8673a000a3731c95964053a26f0509a32b0c145a
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable,
45 bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
71 obj->fence_dirty = false;
72 obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78 {
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85 {
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct i915_gpu_error *error)
92 {
93 int ret;
94
95 #define EXIT_COND (!i915_reset_in_progress(error) || \
96 i915_terminally_wedged(error))
97 if (EXIT_COND)
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_event_interruptible_timeout(error->reset_queue,
106 EXIT_COND,
107 10*HZ);
108 if (ret == 0) {
109 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
110 return -EIO;
111 } else if (ret < 0) {
112 return ret;
113 }
114 #undef EXIT_COND
115
116 return 0;
117 }
118
119 int i915_mutex_lock_interruptible(struct drm_device *dev)
120 {
121 struct drm_i915_private *dev_priv = dev->dev_private;
122 int ret;
123
124 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
125 if (ret)
126 return ret;
127
128 ret = mutex_lock_interruptible(&dev->struct_mutex);
129 if (ret)
130 return ret;
131
132 WARN_ON(i915_verify_lists(dev));
133 return 0;
134 }
135
136 static inline bool
137 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
138 {
139 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
140 }
141
142 int
143 i915_gem_init_ioctl(struct drm_device *dev, void *data,
144 struct drm_file *file)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 struct drm_i915_gem_init *args = data;
148
149 if (drm_core_check_feature(dev, DRIVER_MODESET))
150 return -ENODEV;
151
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
155
156 /* GEM with user mode setting was never supported on ilk and later. */
157 if (INTEL_INFO(dev)->gen >= 5)
158 return -ENODEV;
159
160 mutex_lock(&dev->struct_mutex);
161 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
162 args->gtt_end);
163 dev_priv->gtt.mappable_end = args->gtt_end;
164 mutex_unlock(&dev->struct_mutex);
165
166 return 0;
167 }
168
169 int
170 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
171 struct drm_file *file)
172 {
173 struct drm_i915_private *dev_priv = dev->dev_private;
174 struct drm_i915_gem_get_aperture *args = data;
175 struct drm_i915_gem_object *obj;
176 size_t pinned;
177
178 pinned = 0;
179 mutex_lock(&dev->struct_mutex);
180 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
181 if (obj->pin_count)
182 pinned += i915_gem_obj_ggtt_size(obj);
183 mutex_unlock(&dev->struct_mutex);
184
185 args->aper_size = dev_priv->gtt.total;
186 args->aper_available_size = args->aper_size - pinned;
187
188 return 0;
189 }
190
191 void *i915_gem_object_alloc(struct drm_device *dev)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
195 }
196
197 void i915_gem_object_free(struct drm_i915_gem_object *obj)
198 {
199 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
200 kmem_cache_free(dev_priv->slab, obj);
201 }
202
203 static int
204 i915_gem_create(struct drm_file *file,
205 struct drm_device *dev,
206 uint64_t size,
207 uint32_t *handle_p)
208 {
209 struct drm_i915_gem_object *obj;
210 int ret;
211 u32 handle;
212
213 size = roundup(size, PAGE_SIZE);
214 if (size == 0)
215 return -EINVAL;
216
217 /* Allocate the new object */
218 obj = i915_gem_alloc_object(dev, size);
219 if (obj == NULL)
220 return -ENOMEM;
221
222 ret = drm_gem_handle_create(file, &obj->base, &handle);
223 if (ret) {
224 drm_gem_object_release(&obj->base);
225 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
226 i915_gem_object_free(obj);
227 return ret;
228 }
229
230 /* drop reference from allocate - handle holds it now */
231 drm_gem_object_unreference(&obj->base);
232 trace_i915_gem_object_create(obj);
233
234 *handle_p = handle;
235 return 0;
236 }
237
238 int
239 i915_gem_dumb_create(struct drm_file *file,
240 struct drm_device *dev,
241 struct drm_mode_create_dumb *args)
242 {
243 /* have to work out size/pitch and return them */
244 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
245 args->size = args->pitch * args->height;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248 }
249
250 int i915_gem_dumb_destroy(struct drm_file *file,
251 struct drm_device *dev,
252 uint32_t handle)
253 {
254 return drm_gem_handle_delete(file, handle);
255 }
256
257 /**
258 * Creates a new mm object and returns a handle to it.
259 */
260 int
261 i915_gem_create_ioctl(struct drm_device *dev, void *data,
262 struct drm_file *file)
263 {
264 struct drm_i915_gem_create *args = data;
265
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int prefaulted = 0;
411 int needs_clflush = 0;
412 struct sg_page_iter sg_iter;
413
414 user_data = to_user_ptr(args->data_ptr);
415 remain = args->size;
416
417 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
418
419 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
420 /* If we're not in the cpu read domain, set ourself into the gtt
421 * read domain and manually flush cachelines (if required). This
422 * optimizes for the case when the gpu will dirty the data
423 * anyway again before the next pread happens. */
424 if (obj->cache_level == I915_CACHE_NONE)
425 needs_clflush = 1;
426 if (i915_gem_obj_ggtt_bound(obj)) {
427 ret = i915_gem_object_set_to_gtt_domain(obj, false);
428 if (ret)
429 return ret;
430 }
431 }
432
433 ret = i915_gem_object_get_pages(obj);
434 if (ret)
435 return ret;
436
437 i915_gem_object_pin_pages(obj);
438
439 offset = args->offset;
440
441 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
442 offset >> PAGE_SHIFT) {
443 struct page *page = sg_page_iter_page(&sg_iter);
444
445 if (remain <= 0)
446 break;
447
448 /* Operation in this page
449 *
450 * shmem_page_offset = offset within page in shmem file
451 * page_length = bytes to copy for this page
452 */
453 shmem_page_offset = offset_in_page(offset);
454 page_length = remain;
455 if ((shmem_page_offset + page_length) > PAGE_SIZE)
456 page_length = PAGE_SIZE - shmem_page_offset;
457
458 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
459 (page_to_phys(page) & (1 << 17)) != 0;
460
461 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
462 user_data, page_do_bit17_swizzling,
463 needs_clflush);
464 if (ret == 0)
465 goto next_page;
466
467 mutex_unlock(&dev->struct_mutex);
468
469 if (!prefaulted) {
470 ret = fault_in_multipages_writeable(user_data, remain);
471 /* Userspace is tricking us, but we've already clobbered
472 * its pages with the prefault and promised to write the
473 * data up to the first fault. Hence ignore any errors
474 * and just continue. */
475 (void)ret;
476 prefaulted = 1;
477 }
478
479 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
480 user_data, page_do_bit17_swizzling,
481 needs_clflush);
482
483 mutex_lock(&dev->struct_mutex);
484
485 next_page:
486 mark_page_accessed(page);
487
488 if (ret)
489 goto out;
490
491 remain -= page_length;
492 user_data += page_length;
493 offset += page_length;
494 }
495
496 out:
497 i915_gem_object_unpin_pages(obj);
498
499 return ret;
500 }
501
502 /**
503 * Reads data from the object referenced by handle.
504 *
505 * On error, the contents of *data are undefined.
506 */
507 int
508 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
509 struct drm_file *file)
510 {
511 struct drm_i915_gem_pread *args = data;
512 struct drm_i915_gem_object *obj;
513 int ret = 0;
514
515 if (args->size == 0)
516 return 0;
517
518 if (!access_ok(VERIFY_WRITE,
519 to_user_ptr(args->data_ptr),
520 args->size))
521 return -EFAULT;
522
523 ret = i915_mutex_lock_interruptible(dev);
524 if (ret)
525 return ret;
526
527 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
528 if (&obj->base == NULL) {
529 ret = -ENOENT;
530 goto unlock;
531 }
532
533 /* Bounds check source. */
534 if (args->offset > obj->base.size ||
535 args->size > obj->base.size - args->offset) {
536 ret = -EINVAL;
537 goto out;
538 }
539
540 /* prime objects have no backing filp to GEM pread/pwrite
541 * pages from.
542 */
543 if (!obj->base.filp) {
544 ret = -EINVAL;
545 goto out;
546 }
547
548 trace_i915_gem_object_pread(obj, args->offset, args->size);
549
550 ret = i915_gem_shmem_pread(dev, obj, args, file);
551
552 out:
553 drm_gem_object_unreference(&obj->base);
554 unlock:
555 mutex_unlock(&dev->struct_mutex);
556 return ret;
557 }
558
559 /* This is the fast write path which cannot handle
560 * page faults in the source data
561 */
562
563 static inline int
564 fast_user_write(struct io_mapping *mapping,
565 loff_t page_base, int page_offset,
566 char __user *user_data,
567 int length)
568 {
569 void __iomem *vaddr_atomic;
570 void *vaddr;
571 unsigned long unwritten;
572
573 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
574 /* We can use the cpu mem copy function because this is X86. */
575 vaddr = (void __force*)vaddr_atomic + page_offset;
576 unwritten = __copy_from_user_inatomic_nocache(vaddr,
577 user_data, length);
578 io_mapping_unmap_atomic(vaddr_atomic);
579 return unwritten;
580 }
581
582 /**
583 * This is the fast pwrite path, where we copy the data directly from the
584 * user into the GTT, uncached.
585 */
586 static int
587 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
588 struct drm_i915_gem_object *obj,
589 struct drm_i915_gem_pwrite *args,
590 struct drm_file *file)
591 {
592 drm_i915_private_t *dev_priv = dev->dev_private;
593 ssize_t remain;
594 loff_t offset, page_base;
595 char __user *user_data;
596 int page_offset, page_length, ret;
597
598 ret = i915_gem_object_pin(obj, 0, true, true);
599 if (ret)
600 goto out;
601
602 ret = i915_gem_object_set_to_gtt_domain(obj, true);
603 if (ret)
604 goto out_unpin;
605
606 ret = i915_gem_object_put_fence(obj);
607 if (ret)
608 goto out_unpin;
609
610 user_data = to_user_ptr(args->data_ptr);
611 remain = args->size;
612
613 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
614
615 while (remain > 0) {
616 /* Operation in this page
617 *
618 * page_base = page offset within aperture
619 * page_offset = offset within page
620 * page_length = bytes to copy for this page
621 */
622 page_base = offset & PAGE_MASK;
623 page_offset = offset_in_page(offset);
624 page_length = remain;
625 if ((page_offset + remain) > PAGE_SIZE)
626 page_length = PAGE_SIZE - page_offset;
627
628 /* If we get a fault while copying data, then (presumably) our
629 * source page isn't available. Return the error and we'll
630 * retry in the slow path.
631 */
632 if (fast_user_write(dev_priv->gtt.mappable, page_base,
633 page_offset, user_data, page_length)) {
634 ret = -EFAULT;
635 goto out_unpin;
636 }
637
638 remain -= page_length;
639 user_data += page_length;
640 offset += page_length;
641 }
642
643 out_unpin:
644 i915_gem_object_unpin(obj);
645 out:
646 return ret;
647 }
648
649 /* Per-page copy function for the shmem pwrite fastpath.
650 * Flushes invalid cachelines before writing to the target if
651 * needs_clflush_before is set and flushes out any written cachelines after
652 * writing if needs_clflush is set. */
653 static int
654 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
655 char __user *user_data,
656 bool page_do_bit17_swizzling,
657 bool needs_clflush_before,
658 bool needs_clflush_after)
659 {
660 char *vaddr;
661 int ret;
662
663 if (unlikely(page_do_bit17_swizzling))
664 return -EINVAL;
665
666 vaddr = kmap_atomic(page);
667 if (needs_clflush_before)
668 drm_clflush_virt_range(vaddr + shmem_page_offset,
669 page_length);
670 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
671 user_data,
672 page_length);
673 if (needs_clflush_after)
674 drm_clflush_virt_range(vaddr + shmem_page_offset,
675 page_length);
676 kunmap_atomic(vaddr);
677
678 return ret ? -EFAULT : 0;
679 }
680
681 /* Only difference to the fast-path function is that this can handle bit17
682 * and uses non-atomic copy and kmap functions. */
683 static int
684 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
685 char __user *user_data,
686 bool page_do_bit17_swizzling,
687 bool needs_clflush_before,
688 bool needs_clflush_after)
689 {
690 char *vaddr;
691 int ret;
692
693 vaddr = kmap(page);
694 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
695 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
696 page_length,
697 page_do_bit17_swizzling);
698 if (page_do_bit17_swizzling)
699 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
700 user_data,
701 page_length);
702 else
703 ret = __copy_from_user(vaddr + shmem_page_offset,
704 user_data,
705 page_length);
706 if (needs_clflush_after)
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
710 kunmap(page);
711
712 return ret ? -EFAULT : 0;
713 }
714
715 static int
716 i915_gem_shmem_pwrite(struct drm_device *dev,
717 struct drm_i915_gem_object *obj,
718 struct drm_i915_gem_pwrite *args,
719 struct drm_file *file)
720 {
721 ssize_t remain;
722 loff_t offset;
723 char __user *user_data;
724 int shmem_page_offset, page_length, ret = 0;
725 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
726 int hit_slowpath = 0;
727 int needs_clflush_after = 0;
728 int needs_clflush_before = 0;
729 struct sg_page_iter sg_iter;
730
731 user_data = to_user_ptr(args->data_ptr);
732 remain = args->size;
733
734 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
735
736 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
737 /* If we're not in the cpu write domain, set ourself into the gtt
738 * write domain and manually flush cachelines (if required). This
739 * optimizes for the case when the gpu will use the data
740 * right away and we therefore have to clflush anyway. */
741 if (obj->cache_level == I915_CACHE_NONE)
742 needs_clflush_after = 1;
743 if (i915_gem_obj_ggtt_bound(obj)) {
744 ret = i915_gem_object_set_to_gtt_domain(obj, true);
745 if (ret)
746 return ret;
747 }
748 }
749 /* Same trick applies for invalidate partially written cachelines before
750 * writing. */
751 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
752 && obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_before = 1;
754
755 ret = i915_gem_object_get_pages(obj);
756 if (ret)
757 return ret;
758
759 i915_gem_object_pin_pages(obj);
760
761 offset = args->offset;
762 obj->dirty = 1;
763
764 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
765 offset >> PAGE_SHIFT) {
766 struct page *page = sg_page_iter_page(&sg_iter);
767 int partial_cacheline_write;
768
769 if (remain <= 0)
770 break;
771
772 /* Operation in this page
773 *
774 * shmem_page_offset = offset within page in shmem file
775 * page_length = bytes to copy for this page
776 */
777 shmem_page_offset = offset_in_page(offset);
778
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
782
783 /* If we don't overwrite a cacheline completely we need to be
784 * careful to have up-to-date data by first clflushing. Don't
785 * overcomplicate things and flush the entire patch. */
786 partial_cacheline_write = needs_clflush_before &&
787 ((shmem_page_offset | page_length)
788 & (boot_cpu_data.x86_clflush_size - 1));
789
790 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
791 (page_to_phys(page) & (1 << 17)) != 0;
792
793 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
794 user_data, page_do_bit17_swizzling,
795 partial_cacheline_write,
796 needs_clflush_after);
797 if (ret == 0)
798 goto next_page;
799
800 hit_slowpath = 1;
801 mutex_unlock(&dev->struct_mutex);
802 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
803 user_data, page_do_bit17_swizzling,
804 partial_cacheline_write,
805 needs_clflush_after);
806
807 mutex_lock(&dev->struct_mutex);
808
809 next_page:
810 set_page_dirty(page);
811 mark_page_accessed(page);
812
813 if (ret)
814 goto out;
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out:
822 i915_gem_object_unpin_pages(obj);
823
824 if (hit_slowpath) {
825 /*
826 * Fixup: Flush cpu caches in case we didn't flush the dirty
827 * cachelines in-line while writing and the object moved
828 * out of the cpu write domain while we've dropped the lock.
