drm/i915: extract hangcheck/reset/error_state state into substruct
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->gpu_error.completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_private *dev_priv = dev->dev_private;
153 struct drm_i915_gem_init *args = data;
154
155 if (drm_core_check_feature(dev, DRIVER_MODESET))
156 return -ENODEV;
157
158 if (args->gtt_start >= args->gtt_end ||
159 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160 return -EINVAL;
161
162 /* GEM with user mode setting was never supported on ilk and later. */
163 if (INTEL_INFO(dev)->gen >= 5)
164 return -ENODEV;
165
166 mutex_lock(&dev->struct_mutex);
167 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
168 args->gtt_end);
169 dev_priv->gtt.mappable_end = args->gtt_end;
170 mutex_unlock(&dev->struct_mutex);
171
172 return 0;
173 }
174
175 int
176 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
177 struct drm_file *file)
178 {
179 struct drm_i915_private *dev_priv = dev->dev_private;
180 struct drm_i915_gem_get_aperture *args = data;
181 struct drm_i915_gem_object *obj;
182 size_t pinned;
183
184 pinned = 0;
185 mutex_lock(&dev->struct_mutex);
186 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
187 if (obj->pin_count)
188 pinned += obj->gtt_space->size;
189 mutex_unlock(&dev->struct_mutex);
190
191 args->aper_size = dev_priv->gtt.total;
192 args->aper_available_size = args->aper_size - pinned;
193
194 return 0;
195 }
196
197 void *i915_gem_object_alloc(struct drm_device *dev)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
201 }
202
203 void i915_gem_object_free(struct drm_i915_gem_object *obj)
204 {
205 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
206 kmem_cache_free(dev_priv->slab, obj);
207 }
208
209 static int
210 i915_gem_create(struct drm_file *file,
211 struct drm_device *dev,
212 uint64_t size,
213 uint32_t *handle_p)
214 {
215 struct drm_i915_gem_object *obj;
216 int ret;
217 u32 handle;
218
219 size = roundup(size, PAGE_SIZE);
220 if (size == 0)
221 return -EINVAL;
222
223 /* Allocate the new object */
224 obj = i915_gem_alloc_object(dev, size);
225 if (obj == NULL)
226 return -ENOMEM;
227
228 ret = drm_gem_handle_create(file, &obj->base, &handle);
229 if (ret) {
230 drm_gem_object_release(&obj->base);
231 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
232 i915_gem_object_free(obj);
233 return ret;
234 }
235
236 /* drop reference from allocate - handle holds it now */
237 drm_gem_object_unreference(&obj->base);
238 trace_i915_gem_object_create(obj);
239
240 *handle_p = handle;
241 return 0;
242 }
243
244 int
245 i915_gem_dumb_create(struct drm_file *file,
246 struct drm_device *dev,
247 struct drm_mode_create_dumb *args)
248 {
249 /* have to work out size/pitch and return them */
250 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
251 args->size = args->pitch * args->height;
252 return i915_gem_create(file, dev,
253 args->size, &args->handle);
254 }
255
256 int i915_gem_dumb_destroy(struct drm_file *file,
257 struct drm_device *dev,
258 uint32_t handle)
259 {
260 return drm_gem_handle_delete(file, handle);
261 }
262
263 /**
264 * Creates a new mm object and returns a handle to it.
265 */
266 int
267 i915_gem_create_ioctl(struct drm_device *dev, void *data,
268 struct drm_file *file)
269 {
270 struct drm_i915_gem_create *args = data;
271
272 return i915_gem_create(file, dev,
273 args->size, &args->handle);
274 }
275
276 static inline int
277 __copy_to_user_swizzled(char __user *cpu_vaddr,
278 const char *gpu_vaddr, int gpu_offset,
279 int length)
280 {
281 int ret, cpu_offset = 0;
282
283 while (length > 0) {
284 int cacheline_end = ALIGN(gpu_offset + 1, 64);
285 int this_length = min(cacheline_end - gpu_offset, length);
286 int swizzled_gpu_offset = gpu_offset ^ 64;
287
288 ret = __copy_to_user(cpu_vaddr + cpu_offset,
289 gpu_vaddr + swizzled_gpu_offset,
290 this_length);
291 if (ret)
292 return ret + length;
293
294 cpu_offset += this_length;
295 gpu_offset += this_length;
296 length -= this_length;
297 }
298
299 return 0;
300 }
301
302 static inline int
303 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
304 const char __user *cpu_vaddr,
305 int length)
306 {
307 int ret, cpu_offset = 0;
308
309 while (length > 0) {
310 int cacheline_end = ALIGN(gpu_offset + 1, 64);
311 int this_length = min(cacheline_end - gpu_offset, length);
312 int swizzled_gpu_offset = gpu_offset ^ 64;
313
314 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
315 cpu_vaddr + cpu_offset,
316 this_length);
317 if (ret)
318 return ret + length;
319
320 cpu_offset += this_length;
321 gpu_offset += this_length;
322 length -= this_length;
323 }
324
325 return 0;
326 }
327
328 /* Per-page copy function for the shmem pread fastpath.
329 * Flushes invalid cachelines before reading the target if
330 * needs_clflush is set. */
331 static int
332 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
333 char __user *user_data,
334 bool page_do_bit17_swizzling, bool needs_clflush)
335 {
336 char *vaddr;
337 int ret;
338
339 if (unlikely(page_do_bit17_swizzling))
340 return -EINVAL;
341
342 vaddr = kmap_atomic(page);
343 if (needs_clflush)
344 drm_clflush_virt_range(vaddr + shmem_page_offset,
345 page_length);
346 ret = __copy_to_user_inatomic(user_data,
347 vaddr + shmem_page_offset,
348 page_length);
349 kunmap_atomic(vaddr);
350
351 return ret ? -EFAULT : 0;
352 }
353
354 static void
355 shmem_clflush_swizzled_range(char *addr, unsigned long length,
356 bool swizzled)
357 {
358 if (unlikely(swizzled)) {
359 unsigned long start = (unsigned long) addr;
360 unsigned long end = (unsigned long) addr + length;
361
362 /* For swizzling simply ensure that we always flush both
363 * channels. Lame, but simple and it works. Swizzled
364 * pwrite/pread is far from a hotpath - current userspace
365 * doesn't use it at all. */
366 start = round_down(start, 128);
367 end = round_up(end, 128);
368
369 drm_clflush_virt_range((void *)start, end - start);
370 } else {
371 drm_clflush_virt_range(addr, length);
372 }
373
374 }
375
376 /* Only difference to the fast-path function is that this can handle bit17
377 * and uses non-atomic copy and kmap functions. */
378 static int
379 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
380 char __user *user_data,
381 bool page_do_bit17_swizzling, bool needs_clflush)
382 {
383 char *vaddr;
384 int ret;
385
386 vaddr = kmap(page);
387 if (needs_clflush)
388 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
389 page_length,
390 page_do_bit17_swizzling);
391
392 if (page_do_bit17_swizzling)
393 ret = __copy_to_user_swizzled(user_data,
394 vaddr, shmem_page_offset,
395 page_length);
396 else
397 ret = __copy_to_user(user_data,
398 vaddr + shmem_page_offset,
399 page_length);
400 kunmap(page);
401
402 return ret ? - EFAULT : 0;
403 }
404
405 static int
406 i915_gem_shmem_pread(struct drm_device *dev,
407 struct drm_i915_gem_object *obj,
408 struct drm_i915_gem_pread *args,
409 struct drm_file *file)
410 {
411 char __user *user_data;
412 ssize_t remain;
413 loff_t offset;
414 int shmem_page_offset, page_length, ret = 0;
415 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
416 int prefaulted = 0;
417 int needs_clflush = 0;
418 struct scatterlist *sg;
419 int i;
420
421 user_data = (char __user *) (uintptr_t) args->data_ptr;
422 remain = args->size;
423
424 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
425
426 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
427 /* If we're not in the cpu read domain, set ourself into the gtt
428 * read domain and manually flush cachelines (if required). This
429 * optimizes for the case when the gpu will dirty the data
430 * anyway again before the next pread happens. */
431 if (obj->cache_level == I915_CACHE_NONE)
432 needs_clflush = 1;
433 if (obj->gtt_space) {
434 ret = i915_gem_object_set_to_gtt_domain(obj, false);
435 if (ret)
436 return ret;
437 }
438 }
439
440 ret = i915_gem_object_get_pages(obj);
441 if (ret)
442 return ret;
443
444 i915_gem_object_pin_pages(obj);
445
446 offset = args->offset;
447
448 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
449 struct page *page;
450
451 if (i < offset >> PAGE_SHIFT)
452 continue;
453
454 if (remain <= 0)
455 break;
456
457 /* Operation in this page
458 *
459 * shmem_page_offset = offset within page in shmem file
460 * page_length = bytes to copy for this page
461 */
462 shmem_page_offset = offset_in_page(offset);
463 page_length = remain;
464 if ((shmem_page_offset + page_length) > PAGE_SIZE)
465 page_length = PAGE_SIZE - shmem_page_offset;
466
467 page = sg_page(sg);
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (!prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 (char __user *)(uintptr_t)args->data_ptr,
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_object_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = (char __user *) (uintptr_t) args->data_ptr;
621 remain = args->size;
622
623 offset = obj->gtt_offset + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 int i;
740 struct scatterlist *sg;
741
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
743 remain = args->size;
744
745 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
746
747 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
748 /* If we're not in the cpu write domain, set ourself into the gtt
749 * write domain and manually flush cachelines (if required). This
750 * optimizes for the case when the gpu will use the data
751 * right away and we therefore have to clflush anyway. */
752 if (obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_after = 1;
754 if (obj->gtt_space) {
755 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756 if (ret)
757 return ret;
758 }
759 }
760 /* Same trick applies for invalidate partially written cachelines before
761 * writing. */
762 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
763 && obj->cache_level == I915_CACHE_NONE)
764 needs_clflush_before = 1;
765
766 ret = i915_gem_object_get_pages(obj);
767 if (ret)
768 return ret;
769
770 i915_gem_object_pin_pages(obj);
771
772 offset = args->offset;
773 obj->dirty = 1;
774
775 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
776 struct page *page;
777 int partial_cacheline_write;
778
779 if (i < offset >> PAGE_SHIFT)
780 continue;
781
782 if (remain <= 0)
783 break;
784
785 /* Operation in this page
786 *
787 * shmem_page_offset = offset within page in shmem file
788 * page_length = bytes to copy for this page
789 */
790 shmem_page_offset = offset_in_page(offset);
791
792 page_length = remain;
793 if ((shmem_page_offset + page_length) > PAGE_SIZE)
794 page_length = PAGE_SIZE - shmem_page_offset;
795
796 /* If we don't overwrite a cacheline completely we need to be
797 * careful to have up-to-date data by first clflushing. Don't
798 * overcomplicate things and flush the entire patch. */
799 partial_cacheline_write = needs_clflush_before &&
800 ((shmem_page_offset | page_length)
801 & (boot_cpu_data.x86_clflush_size - 1));
802
803 page = sg_page(sg);
804 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
805 (page_to_phys(page) & (1 << 17)) != 0;
806
807 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
808 user_data, page_do_bit17_swizzling,
809 partial_cacheline_write,
810 needs_clflush_after);
811 if (ret == 0)
812 goto next_page;
813
814 hit_slowpath = 1;
815 mutex_unlock(&dev->struct_mutex);
816 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
817 user_data, page_do_bit17_swizzling,
818 partial_cacheline_write,
819 needs_clflush_after);
820
821 mutex_lock(&dev->struct_mutex);
822
823 next_page:
824 set_page_dirty(page);
825 mark_page_accessed(page);
826
827 if (ret)
828 goto out;
829
830 remain -= page_length;
831 user_data += page_length;
832 offset += page_length;
833 }
834
835 out:
836 i915_gem_object_unpin_pages(obj);
837
838 if (hit_slowpath) {
839 /*
840 * Fixup: Flush cpu caches in case we didn't flush the dirty
841 * cachelines in-line while writing and the object moved
842 * out of the cpu write domain while we've dropped the lock.
843 */
844 if (!needs_clflush_after &&
845 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
846 i915_gem_clflush_object(obj);
847 i915_gem_chipset_flush(dev);
848 }
849 }
850
851 if (needs_clflush_after)
852 i915_gem_chipset_flush(dev);
853
854 return ret;
855 }
856
857 /**
858 * Writes data to the object referenced by handle.
859 *
860 * On error, the contents of the buffer that were to be modified are undefined.
861 */
862 int
863 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
864 struct drm_file *file)
865 {
866 struct drm_i915_gem_pwrite *args = data;
867 struct drm_i915_gem_object *obj;
868 int ret;
869
870 if (args->size == 0)
871 return 0;
872
873 if (!access_ok(VERIFY_READ,
874 (char __user *)(uintptr_t)args->data_ptr,
875 args->size))
876 return -EFAULT;
877
878 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
879 args->size);
880 if (ret)
881 return -EFAULT;
882
883 ret = i915_mutex_lock_interruptible(dev);
884 if (ret)
885 return ret;
886
887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
888 if (&obj->base == NULL) {
889 ret = -ENOENT;
890 goto unlock;
891 }
892
893 /* Bounds check destination. */
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
910 ret = -EFAULT;
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
917 if (obj->phys_obj) {
918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
919 goto out;
920 }
921
922 if (obj->cache_level == I915_CACHE_NONE &&
923 obj->tiling_mode == I915_TILING_NONE &&
924 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
925 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
926 /* Note that the gtt paths might fail with non-page-backed user
927 * pointers (e.g. gtt mappings when moving data between
928 * textures). Fallback to the shmem path in that case. */
929 }
930
931 if (ret == -EFAULT || ret == -ENOSPC)
932 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
933
934 out:
935 drm_gem_object_unreference(&obj->base);
936 unlock:
937 mutex_unlock(&dev->struct_mutex);
938 return ret;
939 }
940
941 int
942 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
943 bool interruptible)
944 {
945 if (atomic_read(&dev_priv->mm.wedged)) {
946 struct completion *x = &dev_priv->gpu_error.completion;
947 bool recovery_complete;
948 unsigned long flags;
949
950 /* Give the error handler a chance to run. */
951 spin_lock_irqsave(&x->wait.lock, flags);
952 recovery_complete = x->done > 0;
953 spin_unlock_irqrestore(&x->wait.lock, flags);
954
955 /* Non-interruptible callers can't handle -EAGAIN, hence return
956 * -EIO unconditionally for these. */
957 if (!interruptible)
958 return -EIO;
959
960 /* Recovery complete, but still wedged means reset failure. */
961 if (recovery_complete)
962 return -EIO;
963
964 return -EAGAIN;
965 }
966
967 return 0;
968 }
969
970 /*
971 * Compare seqno against outstanding lazy request. Emit a request if they are
972 * equal.
