drm/i915: make compact dma scatter lists creation work with SWIOTLB backend.
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = obj->gtt_offset + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 /**
1091 * Ensures that all rendering to the object has completed and the object is
1092 * safe to unbind from the GTT or access from the CPU.
1093 */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096 bool readonly)
1097 {
1098 struct intel_ring_buffer *ring = obj->ring;
1099 u32 seqno;
1100 int ret;
1101
1102 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103 if (seqno == 0)
1104 return 0;
1105
1106 ret = i915_wait_seqno(ring, seqno);
1107 if (ret)
1108 return ret;
1109
1110 i915_gem_retire_requests_ring(ring);
1111
1112 /* Manually manage the write flush as we may have not yet
1113 * retired the buffer.
1114 */
1115 if (obj->last_write_seqno &&
1116 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117 obj->last_write_seqno = 0;
1118 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125 * as the object state may change during this call.
1126 */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129 bool readonly)
1130 {
1131 struct drm_device *dev = obj->base.dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 struct intel_ring_buffer *ring = obj->ring;
1134 unsigned reset_counter;
1135 u32 seqno;
1136 int ret;
1137
1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 BUG_ON(!dev_priv->mm.interruptible);
1140
1141 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142 if (seqno == 0)
1143 return 0;
1144
1145 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146 if (ret)
1147 return ret;
1148
1149 ret = i915_gem_check_olr(ring, seqno);
1150 if (ret)
1151 return ret;
1152
1153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154 mutex_unlock(&dev->struct_mutex);
1155 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156 mutex_lock(&dev->struct_mutex);
1157
1158 i915_gem_retire_requests_ring(ring);
1159
1160 /* Manually manage the write flush as we may have not yet
1161 * retired the buffer.
1162 */
1163 if (obj->last_write_seqno &&
1164 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165 obj->last_write_seqno = 0;
1166 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167 }
1168
1169 return ret;
1170 }
1171
1172 /**
1173 * Called when user space prepares to use an object with the CPU, either
1174 * through the mmap ioctl's mapping or a GTT mapping.
1175 */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178 struct drm_file *file)
1179 {
1180 struct drm_i915_gem_set_domain *args = data;
1181 struct drm_i915_gem_object *obj;
1182 uint32_t read_domains = args->read_domains;
1183 uint32_t write_domain = args->write_domain;
1184 int ret;
1185
1186 /* Only handle setting domains to types used by the CPU. */
1187 if (write_domain & I915_GEM_GPU_DOMAINS)
1188 return -EINVAL;
1189
1190 if (read_domains & I915_GEM_GPU_DOMAINS)
1191 return -EINVAL;
1192
1193 /* Having something in the write domain implies it's in the read
1194 * domain, and only that read domain. Enforce that in the request.
1195 */
1196 if (write_domain != 0 && read_domains != write_domain)
1197 return -EINVAL;
1198
1199 ret = i915_mutex_lock_interruptible(dev);
1200 if (ret)
1201 return ret;
1202
1203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204 if (&obj->base == NULL) {
1205 ret = -ENOENT;
1206 goto unlock;
1207 }
1208
1209 /* Try to flush the object off the GPU without holding the lock.
1210 * We will repeat the flush holding the lock in the normal manner
1211 * to catch cases where we are gazumped.
1212 */
1213 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214 if (ret)
1215 goto unref;
1216
1217 if (read_domains & I915_GEM_DOMAIN_GTT) {
1218 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219
1220 /* Silently promote "you're not bound, there was nothing to do"
1221 * to success, since the client was just asking us to
1222 * make sure everything was done.
1223 */
1224 if (ret == -EINVAL)
1225 ret = 0;
1226 } else {
1227 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228 }
1229
1230 unref:
1231 drm_gem_object_unreference(&obj->base);
1232 unlock:
1233 mutex_unlock(&dev->struct_mutex);
1234 return ret;
1235 }
1236
1237 /**
1238 * Called when user space has done writes to this buffer
1239 */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242 struct drm_file *file)
1243 {
1244 struct drm_i915_gem_sw_finish *args = data;
1245 struct drm_i915_gem_object *obj;
1246 int ret = 0;
1247
1248 ret = i915_mutex_lock_interruptible(dev);
1249 if (ret)
1250 return ret;
1251
1252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253 if (&obj->base == NULL) {
1254 ret = -ENOENT;
1255 goto unlock;
1256 }
1257
1258 /* Pinned buffers may be scanout, so flush the cache */
1259 if (obj->pin_count)
1260 i915_gem_object_flush_cpu_write_domain(obj);
1261
1262 drm_gem_object_unreference(&obj->base);
1263 unlock:
1264 mutex_unlock(&dev->struct_mutex);
1265 return ret;
1266 }
1267
1268 /**
1269 * Maps the contents of an object, returning the address it is mapped
1270 * into.
1271 *
1272 * While the mapping holds a reference on the contents of the object, it doesn't
1273 * imply a ref on the object itself.
1274 */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277 struct drm_file *file)
1278 {
1279 struct drm_i915_gem_mmap *args = data;
1280 struct drm_gem_object *obj;
1281 unsigned long addr;
1282
1283 obj = drm_gem_object_lookup(dev, file, args->handle);
1284 if (obj == NULL)
1285 return -ENOENT;
1286
1287 /* prime objects have no backing filp to GEM mmap
1288 * pages from.
1289 */
1290 if (!obj->filp) {
1291 drm_gem_object_unreference_unlocked(obj);
1292 return -EINVAL;
1293 }
1294
1295 addr = vm_mmap(obj->filp, 0, args->size,
1296 PROT_READ | PROT_WRITE, MAP_SHARED,
1297 args->offset);
1298 drm_gem_object_unreference_unlocked(obj);
1299 if (IS_ERR((void *)addr))
1300 return addr;
1301
1302 args->addr_ptr = (uint64_t) addr;
1303
1304 return 0;
1305 }
1306
1307 /**
1308 * i915_gem_fault - fault a page into the GTT
1309 * vma: VMA in question
1310 * vmf: fault info
1311 *
1312 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313 * from userspace. The fault handler takes care of binding the object to
1314 * the GTT (if needed), allocating and programming a fence register (again,
1315 * only if needed based on whether the old reg is still valid or the object
1316 * is tiled) and inserting a new PTE into the faulting process.
1317 *
1318 * Note that the faulting process may involve evicting existing objects
1319 * from the GTT and/or fence registers to make room. So performance may
1320 * suffer if the GTT working set is large or there are few fence registers
1321 * left.
1322 */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326 struct drm_device *dev = obj->base.dev;
1327 drm_i915_private_t *dev_priv = dev->dev_private;
1328 pgoff_t page_offset;
1329 unsigned long pfn;
1330 int ret = 0;
1331 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332
1333 /* We don't use vmf->pgoff since that has the fake offset */
1334 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335 PAGE_SHIFT;
1336
1337 ret = i915_mutex_lock_interruptible(dev);
1338 if (ret)
1339 goto out;
1340
1341 trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
1343 /* Access to snoopable pages through the GTT is incoherent. */
1344 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345 ret = -EINVAL;
1346 goto unlock;
1347 }
1348
1349 /* Now bind it into the GTT if needed */
1350 ret = i915_gem_object_pin(obj, 0, true, false);
1351 if (ret)
1352 goto unlock;
1353
1354 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355 if (ret)
1356 goto unpin;
1357
1358 ret = i915_gem_object_get_fence(obj);
1359 if (ret)
1360 goto unpin;
1361
1362 obj->fault_mappable = true;
1363
1364 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365 page_offset;
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 i915_gem_object_unpin(obj);
1371 unlock:
1372 mutex_unlock(&dev->struct_mutex);
1373 out:
1374 switch (ret) {
1375 case -EIO:
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 return VM_FAULT_SIGBUS;
1381 case -EAGAIN:
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
1389 set_need_resched();
1390 case 0:
1391 case -ERESTARTSYS:
1392 case -EINTR:
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
1398 return VM_FAULT_NOPAGE;
1399 case -ENOMEM:
1400 return VM_FAULT_OOM;
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
1403 default:
1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 return VM_FAULT_SIGBUS;
1406 }
1407 }
1408
1409 /**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
1413 * Preserve the reservation of the mmapping with the DRM core code, but
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 if (!obj->fault_mappable)
1427 return;
1428
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
1433
1434 obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 uint32_t gtt_size;
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
1448 gtt_size = 1024*1024;
1449 else
1450 gtt_size = 512*1024;
1451
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
1454
1455 return gtt_size;
1456 }
1457
1458 /**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
1463 * potential fence register mapping.
