drm/i915: Fix dynamic allocation of physical handles
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46
47 static void i915_gem_write_fence(struct drm_device *dev, int reg,
48 struct drm_i915_gem_object *obj);
49 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
50 struct drm_i915_fence_reg *fence,
51 bool enable);
52
53 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
54 struct shrink_control *sc);
55 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
56 struct shrink_control *sc);
57 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
58 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
61
62 static bool cpu_cache_is_coherent(struct drm_device *dev,
63 enum i915_cache_level level)
64 {
65 return HAS_LLC(dev) || level != I915_CACHE_NONE;
66 }
67
68 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
69 {
70 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
71 return true;
72
73 return obj->pin_display;
74 }
75
76 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
77 {
78 if (obj->tiling_mode)
79 i915_gem_release_mmap(obj);
80
81 /* As we do not have an associated fence register, we will force
82 * a tiling change if we ever need to acquire one.
83 */
84 obj->fence_dirty = false;
85 obj->fence_reg = I915_FENCE_REG_NONE;
86 }
87
88 /* some bookkeeping */
89 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
90 size_t size)
91 {
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count++;
94 dev_priv->mm.object_memory += size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97
98 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count--;
103 dev_priv->mm.object_memory -= size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static int
108 i915_gem_wait_for_error(struct i915_gpu_error *error)
109 {
110 int ret;
111
112 #define EXIT_COND (!i915_reset_in_progress(error) || \
113 i915_terminally_wedged(error))
114 if (EXIT_COND)
115 return 0;
116
117 /*
118 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
119 * userspace. If it takes that long something really bad is going on and
120 * we should simply try to bail out and fail as gracefully as possible.
121 */
122 ret = wait_event_interruptible_timeout(error->reset_queue,
123 EXIT_COND,
124 10*HZ);
125 if (ret == 0) {
126 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
127 return -EIO;
128 } else if (ret < 0) {
129 return ret;
130 }
131 #undef EXIT_COND
132
133 return 0;
134 }
135
136 int i915_mutex_lock_interruptible(struct drm_device *dev)
137 {
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 int ret;
140
141 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
142 if (ret)
143 return ret;
144
145 ret = mutex_lock_interruptible(&dev->struct_mutex);
146 if (ret)
147 return ret;
148
149 WARN_ON(i915_verify_lists(dev));
150 return 0;
151 }
152
153 static inline bool
154 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
155 {
156 return i915_gem_obj_bound_any(obj) && !obj->active;
157 }
158
159 int
160 i915_gem_init_ioctl(struct drm_device *dev, void *data,
161 struct drm_file *file)
162 {
163 struct drm_i915_private *dev_priv = dev->dev_private;
164 struct drm_i915_gem_init *args = data;
165
166 if (drm_core_check_feature(dev, DRIVER_MODESET))
167 return -ENODEV;
168
169 if (args->gtt_start >= args->gtt_end ||
170 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
171 return -EINVAL;
172
173 /* GEM with user mode setting was never supported on ilk and later. */
174 if (INTEL_INFO(dev)->gen >= 5)
175 return -ENODEV;
176
177 mutex_lock(&dev->struct_mutex);
178 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
179 args->gtt_end);
180 dev_priv->gtt.mappable_end = args->gtt_end;
181 mutex_unlock(&dev->struct_mutex);
182
183 return 0;
184 }
185
186 int
187 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
188 struct drm_file *file)
189 {
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 struct drm_i915_gem_get_aperture *args = data;
192 struct drm_i915_gem_object *obj;
193 size_t pinned;
194
195 pinned = 0;
196 mutex_lock(&dev->struct_mutex);
197 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
198 if (i915_gem_obj_is_pinned(obj))
199 pinned += i915_gem_obj_ggtt_size(obj);
200 mutex_unlock(&dev->struct_mutex);
201
202 args->aper_size = dev_priv->gtt.base.total;
203 args->aper_available_size = args->aper_size - pinned;
204
205 return 0;
206 }
207
208 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
209 {