973 */
974 static int
975 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
976 {
977 int ret;
978
979 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
980
981 ret = 0;
982 if (seqno == ring->outstanding_lazy_request)
983 ret = i915_add_request(ring, NULL, NULL);
984
985 return ret;
986 }
987
988 /**
989 * __wait_seqno - wait until execution of seqno has finished
990 * @ring: the ring expected to report seqno
991 * @seqno: duh!
992 * @interruptible: do an interruptible wait (normally yes)
993 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
994 *
995 * Returns 0 if the seqno was found within the alloted time. Else returns the
996 * errno with remaining time filled in timeout argument.
997 */
998 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
999 bool interruptible, struct timespec *timeout)
1000 {
1001 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1002 struct timespec before, now, wait_time={1,0};
1003 unsigned long timeout_jiffies;
1004 long end;
1005 bool wait_forever = true;
1006 int ret;
1007
1008 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1009 return 0;
1010
1011 trace_i915_gem_request_wait_begin(ring, seqno);
1012
1013 if (timeout != NULL) {
1014 wait_time = *timeout;
1015 wait_forever = false;
1016 }
1017
1018 timeout_jiffies = timespec_to_jiffies(&wait_time);
1019
1020 if (WARN_ON(!ring->irq_get(ring)))
1021 return -ENODEV;
1022
1023 /* Record current time in case interrupted by signal, or wedged * */
1024 getrawmonotonic(&before);
1025
1026 #define EXIT_COND \
1027 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1028 atomic_read(&dev_priv->mm.wedged))
1029 do {
1030 if (interruptible)
1031 end = wait_event_interruptible_timeout(ring->irq_queue,
1032 EXIT_COND,
1033 timeout_jiffies);
1034 else
1035 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1036 timeout_jiffies);
1037
1038 ret = i915_gem_check_wedge(dev_priv, interruptible);
1039 if (ret)
1040 end = ret;
1041 } while (end == 0 && wait_forever);
1042
1043 getrawmonotonic(&now);
1044
1045 ring->irq_put(ring);
1046 trace_i915_gem_request_wait_end(ring, seqno);
1047 #undef EXIT_COND
1048
1049 if (timeout) {
1050 struct timespec sleep_time = timespec_sub(now, before);
1051 *timeout = timespec_sub(*timeout, sleep_time);
1052 }
1053
1054 switch (end) {
1055 case -EIO:
1056 case -EAGAIN: /* Wedged */
1057 case -ERESTARTSYS: /* Signal */
1058 return (int)end;
1059 case 0: /* Timeout */
1060 if (timeout)
1061 set_normalized_timespec(timeout, 0, 0);
1062 return -ETIME;
1063 default: /* Completed */
1064 WARN_ON(end < 0); /* We're not aware of other errors */
1065 return 0;
1066 }
1067 }
1068
1069 /**
1070 * Waits for a sequence number to be signaled, and cleans up the
1071 * request and object lists appropriately for that event.
1072 */
1073 int
1074 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1075 {
1076 struct drm_device *dev = ring->dev;
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078 bool interruptible = dev_priv->mm.interruptible;
1079 int ret;
1080
1081 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1082 BUG_ON(seqno == 0);
1083
1084 ret = i915_gem_check_wedge(dev_priv, interruptible);
1085 if (ret)
1086 return ret;
1087
1088 ret = i915_gem_check_olr(ring, seqno);
1089 if (ret)
1090 return ret;
1091
1092 return __wait_seqno(ring, seqno, interruptible, NULL);
1093 }
1094
1095 /**
1096 * Ensures that all rendering to the object has completed and the object is
1097 * safe to unbind from the GTT or access from the CPU.
1098 */
1099 static __must_check int
1100 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1101 bool readonly)
1102 {
1103 struct intel_ring_buffer *ring = obj->ring;
1104 u32 seqno;
1105 int ret;
1106
1107 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1108 if (seqno == 0)
1109 return 0;
1110
1111 ret = i915_wait_seqno(ring, seqno);
1112 if (ret)
1113 return ret;
1114
1115 i915_gem_retire_requests_ring(ring);
1116
1117 /* Manually manage the write flush as we may have not yet
1118 * retired the buffer.
1119 */
1120 if (obj->last_write_seqno &&
1121 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1122 obj->last_write_seqno = 0;
1123 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1124 }
1125
1126 return 0;
1127 }
1128
1129 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1130 * as the object state may change during this call.
1131 */
1132 static __must_check int
1133 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1134 bool readonly)
1135 {
1136 struct drm_device *dev = obj->base.dev;
1137 struct drm_i915_private *dev_priv = dev->dev_private;
1138 struct intel_ring_buffer *ring = obj->ring;
1139 u32 seqno;
1140 int ret;
1141
1142 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1143 BUG_ON(!dev_priv->mm.interruptible);
1144
1145 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1146 if (seqno == 0)
1147 return 0;
1148
1149 ret = i915_gem_check_wedge(dev_priv, true);
1150 if (ret)
1151 return ret;
1152
1153 ret = i915_gem_check_olr(ring, seqno);
1154 if (ret)
1155 return ret;
1156
1157 mutex_unlock(&dev->struct_mutex);
1158 ret = __wait_seqno(ring, seqno, true, NULL);
1159 mutex_lock(&dev->struct_mutex);
1160
1161 i915_gem_retire_requests_ring(ring);
1162
1163 /* Manually manage the write flush as we may have not yet
1164 * retired the buffer.
1165 */
1166 if (obj->last_write_seqno &&
1167 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1168 obj->last_write_seqno = 0;
1169 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1170 }
1171
1172 return ret;
1173 }
1174
1175 /**
1176 * Called when user space prepares to use an object with the CPU, either
1177 * through the mmap ioctl's mapping or a GTT mapping.
1178 */
1179 int
1180 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1181 struct drm_file *file)
1182 {
1183 struct drm_i915_gem_set_domain *args = data;
1184 struct drm_i915_gem_object *obj;
1185 uint32_t read_domains = args->read_domains;
1186 uint32_t write_domain = args->write_domain;
1187 int ret;
1188
1189 /* Only handle setting domains to types used by the CPU. */
1190 if (write_domain & I915_GEM_GPU_DOMAINS)
1191 return -EINVAL;
1192
1193 if (read_domains & I915_GEM_GPU_DOMAINS)
1194 return -EINVAL;
1195
1196 /* Having something in the write domain implies it's in the read
1197 * domain, and only that read domain. Enforce that in the request.
1198 */
1199 if (write_domain != 0 && read_domains != write_domain)
1200 return -EINVAL;
1201
1202 ret = i915_mutex_lock_interruptible(dev);
1203 if (ret)
1204 return ret;
1205
1206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1207 if (&obj->base == NULL) {
1208 ret = -ENOENT;
1209 goto unlock;
1210 }
1211
1212 /* Try to flush the object off the GPU without holding the lock.
1213 * We will repeat the flush holding the lock in the normal manner
1214 * to catch cases where we are gazumped.
1215 */
1216 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1217 if (ret)
1218 goto unref;
1219
1220 if (read_domains & I915_GEM_DOMAIN_GTT) {
1221 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1222
1223 /* Silently promote "you're not bound, there was nothing to do"
1224 * to success, since the client was just asking us to
1225 * make sure everything was done.
1226 */
1227 if (ret == -EINVAL)
1228 ret = 0;
1229 } else {
1230 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1231 }
1232
1233 unref:
1234 drm_gem_object_unreference(&obj->base);
1235 unlock:
1236 mutex_unlock(&dev->struct_mutex);
1237 return ret;
1238 }
1239
1240 /**
1241 * Called when user space has done writes to this buffer
1242 */
1243 int
1244 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1245 struct drm_file *file)
1246 {
1247 struct drm_i915_gem_sw_finish *args = data;
1248 struct drm_i915_gem_object *obj;
1249 int ret = 0;
1250
1251 ret = i915_mutex_lock_interruptible(dev);
1252 if (ret)
1253 return ret;
1254
1255 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1256 if (&obj->base == NULL) {
1257 ret = -ENOENT;
1258 goto unlock;
1259 }
1260
1261 /* Pinned buffers may be scanout, so flush the cache */
1262 if (obj->pin_count)
1263 i915_gem_object_flush_cpu_write_domain(obj);
1264
1265 drm_gem_object_unreference(&obj->base);
1266 unlock:
1267 mutex_unlock(&dev->struct_mutex);
1268 return ret;
1269 }
1270
1271 /**
1272 * Maps the contents of an object, returning the address it is mapped
1273 * into.
1274 *
1275 * While the mapping holds a reference on the contents of the object, it doesn't
1276 * imply a ref on the object itself.
1277 */
1278 int
1279 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1280 struct drm_file *file)
1281 {
1282 struct drm_i915_gem_mmap *args = data;
1283 struct drm_gem_object *obj;
1284 unsigned long addr;
1285
1286 obj = drm_gem_object_lookup(dev, file, args->handle);
1287 if (obj == NULL)
1288 return -ENOENT;
1289
1290 /* prime objects have no backing filp to GEM mmap
1291 * pages from.
1292 */
1293 if (!obj->filp) {
1294 drm_gem_object_unreference_unlocked(obj);
1295 return -EINVAL;
1296 }
1297
1298 addr = vm_mmap(obj->filp, 0, args->size,
1299 PROT_READ | PROT_WRITE, MAP_SHARED,
1300 args->offset);
1301 drm_gem_object_unreference_unlocked(obj);
1302 if (IS_ERR((void *)addr))
1303 return addr;
1304
1305 args->addr_ptr = (uint64_t) addr;
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * i915_gem_fault - fault a page into the GTT
1312 * vma: VMA in question
1313 * vmf: fault info
1314 *
1315 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1316 * from userspace. The fault handler takes care of binding the object to
1317 * the GTT (if needed), allocating and programming a fence register (again,
1318 * only if needed based on whether the old reg is still valid or the object
1319 * is tiled) and inserting a new PTE into the faulting process.
1320 *
1321 * Note that the faulting process may involve evicting existing objects
1322 * from the GTT and/or fence registers to make room. So performance may
1323 * suffer if the GTT working set is large or there are few fence registers
1324 * left.
1325 */
1326 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1327 {
1328 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1329 struct drm_device *dev = obj->base.dev;
1330 drm_i915_private_t *dev_priv = dev->dev_private;
1331 pgoff_t page_offset;
1332 unsigned long pfn;
1333 int ret = 0;
1334 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1335
1336 /* We don't use vmf->pgoff since that has the fake offset */
1337 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1338 PAGE_SHIFT;
1339
1340 ret = i915_mutex_lock_interruptible(dev);
1341 if (ret)
1342 goto out;
1343
1344 trace_i915_gem_object_fault(obj, page_offset, true, write);
1345
1346 /* Access to snoopable pages through the GTT is incoherent. */
1347 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1348 ret = -EINVAL;
1349 goto unlock;
1350 }
1351
1352 /* Now bind it into the GTT if needed */
1353 ret = i915_gem_object_pin(obj, 0, true, false);
1354 if (ret)
1355 goto unlock;
1356
1357 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1358 if (ret)
1359 goto unpin;
1360
1361 ret = i915_gem_object_get_fence(obj);
1362 if (ret)
1363 goto unpin;
1364
1365 obj->fault_mappable = true;
1366
1367 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1368 page_offset;
1369
1370 /* Finally, remap it using the new GTT offset */
1371 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1372 unpin:
1373 i915_gem_object_unpin(obj);
1374 unlock:
1375 mutex_unlock(&dev->struct_mutex);
1376 out:
1377 switch (ret) {
1378 case -EIO:
1379 /* If this -EIO is due to a gpu hang, give the reset code a
1380 * chance to clean up the mess. Otherwise return the proper
1381 * SIGBUS. */
1382 if (!atomic_read(&dev_priv->mm.wedged))
1383 return VM_FAULT_SIGBUS;
1384 case -EAGAIN:
1385 /* Give the error handler a chance to run and move the
1386 * objects off the GPU active list. Next time we service the
1387 * fault, we should be able to transition the page into the
1388 * GTT without touching the GPU (and so avoid further
1389 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1390 * with coherency, just lost writes.
1391 */
1392 set_need_resched();
1393 case 0:
1394 case -ERESTARTSYS:
1395 case -EINTR:
1396 case -EBUSY:
1397 /*
1398 * EBUSY is ok: this just means that another thread
1399 * already did the job.
1400 */
1401 return VM_FAULT_NOPAGE;
1402 case -ENOMEM:
1403 return VM_FAULT_OOM;
1404 case -ENOSPC:
1405 return VM_FAULT_SIGBUS;
1406 default:
1407 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1408 return VM_FAULT_SIGBUS;
1409 }
1410 }
1411
1412 /**
1413 * i915_gem_release_mmap - remove physical page mappings
1414 * @obj: obj in question
1415 *
1416 * Preserve the reservation of the mmapping with the DRM core code, but
1417 * relinquish ownership of the pages back to the system.