1464 */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
1468 {
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 tiling_mode == I915_TILING_NONE)
1475 return 4096;
1476
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
1496 goto out;
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
1508 goto out;
1509
1510 i915_gem_shrink_all(dev_priv);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
1531 {
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct drm_i915_gem_object *obj;
1534 int ret;
1535
1536 ret = i915_mutex_lock_interruptible(dev);
1537 if (ret)
1538 return ret;
1539
1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 if (&obj->base == NULL) {
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
1545
1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 ret = -E2BIG;
1548 goto out;
1549 }
1550
1551 if (obj->madv != I915_MADV_WILLNEED) {
1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 ret = -EINVAL;
1554 goto out;
1555 }
1556
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
1560
1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564 drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 mutex_unlock(&dev->struct_mutex);
1567 return ret;
1568 }
1569
1570 /**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588 {
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 struct inode *inode;
1599
1600 i915_gem_object_free_mmap_offset(obj);
1601
1602 if (obj->base.filp == NULL)
1603 return;
1604
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
1610 inode = file_inode(obj->base.filp);
1611 shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613 obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 struct sg_page_iter sg_iter;
1626 int ret;
1627
1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
1640 if (i915_gem_object_needs_bit17_swizzle(obj))
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
1645
1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649 if (obj->dirty)
1650 set_page_dirty(page);
1651
1652 if (obj->madv == I915_MADV_WILLNEED)
1653 mark_page_accessed(page);
1654
1655 page_cache_release(page);
1656 }
1657 obj->dirty = 0;
1658
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668 if (obj->pages == NULL)
1669 return 0;
1670
1671 BUG_ON(obj->gtt_space);
1672
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
1679 list_del(&obj->gtt_list);
1680
1681 ops->put_pages(obj);
1682 obj->pages = NULL;
1683
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
1693 {
1694 struct drm_i915_gem_object *obj, *next;
1695 long count = 0;
1696
1697 list_for_each_entry_safe(obj, next,
1698 &dev_priv->mm.unbound_list,
1699 gtt_list) {
1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701 i915_gem_object_put_pages(obj) == 0) {
1702 count += obj->base.size >> PAGE_SHIFT;
1703 if (count >= target)
1704 return count;
1705 }
1706 }
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.inactive_list,
1710 mm_list) {
1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712 i915_gem_object_unbind(obj) == 0 &&
1713 i915_gem_object_put_pages(obj) == 0) {
1714 count += obj->base.size >> PAGE_SHIFT;
1715 if (count >= target)
1716 return count;
1717 }
1718 }
1719
1720 return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726 return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732 struct drm_i915_gem_object *obj, *next;
1733
1734 i915_gem_evict_everything(dev_priv->dev);
1735
1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1737 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 int page_count, i;
1745 struct address_space *mapping;
1746 struct sg_table *st;
1747 struct scatterlist *sg;
1748 struct sg_page_iter sg_iter;
1749 struct page *page;
1750 unsigned long last_pfn = 0; /* suppress gcc warning */
1751 gfp_t gfp;
1752
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
1764 page_count = obj->base.size / PAGE_SIZE;
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
1768 return -ENOMEM;
1769 }
1770
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
1776 mapping = file_inode(obj->base.filp)->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1804 #ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811 #endif
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
1821 }
1822 #ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824 #endif
1825 sg_mark_end(sg);
1826 obj->pages = st;
1827
1828 if (i915_gem_object_needs_bit17_swizzle(obj))
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833 err_pages:
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 page_cache_release(sg_page_iter_page(&sg_iter));
1837 sg_free_table(st);
1838 kfree(st);
1839 return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
1856 if (obj->pages)
1857 return 0;
1858
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
1864 BUG_ON(obj->pages_pin_count);
1865
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
1870 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1871 return 0;
1872 }
1873
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 struct intel_ring_buffer *ring)
1877 {
1878 struct drm_device *dev = obj->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 u32 seqno = intel_ring_get_seqno(ring);
1881
1882 BUG_ON(ring == NULL);
1883 obj->ring = ring;
1884
1885 /* Add a reference if we're newly entering the active list. */
1886 if (!obj->active) {
1887 drm_gem_object_reference(&obj->base);
1888 obj->active = 1;
1889 }
1890
1891 /* Move from whatever list we were on to the tail of execution. */
1892 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1893 list_move_tail(&obj->ring_list, &ring->active_list);
1894
1895 obj->last_read_seqno = seqno;
1896
1897 if (obj->fenced_gpu_access) {
1898 obj->last_fenced_seqno = seqno;
1899
1900 /* Bump MRU to take account of the delayed flush */
1901 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1902 struct drm_i915_fence_reg *reg;
1903
1904 reg = &dev_priv->fence_regs[obj->fence_reg];
1905 list_move_tail(&reg->lru_list,
1906 &dev_priv->mm.fence_list);
1907 }
1908 }
1909 }
1910
1911 static void
1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1913 {
1914 struct drm_device *dev = obj->base.dev;
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916
1917 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1918 BUG_ON(!obj->active);
1919
1920 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1921
1922 list_del_init(&obj->ring_list);
1923 obj->ring = NULL;
1924
1925 obj->last_read_seqno = 0;
1926 obj->last_write_seqno = 0;
1927 obj->base.write_domain = 0;
1928
1929 obj->last_fenced_seqno = 0;
1930 obj->fenced_gpu_access = false;
1931
1932 obj->active = 0;
1933 drm_gem_object_unreference(&obj->base);
1934
1935 WARN_ON(i915_verify_lists(dev));
1936 }
1937
1938 static int
1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1940 {
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942 struct intel_ring_buffer *ring;
1943 int ret, i, j;
1944
1945 /* Carefully retire all requests without writing to the rings */
1946 for_each_ring(ring, dev_priv, i) {
1947 ret = intel_ring_idle(ring);
1948 if (ret)
1949 return ret;
1950 }
1951 i915_gem_retire_requests(dev);
1952
1953 /* Finally reset hw state */
1954 for_each_ring(ring, dev_priv, i) {
1955 intel_ring_init_seqno(ring, seqno);
1956
1957 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958 ring->sync_seqno[j] = 0;
1959 }
1960
1961 return 0;
1962 }
1963
1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 int ret;
1968
1969 if (seqno == 0)
1970 return -EINVAL;
1971
1972 /* HWS page needs to be set less than what we
1973 * will inject to ring
1974 */
1975 ret = i915_gem_init_seqno(dev, seqno - 1);
1976 if (ret)
1977 return ret;
1978
1979 /* Carefully set the last_seqno value so that wrap
1980 * detection still works
1981 */
1982 dev_priv->next_seqno = seqno;
1983 dev_priv->last_seqno = seqno - 1;
1984 if (dev_priv->last_seqno == 0)
1985 dev_priv->last_seqno--;
1986
1987 return 0;
1988 }
1989
1990 int
1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1992 {
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995 /* reserve 0 for non-seqno */
1996 if (dev_priv->next_seqno == 0) {
1997 int ret = i915_gem_init_seqno(dev, 0);
1998 if (ret)
1999 return ret;
2000
2001 dev_priv->next_seqno = 1;
2002 }
2003
2004 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2005 return 0;
2006 }
2007
2008 int
2009 i915_add_request(struct intel_ring_buffer *ring,
2010 struct drm_file *file,
2011 u32 *out_seqno)
2012 {
2013 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2014 struct drm_i915_gem_request *request;
2015 u32 request_ring_position;
2016 int was_empty;
2017 int ret;
2018
2019 /*
2020 * Emit any outstanding flushes - execbuf can fail to emit the flush
2021 * after having emitted the batchbuffer command. Hence we need to fix
2022 * things up similar to emitting the lazy request. The difference here
2023 * is that the flush _must_ happen before the next request, no matter
2024 * what.
2025 */
2026 ret = intel_ring_flush_all_caches(ring);
2027 if (ret)
2028 return ret;
2029
2030 request = kmalloc(sizeof(*request), GFP_KERNEL);
2031 if (request == NULL)
2032 return -ENOMEM;
2033
2034
2035 /* Record the position of the start of the request so that
2036 * should we detect the updated seqno part-way through the
2037 * GPU processing the request, we never over-estimate the
2038 * position of the head.
2039 */
2040 request_ring_position = intel_ring_get_tail(ring);
2041
2042 ret = ring->add_request(ring);
2043 if (ret) {
2044 kfree(request);
2045 return ret;
2046 }
2047
2048 request->seqno = intel_ring_get_seqno(ring);
2049 request->ring = ring;
2050 request->tail = request_ring_position;
2051 request->emitted_jiffies = jiffies;
2052 was_empty = list_empty(&ring->request_list);
2053 list_add_tail(&request->list, &ring->request_list);
2054 request->file_priv = NULL;
2055
2056 if (file) {
2057 struct drm_i915_file_private *file_priv = file->driver_priv;
2058
2059 spin_lock(&file_priv->mm.lock);
2060 request->file_priv = file_priv;
2061 list_add_tail(&request->client_list,
2062 &file_priv->mm.request_list);
2063 spin_unlock(&file_priv->mm.lock);
2064 }
2065
2066 trace_i915_gem_request_add(ring, request->seqno);
2067 ring->outstanding_lazy_request = 0;
2068
2069 if (!dev_priv->mm.suspended) {
2070 if (i915_enable_hangcheck) {
2071 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2072 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2073 }
2074 if (was_empty) {
2075 queue_delayed_work(dev_priv->wq,
2076 &dev_priv->mm.retire_work,
2077 round_jiffies_up_relative(HZ));
2078 intel_mark_busy(dev_priv->dev);
2079 }
2080 }
2081
2082 if (out_seqno)
2083 *out_seqno = request->seqno;
2084 return 0;
2085 }
2086
2087 static inline void
2088 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2089 {
2090 struct drm_i915_file_private *file_priv = request->file_priv;
2091
2092 if (!file_priv)
2093 return;
2094
2095 spin_lock(&file_priv->mm.lock);
2096 if (request->file_priv) {
2097 list_del(&request->client_list);
2098 request->file_priv = NULL;
2099 }
2100 spin_unlock(&file_priv->mm.lock);
2101 }
2102
2103 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2104 struct intel_ring_buffer *ring)
2105 {
2106 while (!list_empty(&ring->request_list)) {
2107 struct drm_i915_gem_request *request;
2108
2109 request = list_first_entry(&ring->request_list,
2110 struct drm_i915_gem_request,
2111 list);
2112
2113 list_del(&request->list);
2114 i915_gem_request_remove_from_client(request);
2115 kfree(request);
2116 }
2117
2118 while (!list_empty(&ring->active_list)) {
2119 struct drm_i915_gem_object *obj;
2120
2121 obj = list_first_entry(&ring->active_list,
2122 struct drm_i915_gem_object,
2123 ring_list);
2124
2125 i915_gem_object_move_to_inactive(obj);
2126 }
2127 }
2128
2129 void i915_gem_restore_fences(struct drm_device *dev)
2130 {
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 int i;
2133
2134 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2135 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2136 i915_gem_write_fence(dev, i, reg->obj);
2137 }
2138 }
2139
2140 void i915_gem_reset(struct drm_device *dev)
2141 {
2142 struct drm_i915_private *dev_priv = dev->dev_private;
2143 struct drm_i915_gem_object *obj;
2144 struct intel_ring_buffer *ring;
2145 int i;
2146
2147 for_each_ring(ring, dev_priv, i)
2148 i915_gem_reset_ring_lists(dev_priv, ring);
2149
2150 /* Move everything out of the GPU domains to ensure we do any
2151 * necessary invalidation upon reuse.
2152 */
2153 list_for_each_entry(obj,
2154 &dev_priv->mm.inactive_list,
2155 mm_list)
2156 {
2157 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2158 }
2159
2160 i915_gem_restore_fences(dev);
2161 }
2162
2163 /**
2164 * This function clears the request list as sequence numbers are passed.
2165 */
2166 void
2167 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2168 {
2169 uint32_t seqno;
2170
2171 if (list_empty(&ring->request_list))
2172 return;
2173
2174 WARN_ON(i915_verify_lists(ring->dev));
2175
2176 seqno = ring->get_seqno(ring, true);
2177
2178 while (!list_empty(&ring->request_list)) {
2179 struct drm_i915_gem_request *request;
2180
2181 request = list_first_entry(&ring->request_list,
2182 struct drm_i915_gem_request,
2183 list);
2184
2185 if (!i915_seqno_passed(seqno, request->seqno))
2186 break;
2187
2188 trace_i915_gem_request_retire(ring, request->seqno);
2189 /* We know the GPU must have read the request to have
2190 * sent us the seqno + interrupt, so use the position
2191 * of tail of the request to update the last known position
2192 * of the GPU head.
