86cf428b6c4e251bcdc7c4351cc1e95753789d84
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 static int
212 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
213 {
214 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
215 char *vaddr = obj->phys_handle->vaddr;
216 struct sg_table *st;
217 struct scatterlist *sg;
218 int i;
219
220 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
221 return -EINVAL;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page;
225 char *src;
226
227 page = shmem_read_mapping_page(mapping, i);
228 if (IS_ERR(page))
229 return PTR_ERR(page);
230
231 src = kmap_atomic(page);
232 memcpy(vaddr, src, PAGE_SIZE);
233 drm_clflush_virt_range(vaddr, PAGE_SIZE);
234 kunmap_atomic(src);
235
236 page_cache_release(page);
237 vaddr += PAGE_SIZE;
238 }
239
240 i915_gem_chipset_flush(obj->base.dev);
241
242 st = kmalloc(sizeof(*st), GFP_KERNEL);
243 if (st == NULL)
244 return -ENOMEM;
245
246 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
247 kfree(st);
248 return -ENOMEM;
249 }
250
251 sg = st->sgl;
252 sg->offset = 0;
253 sg->length = obj->base.size;
254
255 sg_dma_address(sg) = obj->phys_handle->busaddr;
256 sg_dma_len(sg) = obj->base.size;
257
258 obj->pages = st;
259 obj->has_dma_mapping = true;
260 return 0;
261 }
262
263 static void
264 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
265 {
266 int ret;
267
268 BUG_ON(obj->madv == __I915_MADV_PURGED);
269
270 ret = i915_gem_object_set_to_cpu_domain(obj, true);
271 if (ret) {
272 /* In the event of a disaster, abandon all caches and
273 * hope for the best.
274 */
275 WARN_ON(ret != -EIO);
276 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
277 }
278
279 if (obj->madv == I915_MADV_DONTNEED)
280 obj->dirty = 0;
281
282 if (obj->dirty) {
283 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
284 char *vaddr = obj->phys_handle->vaddr;
285 int i;
286
287 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
288 struct page *page;
289 char *dst;
290
291 page = shmem_read_mapping_page(mapping, i);
292 if (IS_ERR(page))
293 continue;
294
295 dst = kmap_atomic(page);
296 drm_clflush_virt_range(vaddr, PAGE_SIZE);
297 memcpy(dst, vaddr, PAGE_SIZE);
298 kunmap_atomic(dst);
299
300 set_page_dirty(page);
301 if (obj->madv == I915_MADV_WILLNEED)
302 mark_page_accessed(page);
303 page_cache_release(page);
304 vaddr += PAGE_SIZE;
305 }
306 obj->dirty = 0;
307 }
308
309 sg_free_table(obj->pages);
310 kfree(obj->pages);
311
312 obj->has_dma_mapping = false;
313 }
314
315 static void
316 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
317 {
318 drm_pci_free(obj->base.dev, obj->phys_handle);
319 }
320
321 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
322 .get_pages = i915_gem_object_get_pages_phys,
323 .put_pages = i915_gem_object_put_pages_phys,
324 .release = i915_gem_object_release_phys,
325 };
326
327 static int
328 drop_pages(struct drm_i915_gem_object *obj)
329 {
330 struct i915_vma *vma, *next;
331 int ret;
332
333 drm_gem_object_reference(&obj->base);
334 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
335 if (i915_vma_unbind(vma))
336 break;
337
338 ret = i915_gem_object_put_pages(obj);
339 drm_gem_object_unreference(&obj->base);
340
341 return ret;
342 }
343
344 int
345 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
346 int align)
347 {
348 drm_dma_handle_t *phys;
349 int ret;
350
351 if (obj->phys_handle) {
352 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
353 return -EBUSY;
354
355 return 0;
356 }
357
358 if (obj->madv != I915_MADV_WILLNEED)
359 return -EFAULT;
360
361 if (obj->base.filp == NULL)
362 return -EINVAL;
363
364 ret = drop_pages(obj);
365 if (ret)
366 return ret;
367
368 /* create a new object */
369 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
370 if (!phys)
371 return -ENOMEM;
372
373 obj->phys_handle = phys;
374 obj->ops = &i915_gem_phys_ops;
375
376 return i915_gem_object_get_pages(obj);
377 }
378
379 static int
380 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
381 struct drm_i915_gem_pwrite *args,
382 struct drm_file *file_priv)
383 {
384 struct drm_device *dev = obj->base.dev;
385 void *vaddr = obj->phys_handle->vaddr + args->offset;
386 char __user *user_data = to_user_ptr(args->data_ptr);
387 int ret;
388
389 /* We manually control the domain here and pretend that it
390 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
391 */
392 ret = i915_gem_object_wait_rendering(obj, false);
393 if (ret)
394 return ret;
395
396 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
397 unsigned long unwritten;
398
399 /* The physical object once assigned is fixed for the lifetime
400 * of the obj, so we can safely drop the lock and continue
401 * to access vaddr.
402 */
403 mutex_unlock(&dev->struct_mutex);
404 unwritten = copy_from_user(vaddr, user_data, args->size);
405 mutex_lock(&dev->struct_mutex);
406 if (unwritten)
407 return -EFAULT;
408 }
409
410 drm_clflush_virt_range(vaddr, args->size);
411 i915_gem_chipset_flush(dev);
412 return 0;
413 }
414
415 void *i915_gem_object_alloc(struct drm_device *dev)
416 {
417 struct drm_i915_private *dev_priv = dev->dev_private;
418 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
419 }
420
421 void i915_gem_object_free(struct drm_i915_gem_object *obj)
422 {
423 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
424 kmem_cache_free(dev_priv->slab, obj);
425 }
426
427 static int
428 i915_gem_create(struct drm_file *file,
429 struct drm_device *dev,
430 uint64_t size,
431 uint32_t *handle_p)
432 {
433 struct drm_i915_gem_object *obj;
434 int ret;
435 u32 handle;
436
437 size = roundup(size, PAGE_SIZE);
438 if (size == 0)
439 return -EINVAL;
440
441 /* Allocate the new object */
442 obj = i915_gem_alloc_object(dev, size);
443 if (obj == NULL)
444 return -ENOMEM;
445
446 ret = drm_gem_handle_create(file, &obj->base, &handle);
447 /* drop reference from allocate - handle holds it now */
448 drm_gem_object_unreference_unlocked(&obj->base);
449 if (ret)
450 return ret;
451
452 *handle_p = handle;
453 return 0;
454 }
455
456 int
457 i915_gem_dumb_create(struct drm_file *file,
458 struct drm_device *dev,
459 struct drm_mode_create_dumb *args)
460 {
461 /* have to work out size/pitch and return them */
462 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
463 args->size = args->pitch * args->height;
464 return i915_gem_create(file, dev,
465 args->size, &args->handle);
466 }
467
468 /**
469 * Creates a new mm object and returns a handle to it.
470 */
471 int
472 i915_gem_create_ioctl(struct drm_device *dev, void *data,
473 struct drm_file *file)
474 {
475 struct drm_i915_gem_create *args = data;
476
477 return i915_gem_create(file, dev,
478 args->size, &args->handle);
479 }
480
481 static inline int
482 __copy_to_user_swizzled(char __user *cpu_vaddr,
483 const char *gpu_vaddr, int gpu_offset,
484 int length)
485 {
486 int ret, cpu_offset = 0;
487
488 while (length > 0) {
489 int cacheline_end = ALIGN(gpu_offset + 1, 64);
490 int this_length = min(cacheline_end - gpu_offset, length);
491 int swizzled_gpu_offset = gpu_offset ^ 64;
492
493 ret = __copy_to_user(cpu_vaddr + cpu_offset,
494 gpu_vaddr + swizzled_gpu_offset,
495 this_length);
496 if (ret)
497 return ret + length;
498
499 cpu_offset += this_length;
500 gpu_offset += this_length;
501 length -= this_length;
502 }
503
504 return 0;
505 }
506
507 static inline int
508 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
509 const char __user *cpu_vaddr,
510 int length)
511 {
512 int ret, cpu_offset = 0;
513
514 while (length > 0) {
515 int cacheline_end = ALIGN(gpu_offset + 1, 64);
516 int this_length = min(cacheline_end - gpu_offset, length);
517 int swizzled_gpu_offset = gpu_offset ^ 64;
518
519 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
520 cpu_vaddr + cpu_offset,
521 this_length);
522 if (ret)
523 return ret + length;
524
525 cpu_offset += this_length;
526 gpu_offset += this_length;
527 length -= this_length;
528 }
529
530 return 0;
531 }
532
533 /*
534 * Pins the specified object's pages and synchronizes the object with
535 * GPU accesses. Sets needs_clflush to non-zero if the caller should
536 * flush the object from the CPU cache.
537 */
538 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
539 int *needs_clflush)
540 {
541 int ret;
542
543 *needs_clflush = 0;
544
545 if (!obj->base.filp)
546 return -EINVAL;
547
548 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
549 /* If we're not in the cpu read domain, set ourself into the gtt
550 * read domain and manually flush cachelines (if required). This
551 * optimizes for the case when the gpu will dirty the data
552 * anyway again before the next pread happens. */
553 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
554 obj->cache_level);
555 ret = i915_gem_object_wait_rendering(obj, true);
556 if (ret)
557 return ret;
558
559 i915_gem_object_retire(obj);
560 }
561
562 ret = i915_gem_object_get_pages(obj);
563 if (ret)
564 return ret;
565
566 i915_gem_object_pin_pages(obj);
567
568 return ret;
569 }
570
571 /* Per-page copy function for the shmem pread fastpath.
572 * Flushes invalid cachelines before reading the target if
573 * needs_clflush is set. */
574 static int
575 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
576 char __user *user_data,
577 bool page_do_bit17_swizzling, bool needs_clflush)
578 {
579 char *vaddr;
580 int ret;
581
582 if (unlikely(page_do_bit17_swizzling))
583 return -EINVAL;
584
585 vaddr = kmap_atomic(page);
586 if (needs_clflush)
587 drm_clflush_virt_range(vaddr + shmem_page_offset,
588 page_length);
589 ret = __copy_to_user_inatomic(user_data,
590 vaddr + shmem_page_offset,
591 page_length);
592 kunmap_atomic(vaddr);
593
594 return ret ? -EFAULT : 0;
595 }
596
597 static void
598 shmem_clflush_swizzled_range(char *addr, unsigned long length,
599 bool swizzled)
600 {
601 if (unlikely(swizzled)) {
602 unsigned long start = (unsigned long) addr;
603 unsigned long end = (unsigned long) addr + length;
604
605 /* For swizzling simply ensure that we always flush both
606 * channels. Lame, but simple and it works. Swizzled
607 * pwrite/pread is far from a hotpath - current userspace
608 * doesn't use it at all. */
609 start = round_down(start, 128);
610 end = round_up(end, 128);
611
612 drm_clflush_virt_range((void *)start, end - start);
613 } else {
614 drm_clflush_virt_range(addr, length);
615 }
616
617 }
618
619 /* Only difference to the fast-path function is that this can handle bit17
620 * and uses non-atomic copy and kmap functions. */
621 static int
622 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
623 char __user *user_data,
624 bool page_do_bit17_swizzling, bool needs_clflush)
625 {
626 char *vaddr;
627 int ret;
628
629 vaddr = kmap(page);
630 if (needs_clflush)
631 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
632 page_length,
633 page_do_bit17_swizzling);
634
635 if (page_do_bit17_swizzling)
636 ret = __copy_to_user_swizzled(user_data,
637 vaddr, shmem_page_offset,
638 page_length);
639 else
640 ret = __copy_to_user(user_data,
641 vaddr + shmem_page_offset,
642 page_length);
643 kunmap(page);
644
645 return ret ? - EFAULT : 0;
646 }
647
648 static int
649 i915_gem_shmem_pread(struct drm_device *dev,
650 struct drm_i915_gem_object *obj,
651 struct drm_i915_gem_pread *args,
652 struct drm_file *file)
653 {
654 char __user *user_data;
655 ssize_t remain;
656 loff_t offset;
657 int shmem_page_offset, page_length, ret = 0;
658 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
659 int prefaulted = 0;
660 int needs_clflush = 0;
661 struct sg_page_iter sg_iter;
662
663 user_data = to_user_ptr(args->data_ptr);
664 remain = args->size;
665
666 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
667
668 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
669 if (ret)
670 return ret;
671
672 offset = args->offset;
673
674 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
675 offset >> PAGE_SHIFT) {
676 struct page *page = sg_page_iter_page(&sg_iter);
677
678 if (remain <= 0)
679 break;
680
681 /* Operation in this page
682 *
683 * shmem_page_offset = offset within page in shmem file
684 * page_length = bytes to copy for this page
685 */
686 shmem_page_offset = offset_in_page(offset);
687 page_length = remain;
688 if ((shmem_page_offset + page_length) > PAGE_SIZE)
689 page_length = PAGE_SIZE - shmem_page_offset;
690
691 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
692 (page_to_phys(page) & (1 << 17)) != 0;
693
694 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
695 user_data, page_do_bit17_swizzling,
696 needs_clflush);
697 if (ret == 0)
698 goto next_page;
699
700 mutex_unlock(&dev->struct_mutex);
701
702 if (likely(!i915.prefault_disable) && !prefaulted) {
703 ret = fault_in_multipages_writeable(user_data, remain);
704 /* Userspace is tricking us, but we've already clobbered
705 * its pages with the prefault and promised to write the
706 * data up to the first fault. Hence ignore any errors
707 * and just continue. */
708 (void)ret;
709 prefaulted = 1;
710 }
711
712 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
713 user_data, page_do_bit17_swizzling,
714 needs_clflush);
715
716 mutex_lock(&dev->struct_mutex);
717
718 if (ret)
719 goto out;
720
721 next_page:
722 remain -= page_length;
723 user_data += page_length;
724 offset += page_length;
725 }
726
727 out:
728 i915_gem_object_unpin_pages(obj);
729
730 return ret;
731 }
732
733 /**
734 * Reads data from the object referenced by handle.
735 *
736 * On error, the contents of *data are undefined.
737 */
738 int
739 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
740 struct drm_file *file)
741 {
742 struct drm_i915_gem_pread *args = data;
743 struct drm_i915_gem_object *obj;
744 int ret = 0;
745
746 if (args->size == 0)
747 return 0;
748
749 if (!access_ok(VERIFY_WRITE,
750 to_user_ptr(args->data_ptr),
751 args->size))
752 return -EFAULT;
753
754 ret = i915_mutex_lock_interruptible(dev);
755 if (ret)
756 return ret;
757
758 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
759 if (&obj->base == NULL) {
760 ret = -ENOENT;
761 goto unlock;
762 }
763
764 /* Bounds check source. */
765 if (args->offset > obj->base.size ||
766 args->size > obj->base.size - args->offset) {
767 ret = -EINVAL;
768 goto out;
769 }
770
771 /* prime objects have no backing filp to GEM pread/pwrite
772 * pages from.
773 */
774 if (!obj->base.filp) {
775 ret = -EINVAL;
776 goto out;
777 }
778
779 trace_i915_gem_object_pread(obj, args->offset, args->size);
780
781 ret = i915_gem_shmem_pread(dev, obj, args, file);
782
783 out:
784 drm_gem_object_unreference(&obj->base);
785 unlock:
786 mutex_unlock(&dev->struct_mutex);
787 return ret;
788 }
789
790 /* This is the fast write path which cannot handle
791 * page faults in the source data
792 */
793
794 static inline int
795 fast_user_write(struct io_mapping *mapping,
796 loff_t page_base, int page_offset,
797 char __user *user_data,
798 int length)
799 {
800 void __iomem *vaddr_atomic;
801 void *vaddr;
802 unsigned long unwritten;
803
804 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
805 /* We can use the cpu mem copy function because this is X86. */
806 vaddr = (void __force*)vaddr_atomic + page_offset;
807 unwritten = __copy_from_user_inatomic_nocache(vaddr,
808 user_data, length);
809 io_mapping_unmap_atomic(vaddr_atomic);
810 return unwritten;
811 }
812
813 /**
814 * This is the fast pwrite path, where we copy the data directly from the
815 * user into the GTT, uncached.
816 */
817 static int
818 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
819 struct drm_i915_gem_object *obj,
820 struct drm_i915_gem_pwrite *args,
821 struct drm_file *file)
822 {
823 struct drm_i915_private *dev_priv = dev->dev_private;
824 ssize_t remain;
825 loff_t offset, page_base;
826 char __user *user_data;
827 int page_offset, page_length, ret;
828
829 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
830 if (ret)
831 goto out;
832
833 ret = i915_gem_object_set_to_gtt_domain(obj, true);
834 if (ret)
835 goto out_unpin;
836
837 ret = i915_gem_object_put_fence(obj);
838 if (ret)
839 goto out_unpin;
840
841 user_data = to_user_ptr(args->data_ptr);
842 remain = args->size;
843
844 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
845
846 while (remain > 0) {
847 /* Operation in this page
848 *
849 * page_base = page offset within aperture
850 * page_offset = offset within page
851 * page_length = bytes to copy for this page
852 */
853 page_base = offset & PAGE_MASK;
854 page_offset = offset_in_page(offset);
855 page_length = remain;
856 if ((page_offset + remain) > PAGE_SIZE)
857 page_length = PAGE_SIZE - page_offset;
858
859 /* If we get a fault while copying data, then (presumably) our
860 * source page isn't available. Return the error and we'll
861 * retry in the slow path.
862 */
863 if (fast_user_write(dev_priv->gtt.mappable, page_base,
864 page_offset, user_data, page_length)) {
865 ret = -EFAULT;
866 goto out_unpin;
867 }
868
869 remain -= page_length;
870 user_data += page_length;
871 offset += page_length;
872 }
873
874 out_unpin:
875 i915_gem_object_ggtt_unpin(obj);
876 out:
877 return ret;
878 }
879
880 /* Per-page copy function for the shmem pwrite fastpath.