829 */
830 if (!needs_clflush_after &&
831 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
832 i915_gem_clflush_object(obj);
833 i915_gem_chipset_flush(dev);
834 }
835 }
836
837 if (needs_clflush_after)
838 i915_gem_chipset_flush(dev);
839
840 return ret;
841 }
842
843 /**
844 * Writes data to the object referenced by handle.
845 *
846 * On error, the contents of the buffer that were to be modified are undefined.
847 */
848 int
849 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
850 struct drm_file *file)
851 {
852 struct drm_i915_gem_pwrite *args = data;
853 struct drm_i915_gem_object *obj;
854 int ret;
855
856 if (args->size == 0)
857 return 0;
858
859 if (!access_ok(VERIFY_READ,
860 to_user_ptr(args->data_ptr),
861 args->size))
862 return -EFAULT;
863
864 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
865 args->size);
866 if (ret)
867 return -EFAULT;
868
869 ret = i915_mutex_lock_interruptible(dev);
870 if (ret)
871 return ret;
872
873 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
874 if (&obj->base == NULL) {
875 ret = -ENOENT;
876 goto unlock;
877 }
878
879 /* Bounds check destination. */
880 if (args->offset > obj->base.size ||
881 args->size > obj->base.size - args->offset) {
882 ret = -EINVAL;
883 goto out;
884 }
885
886 /* prime objects have no backing filp to GEM pread/pwrite
887 * pages from.
888 */
889 if (!obj->base.filp) {
890 ret = -EINVAL;
891 goto out;
892 }
893
894 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
895
896 ret = -EFAULT;
897 /* We can only do the GTT pwrite on untiled buffers, as otherwise
898 * it would end up going through the fenced access, and we'll get
899 * different detiling behavior between reading and writing.
900 * pread/pwrite currently are reading and writing from the CPU
901 * perspective, requiring manual detiling by the client.
902 */
903 if (obj->phys_obj) {
904 ret = i915_gem_phys_pwrite(dev, obj, args, file);
905 goto out;
906 }
907
908 if (obj->cache_level == I915_CACHE_NONE &&
909 obj->tiling_mode == I915_TILING_NONE &&
910 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
911 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
912 /* Note that the gtt paths might fail with non-page-backed user
913 * pointers (e.g. gtt mappings when moving data between
914 * textures). Fallback to the shmem path in that case. */
915 }
916
917 if (ret == -EFAULT || ret == -ENOSPC)
918 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
919
920 out:
921 drm_gem_object_unreference(&obj->base);
922 unlock:
923 mutex_unlock(&dev->struct_mutex);
924 return ret;
925 }
926
927 int
928 i915_gem_check_wedge(struct i915_gpu_error *error,
929 bool interruptible)
930 {
931 if (i915_reset_in_progress(error)) {
932 /* Non-interruptible callers can't handle -EAGAIN, hence return
933 * -EIO unconditionally for these. */
934 if (!interruptible)
935 return -EIO;
936
937 /* Recovery complete, but the reset failed ... */
938 if (i915_terminally_wedged(error))
939 return -EIO;
940
941 return -EAGAIN;
942 }
943
944 return 0;
945 }
946
947 /*
948 * Compare seqno against outstanding lazy request. Emit a request if they are
949 * equal.
950 */
951 static int
952 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
953 {
954 int ret;
955
956 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
957
958 ret = 0;
959 if (seqno == ring->outstanding_lazy_request)
960 ret = i915_add_request(ring, NULL);
961
962 return ret;
963 }
964
965 /**
966 * __wait_seqno - wait until execution of seqno has finished
967 * @ring: the ring expected to report seqno
968 * @seqno: duh!
969 * @reset_counter: reset sequence associated with the given seqno
970 * @interruptible: do an interruptible wait (normally yes)
971 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
972 *
973 * Note: It is of utmost importance that the passed in seqno and reset_counter
974 * values have been read by the caller in an smp safe manner. Where read-side
975 * locks are involved, it is sufficient to read the reset_counter before
976 * unlocking the lock that protects the seqno. For lockless tricks, the
977 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
978 * inserted.
979 *
980 * Returns 0 if the seqno was found within the alloted time. Else returns the
981 * errno with remaining time filled in timeout argument.
982 */
983 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
984 unsigned reset_counter,
985 bool interruptible, struct timespec *timeout)
986 {
987 drm_i915_private_t *dev_priv = ring->dev->dev_private;
988 struct timespec before, now, wait_time={1,0};
989 unsigned long timeout_jiffies;
990 long end;
991 bool wait_forever = true;
992 int ret;
993
994 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
995 return 0;
996
997 trace_i915_gem_request_wait_begin(ring, seqno);
998
999 if (timeout != NULL) {
1000 wait_time = *timeout;
1001 wait_forever = false;
1002 }
1003
1004 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1005
1006 if (WARN_ON(!ring->irq_get(ring)))
1007 return -ENODEV;
1008
1009 /* Record current time in case interrupted by signal, or wedged * */
1010 getrawmonotonic(&before);
1011
1012 #define EXIT_COND \
1013 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1014 i915_reset_in_progress(&dev_priv->gpu_error) || \
1015 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1016 do {
1017 if (interruptible)
1018 end = wait_event_interruptible_timeout(ring->irq_queue,
1019 EXIT_COND,
1020 timeout_jiffies);
1021 else
1022 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1023 timeout_jiffies);
1024
1025 /* We need to check whether any gpu reset happened in between
1026 * the caller grabbing the seqno and now ... */
1027 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1028 end = -EAGAIN;
1029
1030 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1031 * gone. */
1032 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1033 if (ret)
1034 end = ret;
1035 } while (end == 0 && wait_forever);
1036
1037 getrawmonotonic(&now);
1038
1039 ring->irq_put(ring);
1040 trace_i915_gem_request_wait_end(ring, seqno);
1041 #undef EXIT_COND
1042
1043 if (timeout) {
1044 struct timespec sleep_time = timespec_sub(now, before);
1045 *timeout = timespec_sub(*timeout, sleep_time);
1046 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1047 set_normalized_timespec(timeout, 0, 0);
1048 }
1049
1050 switch (end) {
1051 case -EIO:
1052 case -EAGAIN: /* Wedged */
1053 case -ERESTARTSYS: /* Signal */
1054 return (int)end;
1055 case 0: /* Timeout */
1056 return -ETIME;
1057 default: /* Completed */
1058 WARN_ON(end < 0); /* We're not aware of other errors */
1059 return 0;
1060 }
1061 }
1062
1063 /**
1064 * Waits for a sequence number to be signaled, and cleans up the
1065 * request and object lists appropriately for that event.
1066 */
1067 int
1068 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1069 {
1070 struct drm_device *dev = ring->dev;
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072 bool interruptible = dev_priv->mm.interruptible;
1073 int ret;
1074
1075 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1076 BUG_ON(seqno == 0);
1077
1078 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1079 if (ret)
1080 return ret;
1081
1082 ret = i915_gem_check_olr(ring, seqno);
1083 if (ret)
1084 return ret;
1085
1086 return __wait_seqno(ring, seqno,
1087 atomic_read(&dev_priv->gpu_error.reset_counter),
1088 interruptible, NULL);
1089 }
1090
1091 static int
1092 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1093 struct intel_ring_buffer *ring)
1094 {
1095 i915_gem_retire_requests_ring(ring);
1096
1097 /* Manually manage the write flush as we may have not yet
1098 * retired the buffer.
1099 *
1100 * Note that the last_write_seqno is always the earlier of
1101 * the two (read/write) seqno, so if we haved successfully waited,
1102 * we know we have passed the last write.
1103 */
1104 obj->last_write_seqno = 0;
1105 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1106
1107 return 0;
1108 }
1109
1110 /**
1111 * Ensures that all rendering to the object has completed and the object is
1112 * safe to unbind from the GTT or access from the CPU.
1113 */
1114 static __must_check int
1115 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1116 bool readonly)
1117 {
1118 struct intel_ring_buffer *ring = obj->ring;
1119 u32 seqno;
1120 int ret;
1121
1122 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1123 if (seqno == 0)
1124 return 0;
1125
1126 ret = i915_wait_seqno(ring, seqno);
1127 if (ret)
1128 return ret;
1129
1130 return i915_gem_object_wait_rendering__tail(obj, ring);
1131 }
1132
1133 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1134 * as the object state may change during this call.
1135 */
1136 static __must_check int
1137 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1138 bool readonly)
1139 {
1140 struct drm_device *dev = obj->base.dev;
1141 struct drm_i915_private *dev_priv = dev->dev_private;
1142 struct intel_ring_buffer *ring = obj->ring;
1143 unsigned reset_counter;
1144 u32 seqno;
1145 int ret;
1146
1147 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1148 BUG_ON(!dev_priv->mm.interruptible);
1149
1150 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1151 if (seqno == 0)
1152 return 0;
1153
1154 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1155 if (ret)
1156 return ret;
1157
1158 ret = i915_gem_check_olr(ring, seqno);
1159 if (ret)
1160 return ret;
1161
1162 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1163 mutex_unlock(&dev->struct_mutex);
1164 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1165 mutex_lock(&dev->struct_mutex);
1166 if (ret)
1167 return ret;
1168
1169 return i915_gem_object_wait_rendering__tail(obj, ring);
1170 }
1171
1172 /**
1173 * Called when user space prepares to use an object with the CPU, either
1174 * through the mmap ioctl's mapping or a GTT mapping.
1175 */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178 struct drm_file *file)
1179 {
1180 struct drm_i915_gem_set_domain *args = data;
1181 struct drm_i915_gem_object *obj;
1182 uint32_t read_domains = args->read_domains;
1183 uint32_t write_domain = args->write_domain;
1184 int ret;
1185
1186 /* Only handle setting domains to types used by the CPU. */
1187 if (write_domain & I915_GEM_GPU_DOMAINS)
1188 return -EINVAL;
1189
1190 if (read_domains & I915_GEM_GPU_DOMAINS)
1191 return -EINVAL;
1192
1193 /* Having something in the write domain implies it's in the read
1194 * domain, and only that read domain. Enforce that in the request.
1195 */
1196 if (write_domain != 0 && read_domains != write_domain)
1197 return -EINVAL;
1198
1199 ret = i915_mutex_lock_interruptible(dev);
1200 if (ret)
1201 return ret;
1202
1203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204 if (&obj->base == NULL) {
1205 ret = -ENOENT;
1206 goto unlock;
1207 }
1208
1209 /* Try to flush the object off the GPU without holding the lock.
1210 * We will repeat the flush holding the lock in the normal manner
1211 * to catch cases where we are gazumped.
1212 */
1213 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214 if (ret)
1215 goto unref;
1216
1217 if (read_domains & I915_GEM_DOMAIN_GTT) {
1218 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219
1220 /* Silently promote "you're not bound, there was nothing to do"
1221 * to success, since the client was just asking us to
1222 * make sure everything was done.
1223 */
1224 if (ret == -EINVAL)
1225 ret = 0;
1226 } else {
1227 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228 }
1229
1230 unref:
1231 drm_gem_object_unreference(&obj->base);
1232 unlock:
1233 mutex_unlock(&dev->struct_mutex);
1234 return ret;
1235 }
1236
1237 /**
1238 * Called when user space has done writes to this buffer
1239 */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242 struct drm_file *file)
1243 {
1244 struct drm_i915_gem_sw_finish *args = data;
1245 struct drm_i915_gem_object *obj;
1246 int ret = 0;
1247
1248 ret = i915_mutex_lock_interruptible(dev);
1249 if (ret)
1250 return ret;
1251
1252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253 if (&obj->base == NULL) {
1254 ret = -ENOENT;
1255 goto unlock;
1256 }
1257
1258 /* Pinned buffers may be scanout, so flush the cache */
1259 if (obj->pin_count)
1260 i915_gem_object_flush_cpu_write_domain(obj);
1261
1262 drm_gem_object_unreference(&obj->base);
1263 unlock:
1264 mutex_unlock(&dev->struct_mutex);
1265 return ret;
1266 }
1267
1268 /**
1269 * Maps the contents of an object, returning the address it is mapped
1270 * into.
1271 *
1272 * While the mapping holds a reference on the contents of the object, it doesn't
1273 * imply a ref on the object itself.
1274 */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277 struct drm_file *file)
1278 {
1279 struct drm_i915_gem_mmap *args = data;
1280 struct drm_gem_object *obj;
1281 unsigned long addr;
1282
1283 obj = drm_gem_object_lookup(dev, file, args->handle);
1284 if (obj == NULL)
1285 return -ENOENT;
1286
1287 /* prime objects have no backing filp to GEM mmap
1288 * pages from.
1289 */
1290 if (!obj->filp) {
1291 drm_gem_object_unreference_unlocked(obj);
1292 return -EINVAL;
1293 }
1294
1295 addr = vm_mmap(obj->filp, 0, args->size,
1296 PROT_READ | PROT_WRITE, MAP_SHARED,
1297 args->offset);
1298 drm_gem_object_unreference_unlocked(obj);
1299 if (IS_ERR((void *)addr))
1300 return addr;
1301
1302 args->addr_ptr = (uint64_t) addr;
1303
1304 return 0;
1305 }
1306
1307 /**
1308 * i915_gem_fault - fault a page into the GTT
1309 * vma: VMA in question
1310 * vmf: fault info
1311 *
1312 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313 * from userspace. The fault handler takes care of binding the object to
1314 * the GTT (if needed), allocating and programming a fence register (again,
1315 * only if needed based on whether the old reg is still valid or the object
1316 * is tiled) and inserting a new PTE into the faulting process.
1317 *
1318 * Note that the faulting process may involve evicting existing objects
1319 * from the GTT and/or fence registers to make room. So performance may
1320 * suffer if the GTT working set is large or there are few fence registers
1321 * left.
