct drm_device *dev)
1691 {
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 int i;
1694
1695 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1696 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1697
1698 i915_gem_write_fence(dev, i, NULL);
1699
1700 if (reg->obj)
1701 i915_gem_object_fence_lost(reg->obj);
1702
1703 reg->pin_count = 0;
1704 reg->obj = NULL;
1705 INIT_LIST_HEAD(&reg->lru_list);
1706 }
1707
1708 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1709 }
1710
1711 void i915_gem_reset(struct drm_device *dev)
1712 {
1713 struct drm_i915_private *dev_priv = dev->dev_private;
1714 struct drm_i915_gem_object *obj;
1715 struct intel_ring_buffer *ring;
1716 int i;
1717
1718 for_each_ring(ring, dev_priv, i)
1719 i915_gem_reset_ring_lists(dev_priv, ring);
1720
1721 /* Remove anything from the flushing lists. The GPU cache is likely
1722 * to be lost on reset along with the data, so simply move the
1723 * lost bo to the inactive list.
1724 */
1725 while (!list_empty(&dev_priv->mm.flushing_list)) {
1726 obj = list_first_entry(&dev_priv->mm.flushing_list,
1727 struct drm_i915_gem_object,
1728 mm_list);
1729
1730 obj->base.write_domain = 0;
1731 list_del_init(&obj->gpu_write_list);
1732 i915_gem_object_move_to_inactive(obj);
1733 }
1734
1735 /* Move everything out of the GPU domains to ensure we do any
1736 * necessary invalidation upon reuse.
1737 */
1738 list_for_each_entry(obj,
1739 &dev_priv->mm.inactive_list,
1740 mm_list)
1741 {
1742 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1743 }
1744
1745 /* The fence registers are invalidated so clear them out */
1746 i915_gem_reset_fences(dev);
1747 }
1748
1749 /**
1750 * This function clears the request list as sequence numbers are passed.
1751 */
1752 void
1753 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1754 {
1755 uint32_t seqno;
1756 int i;
1757
1758 if (list_empty(&ring->request_list))
1759 return;
1760
1761 WARN_ON(i915_verify_lists(ring->dev));
1762
1763 seqno = ring->get_seqno(ring);
1764
1765 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1766 if (seqno >= ring->sync_seqno[i])
1767 ring->sync_seqno[i] = 0;
1768
1769 while (!list_empty(&ring->request_list)) {
1770 struct drm_i915_gem_request *request;
1771
1772 request = list_first_entry(&ring->request_list,
1773 struct drm_i915_gem_request,
1774 list);
1775
1776 if (!i915_seqno_passed(seqno, request->seqno))
1777 break;
1778
1779 trace_i915_gem_request_retire(ring, request->seqno);
1780 /* We know the GPU must have read the request to have
1781 * sent us the seqno + interrupt, so use the position
1782 * of tail of the request to update the last known position
1783 * of the GPU head.
1784 */
1785 ring->last_retired_head = request->tail;
1786
1787 list_del(&request->list);
1788 i915_gem_request_remove_from_client(request);
1789 kfree(request);
1790 }
1791
1792 /* Move any buffers on the active list that are no longer referenced
1793 * by the ringbuffer to the flushing/inactive lists as appropriate.
1794 */
1795 while (!list_empty(&ring->active_list)) {
1796 struct drm_i915_gem_object *obj;
1797
1798 obj = list_first_entry(&ring->active_list,
1799 struct drm_i915_gem_object,
1800 ring_list);
1801
1802 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1803 break;
1804
1805 if (obj->base.write_domain != 0)
1806 i915_gem_object_move_to_flushing(obj);
1807 else
1808 i915_gem_object_move_to_inactive(obj);
1809 }
1810
1811 if (unlikely(ring->trace_irq_seqno &&
1812 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1813 ring->irq_put(ring);
1814 ring->trace_irq_seqno = 0;
1815 }
1816
1817 WARN_ON(i915_verify_lists(ring->dev));
1818 }
1819
1820 void
1821 i915_gem_retire_requests(struct drm_device *dev)
1822 {
1823 drm_i915_private_t *dev_priv = dev->dev_private;
1824 struct intel_ring_buffer *ring;
1825 int i;
1826
1827 for_each_ring(ring, dev_priv, i)
1828 i915_gem_retire_requests_ring(ring);
1829 }
1830
1831 static void
1832 i915_gem_retire_work_handler(struct work_struct *work)
1833 {
1834 drm_i915_private_t *dev_priv;
1835 struct drm_device *dev;
1836 struct intel_ring_buffer *ring;
1837 bool idle;
1838 int i;
1839
1840 dev_priv = container_of(work, drm_i915_private_t,
1841 mm.retire_work.work);
1842 dev = dev_priv->dev;
1843
1844 /* Come back later if the device is busy... */
1845 if (!mutex_trylock(&dev->struct_mutex)) {
1846 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847 return;
1848 }
1849
1850 i915_gem_retire_requests(dev);
1851
1852 /* Send a periodic flush down the ring so we don't hold onto GEM
1853 * objects indefinitely.
1854 */
1855 idle = true;
1856 for_each_ring(ring, dev_priv, i) {
1857 if (ring->gpu_caches_dirty) {
1858 struct drm_i915_gem_request *request;
1859
1860 request = kzalloc(sizeof(*request), GFP_KERNEL);
1861 if (request == NULL ||
1862 i915_add_request(ring, NULL, request))
1863 kfree(request);
1864 }
1865
1866 idle &= list_empty(&ring->request_list);
1867 }
1868
1869 if (!dev_priv->mm.suspended && !idle)
1870 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1871
1872 mutex_unlock(&dev->struct_mutex);
1873 }
1874
1875 int
1876 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1877 bool interruptible)
1878 {
1879 if (atomic_read(&dev_priv->mm.wedged)) {
1880 struct completion *x = &dev_priv->error_completion;
1881 bool recovery_complete;
1882 unsigned long flags;
1883
1884 /* Give the error handler a chance to run. */
1885 spin_lock_irqsave(&x->wait.lock, flags);
1886 recovery_complete = x->done > 0;
1887 spin_unlock_irqrestore(&x->wait.lock, flags);
1888
1889 /* Non-interruptible callers can't handle -EAGAIN, hence return
1890 * -EIO unconditionally for these. */
1891 if (!interruptible)
1892 return -EIO;
1893
1894 /* Recovery complete, but still wedged means reset failure. */
1895 if (recovery_complete)
1896 return -EIO;
1897
1898 return -EAGAIN;
1899 }
1900
1901 return 0;
1902 }
1903
1904 /*
1905 * Compare seqno against outstanding lazy request. Emit a request if they are
1906 * equal.
1907 */
1908 static int
1909 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1910 {
1911 int ret = 0;
1912
1913 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1914
1915 if (seqno == ring->outstanding_lazy_request) {
1916 struct drm_i915_gem_request *request;
1917
1918 request = kzalloc(sizeof(*request), GFP_KERNEL);
1919 if (request == NULL)
1920 return -ENOMEM;
1921
1922 ret = i915_add_request(ring, NULL, request);
1923 if (ret) {
1924 kfree(request);
1925 return ret;
1926 }
1927
1928 BUG_ON(seqno != request->seqno);
1929 }
1930
1931 return ret;
1932 }
1933
1934 /**
1935 * __wait_seqno - wait until execution of seqno has finished
1936 * @ring: the ring expected to report seqno
1937 * @seqno: duh!
1938 * @interruptible: do an interruptible wait (normally yes)
1939 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1940 *
1941 * Returns 0 if the seqno was found within the alloted time. Else returns the
1942 * errno with remaining time filled in timeout argument.
1943 */
1944 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1945 bool interruptible, struct timespec *timeout)
1946 {
1947 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1948 struct timespec before, now, wait_time={1,0};
1949 unsigned long timeout_jiffies;
1950 long end;
1951 bool wait_forever = true;
1952 int ret;
1953
1954 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1955 return 0;
1956
1957 trace_i915_gem_request_wait_begin(ring, seqno);
1958
1959 if (timeout != NULL) {
1960 wait_time = *timeout;
1961 wait_forever = false;
1962 }
1963
1964 timeout_jiffies = timespec_to_jiffies(&wait_time);
1965
1966 if (WARN_ON(!ring->irq_get(ring)))
1967 return -ENODEV;
1968
1969 /* Record current time in case interrupted by signal, or wedged * */
1970 getrawmonotonic(&before);
1971
1972 #define EXIT_COND \
1973 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1974 atomic_read(&dev_priv->mm.wedged))
1975 do {
1976 if (interruptible)
1977 end = wait_event_interruptible_timeout(ring->irq_queue,
1978 EXIT_COND,
1979 timeout_jiffies);
1980 else
1981 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1982 timeout_jiffies);
1983
1984 ret = i915_gem_check_wedge(dev_priv, interruptible);
1985 if (ret)
1986 end = ret;
1987 } while (end == 0 && wait_forever);
1988
1989 getrawmonotonic(&now);
1990
1991 ring->irq_put(ring);
1992 trace_i915_gem_request_wait_end(ring, seqno);
1993 #undef EXIT_COND
1994
1995 if (timeout) {
1996 struct timespec sleep_time = timespec_sub(now, before);
1997 *timeout = timespec_sub(*timeout, sleep_time);
1998 }
1999
2000 switch (end) {
2001 case -EAGAIN: /* Wedged */
2002 case -ERESTARTSYS: /* Signal */
2003 return (int)end;
2004 case 0: /* Timeout */
2005 if (timeout)
2006 set_normalized_timespec(timeout, 0, 0);
2007 return -ETIME;
2008 default: /* Completed */
2009 WARN_ON(end < 0); /* We're not aware of other errors */
2010 return 0;
2011 }
2012 }
2013
2014 /**
2015 * Waits for a sequence number to be signaled, and cleans up the
2016 * request and object lists appropriately for that event.