881 * Flushes invalid cachelines before writing to the target if
882 * needs_clflush_before is set and flushes out any written cachelines after
883 * writing if needs_clflush is set. */
884 static int
885 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
886 char __user *user_data,
887 bool page_do_bit17_swizzling,
888 bool needs_clflush_before,
889 bool needs_clflush_after)
890 {
891 char *vaddr;
892 int ret;
893
894 if (unlikely(page_do_bit17_swizzling))
895 return -EINVAL;
896
897 vaddr = kmap_atomic(page);
898 if (needs_clflush_before)
899 drm_clflush_virt_range(vaddr + shmem_page_offset,
900 page_length);
901 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
902 user_data, page_length);
903 if (needs_clflush_after)
904 drm_clflush_virt_range(vaddr + shmem_page_offset,
905 page_length);
906 kunmap_atomic(vaddr);
907
908 return ret ? -EFAULT : 0;
909 }
910
911 /* Only difference to the fast-path function is that this can handle bit17
912 * and uses non-atomic copy and kmap functions. */
913 static int
914 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
915 char __user *user_data,
916 bool page_do_bit17_swizzling,
917 bool needs_clflush_before,
918 bool needs_clflush_after)
919 {
920 char *vaddr;
921 int ret;
922
923 vaddr = kmap(page);
924 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
925 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
926 page_length,
927 page_do_bit17_swizzling);
928 if (page_do_bit17_swizzling)
929 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
930 user_data,
931 page_length);
932 else
933 ret = __copy_from_user(vaddr + shmem_page_offset,
934 user_data,
935 page_length);
936 if (needs_clflush_after)
937 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
938 page_length,
939 page_do_bit17_swizzling);
940 kunmap(page);
941
942 return ret ? -EFAULT : 0;
943 }
944
945 static int
946 i915_gem_shmem_pwrite(struct drm_device *dev,
947 struct drm_i915_gem_object *obj,
948 struct drm_i915_gem_pwrite *args,
949 struct drm_file *file)
950 {
951 ssize_t remain;
952 loff_t offset;
953 char __user *user_data;
954 int shmem_page_offset, page_length, ret = 0;
955 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
956 int hit_slowpath = 0;
957 int needs_clflush_after = 0;
958 int needs_clflush_before = 0;
959 struct sg_page_iter sg_iter;
960
961 user_data = to_user_ptr(args->data_ptr);
962 remain = args->size;
963
964 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
965
966 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
967 /* If we're not in the cpu write domain, set ourself into the gtt
968 * write domain and manually flush cachelines (if required). This
969 * optimizes for the case when the gpu will use the data
970 * right away and we therefore have to clflush anyway. */
971 needs_clflush_after = cpu_write_needs_clflush(obj);
972 ret = i915_gem_object_wait_rendering(obj, false);
973 if (ret)
974 return ret;
975
976 i915_gem_object_retire(obj);
977 }
978 /* Same trick applies to invalidate partially written cachelines read
979 * before writing. */
980 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
981 needs_clflush_before =
982 !cpu_cache_is_coherent(dev, obj->cache_level);
983
984 ret = i915_gem_object_get_pages(obj);
985 if (ret)
986 return ret;
987
988 i915_gem_object_pin_pages(obj);
989
990 offset = args->offset;
991 obj->dirty = 1;
992
993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
994 offset >> PAGE_SHIFT) {
995 struct page *page = sg_page_iter_page(&sg_iter);
996 int partial_cacheline_write;
997
998 if (remain <= 0)
999 break;
1000
1001 /* Operation in this page
1002 *
1003 * shmem_page_offset = offset within page in shmem file
1004 * page_length = bytes to copy for this page
1005 */
1006 shmem_page_offset = offset_in_page(offset);
1007
1008 page_length = remain;
1009 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1010 page_length = PAGE_SIZE - shmem_page_offset;
1011
1012 /* If we don't overwrite a cacheline completely we need to be
1013 * careful to have up-to-date data by first clflushing. Don't
1014 * overcomplicate things and flush the entire patch. */
1015 partial_cacheline_write = needs_clflush_before &&
1016 ((shmem_page_offset | page_length)
1017 & (boot_cpu_data.x86_clflush_size - 1));
1018
1019 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1020 (page_to_phys(page) & (1 << 17)) != 0;
1021
1022 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1023 user_data, page_do_bit17_swizzling,
1024 partial_cacheline_write,
1025 needs_clflush_after);
1026 if (ret == 0)
1027 goto next_page;
1028
1029 hit_slowpath = 1;
1030 mutex_unlock(&dev->struct_mutex);
1031 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1032 user_data, page_do_bit17_swizzling,
1033 partial_cacheline_write,
1034 needs_clflush_after);
1035
1036 mutex_lock(&dev->struct_mutex);
1037
1038 if (ret)
1039 goto out;
1040
1041 next_page:
1042 remain -= page_length;
1043 user_data += page_length;
1044 offset += page_length;
1045 }
1046
1047 out:
1048 i915_gem_object_unpin_pages(obj);
1049
1050 if (hit_slowpath) {
1051 /*
1052 * Fixup: Flush cpu caches in case we didn't flush the dirty
1053 * cachelines in-line while writing and the object moved
1054 * out of the cpu write domain while we've dropped the lock.
1055 */
1056 if (!needs_clflush_after &&
1057 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1058 if (i915_gem_clflush_object(obj, obj->pin_display))
1059 i915_gem_chipset_flush(dev);
1060 }
1061 }
1062
1063 if (needs_clflush_after)
1064 i915_gem_chipset_flush(dev);
1065
1066 return ret;
1067 }
1068
1069 /**
1070 * Writes data to the object referenced by handle.
1071 *
1072 * On error, the contents of the buffer that were to be modified are undefined.
1073 */
1074 int
1075 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1076 struct drm_file *file)
1077 {
1078 struct drm_i915_gem_pwrite *args = data;
1079 struct drm_i915_gem_object *obj;
1080 int ret;
1081
1082 if (args->size == 0)
1083 return 0;
1084
1085 if (!access_ok(VERIFY_READ,
1086 to_user_ptr(args->data_ptr),
1087 args->size))
1088 return -EFAULT;
1089
1090 if (likely(!i915.prefault_disable)) {
1091 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1092 args->size);
1093 if (ret)
1094 return -EFAULT;
1095 }
1096
1097 ret = i915_mutex_lock_interruptible(dev);
1098 if (ret)
1099 return ret;
1100
1101 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1102 if (&obj->base == NULL) {
1103 ret = -ENOENT;
1104 goto unlock;
1105 }
1106
1107 /* Bounds check destination. */
1108 if (args->offset > obj->base.size ||
1109 args->size > obj->base.size - args->offset) {
1110 ret = -EINVAL;
1111 goto out;
1112 }
1113
1114 /* prime objects have no backing filp to GEM pread/pwrite
1115 * pages from.
1116 */
1117 if (!obj->base.filp) {
1118 ret = -EINVAL;
1119 goto out;
1120 }
1121
1122 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1123
1124 ret = -EFAULT;
1125 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1126 * it would end up going through the fenced access, and we'll get
1127 * different detiling behavior between reading and writing.
1128 * pread/pwrite currently are reading and writing from the CPU
1129 * perspective, requiring manual detiling by the client.
1130 */
1131 if (obj->tiling_mode == I915_TILING_NONE &&
1132 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1133 cpu_write_needs_clflush(obj)) {
1134 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1135 /* Note that the gtt paths might fail with non-page-backed user
1136 * pointers (e.g. gtt mappings when moving data between
1137 * textures). Fallback to the shmem path in that case. */
1138 }
1139
1140 if (ret == -EFAULT || ret == -ENOSPC) {
1141 if (obj->phys_handle)
1142 ret = i915_gem_phys_pwrite(obj, args, file);
1143 else
1144 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1145 }
1146
1147 out:
1148 drm_gem_object_unreference(&obj->base);
1149 unlock:
1150 mutex_unlock(&dev->struct_mutex);
1151 return ret;
1152 }
1153
1154 int
1155 i915_gem_check_wedge(struct i915_gpu_error *error,
1156 bool interruptible)
1157 {
1158 if (i915_reset_in_progress(error)) {
1159 /* Non-interruptible callers can't handle -EAGAIN, hence return
1160 * -EIO unconditionally for these. */
1161 if (!interruptible)
1162 return -EIO;
1163
1164 /* Recovery complete, but the reset failed ... */
1165 if (i915_terminally_wedged(error))
1166 return -EIO;
1167
1168 /*
1169 * Check if GPU Reset is in progress - we need intel_ring_begin
1170 * to work properly to reinit the hw state while the gpu is
1171 * still marked as reset-in-progress. Handle this with a flag.
1172 */
1173 if (!error->reload_in_reset)
1174 return -EAGAIN;
1175 }
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * Compare seqno against outstanding lazy request. Emit a request if they are
1182 * equal.
1183 */
1184 int
1185 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1186 {
1187 int ret;
1188
1189 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1190
1191 ret = 0;
1192 if (seqno == ring->outstanding_lazy_seqno)
1193 ret = i915_add_request(ring, NULL);
1194
1195 return ret;
1196 }
1197
1198 static void fake_irq(unsigned long data)
1199 {
1200 wake_up_process((struct task_struct *)data);
1201 }
1202
1203 static bool missed_irq(struct drm_i915_private *dev_priv,
1204 struct intel_engine_cs *ring)
1205 {
1206 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1207 }
1208
1209 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1210 {
1211 if (file_priv == NULL)
1212 return true;
1213
1214 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1215 }
1216
1217 /**
1218 * __i915_wait_seqno - wait until execution of seqno has finished
1219 * @ring: the ring expected to report seqno
1220 * @seqno: duh!
1221 * @reset_counter: reset sequence associated with the given seqno
1222 * @interruptible: do an interruptible wait (normally yes)
1223 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1224 *
1225 * Note: It is of utmost importance that the passed in seqno and reset_counter
1226 * values have been read by the caller in an smp safe manner. Where read-side
1227 * locks are involved, it is sufficient to read the reset_counter before
1228 * unlocking the lock that protects the seqno. For lockless tricks, the
1229 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1230 * inserted.
1231 *
1232 * Returns 0 if the seqno was found within the alloted time. Else returns the
1233 * errno with remaining time filled in timeout argument.
1234 */
1235 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1236 unsigned reset_counter,
1237 bool interruptible,
1238 s64 *timeout,
1239 struct drm_i915_file_private *file_priv)
1240 {
1241 struct drm_device *dev = ring->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 const bool irq_test_in_progress =
1244 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1245 DEFINE_WAIT(wait);
1246 unsigned long timeout_expire;
1247 s64 before, now;
1248 int ret;
1249
1250 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1251
1252 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1253 return 0;
1254
1255 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1256
1257 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1258 gen6_rps_boost(dev_priv);
1259 if (file_priv)
1260 mod_delayed_work(dev_priv->wq,
1261 &file_priv->mm.idle_work,
1262 msecs_to_jiffies(100));
1263 }
1264
1265 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1266 return -ENODEV;
1267
1268 /* Record current time in case interrupted by signal, or wedged */
1269 trace_i915_gem_request_wait_begin(ring, seqno);
1270 before = ktime_get_raw_ns();
1271 for (;;) {
1272 struct timer_list timer;
1273
1274 prepare_to_wait(&ring->irq_queue, &wait,
1275 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1276
1277 /* We need to check whether any gpu reset happened in between
1278 * the caller grabbing the seqno and now ... */
1279 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1280 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1281 * is truely gone. */
1282 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1283 if (ret == 0)
1284 ret = -EAGAIN;
1285 break;
1286 }
1287
1288 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1289 ret = 0;
1290 break;
1291 }
1292
1293 if (interruptible && signal_pending(current)) {
1294 ret = -ERESTARTSYS;
1295 break;
1296 }
1297
1298 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1299 ret = -ETIME;
1300 break;
1301 }
1302
1303 timer.function = NULL;
1304 if (timeout || missed_irq(dev_priv, ring)) {
1305 unsigned long expire;
1306
1307 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1308 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1309 mod_timer(&timer, expire);
1310 }
1311
1312 io_schedule();
1313
1314 if (timer.function) {
1315 del_singleshot_timer_sync(&timer);
1316 destroy_timer_on_stack(&timer);
1317 }
1318 }
1319 now = ktime_get_raw_ns();
1320 trace_i915_gem_request_wait_end(ring, seqno);
1321
1322 if (!irq_test_in_progress)
1323 ring->irq_put(ring);
1324
1325 finish_wait(&ring->irq_queue, &wait);
1326
1327 if (timeout) {
1328 s64 tres = *timeout - (now - before);
1329
1330 *timeout = tres < 0 ? 0 : tres;
1331 }
1332
1333 return ret;
1334 }
1335
1336 /**
1337 * Waits for a sequence number to be signaled, and cleans up the
1338 * request and object lists appropriately for that event.
1339 */
1340 int
1341 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1342 {
1343 struct drm_device *dev = ring->dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 bool interruptible = dev_priv->mm.interruptible;
1346 unsigned reset_counter;
1347 int ret;
1348
1349 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1350 BUG_ON(seqno == 0);
1351
1352 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1353 if (ret)
1354 return ret;
1355
1356 ret = i915_gem_check_olr(ring, seqno);
1357 if (ret)
1358 return ret;
1359
1360 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1361 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1362 NULL, NULL);
1363 }
1364
1365 static int
1366 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1367 {
1368 if (!obj->active)
1369 return 0;
1370
1371 /* Manually manage the write flush as we may have not yet
1372 * retired the buffer.
1373 *
1374 * Note that the last_write_seqno is always the earlier of
1375 * the two (read/write) seqno, so if we haved successfully waited,
1376 * we know we have passed the last write.
1377 */
1378 obj->last_write_seqno = 0;
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * Ensures that all rendering to the object has completed and the object is
1385 * safe to unbind from the GTT or access from the CPU.
1386 */
1387 static __must_check int
1388 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1389 bool readonly)
1390 {
1391 struct intel_engine_cs *ring = obj->ring;
1392 u32 seqno;
1393 int ret;
1394
1395 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1396 if (seqno == 0)
1397 return 0;
1398
1399 ret = i915_wait_seqno(ring, seqno);
1400 if (ret)
1401 return ret;
1402
1403 return i915_gem_object_wait_rendering__tail(obj);
1404 }
1405
1406 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1407 * as the object state may change during this call.
1408 */
1409 static __must_check int
1410 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1411 struct drm_i915_file_private *file_priv,
1412 bool readonly)
1413 {
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 struct intel_engine_cs *ring = obj->ring;
1417 unsigned reset_counter;
1418 u32 seqno;
1419 int ret;
1420
1421 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1422 BUG_ON(!dev_priv->mm.interruptible);
1423
1424 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1425 if (seqno == 0)
1426 return 0;
1427
1428 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1429 if (ret)
1430 return ret;
1431
1432 ret = i915_gem_check_olr(ring, seqno);
1433 if (ret)
1434 return ret;
1435
1436 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1437 mutex_unlock(&dev->struct_mutex);
1438 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1439 file_priv);
1440 mutex_lock(&dev->struct_mutex);
1441 if (ret)
1442 return ret;
1443
1444 return i915_gem_object_wait_rendering__tail(obj);
1445 }
1446
1447 /**
1448 * Called when user space prepares to use an object with the CPU, either
1449 * through the mmap ioctl's mapping or a GTT mapping.
1450 */
1451 int
1452 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1453 struct drm_file *file)
1454 {
1455 struct drm_i915_gem_set_domain *args = data;
1456 struct drm_i915_gem_object *obj;
1457 uint32_t read_domains = args->read_domains;
1458 uint32_t write_domain = args->write_domain;
1459 int ret;
1460
1461 /* Only handle setting domains to types used by the CPU. */
1462 if (write_domain & I915_GEM_GPU_DOMAINS)
1463 return -EINVAL;
1464
1465 if (read_domains & I915_GEM_GPU_DOMAINS)
1466 return -EINVAL;
1467
1468 /* Having something in the write domain implies it's in the read
1469 * domain, and only that read domain. Enforce that in the request.
1470 */
1471 if (write_domain != 0 && read_domains != write_domain)
1472 return -EINVAL;
1473
1474 ret = i915_mutex_lock_interruptible(dev);
1475 if (ret)
1476 return ret;
1477
1478 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1479 if (&obj->base == NULL) {
1480 ret = -ENOENT;
1481 goto unlock;
1482 }
1483
1484 /* Try to flush the object off the GPU without holding the lock.
1485 * We will repeat the flush holding the lock in the normal manner
1486 * to catch cases where we are gazumped.
1487 */
1488 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1489 file->driver_priv,
1490 !write_domain);
1491 if (ret)
1492 goto unref;
1493
1494 if (read_domains & I915_GEM_DOMAIN_GTT) {
1495 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1496
1497 /* Silently promote "you're not bound, there was nothing to do"
1498 * to success, since the client was just asking us to
1499 * make sure everything was done.
1500 */
1501 if (ret == -EINVAL)
1502 ret = 0;
1503 } else {
1504 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1505 }
1506
1507 unref:
1508 drm_gem_object_unreference(&obj->base);
1509 unlock:
1510 mutex_unlock(&dev->struct_mutex);
1511 return ret;
1512 }
1513
1514 /**
1515 * Called when user space has done writes to this buffer
1516 */
1517 int
1518 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1519 struct drm_file *file)
1520 {
1521 struct drm_i915_gem_sw_finish *args = data;
1522 struct drm_i915_gem_object *obj;
1523 int ret = 0;
1524
1525 ret = i915_mutex_lock_interruptible(dev);
1526 if (ret)
1527 return ret;
1528
1529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1530 if (&obj->base == NULL) {
1531 ret = -ENOENT;
1532 goto unlock;
1533 }
1534
1535 /* Pinned buffers may be scanout, so flush the cache */
1536 if (obj->pin_display)
1537 i915_gem_object_flush_cpu_write_domain(obj, true);
1538
1539 drm_gem_object_unreference(&obj->base);
1540 unlock:
1541 mutex_unlock(&dev->struct_mutex);
1542 return ret;
1543 }
1544
1545 /**
1546 * Maps the contents of an object, returning the address it is mapped
1547 * into.
1548 *
1549 * While the mapping holds a reference on the contents of the object, it doesn't
1550 * imply a ref on the object itself.
