a06974127f2202d897dc8199bfbaa2568da82b75
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = obj->gtt_offset + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 /**
1091 * Ensures that all rendering to the object has completed and the object is
1092 * safe to unbind from the GTT or access from the CPU.
1093 */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096 bool readonly)
1097 {
1098 struct intel_ring_buffer *ring = obj->ring;
1099 u32 seqno;
1100 int ret;
1101
1102 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103 if (seqno == 0)
1104 return 0;
1105
1106 ret = i915_wait_seqno(ring, seqno);
1107 if (ret)
1108 return ret;
1109
1110 i915_gem_retire_requests_ring(ring);
1111
1112 /* Manually manage the write flush as we may have not yet
1113 * retired the buffer.
1114 */
1115 if (obj->last_write_seqno &&
1116 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117 obj->last_write_seqno = 0;
1118 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125 * as the object state may change during this call.
1126 */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129 bool readonly)
1130 {
1131 struct drm_device *dev = obj->base.dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 struct intel_ring_buffer *ring = obj->ring;
1134 unsigned reset_counter;
1135 u32 seqno;
1136 int ret;
1137
1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 BUG_ON(!dev_priv->mm.interruptible);
1140
1141 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142 if (seqno == 0)
1143 return 0;
1144
1145 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146 if (ret)
1147 return ret;
1148
1149 ret = i915_gem_check_olr(ring, seqno);
1150 if (ret)
1151 return ret;
1152
1153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154 mutex_unlock(&dev->struct_mutex);
1155 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156 mutex_lock(&dev->struct_mutex);
1157
1158 i915_gem_retire_requests_ring(ring);
1159
1160 /* Manually manage the write flush as we may have not yet
1161 * retired the buffer.
1162 */
1163 if (obj->last_write_seqno &&
1164 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165 obj->last_write_seqno = 0;
1166 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167 }
1168
1169 return ret;
1170 }
1171
1172 /**
1173 * Called when user space prepares to use an object with the CPU, either
1174 * through the mmap ioctl's mapping or a GTT mapping.
1175 */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178 struct drm_file *file)
1179 {
1180 struct drm_i915_gem_set_domain *args = data;
1181 struct drm_i915_gem_object *obj;
1182 uint32_t read_domains = args->read_domains;
1183 uint32_t write_domain = args->write_domain;
1184 int ret;
1185
1186 /* Only handle setting domains to types used by the CPU. */
1187 if (write_domain & I915_GEM_GPU_DOMAINS)
1188 return -EINVAL;
1189
1190 if (read_domains & I915_GEM_GPU_DOMAINS)
1191 return -EINVAL;
1192
1193 /* Having something in the write domain implies it's in the read
1194 * domain, and only that read domain. Enforce that in the request.
1195 */
1196 if (write_domain != 0 && read_domains != write_domain)
1197 return -EINVAL;
1198
1199 ret = i915_mutex_lock_interruptible(dev);
1200 if (ret)
1201 return ret;
1202
1203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204 if (&obj->base == NULL) {
1205 ret = -ENOENT;
1206 goto unlock;
1207 }
1208
1209 /* Try to flush the object off the GPU without holding the lock.
1210 * We will repeat the flush holding the lock in the normal manner
1211 * to catch cases where we are gazumped.
1212 */
1213 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214 if (ret)
1215 goto unref;
1216
1217 if (read_domains & I915_GEM_DOMAIN_GTT) {
1218 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219
1220 /* Silently promote "you're not bound, there was nothing to do"
1221 * to success, since the client was just asking us to
1222 * make sure everything was done.
1223 */
1224 if (ret == -EINVAL)
1225 ret = 0;
1226 } else {
1227 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228 }
1229
1230 unref:
1231 drm_gem_object_unreference(&obj->base);
1232 unlock:
1233 mutex_unlock(&dev->struct_mutex);
1234 return ret;
1235 }
1236
1237 /**
1238 * Called when user space has done writes to this buffer
1239 */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242 struct drm_file *file)
1243 {
1244 struct drm_i915_gem_sw_finish *args = data;
1245 struct drm_i915_gem_object *obj;
1246 int ret = 0;
1247
1248 ret = i915_mutex_lock_interruptible(dev);
1249 if (ret)
1250 return ret;
1251
1252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253 if (&obj->base == NULL) {
1254 ret = -ENOENT;
1255 goto unlock;
1256 }
1257
1258 /* Pinned buffers may be scanout, so flush the cache */
1259 if (obj->pin_count)
1260 i915_gem_object_flush_cpu_write_domain(obj);
1261
1262 drm_gem_object_unreference(&obj->base);
1263 unlock:
1264 mutex_unlock(&dev->struct_mutex);
1265 return ret;
1266 }
1267
1268 /**
1269 * Maps the contents of an object, returning the address it is mapped
1270 * into.
1271 *
1272 * While the mapping holds a reference on the contents of the object, it doesn't
1273 * imply a ref on the object itself.
1274 */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277 struct drm_file *file)
1278 {
1279 struct drm_i915_gem_mmap *args = data;
1280 struct drm_gem_object *obj;
1281 unsigned long addr;
1282
1283 obj = drm_gem_object_lookup(dev, file, args->handle);
1284 if (obj == NULL)
1285 return -ENOENT;
1286
1287 /* prime objects have no backing filp to GEM mmap
1288 * pages from.
1289 */
1290 if (!obj->filp) {
1291 drm_gem_object_unreference_unlocked(obj);
1292 return -EINVAL;
1293 }
1294
1295 addr = vm_mmap(obj->filp, 0, args->size,
1296 PROT_READ | PROT_WRITE, MAP_SHARED,
1297 args->offset);
1298 drm_gem_object_unreference_unlocked(obj);
1299 if (IS_ERR((void *)addr))
1300 return addr;
1301
1302 args->addr_ptr = (uint64_t) addr;
1303
1304 return 0;
1305 }
1306
1307 /**
1308 * i915_gem_fault - fault a page into the GTT
1309 * vma: VMA in question
1310 * vmf: fault info
1311 *
1312 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313 * from userspace. The fault handler takes care of binding the object to
1314 * the GTT (if needed), allocating and programming a fence register (again,
1315 * only if needed based on whether the old reg is still valid or the object
1316 * is tiled) and inserting a new PTE into the faulting process.
1317 *
1318 * Note that the faulting process may involve evicting existing objects
1319 * from the GTT and/or fence registers to make room. So performance may
1320 * suffer if the GTT working set is large or there are few fence registers
1321 * left.
1322 */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326 struct drm_device *dev = obj->base.dev;
1327 drm_i915_private_t *dev_priv = dev->dev_private;
1328 pgoff_t page_offset;
1329 unsigned long pfn;
1330 int ret = 0;
1331 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332
1333 /* We don't use vmf->pgoff since that has the fake offset */
1334 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335 PAGE_SHIFT;
1336
1337 ret = i915_mutex_lock_interruptible(dev);
1338 if (ret)
1339 goto out;
1340
1341 trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
1343 /* Access to snoopable pages through the GTT is incoherent. */
1344 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345 ret = -EINVAL;
1346 goto unlock;
1347 }
1348
1349 /* Now bind it into the GTT if needed */
1350 ret = i915_gem_object_pin(obj, 0, true, false);
1351 if (ret)
1352 goto unlock;
1353
1354 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355 if (ret)
1356 goto unpin;
1357
1358 ret = i915_gem_object_get_fence(obj);
1359 if (ret)
1360 goto unpin;
1361
1362 obj->fault_mappable = true;
1363
1364 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365 page_offset;
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 i915_gem_object_unpin(obj);
1371 unlock:
1372 mutex_unlock(&dev->struct_mutex);
1373 out:
1374 switch (ret) {
1375 case -EIO:
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 return VM_FAULT_SIGBUS;
1381 case -EAGAIN:
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
1389 set_need_resched();
1390 case 0:
1391 case -ERESTARTSYS:
1392 case -EINTR:
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
1398 return VM_FAULT_NOPAGE;
1399 case -ENOMEM:
1400 return VM_FAULT_OOM;
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
1403 default:
1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 return VM_FAULT_SIGBUS;
1406 }
1407 }
1408
1409 /**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
1413 * Preserve the reservation of the mmapping with the DRM core code, but
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 if (!obj->fault_mappable)
1427 return;
1428
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
1433
1434 obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 uint32_t gtt_size;
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
1448 gtt_size = 1024*1024;
1449 else
1450 gtt_size = 512*1024;
1451
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
1454
1455 return gtt_size;
1456 }
1457
1458 /**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
1463 * potential fence register mapping.
1464 */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
1468 {
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 tiling_mode == I915_TILING_NONE)
1475 return 4096;
1476
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
1496 goto out;
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
1508 goto out;
1509
1510 i915_gem_shrink_all(dev_priv);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
1531 {
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct drm_i915_gem_object *obj;
1534 int ret;
1535
1536 ret = i915_mutex_lock_interruptible(dev);
1537 if (ret)
1538 return ret;
1539
1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 if (&obj->base == NULL) {
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
1545
1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 ret = -E2BIG;
1548 goto out;
1549 }
1550
1551 if (obj->madv != I915_MADV_WILLNEED) {
1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 ret = -EINVAL;
1554 goto out;
1555 }
1556
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
1560
1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564 drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 mutex_unlock(&dev->struct_mutex);
1567 return ret;
1568 }
1569
1570 /**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588 {
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 struct inode *inode;
1599
1600 i915_gem_object_free_mmap_offset(obj);
1601
1602 if (obj->base.filp == NULL)
1603 return;
1604
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
1610 inode = file_inode(obj->base.filp);
1611 shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613 obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 struct sg_page_iter sg_iter;
1626 int ret;
1627
1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
1640 if (i915_gem_object_needs_bit17_swizzle(obj))
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
1645
1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649 if (obj->dirty)
1650 set_page_dirty(page);
1651
1652 if (obj->madv == I915_MADV_WILLNEED)
1653 mark_page_accessed(page);
1654
1655 page_cache_release(page);
1656 }
1657 obj->dirty = 0;
1658
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668 if (obj->pages == NULL)
1669 return 0;
1670
1671 BUG_ON(obj->gtt_space);
1672
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
1679 list_del(&obj->gtt_list);
1680
1681 ops->put_pages(obj);
1682 obj->pages = NULL;
1683
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
1693 {
1694 struct drm_i915_gem_object *obj, *next;
1695 long count = 0;
1696
1697 list_for_each_entry_safe(obj, next,
1698 &dev_priv->mm.unbound_list,
1699 gtt_list) {
1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701 i915_gem_object_put_pages(obj) == 0) {
1702 count += obj->base.size >> PAGE_SHIFT;
1703 if (count >= target)
1704 return count;
1705 }
1706 }
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.inactive_list,
1710 mm_list) {
1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712 i915_gem_object_unbind(obj) == 0 &&
1713 i915_gem_object_put_pages(obj) == 0) {
1714 count += obj->base.size >> PAGE_SHIFT;
1715 if (count >= target)
1716 return count;
1717 }
1718 }
1719
1720 return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726 return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732 struct drm_i915_gem_object *obj, *next;
1733
1734 i915_gem_evict_everything(dev_priv->dev);
1735
1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1737 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 int page_count, i;
1745 struct address_space *mapping;
1746 struct sg_table *st;
1747 struct scatterlist *sg;
1748 struct sg_page_iter sg_iter;
1749 struct page *page;
1750 unsigned long last_pfn = 0; /* suppress gcc warning */
1751 gfp_t gfp;
1752
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
1764 page_count = obj->base.size / PAGE_SIZE;
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
1768 return -ENOMEM;
1769 }
1770
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
1776 mapping = file_inode(obj->base.filp)->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1804
1805 if (!i || page_to_pfn(page) != last_pfn + 1) {
1806 if (i)
1807 sg = sg_next(sg);
1808 st->nents++;
1809 sg_set_page(sg, page, PAGE_SIZE, 0);
1810 } else {
1811 sg->length += PAGE_SIZE;
1812 }
1813 last_pfn = page_to_pfn(page);
1814 }
1815
1816 sg_mark_end(sg);
1817 obj->pages = st;
1818
1819 if (i915_gem_object_needs_bit17_swizzle(obj))
1820 i915_gem_object_do_bit_17_swizzle(obj);
1821
1822 return 0;
1823
1824 err_pages:
1825 sg_mark_end(sg);
1826 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1827 page_cache_release(sg_page_iter_page(&sg_iter));
1828 sg_free_table(st);
1829 kfree(st);
1830 return PTR_ERR(page);
1831 }
1832
1833 /* Ensure that the associated pages are gathered from the backing storage
1834 * and pinned into our object. i915_gem_object_get_pages() may be called
1835 * multiple times before they are released by a single call to
1836 * i915_gem_object_put_pages() - once the pages are no longer referenced
1837 * either as a result of memory pressure (reaping pages under the shrinker)
1838 * or as the object is itself released.
