drm/i915: swizzling support for snb/ivb
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
53 static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file);
57 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69 }
70
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73 {
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76 }
77
78 static int
79 i915_gem_wait_for_error(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
104 }
105
106 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 {
108 int ret;
109
110 ret = i915_gem_wait_for_error(dev);
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
118 WARN_ON(i915_verify_lists(dev));
119 return 0;
120 }
121
122 static inline bool
123 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 {
125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 }
127
128 void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
132 {
133 drm_i915_private_t *dev_priv = dev->dev_private;
134
135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
140 dev_priv->mm.gtt_total = end - start;
141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_gem_init *args = data;
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
156
157 mutex_lock(&dev->struct_mutex);
158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 mutex_unlock(&dev->struct_mutex);
160
161 return 0;
162 }
163
164 int
165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 struct drm_file *file)
167 {
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 struct drm_i915_gem_get_aperture *args = data;
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
176 pinned = 0;
177 mutex_lock(&dev->struct_mutex);
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
180 mutex_unlock(&dev->struct_mutex);
181
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size - pinned;
184
185 return 0;
186 }
187
188 static int
189 i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
193 {
194 struct drm_i915_gem_object *obj;
195 int ret;
196 u32 handle;
197
198 size = roundup(size, PAGE_SIZE);
199 if (size == 0)
200 return -EINVAL;
201
202 /* Allocate the new object */
203 obj = i915_gem_alloc_object(dev, size);
204 if (obj == NULL)
205 return -ENOMEM;
206
207 ret = drm_gem_handle_create(file, &obj->base, &handle);
208 if (ret) {
209 drm_gem_object_release(&obj->base);
210 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
211 kfree(obj);
212 return ret;
213 }
214
215 /* drop reference from allocate - handle holds it now */
216 drm_gem_object_unreference(&obj->base);
217 trace_i915_gem_object_create(obj);
218
219 *handle_p = handle;
220 return 0;
221 }
222
223 int
224 i915_gem_dumb_create(struct drm_file *file,
225 struct drm_device *dev,
226 struct drm_mode_create_dumb *args)
227 {
228 /* have to work out size/pitch and return them */
229 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
230 args->size = args->pitch * args->height;
231 return i915_gem_create(file, dev,
232 args->size, &args->handle);
233 }
234
235 int i915_gem_dumb_destroy(struct drm_file *file,
236 struct drm_device *dev,
237 uint32_t handle)
238 {
239 return drm_gem_handle_delete(file, handle);
240 }
241
242 /**
243 * Creates a new mm object and returns a handle to it.
244 */
245 int
246 i915_gem_create_ioctl(struct drm_device *dev, void *data,
247 struct drm_file *file)
248 {
249 struct drm_i915_gem_create *args = data;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252 }
253
254 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
255 {
256 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
257
258 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
259 obj->tiling_mode != I915_TILING_NONE;
260 }
261
262 /**
263 * This is the fast shmem pread path, which attempts to copy_from_user directly
264 * from the backing pages of the object to the user's address space. On a
265 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
266 */
267 static int
268 i915_gem_shmem_pread_fast(struct drm_device *dev,
269 struct drm_i915_gem_object *obj,
270 struct drm_i915_gem_pread *args,
271 struct drm_file *file)
272 {
273 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
274 ssize_t remain;
275 loff_t offset;
276 char __user *user_data;
277 int page_offset, page_length;
278
279 user_data = (char __user *) (uintptr_t) args->data_ptr;
280 remain = args->size;
281
282 offset = args->offset;
283
284 while (remain > 0) {
285 struct page *page;
286 char *vaddr;
287 int ret;
288
289 /* Operation in this page
290 *
291 * page_offset = offset within page
292 * page_length = bytes to copy for this page
293 */
294 page_offset = offset_in_page(offset);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
299 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
300 if (IS_ERR(page))
301 return PTR_ERR(page);
302
303 vaddr = kmap_atomic(page);
304 ret = __copy_to_user_inatomic(user_data,
305 vaddr + page_offset,
306 page_length);
307 kunmap_atomic(vaddr);
308
309 mark_page_accessed(page);
310 page_cache_release(page);
311 if (ret)
312 return -EFAULT;
313
314 remain -= page_length;
315 user_data += page_length;
316 offset += page_length;
317 }
318
319 return 0;
320 }
321
322 static inline int
323 __copy_to_user_swizzled(char __user *cpu_vaddr,
324 const char *gpu_vaddr, int gpu_offset,
325 int length)
326 {
327 int ret, cpu_offset = 0;
328
329 while (length > 0) {
330 int cacheline_end = ALIGN(gpu_offset + 1, 64);
331 int this_length = min(cacheline_end - gpu_offset, length);
332 int swizzled_gpu_offset = gpu_offset ^ 64;
333
334 ret = __copy_to_user(cpu_vaddr + cpu_offset,
335 gpu_vaddr + swizzled_gpu_offset,
336 this_length);
337 if (ret)
338 return ret + length;
339
340 cpu_offset += this_length;
341 gpu_offset += this_length;
342 length -= this_length;
343 }
344
345 return 0;
346 }
347
348 static inline int
349 __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
350 const char *cpu_vaddr,
351 int length)
352 {
353 int ret, cpu_offset = 0;
354
355 while (length > 0) {
356 int cacheline_end = ALIGN(gpu_offset + 1, 64);
357 int this_length = min(cacheline_end - gpu_offset, length);
358 int swizzled_gpu_offset = gpu_offset ^ 64;
359
360 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
361 cpu_vaddr + cpu_offset,
362 this_length);
363 if (ret)
364 return ret + length;
365
366 cpu_offset += this_length;
367 gpu_offset += this_length;
368 length -= this_length;
369 }
370
371 return 0;
372 }
373
374 /**
375 * This is the fallback shmem pread path, which allocates temporary storage
376 * in kernel space to copy_to_user into outside of the struct_mutex, so we
377 * can copy out of the object's backing pages while holding the struct mutex
378 * and not take page faults.
379 */
380 static int
381 i915_gem_shmem_pread_slow(struct drm_device *dev,
382 struct drm_i915_gem_object *obj,
383 struct drm_i915_gem_pread *args,
384 struct drm_file *file)
385 {
386 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
387 char __user *user_data;
388 ssize_t remain;
389 loff_t offset;
390 int shmem_page_offset, page_length, ret;
391 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
392
393 user_data = (char __user *) (uintptr_t) args->data_ptr;
394 remain = args->size;
395
396 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
397
398 offset = args->offset;
399
400 mutex_unlock(&dev->struct_mutex);
401
402 while (remain > 0) {
403 struct page *page;
404 char *vaddr;
405
406 /* Operation in this page
407 *
408 * shmem_page_offset = offset within page in shmem file
409 * page_length = bytes to copy for this page
410 */
411 shmem_page_offset = offset_in_page(offset);
412 page_length = remain;
413 if ((shmem_page_offset + page_length) > PAGE_SIZE)
414 page_length = PAGE_SIZE - shmem_page_offset;
415
416 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
417 if (IS_ERR(page)) {
418 ret = PTR_ERR(page);
419 goto out;
420 }
421
422 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
423 (page_to_phys(page) & (1 << 17)) != 0;
424
425 vaddr = kmap(page);
426 if (page_do_bit17_swizzling)
427 ret = __copy_to_user_swizzled(user_data,
428 vaddr, shmem_page_offset,
429 page_length);
430 else
431 ret = __copy_to_user(user_data,
432 vaddr + shmem_page_offset,
433 page_length);
434 kunmap(page);
435
436 mark_page_accessed(page);
437 page_cache_release(page);
438
439 if (ret) {
440 ret = -EFAULT;
441 goto out;
442 }
443
444 remain -= page_length;
445 user_data += page_length;
446 offset += page_length;
447 }
448
449 out:
450 mutex_lock(&dev->struct_mutex);
451 /* Fixup: Kill any reinstated backing storage pages */
452 if (obj->madv == __I915_MADV_PURGED)
453 i915_gem_object_truncate(obj);
454
455 return ret;
456 }
457
458 /**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463 int
464 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file)
466 {
467 struct drm_i915_gem_pread *args = data;
468 struct drm_i915_gem_object *obj;
469 int ret = 0;
470
471 if (args->size == 0)
472 return 0;
473
474 if (!access_ok(VERIFY_WRITE,
475 (char __user *)(uintptr_t)args->data_ptr,
476 args->size))
477 return -EFAULT;
478
479 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
480 args->size);
481 if (ret)
482 return -EFAULT;
483
484 ret = i915_mutex_lock_interruptible(dev);
485 if (ret)
486 return ret;
487
488 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
489 if (&obj->base == NULL) {
490 ret = -ENOENT;
491 goto unlock;
492 }
493
494 /* Bounds check source. */
495 if (args->offset > obj->base.size ||
496 args->size > obj->base.size - args->offset) {
497 ret = -EINVAL;
498 goto out;
499 }
500
501 trace_i915_gem_object_pread(obj, args->offset, args->size);
502
503 ret = i915_gem_object_set_cpu_read_domain_range(obj,
504 args->offset,
505 args->size);
506 if (ret)
507 goto out;
508
509 ret = -EFAULT;
510 if (!i915_gem_object_needs_bit17_swizzle(obj))
511 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
512 if (ret == -EFAULT)
513 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
514
515 out:
516 drm_gem_object_unreference(&obj->base);
517 unlock:
518 mutex_unlock(&dev->struct_mutex);
519 return ret;
520 }
521
522 /* This is the fast write path which cannot handle
523 * page faults in the source data
524 */
525
526 static inline int
527 fast_user_write(struct io_mapping *mapping,
528 loff_t page_base, int page_offset,
529 char __user *user_data,
530 int length)
531 {
532 char *vaddr_atomic;
533 unsigned long unwritten;
534
535 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
536 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
537 user_data, length);
538 io_mapping_unmap_atomic(vaddr_atomic);
539 return unwritten;
540 }
541
542 /* Here's the write path which can sleep for
543 * page faults
544 */
545
546 static inline void
547 slow_kernel_write(struct io_mapping *mapping,
548 loff_t gtt_base, int gtt_offset,
549 struct page *user_page, int user_offset,
550 int length)
551 {
552 char __iomem *dst_vaddr;
553 char *src_vaddr;
554
555 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
556 src_vaddr = kmap(user_page);
557
558 memcpy_toio(dst_vaddr + gtt_offset,
559 src_vaddr + user_offset,
560 length);
561
562 kunmap(user_page);
563 io_mapping_unmap(dst_vaddr);
564 }
565
566 /**
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
569 */
570 static int
571 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
572 struct drm_i915_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file)
575 {
576 drm_i915_private_t *dev_priv = dev->dev_private;
577 ssize_t remain;
578 loff_t offset, page_base;
579 char __user *user_data;
580 int page_offset, page_length;
581
582 user_data = (char __user *) (uintptr_t) args->data_ptr;
583 remain = args->size;
584
585 offset = obj->gtt_offset + args->offset;
586
587 while (remain > 0) {
588 /* Operation in this page
589 *
590 * page_base = page offset within aperture
591 * page_offset = offset within page
592 * page_length = bytes to copy for this page
593 */
594 page_base = offset & PAGE_MASK;
595 page_offset = offset_in_page(offset);
596 page_length = remain;
597 if ((page_offset + remain) > PAGE_SIZE)
598 page_length = PAGE_SIZE - page_offset;
599
600 /* If we get a fault while copying data, then (presumably) our
601 * source page isn't available. Return the error and we'll
602 * retry in the slow path.
603 */
604 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
605 page_offset, user_data, page_length))
606 return -EFAULT;
607
608 remain -= page_length;
609 user_data += page_length;
610 offset += page_length;
611 }
612
613 return 0;
614 }
615
616 /**
617 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
618 * the memory and maps it using kmap_atomic for copying.
619 *
620 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
621 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
622 */
623 static int
624 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
626 struct drm_i915_gem_pwrite *args,
627 struct drm_file *file)
628 {
629 drm_i915_private_t *dev_priv = dev->dev_private;
630 ssize_t remain;
631 loff_t gtt_page_base, offset;
632 loff_t first_data_page, last_data_page, num_pages;
633 loff_t pinned_pages, i;
634 struct page **user_pages;
635 struct mm_struct *mm = current->mm;
636 int gtt_page_offset, data_page_offset, data_page_index, page_length;
637 int ret;
638 uint64_t data_ptr = args->data_ptr;
639
640 remain = args->size;
641
642 /* Pin the user pages containing the data. We can't fault while
643 * holding the struct mutex, and all of the pwrite implementations
644 * want to hold it while dereferencing the user data.
645 */
646 first_data_page = data_ptr / PAGE_SIZE;
647 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
648 num_pages = last_data_page - first_data_page + 1;
649
650 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
651 if (user_pages == NULL)
652 return -ENOMEM;
653
654 mutex_unlock(&dev->struct_mutex);
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
659 mutex_lock(&dev->struct_mutex);
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
664
665 ret = i915_gem_object_set_to_gtt_domain(obj, true);
666 if (ret)
667 goto out_unpin_pages;
668
669 ret = i915_gem_object_put_fence(obj);
670 if (ret)
671 goto out_unpin_pages;
672
673 offset = obj->gtt_offset + args->offset;
674
675 while (remain > 0) {
676 /* Operation in this page
677 *
678 * gtt_page_base = page offset within aperture
679 * gtt_page_offset = offset within page in aperture
680 * data_page_index = page number in get_user_pages return
681 * data_page_offset = offset with data_page_index page.
682 * page_length = bytes to copy for this page
683 */
684 gtt_page_base = offset & PAGE_MASK;
685 gtt_page_offset = offset_in_page(offset);
686 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
687 data_page_offset = offset_in_page(data_ptr);
688
689 page_length = remain;
690 if ((gtt_page_offset + page_length) > PAGE_SIZE)
691 page_length = PAGE_SIZE - gtt_page_offset;
692 if ((data_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - data_page_offset;
694
695 slow_kernel_write(dev_priv->mm.gtt_mapping,
696 gtt_page_base, gtt_page_offset,
697 user_pages[data_page_index],
698 data_page_offset,
699 page_length);
700
701 remain -= page_length;
702 offset += page_length;
703 data_ptr += page_length;
704 }
705
706 out_unpin_pages:
707 for (i = 0; i < pinned_pages; i++)
708 page_cache_release(user_pages[i]);
709 drm_free_large(user_pages);
710
711 return ret;
712 }
713
714 /**
715 * This is the fast shmem pwrite path, which attempts to directly
716 * copy_from_user into the kmapped pages backing the object.