2017 */
2018 int
2019 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2020 {
2021 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2022 int ret = 0;
2023
2024 BUG_ON(seqno == 0);
2025
2026 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
2027 if (ret)
2028 return ret;
2029
2030 ret = i915_gem_check_olr(ring, seqno);
2031 if (ret)
2032 return ret;
2033
2034 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2035
2036 return ret;
2037 }
2038
2039 /**
2040 * Ensures that all rendering to the object has completed and the object is
2041 * safe to unbind from the GTT or access from the CPU.
2042 */
2043 int
2044 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2045 {
2046 int ret;
2047
2048 /* This function only exists to support waiting for existing rendering,
2049 * not for emitting required flushes.
2050 */
2051 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2052
2053 /* If there is rendering queued on the buffer being evicted, wait for
2054 * it.
2055 */
2056 if (obj->active) {
2057 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2058 if (ret)
2059 return ret;
2060 i915_gem_retire_requests_ring(obj->ring);
2061 }
2062
2063 return 0;
2064 }
2065
2066 /**
2067 * Ensures that an object will eventually get non-busy by flushing any required
2068 * write domains, emitting any outstanding lazy request and retiring and
2069 * completed requests.
2070 */
2071 static int
2072 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2073 {
2074 int ret;
2075
2076 if (obj->active) {
2077 ret = i915_gem_object_flush_gpu_write_domain(obj);
2078 if (ret)
2079 return ret;
2080
2081 ret = i915_gem_check_olr(obj->ring,
2082 obj->last_rendering_seqno);
2083 if (ret)
2084 return ret;
2085 i915_gem_retire_requests_ring(obj->ring);
2086 }
2087
2088 return 0;
2089 }
2090
2091 /**
2092 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2093 * @DRM_IOCTL_ARGS: standard ioctl arguments
2094 *
2095 * Returns 0 if successful, else an error is returned with the remaining time in
2096 * the timeout parameter.
2097 * -ETIME: object is still busy after timeout
2098 * -ERESTARTSYS: signal interrupted the wait
2099 * -ENONENT: object doesn't exist
2100 * Also possible, but rare:
2101 * -EAGAIN: GPU wedged
2102 * -ENOMEM: damn
2103 * -ENODEV: Internal IRQ fail
2104 * -E?: The add request failed
2105 *
2106 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2107 * non-zero timeout parameter the wait ioctl will wait for the given number of
2108 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2109 * without holding struct_mutex the object may become re-busied before this
2110 * function completes. A similar but shorter * race condition exists in the busy
2111 * ioctl
2112 */
2113 int
2114 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2115 {
2116 struct drm_i915_gem_wait *args = data;
2117 struct drm_i915_gem_object *obj;
2118 struct intel_ring_buffer *ring = NULL;
2119 struct timespec timeout_stack, *timeout = NULL;
2120 u32 seqno = 0;
2121 int ret = 0;
2122
2123 if (args->timeout_ns >= 0) {
2124 timeout_stack = ns_to_timespec(args->timeout_ns);
2125 timeout = &timeout_stack;
2126 }
2127
2128 ret = i915_mutex_lock_interruptible(dev);
2129 if (ret)
2130 return ret;
2131
2132 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2133 if (&obj->base == NULL) {
2134 mutex_unlock(&dev->struct_mutex);
2135 return -ENOENT;
2136 }
2137
2138 /* Need to make sure the object gets inactive eventually. */
2139 ret = i915_gem_object_flush_active(obj);
2140 if (ret)
2141 goto out;
2142
2143 if (obj->active) {
2144 seqno = obj->last_rendering_seqno;
2145 ring = obj->ring;
2146 }
2147
2148 if (seqno == 0)
2149 goto out;
2150
2151 /* Do this after OLR check to make sure we make forward progress polling
2152 * on this IOCTL with a 0 timeout (like busy ioctl)
2153 */
2154 if (!args->timeout_ns) {
2155 ret = -ETIME;
2156 goto out;
2157 }
2158
2159 drm_gem_object_unreference(&obj->base);
2160 mutex_unlock(&dev->struct_mutex);
2161
2162 ret = __wait_seqno(ring, seqno, true, timeout);
2163 if (timeout) {
2164 WARN_ON(!timespec_valid(timeout));
2165 args->timeout_ns = timespec_to_ns(timeout);
2166 }
2167 return ret;
2168
2169 out:
2170 drm_gem_object_unreference(&obj->base);
2171 mutex_unlock(&dev->struct_mutex);
2172 return ret;
2173 }
2174
2175 /**
2176 * i915_gem_object_sync - sync an object to a ring.
2177 *
2178 * @obj: object which may be in use on another ring.
2179 * @to: ring we wish to use the object on. May be NULL.
2180 *
2181 * This code is meant to abstract object synchronization with the GPU.
2182 * Calling with NULL implies synchronizing the object with the CPU
2183 * rather than a particular GPU ring.
2184 *
2185 * Returns 0 if successful, else propagates up the lower layer error.
2186 */
2187 int
2188 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2189 struct intel_ring_buffer *to)
2190 {
2191 struct intel_ring_buffer *from = obj->ring;
2192 u32 seqno;
2193 int ret, idx;
2194
2195 if (from == NULL || to == from)
2196 return 0;
2197
2198 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2199 return i915_gem_object_wait_rendering(obj);
2200
2201 idx = intel_ring_sync_index(from, to);
2202
2203 seqno = obj->last_rendering_seqno;
2204 if (seqno <= from->sync_seqno[idx])
2205 return 0;
2206
2207 ret = i915_gem_check_olr(obj->ring, seqno);
2208 if (ret)
2209 return ret;
2210
2211 ret = to->sync_to(to, from, seqno);
2212 if (!ret)
2213 from->sync_seqno[idx] = seqno;
2214
2215 return ret;
2216 }
2217
2218 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2219 {
2220 u32 old_write_domain, old_read_domains;
2221
2222 /* Act a barrier for all accesses through the GTT */
2223 mb();
2224
2225 /* Force a pagefault for domain tracking on next user access */
2226 i915_gem_release_mmap(obj);
2227
2228 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2229 return;
2230
2231 old_read_domains = obj->base.read_domains;
2232 old_write_domain = obj->base.write_domain;
2233
2234 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2235 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2236
2237 trace_i915_gem_object_change_domain(obj,
2238 old_read_domains,
2239 old_write_domain);
2240 }
2241
2242 /**
2243 * Unbinds an object from the GTT aperture.
2244 */
2245 int
2246 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2247 {
2248 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2249 int ret = 0;
2250
2251 if (obj->gtt_space == NULL)
2252 return 0;
2253
2254 if (obj->pin_count)
2255 return -EBUSY;
2256
2257 ret = i915_gem_object_finish_gpu(obj);
2258 if (ret)
2259 return ret;
2260 /* Continue on if we fail due to EIO, the GPU is hung so we
2261 * should be safe and we need to cleanup or else we might
2262 * cause memory corruption through use-after-free.
2263 */
2264
2265 i915_gem_object_finish_gtt(obj);
2266
2267 /* Move the object to the CPU domain to ensure that
2268 * any possible CPU writes while it's not in the GTT
2269 * are flushed when we go to remap it.
2270 */
2271 if (ret == 0)
2272 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2273 if (ret == -ERESTARTSYS)
2274 return ret;
2275 if (ret) {
2276 /* In the event of a disaster, abandon all caches and
2277 * hope for the best.
