drm/i915: Extract checking for backing struct pages to a helper
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69 {
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 if (!i915_reset_in_progress(error))
109 return 0;
110
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
116 ret = wait_event_interruptible_timeout(error->reset_queue,
117 !i915_reset_in_progress(error),
118 10*HZ);
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
123 return ret;
124 } else {
125 return 0;
126 }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = to_i915(dev);
151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 struct drm_i915_gem_get_aperture *args = data;
153 struct i915_vma *vma;
154 size_t pinned;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 if (vma->pin_count)
163 pinned += vma->node.size;
164 mutex_unlock(&dev->struct_mutex);
165
166 args->aper_size = ggtt->base.total;
167 args->aper_available_size = args->aper_size - pinned;
168
169 return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
180
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 put_page(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
215
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 if (WARN_ON(ret)) {
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
242 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243 char *vaddr = obj->phys_handle->vaddr;
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
261 mark_page_accessed(page);
262 put_page(page);
263 vaddr += PAGE_SIZE;
264 }
265 obj->dirty = 0;
266 }
267
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_object_create(dev, size);
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440 {
441 struct drm_i915_gem_create *args = data;
442
443 return i915_gem_create(file, dev,
444 args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451 {
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
476 int length)
477 {
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497 }
498
499 /*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506 {
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543 char *vaddr;
544 int ret;
545
546 if (unlikely(page_do_bit17_swizzling))
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
558 return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564 {
565 if (unlikely(swizzled)) {
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
609 return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617 {
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638 {
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733 out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744 out:
745 return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
753 {
754 char __user *user_data;
755 ssize_t remain;
756 loff_t offset;
757 int shmem_page_offset, page_length, ret = 0;
758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759 int prefaulted = 0;
760 int needs_clflush = 0;
761 struct sg_page_iter sg_iter;
762
763 if (!obj->base.filp)
764 return -ENODEV;
765
766 user_data = u64_to_user_ptr(args->data_ptr);
767 remain = args->size;
768
769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 if (ret)
773 return ret;
774
775 offset = args->offset;
776
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
779 struct page *page = sg_page_iter_page(&sg_iter);
780
781 if (remain <= 0)
782 break;
783
784 /* Operation in this page
785 *
786 * shmem_page_offset = offset within page in shmem file
787 * page_length = bytes to copy for this page
788 */
789 shmem_page_offset = offset_in_page(offset);
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
793
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
802
803 mutex_unlock(&dev->struct_mutex);
804
805 if (likely(!i915.prefault_disable) && !prefaulted) {
806 ret = fault_in_multipages_writeable(user_data, remain);
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
814
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
818
819 mutex_lock(&dev->struct_mutex);
820
821 if (ret)
822 goto out;
823
824 next_page:
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 i915_gem_object_unpin_pages(obj);
832
833 return ret;
834 }
835
836 /**
837 * Reads data from the object referenced by handle.
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
841 *
842 * On error, the contents of *data are undefined.
843 */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846 struct drm_file *file)
847 {
848 struct drm_i915_gem_pread *args = data;
849 struct drm_i915_gem_object *obj;
850 int ret = 0;
851
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
856 u64_to_user_ptr(args->data_ptr),
857 args->size))
858 return -EFAULT;
859
860 ret = i915_mutex_lock_interruptible(dev);
861 if (ret)
862 return ret;
863
864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865 if (&obj->base == NULL) {
866 ret = -ENOENT;
867 goto unlock;
868 }
869
870 /* Bounds check source. */
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
873 ret = -EINVAL;
874 goto out;
875 }
876
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879 ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV)
883 ret = i915_gem_gtt_pread(dev, obj, args->size,
884 args->offset, args->data_ptr);
885
886 out:
887 drm_gem_object_unreference(&obj->base);
888 unlock:
889 mutex_unlock(&dev->struct_mutex);
890 return ret;
891 }
892
893 /* This is the fast write path which cannot handle
894 * page faults in the source data
895 */
896
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899 loff_t page_base, int page_offset,
900 char __user *user_data,
901 int length)
902 {
903 void __iomem *vaddr_atomic;
904 void *vaddr;
905 unsigned long unwritten;
906
907 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 /* We can use the cpu mem copy function because this is X86. */
909 vaddr = (void __force*)vaddr_atomic + page_offset;
910 unwritten = __copy_from_user_inatomic_nocache(vaddr,
911 user_data, length);
912 io_mapping_unmap_atomic(vaddr_atomic);
913 return unwritten;
914 }
915
916 /**
917 * This is the fast pwrite path, where we copy the data directly from the
918 * user into the GTT, uncached.
919 * @dev: drm device pointer
920 * @obj: i915 gem object
921 * @args: pwrite arguments structure
922 * @file: drm file pointer
923 */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926 struct drm_i915_gem_object *obj,
927 struct drm_i915_gem_pwrite *args,
928 struct drm_file *file)
929 {
930 struct i915_ggtt *ggtt = &i915->ggtt;
931 struct drm_device *dev = obj->base.dev;
932 struct drm_mm_node node;
933 uint64_t remain, offset;
934 char __user *user_data;
935 int ret;
936 bool hit_slow_path = false;
937
938 if (obj->tiling_mode != I915_TILING_NONE)
939 return -EFAULT;
940
941 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 if (ret) {
943 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 if (ret)
945 goto out;
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret) {
949 remove_mappable_node(&node);
950 goto out;
951 }
952
953 i915_gem_object_pin_pages(obj);
954 } else {
955 node.start = i915_gem_obj_ggtt_offset(obj);
956 node.allocated = false;
957 ret = i915_gem_object_put_fence(obj);
958 if (ret)
959 goto out_unpin;
960 }
961
962 ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 if (ret)
964 goto out_unpin;
965
966 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967 obj->dirty = true;
968
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = args->offset;
971 remain = args->size;
972 while (remain) {
973 /* Operation in this page
974 *
975 * page_base = page offset within aperture
976 * page_offset = offset within page
977 * page_length = bytes to copy for this page
978 */
979 u32 page_base = node.start;
980 unsigned page_offset = offset_in_page(offset);
981 unsigned page_length = PAGE_SIZE - page_offset;
982 page_length = remain < page_length ? remain : page_length;
983 if (node.allocated) {
984 wmb(); /* flush the write before we modify the GGTT */
985 ggtt->base.insert_page(&ggtt->base,
986 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 node.start, I915_CACHE_NONE, 0);
988 wmb(); /* flush modifications to the GGTT (insert_page) */
989 } else {
990 page_base += offset & PAGE_MASK;
991 }
992 /* If we get a fault while copying data, then (presumably) our
993 * source page isn't available. Return the error and we'll
994 * retry in the slow path.
995 * If the object is non-shmem backed, we retry again with the
996 * path that handles page fault.
997 */
998 if (fast_user_write(ggtt->mappable, page_base,
999 page_offset, user_data, page_length)) {
1000 hit_slow_path = true;
1001 mutex_unlock(&dev->struct_mutex);
1002 if (slow_user_access(ggtt->mappable,
1003 page_base,
1004 page_offset, user_data,
1005 page_length, true)) {
1006 ret = -EFAULT;
1007 mutex_lock(&dev->struct_mutex);
1008 goto out_flush;
1009 }
1010
1011 mutex_lock(&dev->struct_mutex);
1012 }
1013
1014 remain -= page_length;
1015 user_data += page_length;
1016 offset += page_length;
1017 }
1018
1019 out_flush:
1020 if (hit_slow_path) {
1021 if (ret == 0 &&
1022 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 /* The user has modified the object whilst we tried
1024 * reading from it, and we now have no idea what domain
1025 * the pages should be in. As we have just been touching
1026 * them directly, flush everything back to the GTT
1027 * domain.
1028 */
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 }
1031 }
1032
1033 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035 if (node.allocated) {
1036 wmb();
1037 ggtt->base.clear_range(&ggtt->base,
1038 node.start, node.size,
1039 true);
1040 i915_gem_object_unpin_pages(obj);
1041 remove_mappable_node(&node);
1042 } else {
1043 i915_gem_object_ggtt_unpin(obj);
1044 }
1045 out:
1046 return ret;
1047 }
1048
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050 * Flushes invalid cachelines before writing to the target if
1051 * needs_clflush_before is set and flushes out any written cachelines after
1052 * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 char __user *user_data,
1056 bool page_do_bit17_swizzling,
1057 bool needs_clflush_before,
1058 bool needs_clflush_after)
1059 {
1060 char *vaddr;
1061 int ret;
1062
1063 if (unlikely(page_do_bit17_swizzling))
1064 return -EINVAL;
1065
1066 vaddr = kmap_atomic(page);
1067 if (needs_clflush_before)
1068 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 page_length);
1070 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 user_data, page_length);
1072 if (needs_clflush_after)
1073 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 page_length);
1075 kunmap_atomic(vaddr);
1076
1077 return ret ? -EFAULT : 0;
1078 }
1079
1080 /* Only difference to the fast-path function is that this can handle bit17
1081 * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 char __user *user_data,
1085 bool page_do_bit17_swizzling,
1086 bool needs_clflush_before,
1087 bool needs_clflush_after)
1088 {
1089 char *vaddr;
1090 int ret;
1091
1092 vaddr = kmap(page);
1093 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 page_length,
1096 page_do_bit17_swizzling);
1097 if (page_do_bit17_swizzling)
1098 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 user_data,
1100 page_length);
1101 else
1102 ret = __copy_from_user(vaddr + shmem_page_offset,
1103 user_data,
1104 page_length);
1105 if (needs_clflush_after)
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
1109 kunmap(page);
1110
1111 return ret ? -EFAULT : 0;
1112 }
1113
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116 struct drm_i915_gem_object *obj,
1117 struct drm_i915_gem_pwrite *args,
1118 struct drm_file *file)
1119 {
1120 ssize_t remain;
1121 loff_t offset;
1122 char __user *user_data;
1123 int shmem_page_offset, page_length, ret = 0;
1124 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125 int hit_slowpath = 0;
1126 int needs_clflush_after = 0;
1127 int needs_clflush_before = 0;
1128 struct sg_page_iter sg_iter;
1129
1130 user_data = u64_to_user_ptr(args->data_ptr);
1131 remain = args->size;
1132
1133 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134
1135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 /* If we're not in the cpu write domain, set ourself into the gtt
1137 * write domain and manually flush cachelines (if required). This
1138 * optimizes for the case when the gpu will use the data
1139 * right away and we therefore have to clflush anyway. */
1140 needs_clflush_after = cpu_write_needs_clflush(obj);
1141 ret = i915_gem_object_wait_rendering(obj, false);
1142 if (ret)
1143 return ret;
1144 }
1145 /* Same trick applies to invalidate partially written cachelines read
1146 * before writing. */
1147 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 needs_clflush_before =
1149 !cpu_cache_is_coherent(dev, obj->cache_level);
1150
1151 ret = i915_gem_object_get_pages(obj);
1152 if (ret)
1153 return ret;
1154
1155 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156
1157 i915_gem_object_pin_pages(obj);
1158
1159 offset = args->offset;
1160 obj->dirty = 1;
1161
1162 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 offset >> PAGE_SHIFT) {
1164 struct page *page = sg_page_iter_page(&sg_iter);
1165 int partial_cacheline_write;
1166
1167 if (remain <= 0)
1168 break;
1169
1170 /* Operation in this page
1171 *
1172 * shmem_page_offset = offset within page in shmem file
1173 * page_length = bytes to copy for this page
1174 */
1175 shmem_page_offset = offset_in_page(offset);
1176
1177 page_length = remain;
1178 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 page_length = PAGE_SIZE - shmem_page_offset;
1180
1181 /* If we don't overwrite a cacheline completely we need to be
1182 * careful to have up-to-date data by first clflushing. Don't
1183 * overcomplicate things and flush the entire patch. */
1184 partial_cacheline_write = needs_clflush_before &&
1185 ((shmem_page_offset | page_length)
1186 & (boot_cpu_data.x86_clflush_size - 1));
1187
1188 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 (page_to_phys(page) & (1 << 17)) != 0;
1190
1191 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 user_data, page_do_bit17_swizzling,
1193 partial_cacheline_write,
1194 needs_clflush_after);
1195 if (ret == 0)
1196 goto next_page;
1197
1198 hit_slowpath = 1;
1199 mutex_unlock(&dev->struct_mutex);
1200 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 user_data, page_do_bit17_swizzling,
1202 partial_cacheline_write,
1203 needs_clflush_after);
1204
1205 mutex_lock(&dev->struct_mutex);
1206
1207 if (ret)
1208 goto out;
1209
1210 next_page:
1211 remain -= page_length;
1212 user_data += page_length;
1213 offset += page_length;
1214 }
1215
1216 out:
1217 i915_gem_object_unpin_pages(obj);
1218
1219 if (hit_slowpath) {
1220 /*
1221 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 * cachelines in-line while writing and the object moved
1223 * out of the cpu write domain while we've dropped the lock.
1224 */
1225 if (!needs_clflush_after &&
1226 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227 if (i915_gem_clflush_object(obj, obj->pin_display))
1228 needs_clflush_after = true;
1229 }
1230 }
1231
1232 if (needs_clflush_after)
1233 i915_gem_chipset_flush(to_i915(dev));
1234 else
1235 obj->cache_dirty = true;
1236
1237 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238 return ret;
1239 }
1240
1241 /**
1242 * Writes data to the object referenced by handle.
1243 * @dev: drm device
1244 * @data: ioctl data blob
1245 * @file: drm file
1246 *
1247 * On error, the contents of the buffer that were to be modified are undefined.
1248 */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251 struct drm_file *file)
1252 {
1253 struct drm_i915_private *dev_priv = dev->dev_private;
1254 struct drm_i915_gem_pwrite *args = data;
1255 struct drm_i915_gem_object *obj;
1256 int ret;
1257
1258 if (args->size == 0)
1259 return 0;
1260
1261 if (!access_ok(VERIFY_READ,
1262 u64_to_user_ptr(args->data_ptr),
1263 args->size))
1264 return -EFAULT;
1265
1266 if (likely(!i915.prefault_disable)) {
1267 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 args->size);
1269 if (ret)
1270 return -EFAULT;
1271 }
1272
1273 intel_runtime_pm_get(dev_priv);
1274
1275 ret = i915_mutex_lock_interruptible(dev);
1276 if (ret)
1277 goto put_rpm;
1278
1279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280 if (&obj->base == NULL) {
1281 ret = -ENOENT;
1282 goto unlock;
1283 }
1284
1285 /* Bounds check destination. */
1286 if (args->offset > obj->base.size ||
1287 args->size > obj->base.size - args->offset) {
1288 ret = -EINVAL;
1289 goto out;
1290 }
1291
1292 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
1294 ret = -EFAULT;
1295 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 * it would end up going through the fenced access, and we'll get
1297 * different detiling behavior between reading and writing.
1298 * pread/pwrite currently are reading and writing from the CPU
1299 * perspective, requiring manual detiling by the client.
1300 */
1301 if (!obj->base.filp || cpu_write_needs_clflush(obj)) {
1302 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1303 /* Note that the gtt paths might fail with non-page-backed user
1304 * pointers (e.g. gtt mappings when moving data between
1305 * textures). Fallback to the shmem path in that case. */
1306 }
1307
1308 if (ret == -EFAULT) {
1309 if (obj->phys_handle)
1310 ret = i915_gem_phys_pwrite(obj, args, file);
1311 else if (obj->base.filp)
1312 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1313 else
1314 ret = -ENODEV;
1315 }
1316
1317 out:
1318 drm_gem_object_unreference(&obj->base);
1319 unlock:
1320 mutex_unlock(&dev->struct_mutex);
1321 put_rpm:
1322 intel_runtime_pm_put(dev_priv);
1323
1324 return ret;
1325 }
1326
1327 static int
1328 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1329 {
1330 if (__i915_terminally_wedged(reset_counter))
1331 return -EIO;
1332
1333 if (__i915_reset_in_progress(reset_counter)) {
1334 /* Non-interruptible callers can't handle -EAGAIN, hence return
1335 * -EIO unconditionally for these. */
1336 if (!interruptible)
1337 return -EIO;
1338
1339 return -EAGAIN;
1340 }
1341
1342 return 0;
1343 }
1344
1345 static void fake_irq(unsigned long data)
1346 {
1347 wake_up_process((struct task_struct *)data);
1348 }
1349
1350 static bool missed_irq(struct drm_i915_private *dev_priv,
1351 struct intel_engine_cs *engine)
1352 {
1353 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1354 }
1355
1356 static unsigned long local_clock_us(unsigned *cpu)
1357 {
1358 unsigned long t;
1359
1360 /* Cheaply and approximately convert from nanoseconds to microseconds.
1361 * The result and subsequent calculations are also defined in the same
1362 * approximate microseconds units. The principal source of timing
1363 * error here is from the simple truncation.
1364 *
1365 * Note that local_clock() is only defined wrt to the current CPU;
1366 * the comparisons are no longer valid if we switch CPUs. Instead of
1367 * blocking preemption for the entire busywait, we can detect the CPU
1368 * switch and use that as indicator of system load and a reason to
1369 * stop busywaiting, see busywait_stop().
1370 */
1371 *cpu = get_cpu();
1372 t = local_clock() >> 10;
1373 put_cpu();
1374
1375 return t;
1376 }
1377
1378 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1379 {
1380 unsigned this_cpu;
1381
1382 if (time_after(local_clock_us(&this_cpu), timeout))
1383 return true;
1384
1385 return this_cpu != cpu;
1386 }
1387
1388 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1389 {
1390 unsigned long timeout;
1391 unsigned cpu;
1392
1393 /* When waiting for high frequency requests, e.g. during synchronous
1394 * rendering split between the CPU and GPU, the finite amount of time
1395 * required to set up the irq and wait upon it limits the response
1396 * rate. By busywaiting on the request completion for a short while we
1397 * can service the high frequency waits as quick as possible. However,
1398 * if it is a slow request, we want to sleep as quickly as possible.