1839 */
1840 int
1841 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1842 {
1843 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1844 const struct drm_i915_gem_object_ops *ops = obj->ops;
1845 int ret;
1846
1847 if (obj->pages)
1848 return 0;
1849
1850 if (obj->madv != I915_MADV_WILLNEED) {
1851 DRM_ERROR("Attempting to obtain a purgeable object\n");
1852 return -EINVAL;
1853 }
1854
1855 BUG_ON(obj->pages_pin_count);
1856
1857 ret = ops->get_pages(obj);
1858 if (ret)
1859 return ret;
1860
1861 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1862 return 0;
1863 }
1864
1865 void
1866 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1867 struct intel_ring_buffer *ring)
1868 {
1869 struct drm_device *dev = obj->base.dev;
1870 struct drm_i915_private *dev_priv = dev->dev_private;
1871 u32 seqno = intel_ring_get_seqno(ring);
1872
1873 BUG_ON(ring == NULL);
1874 obj->ring = ring;
1875
1876 /* Add a reference if we're newly entering the active list. */
1877 if (!obj->active) {
1878 drm_gem_object_reference(&obj->base);
1879 obj->active = 1;
1880 }
1881
1882 /* Move from whatever list we were on to the tail of execution. */
1883 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1884 list_move_tail(&obj->ring_list, &ring->active_list);
1885
1886 obj->last_read_seqno = seqno;
1887
1888 if (obj->fenced_gpu_access) {
1889 obj->last_fenced_seqno = seqno;
1890
1891 /* Bump MRU to take account of the delayed flush */
1892 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1893 struct drm_i915_fence_reg *reg;
1894
1895 reg = &dev_priv->fence_regs[obj->fence_reg];
1896 list_move_tail(&reg->lru_list,
1897 &dev_priv->mm.fence_list);
1898 }
1899 }
1900 }
1901
1902 static void
1903 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1904 {
1905 struct drm_device *dev = obj->base.dev;
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907
1908 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1909 BUG_ON(!obj->active);
1910
1911 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1912
1913 list_del_init(&obj->ring_list);
1914 obj->ring = NULL;
1915
1916 obj->last_read_seqno = 0;
1917 obj->last_write_seqno = 0;
1918 obj->base.write_domain = 0;
1919
1920 obj->last_fenced_seqno = 0;
1921 obj->fenced_gpu_access = false;
1922
1923 obj->active = 0;
1924 drm_gem_object_unreference(&obj->base);
1925
1926 WARN_ON(i915_verify_lists(dev));
1927 }
1928
1929 static int
1930 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1931 {
1932 struct drm_i915_private *dev_priv = dev->dev_private;
1933 struct intel_ring_buffer *ring;
1934 int ret, i, j;
1935
1936 /* Carefully retire all requests without writing to the rings */
1937 for_each_ring(ring, dev_priv, i) {
1938 ret = intel_ring_idle(ring);
1939 if (ret)
1940 return ret;
1941 }
1942 i915_gem_retire_requests(dev);
1943
1944 /* Finally reset hw state */
1945 for_each_ring(ring, dev_priv, i) {
1946 intel_ring_init_seqno(ring, seqno);
1947
1948 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1949 ring->sync_seqno[j] = 0;
1950 }
1951
1952 return 0;
1953 }
1954
1955 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1956 {
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 int ret;
1959
1960 if (seqno == 0)
1961 return -EINVAL;
1962
1963 /* HWS page needs to be set less than what we
1964 * will inject to ring
1965 */
1966 ret = i915_gem_init_seqno(dev, seqno - 1);
1967 if (ret)
1968 return ret;
1969
1970 /* Carefully set the last_seqno value so that wrap
1971 * detection still works
1972 */
1973 dev_priv->next_seqno = seqno;
1974 dev_priv->last_seqno = seqno - 1;
1975 if (dev_priv->last_seqno == 0)
1976 dev_priv->last_seqno--;
1977
1978 return 0;
1979 }
1980
1981 int
1982 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1983 {
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986 /* reserve 0 for non-seqno */
1987 if (dev_priv->next_seqno == 0) {
1988 int ret = i915_gem_init_seqno(dev, 0);
1989 if (ret)
1990 return ret;
1991
1992 dev_priv->next_seqno = 1;
1993 }
1994
1995 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1996 return 0;
1997 }
1998
1999 int
2000 i915_add_request(struct intel_ring_buffer *ring,
2001 struct drm_file *file,
2002 u32 *out_seqno)
2003 {
2004 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2005 struct drm_i915_gem_request *request;
2006 u32 request_ring_position;
2007 int was_empty;
2008 int ret;
2009
2010 /*
2011 * Emit any outstanding flushes - execbuf can fail to emit the flush
2012 * after having emitted the batchbuffer command. Hence we need to fix
2013 * things up similar to emitting the lazy request. The difference here
2014 * is that the flush _must_ happen before the next request, no matter
2015 * what.
2016 */
2017 ret = intel_ring_flush_all_caches(ring);
2018 if (ret)
2019 return ret;
2020
2021 request = kmalloc(sizeof(*request), GFP_KERNEL);
2022 if (request == NULL)
2023 return -ENOMEM;
2024
2025
2026 /* Record the position of the start of the request so that
2027 * should we detect the updated seqno part-way through the
2028 * GPU processing the request, we never over-estimate the
2029 * position of the head.
2030 */
2031 request_ring_position = intel_ring_get_tail(ring);
2032
2033 ret = ring->add_request(ring);
2034 if (ret) {
2035 kfree(request);
2036 return ret;
2037 }
2038
2039 request->seqno = intel_ring_get_seqno(ring);
2040 request->ring = ring;
2041 request->tail = request_ring_position;
2042 request->emitted_jiffies = jiffies;
2043 was_empty = list_empty(&ring->request_list);
2044 list_add_tail(&request->list, &ring->request_list);
2045 request->file_priv = NULL;
2046
2047 if (file) {
2048 struct drm_i915_file_private *file_priv = file->driver_priv;
2049
2050 spin_lock(&file_priv->mm.lock);
2051 request->file_priv = file_priv;
2052 list_add_tail(&request->client_list,
2053 &file_priv->mm.request_list);
2054 spin_unlock(&file_priv->mm.lock);
2055 }
2056
2057 trace_i915_gem_request_add(ring, request->seqno);
2058 ring->outstanding_lazy_request = 0;
2059
2060 if (!dev_priv->mm.suspended) {
2061 if (i915_enable_hangcheck) {
2062 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2063 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2064 }
2065 if (was_empty) {
2066 queue_delayed_work(dev_priv->wq,
2067 &dev_priv->mm.retire_work,
2068 round_jiffies_up_relative(HZ));
2069 intel_mark_busy(dev_priv->dev);
2070 }
2071 }
2072
2073 if (out_seqno)
2074 *out_seqno = request->seqno;
2075 return 0;
2076 }
2077
2078 static inline void
2079 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2080 {
2081 struct drm_i915_file_private *file_priv = request->file_priv;
2082
2083 if (!file_priv)
2084 return;
2085
2086 spin_lock(&file_priv->mm.lock);
2087 if (request->file_priv) {
2088 list_del(&request->client_list);
2089 request->file_priv = NULL;
2090 }
2091 spin_unlock(&file_priv->mm.lock);
2092 }
2093
2094 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2095 struct intel_ring_buffer *ring)
2096 {
2097 while (!list_empty(&ring->request_list)) {
2098 struct drm_i915_gem_request *request;
2099
2100 request = list_first_entry(&ring->request_list,
2101 struct drm_i915_gem_request,
2102 list);
2103
2104 list_del(&request->list);
2105 i915_gem_request_remove_from_client(request);
2106 kfree(request);
2107 }
2108
2109 while (!list_empty(&ring->active_list)) {
2110 struct drm_i915_gem_object *obj;
2111
2112 obj = list_first_entry(&ring->active_list,
2113 struct drm_i915_gem_object,
2114 ring_list);
2115
2116 i915_gem_object_move_to_inactive(obj);
2117 }
2118 }
2119
2120 void i915_gem_restore_fences(struct drm_device *dev)
2121 {
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 int i;
2124
2125 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2126 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2127 i915_gem_write_fence(dev, i, reg->obj);
2128 }
2129 }
2130
2131 void i915_gem_reset(struct drm_device *dev)
2132 {
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct drm_i915_gem_object *obj;
2135 struct intel_ring_buffer *ring;
2136 int i;
2137
2138 for_each_ring(ring, dev_priv, i)
2139 i915_gem_reset_ring_lists(dev_priv, ring);
2140
2141 /* Move everything out of the GPU domains to ensure we do any
2142 * necessary invalidation upon reuse.
2143 */
2144 list_for_each_entry(obj,
2145 &dev_priv->mm.inactive_list,
2146 mm_list)
2147 {
2148 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2149 }
2150
2151 i915_gem_restore_fences(dev);
2152 }
2153
2154 /**
2155 * This function clears the request list as sequence numbers are passed.