210 drm_dma_handle_t *phys = obj->phys_handle;
211
212 if (!phys)
213 return;
214
215 if (obj->madv == I915_MADV_WILLNEED) {
216 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
217 char *vaddr = phys->vaddr;
218 int i;
219
220 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
221 struct page *page = shmem_read_mapping_page(mapping, i);
222 if (!IS_ERR(page)) {
223 char *dst = kmap_atomic(page);
224 memcpy(dst, vaddr, PAGE_SIZE);
225 drm_clflush_virt_range(dst, PAGE_SIZE);
226 kunmap_atomic(dst);
227
228 set_page_dirty(page);
229 mark_page_accessed(page);
230 page_cache_release(page);
231 }
232 vaddr += PAGE_SIZE;
233 }
234 i915_gem_chipset_flush(obj->base.dev);
235 }
236
237 #ifdef CONFIG_X86
238 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
239 #endif
240 drm_pci_free(obj->base.dev, phys);
241 obj->phys_handle = NULL;
242 }
243
244 int
245 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
246 int align)
247 {
248 drm_dma_handle_t *phys;
249 struct address_space *mapping;
250 char *vaddr;
251 int i;
252
253 if (obj->phys_handle) {
254 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
255 return -EBUSY;
256
257 return 0;
258 }
259
260 if (obj->madv != I915_MADV_WILLNEED)
261 return -EFAULT;
262
263 if (obj->base.filp == NULL)
264 return -EINVAL;
265
266 /* create a new object */
267 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
268 if (!phys)
269 return -ENOMEM;
270
271 vaddr = phys->vaddr;
272 #ifdef CONFIG_X86
273 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
274 #endif
275 mapping = file_inode(obj->base.filp)->i_mapping;
276 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277 struct page *page;
278 char *src;
279
280 page = shmem_read_mapping_page(mapping, i);
281 if (IS_ERR(page)) {
282 #ifdef CONFIG_X86
283 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
284 #endif
285 drm_pci_free(obj->base.dev, phys);
286 return PTR_ERR(page);
287 }
288
289 src = kmap_atomic(page);
290 memcpy(vaddr, src, PAGE_SIZE);
291 kunmap_atomic(src);
292
293 mark_page_accessed(page);
294 page_cache_release(page);
295
296 vaddr += PAGE_SIZE;
297 }
298
299 obj->phys_handle = phys;
300 return 0;
301 }
302
303 static int
304 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
305 struct drm_i915_gem_pwrite *args,
306 struct drm_file *file_priv)
307 {
308 struct drm_device *dev = obj->base.dev;
309 void *vaddr = obj->phys_handle->vaddr + args->offset;
310 char __user *user_data = to_user_ptr(args->data_ptr);
311
312 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
313 unsigned long unwritten;
314
315 /* The physical object once assigned is fixed for the lifetime
316 * of the obj, so we can safely drop the lock and continue
317 * to access vaddr.
318 */
319 mutex_unlock(&dev->struct_mutex);
320 unwritten = copy_from_user(vaddr, user_data, args->size);
321 mutex_lock(&dev->struct_mutex);
322 if (unwritten)
323 return -EFAULT;
324 }
325
326 i915_gem_chipset_flush(dev);
327 return 0;
328 }
329
330 void *i915_gem_object_alloc(struct drm_device *dev)
331 {
332 struct drm_i915_private *dev_priv = dev->dev_private;
333 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
334 }
335
336 void i915_gem_object_free(struct drm_i915_gem_object *obj)
337 {
338 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
339 kmem_cache_free(dev_priv->slab, obj);
340 }
341
342 static int
343 i915_gem_create(struct drm_file *file,
344 struct drm_device *dev,
345 uint64_t size,
346 uint32_t *handle_p)
347 {
348 struct drm_i915_gem_object *obj;
349 int ret;
350 u32 handle;
351
352 size = roundup(size, PAGE_SIZE);
353 if (size == 0)
354 return -EINVAL;
355
356 /* Allocate the new object */
357 obj = i915_gem_alloc_object(dev, size);
358 if (obj == NULL)
359 return -ENOMEM;
360
361 ret = drm_gem_handle_create(file, &obj->base, &handle);
362 /* drop reference from allocate - handle holds it now */
363 drm_gem_object_unreference_unlocked(&obj->base);
364 if (ret)
365 return ret;
366
367 *handle_p = handle;
368 return 0;
369 }
370
371 int
372 i915_gem_dumb_create(struct drm_file *file,
373 struct drm_device *dev,
374 struct drm_mode_create_dumb *args)
375 {
376 /* have to work out size/pitch and return them */
377 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
378 args->size = args->pitch * args->height;
379 return i915_gem_create(file, dev,
380 args->size, &args->handle);
381 }
382
383 /**
384 * Creates a new mm object and returns a handle to it.