1399 * The tradeoff between waiting and sleeping is roughly the time it
1400 * takes to sleep on a request, on the order of a microsecond.
1401 */
1402
1403 if (req->engine->irq_refcount)
1404 return -EBUSY;
1405
1406 /* Only spin if we know the GPU is processing this request */
1407 if (!i915_gem_request_started(req, true))
1408 return -EAGAIN;
1409
1410 timeout = local_clock_us(&cpu) + 5;
1411 while (!need_resched()) {
1412 if (i915_gem_request_completed(req, true))
1413 return 0;
1414
1415 if (signal_pending_state(state, current))
1416 break;
1417
1418 if (busywait_stop(timeout, cpu))
1419 break;
1420
1421 cpu_relax_lowlatency();
1422 }
1423
1424 if (i915_gem_request_completed(req, false))
1425 return 0;
1426
1427 return -EAGAIN;
1428 }
1429
1430 /**
1431 * __i915_wait_request - wait until execution of request has finished
1432 * @req: duh!
1433 * @interruptible: do an interruptible wait (normally yes)
1434 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1435 * @rps: RPS client
1436 *
1437 * Note: It is of utmost importance that the passed in seqno and reset_counter
1438 * values have been read by the caller in an smp safe manner. Where read-side
1439 * locks are involved, it is sufficient to read the reset_counter before
1440 * unlocking the lock that protects the seqno. For lockless tricks, the
1441 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1442 * inserted.
1443 *
1444 * Returns 0 if the request was found within the alloted time. Else returns the
1445 * errno with remaining time filled in timeout argument.
1446 */
1447 int __i915_wait_request(struct drm_i915_gem_request *req,
1448 bool interruptible,
1449 s64 *timeout,
1450 struct intel_rps_client *rps)
1451 {
1452 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1453 struct drm_i915_private *dev_priv = req->i915;
1454 const bool irq_test_in_progress =
1455 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1456 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1457 DEFINE_WAIT(wait);
1458 unsigned long timeout_expire;
1459 s64 before = 0; /* Only to silence a compiler warning. */
1460 int ret;
1461
1462 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1463
1464 if (list_empty(&req->list))
1465 return 0;
1466
1467 if (i915_gem_request_completed(req, true))
1468 return 0;
1469
1470 timeout_expire = 0;
1471 if (timeout) {
1472 if (WARN_ON(*timeout < 0))
1473 return -EINVAL;
1474
1475 if (*timeout == 0)
1476 return -ETIME;
1477
1478 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1479
1480 /*
1481 * Record current time in case interrupted by signal, or wedged.
1482 */
1483 before = ktime_get_raw_ns();
1484 }
1485
1486 if (INTEL_INFO(dev_priv)->gen >= 6)
1487 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1488
1489 trace_i915_gem_request_wait_begin(req);
1490
1491 /* Optimistic spin for the next jiffie before touching IRQs */
1492 ret = __i915_spin_request(req, state);
1493 if (ret == 0)
1494 goto out;
1495
1496 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1497 ret = -ENODEV;
1498 goto out;
1499 }
1500
1501 for (;;) {
1502 struct timer_list timer;
1503
1504 prepare_to_wait(&engine->irq_queue, &wait, state);
1505
1506 /* We need to check whether any gpu reset happened in between
1507 * the request being submitted and now. If a reset has occurred,
1508 * the request is effectively complete (we either are in the
1509 * process of or have discarded the rendering and completely
1510 * reset the GPU. The results of the request are lost and we
1511 * are free to continue on with the original operation.
1512 */
1513 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1514 ret = 0;
1515 break;
1516 }
1517
1518 if (i915_gem_request_completed(req, false)) {
1519 ret = 0;
1520 break;
1521 }
1522
1523 if (signal_pending_state(state, current)) {
1524 ret = -ERESTARTSYS;
1525 break;
1526 }
1527
1528 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1529 ret = -ETIME;
1530 break;
1531 }
1532
1533 timer.function = NULL;
1534 if (timeout || missed_irq(dev_priv, engine)) {
1535 unsigned long expire;
1536
1537 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1538 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1539 mod_timer(&timer, expire);
1540 }
1541
1542 io_schedule();
1543
1544 if (timer.function) {
1545 del_singleshot_timer_sync(&timer);
1546 destroy_timer_on_stack(&timer);
1547 }
1548 }
1549 if (!irq_test_in_progress)
1550 engine->irq_put(engine);
1551
1552 finish_wait(&engine->irq_queue, &wait);
1553
1554 out:
1555 trace_i915_gem_request_wait_end(req);
1556
1557 if (timeout) {
1558 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1559
1560 *timeout = tres < 0 ? 0 : tres;
1561
1562 /*
1563 * Apparently ktime isn't accurate enough and occasionally has a
1564 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1565 * things up to make the test happy. We allow up to 1 jiffy.
1566 *
1567 * This is a regrssion from the timespec->ktime conversion.
1568 */
1569 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1570 *timeout = 0;
1571 }
1572
1573 return ret;
1574 }
1575
1576 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1577 struct drm_file *file)
1578 {
1579 struct drm_i915_file_private *file_priv;
1580
1581 WARN_ON(!req || !file || req->file_priv);
1582
1583 if (!req || !file)
1584 return -EINVAL;
1585
1586 if (req->file_priv)
1587 return -EINVAL;
1588
1589 file_priv = file->driver_priv;
1590
1591 spin_lock(&file_priv->mm.lock);
1592 req->file_priv = file_priv;
1593 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1594 spin_unlock(&file_priv->mm.lock);
1595
1596 req->pid = get_pid(task_pid(current));
1597
1598 return 0;
1599 }
1600
1601 static inline void
1602 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1603 {
1604 struct drm_i915_file_private *file_priv = request->file_priv;
1605
1606 if (!file_priv)
1607 return;
1608
1609 spin_lock(&file_priv->mm.lock);
1610 list_del(&request->client_list);
1611 request->file_priv = NULL;
1612 spin_unlock(&file_priv->mm.lock);
1613
1614 put_pid(request->pid);
1615 request->pid = NULL;
1616 }
1617
1618 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1619 {
1620 trace_i915_gem_request_retire(request);
1621
1622 /* We know the GPU must have read the request to have
1623 * sent us the seqno + interrupt, so use the position
1624 * of tail of the request to update the last known position
1625 * of the GPU head.
1626 *
1627 * Note this requires that we are always called in request
1628 * completion order.
1629 */
1630 request->ringbuf->last_retired_head = request->postfix;
1631
1632 list_del_init(&request->list);
1633 i915_gem_request_remove_from_client(request);
1634
1635 if (request->previous_context) {
1636 if (i915.enable_execlists)
1637 intel_lr_context_unpin(request->previous_context,
1638 request->engine);
1639 }
1640
1641 i915_gem_context_unreference(request->ctx);
1642 i915_gem_request_unreference(request);
1643 }
1644
1645 static void
1646 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1647 {
1648 struct intel_engine_cs *engine = req->engine;
1649 struct drm_i915_gem_request *tmp;
1650
1651 lockdep_assert_held(&engine->i915->dev->struct_mutex);
1652
1653 if (list_empty(&req->list))
1654 return;
1655
1656 do {
1657 tmp = list_first_entry(&engine->request_list,
1658 typeof(*tmp), list);
1659
1660 i915_gem_request_retire(tmp);
1661 } while (tmp != req);
1662
1663 WARN_ON(i915_verify_lists(engine->dev));
1664 }
1665
1666 /**
1667 * Waits for a request to be signaled, and cleans up the
1668 * request and object lists appropriately for that event.
1669 * @req: request to wait on
1670 */
1671 int
1672 i915_wait_request(struct drm_i915_gem_request *req)
1673 {
1674 struct drm_i915_private *dev_priv = req->i915;
1675 bool interruptible;
1676 int ret;
1677
1678 interruptible = dev_priv->mm.interruptible;
1679
1680 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1681
1682 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1683 if (ret)
1684 return ret;
1685
1686 /* If the GPU hung, we want to keep the requests to find the guilty. */
1687 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1688 __i915_gem_request_retire__upto(req);
1689
1690 return 0;
1691 }
1692
1693 /**
1694 * Ensures that all rendering to the object has completed and the object is
1695 * safe to unbind from the GTT or access from the CPU.
1696 * @obj: i915 gem object
1697 * @readonly: waiting for read access or write
1698 */
1699 int
1700 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1701 bool readonly)
1702 {
1703 int ret, i;
1704
1705 if (!obj->active)
1706 return 0;
1707
1708 if (readonly) {
1709 if (obj->last_write_req != NULL) {
1710 ret = i915_wait_request(obj->last_write_req);
1711 if (ret)
1712 return ret;
1713
1714 i = obj->last_write_req->engine->id;
1715 if (obj->last_read_req[i] == obj->last_write_req)
1716 i915_gem_object_retire__read(obj, i);
1717 else
1718 i915_gem_object_retire__write(obj);
1719 }
1720 } else {
1721 for (i = 0; i < I915_NUM_ENGINES; i++) {
1722 if (obj->last_read_req[i] == NULL)
1723 continue;
1724
1725 ret = i915_wait_request(obj->last_read_req[i]);
1726 if (ret)
1727 return ret;
1728
1729 i915_gem_object_retire__read(obj, i);
1730 }
1731 GEM_BUG_ON(obj->active);
1732 }
1733
1734 return 0;
1735 }
1736
1737 static void
1738 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1739 struct drm_i915_gem_request *req)
1740 {
1741 int ring = req->engine->id;
1742
1743 if (obj->last_read_req[ring] == req)
1744 i915_gem_object_retire__read(obj, ring);
1745 else if (obj->last_write_req == req)
1746 i915_gem_object_retire__write(obj);
1747
1748 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1749 __i915_gem_request_retire__upto(req);
1750 }
1751
1752 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1753 * as the object state may change during this call.
1754 */
1755 static __must_check int
1756 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1757 struct intel_rps_client *rps,
1758 bool readonly)
1759 {
1760 struct drm_device *dev = obj->base.dev;
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1763 int ret, i, n = 0;
1764
1765 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1766 BUG_ON(!dev_priv->mm.interruptible);
1767
1768 if (!obj->active)
1769 return 0;
1770
1771 if (readonly) {
1772 struct drm_i915_gem_request *req;
1773
1774 req = obj->last_write_req;
1775 if (req == NULL)
1776 return 0;
1777
1778 requests[n++] = i915_gem_request_reference(req);
1779 } else {
1780 for (i = 0; i < I915_NUM_ENGINES; i++) {
1781 struct drm_i915_gem_request *req;
1782
1783 req = obj->last_read_req[i];
1784 if (req == NULL)
1785 continue;
1786
1787 requests[n++] = i915_gem_request_reference(req);
1788 }
1789 }
1790
1791 mutex_unlock(&dev->struct_mutex);
1792 ret = 0;
1793 for (i = 0; ret == 0 && i < n; i++)
1794 ret = __i915_wait_request(requests[i], true, NULL, rps);
1795 mutex_lock(&dev->struct_mutex);
1796
1797 for (i = 0; i < n; i++) {
1798 if (ret == 0)
1799 i915_gem_object_retire_request(obj, requests[i]);
1800 i915_gem_request_unreference(requests[i]);
1801 }
1802
1803 return ret;
1804 }
1805
1806 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1807 {
1808 struct drm_i915_file_private *fpriv = file->driver_priv;
1809 return &fpriv->rps;
1810 }
1811
1812 /**
1813 * Called when user space prepares to use an object with the CPU, either
1814 * through the mmap ioctl's mapping or a GTT mapping.
1815 * @dev: drm device
1816 * @data: ioctl data blob
1817 * @file: drm file
1818 */
1819 int
1820 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1821 struct drm_file *file)
1822 {
1823 struct drm_i915_gem_set_domain *args = data;
1824 struct drm_i915_gem_object *obj;
1825 uint32_t read_domains = args->read_domains;
1826 uint32_t write_domain = args->write_domain;
1827 int ret;
1828
1829 /* Only handle setting domains to types used by the CPU. */
1830 if (write_domain & I915_GEM_GPU_DOMAINS)
1831 return -EINVAL;
1832
1833 if (read_domains & I915_GEM_GPU_DOMAINS)
1834 return -EINVAL;
1835
1836 /* Having something in the write domain implies it's in the read
1837 * domain, and only that read domain. Enforce that in the request.
1838 */
1839 if (write_domain != 0 && read_domains != write_domain)
1840 return -EINVAL;
1841
1842 ret = i915_mutex_lock_interruptible(dev);
1843 if (ret)
1844 return ret;
1845
1846 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1847 if (&obj->base == NULL) {
1848 ret = -ENOENT;
1849 goto unlock;
1850 }
1851
1852 /* Try to flush the object off the GPU without holding the lock.
1853 * We will repeat the flush holding the lock in the normal manner
1854 * to catch cases where we are gazumped.
1855 */
1856 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1857 to_rps_client(file),
1858 !write_domain);
1859 if (ret)
1860 goto unref;
1861
1862 if (read_domains & I915_GEM_DOMAIN_GTT)
1863 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1864 else
1865 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1866
1867 if (write_domain != 0)
1868 intel_fb_obj_invalidate(obj,
1869 write_domain == I915_GEM_DOMAIN_GTT ?
1870 ORIGIN_GTT : ORIGIN_CPU);
1871
1872 unref:
1873 drm_gem_object_unreference(&obj->base);
1874 unlock:
1875 mutex_unlock(&dev->struct_mutex);
1876 return ret;
1877 }
1878
1879 /**
1880 * Called when user space has done writes to this buffer
1881 * @dev: drm device
1882 * @data: ioctl data blob
1883 * @file: drm file
1884 */
1885 int
1886 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1887 struct drm_file *file)
1888 {
1889 struct drm_i915_gem_sw_finish *args = data;
1890 struct drm_i915_gem_object *obj;
1891 int ret = 0;
1892
1893 ret = i915_mutex_lock_interruptible(dev);
1894 if (ret)
1895 return ret;
1896
1897 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1898 if (&obj->base == NULL) {
1899 ret = -ENOENT;
1900 goto unlock;
1901 }
1902
1903 /* Pinned buffers may be scanout, so flush the cache */
1904 if (obj->pin_display)
1905 i915_gem_object_flush_cpu_write_domain(obj);
1906
1907 drm_gem_object_unreference(&obj->base);
1908 unlock:
1909 mutex_unlock(&dev->struct_mutex);
1910 return ret;
1911 }
1912
1913 /**
1914 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1915 * it is mapped to.
1916 * @dev: drm device
1917 * @data: ioctl data blob
1918 * @file: drm file
1919 *
1920 * While the mapping holds a reference on the contents of the object, it doesn't
1921 * imply a ref on the object itself.
1922 *
1923 * IMPORTANT:
1924 *
1925 * DRM driver writers who look a this function as an example for how to do GEM
1926 * mmap support, please don't implement mmap support like here. The modern way
1927 * to implement DRM mmap support is with an mmap offset ioctl (like
1928 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1929 * That way debug tooling like valgrind will understand what's going on, hiding
1930 * the mmap call in a driver private ioctl will break that. The i915 driver only
1931 * does cpu mmaps this way because we didn't know better.
1932 */
1933 int
1934 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1935 struct drm_file *file)
1936 {
1937 struct drm_i915_gem_mmap *args = data;
1938 struct drm_gem_object *obj;
1939 unsigned long addr;
1940
1941 if (args->flags & ~(I915_MMAP_WC))
1942 return -EINVAL;
1943
1944 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1945 return -ENODEV;
1946
1947 obj = drm_gem_object_lookup(file, args->handle);
1948 if (obj == NULL)
1949 return -ENOENT;
1950
1951 /* prime objects have no backing filp to GEM mmap
1952 * pages from.
1953 */
1954 if (!obj->filp) {
1955 drm_gem_object_unreference_unlocked(obj);
1956 return -EINVAL;
1957 }
1958
1959 addr = vm_mmap(obj->filp, 0, args->size,
1960 PROT_READ | PROT_WRITE, MAP_SHARED,
1961 args->offset);
1962 if (args->flags & I915_MMAP_WC) {
1963 struct mm_struct *mm = current->mm;
1964 struct vm_area_struct *vma;
1965
1966 if (down_write_killable(&mm->mmap_sem)) {
1967 drm_gem_object_unreference_unlocked(obj);
1968 return -EINTR;
1969 }
1970 vma = find_vma(mm, addr);
1971 if (vma)
1972 vma->vm_page_prot =
1973 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1974 else
1975 addr = -ENOMEM;
1976 up_write(&mm->mmap_sem);
1977 }
1978 drm_gem_object_unreference_unlocked(obj);
1979 if (IS_ERR((void *)addr))
1980 return addr;
1981
1982 args->addr_ptr = (uint64_t) addr;
1983
1984 return 0;
1985 }
1986
1987 /**
1988 * i915_gem_fault - fault a page into the GTT
1989 * @vma: VMA in question
1990 * @vmf: fault info
1991 *
1992 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1993 * from userspace. The fault handler takes care of binding the object to
1994 * the GTT (if needed), allocating and programming a fence register (again,
1995 * only if needed based on whether the old reg is still valid or the object
1996 * is tiled) and inserting a new PTE into the faulting process.
1997 *
1998 * Note that the faulting process may involve evicting existing objects
1999 * from the GTT and/or fence registers to make room. So performance may
2000 * suffer if the GTT working set is large or there are few fence registers
2001 * left.