1322 */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326 struct drm_device *dev = obj->base.dev;
1327 drm_i915_private_t *dev_priv = dev->dev_private;
1328 pgoff_t page_offset;
1329 unsigned long pfn;
1330 int ret = 0;
1331 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332
1333 /* We don't use vmf->pgoff since that has the fake offset */
1334 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335 PAGE_SHIFT;
1336
1337 ret = i915_mutex_lock_interruptible(dev);
1338 if (ret)
1339 goto out;
1340
1341 trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
1343 /* Access to snoopable pages through the GTT is incoherent. */
1344 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345 ret = -EINVAL;
1346 goto unlock;
1347 }
1348
1349 /* Now bind it into the GTT if needed */
1350 ret = i915_gem_object_pin(obj, 0, true, false);
1351 if (ret)
1352 goto unlock;
1353
1354 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355 if (ret)
1356 goto unpin;
1357
1358 ret = i915_gem_object_get_fence(obj);
1359 if (ret)
1360 goto unpin;
1361
1362 obj->fault_mappable = true;
1363
1364 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1365 pfn >>= PAGE_SHIFT;
1366 pfn += page_offset;
1367
1368 /* Finally, remap it using the new GTT offset */
1369 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 unpin:
1371 i915_gem_object_unpin(obj);
1372 unlock:
1373 mutex_unlock(&dev->struct_mutex);
1374 out:
1375 switch (ret) {
1376 case -EIO:
1377 /* If this -EIO is due to a gpu hang, give the reset code a
1378 * chance to clean up the mess. Otherwise return the proper
1379 * SIGBUS. */
1380 if (i915_terminally_wedged(&dev_priv->gpu_error))
1381 return VM_FAULT_SIGBUS;
1382 case -EAGAIN:
1383 /* Give the error handler a chance to run and move the
1384 * objects off the GPU active list. Next time we service the
1385 * fault, we should be able to transition the page into the
1386 * GTT without touching the GPU (and so avoid further
1387 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388 * with coherency, just lost writes.
1389 */
1390 set_need_resched();
1391 case 0:
1392 case -ERESTARTSYS:
1393 case -EINTR:
1394 case -EBUSY:
1395 /*
1396 * EBUSY is ok: this just means that another thread
1397 * already did the job.
1398 */
1399 return VM_FAULT_NOPAGE;
1400 case -ENOMEM:
1401 return VM_FAULT_OOM;
1402 case -ENOSPC:
1403 return VM_FAULT_SIGBUS;
1404 default:
1405 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406 return VM_FAULT_SIGBUS;
1407 }
1408 }
1409
1410 /**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
1414 * Preserve the reservation of the mmapping with the DRM core code, but
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
1424 void
1425 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426 {
1427 if (!obj->fault_mappable)
1428 return;
1429
1430 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1431 obj->fault_mappable = false;
1432 }
1433
1434 uint32_t
1435 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1436 {
1437 uint32_t gtt_size;
1438
1439 if (INTEL_INFO(dev)->gen >= 4 ||
1440 tiling_mode == I915_TILING_NONE)
1441 return size;
1442
1443 /* Previous chips need a power-of-two fence region when tiling */
1444 if (INTEL_INFO(dev)->gen == 3)
1445 gtt_size = 1024*1024;
1446 else
1447 gtt_size = 512*1024;
1448
1449 while (gtt_size < size)
1450 gtt_size <<= 1;
1451
1452 return gtt_size;
1453 }
1454
1455 /**
1456 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1457 * @obj: object to check
1458 *
1459 * Return the required GTT alignment for an object, taking into account
1460 * potential fence register mapping.
1461 */
1462 uint32_t
1463 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1464 int tiling_mode, bool fenced)
1465 {
1466 /*
1467 * Minimum alignment is 4k (GTT page size), but might be greater
1468 * if a fence register is needed for the object.
1469 */
1470 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1471 tiling_mode == I915_TILING_NONE)
1472 return 4096;
1473
1474 /*
1475 * Previous chips need to be aligned to the size of the smallest
1476 * fence register that can contain the object.
1477 */
1478 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1479 }
1480
1481 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1482 {
1483 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1484 int ret;
1485
1486 if (drm_vma_node_has_offset(&obj->base.vma_node))
1487 return 0;
1488
1489 dev_priv->mm.shrinker_no_lock_stealing = true;
1490
1491 ret = drm_gem_create_mmap_offset(&obj->base);
1492 if (ret != -ENOSPC)
1493 goto out;
1494
1495 /* Badly fragmented mmap space? The only way we can recover
1496 * space is by destroying unwanted objects. We can't randomly release
1497 * mmap_offsets as userspace expects them to be persistent for the
1498 * lifetime of the objects. The closest we can is to release the
1499 * offsets on purgeable objects by truncating it and marking it purged,
1500 * which prevents userspace from ever using that object again.
1501 */
1502 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1503 ret = drm_gem_create_mmap_offset(&obj->base);
1504 if (ret != -ENOSPC)
1505 goto out;
1506
1507 i915_gem_shrink_all(dev_priv);
1508 ret = drm_gem_create_mmap_offset(&obj->base);
1509 out:
1510 dev_priv->mm.shrinker_no_lock_stealing = false;
1511
1512 return ret;
1513 }
1514
1515 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1516 {
1517 drm_gem_free_mmap_offset(&obj->base);
1518 }
1519
1520 int
1521 i915_gem_mmap_gtt(struct drm_file *file,
1522 struct drm_device *dev,
1523 uint32_t handle,
1524 uint64_t *offset)
1525 {
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 struct drm_i915_gem_object *obj;
1528 int ret;
1529
1530 ret = i915_mutex_lock_interruptible(dev);
1531 if (ret)
1532 return ret;
1533
1534 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1535 if (&obj->base == NULL) {
1536 ret = -ENOENT;
1537 goto unlock;
1538 }
1539
1540 if (obj->base.size > dev_priv->gtt.mappable_end) {
1541 ret = -E2BIG;
1542 goto out;
1543 }
1544
1545 if (obj->madv != I915_MADV_WILLNEED) {
1546 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1547 ret = -EINVAL;
1548 goto out;
1549 }
1550
1551 ret = i915_gem_object_create_mmap_offset(obj);
1552 if (ret)
1553 goto out;
1554
1555 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1556
1557 out:
1558 drm_gem_object_unreference(&obj->base);
1559 unlock:
1560 mutex_unlock(&dev->struct_mutex);
1561 return ret;
1562 }
1563
1564 /**
1565 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1566 * @dev: DRM device
1567 * @data: GTT mapping ioctl data
1568 * @file: GEM object info
1569 *
1570 * Simply returns the fake offset to userspace so it can mmap it.
1571 * The mmap call will end up in drm_gem_mmap(), which will set things
1572 * up so we can get faults in the handler above.
1573 *
1574 * The fault handler will take care of binding the object into the GTT
1575 * (since it may have been evicted to make room for something), allocating
1576 * a fence register, and mapping the appropriate aperture address into
1577 * userspace.
1578 */
1579 int
1580 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1581 struct drm_file *file)
1582 {
1583 struct drm_i915_gem_mmap_gtt *args = data;
1584
1585 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1586 }
1587
1588 /* Immediately discard the backing storage */
1589 static void
1590 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1591 {
1592 struct inode *inode;
1593
1594 i915_gem_object_free_mmap_offset(obj);
1595
1596 if (obj->base.filp == NULL)
1597 return;
1598
1599 /* Our goal here is to return as much of the memory as
1600 * is possible back to the system as we are called from OOM.
1601 * To do this we must instruct the shmfs to drop all of its
1602 * backing pages, *now*.
1603 */
1604 inode = file_inode(obj->base.filp);
1605 shmem_truncate_range(inode, 0, (loff_t)-1);
1606
1607 obj->madv = __I915_MADV_PURGED;
1608 }
1609
1610 static inline int
1611 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1612 {
1613 return obj->madv == I915_MADV_DONTNEED;
1614 }
1615
1616 static void
1617 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1618 {
1619 struct sg_page_iter sg_iter;
1620 int ret;
1621
1622 BUG_ON(obj->madv == __I915_MADV_PURGED);
1623
1624 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1625 if (ret) {
1626 /* In the event of a disaster, abandon all caches and
1627 * hope for the best.
1628 */
1629 WARN_ON(ret != -EIO);
1630 i915_gem_clflush_object(obj);
1631 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1632 }
1633
1634 if (i915_gem_object_needs_bit17_swizzle(obj))
1635 i915_gem_object_save_bit_17_swizzle(obj);
1636
1637 if (obj->madv == I915_MADV_DONTNEED)
1638 obj->dirty = 0;
1639
1640 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1641 struct page *page = sg_page_iter_page(&sg_iter);
1642
1643 if (obj->dirty)
1644 set_page_dirty(page);
1645
1646 if (obj->madv == I915_MADV_WILLNEED)
1647 mark_page_accessed(page);
1648
1649 page_cache_release(page);
1650 }
1651 obj->dirty = 0;
1652
1653 sg_free_table(obj->pages);
1654 kfree(obj->pages);
1655 }
1656
1657 int
1658 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1659 {
1660 const struct drm_i915_gem_object_ops *ops = obj->ops;
1661
1662 if (obj->pages == NULL)
1663 return 0;
1664
1665 BUG_ON(i915_gem_obj_ggtt_bound(obj));
1666
1667 if (obj->pages_pin_count)
1668 return -EBUSY;
1669
1670 /* ->put_pages might need to allocate memory for the bit17 swizzle
1671 * array, hence protect them from being reaped by removing them from gtt
1672 * lists early. */
1673 list_del(&obj->global_list);
1674
1675 ops->put_pages(obj);
1676 obj->pages = NULL;
1677
1678 if (i915_gem_object_is_purgeable(obj))
1679 i915_gem_object_truncate(obj);
1680
1681 return 0;
1682 }
1683
1684 static long
1685 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1686 bool purgeable_only)
1687 {
1688 struct drm_i915_gem_object *obj, *next;
1689 long count = 0;
1690
1691 list_for_each_entry_safe(obj, next,
1692 &dev_priv->mm.unbound_list,
1693 global_list) {
1694 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1695 i915_gem_object_put_pages(obj) == 0) {
1696 count += obj->base.size >> PAGE_SHIFT;
1697 if (count >= target)
1698 return count;
1699 }
1700 }
1701
1702 list_for_each_entry_safe(obj, next,
1703 &dev_priv->mm.inactive_list,
1704 mm_list) {
1705 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1706 i915_gem_object_unbind(obj) == 0 &&
1707 i915_gem_object_put_pages(obj) == 0) {
1708 count += obj->base.size >> PAGE_SHIFT;
1709 if (count >= target)
1710 return count;
1711 }
1712 }
1713
1714 return count;
1715 }
1716
1717 static long
1718 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1719 {
1720 return __i915_gem_shrink(dev_priv, target, true);
1721 }
1722
1723 static void
1724 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1725 {
1726 struct drm_i915_gem_object *obj, *next;
1727
1728 i915_gem_evict_everything(dev_priv->dev);
1729
1730 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1731 global_list)
1732 i915_gem_object_put_pages(obj);
1733 }
1734
1735 static int
1736 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1737 {
1738 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1739 int page_count, i;
1740 struct address_space *mapping;
1741 struct sg_table *st;
1742 struct scatterlist *sg;
1743 struct sg_page_iter sg_iter;
1744 struct page *page;
1745 unsigned long last_pfn = 0; /* suppress gcc warning */
1746 gfp_t gfp;
1747
1748 /* Assert that the object is not currently in any GPU domain. As it
1749 * wasn't in the GTT, there shouldn't be any way it could have been in
1750 * a GPU cache
1751 */
1752 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1753 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1754
1755 st = kmalloc(sizeof(*st), GFP_KERNEL);
1756 if (st == NULL)
1757 return -ENOMEM;
1758
1759 page_count = obj->base.size / PAGE_SIZE;
1760 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1761 sg_free_table(st);
1762 kfree(st);
1763 return -ENOMEM;
1764 }
1765
1766 /* Get the list of pages out of our struct file. They'll be pinned
1767 * at this point until we release them.
1768 *
1769 * Fail silently without starting the shrinker
1770 */
1771 mapping = file_inode(obj->base.filp)->i_mapping;
1772 gfp = mapping_gfp_mask(mapping);
1773 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1774 gfp &= ~(__GFP_IO | __GFP_WAIT);
1775 sg = st->sgl;
1776 st->nents = 0;
1777 for (i = 0; i < page_count; i++) {
1778 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1779 if (IS_ERR(page)) {
1780 i915_gem_purge(dev_priv, page_count);
1781 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1782 }
1783 if (IS_ERR(page)) {
1784 /* We've tried hard to allocate the memory by reaping
1785 * our own buffer, now let the real VM do its job and
1786 * go down in flames if truly OOM.
1787 */
1788 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1789 gfp |= __GFP_IO | __GFP_WAIT;
1790
1791 i915_gem_shrink_all(dev_priv);
1792 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1793 if (IS_ERR(page))
1794 goto err_pages;
1795
1796 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1797 gfp &= ~(__GFP_IO | __GFP_WAIT);
1798 }
1799 #ifdef CONFIG_SWIOTLB
1800 if (swiotlb_nr_tbl()) {
1801 st->nents++;
1802 sg_set_page(sg, page, PAGE_SIZE, 0);
1803 sg = sg_next(sg);
1804 continue;
1805 }
1806 #endif
1807 if (!i || page_to_pfn(page) != last_pfn + 1) {
1808 if (i)
1809 sg = sg_next(sg);
1810 st->nents++;
1811 sg_set_page(sg, page, PAGE_SIZE, 0);
1812 } else {
1813 sg->length += PAGE_SIZE;
1814 }
1815 last_pfn = page_to_pfn(page);
1816 }
1817 #ifdef CONFIG_SWIOTLB
1818 if (!swiotlb_nr_tbl())
1819 #endif
1820 sg_mark_end(sg);
1821 obj->pages = st;
1822
1823 if (i915_gem_object_needs_bit17_swizzle(obj))
1824 i915_gem_object_do_bit_17_swizzle(obj);
1825
1826 return 0;
1827
1828 err_pages:
1829 sg_mark_end(sg);
1830 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1831 page_cache_release(sg_page_iter_page(&sg_iter));
1832 sg_free_table(st);
1833 kfree(st);
1834 return PTR_ERR(page);
1835 }
1836
1837 /* Ensure that the associated pages are gathered from the backing storage
1838 * and pinned into our object. i915_gem_object_get_pages() may be called
1839 * multiple times before they are released by a single call to
1840 * i915_gem_object_put_pages() - once the pages are no longer referenced
1841 * either as a result of memory pressure (reaping pages under the shrinker)
1842 * or as the object is itself released.
