drm/i915/bdw: Pin the context backing objects to GGTT on-demand
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 static int
212 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
213 {
214 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
215 char *vaddr = obj->phys_handle->vaddr;
216 struct sg_table *st;
217 struct scatterlist *sg;
218 int i;
219
220 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
221 return -EINVAL;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page;
225 char *src;
226
227 page = shmem_read_mapping_page(mapping, i);
228 if (IS_ERR(page))
229 return PTR_ERR(page);
230
231 src = kmap_atomic(page);
232 memcpy(vaddr, src, PAGE_SIZE);
233 drm_clflush_virt_range(vaddr, PAGE_SIZE);
234 kunmap_atomic(src);
235
236 page_cache_release(page);
237 vaddr += PAGE_SIZE;
238 }
239
240 i915_gem_chipset_flush(obj->base.dev);
241
242 st = kmalloc(sizeof(*st), GFP_KERNEL);
243 if (st == NULL)
244 return -ENOMEM;
245
246 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
247 kfree(st);
248 return -ENOMEM;
249 }
250
251 sg = st->sgl;
252 sg->offset = 0;
253 sg->length = obj->base.size;
254
255 sg_dma_address(sg) = obj->phys_handle->busaddr;
256 sg_dma_len(sg) = obj->base.size;
257
258 obj->pages = st;
259 obj->has_dma_mapping = true;
260 return 0;
261 }
262
263 static void
264 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
265 {
266 int ret;
267
268 BUG_ON(obj->madv == __I915_MADV_PURGED);
269
270 ret = i915_gem_object_set_to_cpu_domain(obj, true);
271 if (ret) {
272 /* In the event of a disaster, abandon all caches and
273 * hope for the best.
274 */
275 WARN_ON(ret != -EIO);
276 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
277 }
278
279 if (obj->madv == I915_MADV_DONTNEED)
280 obj->dirty = 0;
281
282 if (obj->dirty) {
283 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
284 char *vaddr = obj->phys_handle->vaddr;
285 int i;
286
287 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
288 struct page *page;
289 char *dst;
290
291 page = shmem_read_mapping_page(mapping, i);
292 if (IS_ERR(page))
293 continue;
294
295 dst = kmap_atomic(page);
296 drm_clflush_virt_range(vaddr, PAGE_SIZE);
297 memcpy(dst, vaddr, PAGE_SIZE);
298 kunmap_atomic(dst);
299
300 set_page_dirty(page);
301 if (obj->madv == I915_MADV_WILLNEED)
302 mark_page_accessed(page);
303 page_cache_release(page);
304 vaddr += PAGE_SIZE;
305 }
306 obj->dirty = 0;
307 }
308
309 sg_free_table(obj->pages);
310 kfree(obj->pages);
311
312 obj->has_dma_mapping = false;
313 }
314
315 static void
316 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
317 {
318 drm_pci_free(obj->base.dev, obj->phys_handle);
319 }
320
321 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
322 .get_pages = i915_gem_object_get_pages_phys,
323 .put_pages = i915_gem_object_put_pages_phys,
324 .release = i915_gem_object_release_phys,
325 };
326
327 static int
328 drop_pages(struct drm_i915_gem_object *obj)
329 {
330 struct i915_vma *vma, *next;
331 int ret;
332
333 drm_gem_object_reference(&obj->base);
334 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
335 if (i915_vma_unbind(vma))
336 break;
337
338 ret = i915_gem_object_put_pages(obj);
339 drm_gem_object_unreference(&obj->base);
340
341 return ret;
342 }
343
344 int
345 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
346 int align)
347 {
348 drm_dma_handle_t *phys;
349 int ret;
350
351 if (obj->phys_handle) {
352 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
353 return -EBUSY;
354
355 return 0;
356 }
357
358 if (obj->madv != I915_MADV_WILLNEED)
359 return -EFAULT;
360
361 if (obj->base.filp == NULL)
362 return -EINVAL;
363
364 ret = drop_pages(obj);
365 if (ret)
366 return ret;
367
368 /* create a new object */
369 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
370 if (!phys)
371 return -ENOMEM;
372
373 obj->phys_handle = phys;
374 obj->ops = &i915_gem_phys_ops;
375
376 return i915_gem_object_get_pages(obj);
377 }
378
379 static int
380 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
381 struct drm_i915_gem_pwrite *args,
382 struct drm_file *file_priv)
383 {
384 struct drm_device *dev = obj->base.dev;
385 void *vaddr = obj->phys_handle->vaddr + args->offset;
386 char __user *user_data = to_user_ptr(args->data_ptr);
387 int ret;
388
389 /* We manually control the domain here and pretend that it
390 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
391 */
392 ret = i915_gem_object_wait_rendering(obj, false);
393 if (ret)
394 return ret;
395
396 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
397 unsigned long unwritten;
398
399 /* The physical object once assigned is fixed for the lifetime
400 * of the obj, so we can safely drop the lock and continue
401 * to access vaddr.
402 */
403 mutex_unlock(&dev->struct_mutex);
404 unwritten = copy_from_user(vaddr, user_data, args->size);
405 mutex_lock(&dev->struct_mutex);
406 if (unwritten)
407 return -EFAULT;
408 }
409
410 drm_clflush_virt_range(vaddr, args->size);
411 i915_gem_chipset_flush(dev);
412 return 0;
413 }
414
415 void *i915_gem_object_alloc(struct drm_device *dev)
416 {
417 struct drm_i915_private *dev_priv = dev->dev_private;
418 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
419 }
420
421 void i915_gem_object_free(struct drm_i915_gem_object *obj)
422 {
423 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
424 kmem_cache_free(dev_priv->slab, obj);
425 }
426
427 static int
428 i915_gem_create(struct drm_file *file,
429 struct drm_device *dev,
430 uint64_t size,
431 uint32_t *handle_p)
432 {
433 struct drm_i915_gem_object *obj;
434 int ret;
435 u32 handle;
436
437 size = roundup(size, PAGE_SIZE);
438 if (size == 0)
439 return -EINVAL;
440
441 /* Allocate the new object */
442 obj = i915_gem_alloc_object(dev, size);
443 if (obj == NULL)
444 return -ENOMEM;
445
446 ret = drm_gem_handle_create(file, &obj->base, &handle);
447 /* drop reference from allocate - handle holds it now */
448 drm_gem_object_unreference_unlocked(&obj->base);
449 if (ret)
450 return ret;
451
452 *handle_p = handle;
453 return 0;
454 }
455
456 int
457 i915_gem_dumb_create(struct drm_file *file,
458 struct drm_device *dev,
459 struct drm_mode_create_dumb *args)
460 {
461 /* have to work out size/pitch and return them */
462 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
463 args->size = args->pitch * args->height;
464 return i915_gem_create(file, dev,
465 args->size, &args->handle);
466 }
467
468 /**
469 * Creates a new mm object and returns a handle to it.
470 */
471 int
472 i915_gem_create_ioctl(struct drm_device *dev, void *data,
473 struct drm_file *file)
474 {
475 struct drm_i915_gem_create *args = data;
476
477 return i915_gem_create(file, dev,
478 args->size, &args->handle);
479 }
480
481 static inline int
482 __copy_to_user_swizzled(char __user *cpu_vaddr,
483 const char *gpu_vaddr, int gpu_offset,
484 int length)
485 {
486 int ret, cpu_offset = 0;
487
488 while (length > 0) {
489 int cacheline_end = ALIGN(gpu_offset + 1, 64);
490 int this_length = min(cacheline_end - gpu_offset, length);
491 int swizzled_gpu_offset = gpu_offset ^ 64;
492
493 ret = __copy_to_user(cpu_vaddr + cpu_offset,
494 gpu_vaddr + swizzled_gpu_offset,
495 this_length);
496 if (ret)
497 return ret + length;
498
499 cpu_offset += this_length;
500 gpu_offset += this_length;
501 length -= this_length;
502 }
503
504 return 0;
505 }
506
507 static inline int
508 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
509 const char __user *cpu_vaddr,
510 int length)
511 {
512 int ret, cpu_offset = 0;
513
514 while (length > 0) {
515 int cacheline_end = ALIGN(gpu_offset + 1, 64);
516 int this_length = min(cacheline_end - gpu_offset, length);
517 int swizzled_gpu_offset = gpu_offset ^ 64;
518
519 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
520 cpu_vaddr + cpu_offset,
521 this_length);
522 if (ret)
523 return ret + length;
524
525 cpu_offset += this_length;
526 gpu_offset += this_length;
527 length -= this_length;
528 }
529
530 return 0;
531 }
532
533 /*
534 * Pins the specified object's pages and synchronizes the object with
535 * GPU accesses. Sets needs_clflush to non-zero if the caller should
536 * flush the object from the CPU cache.
537 */
538 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
539 int *needs_clflush)
540 {
541 int ret;
542
543 *needs_clflush = 0;
544
545 if (!obj->base.filp)
546 return -EINVAL;
547
548 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
549 /* If we're not in the cpu read domain, set ourself into the gtt
550 * read domain and manually flush cachelines (if required). This
551 * optimizes for the case when the gpu will dirty the data
552 * anyway again before the next pread happens. */
553 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
554 obj->cache_level);
555 ret = i915_gem_object_wait_rendering(obj, true);
556 if (ret)
557 return ret;
558
559 i915_gem_object_retire(obj);
560 }
561
562 ret = i915_gem_object_get_pages(obj);
563 if (ret)
564 return ret;
565
566 i915_gem_object_pin_pages(obj);
567
568 return ret;
569 }
570
571 /* Per-page copy function for the shmem pread fastpath.
572 * Flushes invalid cachelines before reading the target if
573 * needs_clflush is set. */
574 static int
575 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
576 char __user *user_data,
577 bool page_do_bit17_swizzling, bool needs_clflush)
578 {
579 char *vaddr;
580 int ret;
581
582 if (unlikely(page_do_bit17_swizzling))
583 return -EINVAL;
584
585 vaddr = kmap_atomic(page);
586 if (needs_clflush)
587 drm_clflush_virt_range(vaddr + shmem_page_offset,
588 page_length);
589 ret = __copy_to_user_inatomic(user_data,
590 vaddr + shmem_page_offset,
591 page_length);
592 kunmap_atomic(vaddr);
593
594 return ret ? -EFAULT : 0;
595 }
596
597 static void
598 shmem_clflush_swizzled_range(char *addr, unsigned long length,
599 bool swizzled)
600 {
601 if (unlikely(swizzled)) {
602 unsigned long start = (unsigned long) addr;
603 unsigned long end = (unsigned long) addr + length;
604
605 /* For swizzling simply ensure that we always flush both
606 * channels. Lame, but simple and it works. Swizzled
607 * pwrite/pread is far from a hotpath - current userspace
608 * doesn't use it at all. */
609 start = round_down(start, 128);
610 end = round_up(end, 128);
611
612 drm_clflush_virt_range((void *)start, end - start);
613 } else {
614 drm_clflush_virt_range(addr, length);
615 }
616
617 }
618
619 /* Only difference to the fast-path function is that this can handle bit17
620 * and uses non-atomic copy and kmap functions. */
621 static int
622 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
623 char __user *user_data,
624 bool page_do_bit17_swizzling, bool needs_clflush)
625 {
626 char *vaddr;
627 int ret;
628
629 vaddr = kmap(page);
630 if (needs_clflush)
631 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
632 page_length,
633 page_do_bit17_swizzling);
634
635 if (page_do_bit17_swizzling)
636 ret = __copy_to_user_swizzled(user_data,
637 vaddr, shmem_page_offset,
638 page_length);
639 else
640 ret = __copy_to_user(user_data,
641 vaddr + shmem_page_offset,
642 page_length);
643 kunmap(page);
644
645 return ret ? - EFAULT : 0;
646 }
647
648 static int
649 i915_gem_shmem_pread(struct drm_device *dev,
650 struct drm_i915_gem_object *obj,
651 struct drm_i915_gem_pread *args,
652 struct drm_file *file)
653 {
654 char __user *user_data;
655 ssize_t remain;
656 loff_t offset;
657 int shmem_page_offset, page_length, ret = 0;
658 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
659 int prefaulted = 0;
660 int needs_clflush = 0;
661 struct sg_page_iter sg_iter;
662
663 user_data = to_user_ptr(args->data_ptr);
664 remain = args->size;
665
666 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
667
668 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
669 if (ret)
670 return ret;
671
672 offset = args->offset;
673
674 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
675 offset >> PAGE_SHIFT) {
676 struct page *page = sg_page_iter_page(&sg_iter);
677
678 if (remain <= 0)
679 break;
680
681 /* Operation in this page
682 *
683 * shmem_page_offset = offset within page in shmem file
684 * page_length = bytes to copy for this page
685 */
686 shmem_page_offset = offset_in_page(offset);
687 page_length = remain;
688 if ((shmem_page_offset + page_length) > PAGE_SIZE)
689 page_length = PAGE_SIZE - shmem_page_offset;
690
691 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
692 (page_to_phys(page) & (1 << 17)) != 0;
693
694 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
695 user_data, page_do_bit17_swizzling,
696 needs_clflush);
697 if (ret == 0)
698 goto next_page;
699
700 mutex_unlock(&dev->struct_mutex);
701
702 if (likely(!i915.prefault_disable) && !prefaulted) {
703 ret = fault_in_multipages_writeable(user_data, remain);
704 /* Userspace is tricking us, but we've already clobbered
705 * its pages with the prefault and promised to write the
706 * data up to the first fault. Hence ignore any errors
707 * and just continue. */
708 (void)ret;
709 prefaulted = 1;
710 }
711
712 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
713 user_data, page_do_bit17_swizzling,
714 needs_clflush);
715
716 mutex_lock(&dev->struct_mutex);
717
718 if (ret)
719 goto out;
720
721 next_page:
722 remain -= page_length;
723 user_data += page_length;
724 offset += page_length;
725 }
726
727 out:
728 i915_gem_object_unpin_pages(obj);
729
730 return ret;
731 }
732
733 /**
734 * Reads data from the object referenced by handle.
735 *
736 * On error, the contents of *data are undefined.
737 */
738 int
739 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
740 struct drm_file *file)
741 {
742 struct drm_i915_gem_pread *args = data;
743 struct drm_i915_gem_object *obj;
744 int ret = 0;
745
746 if (args->size == 0)
747 return 0;
748
749 if (!access_ok(VERIFY_WRITE,
750 to_user_ptr(args->data_ptr),
751 args->size))
752 return -EFAULT;
753
754 ret = i915_mutex_lock_interruptible(dev);
755 if (ret)
756 return ret;
757
758 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
759 if (&obj->base == NULL) {
760 ret = -ENOENT;
761 goto unlock;
762 }
763
764 /* Bounds check source. */
765 if (args->offset > obj->base.size ||
766 args->size > obj->base.size - args->offset) {
767 ret = -EINVAL;
768 goto out;
769 }
770
771 /* prime objects have no backing filp to GEM pread/pwrite
772 * pages from.
773 */
774 if (!obj->base.filp) {
775 ret = -EINVAL;
776 goto out;
777 }
778
779 trace_i915_gem_object_pread(obj, args->offset, args->size);
780
781 ret = i915_gem_shmem_pread(dev, obj, args, file);
782
783 out:
784 drm_gem_object_unreference(&obj->base);
785 unlock:
786 mutex_unlock(&dev->struct_mutex);
787 return ret;
788 }
789
790 /* This is the fast write path which cannot handle
791 * page faults in the source data
792 */
793
794 static inline int
795 fast_user_write(struct io_mapping *mapping,
796 loff_t page_base, int page_offset,
797 char __user *user_data,
798 int length)
799 {
800 void __iomem *vaddr_atomic;
801 void *vaddr;
802 unsigned long unwritten;
803
804 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
805 /* We can use the cpu mem copy function because this is X86. */
806 vaddr = (void __force*)vaddr_atomic + page_offset;
807 unwritten = __copy_from_user_inatomic_nocache(vaddr,
808 user_data, length);
809 io_mapping_unmap_atomic(vaddr_atomic);
810 return unwritten;
811 }
812
813 /**
814 * This is the fast pwrite path, where we copy the data directly from the
815 * user into the GTT, uncached.
816 */
817 static int
818 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
819 struct drm_i915_gem_object *obj,
820 struct drm_i915_gem_pwrite *args,
821 struct drm_file *file)
822 {
823 struct drm_i915_private *dev_priv = dev->dev_private;
824 ssize_t remain;
825 loff_t offset, page_base;
826 char __user *user_data;
827 int page_offset, page_length, ret;
828
829 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
830 if (ret)
831 goto out;
832
833 ret = i915_gem_object_set_to_gtt_domain(obj, true);
834 if (ret)
835 goto out_unpin;
836
837 ret = i915_gem_object_put_fence(obj);
838 if (ret)
839 goto out_unpin;
840
841 user_data = to_user_ptr(args->data_ptr);
842 remain = args->size;
843
844 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
845
846 while (remain > 0) {
847 /* Operation in this page
848 *
849 * page_base = page offset within aperture
850 * page_offset = offset within page
851 * page_length = bytes to copy for this page
852 */
853 page_base = offset & PAGE_MASK;
854 page_offset = offset_in_page(offset);
855 page_length = remain;
856 if ((page_offset + remain) > PAGE_SIZE)
857 page_length = PAGE_SIZE - page_offset;
858
859 /* If we get a fault while copying data, then (presumably) our
860 * source page isn't available. Return the error and we'll
861 * retry in the slow path.
862 */
863 if (fast_user_write(dev_priv->gtt.mappable, page_base,
864 page_offset, user_data, page_length)) {
865 ret = -EFAULT;
866 goto out_unpin;
867 }
868
869 remain -= page_length;
870 user_data += page_length;
871 offset += page_length;
872 }
873
874 out_unpin:
875 i915_gem_object_ggtt_unpin(obj);
876 out:
877 return ret;
878 }
879
880 /* Per-page copy function for the shmem pwrite fastpath.