2193 */
2194 ring->last_retired_head = request->tail;
2195
2196 list_del(&request->list);
2197 i915_gem_request_remove_from_client(request);
2198 kfree(request);
2199 }
2200
2201 /* Move any buffers on the active list that are no longer referenced
2202 * by the ringbuffer to the flushing/inactive lists as appropriate.
2203 */
2204 while (!list_empty(&ring->active_list)) {
2205 struct drm_i915_gem_object *obj;
2206
2207 obj = list_first_entry(&ring->active_list,
2208 struct drm_i915_gem_object,
2209 ring_list);
2210
2211 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2212 break;
2213
2214 i915_gem_object_move_to_inactive(obj);
2215 }
2216
2217 if (unlikely(ring->trace_irq_seqno &&
2218 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2219 ring->irq_put(ring);
2220 ring->trace_irq_seqno = 0;
2221 }
2222
2223 WARN_ON(i915_verify_lists(ring->dev));
2224 }
2225
2226 void
2227 i915_gem_retire_requests(struct drm_device *dev)
2228 {
2229 drm_i915_private_t *dev_priv = dev->dev_private;
2230 struct intel_ring_buffer *ring;
2231 int i;
2232
2233 for_each_ring(ring, dev_priv, i)
2234 i915_gem_retire_requests_ring(ring);
2235 }
2236
2237 static void
2238 i915_gem_retire_work_handler(struct work_struct *work)
2239 {
2240 drm_i915_private_t *dev_priv;
2241 struct drm_device *dev;
2242 struct intel_ring_buffer *ring;
2243 bool idle;
2244 int i;
2245
2246 dev_priv = container_of(work, drm_i915_private_t,
2247 mm.retire_work.work);
2248 dev = dev_priv->dev;
2249
2250 /* Come back later if the device is busy... */
2251 if (!mutex_trylock(&dev->struct_mutex)) {
2252 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253 round_jiffies_up_relative(HZ));
2254 return;
2255 }
2256
2257 i915_gem_retire_requests(dev);
2258
2259 /* Send a periodic flush down the ring so we don't hold onto GEM
2260 * objects indefinitely.
2261 */
2262 idle = true;
2263 for_each_ring(ring, dev_priv, i) {
2264 if (ring->gpu_caches_dirty)
2265 i915_add_request(ring, NULL, NULL);
2266
2267 idle &= list_empty(&ring->request_list);
2268 }
2269
2270 if (!dev_priv->mm.suspended && !idle)
2271 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2272 round_jiffies_up_relative(HZ));
2273 if (idle)
2274 intel_mark_idle(dev);
2275
2276 mutex_unlock(&dev->struct_mutex);
2277 }
2278
2279 /**
2280 * Ensures that an object will eventually get non-busy by flushing any required
2281 * write domains, emitting any outstanding lazy request and retiring and
2282 * completed requests.
2283 */
2284 static int
2285 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2286 {
2287 int ret;
2288
2289 if (obj->active) {
2290 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2291 if (ret)
2292 return ret;
2293
2294 i915_gem_retire_requests_ring(obj->ring);
2295 }
2296
2297 return 0;
2298 }
2299
2300 /**
2301 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2302 * @DRM_IOCTL_ARGS: standard ioctl arguments
2303 *
2304 * Returns 0 if successful, else an error is returned with the remaining time in
2305 * the timeout parameter.
2306 * -ETIME: object is still busy after timeout
2307 * -ERESTARTSYS: signal interrupted the wait
2308 * -ENONENT: object doesn't exist
2309 * Also possible, but rare:
2310 * -EAGAIN: GPU wedged
2311 * -ENOMEM: damn
2312 * -ENODEV: Internal IRQ fail
2313 * -E?: The add request failed
2314 *
2315 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2316 * non-zero timeout parameter the wait ioctl will wait for the given number of
2317 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2318 * without holding struct_mutex the object may become re-busied before this
2319 * function completes. A similar but shorter * race condition exists in the busy
2320 * ioctl
2321 */
2322 int
2323 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2324 {
2325 drm_i915_private_t *dev_priv = dev->dev_private;
2326 struct drm_i915_gem_wait *args = data;
2327 struct drm_i915_gem_object *obj;
2328 struct intel_ring_buffer *ring = NULL;
2329 struct timespec timeout_stack, *timeout = NULL;
2330 unsigned reset_counter;
2331 u32 seqno = 0;
2332 int ret = 0;
2333
2334 if (args->timeout_ns >= 0) {
2335 timeout_stack = ns_to_timespec(args->timeout_ns);
2336 timeout = &timeout_stack;
2337 }
2338
2339 ret = i915_mutex_lock_interruptible(dev);
2340 if (ret)
2341 return ret;
2342
2343 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2344 if (&obj->base == NULL) {
2345 mutex_unlock(&dev->struct_mutex);
2346 return -ENOENT;
2347 }
2348
2349 /* Need to make sure the object gets inactive eventually. */
2350 ret = i915_gem_object_flush_active(obj);
2351 if (ret)
2352 goto out;
2353
2354 if (obj->active) {
2355 seqno = obj->last_read_seqno;
2356 ring = obj->ring;
2357 }
2358
2359 if (seqno == 0)
2360 goto out;
2361
2362 /* Do this after OLR check to make sure we make forward progress polling
2363 * on this IOCTL with a 0 timeout (like busy ioctl)
2364 */
2365 if (!args->timeout_ns) {
2366 ret = -ETIME;
2367 goto out;
2368 }
2369
2370 drm_gem_object_unreference(&obj->base);
2371 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2372 mutex_unlock(&dev->struct_mutex);
2373
2374 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2375 if (timeout)
2376 args->timeout_ns = timespec_to_ns(timeout);
2377 return ret;
2378
2379 out:
2380 drm_gem_object_unreference(&obj->base);
2381 mutex_unlock(&dev->struct_mutex);
2382 return ret;
2383 }
2384
2385 /**
2386 * i915_gem_object_sync - sync an object to a ring.
2387 *
2388 * @obj: object which may be in use on another ring.
2389 * @to: ring we wish to use the object on. May be NULL.
2390 *
2391 * This code is meant to abstract object synchronization with the GPU.
2392 * Calling with NULL implies synchronizing the object with the CPU
2393 * rather than a particular GPU ring.
2394 *
2395 * Returns 0 if successful, else propagates up the lower layer error.
2396 */
2397 int
2398 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2399 struct intel_ring_buffer *to)
2400 {
2401 struct intel_ring_buffer *from = obj->ring;
2402 u32 seqno;
2403 int ret, idx;
2404
2405 if (from == NULL || to == from)
2406 return 0;
2407
2408 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2409 return i915_gem_object_wait_rendering(obj, false);
2410
2411 idx = intel_ring_sync_index(from, to);
2412
2413 seqno = obj->last_read_seqno;
2414 if (seqno <= from->sync_seqno[idx])
2415 return 0;
2416
2417 ret = i915_gem_check_olr(obj->ring, seqno);
2418 if (ret)
2419 return ret;
2420
2421 ret = to->sync_to(to, from, seqno);
2422 if (!ret)
2423 /* We use last_read_seqno because sync_to()
2424 * might have just caused seqno wrap under
2425 * the radar.
2426 */
2427 from->sync_seqno[idx] = obj->last_read_seqno;
2428
2429 return ret;
2430 }
2431
2432 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2433 {
2434 u32 old_write_domain, old_read_domains;
2435
2436 /* Force a pagefault for domain tracking on next user access */
2437 i915_gem_release_mmap(obj);
2438
2439 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2440 return;
2441
2442 /* Wait for any direct GTT access to complete */
2443 mb();
2444
2445 old_read_domains = obj->base.read_domains;
2446 old_write_domain = obj->base.write_domain;
2447
2448 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2449 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2450
2451 trace_i915_gem_object_change_domain(obj,
2452 old_read_domains,
2453 old_write_domain);
2454 }
2455
2456 /**
2457 * Unbinds an object from the GTT aperture.
2458 */
2459 int
2460 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2461 {
2462 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2463 int ret;
2464
2465 if (obj->gtt_space == NULL)
2466 return 0;
2467
2468 if (obj->pin_count)
2469 return -EBUSY;
2470
2471 BUG_ON(obj->pages == NULL);
2472
2473 ret = i915_gem_object_finish_gpu(obj);
2474 if (ret)
2475 return ret;
2476 /* Continue on if we fail due to EIO, the GPU is hung so we
2477 * should be safe and we need to cleanup or else we might
2478 * cause memory corruption through use-after-free.