1418 *
1419 * It is vital that we remove the page mapping if we have mapped a tiled
1420 * object through the GTT and then lose the fence register due to
1421 * resource pressure. Similarly if the object has been moved out of the
1422 * aperture, than pages mapped into userspace must be revoked. Removing the
1423 * mapping will then trigger a page fault on the next user access, allowing
1424 * fixup by i915_gem_fault().
1425 */
1426 void
1427 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1428 {
1429 if (!obj->fault_mappable)
1430 return;
1431
1432 if (obj->base.dev->dev_mapping)
1433 unmap_mapping_range(obj->base.dev->dev_mapping,
1434 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1435 obj->base.size, 1);
1436
1437 obj->fault_mappable = false;
1438 }
1439
1440 uint32_t
1441 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1442 {
1443 uint32_t gtt_size;
1444
1445 if (INTEL_INFO(dev)->gen >= 4 ||
1446 tiling_mode == I915_TILING_NONE)
1447 return size;
1448
1449 /* Previous chips need a power-of-two fence region when tiling */
1450 if (INTEL_INFO(dev)->gen == 3)
1451 gtt_size = 1024*1024;
1452 else
1453 gtt_size = 512*1024;
1454
1455 while (gtt_size < size)
1456 gtt_size <<= 1;
1457
1458 return gtt_size;
1459 }
1460
1461 /**
1462 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1463 * @obj: object to check
1464 *
1465 * Return the required GTT alignment for an object, taking into account
1466 * potential fence register mapping.
1467 */
1468 uint32_t
1469 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1470 int tiling_mode, bool fenced)
1471 {
1472 /*
1473 * Minimum alignment is 4k (GTT page size), but might be greater
1474 * if a fence register is needed for the object.
1475 */
1476 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1477 tiling_mode == I915_TILING_NONE)
1478 return 4096;
1479
1480 /*
1481 * Previous chips need to be aligned to the size of the smallest
1482 * fence register that can contain the object.
1483 */
1484 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1485 }
1486
1487 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1488 {
1489 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1490 int ret;
1491
1492 if (obj->base.map_list.map)
1493 return 0;
1494
1495 dev_priv->mm.shrinker_no_lock_stealing = true;
1496
1497 ret = drm_gem_create_mmap_offset(&obj->base);
1498 if (ret != -ENOSPC)
1499 goto out;
1500
1501 /* Badly fragmented mmap space? The only way we can recover
1502 * space is by destroying unwanted objects. We can't randomly release
1503 * mmap_offsets as userspace expects them to be persistent for the
1504 * lifetime of the objects. The closest we can is to release the
1505 * offsets on purgeable objects by truncating it and marking it purged,
1506 * which prevents userspace from ever using that object again.
1507 */
1508 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
1511 goto out;
1512
1513 i915_gem_shrink_all(dev_priv);
1514 ret = drm_gem_create_mmap_offset(&obj->base);
1515 out:
1516 dev_priv->mm.shrinker_no_lock_stealing = false;
1517
1518 return ret;
1519 }
1520
1521 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523 if (!obj->base.map_list.map)
1524 return;
1525
1526 drm_gem_free_mmap_offset(&obj->base);
1527 }
1528
1529 int
1530 i915_gem_mmap_gtt(struct drm_file *file,
1531 struct drm_device *dev,
1532 uint32_t handle,
1533 uint64_t *offset)
1534 {
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 struct drm_i915_gem_object *obj;
1537 int ret;
1538
1539 ret = i915_mutex_lock_interruptible(dev);
1540 if (ret)
1541 return ret;
1542
1543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1544 if (&obj->base == NULL) {
1545 ret = -ENOENT;
1546 goto unlock;
1547 }
1548
1549 if (obj->base.size > dev_priv->gtt.mappable_end) {
1550 ret = -E2BIG;
1551 goto out;
1552 }
1553
1554 if (obj->madv != I915_MADV_WILLNEED) {
1555 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1556 ret = -EINVAL;
1557 goto out;
1558 }
1559
1560 ret = i915_gem_object_create_mmap_offset(obj);
1561 if (ret)
1562 goto out;
1563
1564 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1565
1566 out:
1567 drm_gem_object_unreference(&obj->base);
1568 unlock:
1569 mutex_unlock(&dev->struct_mutex);
1570 return ret;
1571 }
1572
1573 /**
1574 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1575 * @dev: DRM device
1576 * @data: GTT mapping ioctl data
1577 * @file: GEM object info
1578 *
1579 * Simply returns the fake offset to userspace so it can mmap it.
1580 * The mmap call will end up in drm_gem_mmap(), which will set things
1581 * up so we can get faults in the handler above.
1582 *
1583 * The fault handler will take care of binding the object into the GTT
1584 * (since it may have been evicted to make room for something), allocating
1585 * a fence register, and mapping the appropriate aperture address into
1586 * userspace.
1587 */
1588 int
1589 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1590 struct drm_file *file)
1591 {
1592 struct drm_i915_gem_mmap_gtt *args = data;
1593
1594 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1595 }
1596
1597 /* Immediately discard the backing storage */
1598 static void
1599 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1600 {
1601 struct inode *inode;
1602
1603 i915_gem_object_free_mmap_offset(obj);
1604
1605 if (obj->base.filp == NULL)
1606 return;
1607
1608 /* Our goal here is to return as much of the memory as
1609 * is possible back to the system as we are called from OOM.
1610 * To do this we must instruct the shmfs to drop all of its
1611 * backing pages, *now*.
1612 */
1613 inode = obj->base.filp->f_path.dentry->d_inode;
1614 shmem_truncate_range(inode, 0, (loff_t)-1);
1615
1616 obj->madv = __I915_MADV_PURGED;
1617 }
1618
1619 static inline int
1620 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1621 {
1622 return obj->madv == I915_MADV_DONTNEED;
1623 }
1624
1625 static void
1626 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1627 {
1628 int page_count = obj->base.size / PAGE_SIZE;
1629 struct scatterlist *sg;
1630 int ret, i;
1631
1632 BUG_ON(obj->madv == __I915_MADV_PURGED);
1633
1634 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1635 if (ret) {
1636 /* In the event of a disaster, abandon all caches and
1637 * hope for the best.
1638 */
1639 WARN_ON(ret != -EIO);
1640 i915_gem_clflush_object(obj);
1641 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1642 }
1643
1644 if (i915_gem_object_needs_bit17_swizzle(obj))
1645 i915_gem_object_save_bit_17_swizzle(obj);
1646
1647 if (obj->madv == I915_MADV_DONTNEED)
1648 obj->dirty = 0;
1649
1650 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1651 struct page *page = sg_page(sg);
1652
1653 if (obj->dirty)
1654 set_page_dirty(page);
1655
1656 if (obj->madv == I915_MADV_WILLNEED)
1657 mark_page_accessed(page);
1658
1659 page_cache_release(page);
1660 }
1661 obj->dirty = 0;
1662
1663 sg_free_table(obj->pages);
1664 kfree(obj->pages);
1665 }
1666
1667 int
1668 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1669 {
1670 const struct drm_i915_gem_object_ops *ops = obj->ops;
1671
1672 if (obj->pages == NULL)
1673 return 0;
1674
1675 BUG_ON(obj->gtt_space);
1676
1677 if (obj->pages_pin_count)
1678 return -EBUSY;
1679
1680 /* ->put_pages might need to allocate memory for the bit17 swizzle
1681 * array, hence protect them from being reaped by removing them from gtt
1682 * lists early. */
1683 list_del(&obj->gtt_list);
1684
1685 ops->put_pages(obj);
1686 obj->pages = NULL;
1687
1688 if (i915_gem_object_is_purgeable(obj))
1689 i915_gem_object_truncate(obj);
1690
1691 return 0;
1692 }
1693
1694 static long
1695 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1696 {
1697 struct drm_i915_gem_object *obj, *next;
1698 long count = 0;
1699
1700 list_for_each_entry_safe(obj, next,
1701 &dev_priv->mm.unbound_list,
1702 gtt_list) {
1703 if (i915_gem_object_is_purgeable(obj) &&
1704 i915_gem_object_put_pages(obj) == 0) {
1705 count += obj->base.size >> PAGE_SHIFT;
1706 if (count >= target)
1707 return count;
1708 }
1709 }
1710
1711 list_for_each_entry_safe(obj, next,
1712 &dev_priv->mm.inactive_list,
1713 mm_list) {
1714 if (i915_gem_object_is_purgeable(obj) &&
1715 i915_gem_object_unbind(obj) == 0 &&
1716 i915_gem_object_put_pages(obj) == 0) {
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
1723 return count;
1724 }
1725
1726 static void
1727 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1728 {
1729 struct drm_i915_gem_object *obj, *next;
1730
1731 i915_gem_evict_everything(dev_priv->dev);
1732
1733 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1734 i915_gem_object_put_pages(obj);
1735 }
1736
1737 static int
1738 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1739 {
1740 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1741 int page_count, i;
1742 struct address_space *mapping;
1743 struct sg_table *st;
1744 struct scatterlist *sg;
1745 struct page *page;
1746 gfp_t gfp;
1747
1748 /* Assert that the object is not currently in any GPU domain. As it
1749 * wasn't in the GTT, there shouldn't be any way it could have been in
1750 * a GPU cache
1751 */
1752 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1753 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1754
1755 st = kmalloc(sizeof(*st), GFP_KERNEL);
1756 if (st == NULL)
1757 return -ENOMEM;
1758
1759 page_count = obj->base.size / PAGE_SIZE;
1760 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1761 sg_free_table(st);
1762 kfree(st);
1763 return -ENOMEM;
1764 }
1765
1766 /* Get the list of pages out of our struct file. They'll be pinned
1767 * at this point until we release them.
1768 *
1769 * Fail silently without starting the shrinker
1770 */
1771 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1772 gfp = mapping_gfp_mask(mapping);
1773 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1774 gfp &= ~(__GFP_IO | __GFP_WAIT);
1775 for_each_sg(st->sgl, sg, page_count, i) {
1776 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1777 if (IS_ERR(page)) {
1778 i915_gem_purge(dev_priv, page_count);
1779 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1780 }
1781 if (IS_ERR(page)) {
1782 /* We've tried hard to allocate the memory by reaping
1783 * our own buffer, now let the real VM do its job and
1784 * go down in flames if truly OOM.
1785 */
1786 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1787 gfp |= __GFP_IO | __GFP_WAIT;
1788
1789 i915_gem_shrink_all(dev_priv);
1790 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1791 if (IS_ERR(page))
1792 goto err_pages;
1793
1794 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1795 gfp &= ~(__GFP_IO | __GFP_WAIT);
1796 }
1797
1798 sg_set_page(sg, page, PAGE_SIZE, 0);
1799 }
1800
1801 obj->pages = st;
1802
1803 if (i915_gem_object_needs_bit17_swizzle(obj))
1804 i915_gem_object_do_bit_17_swizzle(obj);
1805
1806 return 0;
1807
1808 err_pages:
1809 for_each_sg(st->sgl, sg, i, page_count)
1810 page_cache_release(sg_page(sg));
1811 sg_free_table(st);
1812 kfree(st);
1813 return PTR_ERR(page);
1814 }
1815
1816 /* Ensure that the associated pages are gathered from the backing storage
1817 * and pinned into our object. i915_gem_object_get_pages() may be called
1818 * multiple times before they are released by a single call to
1819 * i915_gem_object_put_pages() - once the pages are no longer referenced
1820 * either as a result of memory pressure (reaping pages under the shrinker)
1821 * or as the object is itself released.
1822 */
1823 int
1824 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1825 {
1826 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1827 const struct drm_i915_gem_object_ops *ops = obj->ops;
1828 int ret;
1829
1830 if (obj->pages)
1831 return 0;
1832
1833 if (obj->madv != I915_MADV_WILLNEED) {
1834 DRM_ERROR("Attempting to obtain a purgeable object\n");
1835 return -EINVAL;
1836 }
1837
1838 BUG_ON(obj->pages_pin_count);
1839
1840 ret = ops->get_pages(obj);
1841 if (ret)
1842 return ret;
1843
1844 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1845 return 0;
1846 }
1847
1848 void
1849 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1850 struct intel_ring_buffer *ring)
1851 {
1852 struct drm_device *dev = obj->base.dev;
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1854 u32 seqno = intel_ring_get_seqno(ring);
1855
1856 BUG_ON(ring == NULL);
1857 obj->ring = ring;
1858
1859 /* Add a reference if we're newly entering the active list. */
1860 if (!obj->active) {
1861 drm_gem_object_reference(&obj->base);
1862 obj->active = 1;
1863 }
1864
1865 /* Move from whatever list we were on to the tail of execution. */
1866 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1867 list_move_tail(&obj->ring_list, &ring->active_list);
1868
1869 obj->last_read_seqno = seqno;
1870
1871 if (obj->fenced_gpu_access) {
1872 obj->last_fenced_seqno = seqno;
1873
1874 /* Bump MRU to take account of the delayed flush */
1875 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1876 struct drm_i915_fence_reg *reg;
1877
1878 reg = &dev_priv->fence_regs[obj->fence_reg];
1879 list_move_tail(&reg->lru_list,
1880 &dev_priv->mm.fence_list);
1881 }
1882 }
1883 }
1884
1885 static void
1886 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1887 {
1888 struct drm_device *dev = obj->base.dev;
1889 struct drm_i915_private *dev_priv = dev->dev_private;
1890
1891 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1892 BUG_ON(!obj->active);
1893
1894 if (obj->pin_count) /* are we a framebuffer? */
1895 intel_mark_fb_idle(obj);
1896
1897 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1898
1899 list_del_init(&obj->ring_list);
1900 obj->ring = NULL;
1901
1902 obj->last_read_seqno = 0;
1903 obj->last_write_seqno = 0;
1904 obj->base.write_domain = 0;
1905
1906 obj->last_fenced_seqno = 0;
1907 obj->fenced_gpu_access = false;
1908
1909 obj->active = 0;
1910 drm_gem_object_unreference(&obj->base);
1911
1912 WARN_ON(i915_verify_lists(dev));
1913 }
1914
1915 static int
1916 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1917 {
1918 struct drm_i915_private *dev_priv = dev->dev_private;
1919 struct intel_ring_buffer *ring;
1920 int ret, i, j;
1921
1922 /* Carefully retire all requests without writing to the rings */
1923 for_each_ring(ring, dev_priv, i) {
1924 ret = intel_ring_idle(ring);
1925 if (ret)
1926 return ret;
1927 }
1928 i915_gem_retire_requests(dev);
1929
1930 /* Finally reset hw state */
1931 for_each_ring(ring, dev_priv, i) {
1932 intel_ring_init_seqno(ring, seqno);
1933
1934 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1935 ring->sync_seqno[j] = 0;
1936 }
1937
1938 return 0;
1939 }
1940
1941 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1942 {
1943 struct drm_i915_private *dev_priv = dev->dev_private;
1944 int ret;
1945
1946 if (seqno == 0)
1947 return -EINVAL;
1948
1949 /* HWS page needs to be set less than what we
1950 * will inject to ring
1951 */
1952 ret = i915_gem_init_seqno(dev, seqno - 1);
1953 if (ret)
1954 return ret;
1955
1956 /* Carefully set the last_seqno value so that wrap
1957 * detection still works
1958 */
1959 dev_priv->next_seqno = seqno;
1960 dev_priv->last_seqno = seqno - 1;
1961 if (dev_priv->last_seqno == 0)
1962 dev_priv->last_seqno--;
1963
1964 return 0;
1965 }
1966
1967 int
1968 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1969 {
1970 struct drm_i915_private *dev_priv = dev->dev_private;
1971
1972 /* reserve 0 for non-seqno */
1973 if (dev_priv->next_seqno == 0) {
1974 int ret = i915_gem_init_seqno(dev, 0);
1975 if (ret)
1976 return ret;
1977
1978 dev_priv->next_seqno = 1;
1979 }
1980
1981 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1982 return 0;
1983 }
1984
1985 int
1986 i915_add_request(struct intel_ring_buffer *ring,
1987 struct drm_file *file,
1988 u32 *out_seqno)
1989 {
1990 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1991 struct drm_i915_gem_request *request;
1992 u32 request_ring_position;
1993 int was_empty;
1994 int ret;
1995
1996 /*
1997 * Emit any outstanding flushes - execbuf can fail to emit the flush
1998 * after having emitted the batchbuffer command. Hence we need to fix
1999 * things up similar to emitting the lazy request. The difference here
2000 * is that the flush _must_ happen before the next request, no matter
2001 * what.