2278 */
2279 i915_gem_clflush_object(obj);
2280 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2281 }
2282
2283 /* release the fence reg _after_ flushing */
2284 ret = i915_gem_object_put_fence(obj);
2285 if (ret)
2286 return ret;
2287
2288 trace_i915_gem_object_unbind(obj);
2289
2290 if (obj->has_global_gtt_mapping)
2291 i915_gem_gtt_unbind_object(obj);
2292 if (obj->has_aliasing_ppgtt_mapping) {
2293 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2294 obj->has_aliasing_ppgtt_mapping = 0;
2295 }
2296 i915_gem_gtt_finish_object(obj);
2297
2298 i915_gem_object_put_pages_gtt(obj);
2299
2300 list_del_init(&obj->gtt_list);
2301 list_del_init(&obj->mm_list);
2302 /* Avoid an unnecessary call to unbind on rebind. */
2303 obj->map_and_fenceable = true;
2304
2305 drm_mm_put_block(obj->gtt_space);
2306 obj->gtt_space = NULL;
2307 obj->gtt_offset = 0;
2308
2309 if (i915_gem_object_is_purgeable(obj))
2310 i915_gem_object_truncate(obj);
2311
2312 return ret;
2313 }
2314
2315 int
2316 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2317 uint32_t invalidate_domains,
2318 uint32_t flush_domains)
2319 {
2320 int ret;
2321
2322 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2323 return 0;
2324
2325 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2326
2327 ret = ring->flush(ring, invalidate_domains, flush_domains);
2328 if (ret)
2329 return ret;
2330
2331 if (flush_domains & I915_GEM_GPU_DOMAINS)
2332 i915_gem_process_flushing_list(ring, flush_domains);
2333
2334 return 0;
2335 }
2336
2337 static int i915_ring_idle(struct intel_ring_buffer *ring)
2338 {
2339 int ret;
2340
2341 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2342 return 0;
2343
2344 if (!list_empty(&ring->gpu_write_list)) {
2345 ret = i915_gem_flush_ring(ring,
2346 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2347 if (ret)
2348 return ret;
2349 }
2350
2351 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2352 }
2353
2354 int i915_gpu_idle(struct drm_device *dev)
2355 {
2356 drm_i915_private_t *dev_priv = dev->dev_private;
2357 struct intel_ring_buffer *ring;
2358 int ret, i;
2359
2360 /* Flush everything onto the inactive list. */
2361 for_each_ring(ring, dev_priv, i) {
2362 ret = i915_ring_idle(ring);
2363 if (ret)
2364 return ret;
2365
2366 /* Is the device fubar? */
2367 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2368 return -EBUSY;
2369
2370 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2371 if (ret)
2372 return ret;
2373 }
2374
2375 return 0;
2376 }
2377
2378 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2379 struct drm_i915_gem_object *obj)
2380 {
2381 drm_i915_private_t *dev_priv = dev->dev_private;
2382 uint64_t val;
2383
2384 if (obj) {
2385 u32 size = obj->gtt_space->size;
2386
2387 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2388 0xfffff000) << 32;
2389 val |= obj->gtt_offset & 0xfffff000;
2390 val |= (uint64_t)((obj->stride / 128) - 1) <<
2391 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2392
2393 if (obj->tiling_mode == I915_TILING_Y)
2394 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2395 val |= I965_FENCE_REG_VALID;
2396 } else
2397 val = 0;
2398
2399 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2400 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2401 }
2402
2403 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2404 struct drm_i915_gem_object *obj)
2405 {
2406 drm_i915_private_t *dev_priv = dev->dev_private;
2407 uint64_t val;
2408
2409 if (obj) {
2410 u32 size = obj->gtt_space->size;
2411
2412 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2413 0xfffff000) << 32;
2414 val |= obj->gtt_offset & 0xfffff000;
2415 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2416 if (obj->tiling_mode == I915_TILING_Y)
2417 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2418 val |= I965_FENCE_REG_VALID;
2419 } else
2420 val = 0;
2421
2422 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2423 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2424 }
2425
2426 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2427 struct drm_i915_gem_object *obj)
2428 {
2429 drm_i915_private_t *dev_priv = dev->dev_private;
2430 u32 val;
2431
2432 if (obj) {
2433 u32 size = obj->gtt_space->size;
2434 int pitch_val;
2435 int tile_width;
2436
2437 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2438 (size & -size) != size ||
2439 (obj->gtt_offset & (size - 1)),
2440 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2441 obj->gtt_offset, obj->map_and_fenceable, size);
2442
2443 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2444 tile_width = 128;
2445 else
2446 tile_width = 512;
2447
2448 /* Note: pitch better be a power of two tile widths */
2449 pitch_val = obj->stride / tile_width;
2450 pitch_val = ffs(pitch_val) - 1;
2451
2452 val = obj->gtt_offset;
2453 if (obj->tiling_mode == I915_TILING_Y)
2454 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2455 val |= I915_FENCE_SIZE_BITS(size);
2456 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2457 val |= I830_FENCE_REG_VALID;
2458 } else
2459 val = 0;
2460
2461 if (reg < 8)
2462 reg = FENCE_REG_830_0 + reg * 4;
2463 else
2464 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2465
2466 I915_WRITE(reg, val);
2467 POSTING_READ(reg);
2468 }
2469
2470 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2471 struct drm_i915_gem_object *obj)
2472 {
2473 drm_i915_private_t *dev_priv = dev->dev_private;
2474 uint32_t val;
2475
2476 if (obj) {
2477 u32 size = obj->gtt_space->size;
2478 uint32_t pitch_val;
2479
2480 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2481 (size & -size) != size ||
2482 (obj->gtt_offset & (size - 1)),
2483 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2484 obj->gtt_offset, size);
2485
2486 pitch_val = obj->stride / 128;
2487 pitch_val = ffs(pitch_val) - 1;
2488
2489 val = obj->gtt_offset;
2490 if (obj->tiling_mode == I915_TILING_Y)
2491 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2492 val |= I830_FENCE_SIZE_BITS(size);
2493 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2494 val |= I830_FENCE_REG_VALID;
2495 } else
2496 val = 0;
2497
2498 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2499 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2500 }
2501
2502 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2503 struct drm_i915_gem_object *obj)
2504 {
2505 switch (INTEL_INFO(dev)->gen) {
2506 case 7:
2507 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2508 case 5:
2509 case 4: i965_write_fence_reg(dev, reg, obj); break;
2510 case 3: i915_write_fence_reg(dev, reg, obj); break;
2511 case 2: i830_write_fence_reg(dev, reg, obj); break;
2512 default: break;
2513 }
2514 }
2515
2516 static inline int fence_number(struct drm_i915_private *dev_priv,
2517 struct drm_i915_fence_reg *fence)
2518 {
2519 return fence - dev_priv->fence_regs;
2520 }
2521
2522 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2523 struct drm_i915_fence_reg *fence,
2524 bool enable)
2525 {
2526 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2527 int reg = fence_number(dev_priv, fence);
2528
2529 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2530
2531 if (enable) {
2532 obj->fence_reg = reg;
2533 fence->obj = obj;
2534 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2535 } else {
2536 obj->fence_reg = I915_FENCE_REG_NONE;
2537 fence->obj = NULL;
2538 list_del_init(&fence->lru_list);
2539 }
2540 }
2541
2542 static int
2543 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2544 {
2545 int ret;
2546
2547 if (obj->fenced_gpu_access) {
2548 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2549 ret = i915_gem_flush_ring(obj->ring,
2550 0, obj->base.write_domain);
2551 if (ret)
2552 return ret;
2553 }
2554
2555 obj->fenced_gpu_access = false;
2556 }
2557
2558 if (obj->last_fenced_seqno) {
2559 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2560 if (ret)
2561 return ret;
2562
2563 obj->last_fenced_seqno = 0;
2564 }
2565
2566 /* Ensure that all CPU reads are completed before installing a fence
2567 * and all writes before removing the fence.
2568 */
2569 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2570 mb();
2571
2572 return 0;
2573 }
2574
2575 int
2576 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2577 {
2578 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2579 int ret;
2580
2581 ret = i915_gem_object_flush_fence(obj);
2582 if (ret)
2583 return ret;
2584
2585 if (obj->fence_reg == I915_FENCE_REG_NONE)
2586 return 0;
2587
2588 i915_gem_object_update_fence(obj,
2589 &dev_priv->fence_regs[obj->fence_reg],
2590 false);
2591 i915_gem_object_fence_lost(obj);
2592
2593 return 0;
2594 }
2595
2596 static struct drm_i915_fence_reg *
2597 i915_find_fence_reg(struct drm_device *dev)
2598 {
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct drm_i915_fence_reg *reg, *avail;
2601 int i;
2602
2603 /* First try to find a free reg */
2604 avail = NULL;
2605 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2606 reg = &dev_priv->fence_regs[i];
2607 if (!reg->obj)
2608 return reg;
2609
2610 if (!reg->pin_count)
2611 avail = reg;
2612 }
2613
2614 if (avail == NULL)
2615 return NULL;
2616
2617 /* None available, try to steal one or wait for a user to finish */
2618 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2619 if (reg->pin_count)
2620 continue;
2621
2622 return reg;
2623 }
2624
2625 return NULL;
2626 }
2627
2628 /**
2629 * i915_gem_object_get_fence - set up fencing for an object
2630 * @obj: object to map through a fence reg
2631 *
2632 * When mapping objects through the GTT, userspace wants to be able to write
2633 * to them without having to worry about swizzling if the object is tiled.
2634 * This function walks the fence regs looking for a free one for @obj,
2635 * stealing one if it can't find any.
2636 *
2637 * It then sets up the reg based on the object's properties: address, pitch
2638 * and tiling format.
2639 *
2640 * For an untiled surface, this removes any existing fence.
2641 */
2642 int
2643 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2644 {
2645 struct drm_device *dev = obj->base.dev;
2646 struct drm_i915_private *dev_priv = dev->dev_private;
2647 bool enable = obj->tiling_mode != I915_TILING_NONE;
2648 struct drm_i915_fence_reg *reg;
2649 int ret;
2650
2651 /* Have we updated the tiling parameters upon the object and so
2652 * will need to serialise the write to the associated fence register?