881 * Flushes invalid cachelines before writing to the target if
882 * needs_clflush_before is set and flushes out any written cachelines after
883 * writing if needs_clflush is set. */
884 static int
885 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
886 char __user *user_data,
887 bool page_do_bit17_swizzling,
888 bool needs_clflush_before,
889 bool needs_clflush_after)
890 {
891 char *vaddr;
892 int ret;
893
894 if (unlikely(page_do_bit17_swizzling))
895 return -EINVAL;
896
897 vaddr = kmap_atomic(page);
898 if (needs_clflush_before)
899 drm_clflush_virt_range(vaddr + shmem_page_offset,
900 page_length);
901 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
902 user_data, page_length);
903 if (needs_clflush_after)
904 drm_clflush_virt_range(vaddr + shmem_page_offset,
905 page_length);
906 kunmap_atomic(vaddr);
907
908 return ret ? -EFAULT : 0;
909 }
910
911 /* Only difference to the fast-path function is that this can handle bit17
912 * and uses non-atomic copy and kmap functions. */
913 static int
914 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
915 char __user *user_data,
916 bool page_do_bit17_swizzling,
917 bool needs_clflush_before,
918 bool needs_clflush_after)
919 {
920 char *vaddr;
921 int ret;
922
923 vaddr = kmap(page);
924 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
925 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
926 page_length,
927 page_do_bit17_swizzling);
928 if (page_do_bit17_swizzling)
929 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
930 user_data,
931 page_length);
932 else
933 ret = __copy_from_user(vaddr + shmem_page_offset,
934 user_data,
935 page_length);
936 if (needs_clflush_after)
937 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
938 page_length,
939 page_do_bit17_swizzling);
940 kunmap(page);
941
942 return ret ? -EFAULT : 0;
943 }
944
945 static int
946 i915_gem_shmem_pwrite(struct drm_device *dev,
947 struct drm_i915_gem_object *obj,
948 struct drm_i915_gem_pwrite *args,
949 struct drm_file *file)
950 {
951 ssize_t remain;
952 loff_t offset;
953 char __user *user_data;
954 int shmem_page_offset, page_length, ret = 0;
955 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
956 int hit_slowpath = 0;
957 int needs_clflush_after = 0;
958 int needs_clflush_before = 0;
959 struct sg_page_iter sg_iter;
960
961 user_data = to_user_ptr(args->data_ptr);
962 remain = args->size;
963
964 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
965
966 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
967 /* If we're not in the cpu write domain, set ourself into the gtt
968 * write domain and manually flush cachelines (if required). This
969 * optimizes for the case when the gpu will use the data
970 * right away and we therefore have to clflush anyway. */
971 needs_clflush_after = cpu_write_needs_clflush(obj);
972 ret = i915_gem_object_wait_rendering(obj, false);
973 if (ret)
974 return ret;
975
976 i915_gem_object_retire(obj);
977 }
978 /* Same trick applies to invalidate partially written cachelines read
979 * before writing. */
980 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
981 needs_clflush_before =
982 !cpu_cache_is_coherent(dev, obj->cache_level);
983
984 ret = i915_gem_object_get_pages(obj);
985 if (ret)
986 return ret;
987
988 i915_gem_object_pin_pages(obj);
989
990 offset = args->offset;
991 obj->dirty = 1;
992
993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
994 offset >> PAGE_SHIFT) {
995 struct page *page = sg_page_iter_page(&sg_iter);
996 int partial_cacheline_write;
997
998 if (remain <= 0)
999 break;
1000
1001 /* Operation in this page
1002 *
1003 * shmem_page_offset = offset within page in shmem file
1004 * page_length = bytes to copy for this page
1005 */
1006 shmem_page_offset = offset_in_page(offset);
1007
1008 page_length = remain;
1009 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1010 page_length = PAGE_SIZE - shmem_page_offset;
1011
1012 /* If we don't overwrite a cacheline completely we need to be
1013 * careful to have up-to-date data by first clflushing. Don't
1014 * overcomplicate things and flush the entire patch. */
1015 partial_cacheline_write = needs_clflush_before &&
1016 ((shmem_page_offset | page_length)
1017 & (boot_cpu_data.x86_clflush_size - 1));
1018
1019 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1020 (page_to_phys(page) & (1 << 17)) != 0;
1021
1022 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1023 user_data, page_do_bit17_swizzling,
1024 partial_cacheline_write,
1025 needs_clflush_after);
1026 if (ret == 0)
1027 goto next_page;
1028
1029 hit_slowpath = 1;
1030 mutex_unlock(&dev->struct_mutex);
1031 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1032 user_data, page_do_bit17_swizzling,
1033 partial_cacheline_write,
1034 needs_clflush_after);
1035
1036 mutex_lock(&dev->struct_mutex);
1037
1038 if (ret)
1039 goto out;
1040
1041 next_page:
1042 remain -= page_length;
1043 user_data += page_length;
1044 offset += page_length;
1045 }
1046
1047 out:
1048 i915_gem_object_unpin_pages(obj);
1049
1050 if (hit_slowpath) {
1051 /*
1052 * Fixup: Flush cpu caches in case we didn't flush the dirty
1053 * cachelines in-line while writing and the object moved
1054 * out of the cpu write domain while we've dropped the lock.
1055 */
1056 if (!needs_clflush_after &&
1057 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1058 if (i915_gem_clflush_object(obj, obj->pin_display))
1059 i915_gem_chipset_flush(dev);
1060 }
1061 }
1062
1063 if (needs_clflush_after)
1064 i915_gem_chipset_flush(dev);
1065
1066 return ret;
1067 }
1068
1069 /**
1070 * Writes data to the object referenced by handle.
1071 *
1072 * On error, the contents of the buffer that were to be modified are undefined.
1073 */
1074 int
1075 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1076 struct drm_file *file)
1077 {
1078 struct drm_i915_gem_pwrite *args = data;
1079 struct drm_i915_gem_object *obj;
1080 int ret;
1081
1082 if (args->size == 0)
1083 return 0;
1084
1085 if (!access_ok(VERIFY_READ,
1086 to_user_ptr(args->data_ptr),
1087 args->size))
1088 return -EFAULT;
1089
1090 if (likely(!i915.prefault_disable)) {
1091 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1092 args->size);
1093 if (ret)
1094 return -EFAULT;
1095 }
1096
1097 ret = i915_mutex_lock_interruptible(dev);
1098 if (ret)
1099 return ret;
1100
1101 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1102 if (&obj->base == NULL) {
1103 ret = -ENOENT;
1104 goto unlock;
1105 }
1106
1107 /* Bounds check destination. */
1108 if (args->offset > obj->base.size ||
1109 args->size > obj->base.size - args->offset) {
1110 ret = -EINVAL;
1111 goto out;
1112 }
1113
1114 /* prime objects have no backing filp to GEM pread/pwrite
1115 * pages from.
1116 */
1117 if (!obj->base.filp) {
1118 ret = -EINVAL;
1119 goto out;
1120 }
1121
1122 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1123
1124 ret = -EFAULT;
1125 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1126 * it would end up going through the fenced access, and we'll get
1127 * different detiling behavior between reading and writing.
1128 * pread/pwrite currently are reading and writing from the CPU
1129 * perspective, requiring manual detiling by the client.
1130 */
1131 if (obj->tiling_mode == I915_TILING_NONE &&
1132 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1133 cpu_write_needs_clflush(obj)) {
1134 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1135 /* Note that the gtt paths might fail with non-page-backed user
1136 * pointers (e.g. gtt mappings when moving data between
1137 * textures). Fallback to the shmem path in that case. */
1138 }
1139
1140 if (ret == -EFAULT || ret == -ENOSPC) {
1141 if (obj->phys_handle)
1142 ret = i915_gem_phys_pwrite(obj, args, file);
1143 else
1144 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1145 }
1146
1147 out:
1148 drm_gem_object_unreference(&obj->base);
1149 unlock:
1150 mutex_unlock(&dev->struct_mutex);
1151 return ret;
1152 }
1153
1154 int
1155 i915_gem_check_wedge(struct i915_gpu_error *error,
1156 bool interruptible)
1157 {
1158 if (i915_reset_in_progress(error)) {
1159 /* Non-interruptible callers can't handle -EAGAIN, hence return
1160 * -EIO unconditionally for these. */
1161 if (!interruptible)
1162 return -EIO;
1163
1164 /* Recovery complete, but the reset failed ... */
1165 if (i915_terminally_wedged(error))
1166 return -EIO;
1167
1168 /*
1169 * Check if GPU Reset is in progress - we need intel_ring_begin
1170 * to work properly to reinit the hw state while the gpu is
1171 * still marked as reset-in-progress. Handle this with a flag.
1172 */
1173 if (!error->reload_in_reset)
1174 return -EAGAIN;
1175 }
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * Compare seqno against outstanding lazy request. Emit a request if they are
1182 * equal.
1183 */
1184 int
1185 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1186 {
1187 int ret;
1188
1189 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1190
1191 ret = 0;
1192 if (seqno == ring->outstanding_lazy_seqno)
1193 ret = i915_add_request(ring, NULL);
1194
1195 return ret;
1196 }
1197
1198 static void fake_irq(unsigned long data)
1199 {
1200 wake_up_process((struct task_struct *)data);
1201 }
1202
1203 static bool missed_irq(struct drm_i915_private *dev_priv,
1204 struct intel_engine_cs *ring)
1205 {
1206 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1207 }
1208
1209 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1210 {
1211 if (file_priv == NULL)
1212 return true;
1213
1214 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1215 }
1216
1217 /**
1218 * __i915_wait_seqno - wait until execution of seqno has finished
1219 * @ring: the ring expected to report seqno
1220 * @seqno: duh!
1221 * @reset_counter: reset sequence associated with the given seqno
1222 * @interruptible: do an interruptible wait (normally yes)
1223 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1224 *
1225 * Note: It is of utmost importance that the passed in seqno and reset_counter
1226 * values have been read by the caller in an smp safe manner. Where read-side
1227 * locks are involved, it is sufficient to read the reset_counter before
1228 * unlocking the lock that protects the seqno. For lockless tricks, the
1229 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1230 * inserted.
1231 *
1232 * Returns 0 if the seqno was found within the alloted time. Else returns the
1233 * errno with remaining time filled in timeout argument.
1234 */
1235 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1236 unsigned reset_counter,
1237 bool interruptible,
1238 s64 *timeout,
1239 struct drm_i915_file_private *file_priv)
1240 {
1241 struct drm_device *dev = ring->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 const bool irq_test_in_progress =
1244 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1245 DEFINE_WAIT(wait);
1246 unsigned long timeout_expire;
1247 s64 before, now;
1248 int ret;
1249
1250 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1251
1252 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1253 return 0;
1254
1255 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1256
1257 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1258 gen6_rps_boost(dev_priv);
1259 if (file_priv)
1260 mod_delayed_work(dev_priv->wq,
1261 &file_priv->mm.idle_work,
1262 msecs_to_jiffies(100));
1263 }
1264
1265 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1266 return -ENODEV;
1267
1268 /* Record current time in case interrupted by signal, or wedged */
1269 trace_i915_gem_request_wait_begin(ring, seqno);
1270 before = ktime_get_raw_ns();
1271 for (;;) {
1272 struct timer_list timer;
1273
1274 prepare_to_wait(&ring->irq_queue, &wait,
1275 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1276
1277 /* We need to check whether any gpu reset happened in between
1278 * the caller grabbing the seqno and now ... */
1279 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1280 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1281 * is truely gone. */
1282 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1283 if (ret == 0)
1284 ret = -EAGAIN;
1285 break;
1286 }
1287
1288 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1289 ret = 0;
1290 break;
1291 }
1292
1293 if (interruptible && signal_pending(current)) {
1294 ret = -ERESTARTSYS;
1295 break;
1296 }
1297
1298 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1299 ret = -ETIME;
1300 break;
1301 }
1302
1303 timer.function = NULL;
1304 if (timeout || missed_irq(dev_priv, ring)) {
1305 unsigned long expire;
1306
1307 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1308 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1309 mod_timer(&timer, expire);
1310 }
1311
1312 io_schedule();
1313
1314 if (timer.function) {
1315 del_singleshot_timer_sync(&timer);
1316 destroy_timer_on_stack(&timer);
1317 }
1318 }
1319 now = ktime_get_raw_ns();
1320 trace_i915_gem_request_wait_end(ring, seqno);
1321
1322 if (!irq_test_in_progress)
1323 ring->irq_put(ring);
1324
1325 finish_wait(&ring->irq_queue, &wait);
1326
1327 if (timeout) {
1328 s64 tres = *timeout - (now - before);
1329
1330 *timeout = tres < 0 ? 0 : tres;
1331 }
1332
1333 return ret;
1334 }
1335
1336 /**
1337 * Waits for a sequence number to be signaled, and cleans up the
1338 * request and object lists appropriately for that event.
1339 */
1340 int
1341 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1342 {
1343 struct drm_device *dev = ring->dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 bool interruptible = dev_priv->mm.interruptible;
1346 unsigned reset_counter;
1347 int ret;
1348
1349 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1350 BUG_ON(seqno == 0);
1351
1352 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1353 if (ret)
1354 return ret;
1355
1356 ret = i915_gem_check_olr(ring, seqno);
1357 if (ret)
1358 return ret;
1359
1360 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1361 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1362 NULL, NULL);
1363 }
1364
1365 static int
1366 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1367 {
1368 if (!obj->active)
1369 return 0;
1370
1371 /* Manually manage the write flush as we may have not yet
1372 * retired the buffer.
1373 *
1374 * Note that the last_write_seqno is always the earlier of
1375 * the two (read/write) seqno, so if we haved successfully waited,
1376 * we know we have passed the last write.
1377 */
1378 obj->last_write_seqno = 0;
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * Ensures that all rendering to the object has completed and the object is
1385 * safe to unbind from the GTT or access from the CPU.
1386 */
1387 static __must_check int
1388 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1389 bool readonly)
1390 {
1391 struct intel_engine_cs *ring = obj->ring;
1392 u32 seqno;
1393 int ret;
1394
1395 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1396 if (seqno == 0)
1397 return 0;
1398
1399 ret = i915_wait_seqno(ring, seqno);
1400 if (ret)
1401 return ret;
1402
1403 return i915_gem_object_wait_rendering__tail(obj);
1404 }
1405
1406 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1407 * as the object state may change during this call.
1408 */
1409 static __must_check int
1410 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1411 struct drm_i915_file_private *file_priv,
1412 bool readonly)
1413 {
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 struct intel_engine_cs *ring = obj->ring;
1417 unsigned reset_counter;
1418 u32 seqno;
1419 int ret;
1420
1421 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1422 BUG_ON(!dev_priv->mm.interruptible);
1423
1424 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1425 if (seqno == 0)
1426 return 0;
1427
1428 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1429 if (ret)
1430 return ret;
1431
1432 ret = i915_gem_check_olr(ring, seqno);
1433 if (ret)
1434 return ret;
1435
1436 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1437 mutex_unlock(&dev->struct_mutex);
1438 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1439 file_priv);
1440 mutex_lock(&dev->struct_mutex);
1441 if (ret)
1442 return ret;
1443
1444 return i915_gem_object_wait_rendering__tail(obj);
1445 }
1446
1447 /**
1448 * Called when user space prepares to use an object with the CPU, either
1449 * through the mmap ioctl's mapping or a GTT mapping.
1450 */
1451 int
1452 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1453 struct drm_file *file)
1454 {
1455 struct drm_i915_gem_set_domain *args = data;
1456 struct drm_i915_gem_object *obj;
1457 uint32_t read_domains = args->read_domains;
1458 uint32_t write_domain = args->write_domain;
1459 int ret;
1460
1461 /* Only handle setting domains to types used by the CPU. */
1462 if (write_domain & I915_GEM_GPU_DOMAINS)
1463 return -EINVAL;
1464
1465 if (read_domains & I915_GEM_GPU_DOMAINS)
1466 return -EINVAL;
1467
1468 /* Having something in the write domain implies it's in the read
1469 * domain, and only that read domain. Enforce that in the request.
1470 */
1471 if (write_domain != 0 && read_domains != write_domain)
1472 return -EINVAL;
1473
1474 ret = i915_mutex_lock_interruptible(dev);
1475 if (ret)
1476 return ret;
1477
1478 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1479 if (&obj->base == NULL) {
1480 ret = -ENOENT;
1481 goto unlock;
1482 }
1483
1484 /* Try to flush the object off the GPU without holding the lock.
1485 * We will repeat the flush holding the lock in the normal manner
1486 * to catch cases where we are gazumped.
1487 */
1488 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1489 file->driver_priv,
1490 !write_domain);
1491 if (ret)
1492 goto unref;
1493
1494 if (read_domains & I915_GEM_DOMAIN_GTT) {
1495 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1496
1497 /* Silently promote "you're not bound, there was nothing to do"
1498 * to success, since the client was just asking us to
1499 * make sure everything was done.
1500 */
1501 if (ret == -EINVAL)
1502 ret = 0;
1503 } else {
1504 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1505 }
1506
1507 unref:
1508 drm_gem_object_unreference(&obj->base);
1509 unlock:
1510 mutex_unlock(&dev->struct_mutex);
1511 return ret;
1512 }
1513
1514 /**
1515 * Called when user space has done writes to this buffer
1516 */
1517 int
1518 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1519 struct drm_file *file)
1520 {
1521 struct drm_i915_gem_sw_finish *args = data;
1522 struct drm_i915_gem_object *obj;
1523 int ret = 0;
1524
1525 ret = i915_mutex_lock_interruptible(dev);
1526 if (ret)
1527 return ret;
1528
1529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1530 if (&obj->base == NULL) {
1531 ret = -ENOENT;
1532 goto unlock;
1533 }
1534
1535 /* Pinned buffers may be scanout, so flush the cache */
1536 if (obj->pin_display)
1537 i915_gem_object_flush_cpu_write_domain(obj, true);
1538
1539 drm_gem_object_unreference(&obj->base);
1540 unlock:
1541 mutex_unlock(&dev->struct_mutex);
1542 return ret;
1543 }
1544
1545 /**
1546 * Maps the contents of an object, returning the address it is mapped
1547 * into.
1548 *
1549 * While the mapping holds a reference on the contents of the object, it doesn't
1550 * imply a ref on the object itself.
1551 *
1552 * IMPORTANT:
1553 *
1554 * DRM driver writers who look a this function as an example for how to do GEM
1555 * mmap support, please don't implement mmap support like here. The modern way
1556 * to implement DRM mmap support is with an mmap offset ioctl (like
1557 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1558 * That way debug tooling like valgrind will understand what's going on, hiding
1559 * the mmap call in a driver private ioctl will break that. The i915 driver only
1560 * does cpu mmaps this way because we didn't know better.