2156 */
2157 void
2158 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2159 {
2160 uint32_t seqno;
2161
2162 if (list_empty(&ring->request_list))
2163 return;
2164
2165 WARN_ON(i915_verify_lists(ring->dev));
2166
2167 seqno = ring->get_seqno(ring, true);
2168
2169 while (!list_empty(&ring->request_list)) {
2170 struct drm_i915_gem_request *request;
2171
2172 request = list_first_entry(&ring->request_list,
2173 struct drm_i915_gem_request,
2174 list);
2175
2176 if (!i915_seqno_passed(seqno, request->seqno))
2177 break;
2178
2179 trace_i915_gem_request_retire(ring, request->seqno);
2180 /* We know the GPU must have read the request to have
2181 * sent us the seqno + interrupt, so use the position
2182 * of tail of the request to update the last known position
2183 * of the GPU head.
2184 */
2185 ring->last_retired_head = request->tail;
2186
2187 list_del(&request->list);
2188 i915_gem_request_remove_from_client(request);
2189 kfree(request);
2190 }
2191
2192 /* Move any buffers on the active list that are no longer referenced
2193 * by the ringbuffer to the flushing/inactive lists as appropriate.
2194 */
2195 while (!list_empty(&ring->active_list)) {
2196 struct drm_i915_gem_object *obj;
2197
2198 obj = list_first_entry(&ring->active_list,
2199 struct drm_i915_gem_object,
2200 ring_list);
2201
2202 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2203 break;
2204
2205 i915_gem_object_move_to_inactive(obj);
2206 }
2207
2208 if (unlikely(ring->trace_irq_seqno &&
2209 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2210 ring->irq_put(ring);
2211 ring->trace_irq_seqno = 0;
2212 }
2213
2214 WARN_ON(i915_verify_lists(ring->dev));
2215 }
2216
2217 void
2218 i915_gem_retire_requests(struct drm_device *dev)
2219 {
2220 drm_i915_private_t *dev_priv = dev->dev_private;
2221 struct intel_ring_buffer *ring;
2222 int i;
2223
2224 for_each_ring(ring, dev_priv, i)
2225 i915_gem_retire_requests_ring(ring);
2226 }
2227
2228 static void
2229 i915_gem_retire_work_handler(struct work_struct *work)
2230 {
2231 drm_i915_private_t *dev_priv;
2232 struct drm_device *dev;
2233 struct intel_ring_buffer *ring;
2234 bool idle;
2235 int i;
2236
2237 dev_priv = container_of(work, drm_i915_private_t,
2238 mm.retire_work.work);
2239 dev = dev_priv->dev;
2240
2241 /* Come back later if the device is busy... */
2242 if (!mutex_trylock(&dev->struct_mutex)) {
2243 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2244 round_jiffies_up_relative(HZ));
2245 return;
2246 }
2247
2248 i915_gem_retire_requests(dev);
2249
2250 /* Send a periodic flush down the ring so we don't hold onto GEM
2251 * objects indefinitely.
2252 */
2253 idle = true;
2254 for_each_ring(ring, dev_priv, i) {
2255 if (ring->gpu_caches_dirty)
2256 i915_add_request(ring, NULL, NULL);
2257
2258 idle &= list_empty(&ring->request_list);
2259 }
2260
2261 if (!dev_priv->mm.suspended && !idle)
2262 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2263 round_jiffies_up_relative(HZ));
2264 if (idle)
2265 intel_mark_idle(dev);
2266
2267 mutex_unlock(&dev->struct_mutex);
2268 }
2269
2270 /**
2271 * Ensures that an object will eventually get non-busy by flushing any required
2272 * write domains, emitting any outstanding lazy request and retiring and
2273 * completed requests.
2274 */
2275 static int
2276 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2277 {
2278 int ret;
2279
2280 if (obj->active) {
2281 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2282 if (ret)
2283 return ret;
2284
2285 i915_gem_retire_requests_ring(obj->ring);
2286 }
2287
2288 return 0;
2289 }
2290
2291 /**
2292 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2293 * @DRM_IOCTL_ARGS: standard ioctl arguments
2294 *
2295 * Returns 0 if successful, else an error is returned with the remaining time in
2296 * the timeout parameter.
2297 * -ETIME: object is still busy after timeout
2298 * -ERESTARTSYS: signal interrupted the wait
2299 * -ENONENT: object doesn't exist
2300 * Also possible, but rare:
2301 * -EAGAIN: GPU wedged
2302 * -ENOMEM: damn
2303 * -ENODEV: Internal IRQ fail
2304 * -E?: The add request failed
2305 *
2306 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2307 * non-zero timeout parameter the wait ioctl will wait for the given number of
2308 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2309 * without holding struct_mutex the object may become re-busied before this
2310 * function completes. A similar but shorter * race condition exists in the busy
2311 * ioctl
2312 */
2313 int
2314 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2315 {
2316 drm_i915_private_t *dev_priv = dev->dev_private;
2317 struct drm_i915_gem_wait *args = data;
2318 struct drm_i915_gem_object *obj;
2319 struct intel_ring_buffer *ring = NULL;
2320 struct timespec timeout_stack, *timeout = NULL;
2321 unsigned reset_counter;
2322 u32 seqno = 0;
2323 int ret = 0;
2324
2325 if (args->timeout_ns >= 0) {
2326 timeout_stack = ns_to_timespec(args->timeout_ns);
2327 timeout = &timeout_stack;
2328 }
2329
2330 ret = i915_mutex_lock_interruptible(dev);
2331 if (ret)
2332 return ret;
2333
2334 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2335 if (&obj->base == NULL) {
2336 mutex_unlock(&dev->struct_mutex);
2337 return -ENOENT;
2338 }
2339
2340 /* Need to make sure the object gets inactive eventually. */
2341 ret = i915_gem_object_flush_active(obj);
2342 if (ret)
2343 goto out;
2344
2345 if (obj->active) {
2346 seqno = obj->last_read_seqno;
2347 ring = obj->ring;
2348 }
2349
2350 if (seqno == 0)
2351 goto out;
2352
2353 /* Do this after OLR check to make sure we make forward progress polling
2354 * on this IOCTL with a 0 timeout (like busy ioctl)
2355 */
2356 if (!args->timeout_ns) {
2357 ret = -ETIME;
2358 goto out;
2359 }
2360
2361 drm_gem_object_unreference(&obj->base);
2362 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2363 mutex_unlock(&dev->struct_mutex);
2364
2365 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2366 if (timeout)
2367 args->timeout_ns = timespec_to_ns(timeout);
2368 return ret;
2369
2370 out:
2371 drm_gem_object_unreference(&obj->base);
2372 mutex_unlock(&dev->struct_mutex);
2373 return ret;
2374 }
2375
2376 /**
2377 * i915_gem_object_sync - sync an object to a ring.
2378 *
2379 * @obj: object which may be in use on another ring.
2380 * @to: ring we wish to use the object on. May be NULL.
2381 *
2382 * This code is meant to abstract object synchronization with the GPU.
2383 * Calling with NULL implies synchronizing the object with the CPU
2384 * rather than a particular GPU ring.
2385 *
2386 * Returns 0 if successful, else propagates up the lower layer error.
2387 */
2388 int
2389 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2390 struct intel_ring_buffer *to)
2391 {
2392 struct intel_ring_buffer *from = obj->ring;
2393 u32 seqno;
2394 int ret, idx;
2395
2396 if (from == NULL || to == from)
2397 return 0;
2398
2399 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2400 return i915_gem_object_wait_rendering(obj, false);
2401
2402 idx = intel_ring_sync_index(from, to);
2403
2404 seqno = obj->last_read_seqno;
2405 if (seqno <= from->sync_seqno[idx])
2406 return 0;
2407
2408 ret = i915_gem_check_olr(obj->ring, seqno);
2409 if (ret)
2410 return ret;
2411
2412 ret = to->sync_to(to, from, seqno);
2413 if (!ret)
2414 /* We use last_read_seqno because sync_to()
2415 * might have just caused seqno wrap under
2416 * the radar.
2417 */
2418 from->sync_seqno[idx] = obj->last_read_seqno;
2419
2420 return ret;
2421 }
2422
2423 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2424 {
2425 u32 old_write_domain, old_read_domains;
2426
2427 /* Force a pagefault for domain tracking on next user access */
2428 i915_gem_release_mmap(obj);
2429
2430 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2431 return;
2432
2433 /* Wait for any direct GTT access to complete */
2434 mb();
2435
2436 old_read_domains = obj->base.read_domains;
2437 old_write_domain = obj->base.write_domain;
2438
2439 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2440 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2441
2442 trace_i915_gem_object_change_domain(obj,
2443 old_read_domains,
2444 old_write_domain);
2445 }
2446
2447 /**
2448 * Unbinds an object from the GTT aperture.
2449 */
2450 int
2451 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2452 {
2453 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2454 int ret;
2455
2456 if (obj->gtt_space == NULL)
2457 return 0;
2458
2459 if (obj->pin_count)
2460 return -EBUSY;
2461
2462 BUG_ON(obj->pages == NULL);
2463
2464 ret = i915_gem_object_finish_gpu(obj);
2465 if (ret)
2466 return ret;
2467 /* Continue on if we fail due to EIO, the GPU is hung so we
2468 * should be safe and we need to cleanup or else we might
2469 * cause memory corruption through use-after-free.