2653 */
2654 if (obj->fence_dirty) {
2655 ret = i915_gem_object_flush_fence(obj);
2656 if (ret)
2657 return ret;
2658 }
2659
2660 /* Just update our place in the LRU if our fence is getting reused. */
2661 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2662 reg = &dev_priv->fence_regs[obj->fence_reg];
2663 if (!obj->fence_dirty) {
2664 list_move_tail(&reg->lru_list,
2665 &dev_priv->mm.fence_list);
2666 return 0;
2667 }
2668 } else if (enable) {
2669 reg = i915_find_fence_reg(dev);
2670 if (reg == NULL)
2671 return -EDEADLK;
2672
2673 if (reg->obj) {
2674 struct drm_i915_gem_object *old = reg->obj;
2675
2676 ret = i915_gem_object_flush_fence(old);
2677 if (ret)
2678 return ret;
2679
2680 i915_gem_object_fence_lost(old);
2681 }
2682 } else
2683 return 0;
2684
2685 i915_gem_object_update_fence(obj, reg, enable);
2686 obj->fence_dirty = false;
2687
2688 return 0;
2689 }
2690
2691 /**
2692 * Finds free space in the GTT aperture and binds the object there.
2693 */
2694 static int
2695 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2696 unsigned alignment,
2697 bool map_and_fenceable)
2698 {
2699 struct drm_device *dev = obj->base.dev;
2700 drm_i915_private_t *dev_priv = dev->dev_private;
2701 struct drm_mm_node *free_space;
2702 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2703 u32 size, fence_size, fence_alignment, unfenced_alignment;
2704 bool mappable, fenceable;
2705 int ret;
2706
2707 if (obj->madv != I915_MADV_WILLNEED) {
2708 DRM_ERROR("Attempting to bind a purgeable object\n");
2709 return -EINVAL;
2710 }
2711
2712 fence_size = i915_gem_get_gtt_size(dev,
2713 obj->base.size,
2714 obj->tiling_mode);
2715 fence_alignment = i915_gem_get_gtt_alignment(dev,
2716 obj->base.size,
2717 obj->tiling_mode);
2718 unfenced_alignment =
2719 i915_gem_get_unfenced_gtt_alignment(dev,
2720 obj->base.size,
2721 obj->tiling_mode);
2722
2723 if (alignment == 0)
2724 alignment = map_and_fenceable ? fence_alignment :
2725 unfenced_alignment;
2726 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2727 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2728 return -EINVAL;
2729 }
2730
2731 size = map_and_fenceable ? fence_size : obj->base.size;
2732
2733 /* If the object is bigger than the entire aperture, reject it early
2734 * before evicting everything in a vain attempt to find space.
2735 */
2736 if (obj->base.size >
2737 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2738 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2739 return -E2BIG;
2740 }
2741
2742 search_free:
2743 if (map_and_fenceable)
2744 free_space =
2745 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2746 size, alignment, 0,
2747 dev_priv->mm.gtt_mappable_end,
2748 0);
2749 else
2750 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2751 size, alignment, 0);
2752
2753 if (free_space != NULL) {
2754 if (map_and_fenceable)
2755 obj->gtt_space =
2756 drm_mm_get_block_range_generic(free_space,
2757 size, alignment, 0,
2758 dev_priv->mm.gtt_mappable_end,
2759 0);
2760 else
2761 obj->gtt_space =
2762 drm_mm_get_block(free_space, size, alignment);
2763 }
2764 if (obj->gtt_space == NULL) {
2765 /* If the gtt is empty and we're still having trouble
2766 * fitting our object in, we're out of memory.
2767 */
2768 ret = i915_gem_evict_something(dev, size, alignment,
2769 map_and_fenceable);
2770 if (ret)
2771 return ret;
2772
2773 goto search_free;
2774 }
2775
2776 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2777 if (ret) {
2778 drm_mm_put_block(obj->gtt_space);
2779 obj->gtt_space = NULL;
2780
2781 if (ret == -ENOMEM) {
2782 /* first try to reclaim some memory by clearing the GTT */
2783 ret = i915_gem_evict_everything(dev, false);
2784 if (ret) {
2785 /* now try to shrink everyone else */
2786 if (gfpmask) {
2787 gfpmask = 0;
2788 goto search_free;
2789 }
2790
2791 return -ENOMEM;
2792 }
2793
2794 goto search_free;
2795 }
2796
2797 return ret;
2798 }
2799
2800 ret = i915_gem_gtt_prepare_object(obj);
2801 if (ret) {
2802 i915_gem_object_put_pages_gtt(obj);
2803 drm_mm_put_block(obj->gtt_space);
2804 obj->gtt_space = NULL;
2805
2806 if (i915_gem_evict_everything(dev, false))
2807 return ret;
2808
2809 goto search_free;
2810 }
2811
2812 if (!dev_priv->mm.aliasing_ppgtt)
2813 i915_gem_gtt_bind_object(obj, obj->cache_level);
2814
2815 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2816 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2817
2818 /* Assert that the object is not currently in any GPU domain. As it
2819 * wasn't in the GTT, there shouldn't be any way it could have been in
2820 * a GPU cache
2821 */
2822 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2823 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2824
2825 obj->gtt_offset = obj->gtt_space->start;
2826
2827 fenceable =
2828 obj->gtt_space->size == fence_size &&
2829 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2830
2831 mappable =
2832 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2833
2834 obj->map_and_fenceable = mappable && fenceable;
2835
2836 trace_i915_gem_object_bind(obj, map_and_fenceable);
2837 return 0;
2838 }
2839
2840 void
2841 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2842 {
2843 /* If we don't have a page list set up, then we're not pinned
2844 * to GPU, and we can ignore the cache flush because it'll happen
2845 * again at bind time.
2846 */
2847 if (obj->pages == NULL)
2848 return;
2849
2850 /* If the GPU is snooping the contents of the CPU cache,
2851 * we do not need to manually clear the CPU cache lines. However,
2852 * the caches are only snooped when the render cache is
2853 * flushed/invalidated. As we always have to emit invalidations
2854 * and flushes when moving into and out of the RENDER domain, correct
2855 * snooping behaviour occurs naturally as the result of our domain
2856 * tracking.
2857 */
2858 if (obj->cache_level != I915_CACHE_NONE)
2859 return;
2860
2861 trace_i915_gem_object_clflush(obj);
2862
2863 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2864 }
2865
2866 /** Flushes any GPU write domain for the object if it's dirty. */
2867 static int
2868 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2869 {
2870 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2871 return 0;
2872
2873 /* Queue the GPU write cache flushing we need. */
2874 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2875 }
2876
2877 /** Flushes the GTT write domain for the object if it's dirty. */
2878 static void
2879 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2880 {
2881 uint32_t old_write_domain;
2882
2883 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2884 return;
2885
2886 /* No actual flushing is required for the GTT write domain. Writes
2887 * to it immediately go to main memory as far as we know, so there's
2888 * no chipset flush. It also doesn't land in render cache.
2889 *
2890 * However, we do have to enforce the order so that all writes through
2891 * the GTT land before any writes to the device, such as updates to
2892 * the GATT itself.
2893 */
2894 wmb();
2895
2896 old_write_domain = obj->base.write_domain;
2897 obj->base.write_domain = 0;
2898
2899 trace_i915_gem_object_change_domain(obj,
2900 obj->base.read_domains,
2901 old_write_domain);
2902 }
2903
2904 /** Flushes the CPU write domain for the object if it's dirty. */
2905 static void
2906 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2907 {
2908 uint32_t old_write_domain;
2909
2910 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2911 return;
2912
2913 i915_gem_clflush_object(obj);
2914 intel_gtt_chipset_flush();
2915 old_write_domain = obj->base.write_domain;
2916 obj->base.write_domain = 0;
2917
2918 trace_i915_gem_object_change_domain(obj,
2919 obj->base.read_domains,
2920 old_write_domain);
2921 }
2922
2923 /**
2924 * Moves a single object to the GTT read, and possibly write domain.
2925 *
2926 * This function returns when the move is complete, including waiting on
2927 * flushes to occur.
2928 */
2929 int
2930 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2931 {
2932 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2933 uint32_t old_write_domain, old_read_domains;
2934 int ret;
2935
2936 /* Not valid to be called on unbound objects. */
2937 if (obj->gtt_space == NULL)
2938 return -EINVAL;
2939
2940 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2941 return 0;
2942
2943 ret = i915_gem_object_flush_gpu_write_domain(obj);
2944 if (ret)
2945 return ret;
2946
2947 if (obj->pending_gpu_write || write) {
2948 ret = i915_gem_object_wait_rendering(obj);
2949 if (ret)
2950 return ret;
2951 }
2952
2953 i915_gem_object_flush_cpu_write_domain(obj);
2954
2955 old_write_domain = obj->base.write_domain;
2956 old_read_domains = obj->base.read_domains;
2957
2958 /* It should now be out of any other write domains, and we can update
2959 * the domain values for our changes.