1551 *
1552 * IMPORTANT:
1553 *
1554 * DRM driver writers who look a this function as an example for how to do GEM
1555 * mmap support, please don't implement mmap support like here. The modern way
1556 * to implement DRM mmap support is with an mmap offset ioctl (like
1557 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1558 * That way debug tooling like valgrind will understand what's going on, hiding
1559 * the mmap call in a driver private ioctl will break that. The i915 driver only
1560 * does cpu mmaps this way because we didn't know better.
1561 */
1562 int
1563 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1564 struct drm_file *file)
1565 {
1566 struct drm_i915_gem_mmap *args = data;
1567 struct drm_gem_object *obj;
1568 unsigned long addr;
1569
1570 obj = drm_gem_object_lookup(dev, file, args->handle);
1571 if (obj == NULL)
1572 return -ENOENT;
1573
1574 /* prime objects have no backing filp to GEM mmap
1575 * pages from.
1576 */
1577 if (!obj->filp) {
1578 drm_gem_object_unreference_unlocked(obj);
1579 return -EINVAL;
1580 }
1581
1582 addr = vm_mmap(obj->filp, 0, args->size,
1583 PROT_READ | PROT_WRITE, MAP_SHARED,
1584 args->offset);
1585 drm_gem_object_unreference_unlocked(obj);
1586 if (IS_ERR((void *)addr))
1587 return addr;
1588
1589 args->addr_ptr = (uint64_t) addr;
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * i915_gem_fault - fault a page into the GTT
1596 * vma: VMA in question
1597 * vmf: fault info
1598 *
1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600 * from userspace. The fault handler takes care of binding the object to
1601 * the GTT (if needed), allocating and programming a fence register (again,
1602 * only if needed based on whether the old reg is still valid or the object
1603 * is tiled) and inserting a new PTE into the faulting process.
1604 *
1605 * Note that the faulting process may involve evicting existing objects
1606 * from the GTT and/or fence registers to make room. So performance may
1607 * suffer if the GTT working set is large or there are few fence registers
1608 * left.
1609 */
1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 struct drm_device *dev = obj->base.dev;
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 pgoff_t page_offset;
1616 unsigned long pfn;
1617 int ret = 0;
1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619
1620 intel_runtime_pm_get(dev_priv);
1621
1622 /* We don't use vmf->pgoff since that has the fake offset */
1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 PAGE_SHIFT;
1625
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 goto out;
1629
1630 trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
1632 /* Try to flush the object off the GPU first without holding the lock.
1633 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 * repeat the flush holding the lock in the normal manner to catch cases
1635 * where we are gazumped.
1636 */
1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 if (ret)
1639 goto unlock;
1640
1641 /* Access to snoopable pages through the GTT is incoherent. */
1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643 ret = -EFAULT;
1644 goto unlock;
1645 }
1646
1647 /* Now bind it into the GTT if needed */
1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649 if (ret)
1650 goto unlock;
1651
1652 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 if (ret)
1654 goto unpin;
1655
1656 ret = i915_gem_object_get_fence(obj);
1657 if (ret)
1658 goto unpin;
1659
1660 /* Finally, remap it using the new GTT offset */
1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 pfn >>= PAGE_SHIFT;
1663
1664 if (!obj->fault_mappable) {
1665 unsigned long size = min_t(unsigned long,
1666 vma->vm_end - vma->vm_start,
1667 obj->base.size);
1668 int i;
1669
1670 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 pfn + i);
1674 if (ret)
1675 break;
1676 }
1677
1678 obj->fault_mappable = true;
1679 } else
1680 ret = vm_insert_pfn(vma,
1681 (unsigned long)vmf->virtual_address,
1682 pfn + page_offset);
1683 unpin:
1684 i915_gem_object_ggtt_unpin(obj);
1685 unlock:
1686 mutex_unlock(&dev->struct_mutex);
1687 out:
1688 switch (ret) {
1689 case -EIO:
1690 /*
1691 * We eat errors when the gpu is terminally wedged to avoid
1692 * userspace unduly crashing (gl has no provisions for mmaps to
1693 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 * and so needs to be reported.
1695 */
1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697 ret = VM_FAULT_SIGBUS;
1698 break;
1699 }
1700 case -EAGAIN:
1701 /*
1702 * EAGAIN means the gpu is hung and we'll wait for the error
1703 * handler to reset everything when re-faulting in
1704 * i915_mutex_lock_interruptible.
1705 */
1706 case 0:
1707 case -ERESTARTSYS:
1708 case -EINTR:
1709 case -EBUSY:
1710 /*
1711 * EBUSY is ok: this just means that another thread
1712 * already did the job.
1713 */
1714 ret = VM_FAULT_NOPAGE;
1715 break;
1716 case -ENOMEM:
1717 ret = VM_FAULT_OOM;
1718 break;
1719 case -ENOSPC:
1720 case -EFAULT:
1721 ret = VM_FAULT_SIGBUS;
1722 break;
1723 default:
1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 }
1728
1729 intel_runtime_pm_put(dev_priv);
1730 return ret;
1731 }
1732
1733 /**
1734 * i915_gem_release_mmap - remove physical page mappings
1735 * @obj: obj in question
1736 *
1737 * Preserve the reservation of the mmapping with the DRM core code, but
1738 * relinquish ownership of the pages back to the system.
1739 *
1740 * It is vital that we remove the page mapping if we have mapped a tiled
1741 * object through the GTT and then lose the fence register due to
1742 * resource pressure. Similarly if the object has been moved out of the
1743 * aperture, than pages mapped into userspace must be revoked. Removing the
1744 * mapping will then trigger a page fault on the next user access, allowing
1745 * fixup by i915_gem_fault().
1746 */
1747 void
1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749 {
1750 if (!obj->fault_mappable)
1751 return;
1752
1753 drm_vma_node_unmap(&obj->base.vma_node,
1754 obj->base.dev->anon_inode->i_mapping);
1755 obj->fault_mappable = false;
1756 }
1757
1758 void
1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760 {
1761 struct drm_i915_gem_object *obj;
1762
1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 i915_gem_release_mmap(obj);
1765 }
1766
1767 uint32_t
1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769 {
1770 uint32_t gtt_size;
1771
1772 if (INTEL_INFO(dev)->gen >= 4 ||
1773 tiling_mode == I915_TILING_NONE)
1774 return size;
1775
1776 /* Previous chips need a power-of-two fence region when tiling */
1777 if (INTEL_INFO(dev)->gen == 3)
1778 gtt_size = 1024*1024;
1779 else
1780 gtt_size = 512*1024;
1781
1782 while (gtt_size < size)
1783 gtt_size <<= 1;
1784
1785 return gtt_size;
1786 }
1787
1788 /**
1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790 * @obj: object to check
1791 *
1792 * Return the required GTT alignment for an object, taking into account
1793 * potential fence register mapping.
1794 */
1795 uint32_t
1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 int tiling_mode, bool fenced)
1798 {
1799 /*
1800 * Minimum alignment is 4k (GTT page size), but might be greater
1801 * if a fence register is needed for the object.
1802 */
1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804 tiling_mode == I915_TILING_NONE)
1805 return 4096;
1806
1807 /*
1808 * Previous chips need to be aligned to the size of the smallest
1809 * fence register that can contain the object.
1810 */
1811 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 }
1813
1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815 {
1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 int ret;
1818
1819 if (drm_vma_node_has_offset(&obj->base.vma_node))
1820 return 0;
1821
1822 dev_priv->mm.shrinker_no_lock_stealing = true;
1823
1824 ret = drm_gem_create_mmap_offset(&obj->base);
1825 if (ret != -ENOSPC)
1826 goto out;
1827
1828 /* Badly fragmented mmap space? The only way we can recover
1829 * space is by destroying unwanted objects. We can't randomly release
1830 * mmap_offsets as userspace expects them to be persistent for the
1831 * lifetime of the objects. The closest we can is to release the
1832 * offsets on purgeable objects by truncating it and marking it purged,
1833 * which prevents userspace from ever using that object again.
1834 */
1835 i915_gem_shrink(dev_priv,
1836 obj->base.size >> PAGE_SHIFT,
1837 I915_SHRINK_BOUND |
1838 I915_SHRINK_UNBOUND |
1839 I915_SHRINK_PURGEABLE);
1840 ret = drm_gem_create_mmap_offset(&obj->base);
1841 if (ret != -ENOSPC)
1842 goto out;
1843
1844 i915_gem_shrink_all(dev_priv);
1845 ret = drm_gem_create_mmap_offset(&obj->base);
1846 out:
1847 dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849 return ret;
1850 }
1851
1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853 {
1854 drm_gem_free_mmap_offset(&obj->base);
1855 }
1856
1857 int
1858 i915_gem_mmap_gtt(struct drm_file *file,
1859 struct drm_device *dev,
1860 uint32_t handle,
1861 uint64_t *offset)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 struct drm_i915_gem_object *obj;
1865 int ret;
1866
1867 ret = i915_mutex_lock_interruptible(dev);
1868 if (ret)
1869 return ret;
1870
1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872 if (&obj->base == NULL) {
1873 ret = -ENOENT;
1874 goto unlock;
1875 }
1876
1877 if (obj->base.size > dev_priv->gtt.mappable_end) {
1878 ret = -E2BIG;
1879 goto out;
1880 }
1881
1882 if (obj->madv != I915_MADV_WILLNEED) {
1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884 ret = -EFAULT;
1885 goto out;
1886 }
1887
1888 ret = i915_gem_object_create_mmap_offset(obj);
1889 if (ret)
1890 goto out;
1891
1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893
1894 out:
1895 drm_gem_object_unreference(&obj->base);
1896 unlock:
1897 mutex_unlock(&dev->struct_mutex);
1898 return ret;
1899 }
1900
1901 /**
1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903 * @dev: DRM device
1904 * @data: GTT mapping ioctl data
1905 * @file: GEM object info
1906 *
1907 * Simply returns the fake offset to userspace so it can mmap it.
1908 * The mmap call will end up in drm_gem_mmap(), which will set things
1909 * up so we can get faults in the handler above.
1910 *
1911 * The fault handler will take care of binding the object into the GTT
1912 * (since it may have been evicted to make room for something), allocating
1913 * a fence register, and mapping the appropriate aperture address into
1914 * userspace.
1915 */
1916 int
1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 struct drm_file *file)
1919 {
1920 struct drm_i915_gem_mmap_gtt *args = data;
1921
1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 }
1924
1925 static inline int
1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927 {
1928 return obj->madv == I915_MADV_DONTNEED;
1929 }
1930
1931 /* Immediately discard the backing storage */
1932 static void
1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934 {
1935 i915_gem_object_free_mmap_offset(obj);
1936
1937 if (obj->base.filp == NULL)
1938 return;
1939
1940 /* Our goal here is to return as much of the memory as
1941 * is possible back to the system as we are called from OOM.
1942 * To do this we must instruct the shmfs to drop all of its
1943 * backing pages, *now*.
1944 */
1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1946 obj->madv = __I915_MADV_PURGED;
1947 }
1948
1949 /* Try to discard unwanted pages */
1950 static void
1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1952 {
1953 struct address_space *mapping;
1954
1955 switch (obj->madv) {
1956 case I915_MADV_DONTNEED:
1957 i915_gem_object_truncate(obj);
1958 case __I915_MADV_PURGED:
1959 return;
1960 }
1961
1962 if (obj->base.filp == NULL)
1963 return;
1964
1965 mapping = file_inode(obj->base.filp)->i_mapping,
1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 }
1968
1969 static void
1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971 {
1972 struct sg_page_iter sg_iter;
1973 int ret;
1974
1975 BUG_ON(obj->madv == __I915_MADV_PURGED);
1976
1977 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 if (ret) {
1979 /* In the event of a disaster, abandon all caches and
1980 * hope for the best.
1981 */
1982 WARN_ON(ret != -EIO);
1983 i915_gem_clflush_object(obj, true);
1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 }
1986
1987 if (i915_gem_object_needs_bit17_swizzle(obj))
1988 i915_gem_object_save_bit_17_swizzle(obj);
1989
1990 if (obj->madv == I915_MADV_DONTNEED)
1991 obj->dirty = 0;
1992
1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994 struct page *page = sg_page_iter_page(&sg_iter);
1995
1996 if (obj->dirty)
1997 set_page_dirty(page);
1998
1999 if (obj->madv == I915_MADV_WILLNEED)
2000 mark_page_accessed(page);
2001
2002 page_cache_release(page);
2003 }
2004 obj->dirty = 0;
2005
2006 sg_free_table(obj->pages);
2007 kfree(obj->pages);
2008 }
2009
2010 int
2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012 {
2013 const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2015 if (obj->pages == NULL)
2016 return 0;
2017
2018 if (obj->pages_pin_count)
2019 return -EBUSY;
2020
2021 BUG_ON(i915_gem_obj_bound_any(obj));
2022
2023 /* ->put_pages might need to allocate memory for the bit17 swizzle
2024 * array, hence protect them from being reaped by removing them from gtt
2025 * lists early. */
2026 list_del(&obj->global_list);
2027
2028 ops->put_pages(obj);
2029 obj->pages = NULL;
2030
2031 i915_gem_object_invalidate(obj);
2032
2033 return 0;
2034 }
2035
2036 unsigned long
2037 i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 long target, unsigned flags)
2039 {
2040 const struct {
2041 struct list_head *list;
2042 unsigned int bit;
2043 } phases[] = {
2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 { NULL, 0 },
2047 }, *phase;
2048 unsigned long count = 0;
2049
2050 /*
2051 * As we may completely rewrite the (un)bound list whilst unbinding
2052 * (due to retiring requests) we have to strictly process only
2053 * one element of the list at the time, and recheck the list
2054 * on every iteration.
2055 *
2056 * In particular, we must hold a reference whilst removing the
2057 * object as we may end up waiting for and/or retiring the objects.
2058 * This might release the final reference (held by the active list)
2059 * and result in the object being freed from under us. This is
2060 * similar to the precautions the eviction code must take whilst
2061 * removing objects.
2062 *
2063 * Also note that although these lists do not hold a reference to
2064 * the object we can safely grab one here: The final object
2065 * unreferencing and the bound_list are both protected by the
2066 * dev->struct_mutex and so we won't ever be able to observe an
2067 * object on the bound_list with a reference count equals 0.
2068 */
2069 for (phase = phases; phase->list; phase++) {
2070 struct list_head still_in_list;
2071
2072 if ((flags & phase->bit) == 0)
2073 continue;
2074
2075 INIT_LIST_HEAD(&still_in_list);
2076 while (count < target && !list_empty(phase->list)) {
2077 struct drm_i915_gem_object *obj;
2078 struct i915_vma *vma, *v;
2079
2080 obj = list_first_entry(phase->list,
2081 typeof(*obj), global_list);
2082 list_move_tail(&obj->global_list, &still_in_list);
2083
2084 if (flags & I915_SHRINK_PURGEABLE &&
2085 !i915_gem_object_is_purgeable(obj))
2086 continue;
2087
2088 drm_gem_object_reference(&obj->base);
2089
2090 /* For the unbound phase, this should be a no-op! */
2091 list_for_each_entry_safe(vma, v,
2092 &obj->vma_list, vma_link)
2093 if (i915_vma_unbind(vma))
2094 break;
2095
2096 if (i915_gem_object_put_pages(obj) == 0)
2097 count += obj->base.size >> PAGE_SHIFT;
2098
2099 drm_gem_object_unreference(&obj->base);
2100 }
2101 list_splice(&still_in_list, phase->list);
2102 }
2103
2104 return count;
2105 }
2106
2107 static unsigned long
2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109 {
2110 i915_gem_evict_everything(dev_priv->dev);
2111 return i915_gem_shrink(dev_priv, LONG_MAX,
2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2113 }
2114
2115 static int
2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117 {
2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119 int page_count, i;
2120 struct address_space *mapping;
2121 struct sg_table *st;
2122 struct scatterlist *sg;
2123 struct sg_page_iter sg_iter;
2124 struct page *page;
2125 unsigned long last_pfn = 0; /* suppress gcc warning */
2126 gfp_t gfp;
2127
2128 /* Assert that the object is not currently in any GPU domain. As it
2129 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 * a GPU cache
2131 */
2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
2135 st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 if (st == NULL)
2137 return -ENOMEM;
2138
2139 page_count = obj->base.size / PAGE_SIZE;
2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2141 kfree(st);
2142 return -ENOMEM;
2143 }
2144
2145 /* Get the list of pages out of our struct file. They'll be pinned
2146 * at this point until we release them.
2147 *
2148 * Fail silently without starting the shrinker
2149 */
2150 mapping = file_inode(obj->base.filp)->i_mapping;
2151 gfp = mapping_gfp_mask(mapping);
2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2153 gfp &= ~(__GFP_IO | __GFP_WAIT);
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
2171 i915_gem_shrink_all(dev_priv);
2172 page = shmem_read_mapping_page(mapping, i);
2173 if (IS_ERR(page))
2174 goto err_pages;
2175 }
2176 #ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183 #endif
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196 }
2197 #ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199 #endif
2200 sg_mark_end(sg);
2201 obj->pages = st;
2202
2203 if (i915_gem_object_needs_bit17_swizzle(obj))
2204 i915_gem_object_do_bit_17_swizzle(obj);
2205
2206 return 0;
2207
2208 err_pages:
2209 sg_mark_end(sg);
2210 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2211 page_cache_release(sg_page_iter_page(&sg_iter));
2212 sg_free_table(st);
2213 kfree(st);
2214
2215 /* shmemfs first checks if there is enough memory to allocate the page
2216 * and reports ENOSPC should there be insufficient, along with the usual
2217 * ENOMEM for a genuine allocation failure.
2218 *
2219 * We use ENOSPC in our driver to mean that we have run out of aperture
2220 * space and so want to translate the error from shmemfs back to our
2221 * usual understanding of ENOMEM.
2222 */
2223 if (PTR_ERR(page) == -ENOSPC)
2224 return -ENOMEM;
2225 else
2226 return PTR_ERR(page);
2227 }
2228
2229 /* Ensure that the associated pages are gathered from the backing storage
2230 * and pinned into our object. i915_gem_object_get_pages() may be called
2231 * multiple times before they are released by a single call to
2232 * i915_gem_object_put_pages() - once the pages are no longer referenced
2233 * either as a result of memory pressure (reaping pages under the shrinker)
2234 * or as the object is itself released.