2002 */
2003 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2004 {
2005 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2006 struct drm_device *dev = obj->base.dev;
2007 struct drm_i915_private *dev_priv = to_i915(dev);
2008 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2009 struct i915_ggtt_view view = i915_ggtt_view_normal;
2010 pgoff_t page_offset;
2011 unsigned long pfn;
2012 int ret = 0;
2013 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2014
2015 intel_runtime_pm_get(dev_priv);
2016
2017 /* We don't use vmf->pgoff since that has the fake offset */
2018 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2019 PAGE_SHIFT;
2020
2021 ret = i915_mutex_lock_interruptible(dev);
2022 if (ret)
2023 goto out;
2024
2025 trace_i915_gem_object_fault(obj, page_offset, true, write);
2026
2027 /* Try to flush the object off the GPU first without holding the lock.
2028 * Upon reacquiring the lock, we will perform our sanity checks and then
2029 * repeat the flush holding the lock in the normal manner to catch cases
2030 * where we are gazumped.
2031 */
2032 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2033 if (ret)
2034 goto unlock;
2035
2036 /* Access to snoopable pages through the GTT is incoherent. */
2037 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2038 ret = -EFAULT;
2039 goto unlock;
2040 }
2041
2042 /* Use a partial view if the object is bigger than the aperture. */
2043 if (obj->base.size >= ggtt->mappable_end &&
2044 obj->tiling_mode == I915_TILING_NONE) {
2045 static const unsigned int chunk_size = 256; // 1 MiB
2046
2047 memset(&view, 0, sizeof(view));
2048 view.type = I915_GGTT_VIEW_PARTIAL;
2049 view.params.partial.offset = rounddown(page_offset, chunk_size);
2050 view.params.partial.size =
2051 min_t(unsigned int,
2052 chunk_size,
2053 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2054 view.params.partial.offset);
2055 }
2056
2057 /* Now pin it into the GTT if needed */
2058 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2059 if (ret)
2060 goto unlock;
2061
2062 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2063 if (ret)
2064 goto unpin;
2065
2066 ret = i915_gem_object_get_fence(obj);
2067 if (ret)
2068 goto unpin;
2069
2070 /* Finally, remap it using the new GTT offset */
2071 pfn = ggtt->mappable_base +
2072 i915_gem_obj_ggtt_offset_view(obj, &view);
2073 pfn >>= PAGE_SHIFT;
2074
2075 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2076 /* Overriding existing pages in partial view does not cause
2077 * us any trouble as TLBs are still valid because the fault
2078 * is due to userspace losing part of the mapping or never
2079 * having accessed it before (at this partials' range).
2080 */
2081 unsigned long base = vma->vm_start +
2082 (view.params.partial.offset << PAGE_SHIFT);
2083 unsigned int i;
2084
2085 for (i = 0; i < view.params.partial.size; i++) {
2086 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2087 if (ret)
2088 break;
2089 }
2090
2091 obj->fault_mappable = true;
2092 } else {
2093 if (!obj->fault_mappable) {
2094 unsigned long size = min_t(unsigned long,
2095 vma->vm_end - vma->vm_start,
2096 obj->base.size);
2097 int i;
2098
2099 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2100 ret = vm_insert_pfn(vma,
2101 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2102 pfn + i);
2103 if (ret)
2104 break;
2105 }
2106
2107 obj->fault_mappable = true;
2108 } else
2109 ret = vm_insert_pfn(vma,
2110 (unsigned long)vmf->virtual_address,
2111 pfn + page_offset);
2112 }
2113 unpin:
2114 i915_gem_object_ggtt_unpin_view(obj, &view);
2115 unlock:
2116 mutex_unlock(&dev->struct_mutex);
2117 out:
2118 switch (ret) {
2119 case -EIO:
2120 /*
2121 * We eat errors when the gpu is terminally wedged to avoid
2122 * userspace unduly crashing (gl has no provisions for mmaps to
2123 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2124 * and so needs to be reported.
2125 */
2126 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2127 ret = VM_FAULT_SIGBUS;
2128 break;
2129 }
2130 case -EAGAIN:
2131 /*
2132 * EAGAIN means the gpu is hung and we'll wait for the error
2133 * handler to reset everything when re-faulting in
2134 * i915_mutex_lock_interruptible.
2135 */
2136 case 0:
2137 case -ERESTARTSYS:
2138 case -EINTR:
2139 case -EBUSY:
2140 /*
2141 * EBUSY is ok: this just means that another thread
2142 * already did the job.
2143 */
2144 ret = VM_FAULT_NOPAGE;
2145 break;
2146 case -ENOMEM:
2147 ret = VM_FAULT_OOM;
2148 break;
2149 case -ENOSPC:
2150 case -EFAULT:
2151 ret = VM_FAULT_SIGBUS;
2152 break;
2153 default:
2154 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2155 ret = VM_FAULT_SIGBUS;
2156 break;
2157 }
2158
2159 intel_runtime_pm_put(dev_priv);
2160 return ret;
2161 }
2162
2163 /**
2164 * i915_gem_release_mmap - remove physical page mappings
2165 * @obj: obj in question
2166 *
2167 * Preserve the reservation of the mmapping with the DRM core code, but
2168 * relinquish ownership of the pages back to the system.
2169 *
2170 * It is vital that we remove the page mapping if we have mapped a tiled
2171 * object through the GTT and then lose the fence register due to
2172 * resource pressure. Similarly if the object has been moved out of the
2173 * aperture, than pages mapped into userspace must be revoked. Removing the
2174 * mapping will then trigger a page fault on the next user access, allowing
2175 * fixup by i915_gem_fault().
2176 */
2177 void
2178 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2179 {
2180 /* Serialisation between user GTT access and our code depends upon
2181 * revoking the CPU's PTE whilst the mutex is held. The next user
2182 * pagefault then has to wait until we release the mutex.
2183 */
2184 lockdep_assert_held(&obj->base.dev->struct_mutex);
2185
2186 if (!obj->fault_mappable)
2187 return;
2188
2189 drm_vma_node_unmap(&obj->base.vma_node,
2190 obj->base.dev->anon_inode->i_mapping);
2191
2192 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2193 * memory transactions from userspace before we return. The TLB
2194 * flushing implied above by changing the PTE above *should* be
2195 * sufficient, an extra barrier here just provides us with a bit
2196 * of paranoid documentation about our requirement to serialise
2197 * memory writes before touching registers / GSM.
2198 */
2199 wmb();
2200
2201 obj->fault_mappable = false;
2202 }
2203
2204 void
2205 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2206 {
2207 struct drm_i915_gem_object *obj;
2208
2209 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2210 i915_gem_release_mmap(obj);
2211 }
2212
2213 uint32_t
2214 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2215 {
2216 uint32_t gtt_size;
2217
2218 if (INTEL_INFO(dev)->gen >= 4 ||
2219 tiling_mode == I915_TILING_NONE)
2220 return size;
2221
2222 /* Previous chips need a power-of-two fence region when tiling */
2223 if (IS_GEN3(dev))
2224 gtt_size = 1024*1024;
2225 else
2226 gtt_size = 512*1024;
2227
2228 while (gtt_size < size)
2229 gtt_size <<= 1;
2230
2231 return gtt_size;
2232 }
2233
2234 /**
2235 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2236 * @dev: drm device
2237 * @size: object size
2238 * @tiling_mode: tiling mode
2239 * @fenced: is fenced alignemned required or not
2240 *
2241 * Return the required GTT alignment for an object, taking into account
2242 * potential fence register mapping.
2243 */
2244 uint32_t
2245 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2246 int tiling_mode, bool fenced)
2247 {
2248 /*
2249 * Minimum alignment is 4k (GTT page size), but might be greater
2250 * if a fence register is needed for the object.
2251 */
2252 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2253 tiling_mode == I915_TILING_NONE)
2254 return 4096;
2255
2256 /*
2257 * Previous chips need to be aligned to the size of the smallest
2258 * fence register that can contain the object.
2259 */
2260 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2261 }
2262
2263 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2264 {
2265 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2266 int ret;
2267
2268 dev_priv->mm.shrinker_no_lock_stealing = true;
2269
2270 ret = drm_gem_create_mmap_offset(&obj->base);
2271 if (ret != -ENOSPC)
2272 goto out;
2273
2274 /* Badly fragmented mmap space? The only way we can recover
2275 * space is by destroying unwanted objects. We can't randomly release
2276 * mmap_offsets as userspace expects them to be persistent for the
2277 * lifetime of the objects. The closest we can is to release the
2278 * offsets on purgeable objects by truncating it and marking it purged,
2279 * which prevents userspace from ever using that object again.
2280 */
2281 i915_gem_shrink(dev_priv,
2282 obj->base.size >> PAGE_SHIFT,
2283 I915_SHRINK_BOUND |
2284 I915_SHRINK_UNBOUND |
2285 I915_SHRINK_PURGEABLE);
2286 ret = drm_gem_create_mmap_offset(&obj->base);
2287 if (ret != -ENOSPC)
2288 goto out;
2289
2290 i915_gem_shrink_all(dev_priv);
2291 ret = drm_gem_create_mmap_offset(&obj->base);
2292 out:
2293 dev_priv->mm.shrinker_no_lock_stealing = false;
2294
2295 return ret;
2296 }
2297
2298 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2299 {
2300 drm_gem_free_mmap_offset(&obj->base);
2301 }
2302
2303 int
2304 i915_gem_mmap_gtt(struct drm_file *file,
2305 struct drm_device *dev,
2306 uint32_t handle,
2307 uint64_t *offset)
2308 {
2309 struct drm_i915_gem_object *obj;
2310 int ret;
2311
2312 ret = i915_mutex_lock_interruptible(dev);
2313 if (ret)
2314 return ret;
2315
2316 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2317 if (&obj->base == NULL) {
2318 ret = -ENOENT;
2319 goto unlock;
2320 }
2321
2322 if (obj->madv != I915_MADV_WILLNEED) {
2323 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2324 ret = -EFAULT;
2325 goto out;
2326 }
2327
2328 ret = i915_gem_object_create_mmap_offset(obj);
2329 if (ret)
2330 goto out;
2331
2332 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2333
2334 out:
2335 drm_gem_object_unreference(&obj->base);
2336 unlock:
2337 mutex_unlock(&dev->struct_mutex);
2338 return ret;
2339 }
2340
2341 /**
2342 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2343 * @dev: DRM device
2344 * @data: GTT mapping ioctl data
2345 * @file: GEM object info
2346 *
2347 * Simply returns the fake offset to userspace so it can mmap it.
2348 * The mmap call will end up in drm_gem_mmap(), which will set things
2349 * up so we can get faults in the handler above.
2350 *
2351 * The fault handler will take care of binding the object into the GTT
2352 * (since it may have been evicted to make room for something), allocating
2353 * a fence register, and mapping the appropriate aperture address into
2354 * userspace.
2355 */
2356 int
2357 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2358 struct drm_file *file)
2359 {
2360 struct drm_i915_gem_mmap_gtt *args = data;
2361
2362 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2363 }
2364
2365 /* Immediately discard the backing storage */
2366 static void
2367 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2368 {
2369 i915_gem_object_free_mmap_offset(obj);
2370
2371 if (obj->base.filp == NULL)
2372 return;
2373
2374 /* Our goal here is to return as much of the memory as
2375 * is possible back to the system as we are called from OOM.
2376 * To do this we must instruct the shmfs to drop all of its
2377 * backing pages, *now*.
2378 */
2379 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2380 obj->madv = __I915_MADV_PURGED;
2381 }
2382
2383 /* Try to discard unwanted pages */
2384 static void
2385 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2386 {
2387 struct address_space *mapping;
2388
2389 switch (obj->madv) {
2390 case I915_MADV_DONTNEED:
2391 i915_gem_object_truncate(obj);
2392 case __I915_MADV_PURGED:
2393 return;
2394 }
2395
2396 if (obj->base.filp == NULL)
2397 return;
2398
2399 mapping = file_inode(obj->base.filp)->i_mapping,
2400 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2401 }
2402
2403 static void
2404 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2405 {
2406 struct sgt_iter sgt_iter;
2407 struct page *page;
2408 int ret;
2409
2410 BUG_ON(obj->madv == __I915_MADV_PURGED);
2411
2412 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2413 if (WARN_ON(ret)) {
2414 /* In the event of a disaster, abandon all caches and
2415 * hope for the best.
2416 */
2417 i915_gem_clflush_object(obj, true);
2418 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2419 }
2420
2421 i915_gem_gtt_finish_object(obj);
2422
2423 if (i915_gem_object_needs_bit17_swizzle(obj))
2424 i915_gem_object_save_bit_17_swizzle(obj);
2425
2426 if (obj->madv == I915_MADV_DONTNEED)
2427 obj->dirty = 0;
2428
2429 for_each_sgt_page(page, sgt_iter, obj->pages) {
2430 if (obj->dirty)
2431 set_page_dirty(page);
2432
2433 if (obj->madv == I915_MADV_WILLNEED)
2434 mark_page_accessed(page);
2435
2436 put_page(page);
2437 }
2438 obj->dirty = 0;
2439
2440 sg_free_table(obj->pages);
2441 kfree(obj->pages);
2442 }
2443
2444 int
2445 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2446 {
2447 const struct drm_i915_gem_object_ops *ops = obj->ops;
2448
2449 if (obj->pages == NULL)
2450 return 0;
2451
2452 if (obj->pages_pin_count)
2453 return -EBUSY;
2454
2455 BUG_ON(i915_gem_obj_bound_any(obj));
2456
2457 /* ->put_pages might need to allocate memory for the bit17 swizzle
2458 * array, hence protect them from being reaped by removing them from gtt
2459 * lists early. */
2460 list_del(&obj->global_list);
2461
2462 if (obj->mapping) {
2463 if (is_vmalloc_addr(obj->mapping))
2464 vunmap(obj->mapping);
2465 else
2466 kunmap(kmap_to_page(obj->mapping));
2467 obj->mapping = NULL;
2468 }
2469
2470 ops->put_pages(obj);
2471 obj->pages = NULL;
2472
2473 i915_gem_object_invalidate(obj);
2474
2475 return 0;
2476 }
2477
2478 static int
2479 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2480 {
2481 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2482 int page_count, i;
2483 struct address_space *mapping;
2484 struct sg_table *st;
2485 struct scatterlist *sg;
2486 struct sgt_iter sgt_iter;
2487 struct page *page;
2488 unsigned long last_pfn = 0; /* suppress gcc warning */
2489 int ret;
2490 gfp_t gfp;
2491
2492 /* Assert that the object is not currently in any GPU domain. As it
2493 * wasn't in the GTT, there shouldn't be any way it could have been in
2494 * a GPU cache
2495 */
2496 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2497 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2498
2499 st = kmalloc(sizeof(*st), GFP_KERNEL);
2500 if (st == NULL)
2501 return -ENOMEM;
2502
2503 page_count = obj->base.size / PAGE_SIZE;
2504 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2505 kfree(st);
2506 return -ENOMEM;
2507 }
2508
2509 /* Get the list of pages out of our struct file. They'll be pinned
2510 * at this point until we release them.
2511 *
2512 * Fail silently without starting the shrinker
2513 */
2514 mapping = file_inode(obj->base.filp)->i_mapping;
2515 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2516 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2517 sg = st->sgl;
2518 st->nents = 0;
2519 for (i = 0; i < page_count; i++) {
2520 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2521 if (IS_ERR(page)) {
2522 i915_gem_shrink(dev_priv,
2523 page_count,
2524 I915_SHRINK_BOUND |
2525 I915_SHRINK_UNBOUND |
2526 I915_SHRINK_PURGEABLE);
2527 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2528 }
2529 if (IS_ERR(page)) {
2530 /* We've tried hard to allocate the memory by reaping
2531 * our own buffer, now let the real VM do its job and
2532 * go down in flames if truly OOM.
2533 */
2534 i915_gem_shrink_all(dev_priv);
2535 page = shmem_read_mapping_page(mapping, i);
2536 if (IS_ERR(page)) {
2537 ret = PTR_ERR(page);
2538 goto err_pages;
2539 }
2540 }
2541 #ifdef CONFIG_SWIOTLB
2542 if (swiotlb_nr_tbl()) {
2543 st->nents++;
2544 sg_set_page(sg, page, PAGE_SIZE, 0);
2545 sg = sg_next(sg);
2546 continue;
2547 }
2548 #endif
2549 if (!i || page_to_pfn(page) != last_pfn + 1) {
2550 if (i)
2551 sg = sg_next(sg);
2552 st->nents++;
2553 sg_set_page(sg, page, PAGE_SIZE, 0);
2554 } else {
2555 sg->length += PAGE_SIZE;
2556 }
2557 last_pfn = page_to_pfn(page);
2558
2559 /* Check that the i965g/gm workaround works. */
2560 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2561 }
2562 #ifdef CONFIG_SWIOTLB
2563 if (!swiotlb_nr_tbl())
2564 #endif
2565 sg_mark_end(sg);
2566 obj->pages = st;
2567
2568 ret = i915_gem_gtt_prepare_object(obj);
2569 if (ret)
2570 goto err_pages;
2571
2572 if (i915_gem_object_needs_bit17_swizzle(obj))
2573 i915_gem_object_do_bit_17_swizzle(obj);
2574
2575 if (obj->tiling_mode != I915_TILING_NONE &&
2576 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2577 i915_gem_object_pin_pages(obj);
2578
2579 return 0;
2580
2581 err_pages:
2582 sg_mark_end(sg);
2583 for_each_sgt_page(page, sgt_iter, st)
2584 put_page(page);
2585 sg_free_table(st);
2586 kfree(st);
2587
2588 /* shmemfs first checks if there is enough memory to allocate the page
2589 * and reports ENOSPC should there be insufficient, along with the usual
2590 * ENOMEM for a genuine allocation failure.