1843 */
1844 int
1845 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1846 {
1847 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1848 const struct drm_i915_gem_object_ops *ops = obj->ops;
1849 int ret;
1850
1851 if (obj->pages)
1852 return 0;
1853
1854 if (obj->madv != I915_MADV_WILLNEED) {
1855 DRM_ERROR("Attempting to obtain a purgeable object\n");
1856 return -EINVAL;
1857 }
1858
1859 BUG_ON(obj->pages_pin_count);
1860
1861 ret = ops->get_pages(obj);
1862 if (ret)
1863 return ret;
1864
1865 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1866 return 0;
1867 }
1868
1869 void
1870 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1871 struct intel_ring_buffer *ring)
1872 {
1873 struct drm_device *dev = obj->base.dev;
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875 u32 seqno = intel_ring_get_seqno(ring);
1876
1877 BUG_ON(ring == NULL);
1878 if (obj->ring != ring && obj->last_write_seqno) {
1879 /* Keep the seqno relative to the current ring */
1880 obj->last_write_seqno = seqno;
1881 }
1882 obj->ring = ring;
1883
1884 /* Add a reference if we're newly entering the active list. */
1885 if (!obj->active) {
1886 drm_gem_object_reference(&obj->base);
1887 obj->active = 1;
1888 }
1889
1890 /* Move from whatever list we were on to the tail of execution. */
1891 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1892 list_move_tail(&obj->ring_list, &ring->active_list);
1893
1894 obj->last_read_seqno = seqno;
1895
1896 if (obj->fenced_gpu_access) {
1897 obj->last_fenced_seqno = seqno;
1898
1899 /* Bump MRU to take account of the delayed flush */
1900 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1901 struct drm_i915_fence_reg *reg;
1902
1903 reg = &dev_priv->fence_regs[obj->fence_reg];
1904 list_move_tail(&reg->lru_list,
1905 &dev_priv->mm.fence_list);
1906 }
1907 }
1908 }
1909
1910 static void
1911 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1912 {
1913 struct drm_device *dev = obj->base.dev;
1914 struct drm_i915_private *dev_priv = dev->dev_private;
1915
1916 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1917 BUG_ON(!obj->active);
1918
1919 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1920
1921 list_del_init(&obj->ring_list);
1922 obj->ring = NULL;
1923
1924 obj->last_read_seqno = 0;
1925 obj->last_write_seqno = 0;
1926 obj->base.write_domain = 0;
1927
1928 obj->last_fenced_seqno = 0;
1929 obj->fenced_gpu_access = false;
1930
1931 obj->active = 0;
1932 drm_gem_object_unreference(&obj->base);
1933
1934 WARN_ON(i915_verify_lists(dev));
1935 }
1936
1937 static int
1938 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1939 {
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 struct intel_ring_buffer *ring;
1942 int ret, i, j;
1943
1944 /* Carefully retire all requests without writing to the rings */
1945 for_each_ring(ring, dev_priv, i) {
1946 ret = intel_ring_idle(ring);
1947 if (ret)
1948 return ret;
1949 }
1950 i915_gem_retire_requests(dev);
1951
1952 /* Finally reset hw state */
1953 for_each_ring(ring, dev_priv, i) {
1954 intel_ring_init_seqno(ring, seqno);
1955
1956 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1957 ring->sync_seqno[j] = 0;
1958 }
1959
1960 return 0;
1961 }
1962
1963 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1964 {
1965 struct drm_i915_private *dev_priv = dev->dev_private;
1966 int ret;
1967
1968 if (seqno == 0)
1969 return -EINVAL;
1970
1971 /* HWS page needs to be set less than what we
1972 * will inject to ring
1973 */
1974 ret = i915_gem_init_seqno(dev, seqno - 1);
1975 if (ret)
1976 return ret;
1977
1978 /* Carefully set the last_seqno value so that wrap
1979 * detection still works
1980 */
1981 dev_priv->next_seqno = seqno;
1982 dev_priv->last_seqno = seqno - 1;
1983 if (dev_priv->last_seqno == 0)
1984 dev_priv->last_seqno--;
1985
1986 return 0;
1987 }
1988
1989 int
1990 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1991 {
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993
1994 /* reserve 0 for non-seqno */
1995 if (dev_priv->next_seqno == 0) {
1996 int ret = i915_gem_init_seqno(dev, 0);
1997 if (ret)
1998 return ret;
1999
2000 dev_priv->next_seqno = 1;
2001 }
2002
2003 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2004 return 0;
2005 }
2006
2007 int __i915_add_request(struct intel_ring_buffer *ring,
2008 struct drm_file *file,
2009 struct drm_i915_gem_object *obj,
2010 u32 *out_seqno)
2011 {
2012 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2013 struct drm_i915_gem_request *request;
2014 u32 request_ring_position, request_start;
2015 int was_empty;
2016 int ret;
2017
2018 request_start = intel_ring_get_tail(ring);
2019 /*
2020 * Emit any outstanding flushes - execbuf can fail to emit the flush
2021 * after having emitted the batchbuffer command. Hence we need to fix
2022 * things up similar to emitting the lazy request. The difference here
2023 * is that the flush _must_ happen before the next request, no matter
2024 * what.
2025 */
2026 ret = intel_ring_flush_all_caches(ring);
2027 if (ret)
2028 return ret;
2029
2030 request = kmalloc(sizeof(*request), GFP_KERNEL);
2031 if (request == NULL)
2032 return -ENOMEM;
2033
2034
2035 /* Record the position of the start of the request so that
2036 * should we detect the updated seqno part-way through the
2037 * GPU processing the request, we never over-estimate the
2038 * position of the head.
2039 */
2040 request_ring_position = intel_ring_get_tail(ring);
2041
2042 ret = ring->add_request(ring);
2043 if (ret) {
2044 kfree(request);
2045 return ret;
2046 }
2047
2048 request->seqno = intel_ring_get_seqno(ring);
2049 request->ring = ring;
2050 request->head = request_start;
2051 request->tail = request_ring_position;
2052 request->ctx = ring->last_context;
2053 request->batch_obj = obj;
2054
2055 /* Whilst this request exists, batch_obj will be on the
2056 * active_list, and so will hold the active reference. Only when this
2057 * request is retired will the the batch_obj be moved onto the
2058 * inactive_list and lose its active reference. Hence we do not need
2059 * to explicitly hold another reference here.
2060 */
2061
2062 if (request->ctx)
2063 i915_gem_context_reference(request->ctx);
2064
2065 request->emitted_jiffies = jiffies;
2066 was_empty = list_empty(&ring->request_list);
2067 list_add_tail(&request->list, &ring->request_list);
2068 request->file_priv = NULL;
2069
2070 if (file) {
2071 struct drm_i915_file_private *file_priv = file->driver_priv;
2072
2073 spin_lock(&file_priv->mm.lock);
2074 request->file_priv = file_priv;
2075 list_add_tail(&request->client_list,
2076 &file_priv->mm.request_list);
2077 spin_unlock(&file_priv->mm.lock);
2078 }
2079
2080 trace_i915_gem_request_add(ring, request->seqno);
2081 ring->outstanding_lazy_request = 0;
2082
2083 if (!dev_priv->ums.mm_suspended) {
2084 if (i915_enable_hangcheck) {
2085 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2086 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2087 }
2088 if (was_empty) {
2089 queue_delayed_work(dev_priv->wq,
2090 &dev_priv->mm.retire_work,
2091 round_jiffies_up_relative(HZ));
2092 intel_mark_busy(dev_priv->dev);
2093 }
2094 }
2095
2096 if (out_seqno)
2097 *out_seqno = request->seqno;
2098 return 0;
2099 }
2100
2101 static inline void
2102 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2103 {
2104 struct drm_i915_file_private *file_priv = request->file_priv;
2105
2106 if (!file_priv)
2107 return;
2108
2109 spin_lock(&file_priv->mm.lock);
2110 if (request->file_priv) {
2111 list_del(&request->client_list);
2112 request->file_priv = NULL;
2113 }
2114 spin_unlock(&file_priv->mm.lock);
2115 }
2116
2117 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2118 {
2119 if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2120 acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
2121 return true;
2122
2123 return false;
2124 }
2125
2126 static bool i915_head_inside_request(const u32 acthd_unmasked,
2127 const u32 request_start,
2128 const u32 request_end)
2129 {
2130 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2131
2132 if (request_start < request_end) {
2133 if (acthd >= request_start && acthd < request_end)
2134 return true;
2135 } else if (request_start > request_end) {
2136 if (acthd >= request_start || acthd < request_end)
2137 return true;
2138 }
2139
2140 return false;
2141 }
2142
2143 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2144 const u32 acthd, bool *inside)
2145 {
2146 /* There is a possibility that unmasked head address
2147 * pointing inside the ring, matches the batch_obj address range.
2148 * However this is extremely unlikely.
2149 */
2150
2151 if (request->batch_obj) {
2152 if (i915_head_inside_object(acthd, request->batch_obj)) {
2153 *inside = true;
2154 return true;
2155 }
2156 }
2157
2158 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2159 *inside = false;
2160 return true;
2161 }
2162
2163 return false;
2164 }
2165
2166 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2167 struct drm_i915_gem_request *request,
2168 u32 acthd)
2169 {
2170 struct i915_ctx_hang_stats *hs = NULL;
2171 bool inside, guilty;
2172
2173 /* Innocent until proven guilty */
2174 guilty = false;
2175
2176 if (ring->hangcheck.action != wait &&
2177 i915_request_guilty(request, acthd, &inside)) {
2178 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2179 ring->name,
2180 inside ? "inside" : "flushing",
2181 request->batch_obj ?
2182 i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
2183 request->ctx ? request->ctx->id : 0,
2184 acthd);
2185
2186 guilty = true;
2187 }
2188
2189 /* If contexts are disabled or this is the default context, use
2190 * file_priv->reset_state
2191 */
2192 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2193 hs = &request->ctx->hang_stats;
2194 else if (request->file_priv)
2195 hs = &request->file_priv->hang_stats;
2196
2197 if (hs) {
2198 if (guilty)
2199 hs->batch_active++;
2200 else
2201 hs->batch_pending++;
2202 }
2203 }
2204
2205 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2206 {
2207 list_del(&request->list);
2208 i915_gem_request_remove_from_client(request);
2209
2210 if (request->ctx)
2211 i915_gem_context_unreference(request->ctx);
2212
2213 kfree(request);
2214 }
2215
2216 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2217 struct intel_ring_buffer *ring)
2218 {
2219 u32 completed_seqno;
2220 u32 acthd;
2221
2222 acthd = intel_ring_get_active_head(ring);
2223 completed_seqno = ring->get_seqno(ring, false);
2224
2225 while (!list_empty(&ring->request_list)) {
2226 struct drm_i915_gem_request *request;
2227
2228 request = list_first_entry(&ring->request_list,
2229 struct drm_i915_gem_request,
2230 list);
2231
2232 if (request->seqno > completed_seqno)
2233 i915_set_reset_status(ring, request, acthd);
2234
2235 i915_gem_free_request(request);
2236 }
2237
2238 while (!list_empty(&ring->active_list)) {
2239 struct drm_i915_gem_object *obj;
2240
2241 obj = list_first_entry(&ring->active_list,
2242 struct drm_i915_gem_object,
2243 ring_list);
2244
2245 i915_gem_object_move_to_inactive(obj);
2246 }
2247 }
2248
2249 void i915_gem_restore_fences(struct drm_device *dev)
2250 {
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 int i;
2253
2254 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2255 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2256 i915_gem_write_fence(dev, i, reg->obj);
2257 }
2258 }
2259
2260 void i915_gem_reset(struct drm_device *dev)
2261 {
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263 struct drm_i915_gem_object *obj;
2264 struct intel_ring_buffer *ring;
2265 int i;
2266
2267 for_each_ring(ring, dev_priv, i)
2268 i915_gem_reset_ring_lists(dev_priv, ring);
2269
2270 /* Move everything out of the GPU domains to ensure we do any
2271 * necessary invalidation upon reuse.
2272 */
2273 list_for_each_entry(obj,
2274 &dev_priv->mm.inactive_list,
2275 mm_list)
2276 {
2277 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2278 }
2279
2280 i915_gem_restore_fences(dev);
2281 }
2282
2283 /**
2284 * This function clears the request list as sequence numbers are passed.
2285 */
2286 void
2287 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2288 {
2289 uint32_t seqno;
2290
2291 if (list_empty(&ring->request_list))
2292 return;
2293
2294 WARN_ON(i915_verify_lists(ring->dev));
2295
2296 seqno = ring->get_seqno(ring, true);
2297
2298 while (!list_empty(&ring->request_list)) {
2299 struct drm_i915_gem_request *request;
2300
2301 request = list_first_entry(&ring->request_list,
2302 struct drm_i915_gem_request,
2303 list);
2304
2305 if (!i915_seqno_passed(seqno, request->seqno))
2306 break;
2307
2308 trace_i915_gem_request_retire(ring, request->seqno);
2309 /* We know the GPU must have read the request to have
2310 * sent us the seqno + interrupt, so use the position
2311 * of tail of the request to update the last known position
2312 * of the GPU head.
2313 */
2314 ring->last_retired_head = request->tail;
2315
2316 i915_gem_free_request(request);
2317 }
2318
2319 /* Move any buffers on the active list that are no longer referenced
2320 * by the ringbuffer to the flushing/inactive lists as appropriate.
2321 */
2322 while (!list_empty(&ring->active_list)) {
2323 struct drm_i915_gem_object *obj;
2324
2325 obj = list_first_entry(&ring->active_list,
2326 struct drm_i915_gem_object,
2327 ring_list);
2328
2329 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2330 break;
2331
2332 i915_gem_object_move_to_inactive(obj);
2333 }
2334
2335 if (unlikely(ring->trace_irq_seqno &&
2336 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2337 ring->irq_put(ring);
2338 ring->trace_irq_seqno = 0;
2339 }
2340
2341 WARN_ON(i915_verify_lists(ring->dev));
2342 }
2343
2344 void
2345 i915_gem_retire_requests(struct drm_device *dev)
2346 {
2347 drm_i915_private_t *dev_priv = dev->dev_private;
2348 struct intel_ring_buffer *ring;
2349 int i;
2350
2351 for_each_ring(ring, dev_priv, i)
2352 i915_gem_retire_requests_ring(ring);
2353 }
2354
2355 static void
2356 i915_gem_retire_work_handler(struct work_struct *work)
2357 {
2358 drm_i915_private_t *dev_priv;
2359 struct drm_device *dev;
2360 struct intel_ring_buffer *ring;
2361 bool idle;
2362 int i;
2363
2364 dev_priv = container_of(work, drm_i915_private_t,
2365 mm.retire_work.work);
2366 dev = dev_priv->dev;
2367
2368 /* Come back later if the device is busy... */
2369 if (!mutex_trylock(&dev->struct_mutex)) {
2370 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2371 round_jiffies_up_relative(HZ));
2372 return;
2373 }
2374
2375 i915_gem_retire_requests(dev);
2376
2377 /* Send a periodic flush down the ring so we don't hold onto GEM
2378 * objects indefinitely.
2379 */
2380 idle = true;
2381 for_each_ring(ring, dev_priv, i) {
2382 if (ring->gpu_caches_dirty)
2383 i915_add_request(ring, NULL);
2384
2385 idle &= list_empty(&ring->request_list);
2386 }
2387
2388 if (!dev_priv->ums.mm_suspended && !idle)
2389 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2390 round_jiffies_up_relative(HZ));
2391 if (idle)
2392 intel_mark_idle(dev);
2393
2394 mutex_unlock(&dev->struct_mutex);
2395 }
2396
2397 /**
2398 * Ensures that an object will eventually get non-busy by flushing any required
2399 * write domains, emitting any outstanding lazy request and retiring and
2400 * completed requests.
2401 */
2402 static int
2403 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2404 {
2405 int ret;
2406
2407 if (obj->active) {
2408 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2409 if (ret)
2410 return ret;
2411
2412 i915_gem_retire_requests_ring(obj->ring);
2413 }
2414
2415 return 0;
2416 }
2417
2418 /**
2419 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2420 * @DRM_IOCTL_ARGS: standard ioctl arguments
2421 *
2422 * Returns 0 if successful, else an error is returned with the remaining time in
2423 * the timeout parameter.