2235 */
2236 int
2237 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2238 {
2239 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2240 const struct drm_i915_gem_object_ops *ops = obj->ops;
2241 int ret;
2242
2243 if (obj->pages)
2244 return 0;
2245
2246 if (obj->madv != I915_MADV_WILLNEED) {
2247 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2248 return -EFAULT;
2249 }
2250
2251 BUG_ON(obj->pages_pin_count);
2252
2253 ret = ops->get_pages(obj);
2254 if (ret)
2255 return ret;
2256
2257 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2258 return 0;
2259 }
2260
2261 static void
2262 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2263 struct intel_engine_cs *ring)
2264 {
2265 u32 seqno = intel_ring_get_seqno(ring);
2266
2267 BUG_ON(ring == NULL);
2268 if (obj->ring != ring && obj->last_write_seqno) {
2269 /* Keep the seqno relative to the current ring */
2270 obj->last_write_seqno = seqno;
2271 }
2272 obj->ring = ring;
2273
2274 /* Add a reference if we're newly entering the active list. */
2275 if (!obj->active) {
2276 drm_gem_object_reference(&obj->base);
2277 obj->active = 1;
2278 }
2279
2280 list_move_tail(&obj->ring_list, &ring->active_list);
2281
2282 obj->last_read_seqno = seqno;
2283 }
2284
2285 void i915_vma_move_to_active(struct i915_vma *vma,
2286 struct intel_engine_cs *ring)
2287 {
2288 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2289 return i915_gem_object_move_to_active(vma->obj, ring);
2290 }
2291
2292 static void
2293 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2294 {
2295 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2296 struct i915_address_space *vm;
2297 struct i915_vma *vma;
2298
2299 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2300 BUG_ON(!obj->active);
2301
2302 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2303 vma = i915_gem_obj_to_vma(obj, vm);
2304 if (vma && !list_empty(&vma->mm_list))
2305 list_move_tail(&vma->mm_list, &vm->inactive_list);
2306 }
2307
2308 intel_fb_obj_flush(obj, true);
2309
2310 list_del_init(&obj->ring_list);
2311 obj->ring = NULL;
2312
2313 obj->last_read_seqno = 0;
2314 obj->last_write_seqno = 0;
2315 obj->base.write_domain = 0;
2316
2317 obj->last_fenced_seqno = 0;
2318
2319 obj->active = 0;
2320 drm_gem_object_unreference(&obj->base);
2321
2322 WARN_ON(i915_verify_lists(dev));
2323 }
2324
2325 static void
2326 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2327 {
2328 struct intel_engine_cs *ring = obj->ring;
2329
2330 if (ring == NULL)
2331 return;
2332
2333 if (i915_seqno_passed(ring->get_seqno(ring, true),
2334 obj->last_read_seqno))
2335 i915_gem_object_move_to_inactive(obj);
2336 }
2337
2338 static int
2339 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2340 {
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct intel_engine_cs *ring;
2343 int ret, i, j;
2344
2345 /* Carefully retire all requests without writing to the rings */
2346 for_each_ring(ring, dev_priv, i) {
2347 ret = intel_ring_idle(ring);
2348 if (ret)
2349 return ret;
2350 }
2351 i915_gem_retire_requests(dev);
2352
2353 /* Finally reset hw state */
2354 for_each_ring(ring, dev_priv, i) {
2355 intel_ring_init_seqno(ring, seqno);
2356
2357 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2358 ring->semaphore.sync_seqno[j] = 0;
2359 }
2360
2361 return 0;
2362 }
2363
2364 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2365 {
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 int ret;
2368
2369 if (seqno == 0)
2370 return -EINVAL;
2371
2372 /* HWS page needs to be set less than what we
2373 * will inject to ring
2374 */
2375 ret = i915_gem_init_seqno(dev, seqno - 1);
2376 if (ret)
2377 return ret;
2378
2379 /* Carefully set the last_seqno value so that wrap
2380 * detection still works
2381 */
2382 dev_priv->next_seqno = seqno;
2383 dev_priv->last_seqno = seqno - 1;
2384 if (dev_priv->last_seqno == 0)
2385 dev_priv->last_seqno--;
2386
2387 return 0;
2388 }
2389
2390 int
2391 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2392 {
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394
2395 /* reserve 0 for non-seqno */
2396 if (dev_priv->next_seqno == 0) {
2397 int ret = i915_gem_init_seqno(dev, 0);
2398 if (ret)
2399 return ret;
2400
2401 dev_priv->next_seqno = 1;
2402 }
2403
2404 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2405 return 0;
2406 }
2407
2408 int __i915_add_request(struct intel_engine_cs *ring,
2409 struct drm_file *file,
2410 struct drm_i915_gem_object *obj,
2411 u32 *out_seqno)
2412 {
2413 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414 struct drm_i915_gem_request *request;
2415 struct intel_ringbuffer *ringbuf;
2416 u32 request_ring_position, request_start;
2417 int ret;
2418
2419 request = ring->preallocated_lazy_request;
2420 if (WARN_ON(request == NULL))
2421 return -ENOMEM;
2422
2423 if (i915.enable_execlists) {
2424 struct intel_context *ctx = request->ctx;
2425 ringbuf = ctx->engine[ring->id].ringbuf;
2426 } else
2427 ringbuf = ring->buffer;
2428
2429 request_start = intel_ring_get_tail(ringbuf);
2430 /*
2431 * Emit any outstanding flushes - execbuf can fail to emit the flush
2432 * after having emitted the batchbuffer command. Hence we need to fix
2433 * things up similar to emitting the lazy request. The difference here
2434 * is that the flush _must_ happen before the next request, no matter
2435 * what.
2436 */
2437 if (i915.enable_execlists) {
2438 ret = logical_ring_flush_all_caches(ringbuf);
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = intel_ring_flush_all_caches(ring);
2443 if (ret)
2444 return ret;
2445 }
2446
2447 /* Record the position of the start of the request so that
2448 * should we detect the updated seqno part-way through the
2449 * GPU processing the request, we never over-estimate the
2450 * position of the head.
2451 */
2452 request_ring_position = intel_ring_get_tail(ringbuf);
2453
2454 if (i915.enable_execlists) {
2455 ret = ring->emit_request(ringbuf);
2456 if (ret)
2457 return ret;
2458 } else {
2459 ret = ring->add_request(ring);
2460 if (ret)
2461 return ret;
2462 }
2463
2464 request->seqno = intel_ring_get_seqno(ring);
2465 request->ring = ring;
2466 request->head = request_start;
2467 request->tail = request_ring_position;
2468
2469 /* Whilst this request exists, batch_obj will be on the
2470 * active_list, and so will hold the active reference. Only when this
2471 * request is retired will the the batch_obj be moved onto the
2472 * inactive_list and lose its active reference. Hence we do not need
2473 * to explicitly hold another reference here.
2474 */
2475 request->batch_obj = obj;
2476
2477 if (!i915.enable_execlists) {
2478 /* Hold a reference to the current context so that we can inspect
2479 * it later in case a hangcheck error event fires.
2480 */
2481 request->ctx = ring->last_context;
2482 if (request->ctx)
2483 i915_gem_context_reference(request->ctx);
2484 }
2485
2486 request->emitted_jiffies = jiffies;
2487 list_add_tail(&request->list, &ring->request_list);
2488 request->file_priv = NULL;
2489
2490 if (file) {
2491 struct drm_i915_file_private *file_priv = file->driver_priv;
2492
2493 spin_lock(&file_priv->mm.lock);
2494 request->file_priv = file_priv;
2495 list_add_tail(&request->client_list,
2496 &file_priv->mm.request_list);
2497 spin_unlock(&file_priv->mm.lock);
2498 }
2499
2500 trace_i915_gem_request_add(ring, request->seqno);
2501 ring->outstanding_lazy_seqno = 0;
2502 ring->preallocated_lazy_request = NULL;
2503
2504 if (!dev_priv->ums.mm_suspended) {
2505 i915_queue_hangcheck(ring->dev);
2506
2507 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2508 queue_delayed_work(dev_priv->wq,
2509 &dev_priv->mm.retire_work,
2510 round_jiffies_up_relative(HZ));
2511 intel_mark_busy(dev_priv->dev);
2512 }
2513
2514 if (out_seqno)
2515 *out_seqno = request->seqno;
2516 return 0;
2517 }
2518
2519 static inline void
2520 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2521 {
2522 struct drm_i915_file_private *file_priv = request->file_priv;
2523
2524 if (!file_priv)
2525 return;
2526
2527 spin_lock(&file_priv->mm.lock);
2528 list_del(&request->client_list);
2529 request->file_priv = NULL;
2530 spin_unlock(&file_priv->mm.lock);
2531 }
2532
2533 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2534 const struct intel_context *ctx)
2535 {
2536 unsigned long elapsed;
2537
2538 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2539
2540 if (ctx->hang_stats.banned)
2541 return true;
2542
2543 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2544 if (!i915_gem_context_is_default(ctx)) {
2545 DRM_DEBUG("context hanging too fast, banning!\n");
2546 return true;
2547 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2548 if (i915_stop_ring_allow_warn(dev_priv))
2549 DRM_ERROR("gpu hanging too fast, banning!\n");
2550 return true;
2551 }
2552 }
2553
2554 return false;
2555 }
2556
2557 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2558 struct intel_context *ctx,
2559 const bool guilty)
2560 {
2561 struct i915_ctx_hang_stats *hs;
2562
2563 if (WARN_ON(!ctx))
2564 return;
2565
2566 hs = &ctx->hang_stats;
2567
2568 if (guilty) {
2569 hs->banned = i915_context_is_banned(dev_priv, ctx);
2570 hs->batch_active++;
2571 hs->guilty_ts = get_seconds();
2572 } else {
2573 hs->batch_pending++;
2574 }
2575 }
2576
2577 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2578 {
2579 list_del(&request->list);
2580 i915_gem_request_remove_from_client(request);
2581
2582 if (request->ctx)
2583 i915_gem_context_unreference(request->ctx);
2584
2585 kfree(request);
2586 }
2587
2588 struct drm_i915_gem_request *
2589 i915_gem_find_active_request(struct intel_engine_cs *ring)
2590 {
2591 struct drm_i915_gem_request *request;
2592 u32 completed_seqno;
2593
2594 completed_seqno = ring->get_seqno(ring, false);
2595
2596 list_for_each_entry(request, &ring->request_list, list) {
2597 if (i915_seqno_passed(completed_seqno, request->seqno))
2598 continue;
2599
2600 return request;
2601 }
2602
2603 return NULL;
2604 }
2605
2606 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2607 struct intel_engine_cs *ring)
2608 {
2609 struct drm_i915_gem_request *request;
2610 bool ring_hung;
2611
2612 request = i915_gem_find_active_request(ring);
2613
2614 if (request == NULL)
2615 return;
2616
2617 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2618
2619 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2620
2621 list_for_each_entry_continue(request, &ring->request_list, list)
2622 i915_set_reset_status(dev_priv, request->ctx, false);
2623 }
2624
2625 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2626 struct intel_engine_cs *ring)
2627 {
2628 while (!list_empty(&ring->active_list)) {
2629 struct drm_i915_gem_object *obj;
2630
2631 obj = list_first_entry(&ring->active_list,
2632 struct drm_i915_gem_object,
2633 ring_list);
2634
2635 i915_gem_object_move_to_inactive(obj);
2636 }
2637
2638 /*
2639 * We must free the requests after all the corresponding objects have
2640 * been moved off active lists. Which is the same order as the normal
2641 * retire_requests function does. This is important if object hold
2642 * implicit references on things like e.g. ppgtt address spaces through
2643 * the request.
2644 */
2645 while (!list_empty(&ring->request_list)) {
2646 struct drm_i915_gem_request *request;
2647
2648 request = list_first_entry(&ring->request_list,
2649 struct drm_i915_gem_request,
2650 list);
2651
2652 i915_gem_free_request(request);
2653 }
2654
2655 while (!list_empty(&ring->execlist_queue)) {
2656 struct intel_ctx_submit_request *submit_req;
2657
2658 submit_req = list_first_entry(&ring->execlist_queue,
2659 struct intel_ctx_submit_request,
2660 execlist_link);
2661 list_del(&submit_req->execlist_link);
2662 intel_runtime_pm_put(dev_priv);
2663 i915_gem_context_unreference(submit_req->ctx);
2664 kfree(submit_req);
2665 }
2666
2667 /* These may not have been flush before the reset, do so now */
2668 kfree(ring->preallocated_lazy_request);
2669 ring->preallocated_lazy_request = NULL;
2670 ring->outstanding_lazy_seqno = 0;
2671 }
2672
2673 void i915_gem_restore_fences(struct drm_device *dev)
2674 {
2675 struct drm_i915_private *dev_priv = dev->dev_private;
2676 int i;
2677
2678 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2679 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2680
2681 /*
2682 * Commit delayed tiling changes if we have an object still
2683 * attached to the fence, otherwise just clear the fence.
2684 */
2685 if (reg->obj) {
2686 i915_gem_object_update_fence(reg->obj, reg,
2687 reg->obj->tiling_mode);
2688 } else {
2689 i915_gem_write_fence(dev, i, NULL);
2690 }
2691 }
2692 }
2693
2694 void i915_gem_reset(struct drm_device *dev)
2695 {
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 struct intel_engine_cs *ring;
2698 int i;
2699
2700 /*
2701 * Before we free the objects from the requests, we need to inspect
2702 * them for finding the guilty party. As the requests only borrow
2703 * their reference to the objects, the inspection must be done first.
2704 */
2705 for_each_ring(ring, dev_priv, i)
2706 i915_gem_reset_ring_status(dev_priv, ring);
2707
2708 for_each_ring(ring, dev_priv, i)
2709 i915_gem_reset_ring_cleanup(dev_priv, ring);
2710
2711 i915_gem_context_reset(dev);
2712
2713 i915_gem_restore_fences(dev);
2714 }
2715
2716 /**
2717 * This function clears the request list as sequence numbers are passed.
2718 */
2719 void
2720 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2721 {
2722 uint32_t seqno;
2723
2724 if (list_empty(&ring->request_list))
2725 return;
2726
2727 WARN_ON(i915_verify_lists(ring->dev));
2728
2729 seqno = ring->get_seqno(ring, true);
2730
2731 /* Move any buffers on the active list that are no longer referenced
2732 * by the ringbuffer to the flushing/inactive lists as appropriate,
2733 * before we free the context associated with the requests.
2734 */
2735 while (!list_empty(&ring->active_list)) {
2736 struct drm_i915_gem_object *obj;
2737
2738 obj = list_first_entry(&ring->active_list,
2739 struct drm_i915_gem_object,
2740 ring_list);
2741
2742 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2743 break;
2744
2745 i915_gem_object_move_to_inactive(obj);
2746 }
2747
2748
2749 while (!list_empty(&ring->request_list)) {
2750 struct drm_i915_gem_request *request;
2751 struct intel_ringbuffer *ringbuf;
2752
2753 request = list_first_entry(&ring->request_list,
2754 struct drm_i915_gem_request,
2755 list);
2756
2757 if (!i915_seqno_passed(seqno, request->seqno))
2758 break;
2759
2760 trace_i915_gem_request_retire(ring, request->seqno);
2761
2762 /* This is one of the few common intersection points
2763 * between legacy ringbuffer submission and execlists:
2764 * we need to tell them apart in order to find the correct
2765 * ringbuffer to which the request belongs to.
2766 */
2767 if (i915.enable_execlists) {
2768 struct intel_context *ctx = request->ctx;
2769 ringbuf = ctx->engine[ring->id].ringbuf;
2770 } else
2771 ringbuf = ring->buffer;
2772
2773 /* We know the GPU must have read the request to have
2774 * sent us the seqno + interrupt, so use the position
2775 * of tail of the request to update the last known position
2776 * of the GPU head.
2777 */
2778 ringbuf->last_retired_head = request->tail;
2779
2780 i915_gem_free_request(request);
2781 }
2782
2783 if (unlikely(ring->trace_irq_seqno &&
2784 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2785 ring->irq_put(ring);
2786 ring->trace_irq_seqno = 0;
2787 }
2788
2789 WARN_ON(i915_verify_lists(ring->dev));
2790 }
2791
2792 bool
2793 i915_gem_retire_requests(struct drm_device *dev)
2794 {
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct intel_engine_cs *ring;
2797 bool idle = true;
2798 int i;
2799
2800 for_each_ring(ring, dev_priv, i) {
2801 i915_gem_retire_requests_ring(ring);
2802 idle &= list_empty(&ring->request_list);
2803 }
2804
2805 if (idle)
2806 mod_delayed_work(dev_priv->wq,
2807 &dev_priv->mm.idle_work,
2808 msecs_to_jiffies(100));
2809
2810 return idle;
2811 }
2812
2813 static void
2814 i915_gem_retire_work_handler(struct work_struct *work)
2815 {
2816 struct drm_i915_private *dev_priv =
2817 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2818 struct drm_device *dev = dev_priv->dev;
2819 bool idle;
2820
2821 /* Come back later if the device is busy... */
2822 idle = false;
2823 if (mutex_trylock(&dev->struct_mutex)) {
2824 idle = i915_gem_retire_requests(dev);
2825 mutex_unlock(&dev->struct_mutex);
2826 }
2827 if (!idle)
2828 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2829 round_jiffies_up_relative(HZ));
2830 }
2831
2832 static void
2833 i915_gem_idle_work_handler(struct work_struct *work)
2834 {
2835 struct drm_i915_private *dev_priv =
2836 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2837
2838 intel_mark_idle(dev_priv->dev);
2839 }
2840
2841 /**
2842 * Ensures that an object will eventually get non-busy by flushing any required
2843 * write domains, emitting any outstanding lazy request and retiring and
2844 * completed requests.
2845 */
2846 static int
2847 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2848 {
2849 int ret;
2850
2851 if (obj->active) {
2852 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2853 if (ret)
2854 return ret;
2855
2856 i915_gem_retire_requests_ring(obj->ring);
2857 }
2858
2859 return 0;
2860 }
2861
2862 /**
2863 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2864 * @DRM_IOCTL_ARGS: standard ioctl arguments
2865 *
2866 * Returns 0 if successful, else an error is returned with the remaining time in
2867 * the timeout parameter.