717 */
718 static int
719 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
720 struct drm_i915_gem_object *obj,
721 struct drm_i915_gem_pwrite *args,
722 struct drm_file *file)
723 {
724 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
725 ssize_t remain;
726 loff_t offset;
727 char __user *user_data;
728 int page_offset, page_length;
729
730 user_data = (char __user *) (uintptr_t) args->data_ptr;
731 remain = args->size;
732
733 offset = args->offset;
734 obj->dirty = 1;
735
736 while (remain > 0) {
737 struct page *page;
738 char *vaddr;
739 int ret;
740
741 /* Operation in this page
742 *
743 * page_offset = offset within page
744 * page_length = bytes to copy for this page
745 */
746 page_offset = offset_in_page(offset);
747 page_length = remain;
748 if ((page_offset + remain) > PAGE_SIZE)
749 page_length = PAGE_SIZE - page_offset;
750
751 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
752 if (IS_ERR(page))
753 return PTR_ERR(page);
754
755 vaddr = kmap_atomic(page);
756 ret = __copy_from_user_inatomic(vaddr + page_offset,
757 user_data,
758 page_length);
759 kunmap_atomic(vaddr);
760
761 set_page_dirty(page);
762 mark_page_accessed(page);
763 page_cache_release(page);
764
765 /* If we get a fault while copying data, then (presumably) our
766 * source page isn't available. Return the error and we'll
767 * retry in the slow path.
768 */
769 if (ret)
770 return -EFAULT;
771
772 remain -= page_length;
773 user_data += page_length;
774 offset += page_length;
775 }
776
777 return 0;
778 }
779
780 /**
781 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
782 * the memory and maps it using kmap_atomic for copying.
783 *
784 * This avoids taking mmap_sem for faulting on the user's address while the
785 * struct_mutex is held.
786 */
787 static int
788 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
789 struct drm_i915_gem_object *obj,
790 struct drm_i915_gem_pwrite *args,
791 struct drm_file *file)
792 {
793 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
794 ssize_t remain;
795 loff_t offset;
796 char __user *user_data;
797 int shmem_page_offset, page_length, ret;
798 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
799
800 user_data = (char __user *) (uintptr_t) args->data_ptr;
801 remain = args->size;
802
803 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
804
805 offset = args->offset;
806 obj->dirty = 1;
807
808 mutex_unlock(&dev->struct_mutex);
809
810 while (remain > 0) {
811 struct page *page;
812 char *vaddr;
813
814 /* Operation in this page
815 *
816 * shmem_page_offset = offset within page in shmem file
817 * page_length = bytes to copy for this page
818 */
819 shmem_page_offset = offset_in_page(offset);
820
821 page_length = remain;
822 if ((shmem_page_offset + page_length) > PAGE_SIZE)
823 page_length = PAGE_SIZE - shmem_page_offset;
824
825 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
826 if (IS_ERR(page)) {
827 ret = PTR_ERR(page);
828 goto out;
829 }
830
831 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
832 (page_to_phys(page) & (1 << 17)) != 0;
833
834 vaddr = kmap(page);
835 if (page_do_bit17_swizzling)
836 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
837 user_data,
838 page_length);
839 else
840 ret = __copy_from_user(vaddr + shmem_page_offset,
841 user_data,
842 page_length);
843 kunmap(page);
844
845 set_page_dirty(page);
846 mark_page_accessed(page);
847 page_cache_release(page);
848
849 if (ret) {
850 ret = -EFAULT;
851 goto out;
852 }
853
854 remain -= page_length;
855 user_data += page_length;
856 offset += page_length;
857 }
858
859 out:
860 mutex_lock(&dev->struct_mutex);
861 /* Fixup: Kill any reinstated backing storage pages */
862 if (obj->madv == __I915_MADV_PURGED)
863 i915_gem_object_truncate(obj);
864 /* and flush dirty cachelines in case the object isn't in the cpu write
865 * domain anymore. */
866 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
867 i915_gem_clflush_object(obj);
868 intel_gtt_chipset_flush();
869 }
870
871 return ret;
872 }
873
874 /**
875 * Writes data to the object referenced by handle.
876 *
877 * On error, the contents of the buffer that were to be modified are undefined.
878 */
879 int
880 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
881 struct drm_file *file)
882 {
883 struct drm_i915_gem_pwrite *args = data;
884 struct drm_i915_gem_object *obj;
885 int ret;
886
887 if (args->size == 0)
888 return 0;
889
890 if (!access_ok(VERIFY_READ,
891 (char __user *)(uintptr_t)args->data_ptr,
892 args->size))
893 return -EFAULT;
894
895 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
896 args->size);
897 if (ret)
898 return -EFAULT;
899
900 ret = i915_mutex_lock_interruptible(dev);
901 if (ret)
902 return ret;
903
904 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
905 if (&obj->base == NULL) {
906 ret = -ENOENT;
907 goto unlock;
908 }
909
910 /* Bounds check destination. */
911 if (args->offset > obj->base.size ||
912 args->size > obj->base.size - args->offset) {
913 ret = -EINVAL;
914 goto out;
915 }
916
917 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
918
919 /* We can only do the GTT pwrite on untiled buffers, as otherwise
920 * it would end up going through the fenced access, and we'll get
921 * different detiling behavior between reading and writing.
922 * pread/pwrite currently are reading and writing from the CPU
923 * perspective, requiring manual detiling by the client.
924 */
925 if (obj->phys_obj) {
926 ret = i915_gem_phys_pwrite(dev, obj, args, file);
927 goto out;
928 }
929
930 if (obj->gtt_space &&
931 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 ret = i915_gem_object_pin(obj, 0, true);
933 if (ret)
934 goto out;
935
936 ret = i915_gem_object_set_to_gtt_domain(obj, true);
937 if (ret)
938 goto out_unpin;
939
940 ret = i915_gem_object_put_fence(obj);
941 if (ret)
942 goto out_unpin;
943
944 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
945 if (ret == -EFAULT)
946 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
947
948 out_unpin:
949 i915_gem_object_unpin(obj);
950
951 if (ret != -EFAULT)
952 goto out;
953 /* Fall through to the shmfs paths because the gtt paths might
954 * fail with non-page-backed user pointers (e.g. gtt mappings
955 * when moving data between textures). */
956 }
957
958 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
959 if (ret)
960 goto out;
961
962 ret = -EFAULT;
963 if (!i915_gem_object_needs_bit17_swizzle(obj))
964 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
965 if (ret == -EFAULT)
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
967
968 out:
969 drm_gem_object_unreference(&obj->base);
970 unlock:
971 mutex_unlock(&dev->struct_mutex);
972 return ret;
973 }
974
975 /**
976 * Called when user space prepares to use an object with the CPU, either
977 * through the mmap ioctl's mapping or a GTT mapping.
978 */
979 int
980 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981 struct drm_file *file)
982 {
983 struct drm_i915_gem_set_domain *args = data;
984 struct drm_i915_gem_object *obj;
985 uint32_t read_domains = args->read_domains;
986 uint32_t write_domain = args->write_domain;
987 int ret;
988
989 if (!(dev->driver->driver_features & DRIVER_GEM))
990 return -ENODEV;
991
992 /* Only handle setting domains to types used by the CPU. */
993 if (write_domain & I915_GEM_GPU_DOMAINS)
994 return -EINVAL;
995
996 if (read_domains & I915_GEM_GPU_DOMAINS)
997 return -EINVAL;
998
999 /* Having something in the write domain implies it's in the read
1000 * domain, and only that read domain. Enforce that in the request.
1001 */
1002 if (write_domain != 0 && read_domains != write_domain)
1003 return -EINVAL;
1004
1005 ret = i915_mutex_lock_interruptible(dev);
1006 if (ret)
1007 return ret;
1008
1009 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1010 if (&obj->base == NULL) {
1011 ret = -ENOENT;
1012 goto unlock;
1013 }
1014
1015 if (read_domains & I915_GEM_DOMAIN_GTT) {
1016 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1017
1018 /* Silently promote "you're not bound, there was nothing to do"
1019 * to success, since the client was just asking us to
1020 * make sure everything was done.
1021 */
1022 if (ret == -EINVAL)
1023 ret = 0;
1024 } else {
1025 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1026 }
1027
1028 drm_gem_object_unreference(&obj->base);
1029 unlock:
1030 mutex_unlock(&dev->struct_mutex);
1031 return ret;
1032 }
1033
1034 /**
1035 * Called when user space has done writes to this buffer
1036 */
1037 int
1038 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1039 struct drm_file *file)
1040 {
1041 struct drm_i915_gem_sw_finish *args = data;
1042 struct drm_i915_gem_object *obj;
1043 int ret = 0;
1044
1045 if (!(dev->driver->driver_features & DRIVER_GEM))
1046 return -ENODEV;
1047
1048 ret = i915_mutex_lock_interruptible(dev);
1049 if (ret)
1050 return ret;
1051
1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053 if (&obj->base == NULL) {
1054 ret = -ENOENT;
1055 goto unlock;
1056 }
1057
1058 /* Pinned buffers may be scanout, so flush the cache */
1059 if (obj->pin_count)
1060 i915_gem_object_flush_cpu_write_domain(obj);
1061
1062 drm_gem_object_unreference(&obj->base);
1063 unlock:
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066 }
1067
1068 /**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075 int
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file)
1078 {
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1081 unsigned long addr;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
1086 obj = drm_gem_object_lookup(dev, file, args->handle);
1087 if (obj == NULL)
1088 return -ENOENT;
1089
1090 down_write(&current->mm->mmap_sem);
1091 addr = do_mmap(obj->filp, 0, args->size,
1092 PROT_READ | PROT_WRITE, MAP_SHARED,
1093 args->offset);
1094 up_write(&current->mm->mmap_sem);
1095 drm_gem_object_unreference_unlocked(obj);
1096 if (IS_ERR((void *)addr))
1097 return addr;
1098
1099 args->addr_ptr = (uint64_t) addr;
1100
1101 return 0;
1102 }
1103
1104 /**
1105 * i915_gem_fault - fault a page into the GTT
1106 * vma: VMA in question
1107 * vmf: fault info
1108 *
1109 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1110 * from userspace. The fault handler takes care of binding the object to
1111 * the GTT (if needed), allocating and programming a fence register (again,
1112 * only if needed based on whether the old reg is still valid or the object
1113 * is tiled) and inserting a new PTE into the faulting process.
1114 *
1115 * Note that the faulting process may involve evicting existing objects
1116 * from the GTT and/or fence registers to make room. So performance may
1117 * suffer if the GTT working set is large or there are few fence registers
1118 * left.
1119 */
1120 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1121 {
1122 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1123 struct drm_device *dev = obj->base.dev;
1124 drm_i915_private_t *dev_priv = dev->dev_private;
1125 pgoff_t page_offset;
1126 unsigned long pfn;
1127 int ret = 0;
1128 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1129
1130 /* We don't use vmf->pgoff since that has the fake offset */
1131 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1132 PAGE_SHIFT;
1133
1134 ret = i915_mutex_lock_interruptible(dev);
1135 if (ret)
1136 goto out;
1137
1138 trace_i915_gem_object_fault(obj, page_offset, true, write);
1139
1140 /* Now bind it into the GTT if needed */
1141 if (!obj->map_and_fenceable) {
1142 ret = i915_gem_object_unbind(obj);
1143 if (ret)
1144 goto unlock;
1145 }
1146 if (!obj->gtt_space) {
1147 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1148 if (ret)
1149 goto unlock;
1150
1151 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1152 if (ret)
1153 goto unlock;
1154 }
1155
1156 if (obj->tiling_mode == I915_TILING_NONE)
1157 ret = i915_gem_object_put_fence(obj);
1158 else
1159 ret = i915_gem_object_get_fence(obj, NULL);
1160 if (ret)
1161 goto unlock;
1162
1163 if (i915_gem_object_is_inactive(obj))
1164 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1165
1166 obj->fault_mappable = true;
1167
1168 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1169 page_offset;
1170
1171 /* Finally, remap it using the new GTT offset */
1172 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173 unlock:
1174 mutex_unlock(&dev->struct_mutex);
1175 out:
1176 switch (ret) {
1177 case -EIO:
1178 case -EAGAIN:
1179 /* Give the error handler a chance to run and move the
1180 * objects off the GPU active list. Next time we service the
1181 * fault, we should be able to transition the page into the
1182 * GTT without touching the GPU (and so avoid further
1183 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1184 * with coherency, just lost writes.
1185 */
1186 set_need_resched();
1187 case 0:
1188 case -ERESTARTSYS:
1189 case -EINTR:
1190 return VM_FAULT_NOPAGE;
1191 case -ENOMEM:
1192 return VM_FAULT_OOM;
1193 default:
1194 return VM_FAULT_SIGBUS;
1195 }
1196 }
1197
1198 /**
1199 * i915_gem_release_mmap - remove physical page mappings
1200 * @obj: obj in question
1201 *
1202 * Preserve the reservation of the mmapping with the DRM core code, but
1203 * relinquish ownership of the pages back to the system.
1204 *
1205 * It is vital that we remove the page mapping if we have mapped a tiled
1206 * object through the GTT and then lose the fence register due to
1207 * resource pressure. Similarly if the object has been moved out of the
1208 * aperture, than pages mapped into userspace must be revoked. Removing the
1209 * mapping will then trigger a page fault on the next user access, allowing
1210 * fixup by i915_gem_fault().