2591 *
2592 * We use ENOSPC in our driver to mean that we have run out of aperture
2593 * space and so want to translate the error from shmemfs back to our
2594 * usual understanding of ENOMEM.
2595 */
2596 if (ret == -ENOSPC)
2597 ret = -ENOMEM;
2598
2599 return ret;
2600 }
2601
2602 /* Ensure that the associated pages are gathered from the backing storage
2603 * and pinned into our object. i915_gem_object_get_pages() may be called
2604 * multiple times before they are released by a single call to
2605 * i915_gem_object_put_pages() - once the pages are no longer referenced
2606 * either as a result of memory pressure (reaping pages under the shrinker)
2607 * or as the object is itself released.
2608 */
2609 int
2610 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2611 {
2612 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2613 const struct drm_i915_gem_object_ops *ops = obj->ops;
2614 int ret;
2615
2616 if (obj->pages)
2617 return 0;
2618
2619 if (obj->madv != I915_MADV_WILLNEED) {
2620 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2621 return -EFAULT;
2622 }
2623
2624 BUG_ON(obj->pages_pin_count);
2625
2626 ret = ops->get_pages(obj);
2627 if (ret)
2628 return ret;
2629
2630 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2631
2632 obj->get_page.sg = obj->pages->sgl;
2633 obj->get_page.last = 0;
2634
2635 return 0;
2636 }
2637
2638 /* The 'mapping' part of i915_gem_object_pin_map() below */
2639 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2640 {
2641 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2642 struct sg_table *sgt = obj->pages;
2643 struct sgt_iter sgt_iter;
2644 struct page *page;
2645 struct page *stack_pages[32];
2646 struct page **pages = stack_pages;
2647 unsigned long i = 0;
2648 void *addr;
2649
2650 /* A single page can always be kmapped */
2651 if (n_pages == 1)
2652 return kmap(sg_page(sgt->sgl));
2653
2654 if (n_pages > ARRAY_SIZE(stack_pages)) {
2655 /* Too big for stack -- allocate temporary array instead */
2656 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2657 if (!pages)
2658 return NULL;
2659 }
2660
2661 for_each_sgt_page(page, sgt_iter, sgt)
2662 pages[i++] = page;
2663
2664 /* Check that we have the expected number of pages */
2665 GEM_BUG_ON(i != n_pages);
2666
2667 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2668
2669 if (pages != stack_pages)
2670 drm_free_large(pages);
2671
2672 return addr;
2673 }
2674
2675 /* get, pin, and map the pages of the object into kernel space */
2676 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2677 {
2678 int ret;
2679
2680 lockdep_assert_held(&obj->base.dev->struct_mutex);
2681
2682 ret = i915_gem_object_get_pages(obj);
2683 if (ret)
2684 return ERR_PTR(ret);
2685
2686 i915_gem_object_pin_pages(obj);
2687
2688 if (!obj->mapping) {
2689 obj->mapping = i915_gem_object_map(obj);
2690 if (!obj->mapping) {
2691 i915_gem_object_unpin_pages(obj);
2692 return ERR_PTR(-ENOMEM);
2693 }
2694 }
2695
2696 return obj->mapping;
2697 }
2698
2699 void i915_vma_move_to_active(struct i915_vma *vma,
2700 struct drm_i915_gem_request *req)
2701 {
2702 struct drm_i915_gem_object *obj = vma->obj;
2703 struct intel_engine_cs *engine;
2704
2705 engine = i915_gem_request_get_engine(req);
2706
2707 /* Add a reference if we're newly entering the active list. */
2708 if (obj->active == 0)
2709 drm_gem_object_reference(&obj->base);
2710 obj->active |= intel_engine_flag(engine);
2711
2712 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2713 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2714
2715 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2716 }
2717
2718 static void
2719 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2720 {
2721 GEM_BUG_ON(obj->last_write_req == NULL);
2722 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2723
2724 i915_gem_request_assign(&obj->last_write_req, NULL);
2725 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2726 }
2727
2728 static void
2729 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2730 {
2731 struct i915_vma *vma;
2732
2733 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2734 GEM_BUG_ON(!(obj->active & (1 << ring)));
2735
2736 list_del_init(&obj->engine_list[ring]);
2737 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2738
2739 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2740 i915_gem_object_retire__write(obj);
2741
2742 obj->active &= ~(1 << ring);
2743 if (obj->active)
2744 return;
2745
2746 /* Bump our place on the bound list to keep it roughly in LRU order
2747 * so that we don't steal from recently used but inactive objects
2748 * (unless we are forced to ofc!)
2749 */
2750 list_move_tail(&obj->global_list,
2751 &to_i915(obj->base.dev)->mm.bound_list);
2752
2753 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2754 if (!list_empty(&vma->vm_link))
2755 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2756 }
2757
2758 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2759 drm_gem_object_unreference(&obj->base);
2760 }
2761
2762 static int
2763 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2764 {
2765 struct intel_engine_cs *engine;
2766 int ret;
2767
2768 /* Carefully retire all requests without writing to the rings */
2769 for_each_engine(engine, dev_priv) {
2770 ret = intel_engine_idle(engine);
2771 if (ret)
2772 return ret;
2773 }
2774 i915_gem_retire_requests(dev_priv);
2775
2776 /* Finally reset hw state */
2777 for_each_engine(engine, dev_priv)
2778 intel_ring_init_seqno(engine, seqno);
2779
2780 return 0;
2781 }
2782
2783 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2784 {
2785 struct drm_i915_private *dev_priv = dev->dev_private;
2786 int ret;
2787
2788 if (seqno == 0)
2789 return -EINVAL;
2790
2791 /* HWS page needs to be set less than what we
2792 * will inject to ring
2793 */
2794 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2795 if (ret)
2796 return ret;
2797
2798 /* Carefully set the last_seqno value so that wrap
2799 * detection still works
2800 */
2801 dev_priv->next_seqno = seqno;
2802 dev_priv->last_seqno = seqno - 1;
2803 if (dev_priv->last_seqno == 0)
2804 dev_priv->last_seqno--;
2805
2806 return 0;
2807 }
2808
2809 int
2810 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2811 {
2812 /* reserve 0 for non-seqno */
2813 if (dev_priv->next_seqno == 0) {
2814 int ret = i915_gem_init_seqno(dev_priv, 0);
2815 if (ret)
2816 return ret;
2817
2818 dev_priv->next_seqno = 1;
2819 }
2820
2821 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2822 return 0;
2823 }
2824
2825 /*
2826 * NB: This function is not allowed to fail. Doing so would mean the the
2827 * request is not being tracked for completion but the work itself is
2828 * going to happen on the hardware. This would be a Bad Thing(tm).
2829 */
2830 void __i915_add_request(struct drm_i915_gem_request *request,
2831 struct drm_i915_gem_object *obj,
2832 bool flush_caches)
2833 {
2834 struct intel_engine_cs *engine;
2835 struct drm_i915_private *dev_priv;
2836 struct intel_ringbuffer *ringbuf;
2837 u32 request_start;
2838 u32 reserved_tail;
2839 int ret;
2840
2841 if (WARN_ON(request == NULL))
2842 return;
2843
2844 engine = request->engine;
2845 dev_priv = request->i915;
2846 ringbuf = request->ringbuf;
2847
2848 /*
2849 * To ensure that this call will not fail, space for its emissions
2850 * should already have been reserved in the ring buffer. Let the ring
2851 * know that it is time to use that space up.
2852 */
2853 request_start = intel_ring_get_tail(ringbuf);
2854 reserved_tail = request->reserved_space;
2855 request->reserved_space = 0;
2856
2857 /*
2858 * Emit any outstanding flushes - execbuf can fail to emit the flush
2859 * after having emitted the batchbuffer command. Hence we need to fix
2860 * things up similar to emitting the lazy request. The difference here
2861 * is that the flush _must_ happen before the next request, no matter
2862 * what.
2863 */
2864 if (flush_caches) {
2865 if (i915.enable_execlists)
2866 ret = logical_ring_flush_all_caches(request);
2867 else
2868 ret = intel_ring_flush_all_caches(request);
2869 /* Not allowed to fail! */
2870 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2871 }
2872
2873 trace_i915_gem_request_add(request);
2874
2875 request->head = request_start;
2876
2877 /* Whilst this request exists, batch_obj will be on the
2878 * active_list, and so will hold the active reference. Only when this
2879 * request is retired will the the batch_obj be moved onto the
2880 * inactive_list and lose its active reference. Hence we do not need
2881 * to explicitly hold another reference here.
2882 */
2883 request->batch_obj = obj;
2884
2885 /* Seal the request and mark it as pending execution. Note that
2886 * we may inspect this state, without holding any locks, during
2887 * hangcheck. Hence we apply the barrier to ensure that we do not
2888 * see a more recent value in the hws than we are tracking.
2889 */
2890 request->emitted_jiffies = jiffies;
2891 request->previous_seqno = engine->last_submitted_seqno;
2892 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2893 list_add_tail(&request->list, &engine->request_list);
2894
2895 /* Record the position of the start of the request so that
2896 * should we detect the updated seqno part-way through the
2897 * GPU processing the request, we never over-estimate the
2898 * position of the head.
2899 */
2900 request->postfix = intel_ring_get_tail(ringbuf);
2901
2902 if (i915.enable_execlists)
2903 ret = engine->emit_request(request);
2904 else {
2905 ret = engine->add_request(request);
2906
2907 request->tail = intel_ring_get_tail(ringbuf);
2908 }
2909 /* Not allowed to fail! */
2910 WARN(ret, "emit|add_request failed: %d!\n", ret);
2911
2912 i915_queue_hangcheck(engine->i915);
2913
2914 queue_delayed_work(dev_priv->wq,
2915 &dev_priv->mm.retire_work,
2916 round_jiffies_up_relative(HZ));
2917 intel_mark_busy(dev_priv);
2918
2919 /* Sanity check that the reserved size was large enough. */
2920 ret = intel_ring_get_tail(ringbuf) - request_start;
2921 if (ret < 0)
2922 ret += ringbuf->size;
2923 WARN_ONCE(ret > reserved_tail,
2924 "Not enough space reserved (%d bytes) "
2925 "for adding the request (%d bytes)\n",
2926 reserved_tail, ret);
2927 }
2928
2929 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2930 const struct i915_gem_context *ctx)
2931 {
2932 unsigned long elapsed;
2933
2934 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2935
2936 if (ctx->hang_stats.banned)
2937 return true;
2938
2939 if (ctx->hang_stats.ban_period_seconds &&
2940 elapsed <= ctx->hang_stats.ban_period_seconds) {
2941 if (!i915_gem_context_is_default(ctx)) {
2942 DRM_DEBUG("context hanging too fast, banning!\n");
2943 return true;
2944 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2945 if (i915_stop_ring_allow_warn(dev_priv))
2946 DRM_ERROR("gpu hanging too fast, banning!\n");
2947 return true;
2948 }
2949 }
2950
2951 return false;
2952 }
2953
2954 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2955 struct i915_gem_context *ctx,
2956 const bool guilty)
2957 {
2958 struct i915_ctx_hang_stats *hs;
2959
2960 if (WARN_ON(!ctx))
2961 return;
2962
2963 hs = &ctx->hang_stats;
2964
2965 if (guilty) {
2966 hs->banned = i915_context_is_banned(dev_priv, ctx);
2967 hs->batch_active++;
2968 hs->guilty_ts = get_seconds();
2969 } else {
2970 hs->batch_pending++;
2971 }
2972 }
2973
2974 void i915_gem_request_free(struct kref *req_ref)
2975 {
2976 struct drm_i915_gem_request *req = container_of(req_ref,
2977 typeof(*req), ref);
2978 kmem_cache_free(req->i915->requests, req);
2979 }
2980
2981 static inline int
2982 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2983 struct i915_gem_context *ctx,
2984 struct drm_i915_gem_request **req_out)
2985 {
2986 struct drm_i915_private *dev_priv = engine->i915;
2987 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2988 struct drm_i915_gem_request *req;
2989 int ret;
2990
2991 if (!req_out)
2992 return -EINVAL;
2993
2994 *req_out = NULL;
2995
2996 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2997 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2998 * and restart.
2999 */
3000 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3001 if (ret)
3002 return ret;
3003
3004 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3005 if (req == NULL)
3006 return -ENOMEM;
3007
3008 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3009 if (ret)
3010 goto err;
3011
3012 kref_init(&req->ref);
3013 req->i915 = dev_priv;
3014 req->engine = engine;
3015 req->reset_counter = reset_counter;
3016 req->ctx = ctx;
3017 i915_gem_context_reference(req->ctx);
3018
3019 /*
3020 * Reserve space in the ring buffer for all the commands required to
3021 * eventually emit this request. This is to guarantee that the
3022 * i915_add_request() call can't fail. Note that the reserve may need
3023 * to be redone if the request is not actually submitted straight
3024 * away, e.g. because a GPU scheduler has deferred it.
3025 */
3026 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3027
3028 if (i915.enable_execlists)
3029 ret = intel_logical_ring_alloc_request_extras(req);
3030 else
3031 ret = intel_ring_alloc_request_extras(req);
3032 if (ret)
3033 goto err_ctx;
3034
3035 *req_out = req;
3036 return 0;
3037
3038 err_ctx:
3039 i915_gem_context_unreference(ctx);
3040 err:
3041 kmem_cache_free(dev_priv->requests, req);
3042 return ret;
3043 }
3044
3045 /**
3046 * i915_gem_request_alloc - allocate a request structure
3047 *
3048 * @engine: engine that we wish to issue the request on.
3049 * @ctx: context that the request will be associated with.
3050 * This can be NULL if the request is not directly related to
3051 * any specific user context, in which case this function will
3052 * choose an appropriate context to use.
3053 *
3054 * Returns a pointer to the allocated request if successful,
3055 * or an error code if not.
3056 */
3057 struct drm_i915_gem_request *
3058 i915_gem_request_alloc(struct intel_engine_cs *engine,
3059 struct i915_gem_context *ctx)
3060 {
3061 struct drm_i915_gem_request *req;
3062 int err;
3063
3064 if (ctx == NULL)
3065 ctx = engine->i915->kernel_context;
3066 err = __i915_gem_request_alloc(engine, ctx, &req);
3067 return err ? ERR_PTR(err) : req;
3068 }
3069
3070 struct drm_i915_gem_request *
3071 i915_gem_find_active_request(struct intel_engine_cs *engine)
3072 {
3073 struct drm_i915_gem_request *request;
3074
3075 list_for_each_entry(request, &engine->request_list, list) {
3076 if (i915_gem_request_completed(request, false))
3077 continue;
3078
3079 return request;
3080 }
3081
3082 return NULL;
3083 }
3084
3085 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3086 struct intel_engine_cs *engine)
3087 {
3088 struct drm_i915_gem_request *request;
3089 bool ring_hung;
3090
3091 request = i915_gem_find_active_request(engine);
3092
3093 if (request == NULL)
3094 return;
3095
3096 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3097
3098 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3099
3100 list_for_each_entry_continue(request, &engine->request_list, list)
3101 i915_set_reset_status(dev_priv, request->ctx, false);
3102 }
3103
3104 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3105 struct intel_engine_cs *engine)
3106 {
3107 struct intel_ringbuffer *buffer;
3108
3109 while (!list_empty(&engine->active_list)) {
3110 struct drm_i915_gem_object *obj;
3111
3112 obj = list_first_entry(&engine->active_list,
3113 struct drm_i915_gem_object,
3114 engine_list[engine->id]);
3115
3116 i915_gem_object_retire__read(obj, engine->id);
3117 }
3118
3119 /*
3120 * Clear the execlists queue up before freeing the requests, as those
3121 * are the ones that keep the context and ringbuffer backing objects
3122 * pinned in place.
3123 */
3124
3125 if (i915.enable_execlists) {
3126 /* Ensure irq handler finishes or is cancelled. */
3127 tasklet_kill(&engine->irq_tasklet);
3128
3129 intel_execlists_cancel_requests(engine);
3130 }
3131
3132 /*
3133 * We must free the requests after all the corresponding objects have
3134 * been moved off active lists. Which is the same order as the normal
3135 * retire_requests function does. This is important if object hold
3136 * implicit references on things like e.g. ppgtt address spaces through
3137 * the request.
3138 */
3139 while (!list_empty(&engine->request_list)) {
3140 struct drm_i915_gem_request *request;
3141
3142 request = list_first_entry(&engine->request_list,
3143 struct drm_i915_gem_request,
3144 list);
3145
3146 i915_gem_request_retire(request);
3147 }
3148
3149 /* Having flushed all requests from all queues, we know that all
3150 * ringbuffers must now be empty. However, since we do not reclaim
3151 * all space when retiring the request (to prevent HEADs colliding
3152 * with rapid ringbuffer wraparound) the amount of available space
3153 * upon reset is less than when we start. Do one more pass over
3154 * all the ringbuffers to reset last_retired_head.
3155 */
3156 list_for_each_entry(buffer, &engine->buffers, link) {
3157 buffer->last_retired_head = buffer->tail;
3158 intel_ring_update_space(buffer);
3159 }
3160
3161 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3162 }
3163
3164 void i915_gem_reset(struct drm_device *dev)
3165 {
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct intel_engine_cs *engine;
3168
3169 /*
3170 * Before we free the objects from the requests, we need to inspect
3171 * them for finding the guilty party. As the requests only borrow
3172 * their reference to the objects, the inspection must be done first.