2868 * -ETIME: object is still busy after timeout
2869 * -ERESTARTSYS: signal interrupted the wait
2870 * -ENONENT: object doesn't exist
2871 * Also possible, but rare:
2872 * -EAGAIN: GPU wedged
2873 * -ENOMEM: damn
2874 * -ENODEV: Internal IRQ fail
2875 * -E?: The add request failed
2876 *
2877 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2878 * non-zero timeout parameter the wait ioctl will wait for the given number of
2879 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2880 * without holding struct_mutex the object may become re-busied before this
2881 * function completes. A similar but shorter * race condition exists in the busy
2882 * ioctl
2883 */
2884 int
2885 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2886 {
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 struct drm_i915_gem_wait *args = data;
2889 struct drm_i915_gem_object *obj;
2890 struct intel_engine_cs *ring = NULL;
2891 unsigned reset_counter;
2892 u32 seqno = 0;
2893 int ret = 0;
2894
2895 if (args->flags != 0)
2896 return -EINVAL;
2897
2898 ret = i915_mutex_lock_interruptible(dev);
2899 if (ret)
2900 return ret;
2901
2902 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2903 if (&obj->base == NULL) {
2904 mutex_unlock(&dev->struct_mutex);
2905 return -ENOENT;
2906 }
2907
2908 /* Need to make sure the object gets inactive eventually. */
2909 ret = i915_gem_object_flush_active(obj);
2910 if (ret)
2911 goto out;
2912
2913 if (obj->active) {
2914 seqno = obj->last_read_seqno;
2915 ring = obj->ring;
2916 }
2917
2918 if (seqno == 0)
2919 goto out;
2920
2921 /* Do this after OLR check to make sure we make forward progress polling
2922 * on this IOCTL with a timeout <=0 (like busy ioctl)
2923 */
2924 if (args->timeout_ns <= 0) {
2925 ret = -ETIME;
2926 goto out;
2927 }
2928
2929 drm_gem_object_unreference(&obj->base);
2930 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2931 mutex_unlock(&dev->struct_mutex);
2932
2933 return __i915_wait_seqno(ring, seqno, reset_counter, true,
2934 &args->timeout_ns, file->driver_priv);
2935
2936 out:
2937 drm_gem_object_unreference(&obj->base);
2938 mutex_unlock(&dev->struct_mutex);
2939 return ret;
2940 }
2941
2942 /**
2943 * i915_gem_object_sync - sync an object to a ring.
2944 *
2945 * @obj: object which may be in use on another ring.
2946 * @to: ring we wish to use the object on. May be NULL.
2947 *
2948 * This code is meant to abstract object synchronization with the GPU.
2949 * Calling with NULL implies synchronizing the object with the CPU
2950 * rather than a particular GPU ring.
2951 *
2952 * Returns 0 if successful, else propagates up the lower layer error.
2953 */
2954 int
2955 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2956 struct intel_engine_cs *to)
2957 {
2958 struct intel_engine_cs *from = obj->ring;
2959 u32 seqno;
2960 int ret, idx;
2961
2962 if (from == NULL || to == from)
2963 return 0;
2964
2965 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2966 return i915_gem_object_wait_rendering(obj, false);
2967
2968 idx = intel_ring_sync_index(from, to);
2969
2970 seqno = obj->last_read_seqno;
2971 /* Optimization: Avoid semaphore sync when we are sure we already
2972 * waited for an object with higher seqno */
2973 if (seqno <= from->semaphore.sync_seqno[idx])
2974 return 0;
2975
2976 ret = i915_gem_check_olr(obj->ring, seqno);
2977 if (ret)
2978 return ret;
2979
2980 trace_i915_gem_ring_sync_to(from, to, seqno);
2981 ret = to->semaphore.sync_to(to, from, seqno);
2982 if (!ret)
2983 /* We use last_read_seqno because sync_to()
2984 * might have just caused seqno wrap under
2985 * the radar.
2986 */
2987 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2988
2989 return ret;
2990 }
2991
2992 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2993 {
2994 u32 old_write_domain, old_read_domains;
2995
2996 /* Force a pagefault for domain tracking on next user access */
2997 i915_gem_release_mmap(obj);
2998
2999 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3000 return;
3001
3002 /* Wait for any direct GTT access to complete */
3003 mb();
3004
3005 old_read_domains = obj->base.read_domains;
3006 old_write_domain = obj->base.write_domain;
3007
3008 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3009 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3010
3011 trace_i915_gem_object_change_domain(obj,
3012 old_read_domains,
3013 old_write_domain);
3014 }
3015
3016 int i915_vma_unbind(struct i915_vma *vma)
3017 {
3018 struct drm_i915_gem_object *obj = vma->obj;
3019 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3020 int ret;
3021
3022 if (list_empty(&vma->vma_link))
3023 return 0;
3024
3025 if (!drm_mm_node_allocated(&vma->node)) {
3026 i915_gem_vma_destroy(vma);
3027 return 0;
3028 }
3029
3030 if (vma->pin_count)
3031 return -EBUSY;
3032
3033 BUG_ON(obj->pages == NULL);
3034
3035 ret = i915_gem_object_finish_gpu(obj);
3036 if (ret)
3037 return ret;
3038 /* Continue on if we fail due to EIO, the GPU is hung so we
3039 * should be safe and we need to cleanup or else we might
3040 * cause memory corruption through use-after-free.
3041 */
3042
3043 /* Throw away the active reference before moving to the unbound list */
3044 i915_gem_object_retire(obj);
3045
3046 if (i915_is_ggtt(vma->vm)) {
3047 i915_gem_object_finish_gtt(obj);
3048
3049 /* release the fence reg _after_ flushing */
3050 ret = i915_gem_object_put_fence(obj);
3051 if (ret)
3052 return ret;
3053 }
3054
3055 trace_i915_vma_unbind(vma);
3056
3057 vma->unbind_vma(vma);
3058
3059 list_del_init(&vma->mm_list);
3060 if (i915_is_ggtt(vma->vm))
3061 obj->map_and_fenceable = false;
3062
3063 drm_mm_remove_node(&vma->node);
3064 i915_gem_vma_destroy(vma);
3065
3066 /* Since the unbound list is global, only move to that list if
3067 * no more VMAs exist. */
3068 if (list_empty(&obj->vma_list)) {
3069 i915_gem_gtt_finish_object(obj);
3070 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3071 }
3072
3073 /* And finally now the object is completely decoupled from this vma,
3074 * we can drop its hold on the backing storage and allow it to be
3075 * reaped by the shrinker.
3076 */
3077 i915_gem_object_unpin_pages(obj);
3078
3079 return 0;
3080 }
3081
3082 int i915_gpu_idle(struct drm_device *dev)
3083 {
3084 struct drm_i915_private *dev_priv = dev->dev_private;
3085 struct intel_engine_cs *ring;
3086 int ret, i;
3087
3088 /* Flush everything onto the inactive list. */
3089 for_each_ring(ring, dev_priv, i) {
3090 if (!i915.enable_execlists) {
3091 ret = i915_switch_context(ring, ring->default_context);
3092 if (ret)
3093 return ret;
3094 }
3095
3096 ret = intel_ring_idle(ring);
3097 if (ret)
3098 return ret;
3099 }
3100
3101 return 0;
3102 }
3103
3104 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3105 struct drm_i915_gem_object *obj)
3106 {
3107 struct drm_i915_private *dev_priv = dev->dev_private;
3108 int fence_reg;
3109 int fence_pitch_shift;
3110
3111 if (INTEL_INFO(dev)->gen >= 6) {
3112 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3113 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3114 } else {
3115 fence_reg = FENCE_REG_965_0;
3116 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3117 }
3118
3119 fence_reg += reg * 8;
3120
3121 /* To w/a incoherency with non-atomic 64-bit register updates,
3122 * we split the 64-bit update into two 32-bit writes. In order
3123 * for a partial fence not to be evaluated between writes, we
3124 * precede the update with write to turn off the fence register,
3125 * and only enable the fence as the last step.
3126 *
3127 * For extra levels of paranoia, we make sure each step lands
3128 * before applying the next step.
3129 */
3130 I915_WRITE(fence_reg, 0);
3131 POSTING_READ(fence_reg);
3132
3133 if (obj) {
3134 u32 size = i915_gem_obj_ggtt_size(obj);
3135 uint64_t val;
3136
3137 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3138 0xfffff000) << 32;
3139 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3140 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3141 if (obj->tiling_mode == I915_TILING_Y)
3142 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3143 val |= I965_FENCE_REG_VALID;
3144
3145 I915_WRITE(fence_reg + 4, val >> 32);
3146 POSTING_READ(fence_reg + 4);
3147
3148 I915_WRITE(fence_reg + 0, val);
3149 POSTING_READ(fence_reg);
3150 } else {
3151 I915_WRITE(fence_reg + 4, 0);
3152 POSTING_READ(fence_reg + 4);
3153 }
3154 }
3155
3156 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3157 struct drm_i915_gem_object *obj)
3158 {
3159 struct drm_i915_private *dev_priv = dev->dev_private;
3160 u32 val;
3161
3162 if (obj) {
3163 u32 size = i915_gem_obj_ggtt_size(obj);
3164 int pitch_val;
3165 int tile_width;
3166
3167 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3168 (size & -size) != size ||
3169 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3170 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3171 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3172
3173 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3174 tile_width = 128;
3175 else
3176 tile_width = 512;
3177
3178 /* Note: pitch better be a power of two tile widths */
3179 pitch_val = obj->stride / tile_width;
3180 pitch_val = ffs(pitch_val) - 1;
3181
3182 val = i915_gem_obj_ggtt_offset(obj);
3183 if (obj->tiling_mode == I915_TILING_Y)
3184 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3185 val |= I915_FENCE_SIZE_BITS(size);
3186 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3187 val |= I830_FENCE_REG_VALID;
3188 } else
3189 val = 0;
3190
3191 if (reg < 8)
3192 reg = FENCE_REG_830_0 + reg * 4;
3193 else
3194 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3195
3196 I915_WRITE(reg, val);
3197 POSTING_READ(reg);
3198 }
3199
3200 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3201 struct drm_i915_gem_object *obj)
3202 {
3203 struct drm_i915_private *dev_priv = dev->dev_private;
3204 uint32_t val;
3205
3206 if (obj) {
3207 u32 size = i915_gem_obj_ggtt_size(obj);
3208 uint32_t pitch_val;
3209
3210 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3211 (size & -size) != size ||
3212 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3213 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3214 i915_gem_obj_ggtt_offset(obj), size);
3215
3216 pitch_val = obj->stride / 128;
3217 pitch_val = ffs(pitch_val) - 1;
3218
3219 val = i915_gem_obj_ggtt_offset(obj);
3220 if (obj->tiling_mode == I915_TILING_Y)
3221 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3222 val |= I830_FENCE_SIZE_BITS(size);
3223 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3224 val |= I830_FENCE_REG_VALID;
3225 } else
3226 val = 0;
3227
3228 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3229 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3230 }
3231
3232 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3233 {
3234 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3235 }
3236
3237 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3238 struct drm_i915_gem_object *obj)
3239 {
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241
3242 /* Ensure that all CPU reads are completed before installing a fence
3243 * and all writes before removing the fence.
3244 */
3245 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3246 mb();
3247
3248 WARN(obj && (!obj->stride || !obj->tiling_mode),
3249 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3250 obj->stride, obj->tiling_mode);
3251
3252 switch (INTEL_INFO(dev)->gen) {
3253 case 9:
3254 case 8:
3255 case 7:
3256 case 6:
3257 case 5:
3258 case 4: i965_write_fence_reg(dev, reg, obj); break;
3259 case 3: i915_write_fence_reg(dev, reg, obj); break;
3260 case 2: i830_write_fence_reg(dev, reg, obj); break;
3261 default: BUG();
3262 }
3263
3264 /* And similarly be paranoid that no direct access to this region
3265 * is reordered to before the fence is installed.
3266 */
3267 if (i915_gem_object_needs_mb(obj))
3268 mb();
3269 }
3270
3271 static inline int fence_number(struct drm_i915_private *dev_priv,
3272 struct drm_i915_fence_reg *fence)
3273 {
3274 return fence - dev_priv->fence_regs;
3275 }
3276
3277 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3278 struct drm_i915_fence_reg *fence,
3279 bool enable)
3280 {
3281 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3282 int reg = fence_number(dev_priv, fence);
3283
3284 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3285
3286 if (enable) {
3287 obj->fence_reg = reg;
3288 fence->obj = obj;
3289 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3290 } else {
3291 obj->fence_reg = I915_FENCE_REG_NONE;
3292 fence->obj = NULL;
3293 list_del_init(&fence->lru_list);
3294 }
3295 obj->fence_dirty = false;
3296 }
3297
3298 static int
3299 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3300 {
3301 if (obj->last_fenced_seqno) {
3302 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3303 if (ret)
3304 return ret;
3305
3306 obj->last_fenced_seqno = 0;
3307 }
3308
3309 return 0;
3310 }
3311
3312 int
3313 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3314 {
3315 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3316 struct drm_i915_fence_reg *fence;
3317 int ret;
3318
3319 ret = i915_gem_object_wait_fence(obj);
3320 if (ret)
3321 return ret;
3322
3323 if (obj->fence_reg == I915_FENCE_REG_NONE)
3324 return 0;
3325
3326 fence = &dev_priv->fence_regs[obj->fence_reg];
3327
3328 if (WARN_ON(fence->pin_count))
3329 return -EBUSY;
3330
3331 i915_gem_object_fence_lost(obj);
3332 i915_gem_object_update_fence(obj, fence, false);
3333
3334 return 0;
3335 }
3336
3337 static struct drm_i915_fence_reg *
3338 i915_find_fence_reg(struct drm_device *dev)
3339 {
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 struct drm_i915_fence_reg *reg, *avail;
3342 int i;
3343
3344 /* First try to find a free reg */
3345 avail = NULL;
3346 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3347 reg = &dev_priv->fence_regs[i];
3348 if (!reg->obj)
3349 return reg;
3350
3351 if (!reg->pin_count)
3352 avail = reg;
3353 }
3354
3355 if (avail == NULL)
3356 goto deadlock;
3357
3358 /* None available, try to steal one or wait for a user to finish */
3359 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3360 if (reg->pin_count)
3361 continue;
3362
3363 return reg;
3364 }
3365
3366 deadlock:
3367 /* Wait for completion of pending flips which consume fences */
3368 if (intel_has_pending_fb_unpin(dev))
3369 return ERR_PTR(-EAGAIN);
3370
3371 return ERR_PTR(-EDEADLK);
3372 }
3373
3374 /**
3375 * i915_gem_object_get_fence - set up fencing for an object
3376 * @obj: object to map through a fence reg
3377 *
3378 * When mapping objects through the GTT, userspace wants to be able to write
3379 * to them without having to worry about swizzling if the object is tiled.
3380 * This function walks the fence regs looking for a free one for @obj,
3381 * stealing one if it can't find any.
3382 *
3383 * It then sets up the reg based on the object's properties: address, pitch
3384 * and tiling format.
3385 *
3386 * For an untiled surface, this removes any existing fence.
3387 */
3388 int
3389 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3390 {
3391 struct drm_device *dev = obj->base.dev;
3392 struct drm_i915_private *dev_priv = dev->dev_private;
3393 bool enable = obj->tiling_mode != I915_TILING_NONE;
3394 struct drm_i915_fence_reg *reg;
3395 int ret;
3396
3397 /* Have we updated the tiling parameters upon the object and so
3398 * will need to serialise the write to the associated fence register?
3399 */
3400 if (obj->fence_dirty) {
3401 ret = i915_gem_object_wait_fence(obj);
3402 if (ret)
3403 return ret;
3404 }
3405
3406 /* Just update our place in the LRU if our fence is getting reused. */
3407 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3408 reg = &dev_priv->fence_regs[obj->fence_reg];
3409 if (!obj->fence_dirty) {
3410 list_move_tail(&reg->lru_list,
3411 &dev_priv->mm.fence_list);
3412 return 0;
3413 }
3414 } else if (enable) {
3415 if (WARN_ON(!obj->map_and_fenceable))
3416 return -EINVAL;
3417
3418 reg = i915_find_fence_reg(dev);
3419 if (IS_ERR(reg))
3420 return PTR_ERR(reg);
3421
3422 if (reg->obj) {
3423 struct drm_i915_gem_object *old = reg->obj;
3424
3425 ret = i915_gem_object_wait_fence(old);
3426 if (ret)
3427 return ret;
3428
3429 i915_gem_object_fence_lost(old);
3430 }
3431 } else
3432 return 0;
3433
3434 i915_gem_object_update_fence(obj, reg, enable);
3435
3436 return 0;
3437 }
3438
3439 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3440 unsigned long cache_level)
3441 {
3442 struct drm_mm_node *gtt_space = &vma->node;
3443 struct drm_mm_node *other;
3444
3445 /*
3446 * On some machines we have to be careful when putting differing types
3447 * of snoopable memory together to avoid the prefetcher crossing memory
3448 * domains and dying. During vm initialisation, we decide whether or not
3449 * these constraints apply and set the drm_mm.color_adjust
3450 * appropriately.
3451 */
3452 if (vma->vm->mm.color_adjust == NULL)
3453 return true;
3454
3455 if (!drm_mm_node_allocated(gtt_space))
3456 return true;
3457
3458 if (list_empty(&gtt_space->node_list))
3459 return true;
3460
3461 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3462 if (other->allocated && !other->hole_follows && other->color != cache_level)
3463 return false;
3464
3465 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3466 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3467 return false;
3468
3469 return true;
3470 }
3471
3472 /**
3473 * Finds free space in the GTT aperture and binds the object there.