1561 */
1562 int
1563 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1564 struct drm_file *file)
1565 {
1566 struct drm_i915_gem_mmap *args = data;
1567 struct drm_gem_object *obj;
1568 unsigned long addr;
1569
1570 obj = drm_gem_object_lookup(dev, file, args->handle);
1571 if (obj == NULL)
1572 return -ENOENT;
1573
1574 /* prime objects have no backing filp to GEM mmap
1575 * pages from.
1576 */
1577 if (!obj->filp) {
1578 drm_gem_object_unreference_unlocked(obj);
1579 return -EINVAL;
1580 }
1581
1582 addr = vm_mmap(obj->filp, 0, args->size,
1583 PROT_READ | PROT_WRITE, MAP_SHARED,
1584 args->offset);
1585 drm_gem_object_unreference_unlocked(obj);
1586 if (IS_ERR((void *)addr))
1587 return addr;
1588
1589 args->addr_ptr = (uint64_t) addr;
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * i915_gem_fault - fault a page into the GTT
1596 * vma: VMA in question
1597 * vmf: fault info
1598 *
1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600 * from userspace. The fault handler takes care of binding the object to
1601 * the GTT (if needed), allocating and programming a fence register (again,
1602 * only if needed based on whether the old reg is still valid or the object
1603 * is tiled) and inserting a new PTE into the faulting process.
1604 *
1605 * Note that the faulting process may involve evicting existing objects
1606 * from the GTT and/or fence registers to make room. So performance may
1607 * suffer if the GTT working set is large or there are few fence registers
1608 * left.
1609 */
1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 struct drm_device *dev = obj->base.dev;
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 pgoff_t page_offset;
1616 unsigned long pfn;
1617 int ret = 0;
1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619
1620 intel_runtime_pm_get(dev_priv);
1621
1622 /* We don't use vmf->pgoff since that has the fake offset */
1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 PAGE_SHIFT;
1625
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 goto out;
1629
1630 trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
1632 /* Try to flush the object off the GPU first without holding the lock.
1633 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 * repeat the flush holding the lock in the normal manner to catch cases
1635 * where we are gazumped.
1636 */
1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 if (ret)
1639 goto unlock;
1640
1641 /* Access to snoopable pages through the GTT is incoherent. */
1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643 ret = -EFAULT;
1644 goto unlock;
1645 }
1646
1647 /* Now bind it into the GTT if needed */
1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649 if (ret)
1650 goto unlock;
1651
1652 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 if (ret)
1654 goto unpin;
1655
1656 ret = i915_gem_object_get_fence(obj);
1657 if (ret)
1658 goto unpin;
1659
1660 /* Finally, remap it using the new GTT offset */
1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 pfn >>= PAGE_SHIFT;
1663
1664 if (!obj->fault_mappable) {
1665 unsigned long size = min_t(unsigned long,
1666 vma->vm_end - vma->vm_start,
1667 obj->base.size);
1668 int i;
1669
1670 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 pfn + i);
1674 if (ret)
1675 break;
1676 }
1677
1678 obj->fault_mappable = true;
1679 } else
1680 ret = vm_insert_pfn(vma,
1681 (unsigned long)vmf->virtual_address,
1682 pfn + page_offset);
1683 unpin:
1684 i915_gem_object_ggtt_unpin(obj);
1685 unlock:
1686 mutex_unlock(&dev->struct_mutex);
1687 out:
1688 switch (ret) {
1689 case -EIO:
1690 /*
1691 * We eat errors when the gpu is terminally wedged to avoid
1692 * userspace unduly crashing (gl has no provisions for mmaps to
1693 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 * and so needs to be reported.
1695 */
1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697 ret = VM_FAULT_SIGBUS;
1698 break;
1699 }
1700 case -EAGAIN:
1701 /*
1702 * EAGAIN means the gpu is hung and we'll wait for the error
1703 * handler to reset everything when re-faulting in
1704 * i915_mutex_lock_interruptible.
1705 */
1706 case 0:
1707 case -ERESTARTSYS:
1708 case -EINTR:
1709 case -EBUSY:
1710 /*
1711 * EBUSY is ok: this just means that another thread
1712 * already did the job.
1713 */
1714 ret = VM_FAULT_NOPAGE;
1715 break;
1716 case -ENOMEM:
1717 ret = VM_FAULT_OOM;
1718 break;
1719 case -ENOSPC:
1720 case -EFAULT:
1721 ret = VM_FAULT_SIGBUS;
1722 break;
1723 default:
1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 }
1728
1729 intel_runtime_pm_put(dev_priv);
1730 return ret;
1731 }
1732
1733 /**
1734 * i915_gem_release_mmap - remove physical page mappings
1735 * @obj: obj in question
1736 *
1737 * Preserve the reservation of the mmapping with the DRM core code, but
1738 * relinquish ownership of the pages back to the system.
1739 *
1740 * It is vital that we remove the page mapping if we have mapped a tiled
1741 * object through the GTT and then lose the fence register due to
1742 * resource pressure. Similarly if the object has been moved out of the
1743 * aperture, than pages mapped into userspace must be revoked. Removing the
1744 * mapping will then trigger a page fault on the next user access, allowing
1745 * fixup by i915_gem_fault().
1746 */
1747 void
1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749 {
1750 if (!obj->fault_mappable)
1751 return;
1752
1753 drm_vma_node_unmap(&obj->base.vma_node,
1754 obj->base.dev->anon_inode->i_mapping);
1755 obj->fault_mappable = false;
1756 }
1757
1758 void
1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760 {
1761 struct drm_i915_gem_object *obj;
1762
1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 i915_gem_release_mmap(obj);
1765 }
1766
1767 uint32_t
1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769 {
1770 uint32_t gtt_size;
1771
1772 if (INTEL_INFO(dev)->gen >= 4 ||
1773 tiling_mode == I915_TILING_NONE)
1774 return size;
1775
1776 /* Previous chips need a power-of-two fence region when tiling */
1777 if (INTEL_INFO(dev)->gen == 3)
1778 gtt_size = 1024*1024;
1779 else
1780 gtt_size = 512*1024;
1781
1782 while (gtt_size < size)
1783 gtt_size <<= 1;
1784
1785 return gtt_size;
1786 }
1787
1788 /**
1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790 * @obj: object to check
1791 *
1792 * Return the required GTT alignment for an object, taking into account
1793 * potential fence register mapping.
1794 */
1795 uint32_t
1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 int tiling_mode, bool fenced)
1798 {
1799 /*
1800 * Minimum alignment is 4k (GTT page size), but might be greater
1801 * if a fence register is needed for the object.
1802 */
1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804 tiling_mode == I915_TILING_NONE)
1805 return 4096;
1806
1807 /*
1808 * Previous chips need to be aligned to the size of the smallest
1809 * fence register that can contain the object.
1810 */
1811 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 }
1813
1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815 {
1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 int ret;
1818
1819 if (drm_vma_node_has_offset(&obj->base.vma_node))
1820 return 0;
1821
1822 dev_priv->mm.shrinker_no_lock_stealing = true;
1823
1824 ret = drm_gem_create_mmap_offset(&obj->base);
1825 if (ret != -ENOSPC)
1826 goto out;
1827
1828 /* Badly fragmented mmap space? The only way we can recover
1829 * space is by destroying unwanted objects. We can't randomly release
1830 * mmap_offsets as userspace expects them to be persistent for the
1831 * lifetime of the objects. The closest we can is to release the
1832 * offsets on purgeable objects by truncating it and marking it purged,
1833 * which prevents userspace from ever using that object again.
1834 */
1835 i915_gem_shrink(dev_priv,
1836 obj->base.size >> PAGE_SHIFT,
1837 I915_SHRINK_BOUND |
1838 I915_SHRINK_UNBOUND |
1839 I915_SHRINK_PURGEABLE);
1840 ret = drm_gem_create_mmap_offset(&obj->base);
1841 if (ret != -ENOSPC)
1842 goto out;
1843
1844 i915_gem_shrink_all(dev_priv);
1845 ret = drm_gem_create_mmap_offset(&obj->base);
1846 out:
1847 dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849 return ret;
1850 }
1851
1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853 {
1854 drm_gem_free_mmap_offset(&obj->base);
1855 }
1856
1857 int
1858 i915_gem_mmap_gtt(struct drm_file *file,
1859 struct drm_device *dev,
1860 uint32_t handle,
1861 uint64_t *offset)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 struct drm_i915_gem_object *obj;
1865 int ret;
1866
1867 ret = i915_mutex_lock_interruptible(dev);
1868 if (ret)
1869 return ret;
1870
1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872 if (&obj->base == NULL) {
1873 ret = -ENOENT;
1874 goto unlock;
1875 }
1876
1877 if (obj->base.size > dev_priv->gtt.mappable_end) {
1878 ret = -E2BIG;
1879 goto out;
1880 }
1881
1882 if (obj->madv != I915_MADV_WILLNEED) {
1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884 ret = -EFAULT;
1885 goto out;
1886 }
1887
1888 ret = i915_gem_object_create_mmap_offset(obj);
1889 if (ret)
1890 goto out;
1891
1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893
1894 out:
1895 drm_gem_object_unreference(&obj->base);
1896 unlock:
1897 mutex_unlock(&dev->struct_mutex);
1898 return ret;
1899 }
1900
1901 /**
1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903 * @dev: DRM device
1904 * @data: GTT mapping ioctl data
1905 * @file: GEM object info
1906 *
1907 * Simply returns the fake offset to userspace so it can mmap it.
1908 * The mmap call will end up in drm_gem_mmap(), which will set things
1909 * up so we can get faults in the handler above.
1910 *
1911 * The fault handler will take care of binding the object into the GTT
1912 * (since it may have been evicted to make room for something), allocating
1913 * a fence register, and mapping the appropriate aperture address into
1914 * userspace.
1915 */
1916 int
1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 struct drm_file *file)
1919 {
1920 struct drm_i915_gem_mmap_gtt *args = data;
1921
1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 }
1924
1925 static inline int
1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927 {
1928 return obj->madv == I915_MADV_DONTNEED;
1929 }
1930
1931 /* Immediately discard the backing storage */
1932 static void
1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934 {
1935 i915_gem_object_free_mmap_offset(obj);
1936
1937 if (obj->base.filp == NULL)
1938 return;
1939
1940 /* Our goal here is to return as much of the memory as
1941 * is possible back to the system as we are called from OOM.
1942 * To do this we must instruct the shmfs to drop all of its
1943 * backing pages, *now*.
1944 */
1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1946 obj->madv = __I915_MADV_PURGED;
1947 }
1948
1949 /* Try to discard unwanted pages */
1950 static void
1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1952 {
1953 struct address_space *mapping;
1954
1955 switch (obj->madv) {
1956 case I915_MADV_DONTNEED:
1957 i915_gem_object_truncate(obj);
1958 case __I915_MADV_PURGED:
1959 return;
1960 }
1961
1962 if (obj->base.filp == NULL)
1963 return;
1964
1965 mapping = file_inode(obj->base.filp)->i_mapping,
1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 }
1968
1969 static void
1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971 {
1972 struct sg_page_iter sg_iter;
1973 int ret;
1974
1975 BUG_ON(obj->madv == __I915_MADV_PURGED);
1976
1977 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 if (ret) {
1979 /* In the event of a disaster, abandon all caches and
1980 * hope for the best.
1981 */
1982 WARN_ON(ret != -EIO);
1983 i915_gem_clflush_object(obj, true);
1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 }
1986
1987 if (i915_gem_object_needs_bit17_swizzle(obj))
1988 i915_gem_object_save_bit_17_swizzle(obj);
1989
1990 if (obj->madv == I915_MADV_DONTNEED)
1991 obj->dirty = 0;
1992
1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994 struct page *page = sg_page_iter_page(&sg_iter);
1995
1996 if (obj->dirty)
1997 set_page_dirty(page);
1998
1999 if (obj->madv == I915_MADV_WILLNEED)
2000 mark_page_accessed(page);
2001
2002 page_cache_release(page);
2003 }
2004 obj->dirty = 0;
2005
2006 sg_free_table(obj->pages);
2007 kfree(obj->pages);
2008 }
2009
2010 int
2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012 {
2013 const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2015 if (obj->pages == NULL)
2016 return 0;
2017
2018 if (obj->pages_pin_count)
2019 return -EBUSY;
2020
2021 BUG_ON(i915_gem_obj_bound_any(obj));
2022
2023 /* ->put_pages might need to allocate memory for the bit17 swizzle
2024 * array, hence protect them from being reaped by removing them from gtt
2025 * lists early. */
2026 list_del(&obj->global_list);
2027
2028 ops->put_pages(obj);
2029 obj->pages = NULL;
2030
2031 i915_gem_object_invalidate(obj);
2032
2033 return 0;
2034 }
2035
2036 unsigned long
2037 i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 long target, unsigned flags)
2039 {
2040 const struct {
2041 struct list_head *list;
2042 unsigned int bit;
2043 } phases[] = {
2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 { NULL, 0 },
2047 }, *phase;
2048 unsigned long count = 0;
2049
2050 /*
2051 * As we may completely rewrite the (un)bound list whilst unbinding
2052 * (due to retiring requests) we have to strictly process only
2053 * one element of the list at the time, and recheck the list
2054 * on every iteration.
2055 *
2056 * In particular, we must hold a reference whilst removing the
2057 * object as we may end up waiting for and/or retiring the objects.
2058 * This might release the final reference (held by the active list)
2059 * and result in the object being freed from under us. This is
2060 * similar to the precautions the eviction code must take whilst
2061 * removing objects.
2062 *
2063 * Also note that although these lists do not hold a reference to
2064 * the object we can safely grab one here: The final object
2065 * unreferencing and the bound_list are both protected by the
2066 * dev->struct_mutex and so we won't ever be able to observe an
2067 * object on the bound_list with a reference count equals 0.
2068 */
2069 for (phase = phases; phase->list; phase++) {
2070 struct list_head still_in_list;
2071
2072 if ((flags & phase->bit) == 0)
2073 continue;
2074
2075 INIT_LIST_HEAD(&still_in_list);
2076 while (count < target && !list_empty(phase->list)) {
2077 struct drm_i915_gem_object *obj;
2078 struct i915_vma *vma, *v;
2079
2080 obj = list_first_entry(phase->list,
2081 typeof(*obj), global_list);
2082 list_move_tail(&obj->global_list, &still_in_list);
2083
2084 if (flags & I915_SHRINK_PURGEABLE &&
2085 !i915_gem_object_is_purgeable(obj))
2086 continue;
2087
2088 drm_gem_object_reference(&obj->base);
2089
2090 /* For the unbound phase, this should be a no-op! */
2091 list_for_each_entry_safe(vma, v,
2092 &obj->vma_list, vma_link)
2093 if (i915_vma_unbind(vma))
2094 break;
2095
2096 if (i915_gem_object_put_pages(obj) == 0)
2097 count += obj->base.size >> PAGE_SHIFT;
2098
2099 drm_gem_object_unreference(&obj->base);
2100 }
2101 list_splice(&still_in_list, phase->list);
2102 }
2103
2104 return count;
2105 }
2106
2107 static unsigned long
2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109 {
2110 i915_gem_evict_everything(dev_priv->dev);
2111 return i915_gem_shrink(dev_priv, LONG_MAX,
2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2113 }
2114
2115 static int
2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117 {
2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119 int page_count, i;
2120 struct address_space *mapping;
2121 struct sg_table *st;
2122 struct scatterlist *sg;
2123 struct sg_page_iter sg_iter;
2124 struct page *page;
2125 unsigned long last_pfn = 0; /* suppress gcc warning */
2126 gfp_t gfp;
2127
2128 /* Assert that the object is not currently in any GPU domain. As it
2129 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 * a GPU cache
2131 */
2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
2135 st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 if (st == NULL)
2137 return -ENOMEM;
2138
2139 page_count = obj->base.size / PAGE_SIZE;
2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2141 kfree(st);
2142 return -ENOMEM;
2143 }
2144
2145 /* Get the list of pages out of our struct file. They'll be pinned
2146 * at this point until we release them.
2147 *
2148 * Fail silently without starting the shrinker
2149 */
2150 mapping = file_inode(obj->base.filp)->i_mapping;
2151 gfp = mapping_gfp_mask(mapping);
2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2153 gfp &= ~(__GFP_IO | __GFP_WAIT);
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
2171 i915_gem_shrink_all(dev_priv);
2172 page = shmem_read_mapping_page(mapping, i);
2173 if (IS_ERR(page))
2174 goto err_pages;
2175 }
2176 #ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183 #endif
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196 }
2197 #ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199 #endif
2200 sg_mark_end(sg);
2201 obj->pages = st;
2202
2203 if (i915_gem_object_needs_bit17_swizzle(obj))
2204 i915_gem_object_do_bit_17_swizzle(obj);
2205
2206 return 0;
2207
2208 err_pages:
2209 sg_mark_end(sg);
2210 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2211 page_cache_release(sg_page_iter_page(&sg_iter));
2212 sg_free_table(st);
2213 kfree(st);
2214
2215 /* shmemfs first checks if there is enough memory to allocate the page
2216 * and reports ENOSPC should there be insufficient, along with the usual
2217 * ENOMEM for a genuine allocation failure.
2218 *
2219 * We use ENOSPC in our driver to mean that we have run out of aperture
2220 * space and so want to translate the error from shmemfs back to our
2221 * usual understanding of ENOMEM.
2222 */
2223 if (PTR_ERR(page) == -ENOSPC)
2224 return -ENOMEM;
2225 else
2226 return PTR_ERR(page);
2227 }
2228
2229 /* Ensure that the associated pages are gathered from the backing storage
2230 * and pinned into our object. i915_gem_object_get_pages() may be called
2231 * multiple times before they are released by a single call to
2232 * i915_gem_object_put_pages() - once the pages are no longer referenced
2233 * either as a result of memory pressure (reaping pages under the shrinker)
2234 * or as the object is itself released.