3173 */
3174 for_each_engine(engine, dev_priv)
3175 i915_gem_reset_engine_status(dev_priv, engine);
3176
3177 for_each_engine(engine, dev_priv)
3178 i915_gem_reset_engine_cleanup(dev_priv, engine);
3179
3180 i915_gem_context_reset(dev);
3181
3182 i915_gem_restore_fences(dev);
3183
3184 WARN_ON(i915_verify_lists(dev));
3185 }
3186
3187 /**
3188 * This function clears the request list as sequence numbers are passed.
3189 * @engine: engine to retire requests on
3190 */
3191 void
3192 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3193 {
3194 WARN_ON(i915_verify_lists(engine->dev));
3195
3196 /* Retire requests first as we use it above for the early return.
3197 * If we retire requests last, we may use a later seqno and so clear
3198 * the requests lists without clearing the active list, leading to
3199 * confusion.
3200 */
3201 while (!list_empty(&engine->request_list)) {
3202 struct drm_i915_gem_request *request;
3203
3204 request = list_first_entry(&engine->request_list,
3205 struct drm_i915_gem_request,
3206 list);
3207
3208 if (!i915_gem_request_completed(request, true))
3209 break;
3210
3211 i915_gem_request_retire(request);
3212 }
3213
3214 /* Move any buffers on the active list that are no longer referenced
3215 * by the ringbuffer to the flushing/inactive lists as appropriate,
3216 * before we free the context associated with the requests.
3217 */
3218 while (!list_empty(&engine->active_list)) {
3219 struct drm_i915_gem_object *obj;
3220
3221 obj = list_first_entry(&engine->active_list,
3222 struct drm_i915_gem_object,
3223 engine_list[engine->id]);
3224
3225 if (!list_empty(&obj->last_read_req[engine->id]->list))
3226 break;
3227
3228 i915_gem_object_retire__read(obj, engine->id);
3229 }
3230
3231 if (unlikely(engine->trace_irq_req &&
3232 i915_gem_request_completed(engine->trace_irq_req, true))) {
3233 engine->irq_put(engine);
3234 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3235 }
3236
3237 WARN_ON(i915_verify_lists(engine->dev));
3238 }
3239
3240 bool
3241 i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3242 {
3243 struct intel_engine_cs *engine;
3244 bool idle = true;
3245
3246 for_each_engine(engine, dev_priv) {
3247 i915_gem_retire_requests_ring(engine);
3248 idle &= list_empty(&engine->request_list);
3249 if (i915.enable_execlists) {
3250 spin_lock_bh(&engine->execlist_lock);
3251 idle &= list_empty(&engine->execlist_queue);
3252 spin_unlock_bh(&engine->execlist_lock);
3253 }
3254 }
3255
3256 if (idle)
3257 mod_delayed_work(dev_priv->wq,
3258 &dev_priv->mm.idle_work,
3259 msecs_to_jiffies(100));
3260
3261 return idle;
3262 }
3263
3264 static void
3265 i915_gem_retire_work_handler(struct work_struct *work)
3266 {
3267 struct drm_i915_private *dev_priv =
3268 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3269 struct drm_device *dev = dev_priv->dev;
3270 bool idle;
3271
3272 /* Come back later if the device is busy... */
3273 idle = false;
3274 if (mutex_trylock(&dev->struct_mutex)) {
3275 idle = i915_gem_retire_requests(dev_priv);
3276 mutex_unlock(&dev->struct_mutex);
3277 }
3278 if (!idle)
3279 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3280 round_jiffies_up_relative(HZ));
3281 }
3282
3283 static void
3284 i915_gem_idle_work_handler(struct work_struct *work)
3285 {
3286 struct drm_i915_private *dev_priv =
3287 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3288 struct drm_device *dev = dev_priv->dev;
3289 struct intel_engine_cs *engine;
3290
3291 for_each_engine(engine, dev_priv)
3292 if (!list_empty(&engine->request_list))
3293 return;
3294
3295 /* we probably should sync with hangcheck here, using cancel_work_sync.
3296 * Also locking seems to be fubar here, engine->request_list is protected
3297 * by dev->struct_mutex. */
3298
3299 intel_mark_idle(dev_priv);
3300
3301 if (mutex_trylock(&dev->struct_mutex)) {
3302 for_each_engine(engine, dev_priv)
3303 i915_gem_batch_pool_fini(&engine->batch_pool);
3304
3305 mutex_unlock(&dev->struct_mutex);
3306 }
3307 }
3308
3309 /**
3310 * Ensures that an object will eventually get non-busy by flushing any required
3311 * write domains, emitting any outstanding lazy request and retiring and
3312 * completed requests.
3313 * @obj: object to flush
3314 */
3315 static int
3316 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3317 {
3318 int i;
3319
3320 if (!obj->active)
3321 return 0;
3322
3323 for (i = 0; i < I915_NUM_ENGINES; i++) {
3324 struct drm_i915_gem_request *req;
3325
3326 req = obj->last_read_req[i];
3327 if (req == NULL)
3328 continue;
3329
3330 if (i915_gem_request_completed(req, true))
3331 i915_gem_object_retire__read(obj, i);
3332 }
3333
3334 return 0;
3335 }
3336
3337 /**
3338 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3339 * @dev: drm device pointer
3340 * @data: ioctl data blob
3341 * @file: drm file pointer
3342 *
3343 * Returns 0 if successful, else an error is returned with the remaining time in
3344 * the timeout parameter.
3345 * -ETIME: object is still busy after timeout
3346 * -ERESTARTSYS: signal interrupted the wait
3347 * -ENONENT: object doesn't exist
3348 * Also possible, but rare:
3349 * -EAGAIN: GPU wedged
3350 * -ENOMEM: damn
3351 * -ENODEV: Internal IRQ fail
3352 * -E?: The add request failed
3353 *
3354 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3355 * non-zero timeout parameter the wait ioctl will wait for the given number of
3356 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3357 * without holding struct_mutex the object may become re-busied before this
3358 * function completes. A similar but shorter * race condition exists in the busy
3359 * ioctl
3360 */
3361 int
3362 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3363 {
3364 struct drm_i915_gem_wait *args = data;
3365 struct drm_i915_gem_object *obj;
3366 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3367 int i, n = 0;
3368 int ret;
3369
3370 if (args->flags != 0)
3371 return -EINVAL;
3372
3373 ret = i915_mutex_lock_interruptible(dev);
3374 if (ret)
3375 return ret;
3376
3377 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3378 if (&obj->base == NULL) {
3379 mutex_unlock(&dev->struct_mutex);
3380 return -ENOENT;
3381 }
3382
3383 /* Need to make sure the object gets inactive eventually. */
3384 ret = i915_gem_object_flush_active(obj);
3385 if (ret)
3386 goto out;
3387
3388 if (!obj->active)
3389 goto out;
3390
3391 /* Do this after OLR check to make sure we make forward progress polling
3392 * on this IOCTL with a timeout == 0 (like busy ioctl)
3393 */
3394 if (args->timeout_ns == 0) {
3395 ret = -ETIME;
3396 goto out;
3397 }
3398
3399 drm_gem_object_unreference(&obj->base);
3400
3401 for (i = 0; i < I915_NUM_ENGINES; i++) {
3402 if (obj->last_read_req[i] == NULL)
3403 continue;
3404
3405 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3406 }
3407
3408 mutex_unlock(&dev->struct_mutex);
3409
3410 for (i = 0; i < n; i++) {
3411 if (ret == 0)
3412 ret = __i915_wait_request(req[i], true,
3413 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3414 to_rps_client(file));
3415 i915_gem_request_unreference(req[i]);
3416 }
3417 return ret;
3418
3419 out:
3420 drm_gem_object_unreference(&obj->base);
3421 mutex_unlock(&dev->struct_mutex);
3422 return ret;
3423 }
3424
3425 static int
3426 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3427 struct intel_engine_cs *to,
3428 struct drm_i915_gem_request *from_req,
3429 struct drm_i915_gem_request **to_req)
3430 {
3431 struct intel_engine_cs *from;
3432 int ret;
3433
3434 from = i915_gem_request_get_engine(from_req);
3435 if (to == from)
3436 return 0;
3437
3438 if (i915_gem_request_completed(from_req, true))
3439 return 0;
3440
3441 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3442 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3443 ret = __i915_wait_request(from_req,
3444 i915->mm.interruptible,
3445 NULL,
3446 &i915->rps.semaphores);
3447 if (ret)
3448 return ret;
3449
3450 i915_gem_object_retire_request(obj, from_req);
3451 } else {
3452 int idx = intel_ring_sync_index(from, to);
3453 u32 seqno = i915_gem_request_get_seqno(from_req);
3454
3455 WARN_ON(!to_req);
3456
3457 if (seqno <= from->semaphore.sync_seqno[idx])
3458 return 0;
3459
3460 if (*to_req == NULL) {
3461 struct drm_i915_gem_request *req;
3462
3463 req = i915_gem_request_alloc(to, NULL);
3464 if (IS_ERR(req))
3465 return PTR_ERR(req);
3466
3467 *to_req = req;
3468 }
3469
3470 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3471 ret = to->semaphore.sync_to(*to_req, from, seqno);
3472 if (ret)
3473 return ret;
3474
3475 /* We use last_read_req because sync_to()
3476 * might have just caused seqno wrap under
3477 * the radar.
3478 */
3479 from->semaphore.sync_seqno[idx] =
3480 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3481 }
3482
3483 return 0;
3484 }
3485
3486 /**
3487 * i915_gem_object_sync - sync an object to a ring.
3488 *
3489 * @obj: object which may be in use on another ring.
3490 * @to: ring we wish to use the object on. May be NULL.
3491 * @to_req: request we wish to use the object for. See below.
3492 * This will be allocated and returned if a request is
3493 * required but not passed in.
3494 *
3495 * This code is meant to abstract object synchronization with the GPU.
3496 * Calling with NULL implies synchronizing the object with the CPU
3497 * rather than a particular GPU ring. Conceptually we serialise writes
3498 * between engines inside the GPU. We only allow one engine to write
3499 * into a buffer at any time, but multiple readers. To ensure each has
3500 * a coherent view of memory, we must:
3501 *
3502 * - If there is an outstanding write request to the object, the new
3503 * request must wait for it to complete (either CPU or in hw, requests
3504 * on the same ring will be naturally ordered).
3505 *
3506 * - If we are a write request (pending_write_domain is set), the new
3507 * request must wait for outstanding read requests to complete.
3508 *
3509 * For CPU synchronisation (NULL to) no request is required. For syncing with
3510 * rings to_req must be non-NULL. However, a request does not have to be
3511 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3512 * request will be allocated automatically and returned through *to_req. Note
3513 * that it is not guaranteed that commands will be emitted (because the system
3514 * might already be idle). Hence there is no need to create a request that
3515 * might never have any work submitted. Note further that if a request is
3516 * returned in *to_req, it is the responsibility of the caller to submit
3517 * that request (after potentially adding more work to it).
3518 *
3519 * Returns 0 if successful, else propagates up the lower layer error.
3520 */
3521 int
3522 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3523 struct intel_engine_cs *to,
3524 struct drm_i915_gem_request **to_req)
3525 {
3526 const bool readonly = obj->base.pending_write_domain == 0;
3527 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3528 int ret, i, n;
3529
3530 if (!obj->active)
3531 return 0;
3532
3533 if (to == NULL)
3534 return i915_gem_object_wait_rendering(obj, readonly);
3535
3536 n = 0;
3537 if (readonly) {
3538 if (obj->last_write_req)
3539 req[n++] = obj->last_write_req;
3540 } else {
3541 for (i = 0; i < I915_NUM_ENGINES; i++)
3542 if (obj->last_read_req[i])
3543 req[n++] = obj->last_read_req[i];
3544 }
3545 for (i = 0; i < n; i++) {
3546 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3547 if (ret)
3548 return ret;
3549 }
3550
3551 return 0;
3552 }
3553
3554 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3555 {
3556 u32 old_write_domain, old_read_domains;
3557
3558 /* Force a pagefault for domain tracking on next user access */
3559 i915_gem_release_mmap(obj);
3560
3561 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3562 return;
3563
3564 old_read_domains = obj->base.read_domains;
3565 old_write_domain = obj->base.write_domain;
3566
3567 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3568 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3569
3570 trace_i915_gem_object_change_domain(obj,
3571 old_read_domains,
3572 old_write_domain);
3573 }
3574
3575 static void __i915_vma_iounmap(struct i915_vma *vma)
3576 {
3577 GEM_BUG_ON(vma->pin_count);
3578
3579 if (vma->iomap == NULL)
3580 return;
3581
3582 io_mapping_unmap(vma->iomap);
3583 vma->iomap = NULL;
3584 }
3585
3586 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3587 {
3588 struct drm_i915_gem_object *obj = vma->obj;
3589 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3590 int ret;
3591
3592 if (list_empty(&vma->obj_link))
3593 return 0;
3594
3595 if (!drm_mm_node_allocated(&vma->node)) {
3596 i915_gem_vma_destroy(vma);
3597 return 0;
3598 }
3599
3600 if (vma->pin_count)
3601 return -EBUSY;
3602
3603 BUG_ON(obj->pages == NULL);
3604
3605 if (wait) {
3606 ret = i915_gem_object_wait_rendering(obj, false);
3607 if (ret)
3608 return ret;
3609 }
3610
3611 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3612 i915_gem_object_finish_gtt(obj);
3613
3614 /* release the fence reg _after_ flushing */
3615 ret = i915_gem_object_put_fence(obj);
3616 if (ret)
3617 return ret;
3618
3619 __i915_vma_iounmap(vma);
3620 }
3621
3622 trace_i915_vma_unbind(vma);
3623
3624 vma->vm->unbind_vma(vma);
3625 vma->bound = 0;
3626
3627 list_del_init(&vma->vm_link);
3628 if (vma->is_ggtt) {
3629 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3630 obj->map_and_fenceable = false;
3631 } else if (vma->ggtt_view.pages) {
3632 sg_free_table(vma->ggtt_view.pages);
3633 kfree(vma->ggtt_view.pages);
3634 }
3635 vma->ggtt_view.pages = NULL;
3636 }
3637
3638 drm_mm_remove_node(&vma->node);
3639 i915_gem_vma_destroy(vma);
3640
3641 /* Since the unbound list is global, only move to that list if
3642 * no more VMAs exist. */
3643 if (list_empty(&obj->vma_list))
3644 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3645
3646 /* And finally now the object is completely decoupled from this vma,
3647 * we can drop its hold on the backing storage and allow it to be
3648 * reaped by the shrinker.
3649 */
3650 i915_gem_object_unpin_pages(obj);
3651
3652 return 0;
3653 }
3654
3655 int i915_vma_unbind(struct i915_vma *vma)
3656 {
3657 return __i915_vma_unbind(vma, true);
3658 }
3659
3660 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3661 {
3662 return __i915_vma_unbind(vma, false);
3663 }
3664
3665 int i915_gpu_idle(struct drm_device *dev)
3666 {
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 struct intel_engine_cs *engine;
3669 int ret;
3670
3671 /* Flush everything onto the inactive list. */
3672 for_each_engine(engine, dev_priv) {
3673 if (!i915.enable_execlists) {
3674 struct drm_i915_gem_request *req;
3675
3676 req = i915_gem_request_alloc(engine, NULL);
3677 if (IS_ERR(req))
3678 return PTR_ERR(req);
3679
3680 ret = i915_switch_context(req);
3681 i915_add_request_no_flush(req);
3682 if (ret)
3683 return ret;
3684 }
3685
3686 ret = intel_engine_idle(engine);
3687 if (ret)
3688 return ret;
3689 }
3690
3691 WARN_ON(i915_verify_lists(dev));
3692 return 0;
3693 }
3694
3695 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3696 unsigned long cache_level)
3697 {
3698 struct drm_mm_node *gtt_space = &vma->node;
3699 struct drm_mm_node *other;
3700
3701 /*
3702 * On some machines we have to be careful when putting differing types
3703 * of snoopable memory together to avoid the prefetcher crossing memory
3704 * domains and dying. During vm initialisation, we decide whether or not
3705 * these constraints apply and set the drm_mm.color_adjust
3706 * appropriately.
3707 */
3708 if (vma->vm->mm.color_adjust == NULL)
3709 return true;
3710
3711 if (!drm_mm_node_allocated(gtt_space))
3712 return true;
3713
3714 if (list_empty(&gtt_space->node_list))
3715 return true;
3716
3717 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3718 if (other->allocated && !other->hole_follows && other->color != cache_level)
3719 return false;
3720
3721 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3722 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3723 return false;
3724
3725 return true;
3726 }
3727
3728 /**
3729 * Finds free space in the GTT aperture and binds the object or a view of it
3730 * there.