1211 */
1212 void
1213 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1214 {
1215 if (!obj->fault_mappable)
1216 return;
1217
1218 if (obj->base.dev->dev_mapping)
1219 unmap_mapping_range(obj->base.dev->dev_mapping,
1220 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1221 obj->base.size, 1);
1222
1223 obj->fault_mappable = false;
1224 }
1225
1226 static uint32_t
1227 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1228 {
1229 uint32_t gtt_size;
1230
1231 if (INTEL_INFO(dev)->gen >= 4 ||
1232 tiling_mode == I915_TILING_NONE)
1233 return size;
1234
1235 /* Previous chips need a power-of-two fence region when tiling */
1236 if (INTEL_INFO(dev)->gen == 3)
1237 gtt_size = 1024*1024;
1238 else
1239 gtt_size = 512*1024;
1240
1241 while (gtt_size < size)
1242 gtt_size <<= 1;
1243
1244 return gtt_size;
1245 }
1246
1247 /**
1248 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1249 * @obj: object to check
1250 *
1251 * Return the required GTT alignment for an object, taking into account
1252 * potential fence register mapping.
1253 */
1254 static uint32_t
1255 i915_gem_get_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
1258 {
1259 /*
1260 * Minimum alignment is 4k (GTT page size), but might be greater
1261 * if a fence register is needed for the object.
1262 */
1263 if (INTEL_INFO(dev)->gen >= 4 ||
1264 tiling_mode == I915_TILING_NONE)
1265 return 4096;
1266
1267 /*
1268 * Previous chips need to be aligned to the size of the smallest
1269 * fence register that can contain the object.
1270 */
1271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1272 }
1273
1274 /**
1275 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1276 * unfenced object
1277 * @dev: the device
1278 * @size: size of the object
1279 * @tiling_mode: tiling mode of the object
1280 *
1281 * Return the required GTT alignment for an object, only taking into account
1282 * unfenced tiled surface requirements.
1283 */
1284 uint32_t
1285 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1286 uint32_t size,
1287 int tiling_mode)
1288 {
1289 /*
1290 * Minimum alignment is 4k (GTT page size) for sane hw.
1291 */
1292 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1293 tiling_mode == I915_TILING_NONE)
1294 return 4096;
1295
1296 /* Previous hardware however needs to be aligned to a power-of-two
1297 * tile height. The simplest method for determining this is to reuse
1298 * the power-of-tile object size.
1299 */
1300 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1301 }
1302
1303 int
1304 i915_gem_mmap_gtt(struct drm_file *file,
1305 struct drm_device *dev,
1306 uint32_t handle,
1307 uint64_t *offset)
1308 {
1309 struct drm_i915_private *dev_priv = dev->dev_private;
1310 struct drm_i915_gem_object *obj;
1311 int ret;
1312
1313 if (!(dev->driver->driver_features & DRIVER_GEM))
1314 return -ENODEV;
1315
1316 ret = i915_mutex_lock_interruptible(dev);
1317 if (ret)
1318 return ret;
1319
1320 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1321 if (&obj->base == NULL) {
1322 ret = -ENOENT;
1323 goto unlock;
1324 }
1325
1326 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1327 ret = -E2BIG;
1328 goto out;
1329 }
1330
1331 if (obj->madv != I915_MADV_WILLNEED) {
1332 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1333 ret = -EINVAL;
1334 goto out;
1335 }
1336
1337 if (!obj->base.map_list.map) {
1338 ret = drm_gem_create_mmap_offset(&obj->base);
1339 if (ret)
1340 goto out;
1341 }
1342
1343 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1344
1345 out:
1346 drm_gem_object_unreference(&obj->base);
1347 unlock:
1348 mutex_unlock(&dev->struct_mutex);
1349 return ret;
1350 }
1351
1352 /**
1353 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1354 * @dev: DRM device
1355 * @data: GTT mapping ioctl data
1356 * @file: GEM object info
1357 *
1358 * Simply returns the fake offset to userspace so it can mmap it.
1359 * The mmap call will end up in drm_gem_mmap(), which will set things
1360 * up so we can get faults in the handler above.
1361 *
1362 * The fault handler will take care of binding the object into the GTT
1363 * (since it may have been evicted to make room for something), allocating
1364 * a fence register, and mapping the appropriate aperture address into
1365 * userspace.
1366 */
1367 int
1368 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1369 struct drm_file *file)
1370 {
1371 struct drm_i915_gem_mmap_gtt *args = data;
1372
1373 if (!(dev->driver->driver_features & DRIVER_GEM))
1374 return -ENODEV;
1375
1376 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1377 }
1378
1379
1380 static int
1381 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1382 gfp_t gfpmask)
1383 {
1384 int page_count, i;
1385 struct address_space *mapping;
1386 struct inode *inode;
1387 struct page *page;
1388
1389 /* Get the list of pages out of our struct file. They'll be pinned
1390 * at this point until we release them.
1391 */
1392 page_count = obj->base.size / PAGE_SIZE;
1393 BUG_ON(obj->pages != NULL);
1394 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1395 if (obj->pages == NULL)
1396 return -ENOMEM;
1397
1398 inode = obj->base.filp->f_path.dentry->d_inode;
1399 mapping = inode->i_mapping;
1400 gfpmask |= mapping_gfp_mask(mapping);
1401
1402 for (i = 0; i < page_count; i++) {
1403 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1404 if (IS_ERR(page))
1405 goto err_pages;
1406
1407 obj->pages[i] = page;
1408 }
1409
1410 if (i915_gem_object_needs_bit17_swizzle(obj))
1411 i915_gem_object_do_bit_17_swizzle(obj);
1412
1413 return 0;
1414
1415 err_pages:
1416 while (i--)
1417 page_cache_release(obj->pages[i]);
1418
1419 drm_free_large(obj->pages);
1420 obj->pages = NULL;
1421 return PTR_ERR(page);
1422 }
1423
1424 static void
1425 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1426 {
1427 int page_count = obj->base.size / PAGE_SIZE;
1428 int i;
1429
1430 BUG_ON(obj->madv == __I915_MADV_PURGED);
1431
1432 if (i915_gem_object_needs_bit17_swizzle(obj))
1433 i915_gem_object_save_bit_17_swizzle(obj);
1434
1435 if (obj->madv == I915_MADV_DONTNEED)
1436 obj->dirty = 0;
1437
1438 for (i = 0; i < page_count; i++) {
1439 if (obj->dirty)
1440 set_page_dirty(obj->pages[i]);
1441
1442 if (obj->madv == I915_MADV_WILLNEED)
1443 mark_page_accessed(obj->pages[i]);
1444
1445 page_cache_release(obj->pages[i]);
1446 }
1447 obj->dirty = 0;
1448
1449 drm_free_large(obj->pages);
1450 obj->pages = NULL;
1451 }
1452
1453 void
1454 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1455 struct intel_ring_buffer *ring,
1456 u32 seqno)
1457 {
1458 struct drm_device *dev = obj->base.dev;
1459 struct drm_i915_private *dev_priv = dev->dev_private;
1460
1461 BUG_ON(ring == NULL);
1462 obj->ring = ring;
1463
1464 /* Add a reference if we're newly entering the active list. */
1465 if (!obj->active) {
1466 drm_gem_object_reference(&obj->base);
1467 obj->active = 1;
1468 }
1469
1470 /* Move from whatever list we were on to the tail of execution. */
1471 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1472 list_move_tail(&obj->ring_list, &ring->active_list);
1473
1474 obj->last_rendering_seqno = seqno;
1475 if (obj->fenced_gpu_access) {
1476 struct drm_i915_fence_reg *reg;
1477
1478 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1479
1480 obj->last_fenced_seqno = seqno;
1481 obj->last_fenced_ring = ring;
1482
1483 reg = &dev_priv->fence_regs[obj->fence_reg];
1484 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1485 }
1486 }
1487
1488 static void
1489 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1490 {
1491 list_del_init(&obj->ring_list);
1492 obj->last_rendering_seqno = 0;
1493 }
1494
1495 static void
1496 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1497 {
1498 struct drm_device *dev = obj->base.dev;
1499 drm_i915_private_t *dev_priv = dev->dev_private;
1500
1501 BUG_ON(!obj->active);
1502 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1503
1504 i915_gem_object_move_off_active(obj);
1505 }
1506
1507 static void
1508 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1509 {
1510 struct drm_device *dev = obj->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 if (obj->pin_count != 0)
1514 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1515 else
1516 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1517
1518 BUG_ON(!list_empty(&obj->gpu_write_list));
1519 BUG_ON(!obj->active);
1520 obj->ring = NULL;
1521
1522 i915_gem_object_move_off_active(obj);
1523 obj->fenced_gpu_access = false;
1524
1525 obj->active = 0;
1526 obj->pending_gpu_write = false;
1527 drm_gem_object_unreference(&obj->base);
1528
1529 WARN_ON(i915_verify_lists(dev));
1530 }
1531
1532 /* Immediately discard the backing storage */
1533 static void
1534 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1535 {
1536 struct inode *inode;
1537
1538 /* Our goal here is to return as much of the memory as
1539 * is possible back to the system as we are called from OOM.
1540 * To do this we must instruct the shmfs to drop all of its
1541 * backing pages, *now*.
1542 */
1543 inode = obj->base.filp->f_path.dentry->d_inode;
1544 shmem_truncate_range(inode, 0, (loff_t)-1);
1545
1546 obj->madv = __I915_MADV_PURGED;
1547 }
1548
1549 static inline int
1550 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1551 {
1552 return obj->madv == I915_MADV_DONTNEED;
1553 }
1554
1555 static void
1556 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1557 uint32_t flush_domains)
1558 {
1559 struct drm_i915_gem_object *obj, *next;
1560
1561 list_for_each_entry_safe(obj, next,
1562 &ring->gpu_write_list,
1563 gpu_write_list) {
1564 if (obj->base.write_domain & flush_domains) {
1565 uint32_t old_write_domain = obj->base.write_domain;
1566
1567 obj->base.write_domain = 0;
1568 list_del_init(&obj->gpu_write_list);
1569 i915_gem_object_move_to_active(obj, ring,
1570 i915_gem_next_request_seqno(ring));
1571
1572 trace_i915_gem_object_change_domain(obj,
1573 obj->base.read_domains,
1574 old_write_domain);
1575 }
1576 }
1577 }
1578
1579 int
1580 i915_add_request(struct intel_ring_buffer *ring,
1581 struct drm_file *file,
1582 struct drm_i915_gem_request *request)
1583 {
1584 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1585 uint32_t seqno;
1586 int was_empty;
1587 int ret;
1588
1589 BUG_ON(request == NULL);
1590
1591 ret = ring->add_request(ring, &seqno);
1592 if (ret)
1593 return ret;
1594
1595 trace_i915_gem_request_add(ring, seqno);
1596
1597 request->seqno = seqno;
1598 request->ring = ring;
1599 request->emitted_jiffies = jiffies;
1600 was_empty = list_empty(&ring->request_list);
1601 list_add_tail(&request->list, &ring->request_list);
1602
1603 if (file) {
1604 struct drm_i915_file_private *file_priv = file->driver_priv;
1605
1606 spin_lock(&file_priv->mm.lock);
1607 request->file_priv = file_priv;
1608 list_add_tail(&request->client_list,
1609 &file_priv->mm.request_list);
1610 spin_unlock(&file_priv->mm.lock);
1611 }
1612
1613 ring->outstanding_lazy_request = false;
1614
1615 if (!dev_priv->mm.suspended) {
1616 if (i915_enable_hangcheck) {
1617 mod_timer(&dev_priv->hangcheck_timer,
1618 jiffies +
1619 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1620 }
1621 if (was_empty)
1622 queue_delayed_work(dev_priv->wq,
1623 &dev_priv->mm.retire_work, HZ);
1624 }
1625 return 0;
1626 }
1627
1628 static inline void
1629 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1630 {
1631 struct drm_i915_file_private *file_priv = request->file_priv;
1632
1633 if (!file_priv)
1634 return;
1635
1636 spin_lock(&file_priv->mm.lock);
1637 if (request->file_priv) {
1638 list_del(&request->client_list);
1639 request->file_priv = NULL;
1640 }
1641 spin_unlock(&file_priv->mm.lock);
1642 }
1643
1644 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1645 struct intel_ring_buffer *ring)
1646 {
1647 while (!list_empty(&ring->request_list)) {
1648 struct drm_i915_gem_request *request;
1649
1650 request = list_first_entry(&ring->request_list,
1651 struct drm_i915_gem_request,
1652 list);
1653
1654 list_del(&request->list);
1655 i915_gem_request_remove_from_client(request);
1656 kfree(request);
1657 }
1658
1659 while (!list_empty(&ring->active_list)) {
1660 struct drm_i915_gem_object *obj;
1661
1662 obj = list_first_entry(&ring->active_list,
1663 struct drm_i915_gem_object,
1664 ring_list);
1665
1666 obj->base.write_domain = 0;
1667 list_del_init(&obj->gpu_write_list);
1668 i915_gem_object_move_to_inactive(obj);
1669 }
1670 }
1671
1672 static void i915_gem_reset_fences(struct drm_device *dev)
1673 {
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 int i;
1676
1677 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1678 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1679 struct drm_i915_gem_object *obj = reg->obj;
1680
1681 if (!obj)
1682 continue;
1683
1684 if (obj->tiling_mode)
1685 i915_gem_release_mmap(obj);
1686
1687 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1688 reg->obj->fenced_gpu_access = false;
1689 reg->obj->last_fenced_seqno = 0;
1690 reg->obj->last_fenced_ring = NULL;
1691 i915_gem_clear_fence_reg(dev, reg);
1692 }
1693 }
1694
1695 void i915_gem_reset(struct drm_device *dev)
1696 {
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 struct drm_i915_gem_object *obj;
1699 int i;
1700
1701 for (i = 0; i < I915_NUM_RINGS; i++)
1702 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1703
1704 /* Remove anything from the flushing lists. The GPU cache is likely
1705 * to be lost on reset along with the data, so simply move the
1706 * lost bo to the inactive list.
1707 */
1708 while (!list_empty(&dev_priv->mm.flushing_list)) {
1709 obj = list_first_entry(&dev_priv->mm.flushing_list,
1710 struct drm_i915_gem_object,
1711 mm_list);
1712
1713 obj->base.write_domain = 0;
1714 list_del_init(&obj->gpu_write_list);
1715 i915_gem_object_move_to_inactive(obj);
1716 }
1717
1718 /* Move everything out of the GPU domains to ensure we do any
1719 * necessary invalidation upon reuse.