3474 */
3475 static struct i915_vma *
3476 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3477 struct i915_address_space *vm,
3478 unsigned alignment,
3479 uint64_t flags)
3480 {
3481 struct drm_device *dev = obj->base.dev;
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483 u32 size, fence_size, fence_alignment, unfenced_alignment;
3484 unsigned long start =
3485 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3486 unsigned long end =
3487 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3488 struct i915_vma *vma;
3489 int ret;
3490
3491 fence_size = i915_gem_get_gtt_size(dev,
3492 obj->base.size,
3493 obj->tiling_mode);
3494 fence_alignment = i915_gem_get_gtt_alignment(dev,
3495 obj->base.size,
3496 obj->tiling_mode, true);
3497 unfenced_alignment =
3498 i915_gem_get_gtt_alignment(dev,
3499 obj->base.size,
3500 obj->tiling_mode, false);
3501
3502 if (alignment == 0)
3503 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3504 unfenced_alignment;
3505 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3506 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3507 return ERR_PTR(-EINVAL);
3508 }
3509
3510 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511
3512 /* If the object is bigger than the entire aperture, reject it early
3513 * before evicting everything in a vain attempt to find space.
3514 */
3515 if (obj->base.size > end) {
3516 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3517 obj->base.size,
3518 flags & PIN_MAPPABLE ? "mappable" : "total",
3519 end);
3520 return ERR_PTR(-E2BIG);
3521 }
3522
3523 ret = i915_gem_object_get_pages(obj);
3524 if (ret)
3525 return ERR_PTR(ret);
3526
3527 i915_gem_object_pin_pages(obj);
3528
3529 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3530 if (IS_ERR(vma))
3531 goto err_unpin;
3532
3533 search_free:
3534 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3535 size, alignment,
3536 obj->cache_level,
3537 start, end,
3538 DRM_MM_SEARCH_DEFAULT,
3539 DRM_MM_CREATE_DEFAULT);
3540 if (ret) {
3541 ret = i915_gem_evict_something(dev, vm, size, alignment,
3542 obj->cache_level,
3543 start, end,
3544 flags);
3545 if (ret == 0)
3546 goto search_free;
3547
3548 goto err_free_vma;
3549 }
3550 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3551 ret = -EINVAL;
3552 goto err_remove_node;
3553 }
3554
3555 ret = i915_gem_gtt_prepare_object(obj);
3556 if (ret)
3557 goto err_remove_node;
3558
3559 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3560 list_add_tail(&vma->mm_list, &vm->inactive_list);
3561
3562 trace_i915_vma_bind(vma, flags);
3563 vma->bind_vma(vma, obj->cache_level,
3564 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3565
3566 return vma;
3567
3568 err_remove_node:
3569 drm_mm_remove_node(&vma->node);
3570 err_free_vma:
3571 i915_gem_vma_destroy(vma);
3572 vma = ERR_PTR(ret);
3573 err_unpin:
3574 i915_gem_object_unpin_pages(obj);
3575 return vma;
3576 }
3577
3578 bool
3579 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3580 bool force)
3581 {
3582 /* If we don't have a page list set up, then we're not pinned
3583 * to GPU, and we can ignore the cache flush because it'll happen
3584 * again at bind time.
3585 */
3586 if (obj->pages == NULL)
3587 return false;
3588
3589 /*
3590 * Stolen memory is always coherent with the GPU as it is explicitly
3591 * marked as wc by the system, or the system is cache-coherent.
3592 */
3593 if (obj->stolen || obj->phys_handle)
3594 return false;
3595
3596 /* If the GPU is snooping the contents of the CPU cache,
3597 * we do not need to manually clear the CPU cache lines. However,
3598 * the caches are only snooped when the render cache is
3599 * flushed/invalidated. As we always have to emit invalidations
3600 * and flushes when moving into and out of the RENDER domain, correct
3601 * snooping behaviour occurs naturally as the result of our domain
3602 * tracking.
3603 */
3604 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3605 return false;
3606
3607 trace_i915_gem_object_clflush(obj);
3608 drm_clflush_sg(obj->pages);
3609
3610 return true;
3611 }
3612
3613 /** Flushes the GTT write domain for the object if it's dirty. */
3614 static void
3615 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3616 {
3617 uint32_t old_write_domain;
3618
3619 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3620 return;
3621
3622 /* No actual flushing is required for the GTT write domain. Writes
3623 * to it immediately go to main memory as far as we know, so there's
3624 * no chipset flush. It also doesn't land in render cache.
3625 *
3626 * However, we do have to enforce the order so that all writes through
3627 * the GTT land before any writes to the device, such as updates to
3628 * the GATT itself.
3629 */
3630 wmb();
3631
3632 old_write_domain = obj->base.write_domain;
3633 obj->base.write_domain = 0;
3634
3635 intel_fb_obj_flush(obj, false);
3636
3637 trace_i915_gem_object_change_domain(obj,
3638 obj->base.read_domains,
3639 old_write_domain);
3640 }
3641
3642 /** Flushes the CPU write domain for the object if it's dirty. */
3643 static void
3644 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3645 bool force)
3646 {
3647 uint32_t old_write_domain;
3648
3649 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3650 return;
3651
3652 if (i915_gem_clflush_object(obj, force))
3653 i915_gem_chipset_flush(obj->base.dev);
3654
3655 old_write_domain = obj->base.write_domain;
3656 obj->base.write_domain = 0;
3657
3658 intel_fb_obj_flush(obj, false);
3659
3660 trace_i915_gem_object_change_domain(obj,
3661 obj->base.read_domains,
3662 old_write_domain);
3663 }
3664
3665 /**
3666 * Moves a single object to the GTT read, and possibly write domain.
3667 *
3668 * This function returns when the move is complete, including waiting on
3669 * flushes to occur.
3670 */
3671 int
3672 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3673 {
3674 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3675 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3676 uint32_t old_write_domain, old_read_domains;
3677 int ret;
3678
3679 /* Not valid to be called on unbound objects. */
3680 if (vma == NULL)
3681 return -EINVAL;
3682
3683 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3684 return 0;
3685
3686 ret = i915_gem_object_wait_rendering(obj, !write);
3687 if (ret)
3688 return ret;
3689
3690 i915_gem_object_retire(obj);
3691 i915_gem_object_flush_cpu_write_domain(obj, false);
3692
3693 /* Serialise direct access to this object with the barriers for
3694 * coherent writes from the GPU, by effectively invalidating the
3695 * GTT domain upon first access.
3696 */
3697 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3698 mb();
3699
3700 old_write_domain = obj->base.write_domain;
3701 old_read_domains = obj->base.read_domains;
3702
3703 /* It should now be out of any other write domains, and we can update
3704 * the domain values for our changes.
3705 */
3706 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3707 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3708 if (write) {
3709 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3710 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3711 obj->dirty = 1;
3712 }
3713
3714 if (write)
3715 intel_fb_obj_invalidate(obj, NULL);
3716
3717 trace_i915_gem_object_change_domain(obj,
3718 old_read_domains,
3719 old_write_domain);
3720
3721 /* And bump the LRU for this access */
3722 if (i915_gem_object_is_inactive(obj))
3723 list_move_tail(&vma->mm_list,
3724 &dev_priv->gtt.base.inactive_list);
3725
3726 return 0;
3727 }
3728
3729 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3730 enum i915_cache_level cache_level)
3731 {
3732 struct drm_device *dev = obj->base.dev;
3733 struct i915_vma *vma, *next;
3734 int ret;
3735
3736 if (obj->cache_level == cache_level)
3737 return 0;
3738
3739 if (i915_gem_obj_is_pinned(obj)) {
3740 DRM_DEBUG("can not change the cache level of pinned objects\n");
3741 return -EBUSY;
3742 }
3743
3744 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3745 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3746 ret = i915_vma_unbind(vma);
3747 if (ret)
3748 return ret;
3749 }
3750 }
3751
3752 if (i915_gem_obj_bound_any(obj)) {
3753 ret = i915_gem_object_finish_gpu(obj);
3754 if (ret)
3755 return ret;
3756
3757 i915_gem_object_finish_gtt(obj);
3758
3759 /* Before SandyBridge, you could not use tiling or fence
3760 * registers with snooped memory, so relinquish any fences
3761 * currently pointing to our region in the aperture.
3762 */
3763 if (INTEL_INFO(dev)->gen < 6) {
3764 ret = i915_gem_object_put_fence(obj);
3765 if (ret)
3766 return ret;
3767 }
3768
3769 list_for_each_entry(vma, &obj->vma_list, vma_link)
3770 if (drm_mm_node_allocated(&vma->node))
3771 vma->bind_vma(vma, cache_level,
3772 vma->bound & GLOBAL_BIND);
3773 }
3774
3775 list_for_each_entry(vma, &obj->vma_list, vma_link)
3776 vma->node.color = cache_level;
3777 obj->cache_level = cache_level;
3778
3779 if (cpu_write_needs_clflush(obj)) {
3780 u32 old_read_domains, old_write_domain;
3781
3782 /* If we're coming from LLC cached, then we haven't
3783 * actually been tracking whether the data is in the
3784 * CPU cache or not, since we only allow one bit set
3785 * in obj->write_domain and have been skipping the clflushes.
3786 * Just set it to the CPU cache for now.
3787 */
3788 i915_gem_object_retire(obj);
3789 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3790
3791 old_read_domains = obj->base.read_domains;
3792 old_write_domain = obj->base.write_domain;
3793
3794 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3795 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3796
3797 trace_i915_gem_object_change_domain(obj,
3798 old_read_domains,
3799 old_write_domain);
3800 }
3801
3802 return 0;
3803 }
3804
3805 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3806 struct drm_file *file)
3807 {
3808 struct drm_i915_gem_caching *args = data;
3809 struct drm_i915_gem_object *obj;
3810 int ret;
3811
3812 ret = i915_mutex_lock_interruptible(dev);
3813 if (ret)
3814 return ret;
3815
3816 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3817 if (&obj->base == NULL) {
3818 ret = -ENOENT;
3819 goto unlock;
3820 }
3821
3822 switch (obj->cache_level) {
3823 case I915_CACHE_LLC:
3824 case I915_CACHE_L3_LLC:
3825 args->caching = I915_CACHING_CACHED;
3826 break;
3827
3828 case I915_CACHE_WT:
3829 args->caching = I915_CACHING_DISPLAY;
3830 break;
3831
3832 default:
3833 args->caching = I915_CACHING_NONE;
3834 break;
3835 }
3836
3837 drm_gem_object_unreference(&obj->base);
3838 unlock:
3839 mutex_unlock(&dev->struct_mutex);
3840 return ret;
3841 }
3842
3843 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3844 struct drm_file *file)
3845 {
3846 struct drm_i915_gem_caching *args = data;
3847 struct drm_i915_gem_object *obj;
3848 enum i915_cache_level level;
3849 int ret;
3850
3851 switch (args->caching) {
3852 case I915_CACHING_NONE:
3853 level = I915_CACHE_NONE;
3854 break;
3855 case I915_CACHING_CACHED:
3856 level = I915_CACHE_LLC;
3857 break;
3858 case I915_CACHING_DISPLAY:
3859 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3860 break;
3861 default:
3862 return -EINVAL;
3863 }
3864
3865 ret = i915_mutex_lock_interruptible(dev);
3866 if (ret)
3867 return ret;
3868
3869 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3870 if (&obj->base == NULL) {
3871 ret = -ENOENT;
3872 goto unlock;
3873 }
3874
3875 ret = i915_gem_object_set_cache_level(obj, level);
3876
3877 drm_gem_object_unreference(&obj->base);
3878 unlock:
3879 mutex_unlock(&dev->struct_mutex);
3880 return ret;
3881 }
3882
3883 static bool is_pin_display(struct drm_i915_gem_object *obj)
3884 {
3885 struct i915_vma *vma;
3886
3887 vma = i915_gem_obj_to_ggtt(obj);
3888 if (!vma)
3889 return false;
3890
3891 /* There are 3 sources that pin objects:
3892 * 1. The display engine (scanouts, sprites, cursors);
3893 * 2. Reservations for execbuffer;
3894 * 3. The user.
3895 *
3896 * We can ignore reservations as we hold the struct_mutex and
3897 * are only called outside of the reservation path. The user
3898 * can only increment pin_count once, and so if after
3899 * subtracting the potential reference by the user, any pin_count
3900 * remains, it must be due to another use by the display engine.
3901 */
3902 return vma->pin_count - !!obj->user_pin_count;
3903 }
3904
3905 /*
3906 * Prepare buffer for display plane (scanout, cursors, etc).
3907 * Can be called from an uninterruptible phase (modesetting) and allows
3908 * any flushes to be pipelined (for pageflips).
3909 */
3910 int
3911 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3912 u32 alignment,
3913 struct intel_engine_cs *pipelined)
3914 {
3915 u32 old_read_domains, old_write_domain;
3916 bool was_pin_display;
3917 int ret;
3918
3919 if (pipelined != obj->ring) {
3920 ret = i915_gem_object_sync(obj, pipelined);
3921 if (ret)
3922 return ret;
3923 }
3924
3925 /* Mark the pin_display early so that we account for the
3926 * display coherency whilst setting up the cache domains.
3927 */
3928 was_pin_display = obj->pin_display;
3929 obj->pin_display = true;
3930
3931 /* The display engine is not coherent with the LLC cache on gen6. As
3932 * a result, we make sure that the pinning that is about to occur is
3933 * done with uncached PTEs. This is lowest common denominator for all
3934 * chipsets.
3935 *
3936 * However for gen6+, we could do better by using the GFDT bit instead
3937 * of uncaching, which would allow us to flush all the LLC-cached data
3938 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3939 */
3940 ret = i915_gem_object_set_cache_level(obj,
3941 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3942 if (ret)
3943 goto err_unpin_display;
3944
3945 /* As the user may map the buffer once pinned in the display plane
3946 * (e.g. libkms for the bootup splash), we have to ensure that we
3947 * always use map_and_fenceable for all scanout buffers.
3948 */
3949 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3950 if (ret)
3951 goto err_unpin_display;
3952
3953 i915_gem_object_flush_cpu_write_domain(obj, true);
3954
3955 old_write_domain = obj->base.write_domain;
3956 old_read_domains = obj->base.read_domains;
3957
3958 /* It should now be out of any other write domains, and we can update
3959 * the domain values for our changes.
3960 */
3961 obj->base.write_domain = 0;
3962 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3963
3964 trace_i915_gem_object_change_domain(obj,
3965 old_read_domains,
3966 old_write_domain);
3967
3968 return 0;
3969
3970 err_unpin_display:
3971 WARN_ON(was_pin_display != is_pin_display(obj));
3972 obj->pin_display = was_pin_display;
3973 return ret;
3974 }
3975
3976 void
3977 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3978 {
3979 i915_gem_object_ggtt_unpin(obj);
3980 obj->pin_display = is_pin_display(obj);
3981 }
3982
3983 int
3984 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3985 {
3986 int ret;
3987
3988 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3989 return 0;
3990
3991 ret = i915_gem_object_wait_rendering(obj, false);
3992 if (ret)
3993 return ret;
3994
3995 /* Ensure that we invalidate the GPU's caches and TLBs. */
3996 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3997 return 0;
3998 }
3999
4000 /**
4001 * Moves a single object to the CPU read, and possibly write domain.
4002 *
4003 * This function returns when the move is complete, including waiting on
4004 * flushes to occur.
4005 */
4006 int
4007 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4008 {
4009 uint32_t old_write_domain, old_read_domains;
4010 int ret;
4011
4012 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4013 return 0;
4014
4015 ret = i915_gem_object_wait_rendering(obj, !write);
4016 if (ret)
4017 return ret;
4018
4019 i915_gem_object_retire(obj);
4020 i915_gem_object_flush_gtt_write_domain(obj);
4021
4022 old_write_domain = obj->base.write_domain;
4023 old_read_domains = obj->base.read_domains;
4024
4025 /* Flush the CPU cache if it's still invalid. */
4026 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4027 i915_gem_clflush_object(obj, false);
4028
4029 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4030 }
4031
4032 /* It should now be out of any other write domains, and we can update
4033 * the domain values for our changes.
4034 */
4035 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4036
4037 /* If we're writing through the CPU, then the GPU read domains will
4038 * need to be invalidated at next use.
4039 */
4040 if (write) {
4041 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4042 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4043 }
4044
4045 if (write)
4046 intel_fb_obj_invalidate(obj, NULL);
4047
4048 trace_i915_gem_object_change_domain(obj,
4049 old_read_domains,
4050 old_write_domain);
4051
4052 return 0;
4053 }
4054
4055 /* Throttle our rendering by waiting until the ring has completed our requests
4056 * emitted over 20 msec ago.
4057 *
4058 * Note that if we were to use the current jiffies each time around the loop,
4059 * we wouldn't escape the function with any frames outstanding if the time to
4060 * render a frame was over 20ms.
4061 *
4062 * This should get us reasonable parallelism between CPU and GPU but also
4063 * relatively low latency when blocking on a particular request to finish.