2479 */
2480
2481 i915_gem_object_finish_gtt(obj);
2482
2483 /* release the fence reg _after_ flushing */
2484 ret = i915_gem_object_put_fence(obj);
2485 if (ret)
2486 return ret;
2487
2488 trace_i915_gem_object_unbind(obj);
2489
2490 if (obj->has_global_gtt_mapping)
2491 i915_gem_gtt_unbind_object(obj);
2492 if (obj->has_aliasing_ppgtt_mapping) {
2493 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2494 obj->has_aliasing_ppgtt_mapping = 0;
2495 }
2496 i915_gem_gtt_finish_object(obj);
2497
2498 list_del(&obj->mm_list);
2499 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2500 /* Avoid an unnecessary call to unbind on rebind. */
2501 obj->map_and_fenceable = true;
2502
2503 drm_mm_put_block(obj->gtt_space);
2504 obj->gtt_space = NULL;
2505 obj->gtt_offset = 0;
2506
2507 return 0;
2508 }
2509
2510 int i915_gpu_idle(struct drm_device *dev)
2511 {
2512 drm_i915_private_t *dev_priv = dev->dev_private;
2513 struct intel_ring_buffer *ring;
2514 int ret, i;
2515
2516 /* Flush everything onto the inactive list. */
2517 for_each_ring(ring, dev_priv, i) {
2518 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2519 if (ret)
2520 return ret;
2521
2522 ret = intel_ring_idle(ring);
2523 if (ret)
2524 return ret;
2525 }
2526
2527 return 0;
2528 }
2529
2530 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2531 struct drm_i915_gem_object *obj)
2532 {
2533 drm_i915_private_t *dev_priv = dev->dev_private;
2534 int fence_reg;
2535 int fence_pitch_shift;
2536 uint64_t val;
2537
2538 if (INTEL_INFO(dev)->gen >= 6) {
2539 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2540 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2541 } else {
2542 fence_reg = FENCE_REG_965_0;
2543 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2544 }
2545
2546 if (obj) {
2547 u32 size = obj->gtt_space->size;
2548
2549 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2550 0xfffff000) << 32;
2551 val |= obj->gtt_offset & 0xfffff000;
2552 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2553 if (obj->tiling_mode == I915_TILING_Y)
2554 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2555 val |= I965_FENCE_REG_VALID;
2556 } else
2557 val = 0;
2558
2559 fence_reg += reg * 8;
2560 I915_WRITE64(fence_reg, val);
2561 POSTING_READ(fence_reg);
2562 }
2563
2564 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2565 struct drm_i915_gem_object *obj)
2566 {
2567 drm_i915_private_t *dev_priv = dev->dev_private;
2568 u32 val;
2569
2570 if (obj) {
2571 u32 size = obj->gtt_space->size;
2572 int pitch_val;
2573 int tile_width;
2574
2575 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2576 (size & -size) != size ||
2577 (obj->gtt_offset & (size - 1)),
2578 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2579 obj->gtt_offset, obj->map_and_fenceable, size);
2580
2581 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2582 tile_width = 128;
2583 else
2584 tile_width = 512;
2585
2586 /* Note: pitch better be a power of two tile widths */
2587 pitch_val = obj->stride / tile_width;
2588 pitch_val = ffs(pitch_val) - 1;
2589
2590 val = obj->gtt_offset;
2591 if (obj->tiling_mode == I915_TILING_Y)
2592 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2593 val |= I915_FENCE_SIZE_BITS(size);
2594 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2595 val |= I830_FENCE_REG_VALID;
2596 } else
2597 val = 0;
2598
2599 if (reg < 8)
2600 reg = FENCE_REG_830_0 + reg * 4;
2601 else
2602 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2603
2604 I915_WRITE(reg, val);
2605 POSTING_READ(reg);
2606 }
2607
2608 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2609 struct drm_i915_gem_object *obj)
2610 {
2611 drm_i915_private_t *dev_priv = dev->dev_private;
2612 uint32_t val;
2613
2614 if (obj) {
2615 u32 size = obj->gtt_space->size;
2616 uint32_t pitch_val;
2617
2618 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2619 (size & -size) != size ||
2620 (obj->gtt_offset & (size - 1)),
2621 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2622 obj->gtt_offset, size);
2623
2624 pitch_val = obj->stride / 128;
2625 pitch_val = ffs(pitch_val) - 1;
2626
2627 val = obj->gtt_offset;
2628 if (obj->tiling_mode == I915_TILING_Y)
2629 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2630 val |= I830_FENCE_SIZE_BITS(size);
2631 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2632 val |= I830_FENCE_REG_VALID;
2633 } else
2634 val = 0;
2635
2636 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2637 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2638 }
2639
2640 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2641 {
2642 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2643 }
2644
2645 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2646 struct drm_i915_gem_object *obj)
2647 {
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649
2650 /* Ensure that all CPU reads are completed before installing a fence
2651 * and all writes before removing the fence.
2652 */
2653 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2654 mb();
2655
2656 switch (INTEL_INFO(dev)->gen) {
2657 case 7:
2658 case 6:
2659 case 5:
2660 case 4: i965_write_fence_reg(dev, reg, obj); break;
2661 case 3: i915_write_fence_reg(dev, reg, obj); break;
2662 case 2: i830_write_fence_reg(dev, reg, obj); break;
2663 default: BUG();
2664 }
2665
2666 /* And similarly be paranoid that no direct access to this region
2667 * is reordered to before the fence is installed.
2668 */
2669 if (i915_gem_object_needs_mb(obj))
2670 mb();
2671 }
2672
2673 static inline int fence_number(struct drm_i915_private *dev_priv,
2674 struct drm_i915_fence_reg *fence)
2675 {
2676 return fence - dev_priv->fence_regs;
2677 }
2678
2679 static void i915_gem_write_fence__ipi(void *data)
2680 {
2681 wbinvd();
2682 }
2683
2684 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2685 struct drm_i915_fence_reg *fence,
2686 bool enable)
2687 {
2688 struct drm_device *dev = obj->base.dev;
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690 int fence_reg = fence_number(dev_priv, fence);
2691
2692 /* In order to fully serialize access to the fenced region and
2693 * the update to the fence register we need to take extreme
2694 * measures on SNB+. In theory, the write to the fence register
2695 * flushes all memory transactions before, and coupled with the
2696 * mb() placed around the register write we serialise all memory
2697 * operations with respect to the changes in the tiler. Yet, on
2698 * SNB+ we need to take a step further and emit an explicit wbinvd()
2699 * on each processor in order to manually flush all memory
2700 * transactions before updating the fence register.
2701 */
2702 if (HAS_LLC(obj->base.dev))
2703 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2704 i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2705
2706 if (enable) {
2707 obj->fence_reg = fence_reg;
2708 fence->obj = obj;
2709 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2710 } else {
2711 obj->fence_reg = I915_FENCE_REG_NONE;
2712 fence->obj = NULL;
2713 list_del_init(&fence->lru_list);
2714 }
2715 }
2716
2717 static int
2718 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2719 {
2720 if (obj->last_fenced_seqno) {
2721 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2722 if (ret)
2723 return ret;
2724
2725 obj->last_fenced_seqno = 0;
2726 }
2727
2728 obj->fenced_gpu_access = false;
2729 return 0;
2730 }
2731
2732 int
2733 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2734 {
2735 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2736 struct drm_i915_fence_reg *fence;
2737 int ret;
2738
2739 ret = i915_gem_object_wait_fence(obj);
2740 if (ret)
2741 return ret;
2742
2743 if (obj->fence_reg == I915_FENCE_REG_NONE)
2744 return 0;
2745
2746 fence = &dev_priv->fence_regs[obj->fence_reg];
2747
2748 i915_gem_object_fence_lost(obj);
2749 i915_gem_object_update_fence(obj, fence, false);
2750
2751 return 0;
2752 }
2753
2754 static struct drm_i915_fence_reg *
2755 i915_find_fence_reg(struct drm_device *dev)
2756 {
2757 struct drm_i915_private *dev_priv = dev->dev_private;
2758 struct drm_i915_fence_reg *reg, *avail;
2759 int i;
2760
2761 /* First try to find a free reg */
2762 avail = NULL;
2763 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2764 reg = &dev_priv->fence_regs[i];
2765 if (!reg->obj)
2766 return reg;
2767
2768 if (!reg->pin_count)
2769 avail = reg;
2770 }
2771
2772 if (avail == NULL)
2773 return NULL;
2774
2775 /* None available, try to steal one or wait for a user to finish */
2776 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2777 if (reg->pin_count)
2778 continue;
2779
2780 return reg;
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /**
2787 * i915_gem_object_get_fence - set up fencing for an object
2788 * @obj: object to map through a fence reg
2789 *
2790 * When mapping objects through the GTT, userspace wants to be able to write
2791 * to them without having to worry about swizzling if the object is tiled.
2792 * This function walks the fence regs looking for a free one for @obj,
2793 * stealing one if it can't find any.
2794 *
2795 * It then sets up the reg based on the object's properties: address, pitch
2796 * and tiling format.
2797 *
2798 * For an untiled surface, this removes any existing fence.
2799 */
2800 int
2801 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2802 {
2803 struct drm_device *dev = obj->base.dev;
2804 struct drm_i915_private *dev_priv = dev->dev_private;
2805 bool enable = obj->tiling_mode != I915_TILING_NONE;
2806 struct drm_i915_fence_reg *reg;
2807 int ret;
2808
2809 /* Have we updated the tiling parameters upon the object and so
2810 * will need to serialise the write to the associated fence register?
2811 */
2812 if (obj->fence_dirty) {
2813 ret = i915_gem_object_wait_fence(obj);
2814 if (ret)
2815 return ret;
2816 }
2817
2818 /* Just update our place in the LRU if our fence is getting reused. */
2819 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2820 reg = &dev_priv->fence_regs[obj->fence_reg];
2821 if (!obj->fence_dirty) {
2822 list_move_tail(&reg->lru_list,
2823 &dev_priv->mm.fence_list);
2824 return 0;
2825 }
2826 } else if (enable) {
2827 reg = i915_find_fence_reg(dev);
2828 if (reg == NULL)
2829 return -EDEADLK;
2830
2831 if (reg->obj) {
2832 struct drm_i915_gem_object *old = reg->obj;
2833
2834 ret = i915_gem_object_wait_fence(old);
2835 if (ret)
2836 return ret;
2837
2838 i915_gem_object_fence_lost(old);
2839 }
2840 } else
2841 return 0;
2842
2843 i915_gem_object_update_fence(obj, reg, enable);
2844 obj->fence_dirty = false;
2845
2846 return 0;
2847 }
2848
2849 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2850 struct drm_mm_node *gtt_space,
2851 unsigned long cache_level)
2852 {
2853 struct drm_mm_node *other;
2854
2855 /* On non-LLC machines we have to be careful when putting differing
2856 * types of snoopable memory together to avoid the prefetcher
2857 * crossing memory domains and dying.
2858 */
2859 if (HAS_LLC(dev))
2860 return true;
2861
2862 if (gtt_space == NULL)
2863 return true;
2864
2865 if (list_empty(&gtt_space->node_list))
2866 return true;
2867
2868 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2869 if (other->allocated && !other->hole_follows && other->color != cache_level)
2870 return false;
2871
2872 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2873 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2874 return false;
2875
2876 return true;
2877 }
2878
2879 static void i915_gem_verify_gtt(struct drm_device *dev)
2880 {
2881 #if WATCH_GTT
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 struct drm_i915_gem_object *obj;
2884 int err = 0;
2885
2886 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2887 if (obj->gtt_space == NULL) {
2888 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2889 err++;
2890 continue;
2891 }
2892
2893 if (obj->cache_level != obj->gtt_space->color) {
2894 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2895 obj->gtt_space->start,
2896 obj->gtt_space->start + obj->gtt_space->size,
2897 obj->cache_level,
2898 obj->gtt_space->color);
2899 err++;
2900 continue;
2901 }
2902
2903 if (!i915_gem_valid_gtt_space(dev,
2904 obj->gtt_space,
2905 obj->cache_level)) {
2906 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2907 obj->gtt_space->start,
2908 obj->gtt_space->start + obj->gtt_space->size,
2909 obj->cache_level);
2910 err++;
2911 continue;
2912 }
2913 }
2914
2915 WARN_ON(err);
2916 #endif
2917 }
2918
2919 /**
2920 * Finds free space in the GTT aperture and binds the object there.
2921 */
2922 static int
2923 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2924 unsigned alignment,
2925 bool map_and_fenceable,
2926 bool nonblocking)
2927 {
2928 struct drm_device *dev = obj->base.dev;
2929 drm_i915_private_t *dev_priv = dev->dev_private;
2930 struct drm_mm_node *node;
2931 u32 size, fence_size, fence_alignment, unfenced_alignment;
2932 bool mappable, fenceable;
2933 int ret;
2934
2935 fence_size = i915_gem_get_gtt_size(dev,
2936 obj->base.size,
2937 obj->tiling_mode);
2938 fence_alignment = i915_gem_get_gtt_alignment(dev,
2939 obj->base.size,
2940 obj->tiling_mode, true);
2941 unfenced_alignment =
2942 i915_gem_get_gtt_alignment(dev,
2943 obj->base.size,
2944 obj->tiling_mode, false);
2945
2946 if (alignment == 0)
2947 alignment = map_and_fenceable ? fence_alignment :
2948 unfenced_alignment;
2949 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2950 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2951 return -EINVAL;
2952 }
2953
2954 size = map_and_fenceable ? fence_size : obj->base.size;
2955
2956 /* If the object is bigger than the entire aperture, reject it early
2957 * before evicting everything in a vain attempt to find space.