2424 * -ETIME: object is still busy after timeout
2425 * -ERESTARTSYS: signal interrupted the wait
2426 * -ENONENT: object doesn't exist
2427 * Also possible, but rare:
2428 * -EAGAIN: GPU wedged
2429 * -ENOMEM: damn
2430 * -ENODEV: Internal IRQ fail
2431 * -E?: The add request failed
2432 *
2433 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2434 * non-zero timeout parameter the wait ioctl will wait for the given number of
2435 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2436 * without holding struct_mutex the object may become re-busied before this
2437 * function completes. A similar but shorter * race condition exists in the busy
2438 * ioctl
2439 */
2440 int
2441 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2442 {
2443 drm_i915_private_t *dev_priv = dev->dev_private;
2444 struct drm_i915_gem_wait *args = data;
2445 struct drm_i915_gem_object *obj;
2446 struct intel_ring_buffer *ring = NULL;
2447 struct timespec timeout_stack, *timeout = NULL;
2448 unsigned reset_counter;
2449 u32 seqno = 0;
2450 int ret = 0;
2451
2452 if (args->timeout_ns >= 0) {
2453 timeout_stack = ns_to_timespec(args->timeout_ns);
2454 timeout = &timeout_stack;
2455 }
2456
2457 ret = i915_mutex_lock_interruptible(dev);
2458 if (ret)
2459 return ret;
2460
2461 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2462 if (&obj->base == NULL) {
2463 mutex_unlock(&dev->struct_mutex);
2464 return -ENOENT;
2465 }
2466
2467 /* Need to make sure the object gets inactive eventually. */
2468 ret = i915_gem_object_flush_active(obj);
2469 if (ret)
2470 goto out;
2471
2472 if (obj->active) {
2473 seqno = obj->last_read_seqno;
2474 ring = obj->ring;
2475 }
2476
2477 if (seqno == 0)
2478 goto out;
2479
2480 /* Do this after OLR check to make sure we make forward progress polling
2481 * on this IOCTL with a 0 timeout (like busy ioctl)
2482 */
2483 if (!args->timeout_ns) {
2484 ret = -ETIME;
2485 goto out;
2486 }
2487
2488 drm_gem_object_unreference(&obj->base);
2489 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2490 mutex_unlock(&dev->struct_mutex);
2491
2492 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2493 if (timeout)
2494 args->timeout_ns = timespec_to_ns(timeout);
2495 return ret;
2496
2497 out:
2498 drm_gem_object_unreference(&obj->base);
2499 mutex_unlock(&dev->struct_mutex);
2500 return ret;
2501 }
2502
2503 /**
2504 * i915_gem_object_sync - sync an object to a ring.
2505 *
2506 * @obj: object which may be in use on another ring.
2507 * @to: ring we wish to use the object on. May be NULL.
2508 *
2509 * This code is meant to abstract object synchronization with the GPU.
2510 * Calling with NULL implies synchronizing the object with the CPU
2511 * rather than a particular GPU ring.
2512 *
2513 * Returns 0 if successful, else propagates up the lower layer error.
2514 */
2515 int
2516 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2517 struct intel_ring_buffer *to)
2518 {
2519 struct intel_ring_buffer *from = obj->ring;
2520 u32 seqno;
2521 int ret, idx;
2522
2523 if (from == NULL || to == from)
2524 return 0;
2525
2526 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2527 return i915_gem_object_wait_rendering(obj, false);
2528
2529 idx = intel_ring_sync_index(from, to);
2530
2531 seqno = obj->last_read_seqno;
2532 if (seqno <= from->sync_seqno[idx])
2533 return 0;
2534
2535 ret = i915_gem_check_olr(obj->ring, seqno);
2536 if (ret)
2537 return ret;
2538
2539 ret = to->sync_to(to, from, seqno);
2540 if (!ret)
2541 /* We use last_read_seqno because sync_to()
2542 * might have just caused seqno wrap under
2543 * the radar.
2544 */
2545 from->sync_seqno[idx] = obj->last_read_seqno;
2546
2547 return ret;
2548 }
2549
2550 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2551 {
2552 u32 old_write_domain, old_read_domains;
2553
2554 /* Force a pagefault for domain tracking on next user access */
2555 i915_gem_release_mmap(obj);
2556
2557 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2558 return;
2559
2560 /* Wait for any direct GTT access to complete */
2561 mb();
2562
2563 old_read_domains = obj->base.read_domains;
2564 old_write_domain = obj->base.write_domain;
2565
2566 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2567 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2568
2569 trace_i915_gem_object_change_domain(obj,
2570 old_read_domains,
2571 old_write_domain);
2572 }
2573
2574 /**
2575 * Unbinds an object from the GTT aperture.
2576 */
2577 int
2578 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2579 {
2580 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2581 int ret;
2582
2583 if (!i915_gem_obj_ggtt_bound(obj))
2584 return 0;
2585
2586 if (obj->pin_count)
2587 return -EBUSY;
2588
2589 BUG_ON(obj->pages == NULL);
2590
2591 ret = i915_gem_object_finish_gpu(obj);
2592 if (ret)
2593 return ret;
2594 /* Continue on if we fail due to EIO, the GPU is hung so we
2595 * should be safe and we need to cleanup or else we might
2596 * cause memory corruption through use-after-free.
2597 */
2598
2599 i915_gem_object_finish_gtt(obj);
2600
2601 /* release the fence reg _after_ flushing */
2602 ret = i915_gem_object_put_fence(obj);
2603 if (ret)
2604 return ret;
2605
2606 trace_i915_gem_object_unbind(obj);
2607
2608 if (obj->has_global_gtt_mapping)
2609 i915_gem_gtt_unbind_object(obj);
2610 if (obj->has_aliasing_ppgtt_mapping) {
2611 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2612 obj->has_aliasing_ppgtt_mapping = 0;
2613 }
2614 i915_gem_gtt_finish_object(obj);
2615 i915_gem_object_unpin_pages(obj);
2616
2617 list_del(&obj->mm_list);
2618 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2619 /* Avoid an unnecessary call to unbind on rebind. */
2620 obj->map_and_fenceable = true;
2621
2622 drm_mm_remove_node(&obj->gtt_space);
2623
2624 return 0;
2625 }
2626
2627 int i915_gpu_idle(struct drm_device *dev)
2628 {
2629 drm_i915_private_t *dev_priv = dev->dev_private;
2630 struct intel_ring_buffer *ring;
2631 int ret, i;
2632
2633 /* Flush everything onto the inactive list. */
2634 for_each_ring(ring, dev_priv, i) {
2635 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2636 if (ret)
2637 return ret;
2638
2639 ret = intel_ring_idle(ring);
2640 if (ret)
2641 return ret;
2642 }
2643
2644 return 0;
2645 }
2646
2647 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2648 struct drm_i915_gem_object *obj)
2649 {
2650 drm_i915_private_t *dev_priv = dev->dev_private;
2651 int fence_reg;
2652 int fence_pitch_shift;
2653
2654 if (INTEL_INFO(dev)->gen >= 6) {
2655 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2656 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2657 } else {
2658 fence_reg = FENCE_REG_965_0;
2659 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2660 }
2661
2662 fence_reg += reg * 8;
2663
2664 /* To w/a incoherency with non-atomic 64-bit register updates,
2665 * we split the 64-bit update into two 32-bit writes. In order
2666 * for a partial fence not to be evaluated between writes, we
2667 * precede the update with write to turn off the fence register,
2668 * and only enable the fence as the last step.
2669 *
2670 * For extra levels of paranoia, we make sure each step lands
2671 * before applying the next step.
2672 */
2673 I915_WRITE(fence_reg, 0);
2674 POSTING_READ(fence_reg);
2675
2676 if (obj) {
2677 u32 size = i915_gem_obj_ggtt_size(obj);
2678 uint64_t val;
2679
2680 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2681 0xfffff000) << 32;
2682 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2683 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2684 if (obj->tiling_mode == I915_TILING_Y)
2685 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2686 val |= I965_FENCE_REG_VALID;
2687
2688 I915_WRITE(fence_reg + 4, val >> 32);
2689 POSTING_READ(fence_reg + 4);
2690
2691 I915_WRITE(fence_reg + 0, val);
2692 POSTING_READ(fence_reg);
2693 } else {
2694 I915_WRITE(fence_reg + 4, 0);
2695 POSTING_READ(fence_reg + 4);
2696 }
2697 }
2698
2699 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2700 struct drm_i915_gem_object *obj)
2701 {
2702 drm_i915_private_t *dev_priv = dev->dev_private;
2703 u32 val;
2704
2705 if (obj) {
2706 u32 size = i915_gem_obj_ggtt_size(obj);
2707 int pitch_val;
2708 int tile_width;
2709
2710 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2711 (size & -size) != size ||
2712 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2713 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2714 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2715
2716 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2717 tile_width = 128;
2718 else
2719 tile_width = 512;
2720
2721 /* Note: pitch better be a power of two tile widths */
2722 pitch_val = obj->stride / tile_width;
2723 pitch_val = ffs(pitch_val) - 1;
2724
2725 val = i915_gem_obj_ggtt_offset(obj);
2726 if (obj->tiling_mode == I915_TILING_Y)
2727 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2728 val |= I915_FENCE_SIZE_BITS(size);
2729 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2730 val |= I830_FENCE_REG_VALID;
2731 } else
2732 val = 0;
2733
2734 if (reg < 8)
2735 reg = FENCE_REG_830_0 + reg * 4;
2736 else
2737 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2738
2739 I915_WRITE(reg, val);
2740 POSTING_READ(reg);
2741 }
2742
2743 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2744 struct drm_i915_gem_object *obj)
2745 {
2746 drm_i915_private_t *dev_priv = dev->dev_private;
2747 uint32_t val;
2748
2749 if (obj) {
2750 u32 size = i915_gem_obj_ggtt_size(obj);
2751 uint32_t pitch_val;
2752
2753 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2754 (size & -size) != size ||
2755 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2756 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2757 i915_gem_obj_ggtt_offset(obj), size);
2758
2759 pitch_val = obj->stride / 128;
2760 pitch_val = ffs(pitch_val) - 1;
2761
2762 val = i915_gem_obj_ggtt_offset(obj);
2763 if (obj->tiling_mode == I915_TILING_Y)
2764 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2765 val |= I830_FENCE_SIZE_BITS(size);
2766 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2767 val |= I830_FENCE_REG_VALID;
2768 } else
2769 val = 0;
2770
2771 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2772 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2773 }
2774
2775 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2776 {
2777 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2778 }
2779
2780 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2781 struct drm_i915_gem_object *obj)
2782 {
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784
2785 /* Ensure that all CPU reads are completed before installing a fence
2786 * and all writes before removing the fence.
2787 */
2788 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2789 mb();
2790
2791 switch (INTEL_INFO(dev)->gen) {
2792 case 7:
2793 case 6:
2794 case 5:
2795 case 4: i965_write_fence_reg(dev, reg, obj); break;
2796 case 3: i915_write_fence_reg(dev, reg, obj); break;
2797 case 2: i830_write_fence_reg(dev, reg, obj); break;
2798 default: BUG();
2799 }
2800
2801 /* And similarly be paranoid that no direct access to this region
2802 * is reordered to before the fence is installed.
2803 */
2804 if (i915_gem_object_needs_mb(obj))
2805 mb();
2806 }
2807
2808 static inline int fence_number(struct drm_i915_private *dev_priv,
2809 struct drm_i915_fence_reg *fence)
2810 {
2811 return fence - dev_priv->fence_regs;
2812 }
2813
2814 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2815 struct drm_i915_fence_reg *fence,
2816 bool enable)
2817 {
2818 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2819 int reg = fence_number(dev_priv, fence);
2820
2821 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2822
2823 if (enable) {
2824 obj->fence_reg = reg;
2825 fence->obj = obj;
2826 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2827 } else {
2828 obj->fence_reg = I915_FENCE_REG_NONE;
2829 fence->obj = NULL;
2830 list_del_init(&fence->lru_list);
2831 }
2832 }
2833
2834 static int
2835 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2836 {
2837 if (obj->last_fenced_seqno) {
2838 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2839 if (ret)
2840 return ret;
2841
2842 obj->last_fenced_seqno = 0;
2843 }
2844
2845 obj->fenced_gpu_access = false;
2846 return 0;
2847 }
2848
2849 int
2850 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2851 {
2852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2853 struct drm_i915_fence_reg *fence;
2854 int ret;
2855
2856 ret = i915_gem_object_wait_fence(obj);
2857 if (ret)
2858 return ret;
2859
2860 if (obj->fence_reg == I915_FENCE_REG_NONE)
2861 return 0;
2862
2863 fence = &dev_priv->fence_regs[obj->fence_reg];
2864
2865 i915_gem_object_fence_lost(obj);
2866 i915_gem_object_update_fence(obj, fence, false);
2867
2868 return 0;
2869 }
2870
2871 static struct drm_i915_fence_reg *
2872 i915_find_fence_reg(struct drm_device *dev)
2873 {
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 struct drm_i915_fence_reg *reg, *avail;
2876 int i;
2877
2878 /* First try to find a free reg */
2879 avail = NULL;
2880 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2881 reg = &dev_priv->fence_regs[i];
2882 if (!reg->obj)
2883 return reg;
2884
2885 if (!reg->pin_count)
2886 avail = reg;
2887 }
2888
2889 if (avail == NULL)
2890 return NULL;
2891
2892 /* None available, try to steal one or wait for a user to finish */
2893 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2894 if (reg->pin_count)
2895 continue;
2896
2897 return reg;
2898 }
2899
2900 return NULL;
2901 }
2902
2903 /**
2904 * i915_gem_object_get_fence - set up fencing for an object
2905 * @obj: object to map through a fence reg
2906 *
2907 * When mapping objects through the GTT, userspace wants to be able to write
2908 * to them without having to worry about swizzling if the object is tiled.
2909 * This function walks the fence regs looking for a free one for @obj,
2910 * stealing one if it can't find any.
2911 *
2912 * It then sets up the reg based on the object's properties: address, pitch
2913 * and tiling format.
2914 *
2915 * For an untiled surface, this removes any existing fence.
2916 */
2917 int
2918 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2919 {
2920 struct drm_device *dev = obj->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 bool enable = obj->tiling_mode != I915_TILING_NONE;
2923 struct drm_i915_fence_reg *reg;
2924 int ret;
2925
2926 /* Have we updated the tiling parameters upon the object and so
2927 * will need to serialise the write to the associated fence register?
2928 */
2929 if (obj->fence_dirty) {
2930 ret = i915_gem_object_wait_fence(obj);
2931 if (ret)
2932 return ret;
2933 }
2934
2935 /* Just update our place in the LRU if our fence is getting reused. */
2936 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2937 reg = &dev_priv->fence_regs[obj->fence_reg];
2938 if (!obj->fence_dirty) {
2939 list_move_tail(&reg->lru_list,
2940 &dev_priv->mm.fence_list);
2941 return 0;
2942 }
2943 } else if (enable) {
2944 reg = i915_find_fence_reg(dev);
2945 if (reg == NULL)
2946 return -EDEADLK;
2947
2948 if (reg->obj) {
2949 struct drm_i915_gem_object *old = reg->obj;
2950
2951 ret = i915_gem_object_wait_fence(old);
2952 if (ret)
2953 return ret;
2954
2955 i915_gem_object_fence_lost(old);
2956 }
2957 } else
2958 return 0;
2959
2960 i915_gem_object_update_fence(obj, reg, enable);
2961 obj->fence_dirty = false;
2962
2963 return 0;
2964 }
2965
2966 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2967 struct drm_mm_node *gtt_space,
2968 unsigned long cache_level)
2969 {
2970 struct drm_mm_node *other;
2971
2972 /* On non-LLC machines we have to be careful when putting differing
2973 * types of snoopable memory together to avoid the prefetcher
2974 * crossing memory domains and dying.