4064 */
4065 static int
4066 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4067 {
4068 struct drm_i915_private *dev_priv = dev->dev_private;
4069 struct drm_i915_file_private *file_priv = file->driver_priv;
4070 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4071 struct drm_i915_gem_request *request;
4072 struct intel_engine_cs *ring = NULL;
4073 unsigned reset_counter;
4074 u32 seqno = 0;
4075 int ret;
4076
4077 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4078 if (ret)
4079 return ret;
4080
4081 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4082 if (ret)
4083 return ret;
4084
4085 spin_lock(&file_priv->mm.lock);
4086 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4087 if (time_after_eq(request->emitted_jiffies, recent_enough))
4088 break;
4089
4090 ring = request->ring;
4091 seqno = request->seqno;
4092 }
4093 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4094 spin_unlock(&file_priv->mm.lock);
4095
4096 if (seqno == 0)
4097 return 0;
4098
4099 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4100 if (ret == 0)
4101 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4102
4103 return ret;
4104 }
4105
4106 static bool
4107 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4108 {
4109 struct drm_i915_gem_object *obj = vma->obj;
4110
4111 if (alignment &&
4112 vma->node.start & (alignment - 1))
4113 return true;
4114
4115 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4116 return true;
4117
4118 if (flags & PIN_OFFSET_BIAS &&
4119 vma->node.start < (flags & PIN_OFFSET_MASK))
4120 return true;
4121
4122 return false;
4123 }
4124
4125 int
4126 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4127 struct i915_address_space *vm,
4128 uint32_t alignment,
4129 uint64_t flags)
4130 {
4131 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4132 struct i915_vma *vma;
4133 unsigned bound;
4134 int ret;
4135
4136 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4137 return -ENODEV;
4138
4139 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4140 return -EINVAL;
4141
4142 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4143 return -EINVAL;
4144
4145 vma = i915_gem_obj_to_vma(obj, vm);
4146 if (vma) {
4147 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4148 return -EBUSY;
4149
4150 if (i915_vma_misplaced(vma, alignment, flags)) {
4151 WARN(vma->pin_count,
4152 "bo is already pinned with incorrect alignment:"
4153 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4154 " obj->map_and_fenceable=%d\n",
4155 i915_gem_obj_offset(obj, vm), alignment,
4156 !!(flags & PIN_MAPPABLE),
4157 obj->map_and_fenceable);
4158 ret = i915_vma_unbind(vma);
4159 if (ret)
4160 return ret;
4161
4162 vma = NULL;
4163 }
4164 }
4165
4166 bound = vma ? vma->bound : 0;
4167 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4168 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4169 if (IS_ERR(vma))
4170 return PTR_ERR(vma);
4171 }
4172
4173 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4174 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4175
4176 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4177 bool mappable, fenceable;
4178 u32 fence_size, fence_alignment;
4179
4180 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4181 obj->base.size,
4182 obj->tiling_mode);
4183 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4184 obj->base.size,
4185 obj->tiling_mode,
4186 true);
4187
4188 fenceable = (vma->node.size == fence_size &&
4189 (vma->node.start & (fence_alignment - 1)) == 0);
4190
4191 mappable = (vma->node.start + obj->base.size <=
4192 dev_priv->gtt.mappable_end);
4193
4194 obj->map_and_fenceable = mappable && fenceable;
4195 }
4196
4197 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4198
4199 vma->pin_count++;
4200 if (flags & PIN_MAPPABLE)
4201 obj->pin_mappable |= true;
4202
4203 return 0;
4204 }
4205
4206 void
4207 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4208 {
4209 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4210
4211 BUG_ON(!vma);
4212 BUG_ON(vma->pin_count == 0);
4213 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4214
4215 if (--vma->pin_count == 0)
4216 obj->pin_mappable = false;
4217 }
4218
4219 bool
4220 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4221 {
4222 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4223 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4224 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4225
4226 WARN_ON(!ggtt_vma ||
4227 dev_priv->fence_regs[obj->fence_reg].pin_count >
4228 ggtt_vma->pin_count);
4229 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4230 return true;
4231 } else
4232 return false;
4233 }
4234
4235 void
4236 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4237 {
4238 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4239 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4240 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4241 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4242 }
4243 }
4244
4245 int
4246 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4247 struct drm_file *file)
4248 {
4249 struct drm_i915_gem_pin *args = data;
4250 struct drm_i915_gem_object *obj;
4251 int ret;
4252
4253 if (INTEL_INFO(dev)->gen >= 6)
4254 return -ENODEV;
4255
4256 ret = i915_mutex_lock_interruptible(dev);
4257 if (ret)
4258 return ret;
4259
4260 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4261 if (&obj->base == NULL) {
4262 ret = -ENOENT;
4263 goto unlock;
4264 }
4265
4266 if (obj->madv != I915_MADV_WILLNEED) {
4267 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4268 ret = -EFAULT;
4269 goto out;
4270 }
4271
4272 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4273 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4274 args->handle);
4275 ret = -EINVAL;
4276 goto out;
4277 }
4278
4279 if (obj->user_pin_count == ULONG_MAX) {
4280 ret = -EBUSY;
4281 goto out;
4282 }
4283
4284 if (obj->user_pin_count == 0) {
4285 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4286 if (ret)
4287 goto out;
4288 }
4289
4290 obj->user_pin_count++;
4291 obj->pin_filp = file;
4292
4293 args->offset = i915_gem_obj_ggtt_offset(obj);
4294 out:
4295 drm_gem_object_unreference(&obj->base);
4296 unlock:
4297 mutex_unlock(&dev->struct_mutex);
4298 return ret;
4299 }
4300
4301 int
4302 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4303 struct drm_file *file)
4304 {
4305 struct drm_i915_gem_pin *args = data;
4306 struct drm_i915_gem_object *obj;
4307 int ret;
4308
4309 ret = i915_mutex_lock_interruptible(dev);
4310 if (ret)
4311 return ret;
4312
4313 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4314 if (&obj->base == NULL) {
4315 ret = -ENOENT;
4316 goto unlock;
4317 }
4318
4319 if (obj->pin_filp != file) {
4320 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4321 args->handle);
4322 ret = -EINVAL;
4323 goto out;
4324 }
4325 obj->user_pin_count--;
4326 if (obj->user_pin_count == 0) {
4327 obj->pin_filp = NULL;
4328 i915_gem_object_ggtt_unpin(obj);
4329 }
4330
4331 out:
4332 drm_gem_object_unreference(&obj->base);
4333 unlock:
4334 mutex_unlock(&dev->struct_mutex);
4335 return ret;
4336 }
4337
4338 int
4339 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4340 struct drm_file *file)
4341 {
4342 struct drm_i915_gem_busy *args = data;
4343 struct drm_i915_gem_object *obj;
4344 int ret;
4345
4346 ret = i915_mutex_lock_interruptible(dev);
4347 if (ret)
4348 return ret;
4349
4350 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4351 if (&obj->base == NULL) {
4352 ret = -ENOENT;
4353 goto unlock;
4354 }
4355
4356 /* Count all active objects as busy, even if they are currently not used
4357 * by the gpu. Users of this interface expect objects to eventually
4358 * become non-busy without any further actions, therefore emit any
4359 * necessary flushes here.
4360 */
4361 ret = i915_gem_object_flush_active(obj);
4362
4363 args->busy = obj->active;
4364 if (obj->ring) {
4365 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4366 args->busy |= intel_ring_flag(obj->ring) << 16;
4367 }
4368
4369 drm_gem_object_unreference(&obj->base);
4370 unlock:
4371 mutex_unlock(&dev->struct_mutex);
4372 return ret;
4373 }
4374
4375 int
4376 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4377 struct drm_file *file_priv)
4378 {
4379 return i915_gem_ring_throttle(dev, file_priv);
4380 }
4381
4382 int
4383 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4384 struct drm_file *file_priv)
4385 {
4386 struct drm_i915_gem_madvise *args = data;
4387 struct drm_i915_gem_object *obj;
4388 int ret;
4389
4390 switch (args->madv) {
4391 case I915_MADV_DONTNEED:
4392 case I915_MADV_WILLNEED:
4393 break;
4394 default:
4395 return -EINVAL;
4396 }
4397
4398 ret = i915_mutex_lock_interruptible(dev);
4399 if (ret)
4400 return ret;
4401
4402 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4403 if (&obj->base == NULL) {
4404 ret = -ENOENT;
4405 goto unlock;
4406 }
4407
4408 if (i915_gem_obj_is_pinned(obj)) {
4409 ret = -EINVAL;
4410 goto out;
4411 }
4412
4413 if (obj->madv != __I915_MADV_PURGED)
4414 obj->madv = args->madv;
4415
4416 /* if the object is no longer attached, discard its backing storage */
4417 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4418 i915_gem_object_truncate(obj);
4419
4420 args->retained = obj->madv != __I915_MADV_PURGED;
4421
4422 out:
4423 drm_gem_object_unreference(&obj->base);
4424 unlock:
4425 mutex_unlock(&dev->struct_mutex);
4426 return ret;
4427 }
4428
4429 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4430 const struct drm_i915_gem_object_ops *ops)
4431 {
4432 INIT_LIST_HEAD(&obj->global_list);
4433 INIT_LIST_HEAD(&obj->ring_list);
4434 INIT_LIST_HEAD(&obj->obj_exec_link);
4435 INIT_LIST_HEAD(&obj->vma_list);
4436
4437 obj->ops = ops;
4438
4439 obj->fence_reg = I915_FENCE_REG_NONE;
4440 obj->madv = I915_MADV_WILLNEED;
4441
4442 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4443 }
4444
4445 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4446 .get_pages = i915_gem_object_get_pages_gtt,
4447 .put_pages = i915_gem_object_put_pages_gtt,
4448 };
4449
4450 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4451 size_t size)
4452 {
4453 struct drm_i915_gem_object *obj;
4454 struct address_space *mapping;
4455 gfp_t mask;
4456
4457 obj = i915_gem_object_alloc(dev);
4458 if (obj == NULL)
4459 return NULL;
4460
4461 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4462 i915_gem_object_free(obj);
4463 return NULL;
4464 }
4465
4466 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4467 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4468 /* 965gm cannot relocate objects above 4GiB. */
4469 mask &= ~__GFP_HIGHMEM;
4470 mask |= __GFP_DMA32;
4471 }
4472
4473 mapping = file_inode(obj->base.filp)->i_mapping;
4474 mapping_set_gfp_mask(mapping, mask);
4475
4476 i915_gem_object_init(obj, &i915_gem_object_ops);
4477
4478 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4479 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4480
4481 if (HAS_LLC(dev)) {
4482 /* On some devices, we can have the GPU use the LLC (the CPU
4483 * cache) for about a 10% performance improvement
4484 * compared to uncached. Graphics requests other than
4485 * display scanout are coherent with the CPU in
4486 * accessing this cache. This means in this mode we
4487 * don't need to clflush on the CPU side, and on the
4488 * GPU side we only need to flush internal caches to
4489 * get data visible to the CPU.
4490 *
4491 * However, we maintain the display planes as UC, and so
4492 * need to rebind when first used as such.
4493 */
4494 obj->cache_level = I915_CACHE_LLC;
4495 } else
4496 obj->cache_level = I915_CACHE_NONE;
4497
4498 trace_i915_gem_object_create(obj);
4499
4500 return obj;
4501 }
4502
4503 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4504 {
4505 /* If we are the last user of the backing storage (be it shmemfs
4506 * pages or stolen etc), we know that the pages are going to be
4507 * immediately released. In this case, we can then skip copying
4508 * back the contents from the GPU.
4509 */
4510
4511 if (obj->madv != I915_MADV_WILLNEED)
4512 return false;
4513
4514 if (obj->base.filp == NULL)
4515 return true;
4516
4517 /* At first glance, this looks racy, but then again so would be
4518 * userspace racing mmap against close. However, the first external
4519 * reference to the filp can only be obtained through the
4520 * i915_gem_mmap_ioctl() which safeguards us against the user
4521 * acquiring such a reference whilst we are in the middle of
4522 * freeing the object.
4523 */
4524 return atomic_long_read(&obj->base.filp->f_count) == 1;
4525 }
4526
4527 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4528 {
4529 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4530 struct drm_device *dev = obj->base.dev;
4531 struct drm_i915_private *dev_priv = dev->dev_private;
4532 struct i915_vma *vma, *next;
4533
4534 intel_runtime_pm_get(dev_priv);
4535
4536 trace_i915_gem_object_destroy(obj);
4537
4538 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4539 int ret;
4540
4541 vma->pin_count = 0;
4542 ret = i915_vma_unbind(vma);
4543 if (WARN_ON(ret == -ERESTARTSYS)) {
4544 bool was_interruptible;
4545
4546 was_interruptible = dev_priv->mm.interruptible;
4547 dev_priv->mm.interruptible = false;
4548
4549 WARN_ON(i915_vma_unbind(vma));
4550
4551 dev_priv->mm.interruptible = was_interruptible;
4552 }
4553 }
4554
4555 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4556 * before progressing. */
4557 if (obj->stolen)
4558 i915_gem_object_unpin_pages(obj);
4559
4560 WARN_ON(obj->frontbuffer_bits);
4561
4562 if (WARN_ON(obj->pages_pin_count))
4563 obj->pages_pin_count = 0;
4564 if (discard_backing_storage(obj))
4565 obj->madv = I915_MADV_DONTNEED;
4566 i915_gem_object_put_pages(obj);
4567 i915_gem_object_free_mmap_offset(obj);
4568
4569 BUG_ON(obj->pages);
4570
4571 if (obj->base.import_attach)
4572 drm_prime_gem_destroy(&obj->base, NULL);
4573
4574 if (obj->ops->release)
4575 obj->ops->release(obj);
4576
4577 drm_gem_object_release(&obj->base);
4578 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4579
4580 kfree(obj->bit_17);
4581 i915_gem_object_free(obj);
4582
4583 intel_runtime_pm_put(dev_priv);
4584 }
4585
4586 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4587 struct i915_address_space *vm)
4588 {
4589 struct i915_vma *vma;
4590 list_for_each_entry(vma, &obj->vma_list, vma_link)
4591 if (vma->vm == vm)
4592 return vma;
4593
4594 return NULL;
4595 }
4596
4597 void i915_gem_vma_destroy(struct i915_vma *vma)
4598 {
4599 struct i915_address_space *vm = NULL;
4600 WARN_ON(vma->node.allocated);
4601
4602 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4603 if (!list_empty(&vma->exec_list))
4604 return;
4605
4606 vm = vma->vm;
4607
4608 if (!i915_is_ggtt(vm))
4609 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4610
4611 list_del(&vma->vma_link);
4612
4613 kfree(vma);
4614 }
4615
4616 static void
4617 i915_gem_stop_ringbuffers(struct drm_device *dev)
4618 {
4619 struct drm_i915_private *dev_priv = dev->dev_private;
4620 struct intel_engine_cs *ring;
4621 int i;
4622
4623 for_each_ring(ring, dev_priv, i)
4624 dev_priv->gt.stop_ring(ring);
4625 }
4626
4627 int
4628 i915_gem_suspend(struct drm_device *dev)
4629 {
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 int ret = 0;
4632
4633 mutex_lock(&dev->struct_mutex);
4634 if (dev_priv->ums.mm_suspended)
4635 goto err;
4636
4637 ret = i915_gpu_idle(dev);
4638 if (ret)
4639 goto err;
4640
4641 i915_gem_retire_requests(dev);
4642
4643 /* Under UMS, be paranoid and evict. */
4644 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4645 i915_gem_evict_everything(dev);
4646
4647 i915_kernel_lost_context(dev);
4648 i915_gem_stop_ringbuffers(dev);
4649
4650 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4651 * We need to replace this with a semaphore, or something.
4652 * And not confound ums.mm_suspended!
4653 */
4654 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4655 DRIVER_MODESET);
4656 mutex_unlock(&dev->struct_mutex);
4657
4658 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4659 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4660 flush_delayed_work(&dev_priv->mm.idle_work);
4661
4662 return 0;
4663
4664 err:
4665 mutex_unlock(&dev->struct_mutex);
4666 return ret;
4667 }
4668
4669 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4670 {
4671 struct drm_device *dev = ring->dev;
4672 struct drm_i915_private *dev_priv = dev->dev_private;
4673 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4674 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4675 int i, ret;
4676
4677 if (!HAS_L3_DPF(dev) || !remap_info)
4678 return 0;
4679
4680 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4681 if (ret)
4682 return ret;
4683
4684 /*
4685 * Note: We do not worry about the concurrent register cacheline hang
4686 * here because no other code should access these registers other than
4687 * at initialization time.
4688 */
4689 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4690 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4691 intel_ring_emit(ring, reg_base + i);
4692 intel_ring_emit(ring, remap_info[i/4]);
4693 }
4694
4695 intel_ring_advance(ring);
4696
4697 return ret;
4698 }
4699
4700 void i915_gem_init_swizzling(struct drm_device *dev)
4701 {
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703
4704 if (INTEL_INFO(dev)->gen < 5 ||
4705 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4706 return;
4707
4708 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4709 DISP_TILE_SURFACE_SWIZZLING);
4710
4711 if (IS_GEN5(dev))
4712 return;
4713
4714 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4715 if (IS_GEN6(dev))
4716 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4717 else if (IS_GEN7(dev))
4718 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4719 else if (IS_GEN8(dev))
4720 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4721 else
4722 BUG();
4723 }
4724
4725 static bool
4726 intel_enable_blt(struct drm_device *dev)
4727 {
4728 if (!HAS_BLT(dev))
4729 return false;
4730
4731 /* The blitter was dysfunctional on early prototypes */
4732 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4733 DRM_INFO("BLT not supported on this pre-production hardware;"
4734 " graphics performance will be degraded.\n");
4735 return false;
4736 }
4737
4738 return true;
4739 }
4740
4741 static void init_unused_ring(struct drm_device *dev, u32 base)
4742 {
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744
4745 I915_WRITE(RING_CTL(base), 0);
4746 I915_WRITE(RING_HEAD(base), 0);
4747 I915_WRITE(RING_TAIL(base), 0);
4748 I915_WRITE(RING_START(base), 0);
4749 }
4750
4751 static void init_unused_rings(struct drm_device *dev)
4752 {
4753 if (IS_I830(dev)) {
4754 init_unused_ring(dev, PRB1_BASE);
4755 init_unused_ring(dev, SRB0_BASE);
4756 init_unused_ring(dev, SRB1_BASE);
4757 init_unused_ring(dev, SRB2_BASE);
4758 init_unused_ring(dev, SRB3_BASE);
4759 } else if (IS_GEN2(dev)) {
4760 init_unused_ring(dev, SRB0_BASE);
4761 init_unused_ring(dev, SRB1_BASE);
4762 } else if (IS_GEN3(dev)) {
4763 init_unused_ring(dev, PRB1_BASE);
4764 init_unused_ring(dev, PRB2_BASE);
4765 }
4766 }
4767
4768 int i915_gem_init_rings(struct drm_device *dev)
4769 {
4770 struct drm_i915_private *dev_priv = dev->dev_private;
4771 int ret;
4772
4773 /*
4774 * At least 830 can leave some of the unused rings
4775 * "active" (ie. head != tail) after resume which
4776 * will prevent c3 entry. Makes sure all unused rings
4777 * are totally idle.