2960 */
2961 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2962 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2963 if (write) {
2964 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2965 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2966 obj->dirty = 1;
2967 }
2968
2969 trace_i915_gem_object_change_domain(obj,
2970 old_read_domains,
2971 old_write_domain);
2972
2973 /* And bump the LRU for this access */
2974 if (i915_gem_object_is_inactive(obj))
2975 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2976
2977 return 0;
2978 }
2979
2980 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2981 enum i915_cache_level cache_level)
2982 {
2983 struct drm_device *dev = obj->base.dev;
2984 drm_i915_private_t *dev_priv = dev->dev_private;
2985 int ret;
2986
2987 if (obj->cache_level == cache_level)
2988 return 0;
2989
2990 if (obj->pin_count) {
2991 DRM_DEBUG("can not change the cache level of pinned objects\n");
2992 return -EBUSY;
2993 }
2994
2995 if (obj->gtt_space) {
2996 ret = i915_gem_object_finish_gpu(obj);
2997 if (ret)
2998 return ret;
2999
3000 i915_gem_object_finish_gtt(obj);
3001
3002 /* Before SandyBridge, you could not use tiling or fence
3003 * registers with snooped memory, so relinquish any fences
3004 * currently pointing to our region in the aperture.
3005 */
3006 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3007 ret = i915_gem_object_put_fence(obj);
3008 if (ret)
3009 return ret;
3010 }
3011
3012 if (obj->has_global_gtt_mapping)
3013 i915_gem_gtt_bind_object(obj, cache_level);
3014 if (obj->has_aliasing_ppgtt_mapping)
3015 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3016 obj, cache_level);
3017 }
3018
3019 if (cache_level == I915_CACHE_NONE) {
3020 u32 old_read_domains, old_write_domain;
3021
3022 /* If we're coming from LLC cached, then we haven't
3023 * actually been tracking whether the data is in the
3024 * CPU cache or not, since we only allow one bit set
3025 * in obj->write_domain and have been skipping the clflushes.
3026 * Just set it to the CPU cache for now.
3027 */
3028 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3029 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3030
3031 old_read_domains = obj->base.read_domains;
3032 old_write_domain = obj->base.write_domain;
3033
3034 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3035 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3036
3037 trace_i915_gem_object_change_domain(obj,
3038 old_read_domains,
3039 old_write_domain);
3040 }
3041
3042 obj->cache_level = cache_level;
3043 return 0;
3044 }
3045
3046 /*
3047 * Prepare buffer for display plane (scanout, cursors, etc).
3048 * Can be called from an uninterruptible phase (modesetting) and allows
3049 * any flushes to be pipelined (for pageflips).
3050 */
3051 int
3052 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3053 u32 alignment,
3054 struct intel_ring_buffer *pipelined)
3055 {
3056 u32 old_read_domains, old_write_domain;
3057 int ret;
3058
3059 ret = i915_gem_object_flush_gpu_write_domain(obj);
3060 if (ret)
3061 return ret;
3062
3063 if (pipelined != obj->ring) {
3064 ret = i915_gem_object_sync(obj, pipelined);
3065 if (ret)
3066 return ret;
3067 }
3068
3069 /* The display engine is not coherent with the LLC cache on gen6. As
3070 * a result, we make sure that the pinning that is about to occur is
3071 * done with uncached PTEs. This is lowest common denominator for all
3072 * chipsets.
3073 *
3074 * However for gen6+, we could do better by using the GFDT bit instead
3075 * of uncaching, which would allow us to flush all the LLC-cached data
3076 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3077 */
3078 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3079 if (ret)
3080 return ret;
3081
3082 /* As the user may map the buffer once pinned in the display plane
3083 * (e.g. libkms for the bootup splash), we have to ensure that we
3084 * always use map_and_fenceable for all scanout buffers.
3085 */
3086 ret = i915_gem_object_pin(obj, alignment, true);
3087 if (ret)
3088 return ret;
3089
3090 i915_gem_object_flush_cpu_write_domain(obj);
3091
3092 old_write_domain = obj->base.write_domain;
3093 old_read_domains = obj->base.read_domains;
3094
3095 /* It should now be out of any other write domains, and we can update
3096 * the domain values for our changes.
3097 */
3098 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3099 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3100
3101 trace_i915_gem_object_change_domain(obj,
3102 old_read_domains,
3103 old_write_domain);
3104
3105 return 0;
3106 }
3107
3108 int
3109 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3110 {
3111 int ret;
3112
3113 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3114 return 0;
3115
3116 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3117 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3118 if (ret)
3119 return ret;
3120 }
3121
3122 ret = i915_gem_object_wait_rendering(obj);
3123 if (ret)
3124 return ret;
3125
3126 /* Ensure that we invalidate the GPU's caches and TLBs. */
3127 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3128 return 0;
3129 }
3130
3131 /**
3132 * Moves a single object to the CPU read, and possibly write domain.
3133 *
3134 * This function returns when the move is complete, including waiting on
3135 * flushes to occur.
3136 */
3137 int
3138 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3139 {
3140 uint32_t old_write_domain, old_read_domains;
3141 int ret;
3142
3143 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3144 return 0;
3145
3146 ret = i915_gem_object_flush_gpu_write_domain(obj);
3147 if (ret)
3148 return ret;
3149
3150 if (write || obj->pending_gpu_write) {
3151 ret = i915_gem_object_wait_rendering(obj);
3152 if (ret)
3153 return ret;
3154 }
3155
3156 i915_gem_object_flush_gtt_write_domain(obj);
3157
3158 old_write_domain = obj->base.write_domain;
3159 old_read_domains = obj->base.read_domains;
3160
3161 /* Flush the CPU cache if it's still invalid. */
3162 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3163 i915_gem_clflush_object(obj);
3164
3165 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3166 }
3167
3168 /* It should now be out of any other write domains, and we can update
3169 * the domain values for our changes.
3170 */
3171 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3172
3173 /* If we're writing through the CPU, then the GPU read domains will
3174 * need to be invalidated at next use.
3175 */
3176 if (write) {
3177 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3178 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3179 }
3180
3181 trace_i915_gem_object_change_domain(obj,
3182 old_read_domains,
3183 old_write_domain);
3184
3185 return 0;
3186 }
3187
3188 /* Throttle our rendering by waiting until the ring has completed our requests
3189 * emitted over 20 msec ago.
3190 *
3191 * Note that if we were to use the current jiffies each time around the loop,
3192 * we wouldn't escape the function with any frames outstanding if the time to
3193 * render a frame was over 20ms.
3194 *
3195 * This should get us reasonable parallelism between CPU and GPU but also
3196 * relatively low latency when blocking on a particular request to finish.
3197 */
3198 static int
3199 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3200 {
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 struct drm_i915_file_private *file_priv = file->driver_priv;
3203 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3204 struct drm_i915_gem_request *request;
3205 struct intel_ring_buffer *ring = NULL;
3206 u32 seqno = 0;
3207 int ret;
3208
3209 if (atomic_read(&dev_priv->mm.wedged))
3210 return -EIO;
3211
3212 spin_lock(&file_priv->mm.lock);
3213 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3214 if (time_after_eq(request->emitted_jiffies, recent_enough))
3215 break;
3216
3217 ring = request->ring;
3218 seqno = request->seqno;
3219 }
3220 spin_unlock(&file_priv->mm.lock);
3221
3222 if (seqno == 0)
3223 return 0;
3224
3225 ret = __wait_seqno(ring, seqno, true, NULL);
3226 if (ret == 0)
3227 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3228
3229 return ret;
3230 }
3231
3232 int
3233 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3234 uint32_t alignment,
3235 bool map_and_fenceable)
3236 {
3237 int ret;
3238
3239 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3240
3241 if (obj->gtt_space != NULL) {
3242 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3243 (map_and_fenceable && !obj->map_and_fenceable)) {
3244 WARN(obj->pin_count,
3245 "bo is already pinned with incorrect alignment:"
3246 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3247 " obj->map_and_fenceable=%d\n",
3248 obj->gtt_offset, alignment,
3249 map_and_fenceable,
3250 obj->map_and_fenceable);
3251 ret = i915_gem_object_unbind(obj);
3252 if (ret)
3253 return ret;
3254 }
3255 }
3256
3257 if (obj->gtt_space == NULL) {
3258 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3259 map_and_fenceable);
3260 if (ret)
3261 return ret;
3262 }
3263
3264 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3265 i915_gem_gtt_bind_object(obj, obj->cache_level);
3266
3267 obj->pin_count++;
3268 obj->pin_mappable |= map_and_fenceable;
3269
3270 return 0;
3271 }
3272
3273 void
3274 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3275 {
3276 BUG_ON(obj->pin_count == 0);
3277 BUG_ON(obj->gtt_space == NULL);
3278
3279 if (--obj->pin_count == 0)
3280 obj->pin_mappable = false;
3281 }
3282
3283 int
3284 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3285 struct drm_file *file)
3286 {
3287 struct drm_i915_gem_pin *args = data;
3288 struct drm_i915_gem_object *obj;
3289 int ret;
3290
3291 ret = i915_mutex_lock_interruptible(dev);
3292 if (ret)
3293 return ret;
3294
3295 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3296 if (&obj->base == NULL) {
3297 ret = -ENOENT;
3298 goto unlock;
3299 }
3300
3301 if (obj->madv != I915_MADV_WILLNEED) {
3302 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3303 ret = -EINVAL;
3304 goto out;
3305 }
3306
3307 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3308 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3309 args->handle);
3310 ret = -EINVAL;
3311 goto out;
3312 }
3313
3314 obj->user_pin_count++;
3315 obj->pin_filp = file;
3316 if (obj->user_pin_count == 1) {
3317 ret = i915_gem_object_pin(obj, args->alignment, true);
3318 if (ret)
3319 goto out;
3320 }
3321
3322 /* XXX - flush the CPU caches for pinned objects
3323 * as the X server doesn't manage domains yet
3324 */
3325 i915_gem_object_flush_cpu_write_domain(obj);
3326 args->offset = obj->gtt_offset;
3327 out:
3328 drm_gem_object_unreference(&obj->base);
3329 unlock:
3330 mutex_unlock(&dev->struct_mutex);
3331 return ret;
3332 }
3333
3334 int
3335 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3336 struct drm_file *file)
3337 {
3338 struct drm_i915_gem_pin *args = data;
3339 struct drm_i915_gem_object *obj;
3340 int ret;
3341
3342 ret = i915_mutex_lock_interruptible(dev);
3343 if (ret)
3344 return ret;
3345
3346 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3347 if (&obj->base == NULL) {
3348 ret = -ENOENT;
3349 goto unlock;
3350 }
3351
3352 if (obj->pin_filp != file) {
3353 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3354 args->handle);
3355 ret = -EINVAL;
3356 goto out;
3357 }
3358 obj->user_pin_count--;
3359 if (obj->user_pin_count == 0) {
3360 obj->pin_filp = NULL;
3361 i915_gem_object_unpin(obj);
3362 }
3363
3364 out:
3365 drm_gem_object_unreference(&obj->base);
3366 unlock:
3367 mutex_unlock(&dev->struct_mutex);
3368 return ret;
3369 }
3370
3371 int
3372 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3373 struct drm_file *file)
3374 {
3375 struct drm_i915_gem_busy *args = data;
3376 struct drm_i915_gem_object *obj;
3377 int ret;
3378
3379 ret = i915_mutex_lock_interruptible(dev);
3380 if (ret)
3381 return ret;
3382
3383 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3384 if (&obj->base == NULL) {
3385 ret = -ENOENT;
3386 goto unlock;
3387 }
3388
3389 /* Count all active objects as busy, even if they are currently not used
3390 * by the gpu. Users of this interface expect objects to eventually
3391 * become non-busy without any further actions, therefore emit any
3392 * necessary flushes here.