2235 */
2236 int
2237 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2238 {
2239 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2240 const struct drm_i915_gem_object_ops *ops = obj->ops;
2241 int ret;
2242
2243 if (obj->pages)
2244 return 0;
2245
2246 if (obj->madv != I915_MADV_WILLNEED) {
2247 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2248 return -EFAULT;
2249 }
2250
2251 BUG_ON(obj->pages_pin_count);
2252
2253 ret = ops->get_pages(obj);
2254 if (ret)
2255 return ret;
2256
2257 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2258 return 0;
2259 }
2260
2261 static void
2262 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2263 struct intel_engine_cs *ring)
2264 {
2265 u32 seqno = intel_ring_get_seqno(ring);
2266
2267 BUG_ON(ring == NULL);
2268 if (obj->ring != ring && obj->last_write_seqno) {
2269 /* Keep the seqno relative to the current ring */
2270 obj->last_write_seqno = seqno;
2271 }
2272 obj->ring = ring;
2273
2274 /* Add a reference if we're newly entering the active list. */
2275 if (!obj->active) {
2276 drm_gem_object_reference(&obj->base);
2277 obj->active = 1;
2278 }
2279
2280 list_move_tail(&obj->ring_list, &ring->active_list);
2281
2282 obj->last_read_seqno = seqno;
2283 }
2284
2285 void i915_vma_move_to_active(struct i915_vma *vma,
2286 struct intel_engine_cs *ring)
2287 {
2288 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2289 return i915_gem_object_move_to_active(vma->obj, ring);
2290 }
2291
2292 static void
2293 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2294 {
2295 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2296 struct i915_address_space *vm;
2297 struct i915_vma *vma;
2298
2299 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2300 BUG_ON(!obj->active);
2301
2302 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2303 vma = i915_gem_obj_to_vma(obj, vm);
2304 if (vma && !list_empty(&vma->mm_list))
2305 list_move_tail(&vma->mm_list, &vm->inactive_list);
2306 }
2307
2308 intel_fb_obj_flush(obj, true);
2309
2310 list_del_init(&obj->ring_list);
2311 obj->ring = NULL;
2312
2313 obj->last_read_seqno = 0;
2314 obj->last_write_seqno = 0;
2315 obj->base.write_domain = 0;
2316
2317 obj->last_fenced_seqno = 0;
2318
2319 obj->active = 0;
2320 drm_gem_object_unreference(&obj->base);
2321
2322 WARN_ON(i915_verify_lists(dev));
2323 }
2324
2325 static void
2326 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2327 {
2328 struct intel_engine_cs *ring = obj->ring;
2329
2330 if (ring == NULL)
2331 return;
2332
2333 if (i915_seqno_passed(ring->get_seqno(ring, true),
2334 obj->last_read_seqno))
2335 i915_gem_object_move_to_inactive(obj);
2336 }
2337
2338 static int
2339 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2340 {
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct intel_engine_cs *ring;
2343 int ret, i, j;
2344
2345 /* Carefully retire all requests without writing to the rings */
2346 for_each_ring(ring, dev_priv, i) {
2347 ret = intel_ring_idle(ring);
2348 if (ret)
2349 return ret;
2350 }
2351 i915_gem_retire_requests(dev);
2352
2353 /* Finally reset hw state */
2354 for_each_ring(ring, dev_priv, i) {
2355 intel_ring_init_seqno(ring, seqno);
2356
2357 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2358 ring->semaphore.sync_seqno[j] = 0;
2359 }
2360
2361 return 0;
2362 }
2363
2364 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2365 {
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 int ret;
2368
2369 if (seqno == 0)
2370 return -EINVAL;
2371
2372 /* HWS page needs to be set less than what we
2373 * will inject to ring
2374 */
2375 ret = i915_gem_init_seqno(dev, seqno - 1);
2376 if (ret)
2377 return ret;
2378
2379 /* Carefully set the last_seqno value so that wrap
2380 * detection still works
2381 */
2382 dev_priv->next_seqno = seqno;
2383 dev_priv->last_seqno = seqno - 1;
2384 if (dev_priv->last_seqno == 0)
2385 dev_priv->last_seqno--;
2386
2387 return 0;
2388 }
2389
2390 int
2391 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2392 {
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394
2395 /* reserve 0 for non-seqno */
2396 if (dev_priv->next_seqno == 0) {
2397 int ret = i915_gem_init_seqno(dev, 0);
2398 if (ret)
2399 return ret;
2400
2401 dev_priv->next_seqno = 1;
2402 }
2403
2404 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2405 return 0;
2406 }
2407
2408 int __i915_add_request(struct intel_engine_cs *ring,
2409 struct drm_file *file,
2410 struct drm_i915_gem_object *obj,
2411 u32 *out_seqno)
2412 {
2413 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414 struct drm_i915_gem_request *request;
2415 struct intel_ringbuffer *ringbuf;
2416 u32 request_ring_position, request_start;
2417 int ret;
2418
2419 request = ring->preallocated_lazy_request;
2420 if (WARN_ON(request == NULL))
2421 return -ENOMEM;
2422
2423 if (i915.enable_execlists) {
2424 struct intel_context *ctx = request->ctx;
2425 ringbuf = ctx->engine[ring->id].ringbuf;
2426 } else
2427 ringbuf = ring->buffer;
2428
2429 request_start = intel_ring_get_tail(ringbuf);
2430 /*
2431 * Emit any outstanding flushes - execbuf can fail to emit the flush
2432 * after having emitted the batchbuffer command. Hence we need to fix
2433 * things up similar to emitting the lazy request. The difference here
2434 * is that the flush _must_ happen before the next request, no matter
2435 * what.
2436 */
2437 if (i915.enable_execlists) {
2438 ret = logical_ring_flush_all_caches(ringbuf);
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = intel_ring_flush_all_caches(ring);
2443 if (ret)
2444 return ret;
2445 }
2446
2447 /* Record the position of the start of the request so that
2448 * should we detect the updated seqno part-way through the
2449 * GPU processing the request, we never over-estimate the
2450 * position of the head.
2451 */
2452 request_ring_position = intel_ring_get_tail(ringbuf);
2453
2454 if (i915.enable_execlists) {
2455 ret = ring->emit_request(ringbuf);
2456 if (ret)
2457 return ret;
2458 } else {
2459 ret = ring->add_request(ring);
2460 if (ret)
2461 return ret;
2462 }
2463
2464 request->seqno = intel_ring_get_seqno(ring);
2465 request->ring = ring;
2466 request->head = request_start;
2467 request->tail = request_ring_position;
2468
2469 /* Whilst this request exists, batch_obj will be on the
2470 * active_list, and so will hold the active reference. Only when this
2471 * request is retired will the the batch_obj be moved onto the
2472 * inactive_list and lose its active reference. Hence we do not need
2473 * to explicitly hold another reference here.
2474 */
2475 request->batch_obj = obj;
2476
2477 if (!i915.enable_execlists) {
2478 /* Hold a reference to the current context so that we can inspect
2479 * it later in case a hangcheck error event fires.
2480 */
2481 request->ctx = ring->last_context;
2482 if (request->ctx)
2483 i915_gem_context_reference(request->ctx);
2484 }
2485
2486 request->emitted_jiffies = jiffies;
2487 list_add_tail(&request->list, &ring->request_list);
2488 request->file_priv = NULL;
2489
2490 if (file) {
2491 struct drm_i915_file_private *file_priv = file->driver_priv;
2492
2493 spin_lock(&file_priv->mm.lock);
2494 request->file_priv = file_priv;
2495 list_add_tail(&request->client_list,
2496 &file_priv->mm.request_list);
2497 spin_unlock(&file_priv->mm.lock);
2498 }
2499
2500 trace_i915_gem_request_add(ring, request->seqno);
2501 ring->outstanding_lazy_seqno = 0;
2502 ring->preallocated_lazy_request = NULL;
2503
2504 if (!dev_priv->ums.mm_suspended) {
2505 i915_queue_hangcheck(ring->dev);
2506
2507 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2508 queue_delayed_work(dev_priv->wq,
2509 &dev_priv->mm.retire_work,
2510 round_jiffies_up_relative(HZ));
2511 intel_mark_busy(dev_priv->dev);
2512 }
2513
2514 if (out_seqno)
2515 *out_seqno = request->seqno;
2516 return 0;
2517 }
2518
2519 static inline void
2520 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2521 {
2522 struct drm_i915_file_private *file_priv = request->file_priv;
2523
2524 if (!file_priv)
2525 return;
2526
2527 spin_lock(&file_priv->mm.lock);
2528 list_del(&request->client_list);
2529 request->file_priv = NULL;
2530 spin_unlock(&file_priv->mm.lock);
2531 }
2532
2533 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2534 const struct intel_context *ctx)
2535 {
2536 unsigned long elapsed;
2537
2538 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2539
2540 if (ctx->hang_stats.banned)
2541 return true;
2542
2543 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2544 if (!i915_gem_context_is_default(ctx)) {
2545 DRM_DEBUG("context hanging too fast, banning!\n");
2546 return true;
2547 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2548 if (i915_stop_ring_allow_warn(dev_priv))
2549 DRM_ERROR("gpu hanging too fast, banning!\n");
2550 return true;
2551 }
2552 }
2553
2554 return false;
2555 }
2556
2557 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2558 struct intel_context *ctx,
2559 const bool guilty)
2560 {
2561 struct i915_ctx_hang_stats *hs;
2562
2563 if (WARN_ON(!ctx))
2564 return;
2565
2566 hs = &ctx->hang_stats;
2567
2568 if (guilty) {
2569 hs->banned = i915_context_is_banned(dev_priv, ctx);
2570 hs->batch_active++;
2571 hs->guilty_ts = get_seconds();
2572 } else {
2573 hs->batch_pending++;
2574 }
2575 }
2576
2577 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2578 {
2579 struct intel_context *ctx = request->ctx;
2580
2581 list_del(&request->list);
2582 i915_gem_request_remove_from_client(request);
2583
2584 if (i915.enable_execlists && ctx) {
2585 struct intel_engine_cs *ring = request->ring;
2586
2587 if (ctx != ring->default_context)
2588 intel_lr_context_unpin(ring, ctx);
2589 i915_gem_context_unreference(ctx);
2590 }
2591 kfree(request);
2592 }
2593
2594 struct drm_i915_gem_request *
2595 i915_gem_find_active_request(struct intel_engine_cs *ring)
2596 {
2597 struct drm_i915_gem_request *request;
2598 u32 completed_seqno;
2599
2600 completed_seqno = ring->get_seqno(ring, false);
2601
2602 list_for_each_entry(request, &ring->request_list, list) {
2603 if (i915_seqno_passed(completed_seqno, request->seqno))
2604 continue;
2605
2606 return request;
2607 }
2608
2609 return NULL;
2610 }
2611
2612 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2613 struct intel_engine_cs *ring)
2614 {
2615 struct drm_i915_gem_request *request;
2616 bool ring_hung;
2617
2618 request = i915_gem_find_active_request(ring);
2619
2620 if (request == NULL)
2621 return;
2622
2623 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2624
2625 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2626
2627 list_for_each_entry_continue(request, &ring->request_list, list)
2628 i915_set_reset_status(dev_priv, request->ctx, false);
2629 }
2630
2631 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2632 struct intel_engine_cs *ring)
2633 {
2634 while (!list_empty(&ring->active_list)) {
2635 struct drm_i915_gem_object *obj;
2636
2637 obj = list_first_entry(&ring->active_list,
2638 struct drm_i915_gem_object,
2639 ring_list);
2640
2641 i915_gem_object_move_to_inactive(obj);
2642 }
2643
2644 /*
2645 * Clear the execlists queue up before freeing the requests, as those
2646 * are the ones that keep the context and ringbuffer backing objects
2647 * pinned in place.
2648 */
2649 while (!list_empty(&ring->execlist_queue)) {
2650 struct intel_ctx_submit_request *submit_req;
2651
2652 submit_req = list_first_entry(&ring->execlist_queue,
2653 struct intel_ctx_submit_request,
2654 execlist_link);
2655 list_del(&submit_req->execlist_link);
2656 intel_runtime_pm_put(dev_priv);
2657 i915_gem_context_unreference(submit_req->ctx);
2658 kfree(submit_req);
2659 }
2660
2661 /*
2662 * We must free the requests after all the corresponding objects have
2663 * been moved off active lists. Which is the same order as the normal
2664 * retire_requests function does. This is important if object hold
2665 * implicit references on things like e.g. ppgtt address spaces through
2666 * the request.
2667 */
2668 while (!list_empty(&ring->request_list)) {
2669 struct drm_i915_gem_request *request;
2670
2671 request = list_first_entry(&ring->request_list,
2672 struct drm_i915_gem_request,
2673 list);
2674
2675 i915_gem_free_request(request);
2676 }
2677
2678 /* These may not have been flush before the reset, do so now */
2679 kfree(ring->preallocated_lazy_request);
2680 ring->preallocated_lazy_request = NULL;
2681 ring->outstanding_lazy_seqno = 0;
2682 }
2683
2684 void i915_gem_restore_fences(struct drm_device *dev)
2685 {
2686 struct drm_i915_private *dev_priv = dev->dev_private;
2687 int i;
2688
2689 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2690 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2691
2692 /*
2693 * Commit delayed tiling changes if we have an object still
2694 * attached to the fence, otherwise just clear the fence.
2695 */
2696 if (reg->obj) {
2697 i915_gem_object_update_fence(reg->obj, reg,
2698 reg->obj->tiling_mode);
2699 } else {
2700 i915_gem_write_fence(dev, i, NULL);
2701 }
2702 }
2703 }
2704
2705 void i915_gem_reset(struct drm_device *dev)
2706 {
2707 struct drm_i915_private *dev_priv = dev->dev_private;
2708 struct intel_engine_cs *ring;
2709 int i;
2710
2711 /*
2712 * Before we free the objects from the requests, we need to inspect
2713 * them for finding the guilty party. As the requests only borrow
2714 * their reference to the objects, the inspection must be done first.
2715 */
2716 for_each_ring(ring, dev_priv, i)
2717 i915_gem_reset_ring_status(dev_priv, ring);
2718
2719 for_each_ring(ring, dev_priv, i)
2720 i915_gem_reset_ring_cleanup(dev_priv, ring);
2721
2722 i915_gem_context_reset(dev);
2723
2724 i915_gem_restore_fences(dev);
2725 }
2726
2727 /**
2728 * This function clears the request list as sequence numbers are passed.
2729 */
2730 void
2731 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2732 {
2733 uint32_t seqno;
2734
2735 if (list_empty(&ring->request_list))
2736 return;
2737
2738 WARN_ON(i915_verify_lists(ring->dev));
2739
2740 seqno = ring->get_seqno(ring, true);
2741
2742 /* Move any buffers on the active list that are no longer referenced
2743 * by the ringbuffer to the flushing/inactive lists as appropriate,
2744 * before we free the context associated with the requests.
2745 */
2746 while (!list_empty(&ring->active_list)) {
2747 struct drm_i915_gem_object *obj;
2748
2749 obj = list_first_entry(&ring->active_list,
2750 struct drm_i915_gem_object,
2751 ring_list);
2752
2753 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2754 break;
2755
2756 i915_gem_object_move_to_inactive(obj);
2757 }
2758
2759
2760 while (!list_empty(&ring->request_list)) {
2761 struct drm_i915_gem_request *request;
2762 struct intel_ringbuffer *ringbuf;
2763
2764 request = list_first_entry(&ring->request_list,
2765 struct drm_i915_gem_request,
2766 list);
2767
2768 if (!i915_seqno_passed(seqno, request->seqno))
2769 break;
2770
2771 trace_i915_gem_request_retire(ring, request->seqno);
2772
2773 /* This is one of the few common intersection points
2774 * between legacy ringbuffer submission and execlists:
2775 * we need to tell them apart in order to find the correct
2776 * ringbuffer to which the request belongs to.
2777 */
2778 if (i915.enable_execlists) {
2779 struct intel_context *ctx = request->ctx;
2780 ringbuf = ctx->engine[ring->id].ringbuf;
2781 } else
2782 ringbuf = ring->buffer;
2783
2784 /* We know the GPU must have read the request to have
2785 * sent us the seqno + interrupt, so use the position
2786 * of tail of the request to update the last known position
2787 * of the GPU head.
2788 */
2789 ringbuf->last_retired_head = request->tail;
2790
2791 i915_gem_free_request(request);
2792 }
2793
2794 if (unlikely(ring->trace_irq_seqno &&
2795 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2796 ring->irq_put(ring);
2797 ring->trace_irq_seqno = 0;
2798 }
2799
2800 WARN_ON(i915_verify_lists(ring->dev));
2801 }
2802
2803 bool
2804 i915_gem_retire_requests(struct drm_device *dev)
2805 {
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 struct intel_engine_cs *ring;
2808 bool idle = true;
2809 int i;
2810
2811 for_each_ring(ring, dev_priv, i) {
2812 i915_gem_retire_requests_ring(ring);
2813 idle &= list_empty(&ring->request_list);
2814 if (i915.enable_execlists) {
2815 unsigned long flags;
2816
2817 spin_lock_irqsave(&ring->execlist_lock, flags);
2818 idle &= list_empty(&ring->execlist_queue);
2819 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2820
2821 intel_execlists_retire_requests(ring);
2822 }
2823 }
2824
2825 if (idle)
2826 mod_delayed_work(dev_priv->wq,
2827 &dev_priv->mm.idle_work,
2828 msecs_to_jiffies(100));
2829
2830 return idle;
2831 }
2832
2833 static void
2834 i915_gem_retire_work_handler(struct work_struct *work)
2835 {
2836 struct drm_i915_private *dev_priv =
2837 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2838 struct drm_device *dev = dev_priv->dev;
2839 bool idle;
2840
2841 /* Come back later if the device is busy... */
2842 idle = false;
2843 if (mutex_trylock(&dev->struct_mutex)) {
2844 idle = i915_gem_retire_requests(dev);
2845 mutex_unlock(&dev->struct_mutex);
2846 }
2847 if (!idle)
2848 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2849 round_jiffies_up_relative(HZ));
2850 }
2851
2852 static void
2853 i915_gem_idle_work_handler(struct work_struct *work)
2854 {
2855 struct drm_i915_private *dev_priv =
2856 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2857
2858 intel_mark_idle(dev_priv->dev);
2859 }
2860
2861 /**
2862 * Ensures that an object will eventually get non-busy by flushing any required
2863 * write domains, emitting any outstanding lazy request and retiring and
2864 * completed requests.