2958 */
2959 if (obj->base.size >
2960 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2961 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2962 return -E2BIG;
2963 }
2964
2965 ret = i915_gem_object_get_pages(obj);
2966 if (ret)
2967 return ret;
2968
2969 i915_gem_object_pin_pages(obj);
2970
2971 node = kzalloc(sizeof(*node), GFP_KERNEL);
2972 if (node == NULL) {
2973 i915_gem_object_unpin_pages(obj);
2974 return -ENOMEM;
2975 }
2976
2977 search_free:
2978 if (map_and_fenceable)
2979 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2980 size, alignment, obj->cache_level,
2981 0, dev_priv->gtt.mappable_end);
2982 else
2983 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2984 size, alignment, obj->cache_level);
2985 if (ret) {
2986 ret = i915_gem_evict_something(dev, size, alignment,
2987 obj->cache_level,
2988 map_and_fenceable,
2989 nonblocking);
2990 if (ret == 0)
2991 goto search_free;
2992
2993 i915_gem_object_unpin_pages(obj);
2994 kfree(node);
2995 return ret;
2996 }
2997 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2998 i915_gem_object_unpin_pages(obj);
2999 drm_mm_put_block(node);
3000 return -EINVAL;
3001 }
3002
3003 ret = i915_gem_gtt_prepare_object(obj);
3004 if (ret) {
3005 i915_gem_object_unpin_pages(obj);
3006 drm_mm_put_block(node);
3007 return ret;
3008 }
3009
3010 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3011 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3012
3013 obj->gtt_space = node;
3014 obj->gtt_offset = node->start;
3015
3016 fenceable =
3017 node->size == fence_size &&
3018 (node->start & (fence_alignment - 1)) == 0;
3019
3020 mappable =
3021 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3022
3023 obj->map_and_fenceable = mappable && fenceable;
3024
3025 i915_gem_object_unpin_pages(obj);
3026 trace_i915_gem_object_bind(obj, map_and_fenceable);
3027 i915_gem_verify_gtt(dev);
3028 return 0;
3029 }
3030
3031 void
3032 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3033 {
3034 /* If we don't have a page list set up, then we're not pinned
3035 * to GPU, and we can ignore the cache flush because it'll happen
3036 * again at bind time.
3037 */
3038 if (obj->pages == NULL)
3039 return;
3040
3041 /*
3042 * Stolen memory is always coherent with the GPU as it is explicitly
3043 * marked as wc by the system, or the system is cache-coherent.
3044 */
3045 if (obj->stolen)
3046 return;
3047
3048 /* If the GPU is snooping the contents of the CPU cache,
3049 * we do not need to manually clear the CPU cache lines. However,
3050 * the caches are only snooped when the render cache is
3051 * flushed/invalidated. As we always have to emit invalidations
3052 * and flushes when moving into and out of the RENDER domain, correct
3053 * snooping behaviour occurs naturally as the result of our domain
3054 * tracking.
3055 */
3056 if (obj->cache_level != I915_CACHE_NONE)
3057 return;
3058
3059 trace_i915_gem_object_clflush(obj);
3060
3061 drm_clflush_sg(obj->pages);
3062 }
3063
3064 /** Flushes the GTT write domain for the object if it's dirty. */
3065 static void
3066 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3067 {
3068 uint32_t old_write_domain;
3069
3070 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3071 return;
3072
3073 /* No actual flushing is required for the GTT write domain. Writes
3074 * to it immediately go to main memory as far as we know, so there's
3075 * no chipset flush. It also doesn't land in render cache.
3076 *
3077 * However, we do have to enforce the order so that all writes through
3078 * the GTT land before any writes to the device, such as updates to
3079 * the GATT itself.
3080 */
3081 wmb();
3082
3083 old_write_domain = obj->base.write_domain;
3084 obj->base.write_domain = 0;
3085
3086 trace_i915_gem_object_change_domain(obj,
3087 obj->base.read_domains,
3088 old_write_domain);
3089 }
3090
3091 /** Flushes the CPU write domain for the object if it's dirty. */
3092 static void
3093 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3094 {
3095 uint32_t old_write_domain;
3096
3097 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3098 return;
3099
3100 i915_gem_clflush_object(obj);
3101 i915_gem_chipset_flush(obj->base.dev);
3102 old_write_domain = obj->base.write_domain;
3103 obj->base.write_domain = 0;
3104
3105 trace_i915_gem_object_change_domain(obj,
3106 obj->base.read_domains,
3107 old_write_domain);
3108 }
3109
3110 /**
3111 * Moves a single object to the GTT read, and possibly write domain.
3112 *
3113 * This function returns when the move is complete, including waiting on
3114 * flushes to occur.
3115 */
3116 int
3117 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3118 {
3119 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3120 uint32_t old_write_domain, old_read_domains;
3121 int ret;
3122
3123 /* Not valid to be called on unbound objects. */
3124 if (obj->gtt_space == NULL)
3125 return -EINVAL;
3126
3127 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3128 return 0;
3129
3130 ret = i915_gem_object_wait_rendering(obj, !write);
3131 if (ret)
3132 return ret;
3133
3134 i915_gem_object_flush_cpu_write_domain(obj);
3135
3136 /* Serialise direct access to this object with the barriers for
3137 * coherent writes from the GPU, by effectively invalidating the
3138 * GTT domain upon first access.
3139 */
3140 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3141 mb();
3142
3143 old_write_domain = obj->base.write_domain;
3144 old_read_domains = obj->base.read_domains;
3145
3146 /* It should now be out of any other write domains, and we can update
3147 * the domain values for our changes.
3148 */
3149 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3150 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3151 if (write) {
3152 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3153 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3154 obj->dirty = 1;
3155 }
3156
3157 trace_i915_gem_object_change_domain(obj,
3158 old_read_domains,
3159 old_write_domain);
3160
3161 /* And bump the LRU for this access */
3162 if (i915_gem_object_is_inactive(obj))
3163 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3164
3165 return 0;
3166 }
3167
3168 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3169 enum i915_cache_level cache_level)
3170 {
3171 struct drm_device *dev = obj->base.dev;
3172 drm_i915_private_t *dev_priv = dev->dev_private;
3173 int ret;
3174
3175 if (obj->cache_level == cache_level)
3176 return 0;
3177
3178 if (obj->pin_count) {
3179 DRM_DEBUG("can not change the cache level of pinned objects\n");
3180 return -EBUSY;
3181 }
3182
3183 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3184 ret = i915_gem_object_unbind(obj);
3185 if (ret)
3186 return ret;
3187 }
3188
3189 if (obj->gtt_space) {
3190 ret = i915_gem_object_finish_gpu(obj);
3191 if (ret)
3192 return ret;
3193
3194 i915_gem_object_finish_gtt(obj);
3195
3196 /* Before SandyBridge, you could not use tiling or fence
3197 * registers with snooped memory, so relinquish any fences
3198 * currently pointing to our region in the aperture.
3199 */
3200 if (INTEL_INFO(dev)->gen < 6) {
3201 ret = i915_gem_object_put_fence(obj);
3202 if (ret)
3203 return ret;
3204 }
3205
3206 if (obj->has_global_gtt_mapping)
3207 i915_gem_gtt_bind_object(obj, cache_level);
3208 if (obj->has_aliasing_ppgtt_mapping)
3209 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3210 obj, cache_level);
3211
3212 obj->gtt_space->color = cache_level;
3213 }
3214
3215 if (cache_level == I915_CACHE_NONE) {
3216 u32 old_read_domains, old_write_domain;
3217
3218 /* If we're coming from LLC cached, then we haven't
3219 * actually been tracking whether the data is in the
3220 * CPU cache or not, since we only allow one bit set
3221 * in obj->write_domain and have been skipping the clflushes.
3222 * Just set it to the CPU cache for now.
3223 */
3224 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3225 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3226
3227 old_read_domains = obj->base.read_domains;
3228 old_write_domain = obj->base.write_domain;
3229
3230 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3231 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3232
3233 trace_i915_gem_object_change_domain(obj,
3234 old_read_domains,
3235 old_write_domain);
3236 }
3237
3238 obj->cache_level = cache_level;
3239 i915_gem_verify_gtt(dev);
3240 return 0;
3241 }
3242
3243 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3244 struct drm_file *file)
3245 {
3246 struct drm_i915_gem_caching *args = data;
3247 struct drm_i915_gem_object *obj;
3248 int ret;
3249
3250 ret = i915_mutex_lock_interruptible(dev);
3251 if (ret)
3252 return ret;
3253
3254 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3255 if (&obj->base == NULL) {
3256 ret = -ENOENT;
3257 goto unlock;
3258 }
3259
3260 args->caching = obj->cache_level != I915_CACHE_NONE;
3261
3262 drm_gem_object_unreference(&obj->base);
3263 unlock:
3264 mutex_unlock(&dev->struct_mutex);
3265 return ret;
3266 }
3267
3268 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3269 struct drm_file *file)
3270 {
3271 struct drm_i915_gem_caching *args = data;
3272 struct drm_i915_gem_object *obj;
3273 enum i915_cache_level level;
3274 int ret;
3275
3276 switch (args->caching) {
3277 case I915_CACHING_NONE:
3278 level = I915_CACHE_NONE;
3279 break;
3280 case I915_CACHING_CACHED:
3281 level = I915_CACHE_LLC;
3282 break;
3283 default:
3284 return -EINVAL;
3285 }
3286
3287 ret = i915_mutex_lock_interruptible(dev);
3288 if (ret)
3289 return ret;
3290
3291 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3292 if (&obj->base == NULL) {
3293 ret = -ENOENT;
3294 goto unlock;
3295 }
3296
3297 ret = i915_gem_object_set_cache_level(obj, level);
3298
3299 drm_gem_object_unreference(&obj->base);
3300 unlock:
3301 mutex_unlock(&dev->struct_mutex);
3302 return ret;
3303 }
3304
3305 /*
3306 * Prepare buffer for display plane (scanout, cursors, etc).
3307 * Can be called from an uninterruptible phase (modesetting) and allows
3308 * any flushes to be pipelined (for pageflips).