2470 */
2471
2472 i915_gem_object_finish_gtt(obj);
2473
2474 /* release the fence reg _after_ flushing */
2475 ret = i915_gem_object_put_fence(obj);
2476 if (ret)
2477 return ret;
2478
2479 trace_i915_gem_object_unbind(obj);
2480
2481 if (obj->has_global_gtt_mapping)
2482 i915_gem_gtt_unbind_object(obj);
2483 if (obj->has_aliasing_ppgtt_mapping) {
2484 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2485 obj->has_aliasing_ppgtt_mapping = 0;
2486 }
2487 i915_gem_gtt_finish_object(obj);
2488
2489 list_del(&obj->mm_list);
2490 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2491 /* Avoid an unnecessary call to unbind on rebind. */
2492 obj->map_and_fenceable = true;
2493
2494 drm_mm_put_block(obj->gtt_space);
2495 obj->gtt_space = NULL;
2496 obj->gtt_offset = 0;
2497
2498 return 0;
2499 }
2500
2501 int i915_gpu_idle(struct drm_device *dev)
2502 {
2503 drm_i915_private_t *dev_priv = dev->dev_private;
2504 struct intel_ring_buffer *ring;
2505 int ret, i;
2506
2507 /* Flush everything onto the inactive list. */
2508 for_each_ring(ring, dev_priv, i) {
2509 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2510 if (ret)
2511 return ret;
2512
2513 ret = intel_ring_idle(ring);
2514 if (ret)
2515 return ret;
2516 }
2517
2518 return 0;
2519 }
2520
2521 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2522 struct drm_i915_gem_object *obj)
2523 {
2524 drm_i915_private_t *dev_priv = dev->dev_private;
2525 int fence_reg;
2526 int fence_pitch_shift;
2527 uint64_t val;
2528
2529 if (INTEL_INFO(dev)->gen >= 6) {
2530 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2531 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2532 } else {
2533 fence_reg = FENCE_REG_965_0;
2534 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2535 }
2536
2537 if (obj) {
2538 u32 size = obj->gtt_space->size;
2539
2540 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2541 0xfffff000) << 32;
2542 val |= obj->gtt_offset & 0xfffff000;
2543 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2544 if (obj->tiling_mode == I915_TILING_Y)
2545 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2546 val |= I965_FENCE_REG_VALID;
2547 } else
2548 val = 0;
2549
2550 fence_reg += reg * 8;
2551 I915_WRITE64(fence_reg, val);
2552 POSTING_READ(fence_reg);
2553 }
2554
2555 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2556 struct drm_i915_gem_object *obj)
2557 {
2558 drm_i915_private_t *dev_priv = dev->dev_private;
2559 u32 val;
2560
2561 if (obj) {
2562 u32 size = obj->gtt_space->size;
2563 int pitch_val;
2564 int tile_width;
2565
2566 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2567 (size & -size) != size ||
2568 (obj->gtt_offset & (size - 1)),
2569 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2570 obj->gtt_offset, obj->map_and_fenceable, size);
2571
2572 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2573 tile_width = 128;
2574 else
2575 tile_width = 512;
2576
2577 /* Note: pitch better be a power of two tile widths */
2578 pitch_val = obj->stride / tile_width;
2579 pitch_val = ffs(pitch_val) - 1;
2580
2581 val = obj->gtt_offset;
2582 if (obj->tiling_mode == I915_TILING_Y)
2583 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2584 val |= I915_FENCE_SIZE_BITS(size);
2585 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2586 val |= I830_FENCE_REG_VALID;
2587 } else
2588 val = 0;
2589
2590 if (reg < 8)
2591 reg = FENCE_REG_830_0 + reg * 4;
2592 else
2593 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2594
2595 I915_WRITE(reg, val);
2596 POSTING_READ(reg);
2597 }
2598
2599 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2600 struct drm_i915_gem_object *obj)
2601 {
2602 drm_i915_private_t *dev_priv = dev->dev_private;
2603 uint32_t val;
2604
2605 if (obj) {
2606 u32 size = obj->gtt_space->size;
2607 uint32_t pitch_val;
2608
2609 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2610 (size & -size) != size ||
2611 (obj->gtt_offset & (size - 1)),
2612 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2613 obj->gtt_offset, size);
2614
2615 pitch_val = obj->stride / 128;
2616 pitch_val = ffs(pitch_val) - 1;
2617
2618 val = obj->gtt_offset;
2619 if (obj->tiling_mode == I915_TILING_Y)
2620 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2621 val |= I830_FENCE_SIZE_BITS(size);
2622 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2623 val |= I830_FENCE_REG_VALID;
2624 } else
2625 val = 0;
2626
2627 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2628 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2629 }
2630
2631 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2632 {
2633 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2634 }
2635
2636 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2637 struct drm_i915_gem_object *obj)
2638 {
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640
2641 /* Ensure that all CPU reads are completed before installing a fence
2642 * and all writes before removing the fence.
2643 */
2644 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2645 mb();
2646
2647 switch (INTEL_INFO(dev)->gen) {
2648 case 7:
2649 case 6:
2650 case 5:
2651 case 4: i965_write_fence_reg(dev, reg, obj); break;
2652 case 3: i915_write_fence_reg(dev, reg, obj); break;
2653 case 2: i830_write_fence_reg(dev, reg, obj); break;
2654 default: BUG();
2655 }
2656
2657 /* And similarly be paranoid that no direct access to this region
2658 * is reordered to before the fence is installed.
2659 */
2660 if (i915_gem_object_needs_mb(obj))
2661 mb();
2662 }
2663
2664 static inline int fence_number(struct drm_i915_private *dev_priv,
2665 struct drm_i915_fence_reg *fence)
2666 {
2667 return fence - dev_priv->fence_regs;
2668 }
2669
2670 static void i915_gem_write_fence__ipi(void *data)
2671 {
2672 wbinvd();
2673 }
2674
2675 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2676 struct drm_i915_fence_reg *fence,
2677 bool enable)
2678 {
2679 struct drm_device *dev = obj->base.dev;
2680 struct drm_i915_private *dev_priv = dev->dev_private;
2681 int fence_reg = fence_number(dev_priv, fence);
2682
2683 /* In order to fully serialize access to the fenced region and
2684 * the update to the fence register we need to take extreme
2685 * measures on SNB+. In theory, the write to the fence register
2686 * flushes all memory transactions before, and coupled with the
2687 * mb() placed around the register write we serialise all memory
2688 * operations with respect to the changes in the tiler. Yet, on
2689 * SNB+ we need to take a step further and emit an explicit wbinvd()
2690 * on each processor in order to manually flush all memory
2691 * transactions before updating the fence register.
2692 */
2693 if (HAS_LLC(obj->base.dev))
2694 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2695 i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2696
2697 if (enable) {
2698 obj->fence_reg = fence_reg;
2699 fence->obj = obj;
2700 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2701 } else {
2702 obj->fence_reg = I915_FENCE_REG_NONE;
2703 fence->obj = NULL;
2704 list_del_init(&fence->lru_list);
2705 }
2706 }
2707
2708 static int
2709 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2710 {
2711 if (obj->last_fenced_seqno) {
2712 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2713 if (ret)
2714 return ret;
2715
2716 obj->last_fenced_seqno = 0;
2717 }
2718
2719 obj->fenced_gpu_access = false;
2720 return 0;
2721 }
2722
2723 int
2724 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2725 {
2726 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2727 struct drm_i915_fence_reg *fence;
2728 int ret;
2729
2730 ret = i915_gem_object_wait_fence(obj);
2731 if (ret)
2732 return ret;
2733
2734 if (obj->fence_reg == I915_FENCE_REG_NONE)
2735 return 0;
2736
2737 fence = &dev_priv->fence_regs[obj->fence_reg];
2738
2739 i915_gem_object_fence_lost(obj);
2740 i915_gem_object_update_fence(obj, fence, false);
2741
2742 return 0;
2743 }
2744
2745 static struct drm_i915_fence_reg *
2746 i915_find_fence_reg(struct drm_device *dev)
2747 {
2748 struct drm_i915_private *dev_priv = dev->dev_private;
2749 struct drm_i915_fence_reg *reg, *avail;
2750 int i;
2751
2752 /* First try to find a free reg */
2753 avail = NULL;
2754 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2755 reg = &dev_priv->fence_regs[i];
2756 if (!reg->obj)
2757 return reg;
2758
2759 if (!reg->pin_count)
2760 avail = reg;
2761 }
2762
2763 if (avail == NULL)
2764 return NULL;
2765
2766 /* None available, try to steal one or wait for a user to finish */
2767 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2768 if (reg->pin_count)
2769 continue;
2770
2771 return reg;
2772 }
2773
2774 return NULL;
2775 }
2776
2777 /**
2778 * i915_gem_object_get_fence - set up fencing for an object
2779 * @obj: object to map through a fence reg
2780 *
2781 * When mapping objects through the GTT, userspace wants to be able to write
2782 * to them without having to worry about swizzling if the object is tiled.
2783 * This function walks the fence regs looking for a free one for @obj,
2784 * stealing one if it can't find any.
2785 *
2786 * It then sets up the reg based on the object's properties: address, pitch
2787 * and tiling format.
2788 *
2789 * For an untiled surface, this removes any existing fence.
2790 */
2791 int
2792 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2793 {
2794 struct drm_device *dev = obj->base.dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 bool enable = obj->tiling_mode != I915_TILING_NONE;
2797 struct drm_i915_fence_reg *reg;
2798 int ret;
2799
2800 /* Have we updated the tiling parameters upon the object and so
2801 * will need to serialise the write to the associated fence register?
2802 */
2803 if (obj->fence_dirty) {
2804 ret = i915_gem_object_wait_fence(obj);
2805 if (ret)
2806 return ret;
2807 }
2808
2809 /* Just update our place in the LRU if our fence is getting reused. */
2810 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2811 reg = &dev_priv->fence_regs[obj->fence_reg];
2812 if (!obj->fence_dirty) {
2813 list_move_tail(&reg->lru_list,
2814 &dev_priv->mm.fence_list);
2815 return 0;
2816 }
2817 } else if (enable) {
2818 reg = i915_find_fence_reg(dev);
2819 if (reg == NULL)
2820 return -EDEADLK;
2821
2822 if (reg->obj) {
2823 struct drm_i915_gem_object *old = reg->obj;
2824
2825 ret = i915_gem_object_wait_fence(old);
2826 if (ret)
2827 return ret;
2828
2829 i915_gem_object_fence_lost(old);
2830 }
2831 } else
2832 return 0;
2833
2834 i915_gem_object_update_fence(obj, reg, enable);
2835 obj->fence_dirty = false;
2836
2837 return 0;
2838 }
2839
2840 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2841 struct drm_mm_node *gtt_space,
2842 unsigned long cache_level)
2843 {
2844 struct drm_mm_node *other;
2845
2846 /* On non-LLC machines we have to be careful when putting differing
2847 * types of snoopable memory together to avoid the prefetcher
2848 * crossing memory domains and dying.
2849 */
2850 if (HAS_LLC(dev))
2851 return true;
2852
2853 if (gtt_space == NULL)
2854 return true;
2855
2856 if (list_empty(&gtt_space->node_list))
2857 return true;
2858
2859 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2860 if (other->allocated && !other->hole_follows && other->color != cache_level)
2861 return false;
2862
2863 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2864 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2865 return false;
2866
2867 return true;
2868 }
2869
2870 static void i915_gem_verify_gtt(struct drm_device *dev)
2871 {
2872 #if WATCH_GTT
2873 struct drm_i915_private *dev_priv = dev->dev_private;
2874 struct drm_i915_gem_object *obj;
2875 int err = 0;
2876
2877 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2878 if (obj->gtt_space == NULL) {
2879 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2880 err++;
2881 continue;
2882 }
2883
2884 if (obj->cache_level != obj->gtt_space->color) {
2885 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2886 obj->gtt_space->start,
2887 obj->gtt_space->start + obj->gtt_space->size,
2888 obj->cache_level,
2889 obj->gtt_space->color);
2890 err++;
2891 continue;
2892 }
2893
2894 if (!i915_gem_valid_gtt_space(dev,
2895 obj->gtt_space,
2896 obj->cache_level)) {
2897 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2898 obj->gtt_space->start,
2899 obj->gtt_space->start + obj->gtt_space->size,
2900 obj->cache_level);
2901 err++;
2902 continue;
2903 }
2904 }
2905
2906 WARN_ON(err);
2907 #endif
2908 }
2909
2910 /**
2911 * Finds free space in the GTT aperture and binds the object there.