3731 * @obj: object to bind
3732 * @vm: address space to bind into
3733 * @ggtt_view: global gtt view if applicable
3734 * @alignment: requested alignment
3735 * @flags: mask of PIN_* flags to use
3736 */
3737 static struct i915_vma *
3738 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3739 struct i915_address_space *vm,
3740 const struct i915_ggtt_view *ggtt_view,
3741 unsigned alignment,
3742 uint64_t flags)
3743 {
3744 struct drm_device *dev = obj->base.dev;
3745 struct drm_i915_private *dev_priv = to_i915(dev);
3746 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3747 u32 fence_alignment, unfenced_alignment;
3748 u32 search_flag, alloc_flag;
3749 u64 start, end;
3750 u64 size, fence_size;
3751 struct i915_vma *vma;
3752 int ret;
3753
3754 if (i915_is_ggtt(vm)) {
3755 u32 view_size;
3756
3757 if (WARN_ON(!ggtt_view))
3758 return ERR_PTR(-EINVAL);
3759
3760 view_size = i915_ggtt_view_size(obj, ggtt_view);
3761
3762 fence_size = i915_gem_get_gtt_size(dev,
3763 view_size,
3764 obj->tiling_mode);
3765 fence_alignment = i915_gem_get_gtt_alignment(dev,
3766 view_size,
3767 obj->tiling_mode,
3768 true);
3769 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3770 view_size,
3771 obj->tiling_mode,
3772 false);
3773 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3774 } else {
3775 fence_size = i915_gem_get_gtt_size(dev,
3776 obj->base.size,
3777 obj->tiling_mode);
3778 fence_alignment = i915_gem_get_gtt_alignment(dev,
3779 obj->base.size,
3780 obj->tiling_mode,
3781 true);
3782 unfenced_alignment =
3783 i915_gem_get_gtt_alignment(dev,
3784 obj->base.size,
3785 obj->tiling_mode,
3786 false);
3787 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3788 }
3789
3790 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3791 end = vm->total;
3792 if (flags & PIN_MAPPABLE)
3793 end = min_t(u64, end, ggtt->mappable_end);
3794 if (flags & PIN_ZONE_4G)
3795 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3796
3797 if (alignment == 0)
3798 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3799 unfenced_alignment;
3800 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3801 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3802 ggtt_view ? ggtt_view->type : 0,
3803 alignment);
3804 return ERR_PTR(-EINVAL);
3805 }
3806
3807 /* If binding the object/GGTT view requires more space than the entire
3808 * aperture has, reject it early before evicting everything in a vain
3809 * attempt to find space.
3810 */
3811 if (size > end) {
3812 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3813 ggtt_view ? ggtt_view->type : 0,
3814 size,
3815 flags & PIN_MAPPABLE ? "mappable" : "total",
3816 end);
3817 return ERR_PTR(-E2BIG);
3818 }
3819
3820 ret = i915_gem_object_get_pages(obj);
3821 if (ret)
3822 return ERR_PTR(ret);
3823
3824 i915_gem_object_pin_pages(obj);
3825
3826 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3827 i915_gem_obj_lookup_or_create_vma(obj, vm);
3828
3829 if (IS_ERR(vma))
3830 goto err_unpin;
3831
3832 if (flags & PIN_OFFSET_FIXED) {
3833 uint64_t offset = flags & PIN_OFFSET_MASK;
3834
3835 if (offset & (alignment - 1) || offset + size > end) {
3836 ret = -EINVAL;
3837 goto err_free_vma;
3838 }
3839 vma->node.start = offset;
3840 vma->node.size = size;
3841 vma->node.color = obj->cache_level;
3842 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3843 if (ret) {
3844 ret = i915_gem_evict_for_vma(vma);
3845 if (ret == 0)
3846 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3847 }
3848 if (ret)
3849 goto err_free_vma;
3850 } else {
3851 if (flags & PIN_HIGH) {
3852 search_flag = DRM_MM_SEARCH_BELOW;
3853 alloc_flag = DRM_MM_CREATE_TOP;
3854 } else {
3855 search_flag = DRM_MM_SEARCH_DEFAULT;
3856 alloc_flag = DRM_MM_CREATE_DEFAULT;
3857 }
3858
3859 search_free:
3860 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3861 size, alignment,
3862 obj->cache_level,
3863 start, end,
3864 search_flag,
3865 alloc_flag);
3866 if (ret) {
3867 ret = i915_gem_evict_something(dev, vm, size, alignment,
3868 obj->cache_level,
3869 start, end,
3870 flags);
3871 if (ret == 0)
3872 goto search_free;
3873
3874 goto err_free_vma;
3875 }
3876 }
3877 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3878 ret = -EINVAL;
3879 goto err_remove_node;
3880 }
3881
3882 trace_i915_vma_bind(vma, flags);
3883 ret = i915_vma_bind(vma, obj->cache_level, flags);
3884 if (ret)
3885 goto err_remove_node;
3886
3887 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3888 list_add_tail(&vma->vm_link, &vm->inactive_list);
3889
3890 return vma;
3891
3892 err_remove_node:
3893 drm_mm_remove_node(&vma->node);
3894 err_free_vma:
3895 i915_gem_vma_destroy(vma);
3896 vma = ERR_PTR(ret);
3897 err_unpin:
3898 i915_gem_object_unpin_pages(obj);
3899 return vma;
3900 }
3901
3902 bool
3903 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3904 bool force)
3905 {
3906 /* If we don't have a page list set up, then we're not pinned
3907 * to GPU, and we can ignore the cache flush because it'll happen
3908 * again at bind time.
3909 */
3910 if (obj->pages == NULL)
3911 return false;
3912
3913 /*
3914 * Stolen memory is always coherent with the GPU as it is explicitly
3915 * marked as wc by the system, or the system is cache-coherent.
3916 */
3917 if (obj->stolen || obj->phys_handle)
3918 return false;
3919
3920 /* If the GPU is snooping the contents of the CPU cache,
3921 * we do not need to manually clear the CPU cache lines. However,
3922 * the caches are only snooped when the render cache is
3923 * flushed/invalidated. As we always have to emit invalidations
3924 * and flushes when moving into and out of the RENDER domain, correct
3925 * snooping behaviour occurs naturally as the result of our domain
3926 * tracking.
3927 */
3928 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3929 obj->cache_dirty = true;
3930 return false;
3931 }
3932
3933 trace_i915_gem_object_clflush(obj);
3934 drm_clflush_sg(obj->pages);
3935 obj->cache_dirty = false;
3936
3937 return true;
3938 }
3939
3940 /** Flushes the GTT write domain for the object if it's dirty. */
3941 static void
3942 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3943 {
3944 uint32_t old_write_domain;
3945
3946 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3947 return;
3948
3949 /* No actual flushing is required for the GTT write domain. Writes
3950 * to it immediately go to main memory as far as we know, so there's
3951 * no chipset flush. It also doesn't land in render cache.
3952 *
3953 * However, we do have to enforce the order so that all writes through
3954 * the GTT land before any writes to the device, such as updates to
3955 * the GATT itself.
3956 */
3957 wmb();
3958
3959 old_write_domain = obj->base.write_domain;
3960 obj->base.write_domain = 0;
3961
3962 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3963
3964 trace_i915_gem_object_change_domain(obj,
3965 obj->base.read_domains,
3966 old_write_domain);
3967 }
3968
3969 /** Flushes the CPU write domain for the object if it's dirty. */
3970 static void
3971 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3972 {
3973 uint32_t old_write_domain;
3974
3975 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3976 return;
3977
3978 if (i915_gem_clflush_object(obj, obj->pin_display))
3979 i915_gem_chipset_flush(to_i915(obj->base.dev));
3980
3981 old_write_domain = obj->base.write_domain;
3982 obj->base.write_domain = 0;
3983
3984 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3985
3986 trace_i915_gem_object_change_domain(obj,
3987 obj->base.read_domains,
3988 old_write_domain);
3989 }
3990
3991 /**
3992 * Moves a single object to the GTT read, and possibly write domain.
3993 * @obj: object to act on
3994 * @write: ask for write access or read only
3995 *
3996 * This function returns when the move is complete, including waiting on
3997 * flushes to occur.
3998 */
3999 int
4000 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4001 {
4002 struct drm_device *dev = obj->base.dev;
4003 struct drm_i915_private *dev_priv = to_i915(dev);
4004 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4005 uint32_t old_write_domain, old_read_domains;
4006 struct i915_vma *vma;
4007 int ret;
4008
4009 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4010 return 0;
4011
4012 ret = i915_gem_object_wait_rendering(obj, !write);
4013 if (ret)
4014 return ret;
4015
4016 /* Flush and acquire obj->pages so that we are coherent through
4017 * direct access in memory with previous cached writes through
4018 * shmemfs and that our cache domain tracking remains valid.
4019 * For example, if the obj->filp was moved to swap without us
4020 * being notified and releasing the pages, we would mistakenly
4021 * continue to assume that the obj remained out of the CPU cached
4022 * domain.
4023 */
4024 ret = i915_gem_object_get_pages(obj);
4025 if (ret)
4026 return ret;
4027
4028 i915_gem_object_flush_cpu_write_domain(obj);
4029
4030 /* Serialise direct access to this object with the barriers for
4031 * coherent writes from the GPU, by effectively invalidating the
4032 * GTT domain upon first access.
4033 */
4034 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4035 mb();
4036
4037 old_write_domain = obj->base.write_domain;
4038 old_read_domains = obj->base.read_domains;
4039
4040 /* It should now be out of any other write domains, and we can update
4041 * the domain values for our changes.
4042 */
4043 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4044 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4045 if (write) {
4046 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4047 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4048 obj->dirty = 1;
4049 }
4050
4051 trace_i915_gem_object_change_domain(obj,
4052 old_read_domains,
4053 old_write_domain);
4054
4055 /* And bump the LRU for this access */
4056 vma = i915_gem_obj_to_ggtt(obj);
4057 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4058 list_move_tail(&vma->vm_link,
4059 &ggtt->base.inactive_list);
4060
4061 return 0;
4062 }
4063
4064 /**
4065 * Changes the cache-level of an object across all VMA.
4066 * @obj: object to act on
4067 * @cache_level: new cache level to set for the object
4068 *
4069 * After this function returns, the object will be in the new cache-level
4070 * across all GTT and the contents of the backing storage will be coherent,
4071 * with respect to the new cache-level. In order to keep the backing storage
4072 * coherent for all users, we only allow a single cache level to be set
4073 * globally on the object and prevent it from being changed whilst the
4074 * hardware is reading from the object. That is if the object is currently
4075 * on the scanout it will be set to uncached (or equivalent display
4076 * cache coherency) and all non-MOCS GPU access will also be uncached so
4077 * that all direct access to the scanout remains coherent.
4078 */
4079 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4080 enum i915_cache_level cache_level)
4081 {
4082 struct drm_device *dev = obj->base.dev;
4083 struct i915_vma *vma, *next;
4084 bool bound = false;
4085 int ret = 0;
4086
4087 if (obj->cache_level == cache_level)
4088 goto out;
4089
4090 /* Inspect the list of currently bound VMA and unbind any that would
4091 * be invalid given the new cache-level. This is principally to
4092 * catch the issue of the CS prefetch crossing page boundaries and
4093 * reading an invalid PTE on older architectures.
4094 */
4095 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4096 if (!drm_mm_node_allocated(&vma->node))
4097 continue;
4098
4099 if (vma->pin_count) {
4100 DRM_DEBUG("can not change the cache level of pinned objects\n");
4101 return -EBUSY;
4102 }
4103
4104 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4105 ret = i915_vma_unbind(vma);
4106 if (ret)
4107 return ret;
4108 } else
4109 bound = true;
4110 }
4111
4112 /* We can reuse the existing drm_mm nodes but need to change the
4113 * cache-level on the PTE. We could simply unbind them all and
4114 * rebind with the correct cache-level on next use. However since
4115 * we already have a valid slot, dma mapping, pages etc, we may as
4116 * rewrite the PTE in the belief that doing so tramples upon less
4117 * state and so involves less work.
4118 */
4119 if (bound) {
4120 /* Before we change the PTE, the GPU must not be accessing it.
4121 * If we wait upon the object, we know that all the bound
4122 * VMA are no longer active.
4123 */
4124 ret = i915_gem_object_wait_rendering(obj, false);
4125 if (ret)
4126 return ret;
4127
4128 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4129 /* Access to snoopable pages through the GTT is
4130 * incoherent and on some machines causes a hard
4131 * lockup. Relinquish the CPU mmaping to force
4132 * userspace to refault in the pages and we can
4133 * then double check if the GTT mapping is still
4134 * valid for that pointer access.
4135 */
4136 i915_gem_release_mmap(obj);
4137
4138 /* As we no longer need a fence for GTT access,
4139 * we can relinquish it now (and so prevent having
4140 * to steal a fence from someone else on the next
4141 * fence request). Note GPU activity would have
4142 * dropped the fence as all snoopable access is
4143 * supposed to be linear.
4144 */
4145 ret = i915_gem_object_put_fence(obj);
4146 if (ret)
4147 return ret;
4148 } else {
4149 /* We either have incoherent backing store and
4150 * so no GTT access or the architecture is fully
4151 * coherent. In such cases, existing GTT mmaps
4152 * ignore the cache bit in the PTE and we can
4153 * rewrite it without confusing the GPU or having
4154 * to force userspace to fault back in its mmaps.
4155 */
4156 }
4157
4158 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4159 if (!drm_mm_node_allocated(&vma->node))
4160 continue;
4161
4162 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4163 if (ret)
4164 return ret;
4165 }
4166 }
4167
4168 list_for_each_entry(vma, &obj->vma_list, obj_link)
4169 vma->node.color = cache_level;
4170 obj->cache_level = cache_level;
4171
4172 out:
4173 /* Flush the dirty CPU caches to the backing storage so that the
4174 * object is now coherent at its new cache level (with respect
4175 * to the access domain).
4176 */
4177 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4178 if (i915_gem_clflush_object(obj, true))
4179 i915_gem_chipset_flush(to_i915(obj->base.dev));
4180 }
4181
4182 return 0;
4183 }
4184
4185 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4186 struct drm_file *file)
4187 {
4188 struct drm_i915_gem_caching *args = data;
4189 struct drm_i915_gem_object *obj;
4190
4191 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4192 if (&obj->base == NULL)
4193 return -ENOENT;
4194
4195 switch (obj->cache_level) {
4196 case I915_CACHE_LLC:
4197 case I915_CACHE_L3_LLC:
4198 args->caching = I915_CACHING_CACHED;
4199 break;
4200
4201 case I915_CACHE_WT:
4202 args->caching = I915_CACHING_DISPLAY;
4203 break;
4204
4205 default:
4206 args->caching = I915_CACHING_NONE;
4207 break;
4208 }
4209
4210 drm_gem_object_unreference_unlocked(&obj->base);
4211 return 0;
4212 }
4213
4214 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4215 struct drm_file *file)
4216 {
4217 struct drm_i915_private *dev_priv = dev->dev_private;
4218 struct drm_i915_gem_caching *args = data;
4219 struct drm_i915_gem_object *obj;
4220 enum i915_cache_level level;
4221 int ret;
4222
4223 switch (args->caching) {
4224 case I915_CACHING_NONE:
4225 level = I915_CACHE_NONE;
4226 break;
4227 case I915_CACHING_CACHED:
4228 /*
4229 * Due to a HW issue on BXT A stepping, GPU stores via a
4230 * snooped mapping may leave stale data in a corresponding CPU
4231 * cacheline, whereas normally such cachelines would get
4232 * invalidated.
4233 */
4234 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4235 return -ENODEV;
4236
4237 level = I915_CACHE_LLC;
4238 break;
4239 case I915_CACHING_DISPLAY:
4240 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4241 break;
4242 default:
4243 return -EINVAL;
4244 }
4245
4246 intel_runtime_pm_get(dev_priv);
4247
4248 ret = i915_mutex_lock_interruptible(dev);
4249 if (ret)
4250 goto rpm_put;
4251
4252 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4253 if (&obj->base == NULL) {
4254 ret = -ENOENT;
4255 goto unlock;
4256 }
4257
4258 ret = i915_gem_object_set_cache_level(obj, level);
4259
4260 drm_gem_object_unreference(&obj->base);
4261 unlock:
4262 mutex_unlock(&dev->struct_mutex);
4263 rpm_put:
4264 intel_runtime_pm_put(dev_priv);
4265
4266 return ret;
4267 }
4268
4269 /*
4270 * Prepare buffer for display plane (scanout, cursors, etc).
4271 * Can be called from an uninterruptible phase (modesetting) and allows
4272 * any flushes to be pipelined (for pageflips).
4273 */
4274 int
4275 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4276 u32 alignment,
4277 const struct i915_ggtt_view *view)
4278 {
4279 u32 old_read_domains, old_write_domain;
4280 int ret;
4281
4282 /* Mark the pin_display early so that we account for the
4283 * display coherency whilst setting up the cache domains.
4284 */
4285 obj->pin_display++;
4286
4287 /* The display engine is not coherent with the LLC cache on gen6. As
4288 * a result, we make sure that the pinning that is about to occur is
4289 * done with uncached PTEs. This is lowest common denominator for all
4290 * chipsets.
4291 *
4292 * However for gen6+, we could do better by using the GFDT bit instead
4293 * of uncaching, which would allow us to flush all the LLC-cached data
4294 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4295 */
4296 ret = i915_gem_object_set_cache_level(obj,
4297 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4298 if (ret)
4299 goto err_unpin_display;
4300
4301 /* As the user may map the buffer once pinned in the display plane
4302 * (e.g. libkms for the bootup splash), we have to ensure that we
4303 * always use map_and_fenceable for all scanout buffers.
4304 */
4305 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4306 view->type == I915_GGTT_VIEW_NORMAL ?
4307 PIN_MAPPABLE : 0);
4308 if (ret)
4309 goto err_unpin_display;
4310
4311 i915_gem_object_flush_cpu_write_domain(obj);
4312
4313 old_write_domain = obj->base.write_domain;
4314 old_read_domains = obj->base.read_domains;
4315
4316 /* It should now be out of any other write domains, and we can update
4317 * the domain values for our changes.
4318 */
4319 obj->base.write_domain = 0;
4320 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4321
4322 trace_i915_gem_object_change_domain(obj,
4323 old_read_domains,
4324 old_write_domain);
4325
4326 return 0;
4327
4328 err_unpin_display:
4329 obj->pin_display--;
4330 return ret;
4331 }
4332
4333 void
4334 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4335 const struct i915_ggtt_view *view)
4336 {
4337 if (WARN_ON(obj->pin_display == 0))
4338 return;
4339
4340 i915_gem_object_ggtt_unpin_view(obj, view);
4341
4342 obj->pin_display--;
4343 }
4344
4345 /**
4346 * Moves a single object to the CPU read, and possibly write domain.