3309 */
3310 int
3311 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3312 u32 alignment,
3313 struct intel_ring_buffer *pipelined)
3314 {
3315 u32 old_read_domains, old_write_domain;
3316 int ret;
3317
3318 if (pipelined != obj->ring) {
3319 ret = i915_gem_object_sync(obj, pipelined);
3320 if (ret)
3321 return ret;
3322 }
3323
3324 /* The display engine is not coherent with the LLC cache on gen6. As
3325 * a result, we make sure that the pinning that is about to occur is
3326 * done with uncached PTEs. This is lowest common denominator for all
3327 * chipsets.
3328 *
3329 * However for gen6+, we could do better by using the GFDT bit instead
3330 * of uncaching, which would allow us to flush all the LLC-cached data
3331 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3332 */
3333 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3334 if (ret)
3335 return ret;
3336
3337 /* As the user may map the buffer once pinned in the display plane
3338 * (e.g. libkms for the bootup splash), we have to ensure that we
3339 * always use map_and_fenceable for all scanout buffers.
3340 */
3341 ret = i915_gem_object_pin(obj, alignment, true, false);
3342 if (ret)
3343 return ret;
3344
3345 i915_gem_object_flush_cpu_write_domain(obj);
3346
3347 old_write_domain = obj->base.write_domain;
3348 old_read_domains = obj->base.read_domains;
3349
3350 /* It should now be out of any other write domains, and we can update
3351 * the domain values for our changes.
3352 */
3353 obj->base.write_domain = 0;
3354 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3355
3356 trace_i915_gem_object_change_domain(obj,
3357 old_read_domains,
3358 old_write_domain);
3359
3360 return 0;
3361 }
3362
3363 int
3364 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3365 {
3366 int ret;
3367
3368 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3369 return 0;
3370
3371 ret = i915_gem_object_wait_rendering(obj, false);
3372 if (ret)
3373 return ret;
3374
3375 /* Ensure that we invalidate the GPU's caches and TLBs. */
3376 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3377 return 0;
3378 }
3379
3380 /**
3381 * Moves a single object to the CPU read, and possibly write domain.
3382 *
3383 * This function returns when the move is complete, including waiting on
3384 * flushes to occur.
3385 */
3386 int
3387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3388 {
3389 uint32_t old_write_domain, old_read_domains;
3390 int ret;
3391
3392 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3393 return 0;
3394
3395 ret = i915_gem_object_wait_rendering(obj, !write);
3396 if (ret)
3397 return ret;
3398
3399 i915_gem_object_flush_gtt_write_domain(obj);
3400
3401 old_write_domain = obj->base.write_domain;
3402 old_read_domains = obj->base.read_domains;
3403
3404 /* Flush the CPU cache if it's still invalid. */
3405 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3406 i915_gem_clflush_object(obj);
3407
3408 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3409 }
3410
3411 /* It should now be out of any other write domains, and we can update
3412 * the domain values for our changes.
3413 */
3414 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3415
3416 /* If we're writing through the CPU, then the GPU read domains will
3417 * need to be invalidated at next use.
3418 */
3419 if (write) {
3420 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3422 }
3423
3424 trace_i915_gem_object_change_domain(obj,
3425 old_read_domains,
3426 old_write_domain);
3427
3428 return 0;
3429 }
3430
3431 /* Throttle our rendering by waiting until the ring has completed our requests
3432 * emitted over 20 msec ago.
3433 *
3434 * Note that if we were to use the current jiffies each time around the loop,
3435 * we wouldn't escape the function with any frames outstanding if the time to
3436 * render a frame was over 20ms.
3437 *
3438 * This should get us reasonable parallelism between CPU and GPU but also
3439 * relatively low latency when blocking on a particular request to finish.
3440 */
3441 static int
3442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3443 {
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 struct drm_i915_file_private *file_priv = file->driver_priv;
3446 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3447 struct drm_i915_gem_request *request;
3448 struct intel_ring_buffer *ring = NULL;
3449 unsigned reset_counter;
3450 u32 seqno = 0;
3451 int ret;
3452
3453 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3454 if (ret)
3455 return ret;
3456
3457 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3458 if (ret)
3459 return ret;
3460
3461 spin_lock(&file_priv->mm.lock);
3462 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3463 if (time_after_eq(request->emitted_jiffies, recent_enough))
3464 break;
3465
3466 ring = request->ring;
3467 seqno = request->seqno;
3468 }
3469 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3470 spin_unlock(&file_priv->mm.lock);
3471
3472 if (seqno == 0)
3473 return 0;
3474
3475 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3476 if (ret == 0)
3477 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3478
3479 return ret;
3480 }
3481
3482 int
3483 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3484 uint32_t alignment,
3485 bool map_and_fenceable,
3486 bool nonblocking)
3487 {
3488 int ret;
3489
3490 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3491 return -EBUSY;
3492
3493 if (obj->gtt_space != NULL) {
3494 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3495 (map_and_fenceable && !obj->map_and_fenceable)) {
3496 WARN(obj->pin_count,
3497 "bo is already pinned with incorrect alignment:"
3498 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3499 " obj->map_and_fenceable=%d\n",
3500 obj->gtt_offset, alignment,
3501 map_and_fenceable,
3502 obj->map_and_fenceable);
3503 ret = i915_gem_object_unbind(obj);
3504 if (ret)
3505 return ret;
3506 }
3507 }
3508
3509 if (obj->gtt_space == NULL) {
3510 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3511
3512 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3513 map_and_fenceable,
3514 nonblocking);
3515 if (ret)
3516 return ret;
3517
3518 if (!dev_priv->mm.aliasing_ppgtt)
3519 i915_gem_gtt_bind_object(obj, obj->cache_level);
3520 }
3521
3522 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3523 i915_gem_gtt_bind_object(obj, obj->cache_level);
3524
3525 obj->pin_count++;
3526 obj->pin_mappable |= map_and_fenceable;
3527
3528 return 0;
3529 }
3530
3531 void
3532 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3533 {
3534 BUG_ON(obj->pin_count == 0);
3535 BUG_ON(obj->gtt_space == NULL);
3536
3537 if (--obj->pin_count == 0)
3538 obj->pin_mappable = false;
3539 }
3540
3541 int
3542 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file)
3544 {
3545 struct drm_i915_gem_pin *args = data;
3546 struct drm_i915_gem_object *obj;
3547 int ret;
3548
3549 ret = i915_mutex_lock_interruptible(dev);
3550 if (ret)
3551 return ret;
3552
3553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3554 if (&obj->base == NULL) {
3555 ret = -ENOENT;
3556 goto unlock;
3557 }
3558
3559 if (obj->madv != I915_MADV_WILLNEED) {
3560 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3561 ret = -EINVAL;
3562 goto out;
3563 }
3564
3565 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3566 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3567 args->handle);
3568 ret = -EINVAL;
3569 goto out;
3570 }
3571
3572 if (obj->user_pin_count == 0) {
3573 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3574 if (ret)
3575 goto out;
3576 }
3577
3578 obj->user_pin_count++;
3579 obj->pin_filp = file;
3580
3581 /* XXX - flush the CPU caches for pinned objects
3582 * as the X server doesn't manage domains yet
3583 */
3584 i915_gem_object_flush_cpu_write_domain(obj);
3585 args->offset = obj->gtt_offset;
3586 out:
3587 drm_gem_object_unreference(&obj->base);
3588 unlock:
3589 mutex_unlock(&dev->struct_mutex);
3590 return ret;
3591 }
3592
3593 int
3594 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3595 struct drm_file *file)
3596 {
3597 struct drm_i915_gem_pin *args = data;
3598 struct drm_i915_gem_object *obj;
3599 int ret;
3600
3601 ret = i915_mutex_lock_interruptible(dev);
3602 if (ret)
3603 return ret;
3604
3605 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606 if (&obj->base == NULL) {
3607 ret = -ENOENT;
3608 goto unlock;
3609 }
3610
3611 if (obj->pin_filp != file) {
3612 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3613 args->handle);
3614 ret = -EINVAL;
3615 goto out;
3616 }
3617 obj->user_pin_count--;
3618 if (obj->user_pin_count == 0) {
3619 obj->pin_filp = NULL;
3620 i915_gem_object_unpin(obj);
3621 }
3622
3623 out:
3624 drm_gem_object_unreference(&obj->base);
3625 unlock:
3626 mutex_unlock(&dev->struct_mutex);
3627 return ret;
3628 }
3629
3630 int
3631 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3632 struct drm_file *file)
3633 {
3634 struct drm_i915_gem_busy *args = data;
3635 struct drm_i915_gem_object *obj;
3636 int ret;
3637
3638 ret = i915_mutex_lock_interruptible(dev);
3639 if (ret)
3640 return ret;
3641
3642 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3643 if (&obj->base == NULL) {
3644 ret = -ENOENT;
3645 goto unlock;
3646 }
3647
3648 /* Count all active objects as busy, even if they are currently not used
3649 * by the gpu. Users of this interface expect objects to eventually
3650 * become non-busy without any further actions, therefore emit any
3651 * necessary flushes here.