2865 */
2866 static int
2867 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2868 {
2869 int ret;
2870
2871 if (obj->active) {
2872 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2873 if (ret)
2874 return ret;
2875
2876 i915_gem_retire_requests_ring(obj->ring);
2877 }
2878
2879 return 0;
2880 }
2881
2882 /**
2883 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2884 * @DRM_IOCTL_ARGS: standard ioctl arguments
2885 *
2886 * Returns 0 if successful, else an error is returned with the remaining time in
2887 * the timeout parameter.
2888 * -ETIME: object is still busy after timeout
2889 * -ERESTARTSYS: signal interrupted the wait
2890 * -ENONENT: object doesn't exist
2891 * Also possible, but rare:
2892 * -EAGAIN: GPU wedged
2893 * -ENOMEM: damn
2894 * -ENODEV: Internal IRQ fail
2895 * -E?: The add request failed
2896 *
2897 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2898 * non-zero timeout parameter the wait ioctl will wait for the given number of
2899 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2900 * without holding struct_mutex the object may become re-busied before this
2901 * function completes. A similar but shorter * race condition exists in the busy
2902 * ioctl
2903 */
2904 int
2905 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2906 {
2907 struct drm_i915_private *dev_priv = dev->dev_private;
2908 struct drm_i915_gem_wait *args = data;
2909 struct drm_i915_gem_object *obj;
2910 struct intel_engine_cs *ring = NULL;
2911 unsigned reset_counter;
2912 u32 seqno = 0;
2913 int ret = 0;
2914
2915 if (args->flags != 0)
2916 return -EINVAL;
2917
2918 ret = i915_mutex_lock_interruptible(dev);
2919 if (ret)
2920 return ret;
2921
2922 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2923 if (&obj->base == NULL) {
2924 mutex_unlock(&dev->struct_mutex);
2925 return -ENOENT;
2926 }
2927
2928 /* Need to make sure the object gets inactive eventually. */
2929 ret = i915_gem_object_flush_active(obj);
2930 if (ret)
2931 goto out;
2932
2933 if (obj->active) {
2934 seqno = obj->last_read_seqno;
2935 ring = obj->ring;
2936 }
2937
2938 if (seqno == 0)
2939 goto out;
2940
2941 /* Do this after OLR check to make sure we make forward progress polling
2942 * on this IOCTL with a timeout <=0 (like busy ioctl)
2943 */
2944 if (args->timeout_ns <= 0) {
2945 ret = -ETIME;
2946 goto out;
2947 }
2948
2949 drm_gem_object_unreference(&obj->base);
2950 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2951 mutex_unlock(&dev->struct_mutex);
2952
2953 return __i915_wait_seqno(ring, seqno, reset_counter, true,
2954 &args->timeout_ns, file->driver_priv);
2955
2956 out:
2957 drm_gem_object_unreference(&obj->base);
2958 mutex_unlock(&dev->struct_mutex);
2959 return ret;
2960 }
2961
2962 /**
2963 * i915_gem_object_sync - sync an object to a ring.
2964 *
2965 * @obj: object which may be in use on another ring.
2966 * @to: ring we wish to use the object on. May be NULL.
2967 *
2968 * This code is meant to abstract object synchronization with the GPU.
2969 * Calling with NULL implies synchronizing the object with the CPU
2970 * rather than a particular GPU ring.
2971 *
2972 * Returns 0 if successful, else propagates up the lower layer error.
2973 */
2974 int
2975 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2976 struct intel_engine_cs *to)
2977 {
2978 struct intel_engine_cs *from = obj->ring;
2979 u32 seqno;
2980 int ret, idx;
2981
2982 if (from == NULL || to == from)
2983 return 0;
2984
2985 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2986 return i915_gem_object_wait_rendering(obj, false);
2987
2988 idx = intel_ring_sync_index(from, to);
2989
2990 seqno = obj->last_read_seqno;
2991 /* Optimization: Avoid semaphore sync when we are sure we already
2992 * waited for an object with higher seqno */
2993 if (seqno <= from->semaphore.sync_seqno[idx])
2994 return 0;
2995
2996 ret = i915_gem_check_olr(obj->ring, seqno);
2997 if (ret)
2998 return ret;
2999
3000 trace_i915_gem_ring_sync_to(from, to, seqno);
3001 ret = to->semaphore.sync_to(to, from, seqno);
3002 if (!ret)
3003 /* We use last_read_seqno because sync_to()
3004 * might have just caused seqno wrap under
3005 * the radar.
3006 */
3007 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3008
3009 return ret;
3010 }
3011
3012 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3013 {
3014 u32 old_write_domain, old_read_domains;
3015
3016 /* Force a pagefault for domain tracking on next user access */
3017 i915_gem_release_mmap(obj);
3018
3019 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3020 return;
3021
3022 /* Wait for any direct GTT access to complete */
3023 mb();
3024
3025 old_read_domains = obj->base.read_domains;
3026 old_write_domain = obj->base.write_domain;
3027
3028 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3029 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3030
3031 trace_i915_gem_object_change_domain(obj,
3032 old_read_domains,
3033 old_write_domain);
3034 }
3035
3036 int i915_vma_unbind(struct i915_vma *vma)
3037 {
3038 struct drm_i915_gem_object *obj = vma->obj;
3039 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3040 int ret;
3041
3042 if (list_empty(&vma->vma_link))
3043 return 0;
3044
3045 if (!drm_mm_node_allocated(&vma->node)) {
3046 i915_gem_vma_destroy(vma);
3047 return 0;
3048 }
3049
3050 if (vma->pin_count)
3051 return -EBUSY;
3052
3053 BUG_ON(obj->pages == NULL);
3054
3055 ret = i915_gem_object_finish_gpu(obj);
3056 if (ret)
3057 return ret;
3058 /* Continue on if we fail due to EIO, the GPU is hung so we
3059 * should be safe and we need to cleanup or else we might
3060 * cause memory corruption through use-after-free.
3061 */
3062
3063 /* Throw away the active reference before moving to the unbound list */
3064 i915_gem_object_retire(obj);
3065
3066 if (i915_is_ggtt(vma->vm)) {
3067 i915_gem_object_finish_gtt(obj);
3068
3069 /* release the fence reg _after_ flushing */
3070 ret = i915_gem_object_put_fence(obj);
3071 if (ret)
3072 return ret;
3073 }
3074
3075 trace_i915_vma_unbind(vma);
3076
3077 vma->unbind_vma(vma);
3078
3079 list_del_init(&vma->mm_list);
3080 if (i915_is_ggtt(vma->vm))
3081 obj->map_and_fenceable = false;
3082
3083 drm_mm_remove_node(&vma->node);
3084 i915_gem_vma_destroy(vma);
3085
3086 /* Since the unbound list is global, only move to that list if
3087 * no more VMAs exist. */
3088 if (list_empty(&obj->vma_list)) {
3089 i915_gem_gtt_finish_object(obj);
3090 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3091 }
3092
3093 /* And finally now the object is completely decoupled from this vma,
3094 * we can drop its hold on the backing storage and allow it to be
3095 * reaped by the shrinker.
3096 */
3097 i915_gem_object_unpin_pages(obj);
3098
3099 return 0;
3100 }
3101
3102 int i915_gpu_idle(struct drm_device *dev)
3103 {
3104 struct drm_i915_private *dev_priv = dev->dev_private;
3105 struct intel_engine_cs *ring;
3106 int ret, i;
3107
3108 /* Flush everything onto the inactive list. */
3109 for_each_ring(ring, dev_priv, i) {
3110 if (!i915.enable_execlists) {
3111 ret = i915_switch_context(ring, ring->default_context);
3112 if (ret)
3113 return ret;
3114 }
3115
3116 ret = intel_ring_idle(ring);
3117 if (ret)
3118 return ret;
3119 }
3120
3121 return 0;
3122 }
3123
3124 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3125 struct drm_i915_gem_object *obj)
3126 {
3127 struct drm_i915_private *dev_priv = dev->dev_private;
3128 int fence_reg;
3129 int fence_pitch_shift;
3130
3131 if (INTEL_INFO(dev)->gen >= 6) {
3132 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3133 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3134 } else {
3135 fence_reg = FENCE_REG_965_0;
3136 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3137 }
3138
3139 fence_reg += reg * 8;
3140
3141 /* To w/a incoherency with non-atomic 64-bit register updates,
3142 * we split the 64-bit update into two 32-bit writes. In order
3143 * for a partial fence not to be evaluated between writes, we
3144 * precede the update with write to turn off the fence register,
3145 * and only enable the fence as the last step.
3146 *
3147 * For extra levels of paranoia, we make sure each step lands
3148 * before applying the next step.
3149 */
3150 I915_WRITE(fence_reg, 0);
3151 POSTING_READ(fence_reg);
3152
3153 if (obj) {
3154 u32 size = i915_gem_obj_ggtt_size(obj);
3155 uint64_t val;
3156
3157 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3158 0xfffff000) << 32;
3159 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3160 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3161 if (obj->tiling_mode == I915_TILING_Y)
3162 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3163 val |= I965_FENCE_REG_VALID;
3164
3165 I915_WRITE(fence_reg + 4, val >> 32);
3166 POSTING_READ(fence_reg + 4);
3167
3168 I915_WRITE(fence_reg + 0, val);
3169 POSTING_READ(fence_reg);
3170 } else {
3171 I915_WRITE(fence_reg + 4, 0);
3172 POSTING_READ(fence_reg + 4);
3173 }
3174 }
3175
3176 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3177 struct drm_i915_gem_object *obj)
3178 {
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180 u32 val;
3181
3182 if (obj) {
3183 u32 size = i915_gem_obj_ggtt_size(obj);
3184 int pitch_val;
3185 int tile_width;
3186
3187 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3188 (size & -size) != size ||
3189 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3190 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3191 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3192
3193 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3194 tile_width = 128;
3195 else
3196 tile_width = 512;
3197
3198 /* Note: pitch better be a power of two tile widths */
3199 pitch_val = obj->stride / tile_width;
3200 pitch_val = ffs(pitch_val) - 1;
3201
3202 val = i915_gem_obj_ggtt_offset(obj);
3203 if (obj->tiling_mode == I915_TILING_Y)
3204 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3205 val |= I915_FENCE_SIZE_BITS(size);
3206 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3207 val |= I830_FENCE_REG_VALID;
3208 } else
3209 val = 0;
3210
3211 if (reg < 8)
3212 reg = FENCE_REG_830_0 + reg * 4;
3213 else
3214 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3215
3216 I915_WRITE(reg, val);
3217 POSTING_READ(reg);
3218 }
3219
3220 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3221 struct drm_i915_gem_object *obj)
3222 {
3223 struct drm_i915_private *dev_priv = dev->dev_private;
3224 uint32_t val;
3225
3226 if (obj) {
3227 u32 size = i915_gem_obj_ggtt_size(obj);
3228 uint32_t pitch_val;
3229
3230 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3231 (size & -size) != size ||
3232 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3233 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3234 i915_gem_obj_ggtt_offset(obj), size);
3235
3236 pitch_val = obj->stride / 128;
3237 pitch_val = ffs(pitch_val) - 1;
3238
3239 val = i915_gem_obj_ggtt_offset(obj);
3240 if (obj->tiling_mode == I915_TILING_Y)
3241 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3242 val |= I830_FENCE_SIZE_BITS(size);
3243 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3244 val |= I830_FENCE_REG_VALID;
3245 } else
3246 val = 0;
3247
3248 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3249 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3250 }
3251
3252 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3253 {
3254 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3255 }
3256
3257 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3258 struct drm_i915_gem_object *obj)
3259 {
3260 struct drm_i915_private *dev_priv = dev->dev_private;
3261
3262 /* Ensure that all CPU reads are completed before installing a fence
3263 * and all writes before removing the fence.
3264 */
3265 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3266 mb();
3267
3268 WARN(obj && (!obj->stride || !obj->tiling_mode),
3269 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3270 obj->stride, obj->tiling_mode);
3271
3272 switch (INTEL_INFO(dev)->gen) {
3273 case 9:
3274 case 8:
3275 case 7:
3276 case 6:
3277 case 5:
3278 case 4: i965_write_fence_reg(dev, reg, obj); break;
3279 case 3: i915_write_fence_reg(dev, reg, obj); break;
3280 case 2: i830_write_fence_reg(dev, reg, obj); break;
3281 default: BUG();
3282 }
3283
3284 /* And similarly be paranoid that no direct access to this region
3285 * is reordered to before the fence is installed.
3286 */
3287 if (i915_gem_object_needs_mb(obj))
3288 mb();
3289 }
3290
3291 static inline int fence_number(struct drm_i915_private *dev_priv,
3292 struct drm_i915_fence_reg *fence)
3293 {
3294 return fence - dev_priv->fence_regs;
3295 }
3296
3297 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3298 struct drm_i915_fence_reg *fence,
3299 bool enable)
3300 {
3301 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3302 int reg = fence_number(dev_priv, fence);
3303
3304 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3305
3306 if (enable) {
3307 obj->fence_reg = reg;
3308 fence->obj = obj;
3309 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3310 } else {
3311 obj->fence_reg = I915_FENCE_REG_NONE;
3312 fence->obj = NULL;
3313 list_del_init(&fence->lru_list);
3314 }
3315 obj->fence_dirty = false;
3316 }
3317
3318 static int
3319 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3320 {
3321 if (obj->last_fenced_seqno) {
3322 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3323 if (ret)
3324 return ret;
3325
3326 obj->last_fenced_seqno = 0;
3327 }
3328
3329 return 0;
3330 }
3331
3332 int
3333 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3334 {
3335 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3336 struct drm_i915_fence_reg *fence;
3337 int ret;
3338
3339 ret = i915_gem_object_wait_fence(obj);
3340 if (ret)
3341 return ret;
3342
3343 if (obj->fence_reg == I915_FENCE_REG_NONE)
3344 return 0;
3345
3346 fence = &dev_priv->fence_regs[obj->fence_reg];
3347
3348 if (WARN_ON(fence->pin_count))
3349 return -EBUSY;
3350
3351 i915_gem_object_fence_lost(obj);
3352 i915_gem_object_update_fence(obj, fence, false);
3353
3354 return 0;
3355 }
3356
3357 static struct drm_i915_fence_reg *
3358 i915_find_fence_reg(struct drm_device *dev)
3359 {
3360 struct drm_i915_private *dev_priv = dev->dev_private;
3361 struct drm_i915_fence_reg *reg, *avail;
3362 int i;
3363
3364 /* First try to find a free reg */
3365 avail = NULL;
3366 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3367 reg = &dev_priv->fence_regs[i];
3368 if (!reg->obj)
3369 return reg;
3370
3371 if (!reg->pin_count)
3372 avail = reg;
3373 }
3374
3375 if (avail == NULL)
3376 goto deadlock;
3377
3378 /* None available, try to steal one or wait for a user to finish */
3379 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3380 if (reg->pin_count)
3381 continue;
3382
3383 return reg;
3384 }
3385
3386 deadlock:
3387 /* Wait for completion of pending flips which consume fences */
3388 if (intel_has_pending_fb_unpin(dev))
3389 return ERR_PTR(-EAGAIN);
3390
3391 return ERR_PTR(-EDEADLK);
3392 }
3393
3394 /**
3395 * i915_gem_object_get_fence - set up fencing for an object
3396 * @obj: object to map through a fence reg
3397 *
3398 * When mapping objects through the GTT, userspace wants to be able to write
3399 * to them without having to worry about swizzling if the object is tiled.
3400 * This function walks the fence regs looking for a free one for @obj,
3401 * stealing one if it can't find any.
3402 *
3403 * It then sets up the reg based on the object's properties: address, pitch
3404 * and tiling format.
3405 *
3406 * For an untiled surface, this removes any existing fence.
3407 */
3408 int
3409 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3410 {
3411 struct drm_device *dev = obj->base.dev;
3412 struct drm_i915_private *dev_priv = dev->dev_private;
3413 bool enable = obj->tiling_mode != I915_TILING_NONE;
3414 struct drm_i915_fence_reg *reg;
3415 int ret;
3416
3417 /* Have we updated the tiling parameters upon the object and so
3418 * will need to serialise the write to the associated fence register?
3419 */
3420 if (obj->fence_dirty) {
3421 ret = i915_gem_object_wait_fence(obj);
3422 if (ret)
3423 return ret;
3424 }
3425
3426 /* Just update our place in the LRU if our fence is getting reused. */
3427 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3428 reg = &dev_priv->fence_regs[obj->fence_reg];
3429 if (!obj->fence_dirty) {
3430 list_move_tail(&reg->lru_list,
3431 &dev_priv->mm.fence_list);
3432 return 0;
3433 }
3434 } else if (enable) {
3435 if (WARN_ON(!obj->map_and_fenceable))
3436 return -EINVAL;
3437
3438 reg = i915_find_fence_reg(dev);
3439 if (IS_ERR(reg))
3440 return PTR_ERR(reg);
3441
3442 if (reg->obj) {
3443 struct drm_i915_gem_object *old = reg->obj;
3444
3445 ret = i915_gem_object_wait_fence(old);
3446 if (ret)
3447 return ret;
3448
3449 i915_gem_object_fence_lost(old);
3450 }
3451 } else
3452 return 0;
3453
3454 i915_gem_object_update_fence(obj, reg, enable);
3455
3456 return 0;
3457 }
3458
3459 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3460 unsigned long cache_level)
3461 {
3462 struct drm_mm_node *gtt_space = &vma->node;
3463 struct drm_mm_node *other;
3464
3465 /*
3466 * On some machines we have to be careful when putting differing types
3467 * of snoopable memory together to avoid the prefetcher crossing memory
3468 * domains and dying. During vm initialisation, we decide whether or not
3469 * these constraints apply and set the drm_mm.color_adjust
3470 * appropriately.
3471 */
3472 if (vma->vm->mm.color_adjust == NULL)
3473 return true;
3474
3475 if (!drm_mm_node_allocated(gtt_space))
3476 return true;
3477
3478 if (list_empty(&gtt_space->node_list))
3479 return true;
3480
3481 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3482 if (other->allocated && !other->hole_follows && other->color != cache_level)
3483 return false;
3484
3485 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3486 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3487 return false;
3488
3489 return true;
3490 }
3491
3492 /**
3493 * Finds free space in the GTT aperture and binds the object there.