1720 */
1721 list_for_each_entry(obj,
1722 &dev_priv->mm.inactive_list,
1723 mm_list)
1724 {
1725 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1726 }
1727
1728 /* The fence registers are invalidated so clear them out */
1729 i915_gem_reset_fences(dev);
1730 }
1731
1732 /**
1733 * This function clears the request list as sequence numbers are passed.
1734 */
1735 static void
1736 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1737 {
1738 uint32_t seqno;
1739 int i;
1740
1741 if (list_empty(&ring->request_list))
1742 return;
1743
1744 WARN_ON(i915_verify_lists(ring->dev));
1745
1746 seqno = ring->get_seqno(ring);
1747
1748 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1749 if (seqno >= ring->sync_seqno[i])
1750 ring->sync_seqno[i] = 0;
1751
1752 while (!list_empty(&ring->request_list)) {
1753 struct drm_i915_gem_request *request;
1754
1755 request = list_first_entry(&ring->request_list,
1756 struct drm_i915_gem_request,
1757 list);
1758
1759 if (!i915_seqno_passed(seqno, request->seqno))
1760 break;
1761
1762 trace_i915_gem_request_retire(ring, request->seqno);
1763
1764 list_del(&request->list);
1765 i915_gem_request_remove_from_client(request);
1766 kfree(request);
1767 }
1768
1769 /* Move any buffers on the active list that are no longer referenced
1770 * by the ringbuffer to the flushing/inactive lists as appropriate.
1771 */
1772 while (!list_empty(&ring->active_list)) {
1773 struct drm_i915_gem_object *obj;
1774
1775 obj = list_first_entry(&ring->active_list,
1776 struct drm_i915_gem_object,
1777 ring_list);
1778
1779 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1780 break;
1781
1782 if (obj->base.write_domain != 0)
1783 i915_gem_object_move_to_flushing(obj);
1784 else
1785 i915_gem_object_move_to_inactive(obj);
1786 }
1787
1788 if (unlikely(ring->trace_irq_seqno &&
1789 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1790 ring->irq_put(ring);
1791 ring->trace_irq_seqno = 0;
1792 }
1793
1794 WARN_ON(i915_verify_lists(ring->dev));
1795 }
1796
1797 void
1798 i915_gem_retire_requests(struct drm_device *dev)
1799 {
1800 drm_i915_private_t *dev_priv = dev->dev_private;
1801 int i;
1802
1803 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1804 struct drm_i915_gem_object *obj, *next;
1805
1806 /* We must be careful that during unbind() we do not
1807 * accidentally infinitely recurse into retire requests.
1808 * Currently:
1809 * retire -> free -> unbind -> wait -> retire_ring
1810 */
1811 list_for_each_entry_safe(obj, next,
1812 &dev_priv->mm.deferred_free_list,
1813 mm_list)
1814 i915_gem_free_object_tail(obj);
1815 }
1816
1817 for (i = 0; i < I915_NUM_RINGS; i++)
1818 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1819 }
1820
1821 static void
1822 i915_gem_retire_work_handler(struct work_struct *work)
1823 {
1824 drm_i915_private_t *dev_priv;
1825 struct drm_device *dev;
1826 bool idle;
1827 int i;
1828
1829 dev_priv = container_of(work, drm_i915_private_t,
1830 mm.retire_work.work);
1831 dev = dev_priv->dev;
1832
1833 /* Come back later if the device is busy... */
1834 if (!mutex_trylock(&dev->struct_mutex)) {
1835 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1836 return;
1837 }
1838
1839 i915_gem_retire_requests(dev);
1840
1841 /* Send a periodic flush down the ring so we don't hold onto GEM
1842 * objects indefinitely.
1843 */
1844 idle = true;
1845 for (i = 0; i < I915_NUM_RINGS; i++) {
1846 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1847
1848 if (!list_empty(&ring->gpu_write_list)) {
1849 struct drm_i915_gem_request *request;
1850 int ret;
1851
1852 ret = i915_gem_flush_ring(ring,
1853 0, I915_GEM_GPU_DOMAINS);
1854 request = kzalloc(sizeof(*request), GFP_KERNEL);
1855 if (ret || request == NULL ||
1856 i915_add_request(ring, NULL, request))
1857 kfree(request);
1858 }
1859
1860 idle &= list_empty(&ring->request_list);
1861 }
1862
1863 if (!dev_priv->mm.suspended && !idle)
1864 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1865
1866 mutex_unlock(&dev->struct_mutex);
1867 }
1868
1869 /**
1870 * Waits for a sequence number to be signaled, and cleans up the
1871 * request and object lists appropriately for that event.
1872 */
1873 int
1874 i915_wait_request(struct intel_ring_buffer *ring,
1875 uint32_t seqno,
1876 bool do_retire)
1877 {
1878 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1879 u32 ier;
1880 int ret = 0;
1881
1882 BUG_ON(seqno == 0);
1883
1884 if (atomic_read(&dev_priv->mm.wedged)) {
1885 struct completion *x = &dev_priv->error_completion;
1886 bool recovery_complete;
1887 unsigned long flags;
1888
1889 /* Give the error handler a chance to run. */
1890 spin_lock_irqsave(&x->wait.lock, flags);
1891 recovery_complete = x->done > 0;
1892 spin_unlock_irqrestore(&x->wait.lock, flags);
1893
1894 return recovery_complete ? -EIO : -EAGAIN;
1895 }
1896
1897 if (seqno == ring->outstanding_lazy_request) {
1898 struct drm_i915_gem_request *request;
1899
1900 request = kzalloc(sizeof(*request), GFP_KERNEL);
1901 if (request == NULL)
1902 return -ENOMEM;
1903
1904 ret = i915_add_request(ring, NULL, request);
1905 if (ret) {
1906 kfree(request);
1907 return ret;
1908 }
1909
1910 seqno = request->seqno;
1911 }
1912
1913 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1914 if (HAS_PCH_SPLIT(ring->dev))
1915 ier = I915_READ(DEIER) | I915_READ(GTIER);
1916 else
1917 ier = I915_READ(IER);
1918 if (!ier) {
1919 DRM_ERROR("something (likely vbetool) disabled "
1920 "interrupts, re-enabling\n");
1921 ring->dev->driver->irq_preinstall(ring->dev);
1922 ring->dev->driver->irq_postinstall(ring->dev);
1923 }
1924
1925 trace_i915_gem_request_wait_begin(ring, seqno);
1926
1927 ring->waiting_seqno = seqno;
1928 if (ring->irq_get(ring)) {
1929 if (dev_priv->mm.interruptible)
1930 ret = wait_event_interruptible(ring->irq_queue,
1931 i915_seqno_passed(ring->get_seqno(ring), seqno)
1932 || atomic_read(&dev_priv->mm.wedged));
1933 else
1934 wait_event(ring->irq_queue,
1935 i915_seqno_passed(ring->get_seqno(ring), seqno)
1936 || atomic_read(&dev_priv->mm.wedged));
1937
1938 ring->irq_put(ring);
1939 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1940 seqno) ||
1941 atomic_read(&dev_priv->mm.wedged), 3000))
1942 ret = -EBUSY;
1943 ring->waiting_seqno = 0;
1944
1945 trace_i915_gem_request_wait_end(ring, seqno);
1946 }
1947 if (atomic_read(&dev_priv->mm.wedged))
1948 ret = -EAGAIN;
1949
1950 if (ret && ret != -ERESTARTSYS)
1951 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1952 __func__, ret, seqno, ring->get_seqno(ring),
1953 dev_priv->next_seqno);
1954
1955 /* Directly dispatch request retiring. While we have the work queue
1956 * to handle this, the waiter on a request often wants an associated
1957 * buffer to have made it to the inactive list, and we would need
1958 * a separate wait queue to handle that.
1959 */
1960 if (ret == 0 && do_retire)
1961 i915_gem_retire_requests_ring(ring);
1962
1963 return ret;
1964 }
1965
1966 /**
1967 * Ensures that all rendering to the object has completed and the object is
1968 * safe to unbind from the GTT or access from the CPU.
1969 */
1970 int
1971 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1972 {
1973 int ret;
1974
1975 /* This function only exists to support waiting for existing rendering,
1976 * not for emitting required flushes.
1977 */
1978 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1979
1980 /* If there is rendering queued on the buffer being evicted, wait for
1981 * it.
1982 */
1983 if (obj->active) {
1984 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1985 true);
1986 if (ret)
1987 return ret;
1988 }
1989
1990 return 0;
1991 }
1992
1993 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1994 {
1995 u32 old_write_domain, old_read_domains;
1996
1997 /* Act a barrier for all accesses through the GTT */
1998 mb();
1999
2000 /* Force a pagefault for domain tracking on next user access */
2001 i915_gem_release_mmap(obj);
2002
2003 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2004 return;
2005
2006 old_read_domains = obj->base.read_domains;
2007 old_write_domain = obj->base.write_domain;
2008
2009 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2010 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2011
2012 trace_i915_gem_object_change_domain(obj,
2013 old_read_domains,
2014 old_write_domain);
2015 }
2016
2017 /**
2018 * Unbinds an object from the GTT aperture.
2019 */
2020 int
2021 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2022 {
2023 int ret = 0;
2024
2025 if (obj->gtt_space == NULL)
2026 return 0;
2027
2028 if (obj->pin_count != 0) {
2029 DRM_ERROR("Attempting to unbind pinned buffer\n");
2030 return -EINVAL;
2031 }
2032
2033 ret = i915_gem_object_finish_gpu(obj);
2034 if (ret == -ERESTARTSYS)
2035 return ret;
2036 /* Continue on if we fail due to EIO, the GPU is hung so we
2037 * should be safe and we need to cleanup or else we might
2038 * cause memory corruption through use-after-free.
2039 */
2040
2041 i915_gem_object_finish_gtt(obj);
2042
2043 /* Move the object to the CPU domain to ensure that
2044 * any possible CPU writes while it's not in the GTT
2045 * are flushed when we go to remap it.
2046 */
2047 if (ret == 0)
2048 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2049 if (ret == -ERESTARTSYS)
2050 return ret;
2051 if (ret) {
2052 /* In the event of a disaster, abandon all caches and
2053 * hope for the best.