3652 */
3653 ret = i915_gem_object_flush_active(obj);
3654
3655 args->busy = obj->active;
3656 if (obj->ring) {
3657 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3658 args->busy |= intel_ring_flag(obj->ring) << 16;
3659 }
3660
3661 drm_gem_object_unreference(&obj->base);
3662 unlock:
3663 mutex_unlock(&dev->struct_mutex);
3664 return ret;
3665 }
3666
3667 int
3668 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3669 struct drm_file *file_priv)
3670 {
3671 return i915_gem_ring_throttle(dev, file_priv);
3672 }
3673
3674 int
3675 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3676 struct drm_file *file_priv)
3677 {
3678 struct drm_i915_gem_madvise *args = data;
3679 struct drm_i915_gem_object *obj;
3680 int ret;
3681
3682 switch (args->madv) {
3683 case I915_MADV_DONTNEED:
3684 case I915_MADV_WILLNEED:
3685 break;
3686 default:
3687 return -EINVAL;
3688 }
3689
3690 ret = i915_mutex_lock_interruptible(dev);
3691 if (ret)
3692 return ret;
3693
3694 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3695 if (&obj->base == NULL) {
3696 ret = -ENOENT;
3697 goto unlock;
3698 }
3699
3700 if (obj->pin_count) {
3701 ret = -EINVAL;
3702 goto out;
3703 }
3704
3705 if (obj->madv != __I915_MADV_PURGED)
3706 obj->madv = args->madv;
3707
3708 /* if the object is no longer attached, discard its backing storage */
3709 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3710 i915_gem_object_truncate(obj);
3711
3712 args->retained = obj->madv != __I915_MADV_PURGED;
3713
3714 out:
3715 drm_gem_object_unreference(&obj->base);
3716 unlock:
3717 mutex_unlock(&dev->struct_mutex);
3718 return ret;
3719 }
3720
3721 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3722 const struct drm_i915_gem_object_ops *ops)
3723 {
3724 INIT_LIST_HEAD(&obj->mm_list);
3725 INIT_LIST_HEAD(&obj->gtt_list);
3726 INIT_LIST_HEAD(&obj->ring_list);
3727 INIT_LIST_HEAD(&obj->exec_list);
3728
3729 obj->ops = ops;
3730
3731 obj->fence_reg = I915_FENCE_REG_NONE;
3732 obj->madv = I915_MADV_WILLNEED;
3733 /* Avoid an unnecessary call to unbind on the first bind. */
3734 obj->map_and_fenceable = true;
3735
3736 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3737 }
3738
3739 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3740 .get_pages = i915_gem_object_get_pages_gtt,
3741 .put_pages = i915_gem_object_put_pages_gtt,
3742 };
3743
3744 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3745 size_t size)
3746 {
3747 struct drm_i915_gem_object *obj;
3748 struct address_space *mapping;
3749 gfp_t mask;
3750
3751 obj = i915_gem_object_alloc(dev);
3752 if (obj == NULL)
3753 return NULL;
3754
3755 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3756 i915_gem_object_free(obj);
3757 return NULL;
3758 }
3759
3760 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3761 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3762 /* 965gm cannot relocate objects above 4GiB. */
3763 mask &= ~__GFP_HIGHMEM;
3764 mask |= __GFP_DMA32;
3765 }
3766
3767 mapping = file_inode(obj->base.filp)->i_mapping;
3768 mapping_set_gfp_mask(mapping, mask);
3769
3770 i915_gem_object_init(obj, &i915_gem_object_ops);
3771
3772 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3773 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3774
3775 if (HAS_LLC(dev)) {
3776 /* On some devices, we can have the GPU use the LLC (the CPU
3777 * cache) for about a 10% performance improvement
3778 * compared to uncached. Graphics requests other than
3779 * display scanout are coherent with the CPU in
3780 * accessing this cache. This means in this mode we
3781 * don't need to clflush on the CPU side, and on the
3782 * GPU side we only need to flush internal caches to
3783 * get data visible to the CPU.
3784 *
3785 * However, we maintain the display planes as UC, and so
3786 * need to rebind when first used as such.
3787 */
3788 obj->cache_level = I915_CACHE_LLC;
3789 } else
3790 obj->cache_level = I915_CACHE_NONE;
3791
3792 return obj;
3793 }
3794
3795 int i915_gem_init_object(struct drm_gem_object *obj)
3796 {
3797 BUG();
3798
3799 return 0;
3800 }
3801
3802 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3803 {
3804 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3805 struct drm_device *dev = obj->base.dev;
3806 drm_i915_private_t *dev_priv = dev->dev_private;
3807
3808 trace_i915_gem_object_destroy(obj);
3809
3810 if (obj->phys_obj)
3811 i915_gem_detach_phys_object(dev, obj);
3812
3813 obj->pin_count = 0;
3814 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3815 bool was_interruptible;
3816
3817 was_interruptible = dev_priv->mm.interruptible;
3818 dev_priv->mm.interruptible = false;
3819
3820 WARN_ON(i915_gem_object_unbind(obj));
3821
3822 dev_priv->mm.interruptible = was_interruptible;
3823 }
3824
3825 obj->pages_pin_count = 0;
3826 i915_gem_object_put_pages(obj);
3827 i915_gem_object_free_mmap_offset(obj);
3828 i915_gem_object_release_stolen(obj);
3829
3830 BUG_ON(obj->pages);
3831
3832 if (obj->base.import_attach)
3833 drm_prime_gem_destroy(&obj->base, NULL);
3834
3835 drm_gem_object_release(&obj->base);
3836 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3837
3838 kfree(obj->bit_17);
3839 i915_gem_object_free(obj);
3840 }
3841
3842 int
3843 i915_gem_idle(struct drm_device *dev)
3844 {
3845 drm_i915_private_t *dev_priv = dev->dev_private;
3846 int ret;
3847
3848 mutex_lock(&dev->struct_mutex);
3849
3850 if (dev_priv->mm.suspended) {
3851 mutex_unlock(&dev->struct_mutex);
3852 return 0;
3853 }
3854
3855 ret = i915_gpu_idle(dev);
3856 if (ret) {
3857 mutex_unlock(&dev->struct_mutex);
3858 return ret;
3859 }
3860 i915_gem_retire_requests(dev);
3861
3862 /* Under UMS, be paranoid and evict. */
3863 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3864 i915_gem_evict_everything(dev);
3865
3866 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3867 * We need to replace this with a semaphore, or something.
3868 * And not confound mm.suspended!
3869 */
3870 dev_priv->mm.suspended = 1;
3871 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3872
3873 i915_kernel_lost_context(dev);
3874 i915_gem_cleanup_ringbuffer(dev);
3875
3876 mutex_unlock(&dev->struct_mutex);
3877
3878 /* Cancel the retire work handler, which should be idle now. */
3879 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3880
3881 return 0;
3882 }
3883
3884 void i915_gem_l3_remap(struct drm_device *dev)
3885 {
3886 drm_i915_private_t *dev_priv = dev->dev_private;
3887 u32 misccpctl;
3888 int i;
3889
3890 if (!HAS_L3_GPU_CACHE(dev))
3891 return;
3892
3893 if (!dev_priv->l3_parity.remap_info)
3894 return;
3895
3896 misccpctl = I915_READ(GEN7_MISCCPCTL);
3897 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3898 POSTING_READ(GEN7_MISCCPCTL);
3899
3900 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3901 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3902 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3903 DRM_DEBUG("0x%x was already programmed to %x\n",
3904 GEN7_L3LOG_BASE + i, remap);
3905 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3906 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3907 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3908 }
3909
3910 /* Make sure all the writes land before disabling dop clock gating */
3911 POSTING_READ(GEN7_L3LOG_BASE);
3912
3913 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3914 }
3915
3916 void i915_gem_init_swizzling(struct drm_device *dev)
3917 {
3918 drm_i915_private_t *dev_priv = dev->dev_private;
3919
3920 if (INTEL_INFO(dev)->gen < 5 ||
3921 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3922 return;
3923
3924 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3925 DISP_TILE_SURFACE_SWIZZLING);
3926
3927 if (IS_GEN5(dev))
3928 return;
3929
3930 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3931 if (IS_GEN6(dev))
3932 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3933 else if (IS_GEN7(dev))
3934 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3935 else
3936 BUG();
3937 }
3938
3939 static bool
3940 intel_enable_blt(struct drm_device *dev)
3941 {
3942 if (!HAS_BLT(dev))
3943 return false;
3944
3945 /* The blitter was dysfunctional on early prototypes */
3946 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3947 DRM_INFO("BLT not supported on this pre-production hardware;"
3948 " graphics performance will be degraded.\n");
3949 return false;
3950 }
3951
3952 return true;
3953 }
3954
3955 static int i915_gem_init_rings(struct drm_device *dev)
3956 {
3957 struct drm_i915_private *dev_priv = dev->dev_private;
3958 int ret;
3959
3960 ret = intel_init_render_ring_buffer(dev);
3961 if (ret)
3962 return ret;
3963
3964 if (HAS_BSD(dev)) {
3965 ret = intel_init_bsd_ring_buffer(dev);
3966 if (ret)
3967 goto cleanup_render_ring;
3968 }
3969
3970 if (intel_enable_blt(dev)) {
3971 ret = intel_init_blt_ring_buffer(dev);
3972 if (ret)
3973 goto cleanup_bsd_ring;
3974 }
3975
3976 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3977 if (ret)
3978 goto cleanup_blt_ring;
3979
3980 return 0;
3981
3982 cleanup_blt_ring:
3983 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3984 cleanup_bsd_ring:
3985 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3986 cleanup_render_ring:
3987 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3988
3989 return ret;
3990 }
3991
3992 int
3993 i915_gem_init_hw(struct drm_device *dev)
3994 {
3995 drm_i915_private_t *dev_priv = dev->dev_private;
3996 int ret;
3997
3998 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3999 return -EIO;
4000
4001 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4002 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4003
4004 if (HAS_PCH_NOP(dev)) {
4005 u32 temp = I915_READ(GEN7_MSG_CTL);
4006 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4007 I915_WRITE(GEN7_MSG_CTL, temp);
4008 }
4009
4010 i915_gem_l3_remap(dev);
4011
4012 i915_gem_init_swizzling(dev);
4013
4014 ret = i915_gem_init_rings(dev);
4015 if (ret)
4016 return ret;
4017
4018 /*
4019 * XXX: There was some w/a described somewhere suggesting loading
4020 * contexts before PPGTT.