4778 */
4779 init_unused_rings(dev);
4780
4781 ret = intel_init_render_ring_buffer(dev);
4782 if (ret)
4783 return ret;
4784
4785 if (HAS_BSD(dev)) {
4786 ret = intel_init_bsd_ring_buffer(dev);
4787 if (ret)
4788 goto cleanup_render_ring;
4789 }
4790
4791 if (intel_enable_blt(dev)) {
4792 ret = intel_init_blt_ring_buffer(dev);
4793 if (ret)
4794 goto cleanup_bsd_ring;
4795 }
4796
4797 if (HAS_VEBOX(dev)) {
4798 ret = intel_init_vebox_ring_buffer(dev);
4799 if (ret)
4800 goto cleanup_blt_ring;
4801 }
4802
4803 if (HAS_BSD2(dev)) {
4804 ret = intel_init_bsd2_ring_buffer(dev);
4805 if (ret)
4806 goto cleanup_vebox_ring;
4807 }
4808
4809 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4810 if (ret)
4811 goto cleanup_bsd2_ring;
4812
4813 return 0;
4814
4815 cleanup_bsd2_ring:
4816 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4817 cleanup_vebox_ring:
4818 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4819 cleanup_blt_ring:
4820 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4821 cleanup_bsd_ring:
4822 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4823 cleanup_render_ring:
4824 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4825
4826 return ret;
4827 }
4828
4829 int
4830 i915_gem_init_hw(struct drm_device *dev)
4831 {
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 int ret, i;
4834
4835 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836 return -EIO;
4837
4838 if (dev_priv->ellc_size)
4839 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4840
4841 if (IS_HASWELL(dev))
4842 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4843 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4844
4845 if (HAS_PCH_NOP(dev)) {
4846 if (IS_IVYBRIDGE(dev)) {
4847 u32 temp = I915_READ(GEN7_MSG_CTL);
4848 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4849 I915_WRITE(GEN7_MSG_CTL, temp);
4850 } else if (INTEL_INFO(dev)->gen >= 7) {
4851 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4852 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4853 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4854 }
4855 }
4856
4857 i915_gem_init_swizzling(dev);
4858
4859 ret = dev_priv->gt.init_rings(dev);
4860 if (ret)
4861 return ret;
4862
4863 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4864 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4865
4866 /*
4867 * XXX: Contexts should only be initialized once. Doing a switch to the
4868 * default context switch however is something we'd like to do after
4869 * reset or thaw (the latter may not actually be necessary for HW, but
4870 * goes with our code better). Context switching requires rings (for
4871 * the do_switch), but before enabling PPGTT. So don't move this.
4872 */
4873 ret = i915_gem_context_enable(dev_priv);
4874 if (ret && ret != -EIO) {
4875 DRM_ERROR("Context enable failed %d\n", ret);
4876 i915_gem_cleanup_ringbuffer(dev);
4877
4878 return ret;
4879 }
4880
4881 ret = i915_ppgtt_init_hw(dev);
4882 if (ret && ret != -EIO) {
4883 DRM_ERROR("PPGTT enable failed %d\n", ret);
4884 i915_gem_cleanup_ringbuffer(dev);
4885 }
4886
4887 return ret;
4888 }
4889
4890 int i915_gem_init(struct drm_device *dev)
4891 {
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 int ret;
4894
4895 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4896 i915.enable_execlists);
4897
4898 mutex_lock(&dev->struct_mutex);
4899
4900 if (IS_VALLEYVIEW(dev)) {
4901 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4902 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4903 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4904 VLV_GTLC_ALLOWWAKEACK), 10))
4905 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4906 }
4907
4908 if (!i915.enable_execlists) {
4909 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4910 dev_priv->gt.init_rings = i915_gem_init_rings;
4911 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4912 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4913 } else {
4914 dev_priv->gt.do_execbuf = intel_execlists_submission;
4915 dev_priv->gt.init_rings = intel_logical_rings_init;
4916 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4917 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4918 }
4919
4920 ret = i915_gem_init_userptr(dev);
4921 if (ret) {
4922 mutex_unlock(&dev->struct_mutex);
4923 return ret;
4924 }
4925
4926 i915_gem_init_global_gtt(dev);
4927
4928 ret = i915_gem_context_init(dev);
4929 if (ret) {
4930 mutex_unlock(&dev->struct_mutex);
4931 return ret;
4932 }
4933
4934 ret = i915_gem_init_hw(dev);
4935 if (ret == -EIO) {
4936 /* Allow ring initialisation to fail by marking the GPU as
4937 * wedged. But we only want to do this where the GPU is angry,
4938 * for all other failure, such as an allocation failure, bail.
4939 */
4940 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4941 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4942 ret = 0;
4943 }
4944 mutex_unlock(&dev->struct_mutex);
4945
4946 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4947 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4948 dev_priv->dri1.allow_batchbuffer = 1;
4949 return ret;
4950 }
4951
4952 void
4953 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4954 {
4955 struct drm_i915_private *dev_priv = dev->dev_private;
4956 struct intel_engine_cs *ring;
4957 int i;
4958
4959 for_each_ring(ring, dev_priv, i)
4960 dev_priv->gt.cleanup_ring(ring);
4961 }
4962
4963 int
4964 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4965 struct drm_file *file_priv)
4966 {
4967 struct drm_i915_private *dev_priv = dev->dev_private;
4968 int ret;
4969
4970 if (drm_core_check_feature(dev, DRIVER_MODESET))
4971 return 0;
4972
4973 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4974 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4975 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4976 }
4977
4978 mutex_lock(&dev->struct_mutex);
4979 dev_priv->ums.mm_suspended = 0;
4980
4981 ret = i915_gem_init_hw(dev);
4982 if (ret != 0) {
4983 mutex_unlock(&dev->struct_mutex);
4984 return ret;
4985 }
4986
4987 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4988
4989 ret = drm_irq_install(dev, dev->pdev->irq);
4990 if (ret)
4991 goto cleanup_ringbuffer;
4992 mutex_unlock(&dev->struct_mutex);
4993
4994 return 0;
4995
4996 cleanup_ringbuffer:
4997 i915_gem_cleanup_ringbuffer(dev);
4998 dev_priv->ums.mm_suspended = 1;
4999 mutex_unlock(&dev->struct_mutex);
5000
5001 return ret;
5002 }
5003
5004 int
5005 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5006 struct drm_file *file_priv)
5007 {
5008 if (drm_core_check_feature(dev, DRIVER_MODESET))
5009 return 0;
5010
5011 mutex_lock(&dev->struct_mutex);
5012 drm_irq_uninstall(dev);
5013 mutex_unlock(&dev->struct_mutex);
5014
5015 return i915_gem_suspend(dev);
5016 }
5017
5018 void
5019 i915_gem_lastclose(struct drm_device *dev)
5020 {
5021 int ret;
5022
5023 if (drm_core_check_feature(dev, DRIVER_MODESET))
5024 return;
5025
5026 ret = i915_gem_suspend(dev);
5027 if (ret)
5028 DRM_ERROR("failed to idle hardware: %d\n", ret);
5029 }
5030
5031 static void
5032 init_ring_lists(struct intel_engine_cs *ring)
5033 {
5034 INIT_LIST_HEAD(&ring->active_list);
5035 INIT_LIST_HEAD(&ring->request_list);
5036 }
5037
5038 void i915_init_vm(struct drm_i915_private *dev_priv,
5039 struct i915_address_space *vm)
5040 {
5041 if (!i915_is_ggtt(vm))
5042 drm_mm_init(&vm->mm, vm->start, vm->total);
5043 vm->dev = dev_priv->dev;
5044 INIT_LIST_HEAD(&vm->active_list);
5045 INIT_LIST_HEAD(&vm->inactive_list);
5046 INIT_LIST_HEAD(&vm->global_link);
5047 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5048 }
5049
5050 void
5051 i915_gem_load(struct drm_device *dev)
5052 {
5053 struct drm_i915_private *dev_priv = dev->dev_private;
5054 int i;
5055
5056 dev_priv->slab =
5057 kmem_cache_create("i915_gem_object",
5058 sizeof(struct drm_i915_gem_object), 0,
5059 SLAB_HWCACHE_ALIGN,
5060 NULL);
5061
5062 INIT_LIST_HEAD(&dev_priv->vm_list);
5063 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5064
5065 INIT_LIST_HEAD(&dev_priv->context_list);
5066 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5067 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5068 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5069 for (i = 0; i < I915_NUM_RINGS; i++)
5070 init_ring_lists(&dev_priv->ring[i]);
5071 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5072 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5073 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5074 i915_gem_retire_work_handler);
5075 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5076 i915_gem_idle_work_handler);
5077 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5078
5079 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5080 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5081 I915_WRITE(MI_ARB_STATE,
5082 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5083 }
5084
5085 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5086
5087 /* Old X drivers will take 0-2 for front, back, depth buffers */
5088 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5089 dev_priv->fence_reg_start = 3;
5090
5091 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5092 dev_priv->num_fence_regs = 32;
5093 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5094 dev_priv->num_fence_regs = 16;
5095 else
5096 dev_priv->num_fence_regs = 8;
5097
5098 /* Initialize fence registers to zero */
5099 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5100 i915_gem_restore_fences(dev);
5101
5102 i915_gem_detect_bit_6_swizzle(dev);
5103 init_waitqueue_head(&dev_priv->pending_flip_queue);
5104
5105 dev_priv->mm.interruptible = true;
5106
5107 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5108 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5109 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5110 register_shrinker(&dev_priv->mm.shrinker);
5111
5112 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5113 register_oom_notifier(&dev_priv->mm.oom_notifier);
5114
5115 mutex_init(&dev_priv->fb_tracking.lock);
5116 }
5117
5118 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5119 {
5120 struct drm_i915_file_private *file_priv = file->driver_priv;
5121
5122 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5123
5124 /* Clean up our request list when the client is going away, so that
5125 * later retire_requests won't dereference our soon-to-be-gone
5126 * file_priv.
5127 */
5128 spin_lock(&file_priv->mm.lock);
5129 while (!list_empty(&file_priv->mm.request_list)) {
5130 struct drm_i915_gem_request *request;
5131
5132 request = list_first_entry(&file_priv->mm.request_list,
5133 struct drm_i915_gem_request,
5134 client_list);
5135 list_del(&request->client_list);
5136 request->file_priv = NULL;
5137 }
5138 spin_unlock(&file_priv->mm.lock);
5139 }
5140
5141 static void
5142 i915_gem_file_idle_work_handler(struct work_struct *work)
5143 {
5144 struct drm_i915_file_private *file_priv =
5145 container_of(work, typeof(*file_priv), mm.idle_work.work);
5146
5147 atomic_set(&file_priv->rps_wait_boost, false);
5148 }
5149
5150 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5151 {
5152 struct drm_i915_file_private *file_priv;
5153 int ret;
5154
5155 DRM_DEBUG_DRIVER("\n");
5156
5157 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5158 if (!file_priv)
5159 return -ENOMEM;
5160
5161 file->driver_priv = file_priv;
5162 file_priv->dev_priv = dev->dev_private;
5163 file_priv->file = file;
5164
5165 spin_lock_init(&file_priv->mm.lock);
5166 INIT_LIST_HEAD(&file_priv->mm.request_list);
5167 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5168 i915_gem_file_idle_work_handler);
5169
5170 ret = i915_gem_context_open(dev, file);
5171 if (ret)
5172 kfree(file_priv);
5173
5174 return ret;
5175 }
5176
5177 /**
5178 * i915_gem_track_fb - update frontbuffer tracking
5179 * old: current GEM buffer for the frontbuffer slots
5180 * new: new GEM buffer for the frontbuffer slots
5181 * frontbuffer_bits: bitmask of frontbuffer slots
5182 *
5183 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5184 * from @old and setting them in @new. Both @old and @new can be NULL.
5185 */
5186 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5187 struct drm_i915_gem_object *new,
5188 unsigned frontbuffer_bits)
5189 {
5190 if (old) {
5191 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5192 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5193 old->frontbuffer_bits &= ~frontbuffer_bits;
5194 }
5195
5196 if (new) {
5197 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5198 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5199 new->frontbuffer_bits |= frontbuffer_bits;
5200 }
5201 }
5202
5203 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5204 {
5205 if (!mutex_is_locked(mutex))
5206 return false;
5207
5208 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5209 return mutex->owner == task;
5210 #else
5211 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5212 return false;
5213 #endif
5214 }
5215
5216 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5217 {
5218 if (!mutex_trylock(&dev->struct_mutex)) {
5219 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5220 return false;
5221
5222 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5223 return false;
5224
5225 *unlock = false;
5226 } else
5227 *unlock = true;
5228
5229 return true;
5230 }
5231
5232 static int num_vma_bound(struct drm_i915_gem_object *obj)
5233 {
5234 struct i915_vma *vma;
5235 int count = 0;
5236
5237 list_for_each_entry(vma, &obj->vma_list, vma_link)
5238 if (drm_mm_node_allocated(&vma->node))
5239 count++;
5240
5241 return count;
5242 }
5243
5244 static unsigned long
5245 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5246 {
5247 struct drm_i915_private *dev_priv =
5248 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5249 struct drm_device *dev = dev_priv->dev;
5250 struct drm_i915_gem_object *obj;
5251 unsigned long count;
5252 bool unlock;
5253
5254 if (!i915_gem_shrinker_lock(dev, &unlock))
5255 return 0;
5256
5257 count = 0;
5258 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5259 if (obj->pages_pin_count == 0)
5260 count += obj->base.size >> PAGE_SHIFT;
5261
5262 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5263 if (!i915_gem_obj_is_pinned(obj) &&
5264 obj->pages_pin_count == num_vma_bound(obj))
5265 count += obj->base.size >> PAGE_SHIFT;
5266 }
5267
5268 if (unlock)
5269 mutex_unlock(&dev->struct_mutex);
5270
5271 return count;
5272 }
5273
5274 /* All the new VM stuff */
5275 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5276 struct i915_address_space *vm)
5277 {
5278 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5279 struct i915_vma *vma;
5280
5281 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5282
5283 list_for_each_entry(vma, &o->vma_list, vma_link) {
5284 if (vma->vm == vm)
5285 return vma->node.start;
5286
5287 }
5288 WARN(1, "%s vma for this object not found.\n",
5289 i915_is_ggtt(vm) ? "global" : "ppgtt");
5290 return -1;
5291 }
5292
5293 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5294 struct i915_address_space *vm)
5295 {
5296 struct i915_vma *vma;
5297
5298 list_for_each_entry(vma, &o->vma_list, vma_link)
5299 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5300 return true;
5301
5302 return false;
5303 }
5304
5305 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5306 {
5307 struct i915_vma *vma;
5308
5309 list_for_each_entry(vma, &o->vma_list, vma_link)
5310 if (drm_mm_node_allocated(&vma->node))
5311 return true;
5312
5313 return false;
5314 }
5315
5316 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5317 struct i915_address_space *vm)
5318 {
5319 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5320 struct i915_vma *vma;
5321
5322 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5323
5324 BUG_ON(list_empty(&o->vma_list));
5325
5326 list_for_each_entry(vma, &o->vma_list, vma_link)
5327 if (vma->vm == vm)
5328 return vma->node.size;
5329
5330 return 0;
5331 }
5332
5333 static unsigned long
5334 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5335 {
5336 struct drm_i915_private *dev_priv =
5337 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5338 struct drm_device *dev = dev_priv->dev;
5339 unsigned long freed;
5340 bool unlock;
5341
5342 if (!i915_gem_shrinker_lock(dev, &unlock))
5343 return SHRINK_STOP;
5344
5345 freed = i915_gem_shrink(dev_priv,
5346 sc->nr_to_scan,
5347 I915_SHRINK_BOUND |
5348 I915_SHRINK_UNBOUND |
5349 I915_SHRINK_PURGEABLE);
5350 if (freed < sc->nr_to_scan)
5351 freed += i915_gem_shrink(dev_priv,
5352 sc->nr_to_scan - freed,
5353 I915_SHRINK_BOUND |
5354 I915_SHRINK_UNBOUND);
5355 if (unlock)
5356 mutex_unlock(&dev->struct_mutex);
5357
5358 return freed;
5359 }
5360
5361 static int
5362 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5363 {
5364 struct drm_i915_private *dev_priv =
5365 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5366 struct drm_device *dev = dev_priv->dev;
5367 struct drm_i915_gem_object *obj;
5368 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5369 unsigned long pinned, bound, unbound, freed_pages;
5370 bool was_interruptible;
5371 bool unlock;
5372
5373 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5374 schedule_timeout_killable(1);
5375 if (fatal_signal_pending(current))
5376 return NOTIFY_DONE;
5377 }
5378 if (timeout == 0) {
5379 pr_err("Unable to purge GPU memory due lock contention.\n");
5380 return NOTIFY_DONE;
5381 }
5382
5383 was_interruptible = dev_priv->mm.interruptible;
5384 dev_priv->mm.interruptible = false;
5385
5386 freed_pages = i915_gem_shrink_all(dev_priv);
5387
5388 dev_priv->mm.interruptible = was_interruptible;
5389
5390 /* Because we may be allocating inside our own driver, we cannot
5391 * assert that there are no objects with pinned pages that are not
5392 * being pointed to by hardware.
5393 */
5394 unbound = bound = pinned = 0;
5395 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5396 if (!obj->base.filp) /* not backed by a freeable object */
5397 continue;
5398
5399 if (obj->pages_pin_count)
5400 pinned += obj->base.size;
5401 else
5402 unbound += obj->base.size;
5403 }
5404 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5405 if (!obj->base.filp)
5406 continue;
5407
5408 if (obj->pages_pin_count)
5409 pinned += obj->base.size;
5410 else
5411 bound += obj->base.size;
5412 }
5413
5414 if (unlock)
5415 mutex_unlock(&dev->struct_mutex);
5416
5417 if (freed_pages || unbound || bound)
5418 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5419 freed_pages << PAGE_SHIFT, pinned);
5420 if (unbound || bound)
5421 pr_err("%lu and %lu bytes still available in the "
5422 "bound and unbound GPU page lists.\n",
5423 bound, unbound);
5424
5425 *(unsigned long *)ptr += freed_pages;
5426 return NOTIFY_DONE;
5427 }
5428
5429 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5430 {
5431 struct i915_vma *vma;
5432
5433 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5434 if (vma->vm != i915_obj_to_ggtt(obj))
5435 return NULL;
5436
5437 return vma;
5438 }
This page took 0.163128 seconds and 4 git commands to generate.