385 */
386 int
387 i915_gem_create_ioctl(struct drm_device *dev, void *data,
388 struct drm_file *file)
389 {
390 struct drm_i915_gem_create *args = data;
391
392 return i915_gem_create(file, dev,
393 args->size, &args->handle);
394 }
395
396 static inline int
397 __copy_to_user_swizzled(char __user *cpu_vaddr,
398 const char *gpu_vaddr, int gpu_offset,
399 int length)
400 {
401 int ret, cpu_offset = 0;
402
403 while (length > 0) {
404 int cacheline_end = ALIGN(gpu_offset + 1, 64);
405 int this_length = min(cacheline_end - gpu_offset, length);
406 int swizzled_gpu_offset = gpu_offset ^ 64;
407
408 ret = __copy_to_user(cpu_vaddr + cpu_offset,
409 gpu_vaddr + swizzled_gpu_offset,
410 this_length);
411 if (ret)
412 return ret + length;
413
414 cpu_offset += this_length;
415 gpu_offset += this_length;
416 length -= this_length;
417 }
418
419 return 0;
420 }
421
422 static inline int
423 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
424 const char __user *cpu_vaddr,
425 int length)
426 {
427 int ret, cpu_offset = 0;
428
429 while (length > 0) {
430 int cacheline_end = ALIGN(gpu_offset + 1, 64);
431 int this_length = min(cacheline_end - gpu_offset, length);
432 int swizzled_gpu_offset = gpu_offset ^ 64;
433
434 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
435 cpu_vaddr + cpu_offset,
436 this_length);
437 if (ret)
438 return ret + length;
439
440 cpu_offset += this_length;
441 gpu_offset += this_length;
442 length -= this_length;
443 }
444
445 return 0;
446 }
447
448 /*
449 * Pins the specified object's pages and synchronizes the object with
450 * GPU accesses. Sets needs_clflush to non-zero if the caller should
451 * flush the object from the CPU cache.
452 */
453 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
454 int *needs_clflush)
455 {
456 int ret;
457
458 *needs_clflush = 0;
459
460 if (!obj->base.filp)
461 return -EINVAL;
462
463 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
464 /* If we're not in the cpu read domain, set ourself into the gtt
465 * read domain and manually flush cachelines (if required). This
466 * optimizes for the case when the gpu will dirty the data
467 * anyway again before the next pread happens. */
468 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
469 obj->cache_level);
470 ret = i915_gem_object_wait_rendering(obj, true);
471 if (ret)
472 return ret;
473 }
474
475 ret = i915_gem_object_get_pages(obj);
476 if (ret)
477 return ret;
478
479 i915_gem_object_pin_pages(obj);
480
481 return ret;
482 }
483
484 /* Per-page copy function for the shmem pread fastpath.