3494 */
3495 static struct i915_vma *
3496 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3497 struct i915_address_space *vm,
3498 unsigned alignment,
3499 uint64_t flags)
3500 {
3501 struct drm_device *dev = obj->base.dev;
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 u32 size, fence_size, fence_alignment, unfenced_alignment;
3504 unsigned long start =
3505 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3506 unsigned long end =
3507 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3508 struct i915_vma *vma;
3509 int ret;
3510
3511 fence_size = i915_gem_get_gtt_size(dev,
3512 obj->base.size,
3513 obj->tiling_mode);
3514 fence_alignment = i915_gem_get_gtt_alignment(dev,
3515 obj->base.size,
3516 obj->tiling_mode, true);
3517 unfenced_alignment =
3518 i915_gem_get_gtt_alignment(dev,
3519 obj->base.size,
3520 obj->tiling_mode, false);
3521
3522 if (alignment == 0)
3523 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3524 unfenced_alignment;
3525 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3526 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3527 return ERR_PTR(-EINVAL);
3528 }
3529
3530 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3531
3532 /* If the object is bigger than the entire aperture, reject it early
3533 * before evicting everything in a vain attempt to find space.
3534 */
3535 if (obj->base.size > end) {
3536 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3537 obj->base.size,
3538 flags & PIN_MAPPABLE ? "mappable" : "total",
3539 end);
3540 return ERR_PTR(-E2BIG);
3541 }
3542
3543 ret = i915_gem_object_get_pages(obj);
3544 if (ret)
3545 return ERR_PTR(ret);
3546
3547 i915_gem_object_pin_pages(obj);
3548
3549 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3550 if (IS_ERR(vma))
3551 goto err_unpin;
3552
3553 search_free:
3554 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3555 size, alignment,
3556 obj->cache_level,
3557 start, end,
3558 DRM_MM_SEARCH_DEFAULT,
3559 DRM_MM_CREATE_DEFAULT);
3560 if (ret) {
3561 ret = i915_gem_evict_something(dev, vm, size, alignment,
3562 obj->cache_level,
3563 start, end,
3564 flags);
3565 if (ret == 0)
3566 goto search_free;
3567
3568 goto err_free_vma;
3569 }
3570 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3571 ret = -EINVAL;
3572 goto err_remove_node;
3573 }
3574
3575 ret = i915_gem_gtt_prepare_object(obj);
3576 if (ret)
3577 goto err_remove_node;
3578
3579 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3580 list_add_tail(&vma->mm_list, &vm->inactive_list);
3581
3582 trace_i915_vma_bind(vma, flags);
3583 vma->bind_vma(vma, obj->cache_level,
3584 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3585
3586 return vma;
3587
3588 err_remove_node:
3589 drm_mm_remove_node(&vma->node);
3590 err_free_vma:
3591 i915_gem_vma_destroy(vma);
3592 vma = ERR_PTR(ret);
3593 err_unpin:
3594 i915_gem_object_unpin_pages(obj);
3595 return vma;
3596 }
3597
3598 bool
3599 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3600 bool force)
3601 {
3602 /* If we don't have a page list set up, then we're not pinned
3603 * to GPU, and we can ignore the cache flush because it'll happen
3604 * again at bind time.
3605 */
3606 if (obj->pages == NULL)
3607 return false;
3608
3609 /*
3610 * Stolen memory is always coherent with the GPU as it is explicitly
3611 * marked as wc by the system, or the system is cache-coherent.
3612 */
3613 if (obj->stolen || obj->phys_handle)
3614 return false;
3615
3616 /* If the GPU is snooping the contents of the CPU cache,
3617 * we do not need to manually clear the CPU cache lines. However,
3618 * the caches are only snooped when the render cache is
3619 * flushed/invalidated. As we always have to emit invalidations
3620 * and flushes when moving into and out of the RENDER domain, correct
3621 * snooping behaviour occurs naturally as the result of our domain
3622 * tracking.
3623 */
3624 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3625 return false;
3626
3627 trace_i915_gem_object_clflush(obj);
3628 drm_clflush_sg(obj->pages);
3629
3630 return true;
3631 }
3632
3633 /** Flushes the GTT write domain for the object if it's dirty. */
3634 static void
3635 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3636 {
3637 uint32_t old_write_domain;
3638
3639 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3640 return;
3641
3642 /* No actual flushing is required for the GTT write domain. Writes
3643 * to it immediately go to main memory as far as we know, so there's
3644 * no chipset flush. It also doesn't land in render cache.
3645 *
3646 * However, we do have to enforce the order so that all writes through
3647 * the GTT land before any writes to the device, such as updates to
3648 * the GATT itself.
3649 */
3650 wmb();
3651
3652 old_write_domain = obj->base.write_domain;
3653 obj->base.write_domain = 0;
3654
3655 intel_fb_obj_flush(obj, false);
3656
3657 trace_i915_gem_object_change_domain(obj,
3658 obj->base.read_domains,
3659 old_write_domain);
3660 }
3661
3662 /** Flushes the CPU write domain for the object if it's dirty. */
3663 static void
3664 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3665 bool force)
3666 {
3667 uint32_t old_write_domain;
3668
3669 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3670 return;
3671
3672 if (i915_gem_clflush_object(obj, force))
3673 i915_gem_chipset_flush(obj->base.dev);
3674
3675 old_write_domain = obj->base.write_domain;
3676 obj->base.write_domain = 0;
3677
3678 intel_fb_obj_flush(obj, false);
3679
3680 trace_i915_gem_object_change_domain(obj,
3681 obj->base.read_domains,
3682 old_write_domain);
3683 }
3684
3685 /**
3686 * Moves a single object to the GTT read, and possibly write domain.
3687 *
3688 * This function returns when the move is complete, including waiting on
3689 * flushes to occur.
3690 */
3691 int
3692 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3693 {
3694 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3695 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3696 uint32_t old_write_domain, old_read_domains;
3697 int ret;
3698
3699 /* Not valid to be called on unbound objects. */
3700 if (vma == NULL)
3701 return -EINVAL;
3702
3703 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3704 return 0;
3705
3706 ret = i915_gem_object_wait_rendering(obj, !write);
3707 if (ret)
3708 return ret;
3709
3710 i915_gem_object_retire(obj);
3711 i915_gem_object_flush_cpu_write_domain(obj, false);
3712
3713 /* Serialise direct access to this object with the barriers for
3714 * coherent writes from the GPU, by effectively invalidating the
3715 * GTT domain upon first access.
3716 */
3717 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3718 mb();
3719
3720 old_write_domain = obj->base.write_domain;
3721 old_read_domains = obj->base.read_domains;
3722
3723 /* It should now be out of any other write domains, and we can update
3724 * the domain values for our changes.
3725 */
3726 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3727 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3728 if (write) {
3729 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3730 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3731 obj->dirty = 1;
3732 }
3733
3734 if (write)
3735 intel_fb_obj_invalidate(obj, NULL);
3736
3737 trace_i915_gem_object_change_domain(obj,
3738 old_read_domains,
3739 old_write_domain);
3740
3741 /* And bump the LRU for this access */
3742 if (i915_gem_object_is_inactive(obj))
3743 list_move_tail(&vma->mm_list,
3744 &dev_priv->gtt.base.inactive_list);
3745
3746 return 0;
3747 }
3748
3749 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3750 enum i915_cache_level cache_level)
3751 {
3752 struct drm_device *dev = obj->base.dev;
3753 struct i915_vma *vma, *next;
3754 int ret;
3755
3756 if (obj->cache_level == cache_level)
3757 return 0;
3758
3759 if (i915_gem_obj_is_pinned(obj)) {
3760 DRM_DEBUG("can not change the cache level of pinned objects\n");
3761 return -EBUSY;
3762 }
3763
3764 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3765 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3766 ret = i915_vma_unbind(vma);
3767 if (ret)
3768 return ret;
3769 }
3770 }
3771
3772 if (i915_gem_obj_bound_any(obj)) {
3773 ret = i915_gem_object_finish_gpu(obj);
3774 if (ret)
3775 return ret;
3776
3777 i915_gem_object_finish_gtt(obj);
3778
3779 /* Before SandyBridge, you could not use tiling or fence
3780 * registers with snooped memory, so relinquish any fences
3781 * currently pointing to our region in the aperture.
3782 */
3783 if (INTEL_INFO(dev)->gen < 6) {
3784 ret = i915_gem_object_put_fence(obj);
3785 if (ret)
3786 return ret;
3787 }
3788
3789 list_for_each_entry(vma, &obj->vma_list, vma_link)
3790 if (drm_mm_node_allocated(&vma->node))
3791 vma->bind_vma(vma, cache_level,
3792 vma->bound & GLOBAL_BIND);
3793 }
3794
3795 list_for_each_entry(vma, &obj->vma_list, vma_link)
3796 vma->node.color = cache_level;
3797 obj->cache_level = cache_level;
3798
3799 if (cpu_write_needs_clflush(obj)) {
3800 u32 old_read_domains, old_write_domain;
3801
3802 /* If we're coming from LLC cached, then we haven't
3803 * actually been tracking whether the data is in the
3804 * CPU cache or not, since we only allow one bit set
3805 * in obj->write_domain and have been skipping the clflushes.
3806 * Just set it to the CPU cache for now.
3807 */
3808 i915_gem_object_retire(obj);
3809 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3810
3811 old_read_domains = obj->base.read_domains;
3812 old_write_domain = obj->base.write_domain;
3813
3814 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3815 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3816
3817 trace_i915_gem_object_change_domain(obj,
3818 old_read_domains,
3819 old_write_domain);
3820 }
3821
3822 return 0;
3823 }
3824
3825 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3826 struct drm_file *file)
3827 {
3828 struct drm_i915_gem_caching *args = data;
3829 struct drm_i915_gem_object *obj;
3830 int ret;
3831
3832 ret = i915_mutex_lock_interruptible(dev);
3833 if (ret)
3834 return ret;
3835
3836 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3837 if (&obj->base == NULL) {
3838 ret = -ENOENT;
3839 goto unlock;
3840 }
3841
3842 switch (obj->cache_level) {
3843 case I915_CACHE_LLC:
3844 case I915_CACHE_L3_LLC:
3845 args->caching = I915_CACHING_CACHED;
3846 break;
3847
3848 case I915_CACHE_WT:
3849 args->caching = I915_CACHING_DISPLAY;
3850 break;
3851
3852 default:
3853 args->caching = I915_CACHING_NONE;
3854 break;
3855 }
3856
3857 drm_gem_object_unreference(&obj->base);
3858 unlock:
3859 mutex_unlock(&dev->struct_mutex);
3860 return ret;
3861 }
3862
3863 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3864 struct drm_file *file)
3865 {
3866 struct drm_i915_gem_caching *args = data;
3867 struct drm_i915_gem_object *obj;
3868 enum i915_cache_level level;
3869 int ret;
3870
3871 switch (args->caching) {
3872 case I915_CACHING_NONE:
3873 level = I915_CACHE_NONE;
3874 break;
3875 case I915_CACHING_CACHED:
3876 level = I915_CACHE_LLC;
3877 break;
3878 case I915_CACHING_DISPLAY:
3879 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3880 break;
3881 default:
3882 return -EINVAL;
3883 }
3884
3885 ret = i915_mutex_lock_interruptible(dev);
3886 if (ret)
3887 return ret;
3888
3889 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3890 if (&obj->base == NULL) {
3891 ret = -ENOENT;
3892 goto unlock;
3893 }
3894
3895 ret = i915_gem_object_set_cache_level(obj, level);
3896
3897 drm_gem_object_unreference(&obj->base);
3898 unlock:
3899 mutex_unlock(&dev->struct_mutex);
3900 return ret;
3901 }
3902
3903 static bool is_pin_display(struct drm_i915_gem_object *obj)
3904 {
3905 struct i915_vma *vma;
3906
3907 vma = i915_gem_obj_to_ggtt(obj);
3908 if (!vma)
3909 return false;
3910
3911 /* There are 3 sources that pin objects:
3912 * 1. The display engine (scanouts, sprites, cursors);
3913 * 2. Reservations for execbuffer;
3914 * 3. The user.
3915 *
3916 * We can ignore reservations as we hold the struct_mutex and
3917 * are only called outside of the reservation path. The user
3918 * can only increment pin_count once, and so if after
3919 * subtracting the potential reference by the user, any pin_count
3920 * remains, it must be due to another use by the display engine.
3921 */
3922 return vma->pin_count - !!obj->user_pin_count;
3923 }
3924
3925 /*
3926 * Prepare buffer for display plane (scanout, cursors, etc).
3927 * Can be called from an uninterruptible phase (modesetting) and allows
3928 * any flushes to be pipelined (for pageflips).
3929 */
3930 int
3931 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3932 u32 alignment,
3933 struct intel_engine_cs *pipelined)
3934 {
3935 u32 old_read_domains, old_write_domain;
3936 bool was_pin_display;
3937 int ret;
3938
3939 if (pipelined != obj->ring) {
3940 ret = i915_gem_object_sync(obj, pipelined);
3941 if (ret)
3942 return ret;
3943 }
3944
3945 /* Mark the pin_display early so that we account for the
3946 * display coherency whilst setting up the cache domains.
3947 */
3948 was_pin_display = obj->pin_display;
3949 obj->pin_display = true;
3950
3951 /* The display engine is not coherent with the LLC cache on gen6. As
3952 * a result, we make sure that the pinning that is about to occur is
3953 * done with uncached PTEs. This is lowest common denominator for all
3954 * chipsets.
3955 *
3956 * However for gen6+, we could do better by using the GFDT bit instead
3957 * of uncaching, which would allow us to flush all the LLC-cached data
3958 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3959 */
3960 ret = i915_gem_object_set_cache_level(obj,
3961 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3962 if (ret)
3963 goto err_unpin_display;
3964
3965 /* As the user may map the buffer once pinned in the display plane
3966 * (e.g. libkms for the bootup splash), we have to ensure that we
3967 * always use map_and_fenceable for all scanout buffers.
3968 */
3969 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3970 if (ret)
3971 goto err_unpin_display;
3972
3973 i915_gem_object_flush_cpu_write_domain(obj, true);
3974
3975 old_write_domain = obj->base.write_domain;
3976 old_read_domains = obj->base.read_domains;
3977
3978 /* It should now be out of any other write domains, and we can update
3979 * the domain values for our changes.
3980 */
3981 obj->base.write_domain = 0;
3982 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3983
3984 trace_i915_gem_object_change_domain(obj,
3985 old_read_domains,
3986 old_write_domain);
3987
3988 return 0;
3989
3990 err_unpin_display:
3991 WARN_ON(was_pin_display != is_pin_display(obj));
3992 obj->pin_display = was_pin_display;
3993 return ret;
3994 }
3995
3996 void
3997 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3998 {
3999 i915_gem_object_ggtt_unpin(obj);
4000 obj->pin_display = is_pin_display(obj);
4001 }
4002
4003 int
4004 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4005 {
4006 int ret;
4007
4008 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4009 return 0;
4010
4011 ret = i915_gem_object_wait_rendering(obj, false);
4012 if (ret)
4013 return ret;
4014
4015 /* Ensure that we invalidate the GPU's caches and TLBs. */
4016 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4017 return 0;
4018 }
4019
4020 /**
4021 * Moves a single object to the CPU read, and possibly write domain.
4022 *
4023 * This function returns when the move is complete, including waiting on
4024 * flushes to occur.
4025 */
4026 int
4027 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4028 {
4029 uint32_t old_write_domain, old_read_domains;
4030 int ret;
4031
4032 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4033 return 0;
4034
4035 ret = i915_gem_object_wait_rendering(obj, !write);
4036 if (ret)
4037 return ret;
4038
4039 i915_gem_object_retire(obj);
4040 i915_gem_object_flush_gtt_write_domain(obj);
4041
4042 old_write_domain = obj->base.write_domain;
4043 old_read_domains = obj->base.read_domains;
4044
4045 /* Flush the CPU cache if it's still invalid. */
4046 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4047 i915_gem_clflush_object(obj, false);
4048
4049 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4050 }
4051
4052 /* It should now be out of any other write domains, and we can update
4053 * the domain values for our changes.
4054 */
4055 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4056
4057 /* If we're writing through the CPU, then the GPU read domains will
4058 * need to be invalidated at next use.
4059 */
4060 if (write) {
4061 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4062 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4063 }
4064
4065 if (write)
4066 intel_fb_obj_invalidate(obj, NULL);
4067
4068 trace_i915_gem_object_change_domain(obj,
4069 old_read_domains,
4070 old_write_domain);
4071
4072 return 0;
4073 }
4074
4075 /* Throttle our rendering by waiting until the ring has completed our requests
4076 * emitted over 20 msec ago.
4077 *
4078 * Note that if we were to use the current jiffies each time around the loop,
4079 * we wouldn't escape the function with any frames outstanding if the time to
4080 * render a frame was over 20ms.
4081 *
4082 * This should get us reasonable parallelism between CPU and GPU but also
4083 * relatively low latency when blocking on a particular request to finish.