2002 */
2003 ret = intel_ring_flush_all_caches(ring);
2004 if (ret)
2005 return ret;
2006
2007 request = kmalloc(sizeof(*request), GFP_KERNEL);
2008 if (request == NULL)
2009 return -ENOMEM;
2010
2011
2012 /* Record the position of the start of the request so that
2013 * should we detect the updated seqno part-way through the
2014 * GPU processing the request, we never over-estimate the
2015 * position of the head.
2016 */
2017 request_ring_position = intel_ring_get_tail(ring);
2018
2019 ret = ring->add_request(ring);
2020 if (ret) {
2021 kfree(request);
2022 return ret;
2023 }
2024
2025 request->seqno = intel_ring_get_seqno(ring);
2026 request->ring = ring;
2027 request->tail = request_ring_position;
2028 request->emitted_jiffies = jiffies;
2029 was_empty = list_empty(&ring->request_list);
2030 list_add_tail(&request->list, &ring->request_list);
2031 request->file_priv = NULL;
2032
2033 if (file) {
2034 struct drm_i915_file_private *file_priv = file->driver_priv;
2035
2036 spin_lock(&file_priv->mm.lock);
2037 request->file_priv = file_priv;
2038 list_add_tail(&request->client_list,
2039 &file_priv->mm.request_list);
2040 spin_unlock(&file_priv->mm.lock);
2041 }
2042
2043 trace_i915_gem_request_add(ring, request->seqno);
2044 ring->outstanding_lazy_request = 0;
2045
2046 if (!dev_priv->mm.suspended) {
2047 if (i915_enable_hangcheck) {
2048 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2049 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2050 }
2051 if (was_empty) {
2052 queue_delayed_work(dev_priv->wq,
2053 &dev_priv->mm.retire_work,
2054 round_jiffies_up_relative(HZ));
2055 intel_mark_busy(dev_priv->dev);
2056 }
2057 }
2058
2059 if (out_seqno)
2060 *out_seqno = request->seqno;
2061 return 0;
2062 }
2063
2064 static inline void
2065 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2066 {
2067 struct drm_i915_file_private *file_priv = request->file_priv;
2068
2069 if (!file_priv)
2070 return;
2071
2072 spin_lock(&file_priv->mm.lock);
2073 if (request->file_priv) {
2074 list_del(&request->client_list);
2075 request->file_priv = NULL;
2076 }
2077 spin_unlock(&file_priv->mm.lock);
2078 }
2079
2080 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2081 struct intel_ring_buffer *ring)
2082 {
2083 while (!list_empty(&ring->request_list)) {
2084 struct drm_i915_gem_request *request;
2085
2086 request = list_first_entry(&ring->request_list,
2087 struct drm_i915_gem_request,
2088 list);
2089
2090 list_del(&request->list);
2091 i915_gem_request_remove_from_client(request);
2092 kfree(request);
2093 }
2094
2095 while (!list_empty(&ring->active_list)) {
2096 struct drm_i915_gem_object *obj;
2097
2098 obj = list_first_entry(&ring->active_list,
2099 struct drm_i915_gem_object,
2100 ring_list);
2101
2102 i915_gem_object_move_to_inactive(obj);
2103 }
2104 }
2105
2106 static void i915_gem_reset_fences(struct drm_device *dev)
2107 {
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 int i;
2110
2111 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2112 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2113
2114 i915_gem_write_fence(dev, i, NULL);
2115
2116 if (reg->obj)
2117 i915_gem_object_fence_lost(reg->obj);
2118
2119 reg->pin_count = 0;
2120 reg->obj = NULL;
2121 INIT_LIST_HEAD(&reg->lru_list);
2122 }
2123
2124 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2125 }
2126
2127 void i915_gem_reset(struct drm_device *dev)
2128 {
2129 struct drm_i915_private *dev_priv = dev->dev_private;
2130 struct drm_i915_gem_object *obj;
2131 struct intel_ring_buffer *ring;
2132 int i;
2133
2134 for_each_ring(ring, dev_priv, i)
2135 i915_gem_reset_ring_lists(dev_priv, ring);
2136
2137 /* Move everything out of the GPU domains to ensure we do any
2138 * necessary invalidation upon reuse.
2139 */
2140 list_for_each_entry(obj,
2141 &dev_priv->mm.inactive_list,
2142 mm_list)
2143 {
2144 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2145 }
2146
2147 /* The fence registers are invalidated so clear them out */
2148 i915_gem_reset_fences(dev);
2149 }
2150
2151 /**
2152 * This function clears the request list as sequence numbers are passed.
2153 */
2154 void
2155 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2156 {
2157 uint32_t seqno;
2158
2159 if (list_empty(&ring->request_list))
2160 return;
2161
2162 WARN_ON(i915_verify_lists(ring->dev));
2163
2164 seqno = ring->get_seqno(ring, true);
2165
2166 while (!list_empty(&ring->request_list)) {
2167 struct drm_i915_gem_request *request;
2168
2169 request = list_first_entry(&ring->request_list,
2170 struct drm_i915_gem_request,
2171 list);
2172
2173 if (!i915_seqno_passed(seqno, request->seqno))
2174 break;
2175
2176 trace_i915_gem_request_retire(ring, request->seqno);
2177 /* We know the GPU must have read the request to have
2178 * sent us the seqno + interrupt, so use the position
2179 * of tail of the request to update the last known position
2180 * of the GPU head.
2181 */
2182 ring->last_retired_head = request->tail;
2183
2184 list_del(&request->list);
2185 i915_gem_request_remove_from_client(request);
2186 kfree(request);
2187 }
2188
2189 /* Move any buffers on the active list that are no longer referenced
2190 * by the ringbuffer to the flushing/inactive lists as appropriate.
2191 */
2192 while (!list_empty(&ring->active_list)) {
2193 struct drm_i915_gem_object *obj;
2194
2195 obj = list_first_entry(&ring->active_list,
2196 struct drm_i915_gem_object,
2197 ring_list);
2198
2199 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2200 break;
2201
2202 i915_gem_object_move_to_inactive(obj);
2203 }
2204
2205 if (unlikely(ring->trace_irq_seqno &&
2206 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2207 ring->irq_put(ring);
2208 ring->trace_irq_seqno = 0;
2209 }
2210
2211 WARN_ON(i915_verify_lists(ring->dev));
2212 }
2213
2214 void
2215 i915_gem_retire_requests(struct drm_device *dev)
2216 {
2217 drm_i915_private_t *dev_priv = dev->dev_private;
2218 struct intel_ring_buffer *ring;
2219 int i;
2220
2221 for_each_ring(ring, dev_priv, i)
2222 i915_gem_retire_requests_ring(ring);
2223 }
2224
2225 static void
2226 i915_gem_retire_work_handler(struct work_struct *work)
2227 {
2228 drm_i915_private_t *dev_priv;
2229 struct drm_device *dev;
2230 struct intel_ring_buffer *ring;
2231 bool idle;
2232 int i;
2233
2234 dev_priv = container_of(work, drm_i915_private_t,
2235 mm.retire_work.work);
2236 dev = dev_priv->dev;
2237
2238 /* Come back later if the device is busy... */
2239 if (!mutex_trylock(&dev->struct_mutex)) {
2240 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2241 round_jiffies_up_relative(HZ));
2242 return;
2243 }
2244
2245 i915_gem_retire_requests(dev);
2246
2247 /* Send a periodic flush down the ring so we don't hold onto GEM
2248 * objects indefinitely.
2249 */
2250 idle = true;
2251 for_each_ring(ring, dev_priv, i) {
2252 if (ring->gpu_caches_dirty)
2253 i915_add_request(ring, NULL, NULL);
2254
2255 idle &= list_empty(&ring->request_list);
2256 }
2257
2258 if (!dev_priv->mm.suspended && !idle)
2259 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2260 round_jiffies_up_relative(HZ));
2261 if (idle)
2262 intel_mark_idle(dev);
2263
2264 mutex_unlock(&dev->struct_mutex);
2265 }
2266
2267 /**
2268 * Ensures that an object will eventually get non-busy by flushing any required
2269 * write domains, emitting any outstanding lazy request and retiring and
2270 * completed requests.
2271 */
2272 static int
2273 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2274 {
2275 int ret;
2276
2277 if (obj->active) {
2278 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2279 if (ret)
2280 return ret;
2281
2282 i915_gem_retire_requests_ring(obj->ring);
2283 }
2284
2285 return 0;
2286 }
2287
2288 /**
2289 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2290 * @DRM_IOCTL_ARGS: standard ioctl arguments
2291 *
2292 * Returns 0 if successful, else an error is returned with the remaining time in
2293 * the timeout parameter.
2294 * -ETIME: object is still busy after timeout
2295 * -ERESTARTSYS: signal interrupted the wait
2296 * -ENONENT: object doesn't exist
2297 * Also possible, but rare:
2298 * -EAGAIN: GPU wedged
2299 * -ENOMEM: damn
2300 * -ENODEV: Internal IRQ fail
2301 * -E?: The add request failed
2302 *
2303 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2304 * non-zero timeout parameter the wait ioctl will wait for the given number of
2305 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2306 * without holding struct_mutex the object may become re-busied before this
2307 * function completes. A similar but shorter * race condition exists in the busy
2308 * ioctl
2309 */
2310 int
2311 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2312 {
2313 struct drm_i915_gem_wait *args = data;
2314 struct drm_i915_gem_object *obj;
2315 struct intel_ring_buffer *ring = NULL;
2316 struct timespec timeout_stack, *timeout = NULL;
2317 u32 seqno = 0;
2318 int ret = 0;
2319
2320 if (args->timeout_ns >= 0) {
2321 timeout_stack = ns_to_timespec(args->timeout_ns);
2322 timeout = &timeout_stack;
2323 }
2324
2325 ret = i915_mutex_lock_interruptible(dev);
2326 if (ret)
2327 return ret;
2328
2329 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2330 if (&obj->base == NULL) {
2331 mutex_unlock(&dev->struct_mutex);
2332 return -ENOENT;
2333 }
2334
2335 /* Need to make sure the object gets inactive eventually. */
2336 ret = i915_gem_object_flush_active(obj);
2337 if (ret)
2338 goto out;
2339
2340 if (obj->active) {
2341 seqno = obj->last_read_seqno;
2342 ring = obj->ring;
2343 }
2344
2345 if (seqno == 0)
2346 goto out;
2347
2348 /* Do this after OLR check to make sure we make forward progress polling
2349 * on this IOCTL with a 0 timeout (like busy ioctl)
2350 */
2351 if (!args->timeout_ns) {
2352 ret = -ETIME;
2353 goto out;
2354 }
2355
2356 drm_gem_object_unreference(&obj->base);
2357 mutex_unlock(&dev->struct_mutex);
2358
2359 ret = __wait_seqno(ring, seqno, true, timeout);
2360 if (timeout) {
2361 WARN_ON(!timespec_valid(timeout));
2362 args->timeout_ns = timespec_to_ns(timeout);
2363 }
2364 return ret;
2365
2366 out:
2367 drm_gem_object_unreference(&obj->base);
2368 mutex_unlock(&dev->struct_mutex);
2369 return ret;
2370 }
2371
2372 /**
2373 * i915_gem_object_sync - sync an object to a ring.
2374 *
2375 * @obj: object which may be in use on another ring.
2376 * @to: ring we wish to use the object on. May be NULL.
2377 *
2378 * This code is meant to abstract object synchronization with the GPU.