2054 */
2055 i915_gem_clflush_object(obj);
2056 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2057 }
2058
2059 /* release the fence reg _after_ flushing */
2060 ret = i915_gem_object_put_fence(obj);
2061 if (ret == -ERESTARTSYS)
2062 return ret;
2063
2064 trace_i915_gem_object_unbind(obj);
2065
2066 i915_gem_gtt_unbind_object(obj);
2067 i915_gem_object_put_pages_gtt(obj);
2068
2069 list_del_init(&obj->gtt_list);
2070 list_del_init(&obj->mm_list);
2071 /* Avoid an unnecessary call to unbind on rebind. */
2072 obj->map_and_fenceable = true;
2073
2074 drm_mm_put_block(obj->gtt_space);
2075 obj->gtt_space = NULL;
2076 obj->gtt_offset = 0;
2077
2078 if (i915_gem_object_is_purgeable(obj))
2079 i915_gem_object_truncate(obj);
2080
2081 return ret;
2082 }
2083
2084 int
2085 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2086 uint32_t invalidate_domains,
2087 uint32_t flush_domains)
2088 {
2089 int ret;
2090
2091 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2092 return 0;
2093
2094 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2095
2096 ret = ring->flush(ring, invalidate_domains, flush_domains);
2097 if (ret)
2098 return ret;
2099
2100 if (flush_domains & I915_GEM_GPU_DOMAINS)
2101 i915_gem_process_flushing_list(ring, flush_domains);
2102
2103 return 0;
2104 }
2105
2106 static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2107 {
2108 int ret;
2109
2110 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2111 return 0;
2112
2113 if (!list_empty(&ring->gpu_write_list)) {
2114 ret = i915_gem_flush_ring(ring,
2115 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2116 if (ret)
2117 return ret;
2118 }
2119
2120 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2121 do_retire);
2122 }
2123
2124 int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2125 {
2126 drm_i915_private_t *dev_priv = dev->dev_private;
2127 int ret, i;
2128
2129 /* Flush everything onto the inactive list. */
2130 for (i = 0; i < I915_NUM_RINGS; i++) {
2131 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2132 if (ret)
2133 return ret;
2134 }
2135
2136 return 0;
2137 }
2138
2139 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2140 struct intel_ring_buffer *pipelined)
2141 {
2142 struct drm_device *dev = obj->base.dev;
2143 drm_i915_private_t *dev_priv = dev->dev_private;
2144 u32 size = obj->gtt_space->size;
2145 int regnum = obj->fence_reg;
2146 uint64_t val;
2147
2148 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2149 0xfffff000) << 32;
2150 val |= obj->gtt_offset & 0xfffff000;
2151 val |= (uint64_t)((obj->stride / 128) - 1) <<
2152 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2153
2154 if (obj->tiling_mode == I915_TILING_Y)
2155 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2156 val |= I965_FENCE_REG_VALID;
2157
2158 if (pipelined) {
2159 int ret = intel_ring_begin(pipelined, 6);
2160 if (ret)
2161 return ret;
2162
2163 intel_ring_emit(pipelined, MI_NOOP);
2164 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2165 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2166 intel_ring_emit(pipelined, (u32)val);
2167 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2168 intel_ring_emit(pipelined, (u32)(val >> 32));
2169 intel_ring_advance(pipelined);
2170 } else
2171 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2172
2173 return 0;
2174 }
2175
2176 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2177 struct intel_ring_buffer *pipelined)
2178 {
2179 struct drm_device *dev = obj->base.dev;
2180 drm_i915_private_t *dev_priv = dev->dev_private;
2181 u32 size = obj->gtt_space->size;
2182 int regnum = obj->fence_reg;
2183 uint64_t val;
2184
2185 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2186 0xfffff000) << 32;
2187 val |= obj->gtt_offset & 0xfffff000;
2188 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2189 if (obj->tiling_mode == I915_TILING_Y)
2190 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2191 val |= I965_FENCE_REG_VALID;
2192
2193 if (pipelined) {
2194 int ret = intel_ring_begin(pipelined, 6);
2195 if (ret)
2196 return ret;
2197
2198 intel_ring_emit(pipelined, MI_NOOP);
2199 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2200 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2201 intel_ring_emit(pipelined, (u32)val);
2202 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2203 intel_ring_emit(pipelined, (u32)(val >> 32));
2204 intel_ring_advance(pipelined);
2205 } else
2206 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2207
2208 return 0;
2209 }
2210
2211 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2212 struct intel_ring_buffer *pipelined)
2213 {
2214 struct drm_device *dev = obj->base.dev;
2215 drm_i915_private_t *dev_priv = dev->dev_private;
2216 u32 size = obj->gtt_space->size;
2217 u32 fence_reg, val, pitch_val;
2218 int tile_width;
2219
2220 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2221 (size & -size) != size ||
2222 (obj->gtt_offset & (size - 1)),
2223 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2224 obj->gtt_offset, obj->map_and_fenceable, size))
2225 return -EINVAL;
2226
2227 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2228 tile_width = 128;
2229 else
2230 tile_width = 512;
2231
2232 /* Note: pitch better be a power of two tile widths */
2233 pitch_val = obj->stride / tile_width;
2234 pitch_val = ffs(pitch_val) - 1;
2235
2236 val = obj->gtt_offset;
2237 if (obj->tiling_mode == I915_TILING_Y)
2238 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2239 val |= I915_FENCE_SIZE_BITS(size);
2240 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2241 val |= I830_FENCE_REG_VALID;
2242
2243 fence_reg = obj->fence_reg;
2244 if (fence_reg < 8)
2245 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2246 else
2247 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2248
2249 if (pipelined) {
2250 int ret = intel_ring_begin(pipelined, 4);
2251 if (ret)
2252 return ret;
2253
2254 intel_ring_emit(pipelined, MI_NOOP);
2255 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2256 intel_ring_emit(pipelined, fence_reg);
2257 intel_ring_emit(pipelined, val);
2258 intel_ring_advance(pipelined);
2259 } else
2260 I915_WRITE(fence_reg, val);
2261
2262 return 0;
2263 }
2264
2265 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2266 struct intel_ring_buffer *pipelined)
2267 {
2268 struct drm_device *dev = obj->base.dev;
2269 drm_i915_private_t *dev_priv = dev->dev_private;
2270 u32 size = obj->gtt_space->size;
2271 int regnum = obj->fence_reg;
2272 uint32_t val;
2273 uint32_t pitch_val;
2274
2275 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2276 (size & -size) != size ||
2277 (obj->gtt_offset & (size - 1)),
2278 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2279 obj->gtt_offset, size))
2280 return -EINVAL;
2281
2282 pitch_val = obj->stride / 128;
2283 pitch_val = ffs(pitch_val) - 1;
2284
2285 val = obj->gtt_offset;
2286 if (obj->tiling_mode == I915_TILING_Y)
2287 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2288 val |= I830_FENCE_SIZE_BITS(size);
2289 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2290 val |= I830_FENCE_REG_VALID;
2291
2292 if (pipelined) {
2293 int ret = intel_ring_begin(pipelined, 4);
2294 if (ret)
2295 return ret;
2296
2297 intel_ring_emit(pipelined, MI_NOOP);
2298 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2299 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2300 intel_ring_emit(pipelined, val);
2301 intel_ring_advance(pipelined);
2302 } else
2303 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2304
2305 return 0;
2306 }
2307
2308 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2309 {
2310 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2311 }
2312
2313 static int
2314 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2315 struct intel_ring_buffer *pipelined)
2316 {
2317 int ret;
2318
2319 if (obj->fenced_gpu_access) {
2320 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2321 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2322 0, obj->base.write_domain);
2323 if (ret)
2324 return ret;
2325 }
2326
2327 obj->fenced_gpu_access = false;
2328 }
2329
2330 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2331 if (!ring_passed_seqno(obj->last_fenced_ring,
2332 obj->last_fenced_seqno)) {
2333 ret = i915_wait_request(obj->last_fenced_ring,
2334 obj->last_fenced_seqno,
2335 true);
2336 if (ret)
2337 return ret;
2338 }
2339
2340 obj->last_fenced_seqno = 0;
2341 obj->last_fenced_ring = NULL;
2342 }
2343
2344 /* Ensure that all CPU reads are completed before installing a fence
2345 * and all writes before removing the fence.
2346 */
2347 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2348 mb();
2349
2350 return 0;
2351 }
2352
2353 int
2354 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2355 {
2356 int ret;
2357
2358 if (obj->tiling_mode)
2359 i915_gem_release_mmap(obj);
2360
2361 ret = i915_gem_object_flush_fence(obj, NULL);
2362 if (ret)
2363 return ret;
2364
2365 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2366 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2367
2368 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
2369 i915_gem_clear_fence_reg(obj->base.dev,
2370 &dev_priv->fence_regs[obj->fence_reg]);
2371
2372 obj->fence_reg = I915_FENCE_REG_NONE;
2373 }
2374
2375 return 0;
2376 }
2377
2378 static struct drm_i915_fence_reg *
2379 i915_find_fence_reg(struct drm_device *dev,
2380 struct intel_ring_buffer *pipelined)
2381 {
2382 struct drm_i915_private *dev_priv = dev->dev_private;
2383 struct drm_i915_fence_reg *reg, *first, *avail;
2384 int i;
2385
2386 /* First try to find a free reg */
2387 avail = NULL;
2388 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2389 reg = &dev_priv->fence_regs[i];
2390 if (!reg->obj)
2391 return reg;
2392
2393 if (!reg->pin_count)
2394 avail = reg;
2395 }
2396
2397 if (avail == NULL)
2398 return NULL;
2399
2400 /* None available, try to steal one or wait for a user to finish */
2401 avail = first = NULL;
2402 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2403 if (reg->pin_count)
2404 continue;
2405
2406 if (first == NULL)
2407 first = reg;
2408
2409 if (!pipelined ||
2410 !reg->obj->last_fenced_ring ||
2411 reg->obj->last_fenced_ring == pipelined) {
2412 avail = reg;
2413 break;
2414 }
2415 }
2416
2417 if (avail == NULL)
2418 avail = first;
2419
2420 return avail;
2421 }
2422
2423 /**
2424 * i915_gem_object_get_fence - set up a fence reg for an object
2425 * @obj: object to map through a fence reg
2426 * @pipelined: ring on which to queue the change, or NULL for CPU access
2427 * @interruptible: must we wait uninterruptibly for the register to retire?
2428 *
2429 * When mapping objects through the GTT, userspace wants to be able to write
2430 * to them without having to worry about swizzling if the object is tiled.
2431 *
2432 * This function walks the fence regs looking for a free one for @obj,
2433 * stealing one if it can't find any.
2434 *
2435 * It then sets up the reg based on the object's properties: address, pitch
2436 * and tiling format.
2437 */
2438 int
2439 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2440 struct intel_ring_buffer *pipelined)
2441 {
2442 struct drm_device *dev = obj->base.dev;
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 struct drm_i915_fence_reg *reg;
2445 int ret;
2446
2447 /* XXX disable pipelining. There are bugs. Shocking. */
2448 pipelined = NULL;
2449
2450 /* Just update our place in the LRU if our fence is getting reused. */
2451 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2452 reg = &dev_priv->fence_regs[obj->fence_reg];
2453 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2454
2455 if (obj->tiling_changed) {
2456 ret = i915_gem_object_flush_fence(obj, pipelined);
2457 if (ret)
2458 return ret;
2459
2460 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2461 pipelined = NULL;
2462
2463 if (pipelined) {
2464 reg->setup_seqno =
2465 i915_gem_next_request_seqno(pipelined);
2466 obj->last_fenced_seqno = reg->setup_seqno;
2467 obj->last_fenced_ring = pipelined;
2468 }
2469
2470 goto update;
2471 }
2472
2473 if (!pipelined) {
2474 if (reg->setup_seqno) {
2475 if (!ring_passed_seqno(obj->last_fenced_ring,
2476 reg->setup_seqno)) {
2477 ret = i915_wait_request(obj->last_fenced_ring,
2478 reg->setup_seqno,
2479 true);
2480 if (ret)
2481 return ret;
2482 }
2483
2484 reg->setup_seqno = 0;
2485 }
2486 } else if (obj->last_fenced_ring &&
2487 obj->last_fenced_ring != pipelined) {
2488 ret = i915_gem_object_flush_fence(obj, pipelined);
2489 if (ret)
2490 return ret;
2491 }
2492
2493 return 0;
2494 }
2495
2496 reg = i915_find_fence_reg(dev, pipelined);
2497 if (reg == NULL)
2498 return -EDEADLK;
2499
2500 ret = i915_gem_object_flush_fence(obj, pipelined);
2501 if (ret)
2502 return ret;
2503
2504 if (reg->obj) {
2505 struct drm_i915_gem_object *old = reg->obj;
2506
2507 drm_gem_object_reference(&old->base);
2508
2509 if (old->tiling_mode)
2510 i915_gem_release_mmap(old);
2511
2512 ret = i915_gem_object_flush_fence(old, pipelined);
2513 if (ret) {
2514 drm_gem_object_unreference(&old->base);
2515 return ret;
2516 }
2517
2518 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2519 pipelined = NULL;
2520
2521 old->fence_reg = I915_FENCE_REG_NONE;
2522 old->last_fenced_ring = pipelined;
2523 old->last_fenced_seqno =
2524 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2525
2526 drm_gem_object_unreference(&old->base);
2527 } else if (obj->last_fenced_seqno == 0)
2528 pipelined = NULL;
2529
2530 reg->obj = obj;
2531 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2532 obj->fence_reg = reg - dev_priv->fence_regs;
2533 obj->last_fenced_ring = pipelined;
2534
2535 reg->setup_seqno =
2536 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2537 obj->last_fenced_seqno = reg->setup_seqno;
2538
2539 update:
2540 obj->tiling_changed = false;
2541 switch (INTEL_INFO(dev)->gen) {
2542 case 7:
2543 case 6:
2544 ret = sandybridge_write_fence_reg(obj, pipelined);
2545 break;
2546 case 5:
2547 case 4:
2548 ret = i965_write_fence_reg(obj, pipelined);
2549 break;
2550 case 3:
2551 ret = i915_write_fence_reg(obj, pipelined);
2552 break;
2553 case 2:
2554 ret = i830_write_fence_reg(obj, pipelined);
2555 break;
2556 }
2557
2558 return ret;
2559 }
2560
2561 /**
2562 * i915_gem_clear_fence_reg - clear out fence register info
2563 * @obj: object to clear
2564 *
2565 * Zeroes out the fence register itself and clears out the associated
2566 * data structures in dev_priv and obj.
2567 */
2568 static void
2569 i915_gem_clear_fence_reg(struct drm_device *dev,
2570 struct drm_i915_fence_reg *reg)
2571 {
2572 drm_i915_private_t *dev_priv = dev->dev_private;
2573 uint32_t fence_reg = reg - dev_priv->fence_regs;
2574
2575 switch (INTEL_INFO(dev)->gen) {
2576 case 7:
2577 case 6:
2578 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2579 break;
2580 case 5:
2581 case 4:
2582 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2583 break;
2584 case 3:
2585 if (fence_reg >= 8)
2586 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2587 else
2588 case 2:
2589 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2590
2591 I915_WRITE(fence_reg, 0);
2592 break;
2593 }
2594
2595 list_del_init(&reg->lru_list);
2596 reg->obj = NULL;
2597 reg->setup_seqno = 0;
2598 reg->pin_count = 0;
2599 }
2600
2601 /**
2602 * Finds free space in the GTT aperture and binds the object there.
2603 */
2604 static int
2605 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2606 unsigned alignment,
2607 bool map_and_fenceable)
2608 {
2609 struct drm_device *dev = obj->base.dev;
2610 drm_i915_private_t *dev_priv = dev->dev_private;
2611 struct drm_mm_node *free_space;
2612 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2613 u32 size, fence_size, fence_alignment, unfenced_alignment;
2614 bool mappable, fenceable;
2615 int ret;
2616
2617 if (obj->madv != I915_MADV_WILLNEED) {
2618 DRM_ERROR("Attempting to bind a purgeable object\n");
2619 return -EINVAL;
2620 }
2621
2622 fence_size = i915_gem_get_gtt_size(dev,
2623 obj->base.size,
2624 obj->tiling_mode);
2625 fence_alignment = i915_gem_get_gtt_alignment(dev,
2626 obj->base.size,
2627 obj->tiling_mode);
2628 unfenced_alignment =
2629 i915_gem_get_unfenced_gtt_alignment(dev,
2630 obj->base.size,
2631 obj->tiling_mode);
2632
2633 if (alignment == 0)
2634 alignment = map_and_fenceable ? fence_alignment :
2635 unfenced_alignment;
2636 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2637 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2638 return -EINVAL;
2639 }
2640
2641 size = map_and_fenceable ? fence_size : obj->base.size;
2642
2643 /* If the object is bigger than the entire aperture, reject it early
2644 * before evicting everything in a vain attempt to find space.
2645 */
2646 if (obj->base.size >
2647 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2648 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2649 return -E2BIG;
2650 }
2651
2652 search_free:
2653 if (map_and_fenceable)
2654 free_space =
2655 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2656 size, alignment, 0,
2657 dev_priv->mm.gtt_mappable_end,
2658 0);
2659 else
2660 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2661 size, alignment, 0);
2662
2663 if (free_space != NULL) {
2664 if (map_and_fenceable)
2665 obj->gtt_space =
2666 drm_mm_get_block_range_generic(free_space,
2667 size, alignment, 0,
2668 dev_priv->mm.gtt_mappable_end,
2669 0);
2670 else
2671 obj->gtt_space =
2672 drm_mm_get_block(free_space, size, alignment);
2673 }
2674 if (obj->gtt_space == NULL) {
2675 /* If the gtt is empty and we're still having trouble
2676 * fitting our object in, we're out of memory.