4021 */
4022 i915_gem_context_init(dev);
4023 if (dev_priv->mm.aliasing_ppgtt) {
4024 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4025 if (ret) {
4026 i915_gem_cleanup_aliasing_ppgtt(dev);
4027 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4028 }
4029 }
4030
4031 return 0;
4032 }
4033
4034 int i915_gem_init(struct drm_device *dev)
4035 {
4036 struct drm_i915_private *dev_priv = dev->dev_private;
4037 int ret;
4038
4039 mutex_lock(&dev->struct_mutex);
4040
4041 if (IS_VALLEYVIEW(dev)) {
4042 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4043 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4044 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4045 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4046 }
4047
4048 i915_gem_init_global_gtt(dev);
4049
4050 ret = i915_gem_init_hw(dev);
4051 mutex_unlock(&dev->struct_mutex);
4052 if (ret) {
4053 i915_gem_cleanup_aliasing_ppgtt(dev);
4054 return ret;
4055 }
4056
4057 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4058 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4059 dev_priv->dri1.allow_batchbuffer = 1;
4060 return 0;
4061 }
4062
4063 void
4064 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4065 {
4066 drm_i915_private_t *dev_priv = dev->dev_private;
4067 struct intel_ring_buffer *ring;
4068 int i;
4069
4070 for_each_ring(ring, dev_priv, i)
4071 intel_cleanup_ring_buffer(ring);
4072 }
4073
4074 int
4075 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4076 struct drm_file *file_priv)
4077 {
4078 drm_i915_private_t *dev_priv = dev->dev_private;
4079 int ret;
4080
4081 if (drm_core_check_feature(dev, DRIVER_MODESET))
4082 return 0;
4083
4084 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4085 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4086 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4087 }
4088
4089 mutex_lock(&dev->struct_mutex);
4090 dev_priv->mm.suspended = 0;
4091
4092 ret = i915_gem_init_hw(dev);
4093 if (ret != 0) {
4094 mutex_unlock(&dev->struct_mutex);
4095 return ret;
4096 }
4097
4098 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4099 mutex_unlock(&dev->struct_mutex);
4100
4101 ret = drm_irq_install(dev);
4102 if (ret)
4103 goto cleanup_ringbuffer;
4104
4105 return 0;
4106
4107 cleanup_ringbuffer:
4108 mutex_lock(&dev->struct_mutex);
4109 i915_gem_cleanup_ringbuffer(dev);
4110 dev_priv->mm.suspended = 1;
4111 mutex_unlock(&dev->struct_mutex);
4112
4113 return ret;
4114 }
4115
4116 int
4117 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4118 struct drm_file *file_priv)
4119 {
4120 if (drm_core_check_feature(dev, DRIVER_MODESET))
4121 return 0;
4122
4123 drm_irq_uninstall(dev);
4124 return i915_gem_idle(dev);
4125 }
4126
4127 void
4128 i915_gem_lastclose(struct drm_device *dev)
4129 {
4130 int ret;
4131
4132 if (drm_core_check_feature(dev, DRIVER_MODESET))
4133 return;
4134
4135 ret = i915_gem_idle(dev);
4136 if (ret)
4137 DRM_ERROR("failed to idle hardware: %d\n", ret);
4138 }
4139
4140 static void
4141 init_ring_lists(struct intel_ring_buffer *ring)
4142 {
4143 INIT_LIST_HEAD(&ring->active_list);
4144 INIT_LIST_HEAD(&ring->request_list);
4145 }
4146
4147 void
4148 i915_gem_load(struct drm_device *dev)
4149 {
4150 drm_i915_private_t *dev_priv = dev->dev_private;
4151 int i;
4152
4153 dev_priv->slab =
4154 kmem_cache_create("i915_gem_object",
4155 sizeof(struct drm_i915_gem_object), 0,
4156 SLAB_HWCACHE_ALIGN,
4157 NULL);
4158
4159 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4160 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4161 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4162 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4163 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4164 for (i = 0; i < I915_NUM_RINGS; i++)
4165 init_ring_lists(&dev_priv->ring[i]);
4166 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4167 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4168 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4169 i915_gem_retire_work_handler);
4170 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4171
4172 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4173 if (IS_GEN3(dev)) {
4174 I915_WRITE(MI_ARB_STATE,
4175 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4176 }
4177
4178 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4179
4180 /* Old X drivers will take 0-2 for front, back, depth buffers */
4181 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4182 dev_priv->fence_reg_start = 3;
4183
4184 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4185 dev_priv->num_fence_regs = 32;
4186 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4187 dev_priv->num_fence_regs = 16;
4188 else
4189 dev_priv->num_fence_regs = 8;
4190
4191 /* Initialize fence registers to zero */
4192 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4193 i915_gem_restore_fences(dev);
4194
4195 i915_gem_detect_bit_6_swizzle(dev);
4196 init_waitqueue_head(&dev_priv->pending_flip_queue);
4197
4198 dev_priv->mm.interruptible = true;
4199
4200 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202 register_shrinker(&dev_priv->mm.inactive_shrinker);
4203 }
4204
4205 /*
4206 * Create a physically contiguous memory object for this object
4207 * e.g. for cursor + overlay regs
4208 */
4209 static int i915_gem_init_phys_object(struct drm_device *dev,
4210 int id, int size, int align)
4211 {
4212 drm_i915_private_t *dev_priv = dev->dev_private;
4213 struct drm_i915_gem_phys_object *phys_obj;
4214 int ret;
4215
4216 if (dev_priv->mm.phys_objs[id - 1] || !size)
4217 return 0;
4218
4219 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4220 if (!phys_obj)
4221 return -ENOMEM;
4222
4223 phys_obj->id = id;
4224
4225 phys_obj->handle = drm_pci_alloc(dev, size, align);
4226 if (!phys_obj->handle) {
4227 ret = -ENOMEM;
4228 goto kfree_obj;
4229 }
4230 #ifdef CONFIG_X86
4231 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233
4234 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235
4236 return 0;
4237 kfree_obj:
4238 kfree(phys_obj);
4239 return ret;
4240 }
4241
4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4243 {
4244 drm_i915_private_t *dev_priv = dev->dev_private;
4245 struct drm_i915_gem_phys_object *phys_obj;
4246
4247 if (!dev_priv->mm.phys_objs[id - 1])
4248 return;
4249
4250 phys_obj = dev_priv->mm.phys_objs[id - 1];
4251 if (phys_obj->cur_obj) {
4252 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253 }
4254
4255 #ifdef CONFIG_X86
4256 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257 #endif
4258 drm_pci_free(dev, phys_obj->handle);
4259 kfree(phys_obj);
4260 dev_priv->mm.phys_objs[id - 1] = NULL;
4261 }
4262
4263 void i915_gem_free_all_phys_object(struct drm_device *dev)
4264 {
4265 int i;
4266
4267 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4268 i915_gem_free_phys_object(dev, i);
4269 }
4270
4271 void i915_gem_detach_phys_object(struct drm_device *dev,
4272 struct drm_i915_gem_object *obj)
4273 {
4274 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4275 char *vaddr;
4276 int i;
4277 int page_count;
4278
4279 if (!obj->phys_obj)
4280 return;
4281 vaddr = obj->phys_obj->handle->vaddr;
4282
4283 page_count = obj->base.size / PAGE_SIZE;
4284 for (i = 0; i < page_count; i++) {
4285 struct page *page = shmem_read_mapping_page(mapping, i);
4286 if (!IS_ERR(page)) {
4287 char *dst = kmap_atomic(page);
4288 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289 kunmap_atomic(dst);
4290
4291 drm_clflush_pages(&page, 1);
4292
4293 set_page_dirty(page);
4294 mark_page_accessed(page);
4295 page_cache_release(page);
4296 }
4297 }
4298 i915_gem_chipset_flush(dev);
4299
4300 obj->phys_obj->cur_obj = NULL;
4301 obj->phys_obj = NULL;
4302 }
4303
4304 int
4305 i915_gem_attach_phys_object(struct drm_device *dev,
4306 struct drm_i915_gem_object *obj,
4307 int id,
4308 int align)
4309 {
4310 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4311 drm_i915_private_t *dev_priv = dev->dev_private;
4312 int ret = 0;
4313 int page_count;
4314 int i;
4315
4316 if (id > I915_MAX_PHYS_OBJECT)
4317 return -EINVAL;
4318
4319 if (obj->phys_obj) {
4320 if (obj->phys_obj->id == id)
4321 return 0;
4322 i915_gem_detach_phys_object(dev, obj);
4323 }
4324
4325 /* create a new object */
4326 if (!dev_priv->mm.phys_objs[id - 1]) {
4327 ret = i915_gem_init_phys_object(dev, id,
4328 obj->base.size, align);
4329 if (ret) {
4330 DRM_ERROR("failed to init phys object %d size: %zu\n",
4331 id, obj->base.size);
4332 return ret;
4333 }
4334 }
4335
4336 /* bind to the object */
4337 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338 obj->phys_obj->cur_obj = obj;
4339
4340 page_count = obj->base.size / PAGE_SIZE;
4341
4342 for (i = 0; i < page_count; i++) {
4343 struct page *page;
4344 char *dst, *src;
4345
4346 page = shmem_read_mapping_page(mapping, i);
4347 if (IS_ERR(page))
4348 return PTR_ERR(page);
4349
4350 src = kmap_atomic(page);
4351 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4352 memcpy(dst, src, PAGE_SIZE);
4353 kunmap_atomic(src);
4354
4355 mark_page_accessed(page);
4356 page_cache_release(page);
4357 }
4358
4359 return 0;
4360 }
4361
4362 static int
4363 i915_gem_phys_pwrite(struct drm_device *dev,
4364 struct drm_i915_gem_object *obj,
4365 struct drm_i915_gem_pwrite *args,
4366 struct drm_file *file_priv)
4367 {
4368 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4369 char __user *user_data = to_user_ptr(args->data_ptr);
4370
4371 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372 unsigned long unwritten;
4373
4374 /* The physical object once assigned is fixed for the lifetime
4375 * of the obj, so we can safely drop the lock and continue
4376 * to access vaddr.
4377 */
4378 mutex_unlock(&dev->struct_mutex);
4379 unwritten = copy_from_user(vaddr, user_data, args->size);
4380 mutex_lock(&dev->struct_mutex);
4381 if (unwritten)
4382 return -EFAULT;
4383 }
4384
4385 i915_gem_chipset_flush(dev);
4386 return 0;
4387 }
4388
4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4390 {
4391 struct drm_i915_file_private *file_priv = file->driver_priv;
4392
4393 /* Clean up our request list when the client is going away, so that
4394 * later retire_requests won't dereference our soon-to-be-gone
4395 * file_priv.
4396 */
4397 spin_lock(&file_priv->mm.lock);
4398 while (!list_empty(&file_priv->mm.request_list)) {
4399 struct drm_i915_gem_request *request;
4400
4401 request = list_first_entry(&file_priv->mm.request_list,
4402 struct drm_i915_gem_request,
4403 client_list);
4404 list_del(&request->client_list);
4405 request->file_priv = NULL;
4406 }
4407 spin_unlock(&file_priv->mm.lock);
4408 }
4409
4410 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4411 {
4412 if (!mutex_is_locked(mutex))
4413 return false;
4414
4415 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4416 return mutex->owner == task;
4417 #else
4418 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4419 return false;
4420 #endif
4421 }
4422
4423 static int
4424 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4425 {
4426 struct drm_i915_private *dev_priv =
4427 container_of(shrinker,
4428 struct drm_i915_private,
4429 mm.inactive_shrinker);
4430 struct drm_device *dev = dev_priv->dev;
4431 struct drm_i915_gem_object *obj;
4432 int nr_to_scan = sc->nr_to_scan;
4433 bool unlock = true;
4434 int cnt;
4435
4436 if (!mutex_trylock(&dev->struct_mutex)) {
4437 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4438 return 0;
4439
4440 if (dev_priv->mm.shrinker_no_lock_stealing)
4441 return 0;
4442
4443 unlock = false;
4444 }
4445
4446 if (nr_to_scan) {
4447 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4448 if (nr_to_scan > 0)
4449 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4450 false);
4451 if (nr_to_scan > 0)
4452 i915_gem_shrink_all(dev_priv);
4453 }
4454
4455 cnt = 0;
4456 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4457 if (obj->pages_pin_count == 0)
4458 cnt += obj->base.size >> PAGE_SHIFT;
4459 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4460 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4461 cnt += obj->base.size >> PAGE_SHIFT;
4462
4463 if (unlock)
4464 mutex_unlock(&dev->struct_mutex);
4465 return cnt;
4466 }
This page took 0.144286 seconds and 5 git commands to generate.