4084 */
4085 static int
4086 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4087 {
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089 struct drm_i915_file_private *file_priv = file->driver_priv;
4090 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4091 struct drm_i915_gem_request *request;
4092 struct intel_engine_cs *ring = NULL;
4093 unsigned reset_counter;
4094 u32 seqno = 0;
4095 int ret;
4096
4097 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4098 if (ret)
4099 return ret;
4100
4101 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4102 if (ret)
4103 return ret;
4104
4105 spin_lock(&file_priv->mm.lock);
4106 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4107 if (time_after_eq(request->emitted_jiffies, recent_enough))
4108 break;
4109
4110 ring = request->ring;
4111 seqno = request->seqno;
4112 }
4113 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4114 spin_unlock(&file_priv->mm.lock);
4115
4116 if (seqno == 0)
4117 return 0;
4118
4119 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4120 if (ret == 0)
4121 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4122
4123 return ret;
4124 }
4125
4126 static bool
4127 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4128 {
4129 struct drm_i915_gem_object *obj = vma->obj;
4130
4131 if (alignment &&
4132 vma->node.start & (alignment - 1))
4133 return true;
4134
4135 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4136 return true;
4137
4138 if (flags & PIN_OFFSET_BIAS &&
4139 vma->node.start < (flags & PIN_OFFSET_MASK))
4140 return true;
4141
4142 return false;
4143 }
4144
4145 int
4146 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4147 struct i915_address_space *vm,
4148 uint32_t alignment,
4149 uint64_t flags)
4150 {
4151 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4152 struct i915_vma *vma;
4153 unsigned bound;
4154 int ret;
4155
4156 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4157 return -ENODEV;
4158
4159 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4160 return -EINVAL;
4161
4162 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4163 return -EINVAL;
4164
4165 vma = i915_gem_obj_to_vma(obj, vm);
4166 if (vma) {
4167 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4168 return -EBUSY;
4169
4170 if (i915_vma_misplaced(vma, alignment, flags)) {
4171 WARN(vma->pin_count,
4172 "bo is already pinned with incorrect alignment:"
4173 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4174 " obj->map_and_fenceable=%d\n",
4175 i915_gem_obj_offset(obj, vm), alignment,
4176 !!(flags & PIN_MAPPABLE),
4177 obj->map_and_fenceable);
4178 ret = i915_vma_unbind(vma);
4179 if (ret)
4180 return ret;
4181
4182 vma = NULL;
4183 }
4184 }
4185
4186 bound = vma ? vma->bound : 0;
4187 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4188 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4189 if (IS_ERR(vma))
4190 return PTR_ERR(vma);
4191 }
4192
4193 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4194 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4195
4196 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4197 bool mappable, fenceable;
4198 u32 fence_size, fence_alignment;
4199
4200 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4201 obj->base.size,
4202 obj->tiling_mode);
4203 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4204 obj->base.size,
4205 obj->tiling_mode,
4206 true);
4207
4208 fenceable = (vma->node.size == fence_size &&
4209 (vma->node.start & (fence_alignment - 1)) == 0);
4210
4211 mappable = (vma->node.start + obj->base.size <=
4212 dev_priv->gtt.mappable_end);
4213
4214 obj->map_and_fenceable = mappable && fenceable;
4215 }
4216
4217 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4218
4219 vma->pin_count++;
4220 if (flags & PIN_MAPPABLE)
4221 obj->pin_mappable |= true;
4222
4223 return 0;
4224 }
4225
4226 void
4227 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4228 {
4229 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4230
4231 BUG_ON(!vma);
4232 BUG_ON(vma->pin_count == 0);
4233 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4234
4235 if (--vma->pin_count == 0)
4236 obj->pin_mappable = false;
4237 }
4238
4239 bool
4240 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4241 {
4242 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4244 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4245
4246 WARN_ON(!ggtt_vma ||
4247 dev_priv->fence_regs[obj->fence_reg].pin_count >
4248 ggtt_vma->pin_count);
4249 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4250 return true;
4251 } else
4252 return false;
4253 }
4254
4255 void
4256 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4257 {
4258 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4259 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4260 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4261 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4262 }
4263 }
4264
4265 int
4266 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file)
4268 {
4269 struct drm_i915_gem_pin *args = data;
4270 struct drm_i915_gem_object *obj;
4271 int ret;
4272
4273 if (INTEL_INFO(dev)->gen >= 6)
4274 return -ENODEV;
4275
4276 ret = i915_mutex_lock_interruptible(dev);
4277 if (ret)
4278 return ret;
4279
4280 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4281 if (&obj->base == NULL) {
4282 ret = -ENOENT;
4283 goto unlock;
4284 }
4285
4286 if (obj->madv != I915_MADV_WILLNEED) {
4287 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4288 ret = -EFAULT;
4289 goto out;
4290 }
4291
4292 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4293 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4294 args->handle);
4295 ret = -EINVAL;
4296 goto out;
4297 }
4298
4299 if (obj->user_pin_count == ULONG_MAX) {
4300 ret = -EBUSY;
4301 goto out;
4302 }
4303
4304 if (obj->user_pin_count == 0) {
4305 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4306 if (ret)
4307 goto out;
4308 }
4309
4310 obj->user_pin_count++;
4311 obj->pin_filp = file;
4312
4313 args->offset = i915_gem_obj_ggtt_offset(obj);
4314 out:
4315 drm_gem_object_unreference(&obj->base);
4316 unlock:
4317 mutex_unlock(&dev->struct_mutex);
4318 return ret;
4319 }
4320
4321 int
4322 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4323 struct drm_file *file)
4324 {
4325 struct drm_i915_gem_pin *args = data;
4326 struct drm_i915_gem_object *obj;
4327 int ret;
4328
4329 ret = i915_mutex_lock_interruptible(dev);
4330 if (ret)
4331 return ret;
4332
4333 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4334 if (&obj->base == NULL) {
4335 ret = -ENOENT;
4336 goto unlock;
4337 }
4338
4339 if (obj->pin_filp != file) {
4340 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4341 args->handle);
4342 ret = -EINVAL;
4343 goto out;
4344 }
4345 obj->user_pin_count--;
4346 if (obj->user_pin_count == 0) {
4347 obj->pin_filp = NULL;
4348 i915_gem_object_ggtt_unpin(obj);
4349 }
4350
4351 out:
4352 drm_gem_object_unreference(&obj->base);
4353 unlock:
4354 mutex_unlock(&dev->struct_mutex);
4355 return ret;
4356 }
4357
4358 int
4359 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4360 struct drm_file *file)
4361 {
4362 struct drm_i915_gem_busy *args = data;
4363 struct drm_i915_gem_object *obj;
4364 int ret;
4365
4366 ret = i915_mutex_lock_interruptible(dev);
4367 if (ret)
4368 return ret;
4369
4370 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4371 if (&obj->base == NULL) {
4372 ret = -ENOENT;
4373 goto unlock;
4374 }
4375
4376 /* Count all active objects as busy, even if they are currently not used
4377 * by the gpu. Users of this interface expect objects to eventually
4378 * become non-busy without any further actions, therefore emit any
4379 * necessary flushes here.
4380 */
4381 ret = i915_gem_object_flush_active(obj);
4382
4383 args->busy = obj->active;
4384 if (obj->ring) {
4385 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4386 args->busy |= intel_ring_flag(obj->ring) << 16;
4387 }
4388
4389 drm_gem_object_unreference(&obj->base);
4390 unlock:
4391 mutex_unlock(&dev->struct_mutex);
4392 return ret;
4393 }
4394
4395 int
4396 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4397 struct drm_file *file_priv)
4398 {
4399 return i915_gem_ring_throttle(dev, file_priv);
4400 }
4401
4402 int
4403 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4404 struct drm_file *file_priv)
4405 {
4406 struct drm_i915_gem_madvise *args = data;
4407 struct drm_i915_gem_object *obj;
4408 int ret;
4409
4410 switch (args->madv) {
4411 case I915_MADV_DONTNEED:
4412 case I915_MADV_WILLNEED:
4413 break;
4414 default:
4415 return -EINVAL;
4416 }
4417
4418 ret = i915_mutex_lock_interruptible(dev);
4419 if (ret)
4420 return ret;
4421
4422 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4423 if (&obj->base == NULL) {
4424 ret = -ENOENT;
4425 goto unlock;
4426 }
4427
4428 if (i915_gem_obj_is_pinned(obj)) {
4429 ret = -EINVAL;
4430 goto out;
4431 }
4432
4433 if (obj->madv != __I915_MADV_PURGED)
4434 obj->madv = args->madv;
4435
4436 /* if the object is no longer attached, discard its backing storage */
4437 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4438 i915_gem_object_truncate(obj);
4439
4440 args->retained = obj->madv != __I915_MADV_PURGED;
4441
4442 out:
4443 drm_gem_object_unreference(&obj->base);
4444 unlock:
4445 mutex_unlock(&dev->struct_mutex);
4446 return ret;
4447 }
4448
4449 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4450 const struct drm_i915_gem_object_ops *ops)
4451 {
4452 INIT_LIST_HEAD(&obj->global_list);
4453 INIT_LIST_HEAD(&obj->ring_list);
4454 INIT_LIST_HEAD(&obj->obj_exec_link);
4455 INIT_LIST_HEAD(&obj->vma_list);
4456
4457 obj->ops = ops;
4458
4459 obj->fence_reg = I915_FENCE_REG_NONE;
4460 obj->madv = I915_MADV_WILLNEED;
4461
4462 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4463 }
4464
4465 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4466 .get_pages = i915_gem_object_get_pages_gtt,
4467 .put_pages = i915_gem_object_put_pages_gtt,
4468 };
4469
4470 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471 size_t size)
4472 {
4473 struct drm_i915_gem_object *obj;
4474 struct address_space *mapping;
4475 gfp_t mask;
4476
4477 obj = i915_gem_object_alloc(dev);
4478 if (obj == NULL)
4479 return NULL;
4480
4481 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482 i915_gem_object_free(obj);
4483 return NULL;
4484 }
4485
4486 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488 /* 965gm cannot relocate objects above 4GiB. */
4489 mask &= ~__GFP_HIGHMEM;
4490 mask |= __GFP_DMA32;
4491 }
4492
4493 mapping = file_inode(obj->base.filp)->i_mapping;
4494 mapping_set_gfp_mask(mapping, mask);
4495
4496 i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501 if (HAS_LLC(dev)) {
4502 /* On some devices, we can have the GPU use the LLC (the CPU
4503 * cache) for about a 10% performance improvement
4504 * compared to uncached. Graphics requests other than
4505 * display scanout are coherent with the CPU in
4506 * accessing this cache. This means in this mode we
4507 * don't need to clflush on the CPU side, and on the
4508 * GPU side we only need to flush internal caches to
4509 * get data visible to the CPU.
4510 *
4511 * However, we maintain the display planes as UC, and so
4512 * need to rebind when first used as such.
4513 */
4514 obj->cache_level = I915_CACHE_LLC;
4515 } else
4516 obj->cache_level = I915_CACHE_NONE;
4517
4518 trace_i915_gem_object_create(obj);
4519
4520 return obj;
4521 }
4522
4523 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524 {
4525 /* If we are the last user of the backing storage (be it shmemfs
4526 * pages or stolen etc), we know that the pages are going to be
4527 * immediately released. In this case, we can then skip copying
4528 * back the contents from the GPU.
4529 */
4530
4531 if (obj->madv != I915_MADV_WILLNEED)
4532 return false;
4533
4534 if (obj->base.filp == NULL)
4535 return true;
4536
4537 /* At first glance, this looks racy, but then again so would be
4538 * userspace racing mmap against close. However, the first external
4539 * reference to the filp can only be obtained through the
4540 * i915_gem_mmap_ioctl() which safeguards us against the user
4541 * acquiring such a reference whilst we are in the middle of
4542 * freeing the object.
4543 */
4544 return atomic_long_read(&obj->base.filp->f_count) == 1;
4545 }
4546
4547 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548 {
4549 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550 struct drm_device *dev = obj->base.dev;
4551 struct drm_i915_private *dev_priv = dev->dev_private;
4552 struct i915_vma *vma, *next;
4553
4554 intel_runtime_pm_get(dev_priv);
4555
4556 trace_i915_gem_object_destroy(obj);
4557
4558 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4559 int ret;
4560
4561 vma->pin_count = 0;
4562 ret = i915_vma_unbind(vma);
4563 if (WARN_ON(ret == -ERESTARTSYS)) {
4564 bool was_interruptible;
4565
4566 was_interruptible = dev_priv->mm.interruptible;
4567 dev_priv->mm.interruptible = false;
4568
4569 WARN_ON(i915_vma_unbind(vma));
4570
4571 dev_priv->mm.interruptible = was_interruptible;
4572 }
4573 }
4574
4575 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576 * before progressing. */
4577 if (obj->stolen)
4578 i915_gem_object_unpin_pages(obj);
4579
4580 WARN_ON(obj->frontbuffer_bits);
4581
4582 if (WARN_ON(obj->pages_pin_count))
4583 obj->pages_pin_count = 0;
4584 if (discard_backing_storage(obj))
4585 obj->madv = I915_MADV_DONTNEED;
4586 i915_gem_object_put_pages(obj);
4587 i915_gem_object_free_mmap_offset(obj);
4588
4589 BUG_ON(obj->pages);
4590
4591 if (obj->base.import_attach)
4592 drm_prime_gem_destroy(&obj->base, NULL);
4593
4594 if (obj->ops->release)
4595 obj->ops->release(obj);
4596
4597 drm_gem_object_release(&obj->base);
4598 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4599
4600 kfree(obj->bit_17);
4601 i915_gem_object_free(obj);
4602
4603 intel_runtime_pm_put(dev_priv);
4604 }
4605
4606 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4607 struct i915_address_space *vm)
4608 {
4609 struct i915_vma *vma;
4610 list_for_each_entry(vma, &obj->vma_list, vma_link)
4611 if (vma->vm == vm)
4612 return vma;
4613
4614 return NULL;
4615 }
4616
4617 void i915_gem_vma_destroy(struct i915_vma *vma)
4618 {
4619 struct i915_address_space *vm = NULL;
4620 WARN_ON(vma->node.allocated);
4621
4622 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4623 if (!list_empty(&vma->exec_list))
4624 return;
4625
4626 vm = vma->vm;
4627
4628 if (!i915_is_ggtt(vm))
4629 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4630
4631 list_del(&vma->vma_link);
4632
4633 kfree(vma);
4634 }
4635
4636 static void
4637 i915_gem_stop_ringbuffers(struct drm_device *dev)
4638 {
4639 struct drm_i915_private *dev_priv = dev->dev_private;
4640 struct intel_engine_cs *ring;
4641 int i;
4642
4643 for_each_ring(ring, dev_priv, i)
4644 dev_priv->gt.stop_ring(ring);
4645 }
4646
4647 int
4648 i915_gem_suspend(struct drm_device *dev)
4649 {
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651 int ret = 0;
4652
4653 mutex_lock(&dev->struct_mutex);
4654 if (dev_priv->ums.mm_suspended)
4655 goto err;
4656
4657 ret = i915_gpu_idle(dev);
4658 if (ret)
4659 goto err;
4660
4661 i915_gem_retire_requests(dev);
4662
4663 /* Under UMS, be paranoid and evict. */
4664 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4665 i915_gem_evict_everything(dev);
4666
4667 i915_kernel_lost_context(dev);
4668 i915_gem_stop_ringbuffers(dev);
4669
4670 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4671 * We need to replace this with a semaphore, or something.
4672 * And not confound ums.mm_suspended!
4673 */
4674 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4675 DRIVER_MODESET);
4676 mutex_unlock(&dev->struct_mutex);
4677
4678 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4679 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4680 flush_delayed_work(&dev_priv->mm.idle_work);
4681
4682 return 0;
4683
4684 err:
4685 mutex_unlock(&dev->struct_mutex);
4686 return ret;
4687 }
4688
4689 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4690 {
4691 struct drm_device *dev = ring->dev;
4692 struct drm_i915_private *dev_priv = dev->dev_private;
4693 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4694 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4695 int i, ret;
4696
4697 if (!HAS_L3_DPF(dev) || !remap_info)
4698 return 0;
4699
4700 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4701 if (ret)
4702 return ret;
4703
4704 /*
4705 * Note: We do not worry about the concurrent register cacheline hang
4706 * here because no other code should access these registers other than
4707 * at initialization time.
4708 */
4709 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4710 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4711 intel_ring_emit(ring, reg_base + i);
4712 intel_ring_emit(ring, remap_info[i/4]);
4713 }
4714
4715 intel_ring_advance(ring);
4716
4717 return ret;
4718 }
4719
4720 void i915_gem_init_swizzling(struct drm_device *dev)
4721 {
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723
4724 if (INTEL_INFO(dev)->gen < 5 ||
4725 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4726 return;
4727
4728 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4729 DISP_TILE_SURFACE_SWIZZLING);
4730
4731 if (IS_GEN5(dev))
4732 return;
4733
4734 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4735 if (IS_GEN6(dev))
4736 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4737 else if (IS_GEN7(dev))
4738 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4739 else if (IS_GEN8(dev))
4740 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4741 else
4742 BUG();
4743 }
4744
4745 static bool
4746 intel_enable_blt(struct drm_device *dev)
4747 {
4748 if (!HAS_BLT(dev))
4749 return false;
4750
4751 /* The blitter was dysfunctional on early prototypes */
4752 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4753 DRM_INFO("BLT not supported on this pre-production hardware;"
4754 " graphics performance will be degraded.\n");
4755 return false;
4756 }
4757
4758 return true;
4759 }
4760
4761 static void init_unused_ring(struct drm_device *dev, u32 base)
4762 {
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764
4765 I915_WRITE(RING_CTL(base), 0);
4766 I915_WRITE(RING_HEAD(base), 0);
4767 I915_WRITE(RING_TAIL(base), 0);
4768 I915_WRITE(RING_START(base), 0);
4769 }
4770
4771 static void init_unused_rings(struct drm_device *dev)
4772 {
4773 if (IS_I830(dev)) {
4774 init_unused_ring(dev, PRB1_BASE);
4775 init_unused_ring(dev, SRB0_BASE);
4776 init_unused_ring(dev, SRB1_BASE);
4777 init_unused_ring(dev, SRB2_BASE);
4778 init_unused_ring(dev, SRB3_BASE);
4779 } else if (IS_GEN2(dev)) {
4780 init_unused_ring(dev, SRB0_BASE);
4781 init_unused_ring(dev, SRB1_BASE);
4782 } else if (IS_GEN3(dev)) {
4783 init_unused_ring(dev, PRB1_BASE);
4784 init_unused_ring(dev, PRB2_BASE);
4785 }
4786 }
4787
4788 int i915_gem_init_rings(struct drm_device *dev)
4789 {
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791 int ret;
4792
4793 /*
4794 * At least 830 can leave some of the unused rings
4795 * "active" (ie. head != tail) after resume which
4796 * will prevent c3 entry. Makes sure all unused rings
4797 * are totally idle.