2912 */
2913 static int
2914 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2915 unsigned alignment,
2916 bool map_and_fenceable,
2917 bool nonblocking)
2918 {
2919 struct drm_device *dev = obj->base.dev;
2920 drm_i915_private_t *dev_priv = dev->dev_private;
2921 struct drm_mm_node *node;
2922 u32 size, fence_size, fence_alignment, unfenced_alignment;
2923 bool mappable, fenceable;
2924 int ret;
2925
2926 fence_size = i915_gem_get_gtt_size(dev,
2927 obj->base.size,
2928 obj->tiling_mode);
2929 fence_alignment = i915_gem_get_gtt_alignment(dev,
2930 obj->base.size,
2931 obj->tiling_mode, true);
2932 unfenced_alignment =
2933 i915_gem_get_gtt_alignment(dev,
2934 obj->base.size,
2935 obj->tiling_mode, false);
2936
2937 if (alignment == 0)
2938 alignment = map_and_fenceable ? fence_alignment :
2939 unfenced_alignment;
2940 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2941 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2942 return -EINVAL;
2943 }
2944
2945 size = map_and_fenceable ? fence_size : obj->base.size;
2946
2947 /* If the object is bigger than the entire aperture, reject it early
2948 * before evicting everything in a vain attempt to find space.
2949 */
2950 if (obj->base.size >
2951 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2952 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2953 return -E2BIG;
2954 }
2955
2956 ret = i915_gem_object_get_pages(obj);
2957 if (ret)
2958 return ret;
2959
2960 i915_gem_object_pin_pages(obj);
2961
2962 node = kzalloc(sizeof(*node), GFP_KERNEL);
2963 if (node == NULL) {
2964 i915_gem_object_unpin_pages(obj);
2965 return -ENOMEM;
2966 }
2967
2968 search_free:
2969 if (map_and_fenceable)
2970 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2971 size, alignment, obj->cache_level,
2972 0, dev_priv->gtt.mappable_end);
2973 else
2974 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2975 size, alignment, obj->cache_level);
2976 if (ret) {
2977 ret = i915_gem_evict_something(dev, size, alignment,
2978 obj->cache_level,
2979 map_and_fenceable,
2980 nonblocking);
2981 if (ret == 0)
2982 goto search_free;
2983
2984 i915_gem_object_unpin_pages(obj);
2985 kfree(node);
2986 return ret;
2987 }
2988 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2989 i915_gem_object_unpin_pages(obj);
2990 drm_mm_put_block(node);
2991 return -EINVAL;
2992 }
2993
2994 ret = i915_gem_gtt_prepare_object(obj);
2995 if (ret) {
2996 i915_gem_object_unpin_pages(obj);
2997 drm_mm_put_block(node);
2998 return ret;
2999 }
3000
3001 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3002 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3003
3004 obj->gtt_space = node;
3005 obj->gtt_offset = node->start;
3006
3007 fenceable =
3008 node->size == fence_size &&
3009 (node->start & (fence_alignment - 1)) == 0;
3010
3011 mappable =
3012 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3013
3014 obj->map_and_fenceable = mappable && fenceable;
3015
3016 i915_gem_object_unpin_pages(obj);
3017 trace_i915_gem_object_bind(obj, map_and_fenceable);
3018 i915_gem_verify_gtt(dev);
3019 return 0;
3020 }
3021
3022 void
3023 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3024 {
3025 /* If we don't have a page list set up, then we're not pinned
3026 * to GPU, and we can ignore the cache flush because it'll happen
3027 * again at bind time.
3028 */
3029 if (obj->pages == NULL)
3030 return;
3031
3032 /*
3033 * Stolen memory is always coherent with the GPU as it is explicitly
3034 * marked as wc by the system, or the system is cache-coherent.
3035 */
3036 if (obj->stolen)
3037 return;
3038
3039 /* If the GPU is snooping the contents of the CPU cache,
3040 * we do not need to manually clear the CPU cache lines. However,
3041 * the caches are only snooped when the render cache is
3042 * flushed/invalidated. As we always have to emit invalidations
3043 * and flushes when moving into and out of the RENDER domain, correct
3044 * snooping behaviour occurs naturally as the result of our domain
3045 * tracking.
3046 */
3047 if (obj->cache_level != I915_CACHE_NONE)
3048 return;
3049
3050 trace_i915_gem_object_clflush(obj);
3051
3052 drm_clflush_sg(obj->pages);
3053 }
3054
3055 /** Flushes the GTT write domain for the object if it's dirty. */
3056 static void
3057 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3058 {
3059 uint32_t old_write_domain;
3060
3061 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3062 return;
3063
3064 /* No actual flushing is required for the GTT write domain. Writes
3065 * to it immediately go to main memory as far as we know, so there's
3066 * no chipset flush. It also doesn't land in render cache.
3067 *
3068 * However, we do have to enforce the order so that all writes through
3069 * the GTT land before any writes to the device, such as updates to
3070 * the GATT itself.
3071 */
3072 wmb();
3073
3074 old_write_domain = obj->base.write_domain;
3075 obj->base.write_domain = 0;
3076
3077 trace_i915_gem_object_change_domain(obj,
3078 obj->base.read_domains,
3079 old_write_domain);
3080 }
3081
3082 /** Flushes the CPU write domain for the object if it's dirty. */
3083 static void
3084 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3085 {
3086 uint32_t old_write_domain;
3087
3088 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3089 return;
3090
3091 i915_gem_clflush_object(obj);
3092 i915_gem_chipset_flush(obj->base.dev);
3093 old_write_domain = obj->base.write_domain;
3094 obj->base.write_domain = 0;
3095
3096 trace_i915_gem_object_change_domain(obj,
3097 obj->base.read_domains,
3098 old_write_domain);
3099 }
3100
3101 /**
3102 * Moves a single object to the GTT read, and possibly write domain.
3103 *
3104 * This function returns when the move is complete, including waiting on
3105 * flushes to occur.
3106 */
3107 int
3108 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3109 {
3110 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3111 uint32_t old_write_domain, old_read_domains;
3112 int ret;
3113
3114 /* Not valid to be called on unbound objects. */
3115 if (obj->gtt_space == NULL)
3116 return -EINVAL;
3117
3118 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3119 return 0;
3120
3121 ret = i915_gem_object_wait_rendering(obj, !write);
3122 if (ret)
3123 return ret;
3124
3125 i915_gem_object_flush_cpu_write_domain(obj);
3126
3127 /* Serialise direct access to this object with the barriers for
3128 * coherent writes from the GPU, by effectively invalidating the
3129 * GTT domain upon first access.
3130 */
3131 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3132 mb();
3133
3134 old_write_domain = obj->base.write_domain;
3135 old_read_domains = obj->base.read_domains;
3136
3137 /* It should now be out of any other write domains, and we can update
3138 * the domain values for our changes.
3139 */
3140 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3141 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3142 if (write) {
3143 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3144 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3145 obj->dirty = 1;
3146 }
3147
3148 trace_i915_gem_object_change_domain(obj,
3149 old_read_domains,
3150 old_write_domain);
3151
3152 /* And bump the LRU for this access */
3153 if (i915_gem_object_is_inactive(obj))
3154 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3155
3156 return 0;
3157 }
3158
3159 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3160 enum i915_cache_level cache_level)
3161 {
3162 struct drm_device *dev = obj->base.dev;
3163 drm_i915_private_t *dev_priv = dev->dev_private;
3164 int ret;
3165
3166 if (obj->cache_level == cache_level)
3167 return 0;
3168
3169 if (obj->pin_count) {
3170 DRM_DEBUG("can not change the cache level of pinned objects\n");
3171 return -EBUSY;
3172 }
3173
3174 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3175 ret = i915_gem_object_unbind(obj);
3176 if (ret)
3177 return ret;
3178 }
3179
3180 if (obj->gtt_space) {
3181 ret = i915_gem_object_finish_gpu(obj);
3182 if (ret)
3183 return ret;
3184
3185 i915_gem_object_finish_gtt(obj);
3186
3187 /* Before SandyBridge, you could not use tiling or fence
3188 * registers with snooped memory, so relinquish any fences
3189 * currently pointing to our region in the aperture.
3190 */
3191 if (INTEL_INFO(dev)->gen < 6) {
3192 ret = i915_gem_object_put_fence(obj);
3193 if (ret)
3194 return ret;
3195 }
3196
3197 if (obj->has_global_gtt_mapping)
3198 i915_gem_gtt_bind_object(obj, cache_level);
3199 if (obj->has_aliasing_ppgtt_mapping)
3200 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3201 obj, cache_level);
3202
3203 obj->gtt_space->color = cache_level;
3204 }
3205
3206 if (cache_level == I915_CACHE_NONE) {
3207 u32 old_read_domains, old_write_domain;
3208
3209 /* If we're coming from LLC cached, then we haven't
3210 * actually been tracking whether the data is in the
3211 * CPU cache or not, since we only allow one bit set
3212 * in obj->write_domain and have been skipping the clflushes.
3213 * Just set it to the CPU cache for now.
3214 */
3215 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3216 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3217
3218 old_read_domains = obj->base.read_domains;
3219 old_write_domain = obj->base.write_domain;
3220
3221 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3222 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3223
3224 trace_i915_gem_object_change_domain(obj,
3225 old_read_domains,
3226 old_write_domain);
3227 }
3228
3229 obj->cache_level = cache_level;
3230 i915_gem_verify_gtt(dev);
3231 return 0;
3232 }
3233
3234 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3235 struct drm_file *file)
3236 {
3237 struct drm_i915_gem_caching *args = data;
3238 struct drm_i915_gem_object *obj;
3239 int ret;
3240
3241 ret = i915_mutex_lock_interruptible(dev);
3242 if (ret)
3243 return ret;
3244
3245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246 if (&obj->base == NULL) {
3247 ret = -ENOENT;
3248 goto unlock;
3249 }
3250
3251 args->caching = obj->cache_level != I915_CACHE_NONE;
3252
3253 drm_gem_object_unreference(&obj->base);
3254 unlock:
3255 mutex_unlock(&dev->struct_mutex);
3256 return ret;
3257 }
3258
3259 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3260 struct drm_file *file)
3261 {
3262 struct drm_i915_gem_caching *args = data;
3263 struct drm_i915_gem_object *obj;
3264 enum i915_cache_level level;
3265 int ret;
3266
3267 switch (args->caching) {
3268 case I915_CACHING_NONE:
3269 level = I915_CACHE_NONE;
3270 break;
3271 case I915_CACHING_CACHED:
3272 level = I915_CACHE_LLC;
3273 break;
3274 default:
3275 return -EINVAL;
3276 }
3277
3278 ret = i915_mutex_lock_interruptible(dev);
3279 if (ret)
3280 return ret;
3281
3282 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3283 if (&obj->base == NULL) {
3284 ret = -ENOENT;
3285 goto unlock;
3286 }
3287
3288 ret = i915_gem_object_set_cache_level(obj, level);
3289
3290 drm_gem_object_unreference(&obj->base);
3291 unlock:
3292 mutex_unlock(&dev->struct_mutex);
3293 return ret;
3294 }
3295
3296 /*
3297 * Prepare buffer for display plane (scanout, cursors, etc).