3393 */
3394 ret = i915_gem_object_flush_active(obj);
3395
3396 args->busy = obj->active;
3397
3398 drm_gem_object_unreference(&obj->base);
3399 unlock:
3400 mutex_unlock(&dev->struct_mutex);
3401 return ret;
3402 }
3403
3404 int
3405 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file_priv)
3407 {
3408 return i915_gem_ring_throttle(dev, file_priv);
3409 }
3410
3411 int
3412 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3413 struct drm_file *file_priv)
3414 {
3415 struct drm_i915_gem_madvise *args = data;
3416 struct drm_i915_gem_object *obj;
3417 int ret;
3418
3419 switch (args->madv) {
3420 case I915_MADV_DONTNEED:
3421 case I915_MADV_WILLNEED:
3422 break;
3423 default:
3424 return -EINVAL;
3425 }
3426
3427 ret = i915_mutex_lock_interruptible(dev);
3428 if (ret)
3429 return ret;
3430
3431 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3432 if (&obj->base == NULL) {
3433 ret = -ENOENT;
3434 goto unlock;
3435 }
3436
3437 if (obj->pin_count) {
3438 ret = -EINVAL;
3439 goto out;
3440 }
3441
3442 if (obj->madv != __I915_MADV_PURGED)
3443 obj->madv = args->madv;
3444
3445 /* if the object is no longer bound, discard its backing storage */
3446 if (i915_gem_object_is_purgeable(obj) &&
3447 obj->gtt_space == NULL)
3448 i915_gem_object_truncate(obj);
3449
3450 args->retained = obj->madv != __I915_MADV_PURGED;
3451
3452 out:
3453 drm_gem_object_unreference(&obj->base);
3454 unlock:
3455 mutex_unlock(&dev->struct_mutex);
3456 return ret;
3457 }
3458
3459 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3460 size_t size)
3461 {
3462 struct drm_i915_private *dev_priv = dev->dev_private;
3463 struct drm_i915_gem_object *obj;
3464 struct address_space *mapping;
3465 u32 mask;
3466
3467 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3468 if (obj == NULL)
3469 return NULL;
3470
3471 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3472 kfree(obj);
3473 return NULL;
3474 }
3475
3476 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3477 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3478 /* 965gm cannot relocate objects above 4GiB. */
3479 mask &= ~__GFP_HIGHMEM;
3480 mask |= __GFP_DMA32;
3481 }
3482
3483 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3484 mapping_set_gfp_mask(mapping, mask);
3485
3486 i915_gem_info_add_obj(dev_priv, size);
3487
3488 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3489 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3490
3491 if (HAS_LLC(dev)) {
3492 /* On some devices, we can have the GPU use the LLC (the CPU
3493 * cache) for about a 10% performance improvement
3494 * compared to uncached. Graphics requests other than
3495 * display scanout are coherent with the CPU in
3496 * accessing this cache. This means in this mode we
3497 * don't need to clflush on the CPU side, and on the
3498 * GPU side we only need to flush internal caches to
3499 * get data visible to the CPU.
3500 *
3501 * However, we maintain the display planes as UC, and so
3502 * need to rebind when first used as such.
3503 */
3504 obj->cache_level = I915_CACHE_LLC;
3505 } else
3506 obj->cache_level = I915_CACHE_NONE;
3507
3508 obj->base.driver_private = NULL;
3509 obj->fence_reg = I915_FENCE_REG_NONE;
3510 INIT_LIST_HEAD(&obj->mm_list);
3511 INIT_LIST_HEAD(&obj->gtt_list);
3512 INIT_LIST_HEAD(&obj->ring_list);
3513 INIT_LIST_HEAD(&obj->exec_list);
3514 INIT_LIST_HEAD(&obj->gpu_write_list);
3515 obj->madv = I915_MADV_WILLNEED;
3516 /* Avoid an unnecessary call to unbind on the first bind. */
3517 obj->map_and_fenceable = true;
3518
3519 return obj;
3520 }
3521
3522 int i915_gem_init_object(struct drm_gem_object *obj)
3523 {
3524 BUG();
3525
3526 return 0;
3527 }
3528
3529 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3530 {
3531 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3532 struct drm_device *dev = obj->base.dev;
3533 drm_i915_private_t *dev_priv = dev->dev_private;
3534
3535 trace_i915_gem_object_destroy(obj);
3536
3537 if (gem_obj->import_attach)
3538 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3539
3540 if (obj->phys_obj)
3541 i915_gem_detach_phys_object(dev, obj);
3542
3543 obj->pin_count = 0;
3544 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3545 bool was_interruptible;
3546
3547 was_interruptible = dev_priv->mm.interruptible;
3548 dev_priv->mm.interruptible = false;
3549
3550 WARN_ON(i915_gem_object_unbind(obj));
3551
3552 dev_priv->mm.interruptible = was_interruptible;
3553 }
3554
3555 if (obj->base.map_list.map)
3556 drm_gem_free_mmap_offset(&obj->base);
3557
3558 drm_gem_object_release(&obj->base);
3559 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3560
3561 kfree(obj->bit_17);
3562 kfree(obj);
3563 }
3564
3565 int
3566 i915_gem_idle(struct drm_device *dev)
3567 {
3568 drm_i915_private_t *dev_priv = dev->dev_private;
3569 int ret;
3570
3571 mutex_lock(&dev->struct_mutex);
3572
3573 if (dev_priv->mm.suspended) {
3574 mutex_unlock(&dev->struct_mutex);
3575 return 0;
3576 }
3577
3578 ret = i915_gpu_idle(dev);
3579 if (ret) {
3580 mutex_unlock(&dev->struct_mutex);
3581 return ret;
3582 }
3583 i915_gem_retire_requests(dev);
3584
3585 /* Under UMS, be paranoid and evict. */
3586 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3587 i915_gem_evict_everything(dev, false);
3588
3589 i915_gem_reset_fences(dev);
3590
3591 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3592 * We need to replace this with a semaphore, or something.
3593 * And not confound mm.suspended!