2975 */
2976 if (HAS_LLC(dev))
2977 return true;
2978
2979 if (!drm_mm_node_allocated(gtt_space))
2980 return true;
2981
2982 if (list_empty(&gtt_space->node_list))
2983 return true;
2984
2985 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2986 if (other->allocated && !other->hole_follows && other->color != cache_level)
2987 return false;
2988
2989 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2990 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2991 return false;
2992
2993 return true;
2994 }
2995
2996 static void i915_gem_verify_gtt(struct drm_device *dev)
2997 {
2998 #if WATCH_GTT
2999 struct drm_i915_private *dev_priv = dev->dev_private;
3000 struct drm_i915_gem_object *obj;
3001 int err = 0;
3002
3003 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3004 if (obj->gtt_space == NULL) {
3005 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3006 err++;
3007 continue;
3008 }
3009
3010 if (obj->cache_level != obj->gtt_space->color) {
3011 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3012 i915_gem_obj_ggtt_offset(obj),
3013 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3014 obj->cache_level,
3015 obj->gtt_space->color);
3016 err++;
3017 continue;
3018 }
3019
3020 if (!i915_gem_valid_gtt_space(dev,
3021 obj->gtt_space,
3022 obj->cache_level)) {
3023 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3024 i915_gem_obj_ggtt_offset(obj),
3025 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3026 obj->cache_level);
3027 err++;
3028 continue;
3029 }
3030 }
3031
3032 WARN_ON(err);
3033 #endif
3034 }
3035
3036 /**
3037 * Finds free space in the GTT aperture and binds the object there.
3038 */
3039 static int
3040 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3041 unsigned alignment,
3042 bool map_and_fenceable,
3043 bool nonblocking)
3044 {
3045 struct drm_device *dev = obj->base.dev;
3046 drm_i915_private_t *dev_priv = dev->dev_private;
3047 u32 size, fence_size, fence_alignment, unfenced_alignment;
3048 bool mappable, fenceable;
3049 size_t gtt_max = map_and_fenceable ?
3050 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3051 int ret;
3052
3053 fence_size = i915_gem_get_gtt_size(dev,
3054 obj->base.size,
3055 obj->tiling_mode);
3056 fence_alignment = i915_gem_get_gtt_alignment(dev,
3057 obj->base.size,
3058 obj->tiling_mode, true);
3059 unfenced_alignment =
3060 i915_gem_get_gtt_alignment(dev,
3061 obj->base.size,
3062 obj->tiling_mode, false);
3063
3064 if (alignment == 0)
3065 alignment = map_and_fenceable ? fence_alignment :
3066 unfenced_alignment;
3067 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3068 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3069 return -EINVAL;
3070 }
3071
3072 size = map_and_fenceable ? fence_size : obj->base.size;
3073
3074 /* If the object is bigger than the entire aperture, reject it early
3075 * before evicting everything in a vain attempt to find space.
3076 */
3077 if (obj->base.size > gtt_max) {
3078 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3079 obj->base.size,
3080 map_and_fenceable ? "mappable" : "total",
3081 gtt_max);
3082 return -E2BIG;
3083 }
3084
3085 ret = i915_gem_object_get_pages(obj);
3086 if (ret)
3087 return ret;
3088
3089 i915_gem_object_pin_pages(obj);
3090
3091 search_free:
3092 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space,
3093 &obj->gtt_space,
3094 size, alignment,
3095 obj->cache_level, 0, gtt_max);
3096 if (ret) {
3097 ret = i915_gem_evict_something(dev, size, alignment,
3098 obj->cache_level,
3099 map_and_fenceable,
3100 nonblocking);
3101 if (ret == 0)
3102 goto search_free;
3103
3104 i915_gem_object_unpin_pages(obj);
3105 return ret;
3106 }
3107 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &obj->gtt_space,
3108 obj->cache_level))) {
3109 i915_gem_object_unpin_pages(obj);
3110 drm_mm_remove_node(&obj->gtt_space);
3111 return -EINVAL;
3112 }
3113
3114 ret = i915_gem_gtt_prepare_object(obj);
3115 if (ret) {
3116 i915_gem_object_unpin_pages(obj);
3117 drm_mm_remove_node(&obj->gtt_space);
3118 return ret;
3119 }
3120
3121 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3122 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3123
3124 fenceable =
3125 i915_gem_obj_ggtt_size(obj) == fence_size &&
3126 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3127
3128 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3129 dev_priv->gtt.mappable_end;
3130
3131 obj->map_and_fenceable = mappable && fenceable;
3132
3133 trace_i915_gem_object_bind(obj, map_and_fenceable);
3134 i915_gem_verify_gtt(dev);
3135 return 0;
3136 }
3137
3138 void
3139 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3140 {
3141 /* If we don't have a page list set up, then we're not pinned
3142 * to GPU, and we can ignore the cache flush because it'll happen
3143 * again at bind time.
3144 */
3145 if (obj->pages == NULL)
3146 return;
3147
3148 /*
3149 * Stolen memory is always coherent with the GPU as it is explicitly
3150 * marked as wc by the system, or the system is cache-coherent.
3151 */
3152 if (obj->stolen)
3153 return;
3154
3155 /* If the GPU is snooping the contents of the CPU cache,
3156 * we do not need to manually clear the CPU cache lines. However,
3157 * the caches are only snooped when the render cache is
3158 * flushed/invalidated. As we always have to emit invalidations
3159 * and flushes when moving into and out of the RENDER domain, correct
3160 * snooping behaviour occurs naturally as the result of our domain
3161 * tracking.
3162 */
3163 if (obj->cache_level != I915_CACHE_NONE)
3164 return;
3165
3166 trace_i915_gem_object_clflush(obj);
3167
3168 drm_clflush_sg(obj->pages);
3169 }
3170
3171 /** Flushes the GTT write domain for the object if it's dirty. */
3172 static void
3173 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3174 {
3175 uint32_t old_write_domain;
3176
3177 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3178 return;
3179
3180 /* No actual flushing is required for the GTT write domain. Writes
3181 * to it immediately go to main memory as far as we know, so there's
3182 * no chipset flush. It also doesn't land in render cache.
3183 *
3184 * However, we do have to enforce the order so that all writes through
3185 * the GTT land before any writes to the device, such as updates to
3186 * the GATT itself.
3187 */
3188 wmb();
3189
3190 old_write_domain = obj->base.write_domain;
3191 obj->base.write_domain = 0;
3192
3193 trace_i915_gem_object_change_domain(obj,
3194 obj->base.read_domains,
3195 old_write_domain);
3196 }
3197
3198 /** Flushes the CPU write domain for the object if it's dirty. */
3199 static void
3200 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3201 {
3202 uint32_t old_write_domain;
3203
3204 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3205 return;
3206
3207 i915_gem_clflush_object(obj);
3208 i915_gem_chipset_flush(obj->base.dev);
3209 old_write_domain = obj->base.write_domain;
3210 obj->base.write_domain = 0;
3211
3212 trace_i915_gem_object_change_domain(obj,
3213 obj->base.read_domains,
3214 old_write_domain);
3215 }
3216
3217 /**
3218 * Moves a single object to the GTT read, and possibly write domain.
3219 *
3220 * This function returns when the move is complete, including waiting on
3221 * flushes to occur.
3222 */
3223 int
3224 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3225 {
3226 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3227 uint32_t old_write_domain, old_read_domains;
3228 int ret;
3229
3230 /* Not valid to be called on unbound objects. */
3231 if (!i915_gem_obj_ggtt_bound(obj))
3232 return -EINVAL;
3233
3234 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3235 return 0;
3236
3237 ret = i915_gem_object_wait_rendering(obj, !write);
3238 if (ret)
3239 return ret;
3240
3241 i915_gem_object_flush_cpu_write_domain(obj);
3242
3243 /* Serialise direct access to this object with the barriers for
3244 * coherent writes from the GPU, by effectively invalidating the
3245 * GTT domain upon first access.
3246 */
3247 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3248 mb();
3249
3250 old_write_domain = obj->base.write_domain;
3251 old_read_domains = obj->base.read_domains;
3252
3253 /* It should now be out of any other write domains, and we can update
3254 * the domain values for our changes.
3255 */
3256 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3257 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3258 if (write) {
3259 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3260 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3261 obj->dirty = 1;
3262 }
3263
3264 trace_i915_gem_object_change_domain(obj,
3265 old_read_domains,
3266 old_write_domain);
3267
3268 /* And bump the LRU for this access */
3269 if (i915_gem_object_is_inactive(obj))
3270 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3271
3272 return 0;
3273 }
3274
3275 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3276 enum i915_cache_level cache_level)
3277 {
3278 struct drm_device *dev = obj->base.dev;
3279 drm_i915_private_t *dev_priv = dev->dev_private;
3280 int ret;
3281
3282 if (obj->cache_level == cache_level)
3283 return 0;
3284
3285 if (obj->pin_count) {
3286 DRM_DEBUG("can not change the cache level of pinned objects\n");
3287 return -EBUSY;
3288 }
3289
3290 if (!i915_gem_valid_gtt_space(dev, &obj->gtt_space, cache_level)) {
3291 ret = i915_gem_object_unbind(obj);
3292 if (ret)
3293 return ret;
3294 }
3295
3296 if (i915_gem_obj_ggtt_bound(obj)) {
3297 ret = i915_gem_object_finish_gpu(obj);
3298 if (ret)
3299 return ret;
3300
3301 i915_gem_object_finish_gtt(obj);
3302
3303 /* Before SandyBridge, you could not use tiling or fence
3304 * registers with snooped memory, so relinquish any fences
3305 * currently pointing to our region in the aperture.
3306 */
3307 if (INTEL_INFO(dev)->gen < 6) {
3308 ret = i915_gem_object_put_fence(obj);
3309 if (ret)
3310 return ret;
3311 }
3312
3313 if (obj->has_global_gtt_mapping)
3314 i915_gem_gtt_bind_object(obj, cache_level);
3315 if (obj->has_aliasing_ppgtt_mapping)
3316 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3317 obj, cache_level);
3318
3319 i915_gem_obj_ggtt_set_color(obj, cache_level);
3320 }
3321
3322 if (cache_level == I915_CACHE_NONE) {
3323 u32 old_read_domains, old_write_domain;
3324
3325 /* If we're coming from LLC cached, then we haven't
3326 * actually been tracking whether the data is in the
3327 * CPU cache or not, since we only allow one bit set
3328 * in obj->write_domain and have been skipping the clflushes.
3329 * Just set it to the CPU cache for now.
3330 */
3331 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3332 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3333
3334 old_read_domains = obj->base.read_domains;
3335 old_write_domain = obj->base.write_domain;
3336
3337 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3338 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3339
3340 trace_i915_gem_object_change_domain(obj,
3341 old_read_domains,
3342 old_write_domain);
3343 }
3344
3345 obj->cache_level = cache_level;
3346 i915_gem_verify_gtt(dev);
3347 return 0;
3348 }
3349
3350 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3351 struct drm_file *file)
3352 {
3353 struct drm_i915_gem_caching *args = data;
3354 struct drm_i915_gem_object *obj;
3355 int ret;
3356
3357 ret = i915_mutex_lock_interruptible(dev);
3358 if (ret)
3359 return ret;
3360
3361 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3362 if (&obj->base == NULL) {
3363 ret = -ENOENT;
3364 goto unlock;
3365 }
3366
3367 args->caching = obj->cache_level != I915_CACHE_NONE;
3368
3369 drm_gem_object_unreference(&obj->base);
3370 unlock:
3371 mutex_unlock(&dev->struct_mutex);
3372 return ret;
3373 }
3374
3375 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3376 struct drm_file *file)
3377 {
3378 struct drm_i915_gem_caching *args = data;
3379 struct drm_i915_gem_object *obj;
3380 enum i915_cache_level level;
3381 int ret;
3382
3383 switch (args->caching) {
3384 case I915_CACHING_NONE:
3385 level = I915_CACHE_NONE;
3386 break;
3387 case I915_CACHING_CACHED:
3388 level = I915_CACHE_LLC;
3389 break;
3390 default:
3391 return -EINVAL;
3392 }
3393
3394 ret = i915_mutex_lock_interruptible(dev);
3395 if (ret)
3396 return ret;
3397
3398 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3399 if (&obj->base == NULL) {
3400 ret = -ENOENT;
3401 goto unlock;
3402 }
3403
3404 ret = i915_gem_object_set_cache_level(obj, level);
3405
3406 drm_gem_object_unreference(&obj->base);
3407 unlock:
3408 mutex_unlock(&dev->struct_mutex);
3409 return ret;
3410 }
3411
3412 /*
3413 * Prepare buffer for display plane (scanout, cursors, etc).
3414 * Can be called from an uninterruptible phase (modesetting) and allows
3415 * any flushes to be pipelined (for pageflips).
3416 */
3417 int
3418 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3419 u32 alignment,
3420 struct intel_ring_buffer *pipelined)
3421 {
3422 u32 old_read_domains, old_write_domain;
3423 int ret;
3424
3425 if (pipelined != obj->ring) {
3426 ret = i915_gem_object_sync(obj, pipelined);
3427 if (ret)
3428 return ret;
3429 }
3430
3431 /* The display engine is not coherent with the LLC cache on gen6. As
3432 * a result, we make sure that the pinning that is about to occur is
3433 * done with uncached PTEs. This is lowest common denominator for all
3434 * chipsets.
3435 *
3436 * However for gen6+, we could do better by using the GFDT bit instead
3437 * of uncaching, which would allow us to flush all the LLC-cached data
3438 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3439 */
3440 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3441 if (ret)
3442 return ret;
3443
3444 /* As the user may map the buffer once pinned in the display plane
3445 * (e.g. libkms for the bootup splash), we have to ensure that we
3446 * always use map_and_fenceable for all scanout buffers.
3447 */
3448 ret = i915_gem_object_pin(obj, alignment, true, false);
3449 if (ret)
3450 return ret;
3451
3452 i915_gem_object_flush_cpu_write_domain(obj);
3453
3454 old_write_domain = obj->base.write_domain;
3455 old_read_domains = obj->base.read_domains;
3456
3457 /* It should now be out of any other write domains, and we can update
3458 * the domain values for our changes.
3459 */
3460 obj->base.write_domain = 0;
3461 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3462
3463 trace_i915_gem_object_change_domain(obj,
3464 old_read_domains,
3465 old_write_domain);
3466
3467 return 0;
3468 }
3469
3470 int
3471 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3472 {
3473 int ret;
3474
3475 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3476 return 0;
3477
3478 ret = i915_gem_object_wait_rendering(obj, false);
3479 if (ret)
3480 return ret;
3481
3482 /* Ensure that we invalidate the GPU's caches and TLBs. */
3483 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3484 return 0;
3485 }
3486
3487 /**
3488 * Moves a single object to the CPU read, and possibly write domain.
3489 *
3490 * This function returns when the move is complete, including waiting on
3491 * flushes to occur.