4347 * @obj: object to act on
4348 * @write: requesting write or read-only access
4349 *
4350 * This function returns when the move is complete, including waiting on
4351 * flushes to occur.
4352 */
4353 int
4354 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4355 {
4356 uint32_t old_write_domain, old_read_domains;
4357 int ret;
4358
4359 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4360 return 0;
4361
4362 ret = i915_gem_object_wait_rendering(obj, !write);
4363 if (ret)
4364 return ret;
4365
4366 i915_gem_object_flush_gtt_write_domain(obj);
4367
4368 old_write_domain = obj->base.write_domain;
4369 old_read_domains = obj->base.read_domains;
4370
4371 /* Flush the CPU cache if it's still invalid. */
4372 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4373 i915_gem_clflush_object(obj, false);
4374
4375 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4376 }
4377
4378 /* It should now be out of any other write domains, and we can update
4379 * the domain values for our changes.
4380 */
4381 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4382
4383 /* If we're writing through the CPU, then the GPU read domains will
4384 * need to be invalidated at next use.
4385 */
4386 if (write) {
4387 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4388 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4389 }
4390
4391 trace_i915_gem_object_change_domain(obj,
4392 old_read_domains,
4393 old_write_domain);
4394
4395 return 0;
4396 }
4397
4398 /* Throttle our rendering by waiting until the ring has completed our requests
4399 * emitted over 20 msec ago.
4400 *
4401 * Note that if we were to use the current jiffies each time around the loop,
4402 * we wouldn't escape the function with any frames outstanding if the time to
4403 * render a frame was over 20ms.
4404 *
4405 * This should get us reasonable parallelism between CPU and GPU but also
4406 * relatively low latency when blocking on a particular request to finish.
4407 */
4408 static int
4409 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4410 {
4411 struct drm_i915_private *dev_priv = dev->dev_private;
4412 struct drm_i915_file_private *file_priv = file->driver_priv;
4413 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4414 struct drm_i915_gem_request *request, *target = NULL;
4415 int ret;
4416
4417 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4418 if (ret)
4419 return ret;
4420
4421 /* ABI: return -EIO if already wedged */
4422 if (i915_terminally_wedged(&dev_priv->gpu_error))
4423 return -EIO;
4424
4425 spin_lock(&file_priv->mm.lock);
4426 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4427 if (time_after_eq(request->emitted_jiffies, recent_enough))
4428 break;
4429
4430 /*
4431 * Note that the request might not have been submitted yet.
4432 * In which case emitted_jiffies will be zero.
4433 */
4434 if (!request->emitted_jiffies)
4435 continue;
4436
4437 target = request;
4438 }
4439 if (target)
4440 i915_gem_request_reference(target);
4441 spin_unlock(&file_priv->mm.lock);
4442
4443 if (target == NULL)
4444 return 0;
4445
4446 ret = __i915_wait_request(target, true, NULL, NULL);
4447 if (ret == 0)
4448 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4449
4450 i915_gem_request_unreference(target);
4451
4452 return ret;
4453 }
4454
4455 static bool
4456 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4457 {
4458 struct drm_i915_gem_object *obj = vma->obj;
4459
4460 if (alignment &&
4461 vma->node.start & (alignment - 1))
4462 return true;
4463
4464 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4465 return true;
4466
4467 if (flags & PIN_OFFSET_BIAS &&
4468 vma->node.start < (flags & PIN_OFFSET_MASK))
4469 return true;
4470
4471 if (flags & PIN_OFFSET_FIXED &&
4472 vma->node.start != (flags & PIN_OFFSET_MASK))
4473 return true;
4474
4475 return false;
4476 }
4477
4478 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4479 {
4480 struct drm_i915_gem_object *obj = vma->obj;
4481 bool mappable, fenceable;
4482 u32 fence_size, fence_alignment;
4483
4484 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4485 obj->base.size,
4486 obj->tiling_mode);
4487 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4488 obj->base.size,
4489 obj->tiling_mode,
4490 true);
4491
4492 fenceable = (vma->node.size == fence_size &&
4493 (vma->node.start & (fence_alignment - 1)) == 0);
4494
4495 mappable = (vma->node.start + fence_size <=
4496 to_i915(obj->base.dev)->ggtt.mappable_end);
4497
4498 obj->map_and_fenceable = mappable && fenceable;
4499 }
4500
4501 static int
4502 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4503 struct i915_address_space *vm,
4504 const struct i915_ggtt_view *ggtt_view,
4505 uint32_t alignment,
4506 uint64_t flags)
4507 {
4508 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4509 struct i915_vma *vma;
4510 unsigned bound;
4511 int ret;
4512
4513 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4514 return -ENODEV;
4515
4516 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4517 return -EINVAL;
4518
4519 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4520 return -EINVAL;
4521
4522 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4523 return -EINVAL;
4524
4525 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4526 i915_gem_obj_to_vma(obj, vm);
4527
4528 if (vma) {
4529 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4530 return -EBUSY;
4531
4532 if (i915_vma_misplaced(vma, alignment, flags)) {
4533 WARN(vma->pin_count,
4534 "bo is already pinned in %s with incorrect alignment:"
4535 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4536 " obj->map_and_fenceable=%d\n",
4537 ggtt_view ? "ggtt" : "ppgtt",
4538 upper_32_bits(vma->node.start),
4539 lower_32_bits(vma->node.start),
4540 alignment,
4541 !!(flags & PIN_MAPPABLE),
4542 obj->map_and_fenceable);
4543 ret = i915_vma_unbind(vma);
4544 if (ret)
4545 return ret;
4546
4547 vma = NULL;
4548 }
4549 }
4550
4551 bound = vma ? vma->bound : 0;
4552 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4553 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4554 flags);
4555 if (IS_ERR(vma))
4556 return PTR_ERR(vma);
4557 } else {
4558 ret = i915_vma_bind(vma, obj->cache_level, flags);
4559 if (ret)
4560 return ret;
4561 }
4562
4563 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4564 (bound ^ vma->bound) & GLOBAL_BIND) {
4565 __i915_vma_set_map_and_fenceable(vma);
4566 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4567 }
4568
4569 vma->pin_count++;
4570 return 0;
4571 }
4572
4573 int
4574 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4575 struct i915_address_space *vm,
4576 uint32_t alignment,
4577 uint64_t flags)
4578 {
4579 return i915_gem_object_do_pin(obj, vm,
4580 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4581 alignment, flags);
4582 }
4583
4584 int
4585 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4586 const struct i915_ggtt_view *view,
4587 uint32_t alignment,
4588 uint64_t flags)
4589 {
4590 struct drm_device *dev = obj->base.dev;
4591 struct drm_i915_private *dev_priv = to_i915(dev);
4592 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4593
4594 BUG_ON(!view);
4595
4596 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4597 alignment, flags | PIN_GLOBAL);
4598 }
4599
4600 void
4601 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4602 const struct i915_ggtt_view *view)
4603 {
4604 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4605
4606 WARN_ON(vma->pin_count == 0);
4607 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4608
4609 --vma->pin_count;
4610 }
4611
4612 int
4613 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4614 struct drm_file *file)
4615 {
4616 struct drm_i915_gem_busy *args = data;
4617 struct drm_i915_gem_object *obj;
4618 int ret;
4619
4620 ret = i915_mutex_lock_interruptible(dev);
4621 if (ret)
4622 return ret;
4623
4624 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4625 if (&obj->base == NULL) {
4626 ret = -ENOENT;
4627 goto unlock;
4628 }
4629
4630 /* Count all active objects as busy, even if they are currently not used
4631 * by the gpu. Users of this interface expect objects to eventually
4632 * become non-busy without any further actions, therefore emit any
4633 * necessary flushes here.
4634 */
4635 ret = i915_gem_object_flush_active(obj);
4636 if (ret)
4637 goto unref;
4638
4639 args->busy = 0;
4640 if (obj->active) {
4641 int i;
4642
4643 for (i = 0; i < I915_NUM_ENGINES; i++) {
4644 struct drm_i915_gem_request *req;
4645
4646 req = obj->last_read_req[i];
4647 if (req)
4648 args->busy |= 1 << (16 + req->engine->exec_id);
4649 }
4650 if (obj->last_write_req)
4651 args->busy |= obj->last_write_req->engine->exec_id;
4652 }
4653
4654 unref:
4655 drm_gem_object_unreference(&obj->base);
4656 unlock:
4657 mutex_unlock(&dev->struct_mutex);
4658 return ret;
4659 }
4660
4661 int
4662 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4663 struct drm_file *file_priv)
4664 {
4665 return i915_gem_ring_throttle(dev, file_priv);
4666 }
4667
4668 int
4669 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4670 struct drm_file *file_priv)
4671 {
4672 struct drm_i915_private *dev_priv = dev->dev_private;
4673 struct drm_i915_gem_madvise *args = data;
4674 struct drm_i915_gem_object *obj;
4675 int ret;
4676
4677 switch (args->madv) {
4678 case I915_MADV_DONTNEED:
4679 case I915_MADV_WILLNEED:
4680 break;
4681 default:
4682 return -EINVAL;
4683 }
4684
4685 ret = i915_mutex_lock_interruptible(dev);
4686 if (ret)
4687 return ret;
4688
4689 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4690 if (&obj->base == NULL) {
4691 ret = -ENOENT;
4692 goto unlock;
4693 }
4694
4695 if (i915_gem_obj_is_pinned(obj)) {
4696 ret = -EINVAL;
4697 goto out;
4698 }
4699
4700 if (obj->pages &&
4701 obj->tiling_mode != I915_TILING_NONE &&
4702 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4703 if (obj->madv == I915_MADV_WILLNEED)
4704 i915_gem_object_unpin_pages(obj);
4705 if (args->madv == I915_MADV_WILLNEED)
4706 i915_gem_object_pin_pages(obj);
4707 }
4708
4709 if (obj->madv != __I915_MADV_PURGED)
4710 obj->madv = args->madv;
4711
4712 /* if the object is no longer attached, discard its backing storage */
4713 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4714 i915_gem_object_truncate(obj);
4715
4716 args->retained = obj->madv != __I915_MADV_PURGED;
4717
4718 out:
4719 drm_gem_object_unreference(&obj->base);
4720 unlock:
4721 mutex_unlock(&dev->struct_mutex);
4722 return ret;
4723 }
4724
4725 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4726 const struct drm_i915_gem_object_ops *ops)
4727 {
4728 int i;
4729
4730 INIT_LIST_HEAD(&obj->global_list);
4731 for (i = 0; i < I915_NUM_ENGINES; i++)
4732 INIT_LIST_HEAD(&obj->engine_list[i]);
4733 INIT_LIST_HEAD(&obj->obj_exec_link);
4734 INIT_LIST_HEAD(&obj->vma_list);
4735 INIT_LIST_HEAD(&obj->batch_pool_link);
4736
4737 obj->ops = ops;
4738
4739 obj->fence_reg = I915_FENCE_REG_NONE;
4740 obj->madv = I915_MADV_WILLNEED;
4741
4742 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4743 }
4744
4745 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4746 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4747 .get_pages = i915_gem_object_get_pages_gtt,
4748 .put_pages = i915_gem_object_put_pages_gtt,
4749 };
4750
4751 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4752 size_t size)
4753 {
4754 struct drm_i915_gem_object *obj;
4755 struct address_space *mapping;
4756 gfp_t mask;
4757 int ret;
4758
4759 obj = i915_gem_object_alloc(dev);
4760 if (obj == NULL)
4761 return ERR_PTR(-ENOMEM);
4762
4763 ret = drm_gem_object_init(dev, &obj->base, size);
4764 if (ret)
4765 goto fail;
4766
4767 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4768 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4769 /* 965gm cannot relocate objects above 4GiB. */
4770 mask &= ~__GFP_HIGHMEM;
4771 mask |= __GFP_DMA32;
4772 }
4773
4774 mapping = file_inode(obj->base.filp)->i_mapping;
4775 mapping_set_gfp_mask(mapping, mask);
4776
4777 i915_gem_object_init(obj, &i915_gem_object_ops);
4778
4779 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4780 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4781
4782 if (HAS_LLC(dev)) {
4783 /* On some devices, we can have the GPU use the LLC (the CPU
4784 * cache) for about a 10% performance improvement
4785 * compared to uncached. Graphics requests other than
4786 * display scanout are coherent with the CPU in
4787 * accessing this cache. This means in this mode we
4788 * don't need to clflush on the CPU side, and on the
4789 * GPU side we only need to flush internal caches to
4790 * get data visible to the CPU.
4791 *
4792 * However, we maintain the display planes as UC, and so
4793 * need to rebind when first used as such.
4794 */
4795 obj->cache_level = I915_CACHE_LLC;
4796 } else
4797 obj->cache_level = I915_CACHE_NONE;
4798
4799 trace_i915_gem_object_create(obj);
4800
4801 return obj;
4802
4803 fail:
4804 i915_gem_object_free(obj);
4805
4806 return ERR_PTR(ret);
4807 }
4808
4809 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4810 {
4811 /* If we are the last user of the backing storage (be it shmemfs
4812 * pages or stolen etc), we know that the pages are going to be
4813 * immediately released. In this case, we can then skip copying
4814 * back the contents from the GPU.
4815 */
4816
4817 if (obj->madv != I915_MADV_WILLNEED)
4818 return false;
4819
4820 if (obj->base.filp == NULL)
4821 return true;
4822
4823 /* At first glance, this looks racy, but then again so would be
4824 * userspace racing mmap against close. However, the first external
4825 * reference to the filp can only be obtained through the
4826 * i915_gem_mmap_ioctl() which safeguards us against the user
4827 * acquiring such a reference whilst we are in the middle of
4828 * freeing the object.
4829 */
4830 return atomic_long_read(&obj->base.filp->f_count) == 1;
4831 }
4832
4833 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4834 {
4835 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4836 struct drm_device *dev = obj->base.dev;
4837 struct drm_i915_private *dev_priv = dev->dev_private;
4838 struct i915_vma *vma, *next;
4839
4840 intel_runtime_pm_get(dev_priv);
4841
4842 trace_i915_gem_object_destroy(obj);
4843
4844 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4845 int ret;
4846
4847 vma->pin_count = 0;
4848 ret = i915_vma_unbind(vma);
4849 if (WARN_ON(ret == -ERESTARTSYS)) {
4850 bool was_interruptible;
4851
4852 was_interruptible = dev_priv->mm.interruptible;
4853 dev_priv->mm.interruptible = false;
4854
4855 WARN_ON(i915_vma_unbind(vma));
4856
4857 dev_priv->mm.interruptible = was_interruptible;
4858 }
4859 }
4860
4861 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4862 * before progressing. */
4863 if (obj->stolen)
4864 i915_gem_object_unpin_pages(obj);
4865
4866 WARN_ON(obj->frontbuffer_bits);
4867
4868 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4869 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4870 obj->tiling_mode != I915_TILING_NONE)
4871 i915_gem_object_unpin_pages(obj);
4872
4873 if (WARN_ON(obj->pages_pin_count))
4874 obj->pages_pin_count = 0;
4875 if (discard_backing_storage(obj))
4876 obj->madv = I915_MADV_DONTNEED;
4877 i915_gem_object_put_pages(obj);
4878 i915_gem_object_free_mmap_offset(obj);
4879
4880 BUG_ON(obj->pages);
4881
4882 if (obj->base.import_attach)
4883 drm_prime_gem_destroy(&obj->base, NULL);
4884
4885 if (obj->ops->release)
4886 obj->ops->release(obj);
4887
4888 drm_gem_object_release(&obj->base);
4889 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4890
4891 kfree(obj->bit_17);
4892 i915_gem_object_free(obj);
4893
4894 intel_runtime_pm_put(dev_priv);
4895 }
4896
4897 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4898 struct i915_address_space *vm)
4899 {
4900 struct i915_vma *vma;
4901 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4902 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4903 vma->vm == vm)
4904 return vma;
4905 }
4906 return NULL;
4907 }
4908
4909 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4910 const struct i915_ggtt_view *view)
4911 {
4912 struct i915_vma *vma;
4913
4914 GEM_BUG_ON(!view);
4915
4916 list_for_each_entry(vma, &obj->vma_list, obj_link)
4917 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4918 return vma;
4919 return NULL;
4920 }
4921
4922 void i915_gem_vma_destroy(struct i915_vma *vma)
4923 {
4924 WARN_ON(vma->node.allocated);
4925
4926 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4927 if (!list_empty(&vma->exec_list))
4928 return;
4929
4930 if (!vma->is_ggtt)
4931 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4932
4933 list_del(&vma->obj_link);
4934
4935 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4936 }
4937
4938 static void
4939 i915_gem_stop_engines(struct drm_device *dev)
4940 {
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942 struct intel_engine_cs *engine;
4943
4944 for_each_engine(engine, dev_priv)
4945 dev_priv->gt.stop_engine(engine);
4946 }
4947
4948 int
4949 i915_gem_suspend(struct drm_device *dev)
4950 {
4951 struct drm_i915_private *dev_priv = dev->dev_private;
4952 int ret = 0;
4953
4954 mutex_lock(&dev->struct_mutex);
4955 ret = i915_gpu_idle(dev);
4956 if (ret)
4957 goto err;
4958
4959 i915_gem_retire_requests(dev_priv);
4960
4961 i915_gem_stop_engines(dev);
4962 i915_gem_context_lost(dev_priv);
4963 mutex_unlock(&dev->struct_mutex);
4964
4965 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4966 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4967 flush_delayed_work(&dev_priv->mm.idle_work);
4968
4969 /* Assert that we sucessfully flushed all the work and
4970 * reset the GPU back to its idle, low power state.