485 * Flushes invalid cachelines before reading the target if
486 * needs_clflush is set. */
487 static int
488 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
489 char __user *user_data,
490 bool page_do_bit17_swizzling, bool needs_clflush)
491 {
492 char *vaddr;
493 int ret;
494
495 if (unlikely(page_do_bit17_swizzling))
496 return -EINVAL;
497
498 vaddr = kmap_atomic(page);
499 if (needs_clflush)
500 drm_clflush_virt_range(vaddr + shmem_page_offset,
501 page_length);
502 ret = __copy_to_user_inatomic(user_data,
503 vaddr + shmem_page_offset,
504 page_length);
505 kunmap_atomic(vaddr);
506
507 return ret ? -EFAULT : 0;
508 }
509
510 static void
511 shmem_clflush_swizzled_range(char *addr, unsigned long length,
512 bool swizzled)
513 {
514 if (unlikely(swizzled)) {
515 unsigned long start = (unsigned long) addr;
516 unsigned long end = (unsigned long) addr + length;
517
518 /* For swizzling simply ensure that we always flush both
519 * channels. Lame, but simple and it works. Swizzled
520 * pwrite/pread is far from a hotpath - current userspace
521 * doesn't use it at all. */
522 start = round_down(start, 128);
523 end = round_up(end, 128);
524
525 drm_clflush_virt_range((void *)start, end - start);
526 } else {
527 drm_clflush_virt_range(addr, length);
528 }
529
530 }
531
532 /* Only difference to the fast-path function is that this can handle bit17
533 * and uses non-atomic copy and kmap functions. */
534 static int
535 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
536 char __user *user_data,
537 bool page_do_bit17_swizzling, bool needs_clflush)
538 {
539 char *vaddr;
540 int ret;
541
542 vaddr = kmap(page);
543 if (needs_clflush)
544 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
545 page_length,
546 page_do_bit17_swizzling);
547
548 if (page_do_bit17_swizzling)
549 ret = __copy_to_user_swizzled(user_data,
550 vaddr, shmem_page_offset,
551 page_length);
552 else
553 ret = __copy_to_user(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap(page);
557
558 return ret ? - EFAULT : 0;
559 }
560
561 static int
562 i915_gem_shmem_pread(struct drm_device *dev,
563 struct drm_i915_gem_object *obj,
564 struct drm_i915_gem_pread *args,
565 struct drm_file *file)
566 {
567 char __user *user_data;
568 ssize_t remain;
569 loff_t offset;
570 int shmem_page_offset, page_length, ret = 0;
571 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
572 int prefaulted = 0;
573 int needs_clflush = 0;
574 struct sg_page_iter sg_iter;
575
576 user_data = to_user_ptr(args->data_ptr);
577 remain = args->size;
578
579 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
580
581 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
582 if (ret)
583 return ret;
584
585 offset = args->offset;
586
587 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
588 offset >> PAGE_SHIFT) {
589 struct page *page = sg_page_iter_page(&sg_iter);
590
591 if (remain <= 0)
592 break;
593
594 /* Operation in this page
595 *
596 * shmem_page_offset = offset within page in shmem file
597 * page_length = bytes to copy for this page
598 */
599 shmem_page_offset = offset_in_page(offset);
600 page_length = remain;
601 if ((shmem_page_offset + page_length) > PAGE_SIZE)
602 page_length = PAGE_SIZE - shmem_page_offset;
603
604 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
605 (page_to_phys(page) & (1 << 17)) != 0;
606
607 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
608 user_data, page_do_bit17_swizzling,
609 needs_clflush);
610 if (ret == 0)
611 goto next_page;
612
613 mutex_unlock(&dev->struct_mutex);
614
615 if (likely(!i915.prefault_disable) && !prefaulted) {
616 ret = fault_in_multipages_writeable(user_data, remain);
617 /* Userspace is tricking us, but we've already clobbered
618 * its pages with the prefault and promised to write the
619 * data up to the first fault. Hence ignore any errors
620 * and just continue. */
621 (void)ret;
622 prefaulted = 1;
623 }
624
625 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
626 user_data, page_do_bit17_swizzling,
627 needs_clflush);
628
629 mutex_lock(&dev->struct_mutex);
630
631 if (ret)
632 goto out;
633
634 next_page:
635 remain -= page_length;
636 user_data += page_length;
637 offset += page_length;
638 }
639
640 out:
641 i915_gem_object_unpin_pages(obj);
642
643 return ret;
644 }
645
646 /**
647 * Reads data from the object referenced by handle.
648 *
649 * On error, the contents of *data are undefined.
650 */
651 int
652 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
653 struct drm_file *file)
654 {
655 struct drm_i915_gem_pread *args = data;
656 struct drm_i915_gem_object *obj;
657 int ret = 0;
658
659 if (args->size == 0)
660 return 0;
661
662 if (!access_ok(VERIFY_WRITE,
663 to_user_ptr(args->data_ptr),
664 args->size))
665 return -EFAULT;
666
667 ret = i915_mutex_lock_interruptible(dev);
668 if (ret)
669 return ret;
670
671 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
672 if (&obj->base == NULL) {
673 ret = -ENOENT;
674 goto unlock;
675 }
676
677 /* Bounds check source. */
678 if (args->offset > obj->base.size ||
679 args->size > obj->base.size - args->offset) {
680 ret = -EINVAL;
681 goto out;
682 }
683
684 /* prime objects have no backing filp to GEM pread/pwrite
685 * pages from.