3298 * Can be called from an uninterruptible phase (modesetting) and allows
3299 * any flushes to be pipelined (for pageflips).
3300 */
3301 int
3302 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3303 u32 alignment,
3304 struct intel_ring_buffer *pipelined)
3305 {
3306 u32 old_read_domains, old_write_domain;
3307 int ret;
3308
3309 if (pipelined != obj->ring) {
3310 ret = i915_gem_object_sync(obj, pipelined);
3311 if (ret)
3312 return ret;
3313 }
3314
3315 /* The display engine is not coherent with the LLC cache on gen6. As
3316 * a result, we make sure that the pinning that is about to occur is
3317 * done with uncached PTEs. This is lowest common denominator for all
3318 * chipsets.
3319 *
3320 * However for gen6+, we could do better by using the GFDT bit instead
3321 * of uncaching, which would allow us to flush all the LLC-cached data
3322 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3323 */
3324 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3325 if (ret)
3326 return ret;
3327
3328 /* As the user may map the buffer once pinned in the display plane
3329 * (e.g. libkms for the bootup splash), we have to ensure that we
3330 * always use map_and_fenceable for all scanout buffers.
3331 */
3332 ret = i915_gem_object_pin(obj, alignment, true, false);
3333 if (ret)
3334 return ret;
3335
3336 i915_gem_object_flush_cpu_write_domain(obj);
3337
3338 old_write_domain = obj->base.write_domain;
3339 old_read_domains = obj->base.read_domains;
3340
3341 /* It should now be out of any other write domains, and we can update
3342 * the domain values for our changes.
3343 */
3344 obj->base.write_domain = 0;
3345 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3346
3347 trace_i915_gem_object_change_domain(obj,
3348 old_read_domains,
3349 old_write_domain);
3350
3351 return 0;
3352 }
3353
3354 int
3355 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3356 {
3357 int ret;
3358
3359 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3360 return 0;
3361
3362 ret = i915_gem_object_wait_rendering(obj, false);
3363 if (ret)
3364 return ret;
3365
3366 /* Ensure that we invalidate the GPU's caches and TLBs. */
3367 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3368 return 0;
3369 }
3370
3371 /**
3372 * Moves a single object to the CPU read, and possibly write domain.
3373 *
3374 * This function returns when the move is complete, including waiting on
3375 * flushes to occur.
3376 */
3377 int
3378 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3379 {
3380 uint32_t old_write_domain, old_read_domains;
3381 int ret;
3382
3383 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3384 return 0;
3385
3386 ret = i915_gem_object_wait_rendering(obj, !write);
3387 if (ret)
3388 return ret;
3389
3390 i915_gem_object_flush_gtt_write_domain(obj);
3391
3392 old_write_domain = obj->base.write_domain;
3393 old_read_domains = obj->base.read_domains;
3394
3395 /* Flush the CPU cache if it's still invalid. */
3396 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3397 i915_gem_clflush_object(obj);
3398
3399 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3400 }
3401
3402 /* It should now be out of any other write domains, and we can update
3403 * the domain values for our changes.
3404 */
3405 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3406
3407 /* If we're writing through the CPU, then the GPU read domains will
3408 * need to be invalidated at next use.
3409 */
3410 if (write) {
3411 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3412 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3413 }
3414
3415 trace_i915_gem_object_change_domain(obj,
3416 old_read_domains,
3417 old_write_domain);
3418
3419 return 0;
3420 }
3421
3422 /* Throttle our rendering by waiting until the ring has completed our requests
3423 * emitted over 20 msec ago.
3424 *
3425 * Note that if we were to use the current jiffies each time around the loop,
3426 * we wouldn't escape the function with any frames outstanding if the time to
3427 * render a frame was over 20ms.
3428 *
3429 * This should get us reasonable parallelism between CPU and GPU but also
3430 * relatively low latency when blocking on a particular request to finish.
3431 */
3432 static int
3433 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3434 {
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 struct drm_i915_file_private *file_priv = file->driver_priv;
3437 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3438 struct drm_i915_gem_request *request;
3439 struct intel_ring_buffer *ring = NULL;
3440 unsigned reset_counter;
3441 u32 seqno = 0;
3442 int ret;
3443
3444 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3445 if (ret)
3446 return ret;
3447
3448 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3449 if (ret)
3450 return ret;
3451
3452 spin_lock(&file_priv->mm.lock);
3453 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3454 if (time_after_eq(request->emitted_jiffies, recent_enough))
3455 break;
3456
3457 ring = request->ring;
3458 seqno = request->seqno;
3459 }
3460 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3461 spin_unlock(&file_priv->mm.lock);
3462
3463 if (seqno == 0)
3464 return 0;
3465
3466 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3467 if (ret == 0)
3468 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3469
3470 return ret;
3471 }
3472
3473 int
3474 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3475 uint32_t alignment,
3476 bool map_and_fenceable,
3477 bool nonblocking)
3478 {
3479 int ret;
3480
3481 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3482 return -EBUSY;
3483
3484 if (obj->gtt_space != NULL) {
3485 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3486 (map_and_fenceable && !obj->map_and_fenceable)) {
3487 WARN(obj->pin_count,
3488 "bo is already pinned with incorrect alignment:"
3489 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3490 " obj->map_and_fenceable=%d\n",
3491 obj->gtt_offset, alignment,
3492 map_and_fenceable,
3493 obj->map_and_fenceable);
3494 ret = i915_gem_object_unbind(obj);
3495 if (ret)
3496 return ret;
3497 }
3498 }
3499
3500 if (obj->gtt_space == NULL) {
3501 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3502
3503 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3504 map_and_fenceable,
3505 nonblocking);
3506 if (ret)
3507 return ret;
3508
3509 if (!dev_priv->mm.aliasing_ppgtt)
3510 i915_gem_gtt_bind_object(obj, obj->cache_level);
3511 }
3512
3513 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3514 i915_gem_gtt_bind_object(obj, obj->cache_level);
3515
3516 obj->pin_count++;
3517 obj->pin_mappable |= map_and_fenceable;
3518
3519 return 0;
3520 }
3521
3522 void
3523 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3524 {
3525 BUG_ON(obj->pin_count == 0);
3526 BUG_ON(obj->gtt_space == NULL);
3527
3528 if (--obj->pin_count == 0)
3529 obj->pin_mappable = false;
3530 }
3531
3532 int
3533 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3534 struct drm_file *file)
3535 {
3536 struct drm_i915_gem_pin *args = data;
3537 struct drm_i915_gem_object *obj;
3538 int ret;
3539
3540 ret = i915_mutex_lock_interruptible(dev);
3541 if (ret)
3542 return ret;
3543
3544 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3545 if (&obj->base == NULL) {
3546 ret = -ENOENT;
3547 goto unlock;
3548 }
3549
3550 if (obj->madv != I915_MADV_WILLNEED) {
3551 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3552 ret = -EINVAL;
3553 goto out;
3554 }
3555
3556 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3557 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3558 args->handle);
3559 ret = -EINVAL;
3560 goto out;
3561 }
3562
3563 if (obj->user_pin_count == 0) {
3564 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3565 if (ret)
3566 goto out;
3567 }
3568
3569 obj->user_pin_count++;
3570 obj->pin_filp = file;
3571
3572 /* XXX - flush the CPU caches for pinned objects
3573 * as the X server doesn't manage domains yet
3574 */
3575 i915_gem_object_flush_cpu_write_domain(obj);
3576 args->offset = obj->gtt_offset;
3577 out:
3578 drm_gem_object_unreference(&obj->base);
3579 unlock:
3580 mutex_unlock(&dev->struct_mutex);
3581 return ret;
3582 }
3583
3584 int
3585 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3586 struct drm_file *file)
3587 {
3588 struct drm_i915_gem_pin *args = data;
3589 struct drm_i915_gem_object *obj;
3590 int ret;
3591
3592 ret = i915_mutex_lock_interruptible(dev);
3593 if (ret)
3594 return ret;
3595
3596 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3597 if (&obj->base == NULL) {
3598 ret = -ENOENT;
3599 goto unlock;
3600 }
3601
3602 if (obj->pin_filp != file) {
3603 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3604 args->handle);
3605 ret = -EINVAL;
3606 goto out;
3607 }
3608 obj->user_pin_count--;
3609 if (obj->user_pin_count == 0) {
3610 obj->pin_filp = NULL;
3611 i915_gem_object_unpin(obj);
3612 }
3613
3614 out:
3615 drm_gem_object_unreference(&obj->base);
3616 unlock:
3617 mutex_unlock(&dev->struct_mutex);
3618 return ret;
3619 }
3620
3621 int
3622 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3623 struct drm_file *file)
3624 {
3625 struct drm_i915_gem_busy *args = data;
3626 struct drm_i915_gem_object *obj;
3627 int ret;
3628
3629 ret = i915_mutex_lock_interruptible(dev);
3630 if (ret)
3631 return ret;
3632
3633 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3634 if (&obj->base == NULL) {
3635 ret = -ENOENT;
3636 goto unlock;
3637 }
3638
3639 /* Count all active objects as busy, even if they are currently not used
3640 * by the gpu. Users of this interface expect objects to eventually
3641 * become non-busy without any further actions, therefore emit any
3642 * necessary flushes here.