4798 */
4799 init_unused_rings(dev);
4800
4801 ret = intel_init_render_ring_buffer(dev);
4802 if (ret)
4803 return ret;
4804
4805 if (HAS_BSD(dev)) {
4806 ret = intel_init_bsd_ring_buffer(dev);
4807 if (ret)
4808 goto cleanup_render_ring;
4809 }
4810
4811 if (intel_enable_blt(dev)) {
4812 ret = intel_init_blt_ring_buffer(dev);
4813 if (ret)
4814 goto cleanup_bsd_ring;
4815 }
4816
4817 if (HAS_VEBOX(dev)) {
4818 ret = intel_init_vebox_ring_buffer(dev);
4819 if (ret)
4820 goto cleanup_blt_ring;
4821 }
4822
4823 if (HAS_BSD2(dev)) {
4824 ret = intel_init_bsd2_ring_buffer(dev);
4825 if (ret)
4826 goto cleanup_vebox_ring;
4827 }
4828
4829 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4830 if (ret)
4831 goto cleanup_bsd2_ring;
4832
4833 return 0;
4834
4835 cleanup_bsd2_ring:
4836 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4837 cleanup_vebox_ring:
4838 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4839 cleanup_blt_ring:
4840 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4841 cleanup_bsd_ring:
4842 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4843 cleanup_render_ring:
4844 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4845
4846 return ret;
4847 }
4848
4849 int
4850 i915_gem_init_hw(struct drm_device *dev)
4851 {
4852 struct drm_i915_private *dev_priv = dev->dev_private;
4853 int ret, i;
4854
4855 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4856 return -EIO;
4857
4858 if (dev_priv->ellc_size)
4859 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4860
4861 if (IS_HASWELL(dev))
4862 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4863 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4864
4865 if (HAS_PCH_NOP(dev)) {
4866 if (IS_IVYBRIDGE(dev)) {
4867 u32 temp = I915_READ(GEN7_MSG_CTL);
4868 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4869 I915_WRITE(GEN7_MSG_CTL, temp);
4870 } else if (INTEL_INFO(dev)->gen >= 7) {
4871 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4872 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4873 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4874 }
4875 }
4876
4877 i915_gem_init_swizzling(dev);
4878
4879 ret = dev_priv->gt.init_rings(dev);
4880 if (ret)
4881 return ret;
4882
4883 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4884 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4885
4886 /*
4887 * XXX: Contexts should only be initialized once. Doing a switch to the
4888 * default context switch however is something we'd like to do after
4889 * reset or thaw (the latter may not actually be necessary for HW, but
4890 * goes with our code better). Context switching requires rings (for
4891 * the do_switch), but before enabling PPGTT. So don't move this.
4892 */
4893 ret = i915_gem_context_enable(dev_priv);
4894 if (ret && ret != -EIO) {
4895 DRM_ERROR("Context enable failed %d\n", ret);
4896 i915_gem_cleanup_ringbuffer(dev);
4897
4898 return ret;
4899 }
4900
4901 ret = i915_ppgtt_init_hw(dev);
4902 if (ret && ret != -EIO) {
4903 DRM_ERROR("PPGTT enable failed %d\n", ret);
4904 i915_gem_cleanup_ringbuffer(dev);
4905 }
4906
4907 return ret;
4908 }
4909
4910 int i915_gem_init(struct drm_device *dev)
4911 {
4912 struct drm_i915_private *dev_priv = dev->dev_private;
4913 int ret;
4914
4915 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4916 i915.enable_execlists);
4917
4918 mutex_lock(&dev->struct_mutex);
4919
4920 if (IS_VALLEYVIEW(dev)) {
4921 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4922 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4923 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4924 VLV_GTLC_ALLOWWAKEACK), 10))
4925 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4926 }
4927
4928 if (!i915.enable_execlists) {
4929 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4930 dev_priv->gt.init_rings = i915_gem_init_rings;
4931 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4932 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4933 } else {
4934 dev_priv->gt.do_execbuf = intel_execlists_submission;
4935 dev_priv->gt.init_rings = intel_logical_rings_init;
4936 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4937 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4938 }
4939
4940 ret = i915_gem_init_userptr(dev);
4941 if (ret) {
4942 mutex_unlock(&dev->struct_mutex);
4943 return ret;
4944 }
4945
4946 i915_gem_init_global_gtt(dev);
4947
4948 ret = i915_gem_context_init(dev);
4949 if (ret) {
4950 mutex_unlock(&dev->struct_mutex);
4951 return ret;
4952 }
4953
4954 ret = i915_gem_init_hw(dev);
4955 if (ret == -EIO) {
4956 /* Allow ring initialisation to fail by marking the GPU as
4957 * wedged. But we only want to do this where the GPU is angry,
4958 * for all other failure, such as an allocation failure, bail.
4959 */
4960 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4961 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4962 ret = 0;
4963 }
4964 mutex_unlock(&dev->struct_mutex);
4965
4966 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4967 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4968 dev_priv->dri1.allow_batchbuffer = 1;
4969 return ret;
4970 }
4971
4972 void
4973 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4974 {
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 struct intel_engine_cs *ring;
4977 int i;
4978
4979 for_each_ring(ring, dev_priv, i)
4980 dev_priv->gt.cleanup_ring(ring);
4981 }
4982
4983 int
4984 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4985 struct drm_file *file_priv)
4986 {
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988 int ret;
4989
4990 if (drm_core_check_feature(dev, DRIVER_MODESET))
4991 return 0;
4992
4993 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4994 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4995 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4996 }
4997
4998 mutex_lock(&dev->struct_mutex);
4999 dev_priv->ums.mm_suspended = 0;
5000
5001 ret = i915_gem_init_hw(dev);
5002 if (ret != 0) {
5003 mutex_unlock(&dev->struct_mutex);
5004 return ret;
5005 }
5006
5007 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
5008
5009 ret = drm_irq_install(dev, dev->pdev->irq);
5010 if (ret)
5011 goto cleanup_ringbuffer;
5012 mutex_unlock(&dev->struct_mutex);
5013
5014 return 0;
5015
5016 cleanup_ringbuffer:
5017 i915_gem_cleanup_ringbuffer(dev);
5018 dev_priv->ums.mm_suspended = 1;
5019 mutex_unlock(&dev->struct_mutex);
5020
5021 return ret;
5022 }
5023
5024 int
5025 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5026 struct drm_file *file_priv)
5027 {
5028 if (drm_core_check_feature(dev, DRIVER_MODESET))
5029 return 0;
5030
5031 mutex_lock(&dev->struct_mutex);
5032 drm_irq_uninstall(dev);
5033 mutex_unlock(&dev->struct_mutex);
5034
5035 return i915_gem_suspend(dev);
5036 }
5037
5038 void
5039 i915_gem_lastclose(struct drm_device *dev)
5040 {
5041 int ret;
5042
5043 if (drm_core_check_feature(dev, DRIVER_MODESET))
5044 return;
5045
5046 ret = i915_gem_suspend(dev);
5047 if (ret)
5048 DRM_ERROR("failed to idle hardware: %d\n", ret);
5049 }
5050
5051 static void
5052 init_ring_lists(struct intel_engine_cs *ring)
5053 {
5054 INIT_LIST_HEAD(&ring->active_list);
5055 INIT_LIST_HEAD(&ring->request_list);
5056 }
5057
5058 void i915_init_vm(struct drm_i915_private *dev_priv,
5059 struct i915_address_space *vm)
5060 {
5061 if (!i915_is_ggtt(vm))
5062 drm_mm_init(&vm->mm, vm->start, vm->total);
5063 vm->dev = dev_priv->dev;
5064 INIT_LIST_HEAD(&vm->active_list);
5065 INIT_LIST_HEAD(&vm->inactive_list);
5066 INIT_LIST_HEAD(&vm->global_link);
5067 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5068 }
5069
5070 void
5071 i915_gem_load(struct drm_device *dev)
5072 {
5073 struct drm_i915_private *dev_priv = dev->dev_private;
5074 int i;
5075
5076 dev_priv->slab =
5077 kmem_cache_create("i915_gem_object",
5078 sizeof(struct drm_i915_gem_object), 0,
5079 SLAB_HWCACHE_ALIGN,
5080 NULL);
5081
5082 INIT_LIST_HEAD(&dev_priv->vm_list);
5083 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5084
5085 INIT_LIST_HEAD(&dev_priv->context_list);
5086 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5087 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5088 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5089 for (i = 0; i < I915_NUM_RINGS; i++)
5090 init_ring_lists(&dev_priv->ring[i]);
5091 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5092 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5093 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5094 i915_gem_retire_work_handler);
5095 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5096 i915_gem_idle_work_handler);
5097 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5098
5099 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5100 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5101 I915_WRITE(MI_ARB_STATE,
5102 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5103 }
5104
5105 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5106
5107 /* Old X drivers will take 0-2 for front, back, depth buffers */
5108 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5109 dev_priv->fence_reg_start = 3;
5110
5111 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5112 dev_priv->num_fence_regs = 32;
5113 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5114 dev_priv->num_fence_regs = 16;
5115 else
5116 dev_priv->num_fence_regs = 8;
5117
5118 /* Initialize fence registers to zero */
5119 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5120 i915_gem_restore_fences(dev);
5121
5122 i915_gem_detect_bit_6_swizzle(dev);
5123 init_waitqueue_head(&dev_priv->pending_flip_queue);
5124
5125 dev_priv->mm.interruptible = true;
5126
5127 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5128 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5129 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5130 register_shrinker(&dev_priv->mm.shrinker);
5131
5132 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5133 register_oom_notifier(&dev_priv->mm.oom_notifier);
5134
5135 mutex_init(&dev_priv->fb_tracking.lock);
5136 }
5137
5138 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5139 {
5140 struct drm_i915_file_private *file_priv = file->driver_priv;
5141
5142 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5143
5144 /* Clean up our request list when the client is going away, so that
5145 * later retire_requests won't dereference our soon-to-be-gone
5146 * file_priv.
5147 */
5148 spin_lock(&file_priv->mm.lock);
5149 while (!list_empty(&file_priv->mm.request_list)) {
5150 struct drm_i915_gem_request *request;
5151
5152 request = list_first_entry(&file_priv->mm.request_list,
5153 struct drm_i915_gem_request,
5154 client_list);
5155 list_del(&request->client_list);
5156 request->file_priv = NULL;
5157 }
5158 spin_unlock(&file_priv->mm.lock);
5159 }
5160
5161 static void
5162 i915_gem_file_idle_work_handler(struct work_struct *work)
5163 {
5164 struct drm_i915_file_private *file_priv =
5165 container_of(work, typeof(*file_priv), mm.idle_work.work);
5166
5167 atomic_set(&file_priv->rps_wait_boost, false);
5168 }
5169
5170 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5171 {
5172 struct drm_i915_file_private *file_priv;
5173 int ret;
5174
5175 DRM_DEBUG_DRIVER("\n");
5176
5177 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5178 if (!file_priv)
5179 return -ENOMEM;
5180
5181 file->driver_priv = file_priv;
5182 file_priv->dev_priv = dev->dev_private;
5183 file_priv->file = file;
5184
5185 spin_lock_init(&file_priv->mm.lock);
5186 INIT_LIST_HEAD(&file_priv->mm.request_list);
5187 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5188 i915_gem_file_idle_work_handler);
5189
5190 ret = i915_gem_context_open(dev, file);
5191 if (ret)
5192 kfree(file_priv);
5193
5194 return ret;
5195 }
5196
5197 /**
5198 * i915_gem_track_fb - update frontbuffer tracking
5199 * old: current GEM buffer for the frontbuffer slots
5200 * new: new GEM buffer for the frontbuffer slots
5201 * frontbuffer_bits: bitmask of frontbuffer slots
5202 *
5203 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5204 * from @old and setting them in @new. Both @old and @new can be NULL.
5205 */
5206 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5207 struct drm_i915_gem_object *new,
5208 unsigned frontbuffer_bits)
5209 {
5210 if (old) {
5211 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5212 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5213 old->frontbuffer_bits &= ~frontbuffer_bits;
5214 }
5215
5216 if (new) {
5217 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5218 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5219 new->frontbuffer_bits |= frontbuffer_bits;
5220 }
5221 }
5222
5223 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5224 {
5225 if (!mutex_is_locked(mutex))
5226 return false;
5227
5228 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5229 return mutex->owner == task;
5230 #else
5231 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5232 return false;
5233 #endif
5234 }
5235
5236 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5237 {
5238 if (!mutex_trylock(&dev->struct_mutex)) {
5239 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5240 return false;
5241
5242 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5243 return false;
5244
5245 *unlock = false;
5246 } else
5247 *unlock = true;
5248
5249 return true;
5250 }
5251
5252 static int num_vma_bound(struct drm_i915_gem_object *obj)
5253 {
5254 struct i915_vma *vma;
5255 int count = 0;
5256
5257 list_for_each_entry(vma, &obj->vma_list, vma_link)
5258 if (drm_mm_node_allocated(&vma->node))
5259 count++;
5260
5261 return count;
5262 }
5263
5264 static unsigned long
5265 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5266 {
5267 struct drm_i915_private *dev_priv =
5268 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5269 struct drm_device *dev = dev_priv->dev;
5270 struct drm_i915_gem_object *obj;
5271 unsigned long count;
5272 bool unlock;
5273
5274 if (!i915_gem_shrinker_lock(dev, &unlock))
5275 return 0;
5276
5277 count = 0;
5278 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5279 if (obj->pages_pin_count == 0)
5280 count += obj->base.size >> PAGE_SHIFT;
5281
5282 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5283 if (!i915_gem_obj_is_pinned(obj) &&
5284 obj->pages_pin_count == num_vma_bound(obj))
5285 count += obj->base.size >> PAGE_SHIFT;
5286 }
5287
5288 if (unlock)
5289 mutex_unlock(&dev->struct_mutex);
5290
5291 return count;
5292 }
5293
5294 /* All the new VM stuff */
5295 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5296 struct i915_address_space *vm)
5297 {
5298 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5299 struct i915_vma *vma;
5300
5301 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5302
5303 list_for_each_entry(vma, &o->vma_list, vma_link) {
5304 if (vma->vm == vm)
5305 return vma->node.start;
5306
5307 }
5308 WARN(1, "%s vma for this object not found.\n",
5309 i915_is_ggtt(vm) ? "global" : "ppgtt");
5310 return -1;
5311 }
5312
5313 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5314 struct i915_address_space *vm)
5315 {
5316 struct i915_vma *vma;
5317
5318 list_for_each_entry(vma, &o->vma_list, vma_link)
5319 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5320 return true;
5321
5322 return false;
5323 }
5324
5325 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5326 {
5327 struct i915_vma *vma;
5328
5329 list_for_each_entry(vma, &o->vma_list, vma_link)
5330 if (drm_mm_node_allocated(&vma->node))
5331 return true;
5332
5333 return false;
5334 }
5335
5336 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5337 struct i915_address_space *vm)
5338 {
5339 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5340 struct i915_vma *vma;
5341
5342 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5343
5344 BUG_ON(list_empty(&o->vma_list));
5345
5346 list_for_each_entry(vma, &o->vma_list, vma_link)
5347 if (vma->vm == vm)
5348 return vma->node.size;
5349
5350 return 0;
5351 }
5352
5353 static unsigned long
5354 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5355 {
5356 struct drm_i915_private *dev_priv =
5357 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5358 struct drm_device *dev = dev_priv->dev;
5359 unsigned long freed;
5360 bool unlock;
5361
5362 if (!i915_gem_shrinker_lock(dev, &unlock))
5363 return SHRINK_STOP;
5364
5365 freed = i915_gem_shrink(dev_priv,
5366 sc->nr_to_scan,
5367 I915_SHRINK_BOUND |
5368 I915_SHRINK_UNBOUND |
5369 I915_SHRINK_PURGEABLE);
5370 if (freed < sc->nr_to_scan)
5371 freed += i915_gem_shrink(dev_priv,
5372 sc->nr_to_scan - freed,
5373 I915_SHRINK_BOUND |
5374 I915_SHRINK_UNBOUND);
5375 if (unlock)
5376 mutex_unlock(&dev->struct_mutex);
5377
5378 return freed;
5379 }
5380
5381 static int
5382 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5383 {
5384 struct drm_i915_private *dev_priv =
5385 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5386 struct drm_device *dev = dev_priv->dev;
5387 struct drm_i915_gem_object *obj;
5388 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5389 unsigned long pinned, bound, unbound, freed_pages;
5390 bool was_interruptible;
5391 bool unlock;
5392
5393 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5394 schedule_timeout_killable(1);
5395 if (fatal_signal_pending(current))
5396 return NOTIFY_DONE;
5397 }
5398 if (timeout == 0) {
5399 pr_err("Unable to purge GPU memory due lock contention.\n");
5400 return NOTIFY_DONE;
5401 }
5402
5403 was_interruptible = dev_priv->mm.interruptible;
5404 dev_priv->mm.interruptible = false;
5405
5406 freed_pages = i915_gem_shrink_all(dev_priv);
5407
5408 dev_priv->mm.interruptible = was_interruptible;
5409
5410 /* Because we may be allocating inside our own driver, we cannot
5411 * assert that there are no objects with pinned pages that are not
5412 * being pointed to by hardware.
5413 */
5414 unbound = bound = pinned = 0;
5415 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5416 if (!obj->base.filp) /* not backed by a freeable object */
5417 continue;
5418
5419 if (obj->pages_pin_count)
5420 pinned += obj->base.size;
5421 else
5422 unbound += obj->base.size;
5423 }
5424 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5425 if (!obj->base.filp)
5426 continue;
5427
5428 if (obj->pages_pin_count)
5429 pinned += obj->base.size;
5430 else
5431 bound += obj->base.size;
5432 }
5433
5434 if (unlock)
5435 mutex_unlock(&dev->struct_mutex);
5436
5437 if (freed_pages || unbound || bound)
5438 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5439 freed_pages << PAGE_SHIFT, pinned);
5440 if (unbound || bound)
5441 pr_err("%lu and %lu bytes still available in the "
5442 "bound and unbound GPU page lists.\n",
5443 bound, unbound);
5444
5445 *(unsigned long *)ptr += freed_pages;
5446 return NOTIFY_DONE;
5447 }
5448
5449 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5450 {
5451 struct i915_vma *vma;
5452
5453 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5454 if (vma->vm != i915_obj_to_ggtt(obj))
5455 return NULL;
5456
5457 return vma;
5458 }
This page took 0.151963 seconds and 5 git commands to generate.