3594 */
3595 dev_priv->mm.suspended = 1;
3596 del_timer_sync(&dev_priv->hangcheck_timer);
3597
3598 i915_kernel_lost_context(dev);
3599 i915_gem_cleanup_ringbuffer(dev);
3600
3601 mutex_unlock(&dev->struct_mutex);
3602
3603 /* Cancel the retire work handler, which should be idle now. */
3604 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3605
3606 return 0;
3607 }
3608
3609 void i915_gem_l3_remap(struct drm_device *dev)
3610 {
3611 drm_i915_private_t *dev_priv = dev->dev_private;
3612 u32 misccpctl;
3613 int i;
3614
3615 if (!IS_IVYBRIDGE(dev))
3616 return;
3617
3618 if (!dev_priv->mm.l3_remap_info)
3619 return;
3620
3621 misccpctl = I915_READ(GEN7_MISCCPCTL);
3622 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3623 POSTING_READ(GEN7_MISCCPCTL);
3624
3625 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3626 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3627 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3628 DRM_DEBUG("0x%x was already programmed to %x\n",
3629 GEN7_L3LOG_BASE + i, remap);
3630 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3631 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3632 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3633 }
3634
3635 /* Make sure all the writes land before disabling dop clock gating */
3636 POSTING_READ(GEN7_L3LOG_BASE);
3637
3638 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3639 }
3640
3641 void i915_gem_init_swizzling(struct drm_device *dev)
3642 {
3643 drm_i915_private_t *dev_priv = dev->dev_private;
3644
3645 if (INTEL_INFO(dev)->gen < 5 ||
3646 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3647 return;
3648
3649 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3650 DISP_TILE_SURFACE_SWIZZLING);
3651
3652 if (IS_GEN5(dev))
3653 return;
3654
3655 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3656 if (IS_GEN6(dev))
3657 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3658 else
3659 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3660 }
3661
3662 void i915_gem_init_ppgtt(struct drm_device *dev)
3663 {
3664 drm_i915_private_t *dev_priv = dev->dev_private;
3665 uint32_t pd_offset;
3666 struct intel_ring_buffer *ring;
3667 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3668 uint32_t __iomem *pd_addr;
3669 uint32_t pd_entry;
3670 int i;
3671
3672 if (!dev_priv->mm.aliasing_ppgtt)
3673 return;
3674
3675
3676 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3677 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3678 dma_addr_t pt_addr;
3679
3680 if (dev_priv->mm.gtt->needs_dmar)
3681 pt_addr = ppgtt->pt_dma_addr[i];
3682 else
3683 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3684
3685 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3686 pd_entry |= GEN6_PDE_VALID;
3687
3688 writel(pd_entry, pd_addr + i);
3689 }
3690 readl(pd_addr);
3691
3692 pd_offset = ppgtt->pd_offset;
3693 pd_offset /= 64; /* in cachelines, */
3694 pd_offset <<= 16;
3695
3696 if (INTEL_INFO(dev)->gen == 6) {
3697 uint32_t ecochk, gab_ctl, ecobits;
3698
3699 ecobits = I915_READ(GAC_ECO_BITS);
3700 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3701
3702 gab_ctl = I915_READ(GAB_CTL);
3703 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3704
3705 ecochk = I915_READ(GAM_ECOCHK);
3706 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3707 ECOCHK_PPGTT_CACHE64B);
3708 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3709 } else if (INTEL_INFO(dev)->gen >= 7) {
3710 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3711 /* GFX_MODE is per-ring on gen7+ */
3712 }
3713
3714 for_each_ring(ring, dev_priv, i) {
3715 if (INTEL_INFO(dev)->gen >= 7)
3716 I915_WRITE(RING_MODE_GEN7(ring),
3717 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3718
3719 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3720 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3721 }
3722 }
3723
3724 int
3725 i915_gem_init_hw(struct drm_device *dev)
3726 {
3727 drm_i915_private_t *dev_priv = dev->dev_private;
3728 int ret;
3729
3730 if (!intel_enable_gtt())
3731 return -EIO;
3732
3733 i915_gem_l3_remap(dev);
3734
3735 i915_gem_init_swizzling(dev);
3736
3737 ret = intel_init_render_ring_buffer(dev);
3738 if (ret)
3739 return ret;
3740
3741 if (HAS_BSD(dev)) {
3742 ret = intel_init_bsd_ring_buffer(dev);
3743 if (ret)
3744 goto cleanup_render_ring;
3745 }
3746
3747 if (HAS_BLT(dev)) {
3748 ret = intel_init_blt_ring_buffer(dev);
3749 if (ret)
3750 goto cleanup_bsd_ring;
3751 }
3752
3753 dev_priv->next_seqno = 1;
3754
3755 /*
3756 * XXX: There was some w/a described somewhere suggesting loading
3757 * contexts before PPGTT.
3758 */
3759 i915_gem_context_init(dev);
3760 i915_gem_init_ppgtt(dev);
3761
3762 return 0;
3763
3764 cleanup_bsd_ring:
3765 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3766 cleanup_render_ring:
3767 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3768 return ret;
3769 }
3770
3771 static bool
3772 intel_enable_ppgtt(struct drm_device *dev)
3773 {
3774 if (i915_enable_ppgtt >= 0)
3775 return i915_enable_ppgtt;
3776
3777 #ifdef CONFIG_INTEL_IOMMU
3778 /* Disable ppgtt on SNB if VT-d is on. */
3779 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3780 return false;
3781 #endif
3782
3783 return true;
3784 }
3785
3786 int i915_gem_init(struct drm_device *dev)
3787 {
3788 struct drm_i915_private *dev_priv = dev->dev_private;
3789 unsigned long gtt_size, mappable_size;
3790 int ret;
3791
3792 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3793 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3794
3795 mutex_lock(&dev->struct_mutex);
3796 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3797 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3798 * aperture accordingly when using aliasing ppgtt. */
3799 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3800
3801 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3802
3803 ret = i915_gem_init_aliasing_ppgtt(dev);
3804 if (ret) {
3805 mutex_unlock(&dev->struct_mutex);
3806 return ret;
3807 }
3808 } else {
3809 /* Let GEM Manage all of the aperture.
3810 *
3811 * However, leave one page at the end still bound to the scratch
3812 * page. There are a number of places where the hardware
3813 * apparently prefetches past the end of the object, and we've
3814 * seen multiple hangs with the GPU head pointer stuck in a
3815 * batchbuffer bound at the last page of the aperture. One page
3816 * should be enough to keep any prefetching inside of the
3817 * aperture.
3818 */
3819 i915_gem_init_global_gtt(dev, 0, mappable_size,
3820 gtt_size);
3821 }
3822
3823 ret = i915_gem_init_hw(dev);
3824 mutex_unlock(&dev->struct_mutex);
3825 if (ret) {
3826 i915_gem_cleanup_aliasing_ppgtt(dev);
3827 return ret;
3828 }
3829
3830 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3831 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3832 dev_priv->dri1.allow_batchbuffer = 1;
3833 return 0;
3834 }
3835
3836 void
3837 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3838 {
3839 drm_i915_private_t *dev_priv = dev->dev_private;
3840 struct intel_ring_buffer *ring;
3841 int i;
3842
3843 for_each_ring(ring, dev_priv, i)
3844 intel_cleanup_ring_buffer(ring);
3845 }
3846
3847 int
3848 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3849 struct drm_file *file_priv)
3850 {
3851 drm_i915_private_t *dev_priv = dev->dev_private;
3852 int ret;
3853
3854 if (drm_core_check_feature(dev, DRIVER_MODESET))
3855 return 0;
3856
3857 if (atomic_read(&dev_priv->mm.wedged)) {
3858 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3859 atomic_set(&dev_priv->mm.wedged, 0);
3860 }
3861
3862 mutex_lock(&dev->struct_mutex);
3863 dev_priv->mm.suspended = 0;
3864
3865 ret = i915_gem_init_hw(dev);
3866 if (ret != 0) {
3867 mutex_unlock(&dev->struct_mutex);
3868 return ret;
3869 }
3870
3871 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3872 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3873 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3874 mutex_unlock(&dev->struct_mutex);
3875
3876 ret = drm_irq_install(dev);
3877 if (ret)
3878 goto cleanup_ringbuffer;
3879
3880 return 0;
3881
3882 cleanup_ringbuffer:
3883 mutex_lock(&dev->struct_mutex);
3884 i915_gem_cleanup_ringbuffer(dev);
3885 dev_priv->mm.suspended = 1;
3886 mutex_unlock(&dev->struct_mutex);
3887
3888 return ret;
3889 }
3890
3891 int
3892 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3893 struct drm_file *file_priv)
3894 {
3895 if (drm_core_check_feature(dev, DRIVER_MODESET))
3896 return 0;
3897
3898 drm_irq_uninstall(dev);
3899 return i915_gem_idle(dev);
3900 }
3901
3902 void
3903 i915_gem_lastclose(struct drm_device *dev)
3904 {
3905 int ret;
3906
3907 if (drm_core_check_feature(dev, DRIVER_MODESET))
3908 return;
3909
3910 ret = i915_gem_idle(dev);
3911 if (ret)
3912 DRM_ERROR("failed to idle hardware: %d\n", ret);
3913 }
3914
3915 static void
3916 init_ring_lists(struct intel_ring_buffer *ring)
3917 {
3918 INIT_LIST_HEAD(&ring->active_list);
3919 INIT_LIST_HEAD(&ring->request_list);
3920 INIT_LIST_HEAD(&ring->gpu_write_list);
3921 }
3922
3923 void
3924 i915_gem_load(struct drm_device *dev)
3925 {
3926 int i;
3927 drm_i915_private_t *dev_priv = dev->dev_private;
3928