2379 * Calling with NULL implies synchronizing the object with the CPU
2380 * rather than a particular GPU ring.
2381 *
2382 * Returns 0 if successful, else propagates up the lower layer error.
2383 */
2384 int
2385 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2386 struct intel_ring_buffer *to)
2387 {
2388 struct intel_ring_buffer *from = obj->ring;
2389 u32 seqno;
2390 int ret, idx;
2391
2392 if (from == NULL || to == from)
2393 return 0;
2394
2395 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2396 return i915_gem_object_wait_rendering(obj, false);
2397
2398 idx = intel_ring_sync_index(from, to);
2399
2400 seqno = obj->last_read_seqno;
2401 if (seqno <= from->sync_seqno[idx])
2402 return 0;
2403
2404 ret = i915_gem_check_olr(obj->ring, seqno);
2405 if (ret)
2406 return ret;
2407
2408 ret = to->sync_to(to, from, seqno);
2409 if (!ret)
2410 /* We use last_read_seqno because sync_to()
2411 * might have just caused seqno wrap under
2412 * the radar.
2413 */
2414 from->sync_seqno[idx] = obj->last_read_seqno;
2415
2416 return ret;
2417 }
2418
2419 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2420 {
2421 u32 old_write_domain, old_read_domains;
2422
2423 /* Act a barrier for all accesses through the GTT */
2424 mb();
2425
2426 /* Force a pagefault for domain tracking on next user access */
2427 i915_gem_release_mmap(obj);
2428
2429 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2430 return;
2431
2432 old_read_domains = obj->base.read_domains;
2433 old_write_domain = obj->base.write_domain;
2434
2435 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2436 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2437
2438 trace_i915_gem_object_change_domain(obj,
2439 old_read_domains,
2440 old_write_domain);
2441 }
2442
2443 /**
2444 * Unbinds an object from the GTT aperture.
2445 */
2446 int
2447 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2448 {
2449 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2450 int ret;
2451
2452 if (obj->gtt_space == NULL)
2453 return 0;
2454
2455 if (obj->pin_count)
2456 return -EBUSY;
2457
2458 BUG_ON(obj->pages == NULL);
2459
2460 ret = i915_gem_object_finish_gpu(obj);
2461 if (ret)
2462 return ret;
2463 /* Continue on if we fail due to EIO, the GPU is hung so we
2464 * should be safe and we need to cleanup or else we might
2465 * cause memory corruption through use-after-free.
2466 */
2467
2468 i915_gem_object_finish_gtt(obj);
2469
2470 /* release the fence reg _after_ flushing */
2471 ret = i915_gem_object_put_fence(obj);
2472 if (ret)
2473 return ret;
2474
2475 trace_i915_gem_object_unbind(obj);
2476
2477 if (obj->has_global_gtt_mapping)
2478 i915_gem_gtt_unbind_object(obj);
2479 if (obj->has_aliasing_ppgtt_mapping) {
2480 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2481 obj->has_aliasing_ppgtt_mapping = 0;
2482 }
2483 i915_gem_gtt_finish_object(obj);
2484
2485 list_del(&obj->mm_list);
2486 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2487 /* Avoid an unnecessary call to unbind on rebind. */
2488 obj->map_and_fenceable = true;
2489
2490 drm_mm_put_block(obj->gtt_space);
2491 obj->gtt_space = NULL;
2492 obj->gtt_offset = 0;
2493
2494 return 0;
2495 }
2496
2497 int i915_gpu_idle(struct drm_device *dev)
2498 {
2499 drm_i915_private_t *dev_priv = dev->dev_private;
2500 struct intel_ring_buffer *ring;
2501 int ret, i;
2502
2503 /* Flush everything onto the inactive list. */
2504 for_each_ring(ring, dev_priv, i) {
2505 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2506 if (ret)
2507 return ret;
2508
2509 ret = intel_ring_idle(ring);
2510 if (ret)
2511 return ret;
2512 }
2513
2514 return 0;
2515 }
2516
2517 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2518 struct drm_i915_gem_object *obj)
2519 {
2520 drm_i915_private_t *dev_priv = dev->dev_private;
2521 int fence_reg;
2522 int fence_pitch_shift;
2523 uint64_t val;
2524
2525 if (INTEL_INFO(dev)->gen >= 6) {
2526 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2527 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2528 } else {
2529 fence_reg = FENCE_REG_965_0;
2530 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2531 }
2532
2533 if (obj) {
2534 u32 size = obj->gtt_space->size;
2535
2536 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2537 0xfffff000) << 32;
2538 val |= obj->gtt_offset & 0xfffff000;
2539 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2540 if (obj->tiling_mode == I915_TILING_Y)
2541 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2542 val |= I965_FENCE_REG_VALID;
2543 } else
2544 val = 0;
2545
2546 fence_reg += reg * 8;
2547 I915_WRITE64(fence_reg, val);
2548 POSTING_READ(fence_reg);
2549 }
2550
2551 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2552 struct drm_i915_gem_object *obj)
2553 {
2554 drm_i915_private_t *dev_priv = dev->dev_private;
2555 u32 val;
2556
2557 if (obj) {
2558 u32 size = obj->gtt_space->size;
2559 int pitch_val;
2560 int tile_width;
2561
2562 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2563 (size & -size) != size ||
2564 (obj->gtt_offset & (size - 1)),
2565 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2566 obj->gtt_offset, obj->map_and_fenceable, size);
2567
2568 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2569 tile_width = 128;
2570 else
2571 tile_width = 512;
2572
2573 /* Note: pitch better be a power of two tile widths */
2574 pitch_val = obj->stride / tile_width;
2575 pitch_val = ffs(pitch_val) - 1;
2576
2577 val = obj->gtt_offset;
2578 if (obj->tiling_mode == I915_TILING_Y)
2579 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2580 val |= I915_FENCE_SIZE_BITS(size);
2581 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2582 val |= I830_FENCE_REG_VALID;
2583 } else
2584 val = 0;
2585
2586 if (reg < 8)
2587 reg = FENCE_REG_830_0 + reg * 4;
2588 else
2589 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2590
2591 I915_WRITE(reg, val);
2592 POSTING_READ(reg);
2593 }
2594
2595 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2596 struct drm_i915_gem_object *obj)
2597 {
2598 drm_i915_private_t *dev_priv = dev->dev_private;
2599 uint32_t val;
2600
2601 if (obj) {
2602 u32 size = obj->gtt_space->size;
2603 uint32_t pitch_val;
2604
2605 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2606 (size & -size) != size ||
2607 (obj->gtt_offset & (size - 1)),
2608 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2609 obj->gtt_offset, size);
2610
2611 pitch_val = obj->stride / 128;
2612 pitch_val = ffs(pitch_val) - 1;
2613
2614 val = obj->gtt_offset;
2615 if (obj->tiling_mode == I915_TILING_Y)
2616 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2617 val |= I830_FENCE_SIZE_BITS(size);
2618 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2619 val |= I830_FENCE_REG_VALID;
2620 } else
2621 val = 0;
2622
2623 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2624 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2625 }
2626
2627 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2628 struct drm_i915_gem_object *obj)
2629 {
2630 switch (INTEL_INFO(dev)->gen) {
2631 case 7:
2632 case 6:
2633 case 5:
2634 case 4: i965_write_fence_reg(dev, reg, obj); break;
2635 case 3: i915_write_fence_reg(dev, reg, obj); break;
2636 case 2: i830_write_fence_reg(dev, reg, obj); break;
2637 default: BUG();
2638 }
2639 }
2640
2641 static inline int fence_number(struct drm_i915_private *dev_priv,
2642 struct drm_i915_fence_reg *fence)
2643 {
2644 return fence - dev_priv->fence_regs;
2645 }
2646
2647 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2648 struct drm_i915_fence_reg *fence,
2649 bool enable)
2650 {
2651 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2652 int reg = fence_number(dev_priv, fence);
2653
2654 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2655
2656 if (enable) {
2657 obj->fence_reg = reg;
2658 fence->obj = obj;
2659 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2660 } else {
2661 obj->fence_reg = I915_FENCE_REG_NONE;
2662 fence->obj = NULL;
2663 list_del_init(&fence->lru_list);
2664 }
2665 }
2666
2667 static int
2668 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2669 {
2670 if (obj->last_fenced_seqno) {
2671 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2672 if (ret)
2673 return ret;
2674
2675 obj->last_fenced_seqno = 0;
2676 }
2677
2678 /* Ensure that all CPU reads are completed before installing a fence
2679 * and all writes before removing the fence.
2680 */
2681 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2682 mb();
2683
2684 obj->fenced_gpu_access = false;
2685 return 0;
2686 }
2687
2688 int
2689 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2690 {
2691 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2692 int ret;
2693
2694 ret = i915_gem_object_flush_fence(obj);
2695 if (ret)
2696 return ret;
2697
2698 if (obj->fence_reg == I915_FENCE_REG_NONE)
2699 return 0;
2700
2701 i915_gem_object_update_fence(obj,
2702 &dev_priv->fence_regs[obj->fence_reg],
2703 false);
2704 i915_gem_object_fence_lost(obj);
2705
2706 return 0;
2707 }
2708
2709 static struct drm_i915_fence_reg *
2710 i915_find_fence_reg(struct drm_device *dev)
2711 {
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 struct drm_i915_fence_reg *reg, *avail;
2714 int i;
2715
2716 /* First try to find a free reg */
2717 avail = NULL;
2718 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2719 reg = &dev_priv->fence_regs[i];
2720 if (!reg->obj)
2721 return reg;
2722
2723 if (!reg->pin_count)
2724 avail = reg;
2725 }
2726
2727 if (avail == NULL)
2728 return NULL;
2729
2730 /* None available, try to steal one or wait for a user to finish */
2731 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2732 if (reg->pin_count)
2733 continue;
2734
2735 return reg;
2736 }
2737
2738 return NULL;
2739 }
2740
2741 /**
2742 * i915_gem_object_get_fence - set up fencing for an object
2743 * @obj: object to map through a fence reg
2744 *
2745 * When mapping objects through the GTT, userspace wants to be able to write
2746 * to them without having to worry about swizzling if the object is tiled.
2747 * This function walks the fence regs looking for a free one for @obj,
2748 * stealing one if it can't find any.
2749 *
2750 * It then sets up the reg based on the object's properties: address, pitch
2751 * and tiling format.
2752 *
2753 * For an untiled surface, this removes any existing fence.
2754 */
2755 int
2756 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2757 {
2758 struct drm_device *dev = obj->base.dev;
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 bool enable = obj->tiling_mode != I915_TILING_NONE;
2761 struct drm_i915_fence_reg *reg;
2762 int ret;
2763
2764 /* Have we updated the tiling parameters upon the object and so
2765 * will need to serialise the write to the associated fence register?
2766 */
2767 if (obj->fence_dirty) {
2768 ret = i915_gem_object_flush_fence(obj);
2769 if (ret)
2770 return ret;
2771 }
2772
2773 /* Just update our place in the LRU if our fence is getting reused. */
2774 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2775 reg = &dev_priv->fence_regs[obj->fence_reg];
2776 if (!obj->fence_dirty) {
2777 list_move_tail(&reg->lru_list,
2778 &dev_priv->mm.fence_list);
2779 return 0;
2780 }
2781 } else if (enable) {
2782 reg = i915_find_fence_reg(dev);
2783 if (reg == NULL)
2784 return -EDEADLK;
2785
2786 if (reg->obj) {
2787 struct drm_i915_gem_object *old = reg->obj;
2788
2789 ret = i915_gem_object_flush_fence(old);
2790 if (ret)
2791 return ret;
2792
2793 i915_gem_object_fence_lost(old);
2794 }
2795 } else
2796 return 0;
2797
2798 i915_gem_object_update_fence(obj, reg, enable);
2799 obj->fence_dirty = false;
2800
2801 return 0;
2802 }
2803
2804 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2805 struct drm_mm_node *gtt_space,
2806 unsigned long cache_level)
2807 {
2808 struct drm_mm_node *other;
2809
2810 /* On non-LLC machines we have to be careful when putting differing
2811 * types of snoopable memory together to avoid the prefetcher
2812 * crossing memory domains and dying.
2813 */
2814 if (HAS_LLC(dev))
2815 return true;
2816
2817 if (gtt_space == NULL)
2818 return true;
2819
2820 if (list_empty(&gtt_space->node_list))
2821 return true;
2822
2823 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2824 if (other->allocated && !other->hole_follows && other->color != cache_level)
2825 return false;
2826
2827 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2828 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2829 return false;
2830
2831 return true;
2832 }
2833
2834 static void i915_gem_verify_gtt(struct drm_device *dev)
2835 {
2836 #if WATCH_GTT
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 struct drm_i915_gem_object *obj;
2839 int err = 0;
2840
2841 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2842 if (obj->gtt_space == NULL) {
2843 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2844 err++;
2845 continue;
2846 }
2847
2848 if (obj->cache_level != obj->gtt_space->color) {
2849 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2850 obj->gtt_space->start,
2851 obj->gtt_space->start + obj->gtt_space->size,
2852 obj->cache_level,
2853 obj->gtt_space->color);
2854 err++;
2855 continue;
2856 }
2857
2858 if (!i915_gem_valid_gtt_space(dev,
2859 obj->gtt_space,
2860 obj->cache_level)) {
2861 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2862 obj->gtt_space->start,
2863 obj->gtt_space->start + obj->gtt_space->size,
2864 obj->cache_level);
2865 err++;
2866 continue;
2867 }
2868 }
2869
2870 WARN_ON(err);
2871 #endif
2872 }
2873
2874 /**
2875 * Finds free space in the GTT aperture and binds the object there.