3643 */
3644 ret = i915_gem_object_flush_active(obj);
3645
3646 args->busy = obj->active;
3647 if (obj->ring) {
3648 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3649 args->busy |= intel_ring_flag(obj->ring) << 16;
3650 }
3651
3652 drm_gem_object_unreference(&obj->base);
3653 unlock:
3654 mutex_unlock(&dev->struct_mutex);
3655 return ret;
3656 }
3657
3658 int
3659 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3660 struct drm_file *file_priv)
3661 {
3662 return i915_gem_ring_throttle(dev, file_priv);
3663 }
3664
3665 int
3666 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3667 struct drm_file *file_priv)
3668 {
3669 struct drm_i915_gem_madvise *args = data;
3670 struct drm_i915_gem_object *obj;
3671 int ret;
3672
3673 switch (args->madv) {
3674 case I915_MADV_DONTNEED:
3675 case I915_MADV_WILLNEED:
3676 break;
3677 default:
3678 return -EINVAL;
3679 }
3680
3681 ret = i915_mutex_lock_interruptible(dev);
3682 if (ret)
3683 return ret;
3684
3685 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3686 if (&obj->base == NULL) {
3687 ret = -ENOENT;
3688 goto unlock;
3689 }
3690
3691 if (obj->pin_count) {
3692 ret = -EINVAL;
3693 goto out;
3694 }
3695
3696 if (obj->madv != __I915_MADV_PURGED)
3697 obj->madv = args->madv;
3698
3699 /* if the object is no longer attached, discard its backing storage */
3700 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3701 i915_gem_object_truncate(obj);
3702
3703 args->retained = obj->madv != __I915_MADV_PURGED;
3704
3705 out:
3706 drm_gem_object_unreference(&obj->base);
3707 unlock:
3708 mutex_unlock(&dev->struct_mutex);
3709 return ret;
3710 }
3711
3712 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3713 const struct drm_i915_gem_object_ops *ops)
3714 {
3715 INIT_LIST_HEAD(&obj->mm_list);
3716 INIT_LIST_HEAD(&obj->gtt_list);
3717 INIT_LIST_HEAD(&obj->ring_list);
3718 INIT_LIST_HEAD(&obj->exec_list);
3719
3720 obj->ops = ops;
3721
3722 obj->fence_reg = I915_FENCE_REG_NONE;
3723 obj->madv = I915_MADV_WILLNEED;
3724 /* Avoid an unnecessary call to unbind on the first bind. */
3725 obj->map_and_fenceable = true;
3726
3727 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3728 }
3729
3730 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3731 .get_pages = i915_gem_object_get_pages_gtt,
3732 .put_pages = i915_gem_object_put_pages_gtt,
3733 };
3734
3735 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3736 size_t size)
3737 {
3738 struct drm_i915_gem_object *obj;
3739 struct address_space *mapping;
3740 gfp_t mask;
3741
3742 obj = i915_gem_object_alloc(dev);
3743 if (obj == NULL)
3744 return NULL;
3745
3746 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3747 i915_gem_object_free(obj);
3748 return NULL;
3749 }
3750
3751 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3752 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3753 /* 965gm cannot relocate objects above 4GiB. */
3754 mask &= ~__GFP_HIGHMEM;
3755 mask |= __GFP_DMA32;
3756 }
3757
3758 mapping = file_inode(obj->base.filp)->i_mapping;
3759 mapping_set_gfp_mask(mapping, mask);
3760
3761 i915_gem_object_init(obj, &i915_gem_object_ops);
3762
3763 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3764 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3765
3766 if (HAS_LLC(dev)) {
3767 /* On some devices, we can have the GPU use the LLC (the CPU
3768 * cache) for about a 10% performance improvement
3769 * compared to uncached. Graphics requests other than
3770 * display scanout are coherent with the CPU in
3771 * accessing this cache. This means in this mode we
3772 * don't need to clflush on the CPU side, and on the
3773 * GPU side we only need to flush internal caches to
3774 * get data visible to the CPU.
3775 *
3776 * However, we maintain the display planes as UC, and so
3777 * need to rebind when first used as such.
3778 */
3779 obj->cache_level = I915_CACHE_LLC;
3780 } else
3781 obj->cache_level = I915_CACHE_NONE;
3782
3783 return obj;
3784 }
3785
3786 int i915_gem_init_object(struct drm_gem_object *obj)
3787 {
3788 BUG();
3789
3790 return 0;
3791 }
3792
3793 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3794 {
3795 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3796 struct drm_device *dev = obj->base.dev;
3797 drm_i915_private_t *dev_priv = dev->dev_private;
3798
3799 trace_i915_gem_object_destroy(obj);
3800
3801 if (obj->phys_obj)
3802 i915_gem_detach_phys_object(dev, obj);
3803
3804 obj->pin_count = 0;
3805 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3806 bool was_interruptible;
3807
3808 was_interruptible = dev_priv->mm.interruptible;
3809 dev_priv->mm.interruptible = false;
3810
3811 WARN_ON(i915_gem_object_unbind(obj));
3812
3813 dev_priv->mm.interruptible = was_interruptible;
3814 }
3815
3816 obj->pages_pin_count = 0;
3817 i915_gem_object_put_pages(obj);
3818 i915_gem_object_free_mmap_offset(obj);
3819 i915_gem_object_release_stolen(obj);
3820
3821 BUG_ON(obj->pages);
3822
3823 if (obj->base.import_attach)
3824 drm_prime_gem_destroy(&obj->base, NULL);
3825
3826 drm_gem_object_release(&obj->base);
3827 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3828
3829 kfree(obj->bit_17);
3830 i915_gem_object_free(obj);
3831 }
3832
3833 int
3834 i915_gem_idle(struct drm_device *dev)
3835 {
3836 drm_i915_private_t *dev_priv = dev->dev_private;
3837 int ret;
3838
3839 mutex_lock(&dev->struct_mutex);
3840
3841 if (dev_priv->mm.suspended) {
3842 mutex_unlock(&dev->struct_mutex);
3843 return 0;
3844 }
3845
3846 ret = i915_gpu_idle(dev);
3847 if (ret) {
3848 mutex_unlock(&dev->struct_mutex);
3849 return ret;
3850 }
3851 i915_gem_retire_requests(dev);
3852
3853 /* Under UMS, be paranoid and evict. */
3854 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3855 i915_gem_evict_everything(dev);
3856
3857 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3858 * We need to replace this with a semaphore, or something.
3859 * And not confound mm.suspended!
3860 */
3861 dev_priv->mm.suspended = 1;
3862 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3863
3864 i915_kernel_lost_context(dev);
3865 i915_gem_cleanup_ringbuffer(dev);
3866
3867 mutex_unlock(&dev->struct_mutex);
3868
3869 /* Cancel the retire work handler, which should be idle now. */
3870 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3871
3872 return 0;
3873 }
3874
3875 void i915_gem_l3_remap(struct drm_device *dev)
3876 {
3877 drm_i915_private_t *dev_priv = dev->dev_private;
3878 u32 misccpctl;
3879 int i;
3880
3881 if (!HAS_L3_GPU_CACHE(dev))
3882 return;
3883
3884 if (!dev_priv->l3_parity.remap_info)
3885 return;
3886
3887 misccpctl = I915_READ(GEN7_MISCCPCTL);
3888 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3889 POSTING_READ(GEN7_MISCCPCTL);
3890
3891 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3892 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3893 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3894 DRM_DEBUG("0x%x was already programmed to %x\n",
3895 GEN7_L3LOG_BASE + i, remap);
3896 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3897 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3898 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3899 }
3900
3901 /* Make sure all the writes land before disabling dop clock gating */
3902 POSTING_READ(GEN7_L3LOG_BASE);
3903
3904 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3905 }
3906
3907 void i915_gem_init_swizzling(struct drm_device *dev)
3908 {
3909 drm_i915_private_t *dev_priv = dev->dev_private;
3910
3911 if (INTEL_INFO(dev)->gen < 5 ||
3912 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3913 return;
3914
3915 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3916 DISP_TILE_SURFACE_SWIZZLING);
3917
3918 if (IS_GEN5(dev))
3919 return;
3920
3921 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3922 if (IS_GEN6(dev))
3923 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3924 else if (IS_GEN7(dev))
3925 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3926 else
3927 BUG();
3928 }
3929
3930 static bool
3931 intel_enable_blt(struct drm_device *dev)
3932 {
3933 if (!HAS_BLT(dev))
3934 return false;
3935
3936 /* The blitter was dysfunctional on early prototypes */
3937 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3938 DRM_INFO("BLT not supported on this pre-production hardware;"
3939 " graphics performance will be degraded.\n");
3940 return false;
3941 }
3942
3943 return true;
3944 }
3945
3946 static int i915_gem_init_rings(struct drm_device *dev)
3947 {
3948 struct drm_i915_private *dev_priv = dev->dev_private;
3949 int ret;
3950
3951 ret = intel_init_render_ring_buffer(dev);
3952 if (ret)
3953 return ret;
3954
3955 if (HAS_BSD(dev)) {
3956 ret = intel_init_bsd_ring_buffer(dev);
3957 if (ret)
3958 goto cleanup_render_ring;
3959 }
3960
3961 if (intel_enable_blt(dev)) {
3962 ret = intel_init_blt_ring_buffer(dev);
3963 if (ret)
3964 goto cleanup_bsd_ring;
3965 }
3966
3967 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3968 if (ret)
3969 goto cleanup_blt_ring;
3970
3971 return 0;
3972
3973 cleanup_blt_ring:
3974 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3975 cleanup_bsd_ring:
3976 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3977 cleanup_render_ring:
3978 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3979
3980 return ret;
3981 }
3982
3983 int
3984 i915_gem_init_hw(struct drm_device *dev)
3985 {
3986 drm_i915_private_t *dev_priv = dev->dev_private;
3987 int ret;
3988
3989 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3990 return -EIO;
3991
3992 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3993 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3994
3995 if (HAS_PCH_NOP(dev)) {
3996 u32 temp = I915_READ(GEN7_MSG_CTL);
3997 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
3998 I915_WRITE(GEN7_MSG_CTL, temp);
3999 }
4000
4001 i915_gem_l3_remap(dev);
4002
4003 i915_gem_init_swizzling(dev);
4004
4005 ret = i915_gem_init_rings(dev);
4006 if (ret)
4007 return ret;
4008
4009 /*
4010 * XXX: There was some w/a described somewhere suggesting loading
4011 * contexts before PPGTT.