3492 */
3493 int
3494 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3495 {
3496 uint32_t old_write_domain, old_read_domains;
3497 int ret;
3498
3499 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3500 return 0;
3501
3502 ret = i915_gem_object_wait_rendering(obj, !write);
3503 if (ret)
3504 return ret;
3505
3506 i915_gem_object_flush_gtt_write_domain(obj);
3507
3508 old_write_domain = obj->base.write_domain;
3509 old_read_domains = obj->base.read_domains;
3510
3511 /* Flush the CPU cache if it's still invalid. */
3512 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3513 i915_gem_clflush_object(obj);
3514
3515 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3516 }
3517
3518 /* It should now be out of any other write domains, and we can update
3519 * the domain values for our changes.
3520 */
3521 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3522
3523 /* If we're writing through the CPU, then the GPU read domains will
3524 * need to be invalidated at next use.
3525 */
3526 if (write) {
3527 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3528 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3529 }
3530
3531 trace_i915_gem_object_change_domain(obj,
3532 old_read_domains,
3533 old_write_domain);
3534
3535 return 0;
3536 }
3537
3538 /* Throttle our rendering by waiting until the ring has completed our requests
3539 * emitted over 20 msec ago.
3540 *
3541 * Note that if we were to use the current jiffies each time around the loop,
3542 * we wouldn't escape the function with any frames outstanding if the time to
3543 * render a frame was over 20ms.
3544 *
3545 * This should get us reasonable parallelism between CPU and GPU but also
3546 * relatively low latency when blocking on a particular request to finish.
3547 */
3548 static int
3549 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3550 {
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 struct drm_i915_file_private *file_priv = file->driver_priv;
3553 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3554 struct drm_i915_gem_request *request;
3555 struct intel_ring_buffer *ring = NULL;
3556 unsigned reset_counter;
3557 u32 seqno = 0;
3558 int ret;
3559
3560 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3561 if (ret)
3562 return ret;
3563
3564 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3565 if (ret)
3566 return ret;
3567
3568 spin_lock(&file_priv->mm.lock);
3569 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3570 if (time_after_eq(request->emitted_jiffies, recent_enough))
3571 break;
3572
3573 ring = request->ring;
3574 seqno = request->seqno;
3575 }
3576 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3577 spin_unlock(&file_priv->mm.lock);
3578
3579 if (seqno == 0)
3580 return 0;
3581
3582 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3583 if (ret == 0)
3584 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3585
3586 return ret;
3587 }
3588
3589 int
3590 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3591 uint32_t alignment,
3592 bool map_and_fenceable,
3593 bool nonblocking)
3594 {
3595 int ret;
3596
3597 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3598 return -EBUSY;
3599
3600 if (i915_gem_obj_ggtt_bound(obj)) {
3601 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3602 (map_and_fenceable && !obj->map_and_fenceable)) {
3603 WARN(obj->pin_count,
3604 "bo is already pinned with incorrect alignment:"
3605 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3606 " obj->map_and_fenceable=%d\n",
3607 i915_gem_obj_ggtt_offset(obj), alignment,
3608 map_and_fenceable,
3609 obj->map_and_fenceable);
3610 ret = i915_gem_object_unbind(obj);
3611 if (ret)
3612 return ret;
3613 }
3614 }
3615
3616 if (!i915_gem_obj_ggtt_bound(obj)) {
3617 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3618
3619 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3620 map_and_fenceable,
3621 nonblocking);
3622 if (ret)
3623 return ret;
3624
3625 if (!dev_priv->mm.aliasing_ppgtt)
3626 i915_gem_gtt_bind_object(obj, obj->cache_level);
3627 }
3628
3629 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3630 i915_gem_gtt_bind_object(obj, obj->cache_level);
3631
3632 obj->pin_count++;
3633 obj->pin_mappable |= map_and_fenceable;
3634
3635 return 0;
3636 }
3637
3638 void
3639 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3640 {
3641 BUG_ON(obj->pin_count == 0);
3642 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3643
3644 if (--obj->pin_count == 0)
3645 obj->pin_mappable = false;
3646 }
3647
3648 int
3649 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3650 struct drm_file *file)
3651 {
3652 struct drm_i915_gem_pin *args = data;
3653 struct drm_i915_gem_object *obj;
3654 int ret;
3655
3656 ret = i915_mutex_lock_interruptible(dev);
3657 if (ret)
3658 return ret;
3659
3660 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3661 if (&obj->base == NULL) {
3662 ret = -ENOENT;
3663 goto unlock;
3664 }
3665
3666 if (obj->madv != I915_MADV_WILLNEED) {
3667 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3668 ret = -EINVAL;
3669 goto out;
3670 }
3671
3672 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3673 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3674 args->handle);
3675 ret = -EINVAL;
3676 goto out;
3677 }
3678
3679 if (obj->user_pin_count == 0) {
3680 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3681 if (ret)
3682 goto out;
3683 }
3684
3685 obj->user_pin_count++;
3686 obj->pin_filp = file;
3687
3688 /* XXX - flush the CPU caches for pinned objects
3689 * as the X server doesn't manage domains yet
3690 */
3691 i915_gem_object_flush_cpu_write_domain(obj);
3692 args->offset = i915_gem_obj_ggtt_offset(obj);
3693 out:
3694 drm_gem_object_unreference(&obj->base);
3695 unlock:
3696 mutex_unlock(&dev->struct_mutex);
3697 return ret;
3698 }
3699
3700 int
3701 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3702 struct drm_file *file)
3703 {
3704 struct drm_i915_gem_pin *args = data;
3705 struct drm_i915_gem_object *obj;
3706 int ret;
3707
3708 ret = i915_mutex_lock_interruptible(dev);
3709 if (ret)
3710 return ret;
3711
3712 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3713 if (&obj->base == NULL) {
3714 ret = -ENOENT;
3715 goto unlock;
3716 }
3717
3718 if (obj->pin_filp != file) {
3719 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3720 args->handle);
3721 ret = -EINVAL;
3722 goto out;
3723 }
3724 obj->user_pin_count--;
3725 if (obj->user_pin_count == 0) {
3726 obj->pin_filp = NULL;
3727 i915_gem_object_unpin(obj);
3728 }
3729
3730 out:
3731 drm_gem_object_unreference(&obj->base);
3732 unlock:
3733 mutex_unlock(&dev->struct_mutex);
3734 return ret;
3735 }
3736
3737 int
3738 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3739 struct drm_file *file)
3740 {
3741 struct drm_i915_gem_busy *args = data;
3742 struct drm_i915_gem_object *obj;
3743 int ret;
3744
3745 ret = i915_mutex_lock_interruptible(dev);
3746 if (ret)
3747 return ret;
3748
3749 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3750 if (&obj->base == NULL) {
3751 ret = -ENOENT;
3752 goto unlock;
3753 }
3754
3755 /* Count all active objects as busy, even if they are currently not used
3756 * by the gpu. Users of this interface expect objects to eventually
3757 * become non-busy without any further actions, therefore emit any
3758 * necessary flushes here.
3759 */
3760 ret = i915_gem_object_flush_active(obj);
3761
3762 args->busy = obj->active;
3763 if (obj->ring) {
3764 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3765 args->busy |= intel_ring_flag(obj->ring) << 16;
3766 }
3767
3768 drm_gem_object_unreference(&obj->base);
3769 unlock:
3770 mutex_unlock(&dev->struct_mutex);
3771 return ret;
3772 }
3773
3774 int
3775 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3776 struct drm_file *file_priv)
3777 {
3778 return i915_gem_ring_throttle(dev, file_priv);
3779 }
3780
3781 int
3782 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3783 struct drm_file *file_priv)
3784 {
3785 struct drm_i915_gem_madvise *args = data;
3786 struct drm_i915_gem_object *obj;
3787 int ret;
3788
3789 switch (args->madv) {
3790 case I915_MADV_DONTNEED:
3791 case I915_MADV_WILLNEED:
3792 break;
3793 default:
3794 return -EINVAL;
3795 }
3796
3797 ret = i915_mutex_lock_interruptible(dev);
3798 if (ret)
3799 return ret;
3800
3801 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3802 if (&obj->base == NULL) {
3803 ret = -ENOENT;
3804 goto unlock;
3805 }
3806
3807 if (obj->pin_count) {
3808 ret = -EINVAL;
3809 goto out;
3810 }
3811
3812 if (obj->madv != __I915_MADV_PURGED)
3813 obj->madv = args->madv;
3814
3815 /* if the object is no longer attached, discard its backing storage */
3816 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3817 i915_gem_object_truncate(obj);
3818
3819 args->retained = obj->madv != __I915_MADV_PURGED;
3820
3821 out:
3822 drm_gem_object_unreference(&obj->base);
3823 unlock:
3824 mutex_unlock(&dev->struct_mutex);
3825 return ret;
3826 }
3827
3828 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3829 const struct drm_i915_gem_object_ops *ops)
3830 {
3831 INIT_LIST_HEAD(&obj->mm_list);
3832 INIT_LIST_HEAD(&obj->global_list);
3833 INIT_LIST_HEAD(&obj->ring_list);
3834 INIT_LIST_HEAD(&obj->exec_list);
3835
3836 obj->ops = ops;
3837
3838 obj->fence_reg = I915_FENCE_REG_NONE;
3839 obj->madv = I915_MADV_WILLNEED;
3840 /* Avoid an unnecessary call to unbind on the first bind. */
3841 obj->map_and_fenceable = true;
3842
3843 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3844 }
3845
3846 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3847 .get_pages = i915_gem_object_get_pages_gtt,
3848 .put_pages = i915_gem_object_put_pages_gtt,
3849 };
3850
3851 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3852 size_t size)
3853 {
3854 struct drm_i915_gem_object *obj;
3855 struct address_space *mapping;
3856 gfp_t mask;
3857
3858 obj = i915_gem_object_alloc(dev);
3859 if (obj == NULL)
3860 return NULL;
3861
3862 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3863 i915_gem_object_free(obj);
3864 return NULL;
3865 }
3866
3867 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3868 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3869 /* 965gm cannot relocate objects above 4GiB. */
3870 mask &= ~__GFP_HIGHMEM;
3871 mask |= __GFP_DMA32;
3872 }
3873
3874 mapping = file_inode(obj->base.filp)->i_mapping;
3875 mapping_set_gfp_mask(mapping, mask);
3876
3877 i915_gem_object_init(obj, &i915_gem_object_ops);
3878
3879 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3880 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3881
3882 if (HAS_LLC(dev)) {
3883 /* On some devices, we can have the GPU use the LLC (the CPU
3884 * cache) for about a 10% performance improvement
3885 * compared to uncached. Graphics requests other than
3886 * display scanout are coherent with the CPU in
3887 * accessing this cache. This means in this mode we
3888 * don't need to clflush on the CPU side, and on the
3889 * GPU side we only need to flush internal caches to
3890 * get data visible to the CPU.
3891 *
3892 * However, we maintain the display planes as UC, and so
3893 * need to rebind when first used as such.
3894 */
3895 obj->cache_level = I915_CACHE_LLC;
3896 } else
3897 obj->cache_level = I915_CACHE_NONE;
3898
3899 return obj;
3900 }
3901
3902 int i915_gem_init_object(struct drm_gem_object *obj)
3903 {
3904 BUG();
3905
3906 return 0;
3907 }
3908
3909 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3910 {
3911 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3912 struct drm_device *dev = obj->base.dev;
3913 drm_i915_private_t *dev_priv = dev->dev_private;
3914
3915 trace_i915_gem_object_destroy(obj);
3916
3917 if (obj->phys_obj)
3918 i915_gem_detach_phys_object(dev, obj);
3919
3920 obj->pin_count = 0;
3921 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3922 bool was_interruptible;
3923
3924 was_interruptible = dev_priv->mm.interruptible;
3925 dev_priv->mm.interruptible = false;
3926
3927 WARN_ON(i915_gem_object_unbind(obj));
3928
3929 dev_priv->mm.interruptible = was_interruptible;
3930 }
3931
3932 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3933 * before progressing. */
3934 if (obj->stolen)
3935 i915_gem_object_unpin_pages(obj);
3936
3937 if (WARN_ON(obj->pages_pin_count))
3938 obj->pages_pin_count = 0;
3939 i915_gem_object_put_pages(obj);
3940 i915_gem_object_free_mmap_offset(obj);
3941 i915_gem_object_release_stolen(obj);
3942
3943 BUG_ON(obj->pages);
3944
3945 if (obj->base.import_attach)
3946 drm_prime_gem_destroy(&obj->base, NULL);
3947
3948 drm_gem_object_release(&obj->base);
3949 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3950
3951 kfree(obj->bit_17);
3952 i915_gem_object_free(obj);
3953 }
3954
3955 int
3956 i915_gem_idle(struct drm_device *dev)
3957 {
3958 drm_i915_private_t *dev_priv = dev->dev_private;
3959 int ret;
3960
3961 if (dev_priv->ums.mm_suspended) {
3962 mutex_unlock(&dev->struct_mutex);
3963 return 0;
3964 }
3965
3966 ret = i915_gpu_idle(dev);
3967 if (ret) {
3968 mutex_unlock(&dev->struct_mutex);
3969 return ret;
3970 }
3971 i915_gem_retire_requests(dev);
3972
3973 /* Under UMS, be paranoid and evict. */
3974 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3975 i915_gem_evict_everything(dev);
3976
3977 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3978
3979 i915_kernel_lost_context(dev);
3980 i915_gem_cleanup_ringbuffer(dev);
3981
3982 /* Cancel the retire work handler, which should be idle now. */
3983 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3984
3985 return 0;
3986 }
3987
3988 void i915_gem_l3_remap(struct drm_device *dev)
3989 {
3990 drm_i915_private_t *dev_priv = dev->dev_private;
3991 u32 misccpctl;
3992 int i;
3993
3994 if (!HAS_L3_GPU_CACHE(dev))
3995 return;
3996
3997 if (!dev_priv->l3_parity.remap_info)
3998 return;
3999
4000 misccpctl = I915_READ(GEN7_MISCCPCTL);
4001 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4002 POSTING_READ(GEN7_MISCCPCTL);
4003
4004 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4005 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4006 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4007 DRM_DEBUG("0x%x was already programmed to %x\n",
4008 GEN7_L3LOG_BASE + i, remap);
4009 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4010 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4011 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4012 }
4013
4014 /* Make sure all the writes land before disabling dop clock gating */
4015 POSTING_READ(GEN7_L3LOG_BASE);
4016
4017 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4018 }
4019
4020 void i915_gem_init_swizzling(struct drm_device *dev)
4021 {
4022 drm_i915_private_t *dev_priv = dev->dev_private;
4023
4024 if (INTEL_INFO(dev)->gen < 5 ||
4025 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4026 return;
4027
4028 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4029 DISP_TILE_SURFACE_SWIZZLING);
4030
4031 if (IS_GEN5(dev))
4032 return;
4033
4034 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4035 if (IS_GEN6(dev))
4036 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4037 else if (IS_GEN7(dev))
4038 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4039 else
4040 BUG();
4041 }
4042
4043 static bool
4044 intel_enable_blt(struct drm_device *dev)
4045 {
4046 if (!HAS_BLT(dev))
4047 return false;
4048
4049 /* The blitter was dysfunctional on early prototypes */
4050 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4051 DRM_INFO("BLT not supported on this pre-production hardware;"
4052 " graphics performance will be degraded.\n");
4053 return false;
4054 }
4055
4056 return true;
4057 }
4058
4059 static int i915_gem_init_rings(struct drm_device *dev)
4060 {
4061 struct drm_i915_private *dev_priv = dev->dev_private;
4062 int ret;
4063
4064 ret = intel_init_render_ring_buffer(dev);
4065 if (ret)
4066 return ret;
4067
4068 if (HAS_BSD(dev)) {
4069 ret = intel_init_bsd_ring_buffer(dev);
4070 if (ret)
4071 goto cleanup_render_ring;
4072 }
4073
4074 if (intel_enable_blt(dev)) {
4075 ret = intel_init_blt_ring_buffer(dev);
4076 if (ret)
4077 goto cleanup_bsd_ring;
4078 }
4079
4080 if (HAS_VEBOX(dev)) {
4081 ret = intel_init_vebox_ring_buffer(dev);
4082 if (ret)
4083 goto cleanup_blt_ring;
4084 }
4085
4086
4087 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4088 if (ret)
4089 goto cleanup_vebox_ring;
4090
4091 return 0;
4092
4093 cleanup_vebox_ring:
4094 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4095 cleanup_blt_ring:
4096 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4097 cleanup_bsd_ring:
4098 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4099 cleanup_render_ring:
4100 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4101
4102 return ret;
4103 }
4104
4105 int
4106 i915_gem_init_hw(struct drm_device *dev)
4107 {
4108 drm_i915_private_t *dev_priv = dev->dev_private;
4109 int ret;
4110
4111 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4112 return -EIO;
4113
4114 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4115 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4116
4117 if (HAS_PCH_NOP(dev)) {
4118 u32 temp = I915_READ(GEN7_MSG_CTL);
4119 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4120 I915_WRITE(GEN7_MSG_CTL, temp);
4121 }
4122
4123 i915_gem_l3_remap(dev);
4124
4125 i915_gem_init_swizzling(dev);
4126
4127 ret = i915_gem_init_rings(dev);
4128 if (ret)
4129 return ret;
4130
4131 /*
4132 * XXX: There was some w/a described somewhere suggesting loading
4133 * contexts before PPGTT.