2876 */
2877 static int
2878 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2879 unsigned alignment,
2880 bool map_and_fenceable,
2881 bool nonblocking)
2882 {
2883 struct drm_device *dev = obj->base.dev;
2884 drm_i915_private_t *dev_priv = dev->dev_private;
2885 struct drm_mm_node *node;
2886 u32 size, fence_size, fence_alignment, unfenced_alignment;
2887 bool mappable, fenceable;
2888 int ret;
2889
2890 fence_size = i915_gem_get_gtt_size(dev,
2891 obj->base.size,
2892 obj->tiling_mode);
2893 fence_alignment = i915_gem_get_gtt_alignment(dev,
2894 obj->base.size,
2895 obj->tiling_mode, true);
2896 unfenced_alignment =
2897 i915_gem_get_gtt_alignment(dev,
2898 obj->base.size,
2899 obj->tiling_mode, false);
2900
2901 if (alignment == 0)
2902 alignment = map_and_fenceable ? fence_alignment :
2903 unfenced_alignment;
2904 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2905 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2906 return -EINVAL;
2907 }
2908
2909 size = map_and_fenceable ? fence_size : obj->base.size;
2910
2911 /* If the object is bigger than the entire aperture, reject it early
2912 * before evicting everything in a vain attempt to find space.
2913 */
2914 if (obj->base.size >
2915 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2916 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2917 return -E2BIG;
2918 }
2919
2920 ret = i915_gem_object_get_pages(obj);
2921 if (ret)
2922 return ret;
2923
2924 i915_gem_object_pin_pages(obj);
2925
2926 node = kzalloc(sizeof(*node), GFP_KERNEL);
2927 if (node == NULL) {
2928 i915_gem_object_unpin_pages(obj);
2929 return -ENOMEM;
2930 }
2931
2932 search_free:
2933 if (map_and_fenceable)
2934 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2935 size, alignment, obj->cache_level,
2936 0, dev_priv->gtt.mappable_end);
2937 else
2938 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2939 size, alignment, obj->cache_level);
2940 if (ret) {
2941 ret = i915_gem_evict_something(dev, size, alignment,
2942 obj->cache_level,
2943 map_and_fenceable,
2944 nonblocking);
2945 if (ret == 0)
2946 goto search_free;
2947
2948 i915_gem_object_unpin_pages(obj);
2949 kfree(node);
2950 return ret;
2951 }
2952 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2953 i915_gem_object_unpin_pages(obj);
2954 drm_mm_put_block(node);
2955 return -EINVAL;
2956 }
2957
2958 ret = i915_gem_gtt_prepare_object(obj);
2959 if (ret) {
2960 i915_gem_object_unpin_pages(obj);
2961 drm_mm_put_block(node);
2962 return ret;
2963 }
2964
2965 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2966 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2967
2968 obj->gtt_space = node;
2969 obj->gtt_offset = node->start;
2970
2971 fenceable =
2972 node->size == fence_size &&
2973 (node->start & (fence_alignment - 1)) == 0;
2974
2975 mappable =
2976 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2977
2978 obj->map_and_fenceable = mappable && fenceable;
2979
2980 i915_gem_object_unpin_pages(obj);
2981 trace_i915_gem_object_bind(obj, map_and_fenceable);
2982 i915_gem_verify_gtt(dev);
2983 return 0;
2984 }
2985
2986 void
2987 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2988 {
2989 /* If we don't have a page list set up, then we're not pinned
2990 * to GPU, and we can ignore the cache flush because it'll happen
2991 * again at bind time.
2992 */
2993 if (obj->pages == NULL)
2994 return;
2995
2996 /* If the GPU is snooping the contents of the CPU cache,
2997 * we do not need to manually clear the CPU cache lines. However,
2998 * the caches are only snooped when the render cache is
2999 * flushed/invalidated. As we always have to emit invalidations
3000 * and flushes when moving into and out of the RENDER domain, correct
3001 * snooping behaviour occurs naturally as the result of our domain
3002 * tracking.
3003 */
3004 if (obj->cache_level != I915_CACHE_NONE)
3005 return;
3006
3007 trace_i915_gem_object_clflush(obj);
3008
3009 drm_clflush_sg(obj->pages);
3010 }
3011
3012 /** Flushes the GTT write domain for the object if it's dirty. */
3013 static void
3014 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3015 {
3016 uint32_t old_write_domain;
3017
3018 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3019 return;
3020
3021 /* No actual flushing is required for the GTT write domain. Writes
3022 * to it immediately go to main memory as far as we know, so there's
3023 * no chipset flush. It also doesn't land in render cache.
3024 *
3025 * However, we do have to enforce the order so that all writes through
3026 * the GTT land before any writes to the device, such as updates to
3027 * the GATT itself.
3028 */
3029 wmb();
3030
3031 old_write_domain = obj->base.write_domain;
3032 obj->base.write_domain = 0;
3033
3034 trace_i915_gem_object_change_domain(obj,
3035 obj->base.read_domains,
3036 old_write_domain);
3037 }
3038
3039 /** Flushes the CPU write domain for the object if it's dirty. */
3040 static void
3041 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3042 {
3043 uint32_t old_write_domain;
3044
3045 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3046 return;
3047
3048 i915_gem_clflush_object(obj);
3049 i915_gem_chipset_flush(obj->base.dev);
3050 old_write_domain = obj->base.write_domain;
3051 obj->base.write_domain = 0;
3052
3053 trace_i915_gem_object_change_domain(obj,
3054 obj->base.read_domains,
3055 old_write_domain);
3056 }
3057
3058 /**
3059 * Moves a single object to the GTT read, and possibly write domain.
3060 *
3061 * This function returns when the move is complete, including waiting on
3062 * flushes to occur.
3063 */
3064 int
3065 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3066 {
3067 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3068 uint32_t old_write_domain, old_read_domains;
3069 int ret;
3070
3071 /* Not valid to be called on unbound objects. */
3072 if (obj->gtt_space == NULL)
3073 return -EINVAL;
3074
3075 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3076 return 0;
3077
3078 ret = i915_gem_object_wait_rendering(obj, !write);
3079 if (ret)
3080 return ret;
3081
3082 i915_gem_object_flush_cpu_write_domain(obj);
3083
3084 old_write_domain = obj->base.write_domain;
3085 old_read_domains = obj->base.read_domains;
3086
3087 /* It should now be out of any other write domains, and we can update
3088 * the domain values for our changes.
3089 */
3090 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3091 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3092 if (write) {
3093 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3094 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3095 obj->dirty = 1;
3096 }
3097
3098 trace_i915_gem_object_change_domain(obj,
3099 old_read_domains,
3100 old_write_domain);
3101
3102 /* And bump the LRU for this access */
3103 if (i915_gem_object_is_inactive(obj))
3104 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3105
3106 return 0;
3107 }
3108
3109 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3110 enum i915_cache_level cache_level)
3111 {
3112 struct drm_device *dev = obj->base.dev;
3113 drm_i915_private_t *dev_priv = dev->dev_private;
3114 int ret;
3115
3116 if (obj->cache_level == cache_level)
3117 return 0;
3118
3119 if (obj->pin_count) {
3120 DRM_DEBUG("can not change the cache level of pinned objects\n");
3121 return -EBUSY;
3122 }
3123
3124 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3125 ret = i915_gem_object_unbind(obj);
3126 if (ret)
3127 return ret;
3128 }
3129
3130 if (obj->gtt_space) {
3131 ret = i915_gem_object_finish_gpu(obj);
3132 if (ret)
3133 return ret;
3134
3135 i915_gem_object_finish_gtt(obj);
3136
3137 /* Before SandyBridge, you could not use tiling or fence
3138 * registers with snooped memory, so relinquish any fences
3139 * currently pointing to our region in the aperture.
3140 */
3141 if (INTEL_INFO(dev)->gen < 6) {
3142 ret = i915_gem_object_put_fence(obj);
3143 if (ret)
3144 return ret;
3145 }
3146
3147 if (obj->has_global_gtt_mapping)
3148 i915_gem_gtt_bind_object(obj, cache_level);
3149 if (obj->has_aliasing_ppgtt_mapping)
3150 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3151 obj, cache_level);
3152
3153 obj->gtt_space->color = cache_level;
3154 }
3155
3156 if (cache_level == I915_CACHE_NONE) {
3157 u32 old_read_domains, old_write_domain;
3158
3159 /* If we're coming from LLC cached, then we haven't
3160 * actually been tracking whether the data is in the
3161 * CPU cache or not, since we only allow one bit set
3162 * in obj->write_domain and have been skipping the clflushes.
3163 * Just set it to the CPU cache for now.
3164 */
3165 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3166 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3167
3168 old_read_domains = obj->base.read_domains;
3169 old_write_domain = obj->base.write_domain;
3170
3171 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3172 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3173
3174 trace_i915_gem_object_change_domain(obj,
3175 old_read_domains,
3176 old_write_domain);
3177 }
3178
3179 obj->cache_level = cache_level;
3180 i915_gem_verify_gtt(dev);
3181 return 0;
3182 }
3183
3184 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3185 struct drm_file *file)
3186 {
3187 struct drm_i915_gem_caching *args = data;
3188 struct drm_i915_gem_object *obj;
3189 int ret;
3190
3191 ret = i915_mutex_lock_interruptible(dev);
3192 if (ret)
3193 return ret;
3194
3195 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3196 if (&obj->base == NULL) {
3197 ret = -ENOENT;
3198 goto unlock;
3199 }
3200
3201 args->caching = obj->cache_level != I915_CACHE_NONE;
3202
3203 drm_gem_object_unreference(&obj->base);
3204 unlock:
3205 mutex_unlock(&dev->struct_mutex);
3206 return ret;
3207 }
3208
3209 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3210 struct drm_file *file)
3211 {
3212 struct drm_i915_gem_caching *args = data;
3213 struct drm_i915_gem_object *obj;
3214 enum i915_cache_level level;
3215 int ret;
3216
3217 switch (args->caching) {
3218 case I915_CACHING_NONE:
3219 level = I915_CACHE_NONE;
3220 break;
3221 case I915_CACHING_CACHED:
3222 level = I915_CACHE_LLC;
3223 break;
3224 default:
3225 return -EINVAL;
3226 }
3227
3228 ret = i915_mutex_lock_interruptible(dev);
3229 if (ret)
3230 return ret;
3231
3232 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3233 if (&obj->base == NULL) {
3234 ret = -ENOENT;
3235 goto unlock;
3236 }
3237
3238 ret = i915_gem_object_set_cache_level(obj, level);
3239
3240 drm_gem_object_unreference(&obj->base);
3241 unlock:
3242 mutex_unlock(&dev->struct_mutex);
3243 return ret;
3244 }
3245
3246 /*
3247 * Prepare buffer for display plane (scanout, cursors, etc).
3248 * Can be called from an uninterruptible phase (modesetting) and allows
3249 * any flushes to be pipelined (for pageflips).
3250 */
3251 int
3252 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3253 u32 alignment,
3254 struct intel_ring_buffer *pipelined)
3255 {
3256 u32 old_read_domains, old_write_domain;
3257 int ret;
3258
3259 if (pipelined != obj->ring) {
3260 ret = i915_gem_object_sync(obj, pipelined);
3261 if (ret)
3262 return ret;
3263 }
3264
3265 /* The display engine is not coherent with the LLC cache on gen6. As
3266 * a result, we make sure that the pinning that is about to occur is
3267 * done with uncached PTEs. This is lowest common denominator for all
3268 * chipsets.
3269 *
3270 * However for gen6+, we could do better by using the GFDT bit instead
3271 * of uncaching, which would allow us to flush all the LLC-cached data
3272 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3273 */
3274 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3275 if (ret)
3276 return ret;
3277
3278 /* As the user may map the buffer once pinned in the display plane
3279 * (e.g. libkms for the bootup splash), we have to ensure that we
3280 * always use map_and_fenceable for all scanout buffers.
3281 */
3282 ret = i915_gem_object_pin(obj, alignment, true, false);
3283 if (ret)
3284 return ret;
3285
3286 i915_gem_object_flush_cpu_write_domain(obj);
3287
3288 old_write_domain = obj->base.write_domain;
3289 old_read_domains = obj->base.read_domains;
3290
3291 /* It should now be out of any other write domains, and we can update
3292 * the domain values for our changes.
3293 */
3294 obj->base.write_domain = 0;
3295 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3296
3297 trace_i915_gem_object_change_domain(obj,
3298 old_read_domains,
3299 old_write_domain);
3300
3301 return 0;
3302 }
3303
3304 int
3305 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3306 {
3307 int ret;
3308
3309 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3310 return 0;
3311
3312 ret = i915_gem_object_wait_rendering(obj, false);
3313 if (ret)
3314 return ret;
3315
3316 /* Ensure that we invalidate the GPU's caches and TLBs. */
3317 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3318 return 0;
3319 }
3320
3321 /**
3322 * Moves a single object to the CPU read, and possibly write domain.
3323 *
3324 * This function returns when the move is complete, including waiting on
3325 * flushes to occur.
3326 */
3327 int
3328 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3329 {
3330 uint32_t old_write_domain, old_read_domains;
3331 int ret;
3332
3333 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3334 return 0;
3335
3336 ret = i915_gem_object_wait_rendering(obj, !write);
3337 if (ret)
3338 return ret;
3339
3340 i915_gem_object_flush_gtt_write_domain(obj);
3341
3342 old_write_domain = obj->base.write_domain;
3343 old_read_domains = obj->base.read_domains;
3344
3345 /* Flush the CPU cache if it's still invalid. */
3346 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3347 i915_gem_clflush_object(obj);
3348
3349 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3350 }
3351
3352 /* It should now be out of any other write domains, and we can update
3353 * the domain values for our changes.
3354 */
3355 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3356
3357 /* If we're writing through the CPU, then the GPU read domains will
3358 * need to be invalidated at next use.
3359 */
3360 if (write) {
3361 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3362 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3363 }
3364
3365 trace_i915_gem_object_change_domain(obj,
3366 old_read_domains,
3367 old_write_domain);
3368
3369 return 0;
3370 }
3371
3372 /* Throttle our rendering by waiting until the ring has completed our requests
3373 * emitted over 20 msec ago.