2677 */
2678 ret = i915_gem_evict_something(dev, size, alignment,
2679 map_and_fenceable);
2680 if (ret)
2681 return ret;
2682
2683 goto search_free;
2684 }
2685
2686 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2687 if (ret) {
2688 drm_mm_put_block(obj->gtt_space);
2689 obj->gtt_space = NULL;
2690
2691 if (ret == -ENOMEM) {
2692 /* first try to reclaim some memory by clearing the GTT */
2693 ret = i915_gem_evict_everything(dev, false);
2694 if (ret) {
2695 /* now try to shrink everyone else */
2696 if (gfpmask) {
2697 gfpmask = 0;
2698 goto search_free;
2699 }
2700
2701 return -ENOMEM;
2702 }
2703
2704 goto search_free;
2705 }
2706
2707 return ret;
2708 }
2709
2710 ret = i915_gem_gtt_bind_object(obj);
2711 if (ret) {
2712 i915_gem_object_put_pages_gtt(obj);
2713 drm_mm_put_block(obj->gtt_space);
2714 obj->gtt_space = NULL;
2715
2716 if (i915_gem_evict_everything(dev, false))
2717 return ret;
2718
2719 goto search_free;
2720 }
2721
2722 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2723 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2724
2725 /* Assert that the object is not currently in any GPU domain. As it
2726 * wasn't in the GTT, there shouldn't be any way it could have been in
2727 * a GPU cache
2728 */
2729 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2730 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2731
2732 obj->gtt_offset = obj->gtt_space->start;
2733
2734 fenceable =
2735 obj->gtt_space->size == fence_size &&
2736 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2737
2738 mappable =
2739 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2740
2741 obj->map_and_fenceable = mappable && fenceable;
2742
2743 trace_i915_gem_object_bind(obj, map_and_fenceable);
2744 return 0;
2745 }
2746
2747 void
2748 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2749 {
2750 /* If we don't have a page list set up, then we're not pinned
2751 * to GPU, and we can ignore the cache flush because it'll happen
2752 * again at bind time.
2753 */
2754 if (obj->pages == NULL)
2755 return;
2756
2757 /* If the GPU is snooping the contents of the CPU cache,
2758 * we do not need to manually clear the CPU cache lines. However,
2759 * the caches are only snooped when the render cache is
2760 * flushed/invalidated. As we always have to emit invalidations
2761 * and flushes when moving into and out of the RENDER domain, correct
2762 * snooping behaviour occurs naturally as the result of our domain
2763 * tracking.
2764 */
2765 if (obj->cache_level != I915_CACHE_NONE)
2766 return;
2767
2768 trace_i915_gem_object_clflush(obj);
2769
2770 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2771 }
2772
2773 /** Flushes any GPU write domain for the object if it's dirty. */
2774 static int
2775 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2776 {
2777 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2778 return 0;
2779
2780 /* Queue the GPU write cache flushing we need. */
2781 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2782 }
2783
2784 /** Flushes the GTT write domain for the object if it's dirty. */
2785 static void
2786 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2787 {
2788 uint32_t old_write_domain;
2789
2790 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2791 return;
2792
2793 /* No actual flushing is required for the GTT write domain. Writes
2794 * to it immediately go to main memory as far as we know, so there's
2795 * no chipset flush. It also doesn't land in render cache.
2796 *
2797 * However, we do have to enforce the order so that all writes through
2798 * the GTT land before any writes to the device, such as updates to
2799 * the GATT itself.
2800 */
2801 wmb();
2802
2803 old_write_domain = obj->base.write_domain;
2804 obj->base.write_domain = 0;
2805
2806 trace_i915_gem_object_change_domain(obj,
2807 obj->base.read_domains,
2808 old_write_domain);
2809 }
2810
2811 /** Flushes the CPU write domain for the object if it's dirty. */
2812 static void
2813 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2814 {
2815 uint32_t old_write_domain;
2816
2817 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2818 return;
2819
2820 i915_gem_clflush_object(obj);
2821 intel_gtt_chipset_flush();
2822 old_write_domain = obj->base.write_domain;
2823 obj->base.write_domain = 0;
2824
2825 trace_i915_gem_object_change_domain(obj,
2826 obj->base.read_domains,
2827 old_write_domain);
2828 }
2829
2830 /**
2831 * Moves a single object to the GTT read, and possibly write domain.
2832 *
2833 * This function returns when the move is complete, including waiting on
2834 * flushes to occur.
2835 */
2836 int
2837 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2838 {
2839 uint32_t old_write_domain, old_read_domains;
2840 int ret;
2841
2842 /* Not valid to be called on unbound objects. */
2843 if (obj->gtt_space == NULL)
2844 return -EINVAL;
2845
2846 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2847 return 0;
2848
2849 ret = i915_gem_object_flush_gpu_write_domain(obj);
2850 if (ret)
2851 return ret;
2852
2853 if (obj->pending_gpu_write || write) {
2854 ret = i915_gem_object_wait_rendering(obj);
2855 if (ret)
2856 return ret;
2857 }
2858
2859 i915_gem_object_flush_cpu_write_domain(obj);
2860
2861 old_write_domain = obj->base.write_domain;
2862 old_read_domains = obj->base.read_domains;
2863
2864 /* It should now be out of any other write domains, and we can update
2865 * the domain values for our changes.
2866 */
2867 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2868 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2869 if (write) {
2870 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2871 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2872 obj->dirty = 1;
2873 }
2874
2875 trace_i915_gem_object_change_domain(obj,
2876 old_read_domains,
2877 old_write_domain);
2878
2879 return 0;
2880 }
2881
2882 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2883 enum i915_cache_level cache_level)
2884 {
2885 int ret;
2886
2887 if (obj->cache_level == cache_level)
2888 return 0;
2889
2890 if (obj->pin_count) {
2891 DRM_DEBUG("can not change the cache level of pinned objects\n");
2892 return -EBUSY;
2893 }
2894
2895 if (obj->gtt_space) {
2896 ret = i915_gem_object_finish_gpu(obj);
2897 if (ret)
2898 return ret;
2899
2900 i915_gem_object_finish_gtt(obj);
2901
2902 /* Before SandyBridge, you could not use tiling or fence
2903 * registers with snooped memory, so relinquish any fences
2904 * currently pointing to our region in the aperture.
2905 */
2906 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2907 ret = i915_gem_object_put_fence(obj);
2908 if (ret)
2909 return ret;
2910 }
2911
2912 i915_gem_gtt_rebind_object(obj, cache_level);
2913 }
2914
2915 if (cache_level == I915_CACHE_NONE) {
2916 u32 old_read_domains, old_write_domain;
2917
2918 /* If we're coming from LLC cached, then we haven't
2919 * actually been tracking whether the data is in the
2920 * CPU cache or not, since we only allow one bit set
2921 * in obj->write_domain and have been skipping the clflushes.
2922 * Just set it to the CPU cache for now.
2923 */
2924 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2925 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2926
2927 old_read_domains = obj->base.read_domains;
2928 old_write_domain = obj->base.write_domain;
2929
2930 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2931 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2932
2933 trace_i915_gem_object_change_domain(obj,
2934 old_read_domains,
2935 old_write_domain);
2936 }
2937
2938 obj->cache_level = cache_level;
2939 return 0;
2940 }
2941
2942 /*
2943 * Prepare buffer for display plane (scanout, cursors, etc).
2944 * Can be called from an uninterruptible phase (modesetting) and allows
2945 * any flushes to be pipelined (for pageflips).
2946 *
2947 * For the display plane, we want to be in the GTT but out of any write
2948 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
2949 * ability to pipeline the waits, pinning and any additional subtleties
2950 * that may differentiate the display plane from ordinary buffers.
2951 */
2952 int
2953 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2954 u32 alignment,
2955 struct intel_ring_buffer *pipelined)
2956 {
2957 u32 old_read_domains, old_write_domain;
2958 int ret;
2959
2960 ret = i915_gem_object_flush_gpu_write_domain(obj);
2961 if (ret)
2962 return ret;
2963
2964 if (pipelined != obj->ring) {
2965 ret = i915_gem_object_wait_rendering(obj);
2966 if (ret == -ERESTARTSYS)
2967 return ret;
2968 }
2969
2970 /* The display engine is not coherent with the LLC cache on gen6. As
2971 * a result, we make sure that the pinning that is about to occur is
2972 * done with uncached PTEs. This is lowest common denominator for all
2973 * chipsets.
2974 *
2975 * However for gen6+, we could do better by using the GFDT bit instead
2976 * of uncaching, which would allow us to flush all the LLC-cached data
2977 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2978 */
2979 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2980 if (ret)
2981 return ret;
2982
2983 /* As the user may map the buffer once pinned in the display plane
2984 * (e.g. libkms for the bootup splash), we have to ensure that we
2985 * always use map_and_fenceable for all scanout buffers.
2986 */
2987 ret = i915_gem_object_pin(obj, alignment, true);
2988 if (ret)
2989 return ret;
2990
2991 i915_gem_object_flush_cpu_write_domain(obj);
2992
2993 old_write_domain = obj->base.write_domain;
2994 old_read_domains = obj->base.read_domains;
2995
2996 /* It should now be out of any other write domains, and we can update
2997 * the domain values for our changes.
2998 */
2999 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3000 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3001
3002 trace_i915_gem_object_change_domain(obj,
3003 old_read_domains,
3004 old_write_domain);
3005
3006 return 0;
3007 }
3008
3009 int
3010 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3011 {
3012 int ret;
3013
3014 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3015 return 0;
3016
3017 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3018 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3019 if (ret)
3020 return ret;
3021 }
3022
3023 /* Ensure that we invalidate the GPU's caches and TLBs. */
3024 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3025
3026 return i915_gem_object_wait_rendering(obj);
3027 }
3028
3029 /**
3030 * Moves a single object to the CPU read, and possibly write domain.
3031 *
3032 * This function returns when the move is complete, including waiting on
3033 * flushes to occur.
3034 */
3035 static int
3036 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3037 {
3038 uint32_t old_write_domain, old_read_domains;
3039 int ret;
3040
3041 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3042 return 0;
3043
3044 ret = i915_gem_object_flush_gpu_write_domain(obj);
3045 if (ret)
3046 return ret;
3047
3048 ret = i915_gem_object_wait_rendering(obj);
3049 if (ret)
3050 return ret;
3051
3052 i915_gem_object_flush_gtt_write_domain(obj);
3053
3054 /* If we have a partially-valid cache of the object in the CPU,
3055 * finish invalidating it and free the per-page flags.
3056 */
3057 i915_gem_object_set_to_full_cpu_read_domain(obj);
3058
3059 old_write_domain = obj->base.write_domain;
3060 old_read_domains = obj->base.read_domains;
3061
3062 /* Flush the CPU cache if it's still invalid. */
3063 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3064 i915_gem_clflush_object(obj);
3065
3066 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3067 }
3068
3069 /* It should now be out of any other write domains, and we can update
3070 * the domain values for our changes.
3071 */
3072 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3073
3074 /* If we're writing through the CPU, then the GPU read domains will
3075 * need to be invalidated at next use.
3076 */
3077 if (write) {
3078 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3079 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3080 }
3081
3082 trace_i915_gem_object_change_domain(obj,
3083 old_read_domains,
3084 old_write_domain);
3085
3086 return 0;
3087 }
3088
3089 /**
3090 * Moves the object from a partially CPU read to a full one.
3091 *
3092 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3093 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3094 */
3095 static void
3096 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3097 {
3098 if (!obj->page_cpu_valid)
3099 return;
3100
3101 /* If we're partially in the CPU read domain, finish moving it in.
3102 */
3103 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3104 int i;
3105
3106 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3107 if (obj->page_cpu_valid[i])
3108 continue;
3109 drm_clflush_pages(obj->pages + i, 1);
3110 }
3111 }
3112
3113 /* Free the page_cpu_valid mappings which are now stale, whether
3114 * or not we've got I915_GEM_DOMAIN_CPU.
3115 */
3116 kfree(obj->page_cpu_valid);
3117 obj->page_cpu_valid = NULL;
3118 }
3119
3120 /**
3121 * Set the CPU read domain on a range of the object.
3122 *
3123 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3124 * not entirely valid. The page_cpu_valid member of the object flags which
3125 * pages have been flushed, and will be respected by
3126 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3127 * of the whole object.
3128 *
3129 * This function returns when the move is complete, including waiting on
3130 * flushes to occur.
3131 */
3132 static int
3133 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3134 uint64_t offset, uint64_t size)
3135 {
3136 uint32_t old_read_domains;
3137 int i, ret;
3138
3139 if (offset == 0 && size == obj->base.size)
3140 return i915_gem_object_set_to_cpu_domain(obj, 0);
3141
3142 ret = i915_gem_object_flush_gpu_write_domain(obj);
3143 if (ret)
3144 return ret;
3145
3146 ret = i915_gem_object_wait_rendering(obj);
3147 if (ret)
3148 return ret;
3149
3150 i915_gem_object_flush_gtt_write_domain(obj);
3151
3152 /* If we're already fully in the CPU read domain, we're done. */
3153 if (obj->page_cpu_valid == NULL &&
3154 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3155 return 0;
3156
3157 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3158 * newly adding I915_GEM_DOMAIN_CPU
3159 */
3160 if (obj->page_cpu_valid == NULL) {
3161 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3162 GFP_KERNEL);
3163 if (obj->page_cpu_valid == NULL)
3164 return -ENOMEM;
3165 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3166 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3167
3168 /* Flush the cache on any pages that are still invalid from the CPU's
3169 * perspective.
3170 */
3171 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3172 i++) {
3173 if (obj->page_cpu_valid[i])
3174 continue;
3175
3176 drm_clflush_pages(obj->pages + i, 1);
3177
3178 obj->page_cpu_valid[i] = 1;
3179 }
3180
3181 /* It should now be out of any other write domains, and we can update
3182 * the domain values for our changes.
3183 */
3184 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3185
3186 old_read_domains = obj->base.read_domains;
3187 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3188
3189 trace_i915_gem_object_change_domain(obj,
3190 old_read_domains,
3191 obj->base.write_domain);
3192
3193 return 0;
3194 }
3195
3196 /* Throttle our rendering by waiting until the ring has completed our requests
3197 * emitted over 20 msec ago.
3198 *
3199 * Note that if we were to use the current jiffies each time around the loop,
3200 * we wouldn't escape the function with any frames outstanding if the time to
3201 * render a frame was over 20ms.
3202 *
3203 * This should get us reasonable parallelism between CPU and GPU but also
3204 * relatively low latency when blocking on a particular request to finish.