4971 */
4972 WARN_ON(dev_priv->mm.busy);
4973
4974 return 0;
4975
4976 err:
4977 mutex_unlock(&dev->struct_mutex);
4978 return ret;
4979 }
4980
4981 void i915_gem_init_swizzling(struct drm_device *dev)
4982 {
4983 struct drm_i915_private *dev_priv = dev->dev_private;
4984
4985 if (INTEL_INFO(dev)->gen < 5 ||
4986 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4987 return;
4988
4989 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4990 DISP_TILE_SURFACE_SWIZZLING);
4991
4992 if (IS_GEN5(dev))
4993 return;
4994
4995 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4996 if (IS_GEN6(dev))
4997 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4998 else if (IS_GEN7(dev))
4999 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5000 else if (IS_GEN8(dev))
5001 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5002 else
5003 BUG();
5004 }
5005
5006 static void init_unused_ring(struct drm_device *dev, u32 base)
5007 {
5008 struct drm_i915_private *dev_priv = dev->dev_private;
5009
5010 I915_WRITE(RING_CTL(base), 0);
5011 I915_WRITE(RING_HEAD(base), 0);
5012 I915_WRITE(RING_TAIL(base), 0);
5013 I915_WRITE(RING_START(base), 0);
5014 }
5015
5016 static void init_unused_rings(struct drm_device *dev)
5017 {
5018 if (IS_I830(dev)) {
5019 init_unused_ring(dev, PRB1_BASE);
5020 init_unused_ring(dev, SRB0_BASE);
5021 init_unused_ring(dev, SRB1_BASE);
5022 init_unused_ring(dev, SRB2_BASE);
5023 init_unused_ring(dev, SRB3_BASE);
5024 } else if (IS_GEN2(dev)) {
5025 init_unused_ring(dev, SRB0_BASE);
5026 init_unused_ring(dev, SRB1_BASE);
5027 } else if (IS_GEN3(dev)) {
5028 init_unused_ring(dev, PRB1_BASE);
5029 init_unused_ring(dev, PRB2_BASE);
5030 }
5031 }
5032
5033 int i915_gem_init_engines(struct drm_device *dev)
5034 {
5035 struct drm_i915_private *dev_priv = dev->dev_private;
5036 int ret;
5037
5038 ret = intel_init_render_ring_buffer(dev);
5039 if (ret)
5040 return ret;
5041
5042 if (HAS_BSD(dev)) {
5043 ret = intel_init_bsd_ring_buffer(dev);
5044 if (ret)
5045 goto cleanup_render_ring;
5046 }
5047
5048 if (HAS_BLT(dev)) {
5049 ret = intel_init_blt_ring_buffer(dev);
5050 if (ret)
5051 goto cleanup_bsd_ring;
5052 }
5053
5054 if (HAS_VEBOX(dev)) {
5055 ret = intel_init_vebox_ring_buffer(dev);
5056 if (ret)
5057 goto cleanup_blt_ring;
5058 }
5059
5060 if (HAS_BSD2(dev)) {
5061 ret = intel_init_bsd2_ring_buffer(dev);
5062 if (ret)
5063 goto cleanup_vebox_ring;
5064 }
5065
5066 return 0;
5067
5068 cleanup_vebox_ring:
5069 intel_cleanup_engine(&dev_priv->engine[VECS]);
5070 cleanup_blt_ring:
5071 intel_cleanup_engine(&dev_priv->engine[BCS]);
5072 cleanup_bsd_ring:
5073 intel_cleanup_engine(&dev_priv->engine[VCS]);
5074 cleanup_render_ring:
5075 intel_cleanup_engine(&dev_priv->engine[RCS]);
5076
5077 return ret;
5078 }
5079
5080 int
5081 i915_gem_init_hw(struct drm_device *dev)
5082 {
5083 struct drm_i915_private *dev_priv = dev->dev_private;
5084 struct intel_engine_cs *engine;
5085 int ret;
5086
5087 /* Double layer security blanket, see i915_gem_init() */
5088 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5089
5090 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5091 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5092
5093 if (IS_HASWELL(dev))
5094 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5095 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5096
5097 if (HAS_PCH_NOP(dev)) {
5098 if (IS_IVYBRIDGE(dev)) {
5099 u32 temp = I915_READ(GEN7_MSG_CTL);
5100 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5101 I915_WRITE(GEN7_MSG_CTL, temp);
5102 } else if (INTEL_INFO(dev)->gen >= 7) {
5103 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5104 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5105 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5106 }
5107 }
5108
5109 i915_gem_init_swizzling(dev);
5110
5111 /*
5112 * At least 830 can leave some of the unused rings
5113 * "active" (ie. head != tail) after resume which
5114 * will prevent c3 entry. Makes sure all unused rings
5115 * are totally idle.
5116 */
5117 init_unused_rings(dev);
5118
5119 BUG_ON(!dev_priv->kernel_context);
5120
5121 ret = i915_ppgtt_init_hw(dev);
5122 if (ret) {
5123 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5124 goto out;
5125 }
5126
5127 /* Need to do basic initialisation of all rings first: */
5128 for_each_engine(engine, dev_priv) {
5129 ret = engine->init_hw(engine);
5130 if (ret)
5131 goto out;
5132 }
5133
5134 intel_mocs_init_l3cc_table(dev);
5135
5136 /* We can't enable contexts until all firmware is loaded */
5137 ret = intel_guc_setup(dev);
5138 if (ret)
5139 goto out;
5140
5141 /*
5142 * Increment the next seqno by 0x100 so we have a visible break
5143 * on re-initialisation
5144 */
5145 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5146
5147 out:
5148 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5149 return ret;
5150 }
5151
5152 int i915_gem_init(struct drm_device *dev)
5153 {
5154 struct drm_i915_private *dev_priv = dev->dev_private;
5155 int ret;
5156
5157 mutex_lock(&dev->struct_mutex);
5158
5159 if (!i915.enable_execlists) {
5160 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5161 dev_priv->gt.init_engines = i915_gem_init_engines;
5162 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5163 dev_priv->gt.stop_engine = intel_stop_engine;
5164 } else {
5165 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5166 dev_priv->gt.init_engines = intel_logical_rings_init;
5167 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5168 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5169 }
5170
5171 /* This is just a security blanket to placate dragons.
5172 * On some systems, we very sporadically observe that the first TLBs
5173 * used by the CS may be stale, despite us poking the TLB reset. If
5174 * we hold the forcewake during initialisation these problems
5175 * just magically go away.
5176 */
5177 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5178
5179 i915_gem_init_userptr(dev_priv);
5180 i915_gem_init_ggtt(dev);
5181
5182 ret = i915_gem_context_init(dev);
5183 if (ret)
5184 goto out_unlock;
5185
5186 ret = dev_priv->gt.init_engines(dev);
5187 if (ret)
5188 goto out_unlock;
5189
5190 ret = i915_gem_init_hw(dev);
5191 if (ret == -EIO) {
5192 /* Allow ring initialisation to fail by marking the GPU as
5193 * wedged. But we only want to do this where the GPU is angry,
5194 * for all other failure, such as an allocation failure, bail.
5195 */
5196 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5197 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5198 ret = 0;
5199 }
5200
5201 out_unlock:
5202 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5203 mutex_unlock(&dev->struct_mutex);
5204
5205 return ret;
5206 }
5207
5208 void
5209 i915_gem_cleanup_engines(struct drm_device *dev)
5210 {
5211 struct drm_i915_private *dev_priv = dev->dev_private;
5212 struct intel_engine_cs *engine;
5213
5214 for_each_engine(engine, dev_priv)
5215 dev_priv->gt.cleanup_engine(engine);
5216 }
5217
5218 static void
5219 init_engine_lists(struct intel_engine_cs *engine)
5220 {
5221 INIT_LIST_HEAD(&engine->active_list);
5222 INIT_LIST_HEAD(&engine->request_list);
5223 }
5224
5225 void
5226 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5227 {
5228 struct drm_device *dev = dev_priv->dev;
5229
5230 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5231 !IS_CHERRYVIEW(dev_priv))
5232 dev_priv->num_fence_regs = 32;
5233 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5234 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5235 dev_priv->num_fence_regs = 16;
5236 else
5237 dev_priv->num_fence_regs = 8;
5238
5239 if (intel_vgpu_active(dev_priv))
5240 dev_priv->num_fence_regs =
5241 I915_READ(vgtif_reg(avail_rs.fence_num));
5242
5243 /* Initialize fence registers to zero */
5244 i915_gem_restore_fences(dev);
5245
5246 i915_gem_detect_bit_6_swizzle(dev);
5247 }
5248
5249 void
5250 i915_gem_load_init(struct drm_device *dev)
5251 {
5252 struct drm_i915_private *dev_priv = dev->dev_private;
5253 int i;
5254
5255 dev_priv->objects =
5256 kmem_cache_create("i915_gem_object",
5257 sizeof(struct drm_i915_gem_object), 0,
5258 SLAB_HWCACHE_ALIGN,
5259 NULL);
5260 dev_priv->vmas =
5261 kmem_cache_create("i915_gem_vma",
5262 sizeof(struct i915_vma), 0,
5263 SLAB_HWCACHE_ALIGN,
5264 NULL);
5265 dev_priv->requests =
5266 kmem_cache_create("i915_gem_request",
5267 sizeof(struct drm_i915_gem_request), 0,
5268 SLAB_HWCACHE_ALIGN,
5269 NULL);
5270
5271 INIT_LIST_HEAD(&dev_priv->vm_list);
5272 INIT_LIST_HEAD(&dev_priv->context_list);
5273 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5274 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5275 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5276 for (i = 0; i < I915_NUM_ENGINES; i++)
5277 init_engine_lists(&dev_priv->engine[i]);
5278 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5279 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5280 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5281 i915_gem_retire_work_handler);
5282 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5283 i915_gem_idle_work_handler);
5284 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5285
5286 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5287
5288 /*
5289 * Set initial sequence number for requests.
5290 * Using this number allows the wraparound to happen early,
5291 * catching any obvious problems.
5292 */
5293 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5294 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5295
5296 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5297
5298 init_waitqueue_head(&dev_priv->pending_flip_queue);
5299
5300 dev_priv->mm.interruptible = true;
5301
5302 mutex_init(&dev_priv->fb_tracking.lock);
5303 }
5304
5305 void i915_gem_load_cleanup(struct drm_device *dev)
5306 {
5307 struct drm_i915_private *dev_priv = to_i915(dev);
5308
5309 kmem_cache_destroy(dev_priv->requests);
5310 kmem_cache_destroy(dev_priv->vmas);
5311 kmem_cache_destroy(dev_priv->objects);
5312 }
5313
5314 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5315 {
5316 struct drm_i915_gem_object *obj;
5317
5318 /* Called just before we write the hibernation image.
5319 *
5320 * We need to update the domain tracking to reflect that the CPU
5321 * will be accessing all the pages to create and restore from the
5322 * hibernation, and so upon restoration those pages will be in the
5323 * CPU domain.
5324 *
5325 * To make sure the hibernation image contains the latest state,
5326 * we update that state just before writing out the image.
5327 */
5328
5329 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5330 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5331 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5332 }
5333
5334 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5335 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5336 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5337 }
5338
5339 return 0;
5340 }
5341
5342 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5343 {
5344 struct drm_i915_file_private *file_priv = file->driver_priv;
5345
5346 /* Clean up our request list when the client is going away, so that
5347 * later retire_requests won't dereference our soon-to-be-gone
5348 * file_priv.
5349 */
5350 spin_lock(&file_priv->mm.lock);
5351 while (!list_empty(&file_priv->mm.request_list)) {
5352 struct drm_i915_gem_request *request;
5353
5354 request = list_first_entry(&file_priv->mm.request_list,
5355 struct drm_i915_gem_request,
5356 client_list);
5357 list_del(&request->client_list);
5358 request->file_priv = NULL;
5359 }
5360 spin_unlock(&file_priv->mm.lock);
5361
5362 if (!list_empty(&file_priv->rps.link)) {
5363 spin_lock(&to_i915(dev)->rps.client_lock);
5364 list_del(&file_priv->rps.link);
5365 spin_unlock(&to_i915(dev)->rps.client_lock);
5366 }
5367 }
5368
5369 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5370 {
5371 struct drm_i915_file_private *file_priv;
5372 int ret;
5373
5374 DRM_DEBUG_DRIVER("\n");
5375
5376 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5377 if (!file_priv)
5378 return -ENOMEM;
5379
5380 file->driver_priv = file_priv;
5381 file_priv->dev_priv = dev->dev_private;
5382 file_priv->file = file;
5383 INIT_LIST_HEAD(&file_priv->rps.link);
5384
5385 spin_lock_init(&file_priv->mm.lock);
5386 INIT_LIST_HEAD(&file_priv->mm.request_list);
5387
5388 file_priv->bsd_ring = -1;
5389
5390 ret = i915_gem_context_open(dev, file);
5391 if (ret)
5392 kfree(file_priv);
5393
5394 return ret;
5395 }
5396
5397 /**
5398 * i915_gem_track_fb - update frontbuffer tracking
5399 * @old: current GEM buffer for the frontbuffer slots
5400 * @new: new GEM buffer for the frontbuffer slots
5401 * @frontbuffer_bits: bitmask of frontbuffer slots
5402 *
5403 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5404 * from @old and setting them in @new. Both @old and @new can be NULL.
5405 */
5406 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5407 struct drm_i915_gem_object *new,
5408 unsigned frontbuffer_bits)
5409 {
5410 if (old) {
5411 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5412 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5413 old->frontbuffer_bits &= ~frontbuffer_bits;
5414 }
5415
5416 if (new) {
5417 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5418 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5419 new->frontbuffer_bits |= frontbuffer_bits;
5420 }
5421 }
5422
5423 /* All the new VM stuff */
5424 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5425 struct i915_address_space *vm)
5426 {
5427 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5428 struct i915_vma *vma;
5429
5430 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5431
5432 list_for_each_entry(vma, &o->vma_list, obj_link) {
5433 if (vma->is_ggtt &&
5434 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5435 continue;
5436 if (vma->vm == vm)
5437 return vma->node.start;
5438 }
5439
5440 WARN(1, "%s vma for this object not found.\n",
5441 i915_is_ggtt(vm) ? "global" : "ppgtt");
5442 return -1;
5443 }
5444
5445 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5446 const struct i915_ggtt_view *view)
5447 {
5448 struct i915_vma *vma;
5449
5450 list_for_each_entry(vma, &o->vma_list, obj_link)
5451 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5452 return vma->node.start;
5453
5454 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5455 return -1;
5456 }
5457
5458 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5459 struct i915_address_space *vm)
5460 {
5461 struct i915_vma *vma;
5462
5463 list_for_each_entry(vma, &o->vma_list, obj_link) {
5464 if (vma->is_ggtt &&
5465 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5466 continue;
5467 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5468 return true;
5469 }
5470
5471 return false;
5472 }
5473
5474 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5475 const struct i915_ggtt_view *view)
5476 {
5477 struct i915_vma *vma;
5478
5479 list_for_each_entry(vma, &o->vma_list, obj_link)
5480 if (vma->is_ggtt &&
5481 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5482 drm_mm_node_allocated(&vma->node))
5483 return true;
5484
5485 return false;
5486 }
5487
5488 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5489 {
5490 struct i915_vma *vma;
5491
5492 list_for_each_entry(vma, &o->vma_list, obj_link)
5493 if (drm_mm_node_allocated(&vma->node))
5494 return true;
5495
5496 return false;
5497 }
5498
5499 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5500 {
5501 struct i915_vma *vma;
5502
5503 GEM_BUG_ON(list_empty(&o->vma_list));
5504
5505 list_for_each_entry(vma, &o->vma_list, obj_link) {
5506 if (vma->is_ggtt &&
5507 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5508 return vma->node.size;
5509 }
5510
5511 return 0;
5512 }
5513
5514 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5515 {
5516 struct i915_vma *vma;
5517 list_for_each_entry(vma, &obj->vma_list, obj_link)
5518 if (vma->pin_count > 0)
5519 return true;
5520
5521 return false;
5522 }
5523
5524 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5525 struct page *
5526 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5527 {
5528 struct page *page;
5529
5530 /* Only default objects have per-page dirty tracking */
5531 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5532 return NULL;
5533
5534 page = i915_gem_object_get_page(obj, n);
5535 set_page_dirty(page);
5536 return page;
5537 }
5538
5539 /* Allocate a new GEM object and fill it with the supplied data */
5540 struct drm_i915_gem_object *
5541 i915_gem_object_create_from_data(struct drm_device *dev,
5542 const void *data, size_t size)
5543 {
5544 struct drm_i915_gem_object *obj;
5545 struct sg_table *sg;
5546 size_t bytes;
5547 int ret;
5548
5549 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5550 if (IS_ERR(obj))
5551 return obj;
5552
5553 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5554 if (ret)
5555 goto fail;
5556
5557 ret = i915_gem_object_get_pages(obj);
5558 if (ret)
5559 goto fail;
5560
5561 i915_gem_object_pin_pages(obj);
5562 sg = obj->pages;
5563 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5564 obj->dirty = 1; /* Backing store is now out of date */
5565 i915_gem_object_unpin_pages(obj);
5566
5567 if (WARN_ON(bytes != size)) {
5568 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5569 ret = -EFAULT;
5570 goto fail;
5571 }
5572
5573 return obj;
5574
5575 fail:
5576 drm_gem_object_unreference(&obj->base);
5577 return ERR_PTR(ret);
5578 }
This page took 0.232646 seconds and 5 git commands to generate.