3929 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3930 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3931 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3932 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3933 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3934 for (i = 0; i < I915_NUM_RINGS; i++)
3935 init_ring_lists(&dev_priv->ring[i]);
3936 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3937 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3938 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3939 i915_gem_retire_work_handler);
3940 init_completion(&dev_priv->error_completion);
3941
3942 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3943 if (IS_GEN3(dev)) {
3944 I915_WRITE(MI_ARB_STATE,
3945 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3946 }
3947
3948 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3949
3950 /* Old X drivers will take 0-2 for front, back, depth buffers */
3951 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3952 dev_priv->fence_reg_start = 3;
3953
3954 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3955 dev_priv->num_fence_regs = 16;
3956 else
3957 dev_priv->num_fence_regs = 8;
3958
3959 /* Initialize fence registers to zero */
3960 i915_gem_reset_fences(dev);
3961
3962 i915_gem_detect_bit_6_swizzle(dev);
3963 init_waitqueue_head(&dev_priv->pending_flip_queue);
3964
3965 dev_priv->mm.interruptible = true;
3966
3967 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3968 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3969 register_shrinker(&dev_priv->mm.inactive_shrinker);
3970 }
3971
3972 /*
3973 * Create a physically contiguous memory object for this object
3974 * e.g. for cursor + overlay regs
3975 */
3976 static int i915_gem_init_phys_object(struct drm_device *dev,
3977 int id, int size, int align)
3978 {
3979 drm_i915_private_t *dev_priv = dev->dev_private;
3980 struct drm_i915_gem_phys_object *phys_obj;
3981 int ret;
3982
3983 if (dev_priv->mm.phys_objs[id - 1] || !size)
3984 return 0;
3985
3986 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3987 if (!phys_obj)
3988 return -ENOMEM;
3989
3990 phys_obj->id = id;
3991
3992 phys_obj->handle = drm_pci_alloc(dev, size, align);
3993 if (!phys_obj->handle) {
3994 ret = -ENOMEM;
3995 goto kfree_obj;
3996 }
3997 #ifdef CONFIG_X86
3998 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3999 #endif
4000
4001 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4002
4003 return 0;
4004 kfree_obj:
4005 kfree(phys_obj);
4006 return ret;
4007 }
4008
4009 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4010 {
4011 drm_i915_private_t *dev_priv = dev->dev_private;
4012 struct drm_i915_gem_phys_object *phys_obj;
4013
4014 if (!dev_priv->mm.phys_objs[id - 1])
4015 return;
4016
4017 phys_obj = dev_priv->mm.phys_objs[id - 1];
4018 if (phys_obj->cur_obj) {
4019 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4020 }
4021
4022 #ifdef CONFIG_X86
4023 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4024 #endif
4025 drm_pci_free(dev, phys_obj->handle);
4026 kfree(phys_obj);
4027 dev_priv->mm.phys_objs[id - 1] = NULL;
4028 }
4029
4030 void i915_gem_free_all_phys_object(struct drm_device *dev)
4031 {
4032 int i;
4033
4034 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4035 i915_gem_free_phys_object(dev, i);
4036 }
4037
4038 void i915_gem_detach_phys_object(struct drm_device *dev,
4039 struct drm_i915_gem_object *obj)
4040 {
4041 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4042 char *vaddr;
4043 int i;
4044 int page_count;
4045
4046 if (!obj->phys_obj)
4047 return;
4048 vaddr = obj->phys_obj->handle->vaddr;
4049
4050 page_count = obj->base.size / PAGE_SIZE;
4051 for (i = 0; i < page_count; i++) {
4052 struct page *page = shmem_read_mapping_page(mapping, i);
4053 if (!IS_ERR(page)) {
4054 char *dst = kmap_atomic(page);
4055 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4056 kunmap_atomic(dst);
4057
4058 drm_clflush_pages(&page, 1);
4059
4060 set_page_dirty(page);
4061 mark_page_accessed(page);
4062 page_cache_release(page);
4063 }
4064 }
4065 intel_gtt_chipset_flush();
4066
4067 obj->phys_obj->cur_obj = NULL;
4068 obj->phys_obj = NULL;
4069 }
4070
4071 int
4072 i915_gem_attach_phys_object(struct drm_device *dev,
4073 struct drm_i915_gem_object *obj,
4074 int id,
4075 int align)
4076 {
4077 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4078 drm_i915_private_t *dev_priv = dev->dev_private;
4079 int ret = 0;
4080 int page_count;
4081 int i;
4082
4083 if (id > I915_MAX_PHYS_OBJECT)
4084 return -EINVAL;
4085
4086 if (obj->phys_obj) {
4087 if (obj->phys_obj->id == id)
4088 return 0;
4089 i915_gem_detach_phys_object(dev, obj);
4090 }
4091
4092 /* create a new object */
4093 if (!dev_priv->mm.phys_objs[id - 1]) {
4094 ret = i915_gem_init_phys_object(dev, id,
4095 obj->base.size, align);
4096 if (ret) {
4097 DRM_ERROR("failed to init phys object %d size: %zu\n",
4098 id, obj->base.size);
4099 return ret;
4100 }
4101 }
4102
4103 /* bind to the object */
4104 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4105 obj->phys_obj->cur_obj = obj;
4106
4107 page_count = obj->base.size / PAGE_SIZE;
4108
4109 for (i = 0; i < page_count; i++) {
4110 struct page *page;
4111 char *dst, *src;
4112
4113 page = shmem_read_mapping_page(mapping, i);
4114 if (IS_ERR(page))
4115 return PTR_ERR(page);
4116
4117 src = kmap_atomic(page);
4118 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4119 memcpy(dst, src, PAGE_SIZE);
4120 kunmap_atomic(src);
4121
4122 mark_page_accessed(page);
4123 page_cache_release(page);
4124 }
4125
4126 return 0;
4127 }
4128
4129 static int
4130 i915_gem_phys_pwrite(struct drm_device *dev,
4131 struct drm_i915_gem_object *obj,
4132 struct drm_i915_gem_pwrite *args,
4133 struct drm_file *file_priv)
4134 {
4135 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4136 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4137
4138 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4139 unsigned long unwritten;
4140
4141 /* The physical object once assigned is fixed for the lifetime
4142 * of the obj, so we can safely drop the lock and continue
4143 * to access vaddr.
4144 */
4145 mutex_unlock(&dev->struct_mutex);
4146 unwritten = copy_from_user(vaddr, user_data, args->size);
4147 mutex_lock(&dev->struct_mutex);
4148 if (unwritten)
4149 return -EFAULT;
4150 }
4151
4152 intel_gtt_chipset_flush();
4153 return 0;
4154 }
4155
4156 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4157 {
4158 struct drm_i915_file_private *file_priv = file->driver_priv;
4159
4160 /* Clean up our request list when the client is going away, so that
4161 * later retire_requests won't dereference our soon-to-be-gone
4162 * file_priv.
4163 */
4164 spin_lock(&file_priv->mm.lock);
4165 while (!list_empty(&file_priv->mm.request_list)) {
4166 struct drm_i915_gem_request *request;
4167
4168 request = list_first_entry(&file_priv->mm.request_list,
4169 struct drm_i915_gem_request,
4170 client_list);
4171 list_del(&request->client_list);
4172 request->file_priv = NULL;
4173 }
4174 spin_unlock(&file_priv->mm.lock);
4175 }
4176
4177 static int
4178 i915_gpu_is_active(struct drm_device *dev)
4179 {
4180 drm_i915_private_t *dev_priv = dev->dev_private;
4181 int lists_empty;
4182
4183 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4184 list_empty(&dev_priv->mm.active_list);
4185
4186 return !lists_empty;
4187 }
4188
4189 static int
4190 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4191 {
4192 struct drm_i915_private *dev_priv =
4193 container_of(shrinker,
4194 struct drm_i915_private,
4195 mm.inactive_shrinker);
4196 struct drm_device *dev = dev_priv->dev;
4197 struct drm_i915_gem_object *obj, *next;
4198 int nr_to_scan = sc->nr_to_scan;
4199 int cnt;
4200
4201 if (!mutex_trylock(&dev->struct_mutex))
4202 return 0;
4203
4204 /* "fast-path" to count number of available objects */
4205 if (nr_to_scan == 0) {
4206 cnt = 0;
4207 list_for_each_entry(obj,
4208 &dev_priv->mm.inactive_list,
4209 mm_list)
4210 cnt++;
4211 mutex_unlock(&dev->struct_mutex);
4212 return cnt / 100 * sysctl_vfs_cache_pressure;
4213 }
4214
4215 rescan:
4216 /* first scan for clean buffers */
4217 i915_gem_retire_requests(dev);
4218
4219 list_for_each_entry_safe(obj, next,
4220 &dev_priv->mm.inactive_list,
4221 mm_list) {
4222 if (i915_gem_object_is_purgeable(obj)) {
4223 if (i915_gem_object_unbind(obj) == 0 &&
4224 --nr_to_scan == 0)
4225 break;
4226 }
4227 }
4228
4229 /* second pass, evict/count anything still on the inactive list */
4230 cnt = 0;
4231 list_for_each_entry_safe(obj, next,
4232 &dev_priv->mm.inactive_list,
4233 mm_list) {
4234 if (nr_to_scan &&
4235 i915_gem_object_unbind(obj) == 0)
4236 nr_to_scan--;
4237 else
4238 cnt++;
4239 }
4240
4241 if (nr_to_scan && i915_gpu_is_active(dev)) {
4242 /*
4243 * We are desperate for pages, so as a last resort, wait
4244 * for the GPU to finish and discard whatever we can.
4245 * This has a dramatic impact to reduce the number of
4246 * OOM-killer events whilst running the GPU aggressively.
4247 */
4248 if (i915_gpu_idle(dev) == 0)
4249 goto rescan;
4250 }
4251 mutex_unlock(&dev->struct_mutex);
4252 return cnt / 100 * sysctl_vfs_cache_pressure;
4253 }
This page took 0.182398 seconds and 5 git commands to generate.