686 */
687 if (!obj->base.filp) {
688 ret = -EINVAL;
689 goto out;
690 }
691
692 trace_i915_gem_object_pread(obj, args->offset, args->size);
693
694 ret = i915_gem_shmem_pread(dev, obj, args, file);
695
696 out:
697 drm_gem_object_unreference(&obj->base);
698 unlock:
699 mutex_unlock(&dev->struct_mutex);
700 return ret;
701 }
702
703 /* This is the fast write path which cannot handle
704 * page faults in the source data
705 */
706
707 static inline int
708 fast_user_write(struct io_mapping *mapping,
709 loff_t page_base, int page_offset,
710 char __user *user_data,
711 int length)
712 {
713 void __iomem *vaddr_atomic;
714 void *vaddr;
715 unsigned long unwritten;
716
717 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
718 /* We can use the cpu mem copy function because this is X86. */
719 vaddr = (void __force*)vaddr_atomic + page_offset;
720 unwritten = __copy_from_user_inatomic_nocache(vaddr,
721 user_data, length);
722 io_mapping_unmap_atomic(vaddr_atomic);
723 return unwritten;
724 }
725
726 /**
727 * This is the fast pwrite path, where we copy the data directly from the
728 * user into the GTT, uncached.
729 */
730 static int
731 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
732 struct drm_i915_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file)
735 {
736 struct drm_i915_private *dev_priv = dev->dev_private;
737 ssize_t remain;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length, ret;
741
742 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
743 if (ret)
744 goto out;
745
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 goto out_unpin;
749
750 ret = i915_gem_object_put_fence(obj);
751 if (ret)
752 goto out_unpin;
753
754 user_data = to_user_ptr(args->data_ptr);
755 remain = args->size;
756
757 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
765 */
766 page_base = offset & PAGE_MASK;
767 page_offset = offset_in_page(offset);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
772 /* If we get a fault while copying data, then (presumably) our
773 * source page isn't available. Return the error and we'll
774 * retry in the slow path.
775 */
776 if (fast_user_write(dev_priv->gtt.mappable, page_base,
777 page_offset, user_data, page_length)) {
778 ret = -EFAULT;
779 goto out_unpin;
780 }
781
782 remain -= page_length;
783 user_data += page_length;
784 offset += page_length;
785 }
786
787 out_unpin:
788 i915_gem_object_ggtt_unpin(obj);
789 out:
790 return ret;
791 }
792
793 /* Per-page copy function for the shmem pwrite fastpath.