3374 *
3375 * Note that if we were to use the current jiffies each time around the loop,
3376 * we wouldn't escape the function with any frames outstanding if the time to
3377 * render a frame was over 20ms.
3378 *
3379 * This should get us reasonable parallelism between CPU and GPU but also
3380 * relatively low latency when blocking on a particular request to finish.
3381 */
3382 static int
3383 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3384 {
3385 struct drm_i915_private *dev_priv = dev->dev_private;
3386 struct drm_i915_file_private *file_priv = file->driver_priv;
3387 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3388 struct drm_i915_gem_request *request;
3389 struct intel_ring_buffer *ring = NULL;
3390 u32 seqno = 0;
3391 int ret;
3392
3393 if (atomic_read(&dev_priv->mm.wedged))
3394 return -EIO;
3395
3396 spin_lock(&file_priv->mm.lock);
3397 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3398 if (time_after_eq(request->emitted_jiffies, recent_enough))
3399 break;
3400
3401 ring = request->ring;
3402 seqno = request->seqno;
3403 }
3404 spin_unlock(&file_priv->mm.lock);
3405
3406 if (seqno == 0)
3407 return 0;
3408
3409 ret = __wait_seqno(ring, seqno, true, NULL);
3410 if (ret == 0)
3411 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3412
3413 return ret;
3414 }
3415
3416 int
3417 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3418 uint32_t alignment,
3419 bool map_and_fenceable,
3420 bool nonblocking)
3421 {
3422 int ret;
3423
3424 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3425 return -EBUSY;
3426
3427 if (obj->gtt_space != NULL) {
3428 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3429 (map_and_fenceable && !obj->map_and_fenceable)) {
3430 WARN(obj->pin_count,
3431 "bo is already pinned with incorrect alignment:"
3432 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3433 " obj->map_and_fenceable=%d\n",
3434 obj->gtt_offset, alignment,
3435 map_and_fenceable,
3436 obj->map_and_fenceable);
3437 ret = i915_gem_object_unbind(obj);
3438 if (ret)
3439 return ret;
3440 }
3441 }
3442
3443 if (obj->gtt_space == NULL) {
3444 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3445
3446 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3447 map_and_fenceable,
3448 nonblocking);
3449 if (ret)
3450 return ret;
3451
3452 if (!dev_priv->mm.aliasing_ppgtt)
3453 i915_gem_gtt_bind_object(obj, obj->cache_level);
3454 }
3455
3456 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3457 i915_gem_gtt_bind_object(obj, obj->cache_level);
3458
3459 obj->pin_count++;
3460 obj->pin_mappable |= map_and_fenceable;
3461
3462 return 0;
3463 }
3464
3465 void
3466 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3467 {
3468 BUG_ON(obj->pin_count == 0);
3469 BUG_ON(obj->gtt_space == NULL);
3470
3471 if (--obj->pin_count == 0)
3472 obj->pin_mappable = false;
3473 }
3474
3475 int
3476 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3477 struct drm_file *file)
3478 {
3479 struct drm_i915_gem_pin *args = data;
3480 struct drm_i915_gem_object *obj;
3481 int ret;
3482
3483 ret = i915_mutex_lock_interruptible(dev);
3484 if (ret)
3485 return ret;
3486
3487 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3488 if (&obj->base == NULL) {
3489 ret = -ENOENT;
3490 goto unlock;
3491 }
3492
3493 if (obj->madv != I915_MADV_WILLNEED) {
3494 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3495 ret = -EINVAL;
3496 goto out;
3497 }
3498
3499 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3500 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3501 args->handle);
3502 ret = -EINVAL;
3503 goto out;
3504 }
3505
3506 obj->user_pin_count++;
3507 obj->pin_filp = file;
3508 if (obj->user_pin_count == 1) {
3509 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3510 if (ret)
3511 goto out;
3512 }
3513
3514 /* XXX - flush the CPU caches for pinned objects
3515 * as the X server doesn't manage domains yet
3516 */
3517 i915_gem_object_flush_cpu_write_domain(obj);
3518 args->offset = obj->gtt_offset;
3519 out:
3520 drm_gem_object_unreference(&obj->base);
3521 unlock:
3522 mutex_unlock(&dev->struct_mutex);
3523 return ret;
3524 }
3525
3526 int
3527 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3528 struct drm_file *file)
3529 {
3530 struct drm_i915_gem_pin *args = data;
3531 struct drm_i915_gem_object *obj;
3532 int ret;
3533
3534 ret = i915_mutex_lock_interruptible(dev);
3535 if (ret)
3536 return ret;
3537
3538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3539 if (&obj->base == NULL) {
3540 ret = -ENOENT;
3541 goto unlock;
3542 }
3543
3544 if (obj->pin_filp != file) {
3545 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3546 args->handle);
3547 ret = -EINVAL;
3548 goto out;
3549 }
3550 obj->user_pin_count--;
3551 if (obj->user_pin_count == 0) {
3552 obj->pin_filp = NULL;
3553 i915_gem_object_unpin(obj);
3554 }
3555
3556 out:
3557 drm_gem_object_unreference(&obj->base);
3558 unlock:
3559 mutex_unlock(&dev->struct_mutex);
3560 return ret;
3561 }
3562
3563 int
3564 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3565 struct drm_file *file)
3566 {
3567 struct drm_i915_gem_busy *args = data;
3568 struct drm_i915_gem_object *obj;
3569 int ret;
3570
3571 ret = i915_mutex_lock_interruptible(dev);
3572 if (ret)
3573 return ret;
3574
3575 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3576 if (&obj->base == NULL) {
3577 ret = -ENOENT;
3578 goto unlock;
3579 }
3580
3581 /* Count all active objects as busy, even if they are currently not used
3582 * by the gpu. Users of this interface expect objects to eventually
3583 * become non-busy without any further actions, therefore emit any
3584 * necessary flushes here.
3585 */
3586 ret = i915_gem_object_flush_active(obj);
3587
3588 args->busy = obj->active;
3589 if (obj->ring) {
3590 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3591 args->busy |= intel_ring_flag(obj->ring) << 16;
3592 }
3593
3594 drm_gem_object_unreference(&obj->base);
3595 unlock:
3596 mutex_unlock(&dev->struct_mutex);
3597 return ret;
3598 }
3599
3600 int
3601 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3602 struct drm_file *file_priv)
3603 {
3604 return i915_gem_ring_throttle(dev, file_priv);
3605 }
3606
3607 int
3608 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3609 struct drm_file *file_priv)
3610 {
3611 struct drm_i915_gem_madvise *args = data;
3612 struct drm_i915_gem_object *obj;
3613 int ret;
3614
3615 switch (args->madv) {
3616 case I915_MADV_DONTNEED:
3617 case I915_MADV_WILLNEED:
3618 break;
3619 default:
3620 return -EINVAL;
3621 }
3622
3623 ret = i915_mutex_lock_interruptible(dev);
3624 if (ret)
3625 return ret;
3626
3627 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3628 if (&obj->base == NULL) {
3629 ret = -ENOENT;
3630 goto unlock;
3631 }
3632
3633 if (obj->pin_count) {
3634 ret = -EINVAL;
3635 goto out;
3636 }
3637
3638 if (obj->madv != __I915_MADV_PURGED)
3639 obj->madv = args->madv;
3640
3641 /* if the object is no longer attached, discard its backing storage */
3642 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3643 i915_gem_object_truncate(obj);
3644
3645 args->retained = obj->madv != __I915_MADV_PURGED;
3646
3647 out:
3648 drm_gem_object_unreference(&obj->base);
3649 unlock:
3650 mutex_unlock(&dev->struct_mutex);
3651 return ret;
3652 }
3653
3654 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3655 const struct drm_i915_gem_object_ops *ops)
3656 {
3657 INIT_LIST_HEAD(&obj->mm_list);
3658 INIT_LIST_HEAD(&obj->gtt_list);
3659 INIT_LIST_HEAD(&obj->ring_list);
3660 INIT_LIST_HEAD(&obj->exec_list);
3661
3662 obj->ops = ops;
3663
3664 obj->fence_reg = I915_FENCE_REG_NONE;
3665 obj->madv = I915_MADV_WILLNEED;
3666 /* Avoid an unnecessary call to unbind on the first bind. */
3667 obj->map_and_fenceable = true;
3668
3669 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3670 }
3671
3672 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3673 .get_pages = i915_gem_object_get_pages_gtt,
3674 .put_pages = i915_gem_object_put_pages_gtt,
3675 };
3676
3677 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3678 size_t size)
3679 {
3680 struct drm_i915_gem_object *obj;
3681 struct address_space *mapping;
3682 gfp_t mask;
3683
3684 obj = i915_gem_object_alloc(dev);
3685 if (obj == NULL)
3686 return NULL;
3687
3688 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3689 i915_gem_object_free(obj);
3690 return NULL;
3691 }
3692
3693 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3694 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3695 /* 965gm cannot relocate objects above 4GiB. */
3696 mask &= ~__GFP_HIGHMEM;
3697 mask |= __GFP_DMA32;
3698 }
3699
3700 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3701 mapping_set_gfp_mask(mapping, mask);
3702
3703 i915_gem_object_init(obj, &i915_gem_object_ops);
3704
3705 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3706 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3707
3708 if (HAS_LLC(dev)) {
3709 /* On some devices, we can have the GPU use the LLC (the CPU
3710 * cache) for about a 10% performance improvement
3711 * compared to uncached. Graphics requests other than
3712 * display scanout are coherent with the CPU in
3713 * accessing this cache. This means in this mode we
3714 * don't need to clflush on the CPU side, and on the
3715 * GPU side we only need to flush internal caches to
3716 * get data visible to the CPU.
3717 *
3718 * However, we maintain the display planes as UC, and so
3719 * need to rebind when first used as such.
3720 */
3721 obj->cache_level = I915_CACHE_LLC;
3722 } else
3723 obj->cache_level = I915_CACHE_NONE;
3724
3725 return obj;
3726 }
3727
3728 int i915_gem_init_object(struct drm_gem_object *obj)
3729 {
3730 BUG();
3731
3732 return 0;
3733 }
3734
3735 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3736 {
3737 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3738 struct drm_device *dev = obj->base.dev;
3739 drm_i915_private_t *dev_priv = dev->dev_private;
3740
3741 trace_i915_gem_object_destroy(obj);
3742
3743 if (obj->phys_obj)
3744 i915_gem_detach_phys_object(dev, obj);
3745
3746 obj->pin_count = 0;
3747 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3748 bool was_interruptible;
3749
3750 was_interruptible = dev_priv->mm.interruptible;
3751 dev_priv->mm.interruptible = false;
3752
3753 WARN_ON(i915_gem_object_unbind(obj));
3754
3755 dev_priv->mm.interruptible = was_interruptible;
3756 }
3757
3758 obj->pages_pin_count = 0;
3759 i915_gem_object_put_pages(obj);
3760 i915_gem_object_free_mmap_offset(obj);
3761 i915_gem_object_release_stolen(obj);
3762
3763 BUG_ON(obj->pages);
3764
3765 if (obj->base.import_attach)
3766 drm_prime_gem_destroy(&obj->base, NULL);
3767
3768 drm_gem_object_release(&obj->base);
3769 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3770
3771 kfree(obj->bit_17);
3772 i915_gem_object_free(obj);
3773 }
3774
3775 int
3776 i915_gem_idle(struct drm_device *dev)
3777 {
3778 drm_i915_private_t *dev_priv = dev->dev_private;
3779 int ret;
3780
3781 mutex_lock(&dev->struct_mutex);
3782
3783 if (dev_priv->mm.suspended) {
3784 mutex_unlock(&dev->struct_mutex);
3785 return 0;
3786 }
3787
3788 ret = i915_gpu_idle(dev);
3789 if (ret) {
3790 mutex_unlock(&dev->struct_mutex);
3791 return ret;
3792 }
3793 i915_gem_retire_requests(dev);
3794
3795 /* Under UMS, be paranoid and evict. */
3796 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3797 i915_gem_evict_everything(dev);
3798
3799 i915_gem_reset_fences(dev);
3800
3801 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3802 * We need to replace this with a semaphore, or something.
3803 * And not confound mm.suspended!
3804 */
3805 dev_priv->mm.suspended = 1;
3806 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3807
3808 i915_kernel_lost_context(dev);
3809 i915_gem_cleanup_ringbuffer(dev);
3810
3811 mutex_unlock(&dev->struct_mutex);
3812
3813 /* Cancel the retire work handler, which should be idle now. */
3814 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3815
3816 return 0;
3817 }
3818
3819 void i915_gem_l3_remap(struct drm_device *dev)
3820 {
3821 drm_i915_private_t *dev_priv = dev->dev_private;
3822 u32 misccpctl;
3823 int i;
3824
3825 if (!IS_IVYBRIDGE(dev))
3826 return;
3827
3828 if (!dev_priv->l3_parity.remap_info)
3829 return;
3830
3831 misccpctl = I915_READ(GEN7_MISCCPCTL);
3832 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3833 POSTING_READ(GEN7_MISCCPCTL);
3834
3835 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3836 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3837 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3838 DRM_DEBUG("0x%x was already programmed to %x\n",
3839 GEN7_L3LOG_BASE + i, remap);
3840 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3841 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3842 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3843 }
3844
3845 /* Make sure all the writes land before disabling dop clock gating */
3846 POSTING_READ(GEN7_L3LOG_BASE);
3847
3848 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3849 }
3850
3851 void i915_gem_init_swizzling(struct drm_device *dev)
3852 {
3853 drm_i915_private_t *dev_priv = dev->dev_private;
3854
3855 if (INTEL_INFO(dev)->gen < 5 ||
3856 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3857 return;
3858
3859 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3860 DISP_TILE_SURFACE_SWIZZLING);
3861
3862 if (IS_GEN5(dev))
3863 return;
3864
3865 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3866 if (IS_GEN6(dev))
3867 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3868 else if (IS_GEN7(dev))
3869 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3870 else
3871 BUG();
3872 }
3873
3874 static bool
3875 intel_enable_blt(struct drm_device *dev)
3876 {
3877 if (!HAS_BLT(dev))
3878 return false;
3879
3880 /* The blitter was dysfunctional on early prototypes */
3881 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3882 DRM_INFO("BLT not supported on this pre-production hardware;"
3883 " graphics performance will be degraded.\n");
3884 return false;
3885 }
3886
3887 return true;
3888 }
3889
3890 int
3891 i915_gem_init_hw(struct drm_device *dev)
3892 {
3893 drm_i915_private_t *dev_priv = dev->dev_private;
3894 int ret;
3895
3896 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3897 return -EIO;
3898
3899 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3900 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3901
3902 i915_gem_l3_remap(dev);
3903
3904 i915_gem_init_swizzling(dev);
3905
3906 dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3907
3908 ret = intel_init_render_ring_buffer(dev);
3909 if (ret)
3910 return ret;
3911
3912 if (HAS_BSD(dev)) {
3913 ret = intel_init_bsd_ring_buffer(dev);
3914 if (ret)
3915 goto cleanup_render_ring;
3916 }
3917
3918 if (intel_enable_blt(dev)) {
3919 ret = intel_init_blt_ring_buffer(dev);
3920 if (ret)
3921 goto cleanup_bsd_ring;
3922 }
3923
3924 /*
3925 * XXX: There was some w/a described somewhere suggesting loading
3926 * contexts before PPGTT.