4012 */
4013 i915_gem_context_init(dev);
4014 if (dev_priv->mm.aliasing_ppgtt) {
4015 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4016 if (ret) {
4017 i915_gem_cleanup_aliasing_ppgtt(dev);
4018 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4019 }
4020 }
4021
4022 return 0;
4023 }
4024
4025 int i915_gem_init(struct drm_device *dev)
4026 {
4027 struct drm_i915_private *dev_priv = dev->dev_private;
4028 int ret;
4029
4030 mutex_lock(&dev->struct_mutex);
4031
4032 if (IS_VALLEYVIEW(dev)) {
4033 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4034 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4035 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4036 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4037 }
4038
4039 i915_gem_init_global_gtt(dev);
4040
4041 ret = i915_gem_init_hw(dev);
4042 mutex_unlock(&dev->struct_mutex);
4043 if (ret) {
4044 i915_gem_cleanup_aliasing_ppgtt(dev);
4045 return ret;
4046 }
4047
4048 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4049 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4050 dev_priv->dri1.allow_batchbuffer = 1;
4051 return 0;
4052 }
4053
4054 void
4055 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4056 {
4057 drm_i915_private_t *dev_priv = dev->dev_private;
4058 struct intel_ring_buffer *ring;
4059 int i;
4060
4061 for_each_ring(ring, dev_priv, i)
4062 intel_cleanup_ring_buffer(ring);
4063 }
4064
4065 int
4066 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4067 struct drm_file *file_priv)
4068 {
4069 drm_i915_private_t *dev_priv = dev->dev_private;
4070 int ret;
4071
4072 if (drm_core_check_feature(dev, DRIVER_MODESET))
4073 return 0;
4074
4075 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4076 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4077 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4078 }
4079
4080 mutex_lock(&dev->struct_mutex);
4081 dev_priv->mm.suspended = 0;
4082
4083 ret = i915_gem_init_hw(dev);
4084 if (ret != 0) {
4085 mutex_unlock(&dev->struct_mutex);
4086 return ret;
4087 }
4088
4089 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4090 mutex_unlock(&dev->struct_mutex);
4091
4092 ret = drm_irq_install(dev);
4093 if (ret)
4094 goto cleanup_ringbuffer;
4095
4096 return 0;
4097
4098 cleanup_ringbuffer:
4099 mutex_lock(&dev->struct_mutex);
4100 i915_gem_cleanup_ringbuffer(dev);
4101 dev_priv->mm.suspended = 1;
4102 mutex_unlock(&dev->struct_mutex);
4103
4104 return ret;
4105 }
4106
4107 int
4108 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4109 struct drm_file *file_priv)
4110 {
4111 if (drm_core_check_feature(dev, DRIVER_MODESET))
4112 return 0;
4113
4114 drm_irq_uninstall(dev);
4115 return i915_gem_idle(dev);
4116 }
4117
4118 void
4119 i915_gem_lastclose(struct drm_device *dev)
4120 {
4121 int ret;
4122
4123 if (drm_core_check_feature(dev, DRIVER_MODESET))
4124 return;
4125
4126 ret = i915_gem_idle(dev);
4127 if (ret)
4128 DRM_ERROR("failed to idle hardware: %d\n", ret);
4129 }
4130
4131 static void
4132 init_ring_lists(struct intel_ring_buffer *ring)
4133 {
4134 INIT_LIST_HEAD(&ring->active_list);
4135 INIT_LIST_HEAD(&ring->request_list);
4136 }
4137
4138 void
4139 i915_gem_load(struct drm_device *dev)
4140 {
4141 drm_i915_private_t *dev_priv = dev->dev_private;
4142 int i;
4143
4144 dev_priv->slab =
4145 kmem_cache_create("i915_gem_object",
4146 sizeof(struct drm_i915_gem_object), 0,
4147 SLAB_HWCACHE_ALIGN,
4148 NULL);
4149
4150 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4151 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4152 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4153 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4154 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4155 for (i = 0; i < I915_NUM_RINGS; i++)
4156 init_ring_lists(&dev_priv->ring[i]);
4157 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4158 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4159 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4160 i915_gem_retire_work_handler);
4161 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4162
4163 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4164 if (IS_GEN3(dev)) {
4165 I915_WRITE(MI_ARB_STATE,
4166 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4167 }
4168
4169 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4170
4171 /* Old X drivers will take 0-2 for front, back, depth buffers */
4172 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4173 dev_priv->fence_reg_start = 3;
4174
4175 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4176 dev_priv->num_fence_regs = 32;
4177 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4178 dev_priv->num_fence_regs = 16;
4179 else
4180 dev_priv->num_fence_regs = 8;
4181
4182 /* Initialize fence registers to zero */
4183 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4184 i915_gem_restore_fences(dev);
4185
4186 i915_gem_detect_bit_6_swizzle(dev);
4187 init_waitqueue_head(&dev_priv->pending_flip_queue);
4188
4189 dev_priv->mm.interruptible = true;
4190
4191 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4192 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4193 register_shrinker(&dev_priv->mm.inactive_shrinker);
4194 }
4195
4196 /*
4197 * Create a physically contiguous memory object for this object
4198 * e.g. for cursor + overlay regs
4199 */
4200 static int i915_gem_init_phys_object(struct drm_device *dev,
4201 int id, int size, int align)
4202 {
4203 drm_i915_private_t *dev_priv = dev->dev_private;
4204 struct drm_i915_gem_phys_object *phys_obj;
4205 int ret;
4206
4207 if (dev_priv->mm.phys_objs[id - 1] || !size)
4208 return 0;
4209
4210 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4211 if (!phys_obj)
4212 return -ENOMEM;
4213
4214 phys_obj->id = id;
4215
4216 phys_obj->handle = drm_pci_alloc(dev, size, align);
4217 if (!phys_obj->handle) {
4218 ret = -ENOMEM;
4219 goto kfree_obj;
4220 }
4221 #ifdef CONFIG_X86
4222 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4223 #endif
4224
4225 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4226
4227 return 0;
4228 kfree_obj:
4229 kfree(phys_obj);
4230 return ret;
4231 }
4232
4233 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4234 {
4235 drm_i915_private_t *dev_priv = dev->dev_private;
4236 struct drm_i915_gem_phys_object *phys_obj;
4237
4238 if (!dev_priv->mm.phys_objs[id - 1])
4239 return;
4240
4241 phys_obj = dev_priv->mm.phys_objs[id - 1];
4242 if (phys_obj->cur_obj) {
4243 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4244 }
4245
4246 #ifdef CONFIG_X86
4247 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4248 #endif
4249 drm_pci_free(dev, phys_obj->handle);
4250 kfree(phys_obj);
4251 dev_priv->mm.phys_objs[id - 1] = NULL;
4252 }
4253
4254 void i915_gem_free_all_phys_object(struct drm_device *dev)
4255 {
4256 int i;
4257
4258 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4259 i915_gem_free_phys_object(dev, i);
4260 }
4261
4262 void i915_gem_detach_phys_object(struct drm_device *dev,
4263 struct drm_i915_gem_object *obj)
4264 {
4265 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4266 char *vaddr;
4267 int i;
4268 int page_count;
4269
4270 if (!obj->phys_obj)
4271 return;
4272 vaddr = obj->phys_obj->handle->vaddr;
4273
4274 page_count = obj->base.size / PAGE_SIZE;
4275 for (i = 0; i < page_count; i++) {
4276 struct page *page = shmem_read_mapping_page(mapping, i);
4277 if (!IS_ERR(page)) {
4278 char *dst = kmap_atomic(page);
4279 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4280 kunmap_atomic(dst);
4281
4282 drm_clflush_pages(&page, 1);
4283
4284 set_page_dirty(page);
4285 mark_page_accessed(page);
4286 page_cache_release(page);
4287 }
4288 }
4289 i915_gem_chipset_flush(dev);
4290
4291 obj->phys_obj->cur_obj = NULL;
4292 obj->phys_obj = NULL;
4293 }
4294
4295 int
4296 i915_gem_attach_phys_object(struct drm_device *dev,
4297 struct drm_i915_gem_object *obj,
4298 int id,
4299 int align)
4300 {
4301 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4302 drm_i915_private_t *dev_priv = dev->dev_private;
4303 int ret = 0;
4304 int page_count;
4305 int i;
4306
4307 if (id > I915_MAX_PHYS_OBJECT)
4308 return -EINVAL;
4309
4310 if (obj->phys_obj) {
4311 if (obj->phys_obj->id == id)
4312 return 0;
4313 i915_gem_detach_phys_object(dev, obj);
4314 }
4315
4316 /* create a new object */
4317 if (!dev_priv->mm.phys_objs[id - 1]) {
4318 ret = i915_gem_init_phys_object(dev, id,
4319 obj->base.size, align);
4320 if (ret) {
4321 DRM_ERROR("failed to init phys object %d size: %zu\n",
4322 id, obj->base.size);
4323 return ret;
4324 }
4325 }
4326
4327 /* bind to the object */
4328 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4329 obj->phys_obj->cur_obj = obj;
4330
4331 page_count = obj->base.size / PAGE_SIZE;
4332
4333 for (i = 0; i < page_count; i++) {
4334 struct page *page;
4335 char *dst, *src;
4336
4337 page = shmem_read_mapping_page(mapping, i);
4338 if (IS_ERR(page))
4339 return PTR_ERR(page);
4340
4341 src = kmap_atomic(page);
4342 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4343 memcpy(dst, src, PAGE_SIZE);
4344 kunmap_atomic(src);
4345
4346 mark_page_accessed(page);
4347 page_cache_release(page);
4348 }
4349
4350 return 0;
4351 }
4352
4353 static int
4354 i915_gem_phys_pwrite(struct drm_device *dev,
4355 struct drm_i915_gem_object *obj,
4356 struct drm_i915_gem_pwrite *args,
4357 struct drm_file *file_priv)
4358 {
4359 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4360 char __user *user_data = to_user_ptr(args->data_ptr);
4361
4362 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4363 unsigned long unwritten;
4364
4365 /* The physical object once assigned is fixed for the lifetime
4366 * of the obj, so we can safely drop the lock and continue
4367 * to access vaddr.
4368 */
4369 mutex_unlock(&dev->struct_mutex);
4370 unwritten = copy_from_user(vaddr, user_data, args->size);
4371 mutex_lock(&dev->struct_mutex);
4372 if (unwritten)
4373 return -EFAULT;
4374 }
4375
4376 i915_gem_chipset_flush(dev);
4377 return 0;
4378 }
4379
4380 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4381 {
4382 struct drm_i915_file_private *file_priv = file->driver_priv;
4383
4384 /* Clean up our request list when the client is going away, so that
4385 * later retire_requests won't dereference our soon-to-be-gone
4386 * file_priv.
4387 */
4388 spin_lock(&file_priv->mm.lock);
4389 while (!list_empty(&file_priv->mm.request_list)) {
4390 struct drm_i915_gem_request *request;
4391
4392 request = list_first_entry(&file_priv->mm.request_list,
4393 struct drm_i915_gem_request,
4394 client_list);
4395 list_del(&request->client_list);
4396 request->file_priv = NULL;
4397 }
4398 spin_unlock(&file_priv->mm.lock);
4399 }
4400
4401 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4402 {
4403 if (!mutex_is_locked(mutex))
4404 return false;
4405
4406 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4407 return mutex->owner == task;
4408 #else
4409 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4410 return false;
4411 #endif
4412 }
4413
4414 static int
4415 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4416 {
4417 struct drm_i915_private *dev_priv =
4418 container_of(shrinker,
4419 struct drm_i915_private,
4420 mm.inactive_shrinker);
4421 struct drm_device *dev = dev_priv->dev;
4422 struct drm_i915_gem_object *obj;
4423 int nr_to_scan = sc->nr_to_scan;
4424 bool unlock = true;
4425 int cnt;
4426
4427 if (!mutex_trylock(&dev->struct_mutex)) {
4428 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4429 return 0;
4430
4431 if (dev_priv->mm.shrinker_no_lock_stealing)
4432 return 0;
4433
4434 unlock = false;
4435 }
4436
4437 if (nr_to_scan) {
4438 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4439 if (nr_to_scan > 0)
4440 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4441 false);
4442 if (nr_to_scan > 0)
4443 i915_gem_shrink_all(dev_priv);
4444 }
4445
4446 cnt = 0;
4447 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4448 if (obj->pages_pin_count == 0)
4449 cnt += obj->base.size >> PAGE_SHIFT;
4450 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4451 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4452 cnt += obj->base.size >> PAGE_SHIFT;
4453
4454 if (unlock)
4455 mutex_unlock(&dev->struct_mutex);
4456 return cnt;
4457 }
This page took 0.19788 seconds and 4 git commands to generate.