4134 */
4135 i915_gem_context_init(dev);
4136 if (dev_priv->mm.aliasing_ppgtt) {
4137 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4138 if (ret) {
4139 i915_gem_cleanup_aliasing_ppgtt(dev);
4140 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4141 }
4142 }
4143
4144 return 0;
4145 }
4146
4147 int i915_gem_init(struct drm_device *dev)
4148 {
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 int ret;
4151
4152 mutex_lock(&dev->struct_mutex);
4153
4154 if (IS_VALLEYVIEW(dev)) {
4155 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4156 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4157 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4158 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4159 }
4160
4161 i915_gem_init_global_gtt(dev);
4162
4163 ret = i915_gem_init_hw(dev);
4164 mutex_unlock(&dev->struct_mutex);
4165 if (ret) {
4166 i915_gem_cleanup_aliasing_ppgtt(dev);
4167 return ret;
4168 }
4169
4170 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4171 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4172 dev_priv->dri1.allow_batchbuffer = 1;
4173 return 0;
4174 }
4175
4176 void
4177 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4178 {
4179 drm_i915_private_t *dev_priv = dev->dev_private;
4180 struct intel_ring_buffer *ring;
4181 int i;
4182
4183 for_each_ring(ring, dev_priv, i)
4184 intel_cleanup_ring_buffer(ring);
4185 }
4186
4187 int
4188 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4189 struct drm_file *file_priv)
4190 {
4191 struct drm_i915_private *dev_priv = dev->dev_private;
4192 int ret;
4193
4194 if (drm_core_check_feature(dev, DRIVER_MODESET))
4195 return 0;
4196
4197 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4198 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4199 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4200 }
4201
4202 mutex_lock(&dev->struct_mutex);
4203 dev_priv->ums.mm_suspended = 0;
4204
4205 ret = i915_gem_init_hw(dev);
4206 if (ret != 0) {
4207 mutex_unlock(&dev->struct_mutex);
4208 return ret;
4209 }
4210
4211 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4212 mutex_unlock(&dev->struct_mutex);
4213
4214 ret = drm_irq_install(dev);
4215 if (ret)
4216 goto cleanup_ringbuffer;
4217
4218 return 0;
4219
4220 cleanup_ringbuffer:
4221 mutex_lock(&dev->struct_mutex);
4222 i915_gem_cleanup_ringbuffer(dev);
4223 dev_priv->ums.mm_suspended = 1;
4224 mutex_unlock(&dev->struct_mutex);
4225
4226 return ret;
4227 }
4228
4229 int
4230 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4231 struct drm_file *file_priv)
4232 {
4233 struct drm_i915_private *dev_priv = dev->dev_private;
4234 int ret;
4235
4236 if (drm_core_check_feature(dev, DRIVER_MODESET))
4237 return 0;
4238
4239 drm_irq_uninstall(dev);
4240
4241 mutex_lock(&dev->struct_mutex);
4242 ret = i915_gem_idle(dev);
4243
4244 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4245 * We need to replace this with a semaphore, or something.
4246 * And not confound ums.mm_suspended!
4247 */
4248 if (ret != 0)
4249 dev_priv->ums.mm_suspended = 1;
4250 mutex_unlock(&dev->struct_mutex);
4251
4252 return ret;
4253 }
4254
4255 void
4256 i915_gem_lastclose(struct drm_device *dev)
4257 {
4258 int ret;
4259
4260 if (drm_core_check_feature(dev, DRIVER_MODESET))
4261 return;
4262
4263 mutex_lock(&dev->struct_mutex);
4264 ret = i915_gem_idle(dev);
4265 if (ret)
4266 DRM_ERROR("failed to idle hardware: %d\n", ret);
4267 mutex_unlock(&dev->struct_mutex);
4268 }
4269
4270 static void
4271 init_ring_lists(struct intel_ring_buffer *ring)
4272 {
4273 INIT_LIST_HEAD(&ring->active_list);
4274 INIT_LIST_HEAD(&ring->request_list);
4275 }
4276
4277 void
4278 i915_gem_load(struct drm_device *dev)
4279 {
4280 drm_i915_private_t *dev_priv = dev->dev_private;
4281 int i;
4282
4283 dev_priv->slab =
4284 kmem_cache_create("i915_gem_object",
4285 sizeof(struct drm_i915_gem_object), 0,
4286 SLAB_HWCACHE_ALIGN,
4287 NULL);
4288
4289 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4290 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4291 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4292 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4293 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4294 for (i = 0; i < I915_NUM_RINGS; i++)
4295 init_ring_lists(&dev_priv->ring[i]);
4296 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4297 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4298 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4299 i915_gem_retire_work_handler);
4300 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4301
4302 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4303 if (IS_GEN3(dev)) {
4304 I915_WRITE(MI_ARB_STATE,
4305 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4306 }
4307
4308 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4309
4310 /* Old X drivers will take 0-2 for front, back, depth buffers */
4311 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4312 dev_priv->fence_reg_start = 3;
4313
4314 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4315 dev_priv->num_fence_regs = 32;
4316 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4317 dev_priv->num_fence_regs = 16;
4318 else
4319 dev_priv->num_fence_regs = 8;
4320
4321 /* Initialize fence registers to zero */
4322 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4323 i915_gem_restore_fences(dev);
4324
4325 i915_gem_detect_bit_6_swizzle(dev);
4326 init_waitqueue_head(&dev_priv->pending_flip_queue);
4327
4328 dev_priv->mm.interruptible = true;
4329
4330 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4331 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4332 register_shrinker(&dev_priv->mm.inactive_shrinker);
4333 }
4334
4335 /*
4336 * Create a physically contiguous memory object for this object
4337 * e.g. for cursor + overlay regs
4338 */
4339 static int i915_gem_init_phys_object(struct drm_device *dev,
4340 int id, int size, int align)
4341 {
4342 drm_i915_private_t *dev_priv = dev->dev_private;
4343 struct drm_i915_gem_phys_object *phys_obj;
4344 int ret;
4345
4346 if (dev_priv->mm.phys_objs[id - 1] || !size)
4347 return 0;
4348
4349 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4350 if (!phys_obj)
4351 return -ENOMEM;
4352
4353 phys_obj->id = id;
4354
4355 phys_obj->handle = drm_pci_alloc(dev, size, align);
4356 if (!phys_obj->handle) {
4357 ret = -ENOMEM;
4358 goto kfree_obj;
4359 }
4360 #ifdef CONFIG_X86
4361 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4362 #endif
4363
4364 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4365
4366 return 0;
4367 kfree_obj:
4368 kfree(phys_obj);
4369 return ret;
4370 }
4371
4372 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4373 {
4374 drm_i915_private_t *dev_priv = dev->dev_private;
4375 struct drm_i915_gem_phys_object *phys_obj;
4376
4377 if (!dev_priv->mm.phys_objs[id - 1])
4378 return;
4379
4380 phys_obj = dev_priv->mm.phys_objs[id - 1];
4381 if (phys_obj->cur_obj) {
4382 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4383 }
4384
4385 #ifdef CONFIG_X86
4386 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4387 #endif
4388 drm_pci_free(dev, phys_obj->handle);
4389 kfree(phys_obj);
4390 dev_priv->mm.phys_objs[id - 1] = NULL;
4391 }
4392
4393 void i915_gem_free_all_phys_object(struct drm_device *dev)
4394 {
4395 int i;
4396
4397 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4398 i915_gem_free_phys_object(dev, i);
4399 }
4400
4401 void i915_gem_detach_phys_object(struct drm_device *dev,
4402 struct drm_i915_gem_object *obj)
4403 {
4404 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4405 char *vaddr;
4406 int i;
4407 int page_count;
4408
4409 if (!obj->phys_obj)
4410 return;
4411 vaddr = obj->phys_obj->handle->vaddr;
4412
4413 page_count = obj->base.size / PAGE_SIZE;
4414 for (i = 0; i < page_count; i++) {
4415 struct page *page = shmem_read_mapping_page(mapping, i);
4416 if (!IS_ERR(page)) {
4417 char *dst = kmap_atomic(page);
4418 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4419 kunmap_atomic(dst);
4420
4421 drm_clflush_pages(&page, 1);
4422
4423 set_page_dirty(page);
4424 mark_page_accessed(page);
4425 page_cache_release(page);
4426 }
4427 }
4428 i915_gem_chipset_flush(dev);
4429
4430 obj->phys_obj->cur_obj = NULL;
4431 obj->phys_obj = NULL;
4432 }
4433
4434 int
4435 i915_gem_attach_phys_object(struct drm_device *dev,
4436 struct drm_i915_gem_object *obj,
4437 int id,
4438 int align)
4439 {
4440 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4441 drm_i915_private_t *dev_priv = dev->dev_private;
4442 int ret = 0;
4443 int page_count;
4444 int i;
4445
4446 if (id > I915_MAX_PHYS_OBJECT)
4447 return -EINVAL;
4448
4449 if (obj->phys_obj) {
4450 if (obj->phys_obj->id == id)
4451 return 0;
4452 i915_gem_detach_phys_object(dev, obj);
4453 }
4454
4455 /* create a new object */
4456 if (!dev_priv->mm.phys_objs[id - 1]) {
4457 ret = i915_gem_init_phys_object(dev, id,
4458 obj->base.size, align);
4459 if (ret) {
4460 DRM_ERROR("failed to init phys object %d size: %zu\n",
4461 id, obj->base.size);
4462 return ret;
4463 }
4464 }
4465
4466 /* bind to the object */
4467 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4468 obj->phys_obj->cur_obj = obj;
4469
4470 page_count = obj->base.size / PAGE_SIZE;
4471
4472 for (i = 0; i < page_count; i++) {
4473 struct page *page;
4474 char *dst, *src;
4475
4476 page = shmem_read_mapping_page(mapping, i);
4477 if (IS_ERR(page))
4478 return PTR_ERR(page);
4479
4480 src = kmap_atomic(page);
4481 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4482 memcpy(dst, src, PAGE_SIZE);
4483 kunmap_atomic(src);
4484
4485 mark_page_accessed(page);
4486 page_cache_release(page);
4487 }
4488
4489 return 0;
4490 }
4491
4492 static int
4493 i915_gem_phys_pwrite(struct drm_device *dev,
4494 struct drm_i915_gem_object *obj,
4495 struct drm_i915_gem_pwrite *args,
4496 struct drm_file *file_priv)
4497 {
4498 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4499 char __user *user_data = to_user_ptr(args->data_ptr);
4500
4501 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4502 unsigned long unwritten;
4503
4504 /* The physical object once assigned is fixed for the lifetime
4505 * of the obj, so we can safely drop the lock and continue
4506 * to access vaddr.
4507 */
4508 mutex_unlock(&dev->struct_mutex);
4509 unwritten = copy_from_user(vaddr, user_data, args->size);
4510 mutex_lock(&dev->struct_mutex);
4511 if (unwritten)
4512 return -EFAULT;
4513 }
4514
4515 i915_gem_chipset_flush(dev);
4516 return 0;
4517 }
4518
4519 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4520 {
4521 struct drm_i915_file_private *file_priv = file->driver_priv;
4522
4523 /* Clean up our request list when the client is going away, so that
4524 * later retire_requests won't dereference our soon-to-be-gone
4525 * file_priv.
4526 */
4527 spin_lock(&file_priv->mm.lock);
4528 while (!list_empty(&file_priv->mm.request_list)) {
4529 struct drm_i915_gem_request *request;
4530
4531 request = list_first_entry(&file_priv->mm.request_list,
4532 struct drm_i915_gem_request,
4533 client_list);
4534 list_del(&request->client_list);
4535 request->file_priv = NULL;
4536 }
4537 spin_unlock(&file_priv->mm.lock);
4538 }
4539
4540 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4541 {
4542 if (!mutex_is_locked(mutex))
4543 return false;
4544
4545 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4546 return mutex->owner == task;
4547 #else
4548 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4549 return false;
4550 #endif
4551 }
4552
4553 static int
4554 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4555 {
4556 struct drm_i915_private *dev_priv =
4557 container_of(shrinker,
4558 struct drm_i915_private,
4559 mm.inactive_shrinker);
4560 struct drm_device *dev = dev_priv->dev;
4561 struct drm_i915_gem_object *obj;
4562 int nr_to_scan = sc->nr_to_scan;
4563 bool unlock = true;
4564 int cnt;
4565
4566 if (!mutex_trylock(&dev->struct_mutex)) {
4567 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4568 return 0;
4569
4570 if (dev_priv->mm.shrinker_no_lock_stealing)
4571 return 0;
4572
4573 unlock = false;
4574 }
4575
4576 if (nr_to_scan) {
4577 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4578 if (nr_to_scan > 0)
4579 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4580 false);
4581 if (nr_to_scan > 0)
4582 i915_gem_shrink_all(dev_priv);
4583 }
4584
4585 cnt = 0;
4586 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4587 if (obj->pages_pin_count == 0)
4588 cnt += obj->base.size >> PAGE_SHIFT;
4589 list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list)
4590 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4591 cnt += obj->base.size >> PAGE_SHIFT;
4592
4593 if (unlock)
4594 mutex_unlock(&dev->struct_mutex);
4595 return cnt;
4596 }
This page took 0.159788 seconds and 4 git commands to generate.