3205 */
3206 static int
3207 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3208 {
3209 struct drm_i915_private *dev_priv = dev->dev_private;
3210 struct drm_i915_file_private *file_priv = file->driver_priv;
3211 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3212 struct drm_i915_gem_request *request;
3213 struct intel_ring_buffer *ring = NULL;
3214 u32 seqno = 0;
3215 int ret;
3216
3217 if (atomic_read(&dev_priv->mm.wedged))
3218 return -EIO;
3219
3220 spin_lock(&file_priv->mm.lock);
3221 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3222 if (time_after_eq(request->emitted_jiffies, recent_enough))
3223 break;
3224
3225 ring = request->ring;
3226 seqno = request->seqno;
3227 }
3228 spin_unlock(&file_priv->mm.lock);
3229
3230 if (seqno == 0)
3231 return 0;
3232
3233 ret = 0;
3234 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3235 /* And wait for the seqno passing without holding any locks and
3236 * causing extra latency for others. This is safe as the irq
3237 * generation is designed to be run atomically and so is
3238 * lockless.
3239 */
3240 if (ring->irq_get(ring)) {
3241 ret = wait_event_interruptible(ring->irq_queue,
3242 i915_seqno_passed(ring->get_seqno(ring), seqno)
3243 || atomic_read(&dev_priv->mm.wedged));
3244 ring->irq_put(ring);
3245
3246 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3247 ret = -EIO;
3248 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3249 seqno) ||
3250 atomic_read(&dev_priv->mm.wedged), 3000)) {
3251 ret = -EBUSY;
3252 }
3253 }
3254
3255 if (ret == 0)
3256 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3257
3258 return ret;
3259 }
3260
3261 int
3262 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3263 uint32_t alignment,
3264 bool map_and_fenceable)
3265 {
3266 struct drm_device *dev = obj->base.dev;
3267 struct drm_i915_private *dev_priv = dev->dev_private;
3268 int ret;
3269
3270 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3271 WARN_ON(i915_verify_lists(dev));
3272
3273 if (obj->gtt_space != NULL) {
3274 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3275 (map_and_fenceable && !obj->map_and_fenceable)) {
3276 WARN(obj->pin_count,
3277 "bo is already pinned with incorrect alignment:"
3278 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3279 " obj->map_and_fenceable=%d\n",
3280 obj->gtt_offset, alignment,
3281 map_and_fenceable,
3282 obj->map_and_fenceable);
3283 ret = i915_gem_object_unbind(obj);
3284 if (ret)
3285 return ret;
3286 }
3287 }
3288
3289 if (obj->gtt_space == NULL) {
3290 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3291 map_and_fenceable);
3292 if (ret)
3293 return ret;
3294 }
3295
3296 if (obj->pin_count++ == 0) {
3297 if (!obj->active)
3298 list_move_tail(&obj->mm_list,
3299 &dev_priv->mm.pinned_list);
3300 }
3301 obj->pin_mappable |= map_and_fenceable;
3302
3303 WARN_ON(i915_verify_lists(dev));
3304 return 0;
3305 }
3306
3307 void
3308 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3309 {
3310 struct drm_device *dev = obj->base.dev;
3311 drm_i915_private_t *dev_priv = dev->dev_private;
3312
3313 WARN_ON(i915_verify_lists(dev));
3314 BUG_ON(obj->pin_count == 0);
3315 BUG_ON(obj->gtt_space == NULL);
3316
3317 if (--obj->pin_count == 0) {
3318 if (!obj->active)
3319 list_move_tail(&obj->mm_list,
3320 &dev_priv->mm.inactive_list);
3321 obj->pin_mappable = false;
3322 }
3323 WARN_ON(i915_verify_lists(dev));
3324 }
3325
3326 int
3327 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3328 struct drm_file *file)
3329 {
3330 struct drm_i915_gem_pin *args = data;
3331 struct drm_i915_gem_object *obj;
3332 int ret;
3333
3334 ret = i915_mutex_lock_interruptible(dev);
3335 if (ret)
3336 return ret;
3337
3338 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3339 if (&obj->base == NULL) {
3340 ret = -ENOENT;
3341 goto unlock;
3342 }
3343
3344 if (obj->madv != I915_MADV_WILLNEED) {
3345 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3346 ret = -EINVAL;
3347 goto out;
3348 }
3349
3350 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3351 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3352 args->handle);
3353 ret = -EINVAL;
3354 goto out;
3355 }
3356
3357 obj->user_pin_count++;
3358 obj->pin_filp = file;
3359 if (obj->user_pin_count == 1) {
3360 ret = i915_gem_object_pin(obj, args->alignment, true);
3361 if (ret)
3362 goto out;
3363 }
3364
3365 /* XXX - flush the CPU caches for pinned objects
3366 * as the X server doesn't manage domains yet
3367 */
3368 i915_gem_object_flush_cpu_write_domain(obj);
3369 args->offset = obj->gtt_offset;
3370 out:
3371 drm_gem_object_unreference(&obj->base);
3372 unlock:
3373 mutex_unlock(&dev->struct_mutex);
3374 return ret;
3375 }
3376
3377 int
3378 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3379 struct drm_file *file)
3380 {
3381 struct drm_i915_gem_pin *args = data;
3382 struct drm_i915_gem_object *obj;
3383 int ret;
3384
3385 ret = i915_mutex_lock_interruptible(dev);
3386 if (ret)
3387 return ret;
3388
3389 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3390 if (&obj->base == NULL) {
3391 ret = -ENOENT;
3392 goto unlock;
3393 }
3394
3395 if (obj->pin_filp != file) {
3396 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3397 args->handle);
3398 ret = -EINVAL;
3399 goto out;
3400 }
3401 obj->user_pin_count--;
3402 if (obj->user_pin_count == 0) {
3403 obj->pin_filp = NULL;
3404 i915_gem_object_unpin(obj);
3405 }
3406
3407 out:
3408 drm_gem_object_unreference(&obj->base);
3409 unlock:
3410 mutex_unlock(&dev->struct_mutex);
3411 return ret;
3412 }
3413
3414 int
3415 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3416 struct drm_file *file)
3417 {
3418 struct drm_i915_gem_busy *args = data;
3419 struct drm_i915_gem_object *obj;
3420 int ret;
3421
3422 ret = i915_mutex_lock_interruptible(dev);
3423 if (ret)
3424 return ret;
3425
3426 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3427 if (&obj->base == NULL) {
3428 ret = -ENOENT;
3429 goto unlock;
3430 }
3431
3432 /* Count all active objects as busy, even if they are currently not used
3433 * by the gpu. Users of this interface expect objects to eventually
3434 * become non-busy without any further actions, therefore emit any
3435 * necessary flushes here.
3436 */
3437 args->busy = obj->active;
3438 if (args->busy) {
3439 /* Unconditionally flush objects, even when the gpu still uses this
3440 * object. Userspace calling this function indicates that it wants to
3441 * use this buffer rather sooner than later, so issuing the required
3442 * flush earlier is beneficial.
3443 */
3444 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3445 ret = i915_gem_flush_ring(obj->ring,
3446 0, obj->base.write_domain);
3447 } else if (obj->ring->outstanding_lazy_request ==
3448 obj->last_rendering_seqno) {
3449 struct drm_i915_gem_request *request;
3450
3451 /* This ring is not being cleared by active usage,
3452 * so emit a request to do so.
3453 */
3454 request = kzalloc(sizeof(*request), GFP_KERNEL);
3455 if (request) {
3456 ret = i915_add_request(obj->ring, NULL, request);
3457 if (ret)
3458 kfree(request);
3459 } else
3460 ret = -ENOMEM;
3461 }
3462
3463 /* Update the active list for the hardware's current position.
3464 * Otherwise this only updates on a delayed timer or when irqs
3465 * are actually unmasked, and our working set ends up being
3466 * larger than required.
3467 */
3468 i915_gem_retire_requests_ring(obj->ring);
3469
3470 args->busy = obj->active;
3471 }
3472
3473 drm_gem_object_unreference(&obj->base);
3474 unlock:
3475 mutex_unlock(&dev->struct_mutex);
3476 return ret;
3477 }
3478
3479 int
3480 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3481 struct drm_file *file_priv)
3482 {
3483 return i915_gem_ring_throttle(dev, file_priv);
3484 }
3485
3486 int
3487 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3488 struct drm_file *file_priv)
3489 {
3490 struct drm_i915_gem_madvise *args = data;
3491 struct drm_i915_gem_object *obj;
3492 int ret;
3493
3494 switch (args->madv) {
3495 case I915_MADV_DONTNEED:
3496 case I915_MADV_WILLNEED:
3497 break;
3498 default:
3499 return -EINVAL;
3500 }
3501
3502 ret = i915_mutex_lock_interruptible(dev);
3503 if (ret)
3504 return ret;
3505
3506 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3507 if (&obj->base == NULL) {
3508 ret = -ENOENT;
3509 goto unlock;
3510 }
3511
3512 if (obj->pin_count) {
3513 ret = -EINVAL;
3514 goto out;
3515 }
3516
3517 if (obj->madv != __I915_MADV_PURGED)
3518 obj->madv = args->madv;
3519
3520 /* if the object is no longer bound, discard its backing storage */
3521 if (i915_gem_object_is_purgeable(obj) &&
3522 obj->gtt_space == NULL)
3523 i915_gem_object_truncate(obj);
3524
3525 args->retained = obj->madv != __I915_MADV_PURGED;
3526
3527 out:
3528 drm_gem_object_unreference(&obj->base);
3529 unlock:
3530 mutex_unlock(&dev->struct_mutex);
3531 return ret;
3532 }
3533
3534 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3535 size_t size)
3536 {
3537 struct drm_i915_private *dev_priv = dev->dev_private;
3538 struct drm_i915_gem_object *obj;
3539 struct address_space *mapping;
3540
3541 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3542 if (obj == NULL)
3543 return NULL;
3544
3545 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3546 kfree(obj);
3547 return NULL;
3548 }
3549
3550 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3551 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3552
3553 i915_gem_info_add_obj(dev_priv, size);
3554
3555 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3556 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3557
3558 if (HAS_LLC(dev)) {
3559 /* On some devices, we can have the GPU use the LLC (the CPU
3560 * cache) for about a 10% performance improvement
3561 * compared to uncached. Graphics requests other than
3562 * display scanout are coherent with the CPU in
3563 * accessing this cache. This means in this mode we
3564 * don't need to clflush on the CPU side, and on the
3565 * GPU side we only need to flush internal caches to
3566 * get data visible to the CPU.
3567 *
3568 * However, we maintain the display planes as UC, and so
3569 * need to rebind when first used as such.
3570 */
3571 obj->cache_level = I915_CACHE_LLC;
3572 } else
3573 obj->cache_level = I915_CACHE_NONE;
3574
3575 obj->base.driver_private = NULL;
3576 obj->fence_reg = I915_FENCE_REG_NONE;
3577 INIT_LIST_HEAD(&obj->mm_list);
3578 INIT_LIST_HEAD(&obj->gtt_list);
3579 INIT_LIST_HEAD(&obj->ring_list);
3580 INIT_LIST_HEAD(&obj->exec_list);
3581 INIT_LIST_HEAD(&obj->gpu_write_list);
3582 obj->madv = I915_MADV_WILLNEED;
3583 /* Avoid an unnecessary call to unbind on the first bind. */
3584 obj->map_and_fenceable = true;
3585
3586 return obj;
3587 }
3588
3589 int i915_gem_init_object(struct drm_gem_object *obj)
3590 {
3591 BUG();
3592
3593 return 0;
3594 }
3595
3596 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3597 {
3598 struct drm_device *dev = obj->base.dev;
3599 drm_i915_private_t *dev_priv = dev->dev_private;
3600 int ret;
3601
3602 ret = i915_gem_object_unbind(obj);
3603 if (ret == -ERESTARTSYS) {
3604 list_move(&obj->mm_list,
3605 &dev_priv->mm.deferred_free_list);
3606 return;
3607 }
3608
3609 trace_i915_gem_object_destroy(obj);
3610
3611 if (obj->base.map_list.map)
3612 drm_gem_free_mmap_offset(&obj->base);
3613
3614 drm_gem_object_release(&obj->base);
3615 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3616
3617 kfree(obj->page_cpu_valid);
3618 kfree(obj->bit_17);
3619 kfree(obj);
3620 }
3621
3622 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3623 {
3624 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3625 struct drm_device *dev = obj->base.dev;
3626
3627 while (obj->pin_count > 0)
3628 i915_gem_object_unpin(obj);
3629
3630 if (obj->phys_obj)
3631 i915_gem_detach_phys_object(dev, obj);
3632
3633 i915_gem_free_object_tail(obj);
3634 }
3635
3636 int
3637 i915_gem_idle(struct drm_device *dev)
3638 {
3639 drm_i915_private_t *dev_priv = dev->dev_private;
3640 int ret;
3641
3642 mutex_lock(&dev->struct_mutex);
3643
3644 if (dev_priv->mm.suspended) {
3645 mutex_unlock(&dev->struct_mutex);
3646 return 0;
3647 }
3648
3649 ret = i915_gpu_idle(dev, true);
3650 if (ret) {
3651 mutex_unlock(&dev->struct_mutex);
3652 return ret;
3653 }
3654
3655 /* Under UMS, be paranoid and evict. */
3656 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3657 ret = i915_gem_evict_inactive(dev, false);
3658 if (ret) {
3659 mutex_unlock(&dev->struct_mutex);
3660 return ret;
3661 }
3662 }
3663
3664 i915_gem_reset_fences(dev);
3665
3666 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3667 * We need to replace this with a semaphore, or something.
3668 * And not confound mm.suspended!