3927 */
3928 i915_gem_context_init(dev);
3929 i915_gem_init_ppgtt(dev);
3930
3931 return 0;
3932
3933 cleanup_bsd_ring:
3934 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3935 cleanup_render_ring:
3936 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3937 return ret;
3938 }
3939
3940 int i915_gem_init(struct drm_device *dev)
3941 {
3942 struct drm_i915_private *dev_priv = dev->dev_private;
3943 int ret;
3944
3945 mutex_lock(&dev->struct_mutex);
3946 i915_gem_init_global_gtt(dev);
3947 ret = i915_gem_init_hw(dev);
3948 mutex_unlock(&dev->struct_mutex);
3949 if (ret) {
3950 i915_gem_cleanup_aliasing_ppgtt(dev);
3951 return ret;
3952 }
3953
3954 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3955 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3956 dev_priv->dri1.allow_batchbuffer = 1;
3957 return 0;
3958 }
3959
3960 void
3961 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3962 {
3963 drm_i915_private_t *dev_priv = dev->dev_private;
3964 struct intel_ring_buffer *ring;
3965 int i;
3966
3967 for_each_ring(ring, dev_priv, i)
3968 intel_cleanup_ring_buffer(ring);
3969 }
3970
3971 int
3972 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3973 struct drm_file *file_priv)
3974 {
3975 drm_i915_private_t *dev_priv = dev->dev_private;
3976 int ret;
3977
3978 if (drm_core_check_feature(dev, DRIVER_MODESET))
3979 return 0;
3980
3981 if (atomic_read(&dev_priv->mm.wedged)) {
3982 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3983 atomic_set(&dev_priv->mm.wedged, 0);
3984 }
3985
3986 mutex_lock(&dev->struct_mutex);
3987 dev_priv->mm.suspended = 0;
3988
3989 ret = i915_gem_init_hw(dev);
3990 if (ret != 0) {
3991 mutex_unlock(&dev->struct_mutex);
3992 return ret;
3993 }
3994
3995 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3996 mutex_unlock(&dev->struct_mutex);
3997
3998 ret = drm_irq_install(dev);
3999 if (ret)
4000 goto cleanup_ringbuffer;
4001
4002 return 0;
4003
4004 cleanup_ringbuffer:
4005 mutex_lock(&dev->struct_mutex);
4006 i915_gem_cleanup_ringbuffer(dev);
4007 dev_priv->mm.suspended = 1;
4008 mutex_unlock(&dev->struct_mutex);
4009
4010 return ret;
4011 }
4012
4013 int
4014 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4015 struct drm_file *file_priv)
4016 {
4017 if (drm_core_check_feature(dev, DRIVER_MODESET))
4018 return 0;
4019
4020 drm_irq_uninstall(dev);
4021 return i915_gem_idle(dev);
4022 }
4023
4024 void
4025 i915_gem_lastclose(struct drm_device *dev)
4026 {
4027 int ret;
4028
4029 if (drm_core_check_feature(dev, DRIVER_MODESET))
4030 return;
4031
4032 ret = i915_gem_idle(dev);
4033 if (ret)
4034 DRM_ERROR("failed to idle hardware: %d\n", ret);
4035 }
4036
4037 static void
4038 init_ring_lists(struct intel_ring_buffer *ring)
4039 {
4040 INIT_LIST_HEAD(&ring->active_list);
4041 INIT_LIST_HEAD(&ring->request_list);
4042 }
4043
4044 void
4045 i915_gem_load(struct drm_device *dev)
4046 {
4047 drm_i915_private_t *dev_priv = dev->dev_private;
4048 int i;
4049
4050 dev_priv->slab =
4051 kmem_cache_create("i915_gem_object",
4052 sizeof(struct drm_i915_gem_object), 0,
4053 SLAB_HWCACHE_ALIGN,
4054 NULL);
4055
4056 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4057 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4058 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4059 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4060 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4061 for (i = 0; i < I915_NUM_RINGS; i++)
4062 init_ring_lists(&dev_priv->ring[i]);
4063 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4064 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4065 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4066 i915_gem_retire_work_handler);
4067 init_completion(&dev_priv->gpu_error.completion);
4068
4069 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4070 if (IS_GEN3(dev)) {
4071 I915_WRITE(MI_ARB_STATE,
4072 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4073 }
4074
4075 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4076
4077 /* Old X drivers will take 0-2 for front, back, depth buffers */
4078 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4079 dev_priv->fence_reg_start = 3;
4080
4081 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4082 dev_priv->num_fence_regs = 16;
4083 else
4084 dev_priv->num_fence_regs = 8;
4085
4086 /* Initialize fence registers to zero */
4087 i915_gem_reset_fences(dev);
4088
4089 i915_gem_detect_bit_6_swizzle(dev);
4090 init_waitqueue_head(&dev_priv->pending_flip_queue);
4091
4092 dev_priv->mm.interruptible = true;
4093
4094 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4095 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4096 register_shrinker(&dev_priv->mm.inactive_shrinker);
4097 }
4098
4099 /*
4100 * Create a physically contiguous memory object for this object
4101 * e.g. for cursor + overlay regs
4102 */
4103 static int i915_gem_init_phys_object(struct drm_device *dev,
4104 int id, int size, int align)
4105 {
4106 drm_i915_private_t *dev_priv = dev->dev_private;
4107 struct drm_i915_gem_phys_object *phys_obj;
4108 int ret;
4109
4110 if (dev_priv->mm.phys_objs[id - 1] || !size)
4111 return 0;
4112
4113 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4114 if (!phys_obj)
4115 return -ENOMEM;
4116
4117 phys_obj->id = id;
4118
4119 phys_obj->handle = drm_pci_alloc(dev, size, align);
4120 if (!phys_obj->handle) {
4121 ret = -ENOMEM;
4122 goto kfree_obj;
4123 }
4124 #ifdef CONFIG_X86
4125 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4126 #endif
4127
4128 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4129
4130 return 0;
4131 kfree_obj:
4132 kfree(phys_obj);
4133 return ret;
4134 }
4135
4136 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4137 {
4138 drm_i915_private_t *dev_priv = dev->dev_private;
4139 struct drm_i915_gem_phys_object *phys_obj;
4140
4141 if (!dev_priv->mm.phys_objs[id - 1])
4142 return;
4143
4144 phys_obj = dev_priv->mm.phys_objs[id - 1];
4145 if (phys_obj->cur_obj) {
4146 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4147 }
4148
4149 #ifdef CONFIG_X86
4150 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4151 #endif
4152 drm_pci_free(dev, phys_obj->handle);
4153 kfree(phys_obj);
4154 dev_priv->mm.phys_objs[id - 1] = NULL;
4155 }
4156
4157 void i915_gem_free_all_phys_object(struct drm_device *dev)
4158 {
4159 int i;
4160
4161 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4162 i915_gem_free_phys_object(dev, i);
4163 }
4164
4165 void i915_gem_detach_phys_object(struct drm_device *dev,
4166 struct drm_i915_gem_object *obj)
4167 {
4168 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4169 char *vaddr;
4170 int i;
4171 int page_count;
4172
4173 if (!obj->phys_obj)
4174 return;
4175 vaddr = obj->phys_obj->handle->vaddr;
4176
4177 page_count = obj->base.size / PAGE_SIZE;
4178 for (i = 0; i < page_count; i++) {
4179 struct page *page = shmem_read_mapping_page(mapping, i);
4180 if (!IS_ERR(page)) {
4181 char *dst = kmap_atomic(page);
4182 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4183 kunmap_atomic(dst);
4184
4185 drm_clflush_pages(&page, 1);
4186
4187 set_page_dirty(page);
4188 mark_page_accessed(page);
4189 page_cache_release(page);
4190 }
4191 }
4192 i915_gem_chipset_flush(dev);
4193
4194 obj->phys_obj->cur_obj = NULL;
4195 obj->phys_obj = NULL;
4196 }
4197
4198 int
4199 i915_gem_attach_phys_object(struct drm_device *dev,
4200 struct drm_i915_gem_object *obj,
4201 int id,
4202 int align)
4203 {
4204 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4205 drm_i915_private_t *dev_priv = dev->dev_private;
4206 int ret = 0;
4207 int page_count;
4208 int i;
4209
4210 if (id > I915_MAX_PHYS_OBJECT)
4211 return -EINVAL;
4212
4213 if (obj->phys_obj) {
4214 if (obj->phys_obj->id == id)
4215 return 0;
4216 i915_gem_detach_phys_object(dev, obj);
4217 }
4218
4219 /* create a new object */
4220 if (!dev_priv->mm.phys_objs[id - 1]) {
4221 ret = i915_gem_init_phys_object(dev, id,
4222 obj->base.size, align);
4223 if (ret) {
4224 DRM_ERROR("failed to init phys object %d size: %zu\n",
4225 id, obj->base.size);
4226 return ret;
4227 }
4228 }
4229
4230 /* bind to the object */
4231 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4232 obj->phys_obj->cur_obj = obj;
4233
4234 page_count = obj->base.size / PAGE_SIZE;
4235
4236 for (i = 0; i < page_count; i++) {
4237 struct page *page;
4238 char *dst, *src;
4239
4240 page = shmem_read_mapping_page(mapping, i);
4241 if (IS_ERR(page))
4242 return PTR_ERR(page);
4243
4244 src = kmap_atomic(page);
4245 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4246 memcpy(dst, src, PAGE_SIZE);
4247 kunmap_atomic(src);
4248
4249 mark_page_accessed(page);
4250 page_cache_release(page);
4251 }
4252
4253 return 0;
4254 }
4255
4256 static int
4257 i915_gem_phys_pwrite(struct drm_device *dev,
4258 struct drm_i915_gem_object *obj,
4259 struct drm_i915_gem_pwrite *args,
4260 struct drm_file *file_priv)
4261 {
4262 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4263 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4264
4265 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4266 unsigned long unwritten;
4267
4268 /* The physical object once assigned is fixed for the lifetime
4269 * of the obj, so we can safely drop the lock and continue
4270 * to access vaddr.
4271 */
4272 mutex_unlock(&dev->struct_mutex);
4273 unwritten = copy_from_user(vaddr, user_data, args->size);
4274 mutex_lock(&dev->struct_mutex);
4275 if (unwritten)
4276 return -EFAULT;
4277 }
4278
4279 i915_gem_chipset_flush(dev);
4280 return 0;
4281 }
4282
4283 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4284 {
4285 struct drm_i915_file_private *file_priv = file->driver_priv;
4286
4287 /* Clean up our request list when the client is going away, so that
4288 * later retire_requests won't dereference our soon-to-be-gone
4289 * file_priv.
4290 */
4291 spin_lock(&file_priv->mm.lock);
4292 while (!list_empty(&file_priv->mm.request_list)) {
4293 struct drm_i915_gem_request *request;
4294
4295 request = list_first_entry(&file_priv->mm.request_list,
4296 struct drm_i915_gem_request,
4297 client_list);
4298 list_del(&request->client_list);
4299 request->file_priv = NULL;
4300 }
4301 spin_unlock(&file_priv->mm.lock);
4302 }
4303
4304 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4305 {
4306 if (!mutex_is_locked(mutex))
4307 return false;
4308
4309 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4310 return mutex->owner == task;
4311 #else
4312 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4313 return false;
4314 #endif
4315 }
4316
4317 static int
4318 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4319 {
4320 struct drm_i915_private *dev_priv =
4321 container_of(shrinker,
4322 struct drm_i915_private,
4323 mm.inactive_shrinker);
4324 struct drm_device *dev = dev_priv->dev;
4325 struct drm_i915_gem_object *obj;
4326 int nr_to_scan = sc->nr_to_scan;
4327 bool unlock = true;
4328 int cnt;
4329
4330 if (!mutex_trylock(&dev->struct_mutex)) {
4331 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4332 return 0;
4333
4334 if (dev_priv->mm.shrinker_no_lock_stealing)
4335 return 0;
4336
4337 unlock = false;
4338 }
4339
4340 if (nr_to_scan) {
4341 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4342 if (nr_to_scan > 0)
4343 i915_gem_shrink_all(dev_priv);
4344 }
4345
4346 cnt = 0;
4347 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4348 if (obj->pages_pin_count == 0)
4349 cnt += obj->base.size >> PAGE_SHIFT;
4350 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4351 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4352 cnt += obj->base.size >> PAGE_SHIFT;
4353
4354 if (unlock)
4355 mutex_unlock(&dev->struct_mutex);
4356 return cnt;
4357 }
This page took 0.18398 seconds and 5 git commands to generate.