3669 */
3670 dev_priv->mm.suspended = 1;
3671 del_timer_sync(&dev_priv->hangcheck_timer);
3672
3673 i915_kernel_lost_context(dev);
3674 i915_gem_cleanup_ringbuffer(dev);
3675
3676 mutex_unlock(&dev->struct_mutex);
3677
3678 /* Cancel the retire work handler, which should be idle now. */
3679 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3680
3681 return 0;
3682 }
3683
3684 void i915_gem_init_swizzling(struct drm_device *dev)
3685 {
3686 drm_i915_private_t *dev_priv = dev->dev_private;
3687
3688 if (INTEL_INFO(dev)->gen < 6 ||
3689 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3690 return;
3691
3692 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3693 DISP_TILE_SURFACE_SWIZZLING);
3694
3695 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3696 if (IS_GEN6(dev))
3697 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3698 else
3699 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3700 }
3701 int
3702 i915_gem_init_hw(struct drm_device *dev)
3703 {
3704 drm_i915_private_t *dev_priv = dev->dev_private;
3705 int ret;
3706
3707 i915_gem_init_swizzling(dev);
3708
3709 ret = intel_init_render_ring_buffer(dev);
3710 if (ret)
3711 return ret;
3712
3713 if (HAS_BSD(dev)) {
3714 ret = intel_init_bsd_ring_buffer(dev);
3715 if (ret)
3716 goto cleanup_render_ring;
3717 }
3718
3719 if (HAS_BLT(dev)) {
3720 ret = intel_init_blt_ring_buffer(dev);
3721 if (ret)
3722 goto cleanup_bsd_ring;
3723 }
3724
3725 dev_priv->next_seqno = 1;
3726
3727 return 0;
3728
3729 cleanup_bsd_ring:
3730 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3731 cleanup_render_ring:
3732 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3733 return ret;
3734 }
3735
3736 void
3737 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3738 {
3739 drm_i915_private_t *dev_priv = dev->dev_private;
3740 int i;
3741
3742 for (i = 0; i < I915_NUM_RINGS; i++)
3743 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3744 }
3745
3746 int
3747 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3748 struct drm_file *file_priv)
3749 {
3750 drm_i915_private_t *dev_priv = dev->dev_private;
3751 int ret, i;
3752
3753 if (drm_core_check_feature(dev, DRIVER_MODESET))
3754 return 0;
3755
3756 if (atomic_read(&dev_priv->mm.wedged)) {
3757 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3758 atomic_set(&dev_priv->mm.wedged, 0);
3759 }
3760
3761 mutex_lock(&dev->struct_mutex);
3762 dev_priv->mm.suspended = 0;
3763
3764 ret = i915_gem_init_hw(dev);
3765 if (ret != 0) {
3766 mutex_unlock(&dev->struct_mutex);
3767 return ret;
3768 }
3769
3770 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3771 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3772 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3773 for (i = 0; i < I915_NUM_RINGS; i++) {
3774 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3775 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3776 }
3777 mutex_unlock(&dev->struct_mutex);
3778
3779 ret = drm_irq_install(dev);
3780 if (ret)
3781 goto cleanup_ringbuffer;
3782
3783 return 0;
3784
3785 cleanup_ringbuffer:
3786 mutex_lock(&dev->struct_mutex);
3787 i915_gem_cleanup_ringbuffer(dev);
3788 dev_priv->mm.suspended = 1;
3789 mutex_unlock(&dev->struct_mutex);
3790
3791 return ret;
3792 }
3793
3794 int
3795 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3796 struct drm_file *file_priv)
3797 {
3798 if (drm_core_check_feature(dev, DRIVER_MODESET))
3799 return 0;
3800
3801 drm_irq_uninstall(dev);
3802 return i915_gem_idle(dev);
3803 }
3804
3805 void
3806 i915_gem_lastclose(struct drm_device *dev)
3807 {
3808 int ret;
3809
3810 if (drm_core_check_feature(dev, DRIVER_MODESET))
3811 return;
3812
3813 ret = i915_gem_idle(dev);
3814 if (ret)
3815 DRM_ERROR("failed to idle hardware: %d\n", ret);
3816 }
3817
3818 static void
3819 init_ring_lists(struct intel_ring_buffer *ring)
3820 {
3821 INIT_LIST_HEAD(&ring->active_list);
3822 INIT_LIST_HEAD(&ring->request_list);
3823 INIT_LIST_HEAD(&ring->gpu_write_list);
3824 }
3825
3826 void
3827 i915_gem_load(struct drm_device *dev)
3828 {
3829 int i;
3830 drm_i915_private_t *dev_priv = dev->dev_private;
3831
3832 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3833 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3834 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3835 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3836 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3837 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3838 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3839 for (i = 0; i < I915_NUM_RINGS; i++)
3840 init_ring_lists(&dev_priv->ring[i]);
3841 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3842 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3843 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3844 i915_gem_retire_work_handler);
3845 init_completion(&dev_priv->error_completion);
3846
3847 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3848 if (IS_GEN3(dev)) {
3849 u32 tmp = I915_READ(MI_ARB_STATE);
3850 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3851 /* arb state is a masked write, so set bit + bit in mask */
3852 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3853 I915_WRITE(MI_ARB_STATE, tmp);
3854 }
3855 }
3856
3857 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3858
3859 /* Old X drivers will take 0-2 for front, back, depth buffers */
3860 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3861 dev_priv->fence_reg_start = 3;
3862
3863 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3864 dev_priv->num_fence_regs = 16;
3865 else
3866 dev_priv->num_fence_regs = 8;
3867
3868 /* Initialize fence registers to zero */
3869 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3870 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3871 }
3872
3873 i915_gem_detect_bit_6_swizzle(dev);
3874 init_waitqueue_head(&dev_priv->pending_flip_queue);
3875
3876 dev_priv->mm.interruptible = true;
3877
3878 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3879 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3880 register_shrinker(&dev_priv->mm.inactive_shrinker);
3881 }
3882
3883 /*
3884 * Create a physically contiguous memory object for this object
3885 * e.g. for cursor + overlay regs
3886 */
3887 static int i915_gem_init_phys_object(struct drm_device *dev,
3888 int id, int size, int align)
3889 {
3890 drm_i915_private_t *dev_priv = dev->dev_private;
3891 struct drm_i915_gem_phys_object *phys_obj;
3892 int ret;
3893
3894 if (dev_priv->mm.phys_objs[id - 1] || !size)
3895 return 0;
3896
3897 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3898 if (!phys_obj)
3899 return -ENOMEM;
3900
3901 phys_obj->id = id;
3902
3903 phys_obj->handle = drm_pci_alloc(dev, size, align);
3904 if (!phys_obj->handle) {
3905 ret = -ENOMEM;
3906 goto kfree_obj;
3907 }
3908 #ifdef CONFIG_X86
3909 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3910 #endif
3911
3912 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3913
3914 return 0;
3915 kfree_obj:
3916 kfree(phys_obj);
3917 return ret;
3918 }
3919
3920 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3921 {
3922 drm_i915_private_t *dev_priv = dev->dev_private;
3923 struct drm_i915_gem_phys_object *phys_obj;
3924
3925 if (!dev_priv->mm.phys_objs[id - 1])
3926 return;
3927
3928 phys_obj = dev_priv->mm.phys_objs[id - 1];
3929 if (phys_obj->cur_obj) {
3930 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3931 }
3932
3933 #ifdef CONFIG_X86
3934 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3935 #endif
3936 drm_pci_free(dev, phys_obj->handle);
3937 kfree(phys_obj);
3938 dev_priv->mm.phys_objs[id - 1] = NULL;
3939 }
3940
3941 void i915_gem_free_all_phys_object(struct drm_device *dev)
3942 {
3943 int i;
3944
3945 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3946 i915_gem_free_phys_object(dev, i);
3947 }
3948
3949 void i915_gem_detach_phys_object(struct drm_device *dev,
3950 struct drm_i915_gem_object *obj)
3951 {
3952 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3953 char *vaddr;
3954 int i;
3955 int page_count;
3956
3957 if (!obj->phys_obj)
3958 return;
3959 vaddr = obj->phys_obj->handle->vaddr;
3960
3961 page_count = obj->base.size / PAGE_SIZE;
3962 for (i = 0; i < page_count; i++) {
3963 struct page *page = shmem_read_mapping_page(mapping, i);
3964 if (!IS_ERR(page)) {
3965 char *dst = kmap_atomic(page);
3966 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3967 kunmap_atomic(dst);
3968
3969 drm_clflush_pages(&page, 1);
3970
3971 set_page_dirty(page);
3972 mark_page_accessed(page);
3973 page_cache_release(page);
3974 }
3975 }
3976 intel_gtt_chipset_flush();
3977
3978 obj->phys_obj->cur_obj = NULL;
3979 obj->phys_obj = NULL;
3980 }
3981
3982 int
3983 i915_gem_attach_phys_object(struct drm_device *dev,
3984 struct drm_i915_gem_object *obj,
3985 int id,
3986 int align)
3987 {
3988 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3989 drm_i915_private_t *dev_priv = dev->dev_private;
3990 int ret = 0;
3991 int page_count;
3992 int i;
3993
3994 if (id > I915_MAX_PHYS_OBJECT)
3995 return -EINVAL;
3996
3997 if (obj->phys_obj) {
3998 if (obj->phys_obj->id == id)
3999 return 0;
4000 i915_gem_detach_phys_object(dev, obj);
4001 }
4002
4003 /* create a new object */
4004 if (!dev_priv->mm.phys_objs[id - 1]) {
4005 ret = i915_gem_init_phys_object(dev, id,
4006 obj->base.size, align);
4007 if (ret) {
4008 DRM_ERROR("failed to init phys object %d size: %zu\n",
4009 id, obj->base.size);
4010 return ret;
4011 }
4012 }
4013
4014 /* bind to the object */
4015 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4016 obj->phys_obj->cur_obj = obj;
4017
4018 page_count = obj->base.size / PAGE_SIZE;
4019
4020 for (i = 0; i < page_count; i++) {
4021 struct page *page;
4022 char *dst, *src;
4023
4024 page = shmem_read_mapping_page(mapping, i);
4025 if (IS_ERR(page))
4026 return PTR_ERR(page);
4027
4028 src = kmap_atomic(page);
4029 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4030 memcpy(dst, src, PAGE_SIZE);
4031 kunmap_atomic(src);
4032
4033 mark_page_accessed(page);
4034 page_cache_release(page);
4035 }
4036
4037 return 0;
4038 }
4039
4040 static int
4041 i915_gem_phys_pwrite(struct drm_device *dev,
4042 struct drm_i915_gem_object *obj,
4043 struct drm_i915_gem_pwrite *args,
4044 struct drm_file *file_priv)
4045 {
4046 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4047 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4048
4049 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4050 unsigned long unwritten;
4051
4052 /* The physical object once assigned is fixed for the lifetime
4053 * of the obj, so we can safely drop the lock and continue
4054 * to access vaddr.
4055 */
4056 mutex_unlock(&dev->struct_mutex);
4057 unwritten = copy_from_user(vaddr, user_data, args->size);
4058 mutex_lock(&dev->struct_mutex);
4059 if (unwritten)
4060 return -EFAULT;
4061 }
4062
4063 intel_gtt_chipset_flush();
4064 return 0;
4065 }
4066
4067 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4068 {
4069 struct drm_i915_file_private *file_priv = file->driver_priv;
4070
4071 /* Clean up our request list when the client is going away, so that
4072 * later retire_requests won't dereference our soon-to-be-gone
4073 * file_priv.
4074 */
4075 spin_lock(&file_priv->mm.lock);
4076 while (!list_empty(&file_priv->mm.request_list)) {
4077 struct drm_i915_gem_request *request;
4078
4079 request = list_first_entry(&file_priv->mm.request_list,
4080 struct drm_i915_gem_request,
4081 client_list);
4082 list_del(&request->client_list);
4083 request->file_priv = NULL;
4084 }
4085 spin_unlock(&file_priv->mm.lock);
4086 }
4087
4088 static int
4089 i915_gpu_is_active(struct drm_device *dev)
4090 {
4091 drm_i915_private_t *dev_priv = dev->dev_private;
4092 int lists_empty;
4093
4094 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4095 list_empty(&dev_priv->mm.active_list);
4096
4097 return !lists_empty;
4098 }
4099
4100 static int
4101 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4102 {
4103 struct drm_i915_private *dev_priv =
4104 container_of(shrinker,
4105 struct drm_i915_private,
4106 mm.inactive_shrinker);
4107 struct drm_device *dev = dev_priv->dev;
4108 struct drm_i915_gem_object *obj, *next;
4109 int nr_to_scan = sc->nr_to_scan;
4110 int cnt;
4111
4112 if (!mutex_trylock(&dev->struct_mutex))
4113 return 0;
4114
4115 /* "fast-path" to count number of available objects */
4116 if (nr_to_scan == 0) {
4117 cnt = 0;
4118 list_for_each_entry(obj,
4119 &dev_priv->mm.inactive_list,
4120 mm_list)
4121 cnt++;
4122 mutex_unlock(&dev->struct_mutex);
4123 return cnt / 100 * sysctl_vfs_cache_pressure;
4124 }
4125
4126 rescan:
4127 /* first scan for clean buffers */
4128 i915_gem_retire_requests(dev);
4129
4130 list_for_each_entry_safe(obj, next,
4131 &dev_priv->mm.inactive_list,
4132 mm_list) {
4133 if (i915_gem_object_is_purgeable(obj)) {
4134 if (i915_gem_object_unbind(obj) == 0 &&
4135 --nr_to_scan == 0)
4136 break;
4137 }
4138 }
4139
4140 /* second pass, evict/count anything still on the inactive list */
4141 cnt = 0;
4142 list_for_each_entry_safe(obj, next,
4143 &dev_priv->mm.inactive_list,
4144 mm_list) {
4145 if (nr_to_scan &&
4146 i915_gem_object_unbind(obj) == 0)
4147 nr_to_scan--;
4148 else
4149 cnt++;
4150 }
4151
4152 if (nr_to_scan && i915_gpu_is_active(dev)) {
4153 /*
4154 * We are desperate for pages, so as a last resort, wait
4155 * for the GPU to finish and discard whatever we can.
4156 * This has a dramatic impact to reduce the number of
4157 * OOM-killer events whilst running the GPU aggressively.
4158 */
4159 if (i915_gpu_idle(dev, true) == 0)
4160 goto rescan;
4161 }
4162 mutex_unlock(&dev->struct_mutex);
4163 return cnt / 100 * sysctl_vfs_cache_pressure;
4164 }
This page took 0.185269 seconds and 5 git commands to generate.