794 * Flushes invalid cachelines before writing to the target if
795 * needs_clflush_before is set and flushes out any written cachelines after
796 * writing if needs_clflush is set. */
797 static int
798 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
803 {
804 char *vaddr;
805 int ret;
806
807 if (unlikely(page_do_bit17_swizzling))
808 return -EINVAL;
809
810 vaddr = kmap_atomic(page);
811 if (needs_clflush_before)
812 drm_clflush_virt_range(vaddr + shmem_page_offset,
813 page_length);
814 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
815 user_data, page_length);
816 if (needs_clflush_after)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 kunmap_atomic(vaddr);
820
821 return ret ? -EFAULT : 0;
822 }
823
824 /* Only difference to the fast-path function is that this can handle bit17
825 * and uses non-atomic copy and kmap functions. */
826 static int
827 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
828 char __user *user_data,
829 bool page_do_bit17_swizzling,
830 bool needs_clflush_before,
831 bool needs_clflush_after)
832 {
833 char *vaddr;
834 int ret;
835
836 vaddr = kmap(page);
837 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
838 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
839 page_length,
840 page_do_bit17_swizzling);
841 if (page_do_bit17_swizzling)
842 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
843 user_data,
844 page_length);
845 else
846 ret = __copy_from_user(vaddr + shmem_page_offset,
847 user_data,
848 page_length);
849 if (needs_clflush_after)
850 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
851 page_length,
852 page_do_bit17_swizzling);
853 kunmap(page);
854
855 return ret ? -EFAULT : 0;
856 }
857
858 static int
859 i915_gem_shmem_pwrite(struct drm_device *dev,
860 struct drm_i915_gem_object *obj,
861 struct drm_i915_gem_pwrite *args,
862 struct drm_file *file)
863 {
864 ssize_t remain;
865 loff_t offset;
866 char __user *user_data;
867 int shmem_page_offset, page_length, ret = 0;
868 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
869 int hit_slowpath = 0;
870 int needs_clflush_after = 0;
871 int needs_clflush_before = 0;
872 struct sg_page_iter sg_iter;
873
874 user_data = to_user_ptr(args->data_ptr);
875 remain = args->size;
876
877 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
878
879 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
880 /* If we're not in the cpu write domain, set ourself into the gtt
881 * write domain and manually flush cachelines (if required). This
882 * optimizes for the case when the gpu will use the data
883 * right away and we therefore have to clflush anyway. */
884 needs_clflush_after = cpu_write_needs_clflush(obj);
885 ret = i915_gem_object_wait_rendering(obj, false);
886 if (ret)
887 return ret;
888 }
889 /* Same trick applies to invalidate partially written cachelines read
890 * before writing. */
891 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
892 needs_clflush_before =
893 !cpu_cache_is_coherent(dev, obj->cache_level);
894
895 ret = i915_gem_object_get_pages(obj);
896 if (ret)
897 return ret;
898
899 i915_gem_object_pin_pages(obj);
900
901 offset = args->offset;
902 obj->dirty = 1;
903
904 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
905 offset >> PAGE_SHIFT) {
906 struct page *page = sg_page_iter_page(&sg_iter);
907 int partial_cacheline_write;
908
909 if (remain <= 0)
910 break;
911
912 /* Operation in this page
913 *
914 * shmem_page_offset = offset within page in shmem file
915 * page_length = bytes to copy for this page
916 */
917 shmem_page_offset = offset_in_page(offset);
918
919 page_length = remain;
920 if ((shmem_page_offset + page_length) > PAGE_SIZE)
921 page_length = PAGE_SIZE - shmem_page_offset;
922
923 /* If we don't overwrite a cacheline completely we need to be
924 * careful to have up-to-date data by first clflushing. Don't
925 * overcomplicate things and flush the entire patch. */
926 partial_cacheline_write = needs_clflush_before &&
927 ((shmem_page_offset | page_length)
928 & (boot_cpu_data.x86_clflush_size - 1));
929
930 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
931 (page_to_phys(page) & (1 << 17)) != 0;
932
933 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
934 user_data, page_do_bit17_swizzling,
935 partial_cacheline_write,
936 needs_clflush_after);
937 if (ret == 0)
938 goto next_page;
939
940 hit_slowpath = 1;
941 mutex_unlock(&dev->struct_mutex);
942 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
943 user_data, page_do_bit17_swizzling,
944 partial_cacheline_write,
945 needs_clflush_after);
946
947 mutex_lock(&dev->struct_mutex);
948
949 if (ret)
950 goto out;
951
952 next_page:
953 remain -= page_length;
954 user_data += page_length;
955 offset += page_length;
956 }
957
958 out:
959 i915_gem_object_unpin_pages(obj);
960
961 if (hit_slowpath) {
962 /*
963 * Fixup: Flush cpu caches in case we didn't flush the dirty
964 * cachelines in-line while writing and the object moved
965 * out of the cpu write domain while we've dropped the lock.
966 */
967 if (!needs_clflush_after &&
968 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
969 if (i915_gem_clflush_object(obj, obj->pin_display))
970 i915_gem_chipset_flush(dev);
971 }
972 }
973
974 if (needs_clflush_after)
975 i915_gem_chipset_flush(dev);
976
977 return ret;
978 }
979
980 /**
981 * Writes data to the object referenced by handle.
982 *
983 * On error, the contents of the buffer that were to be modified are undefined.
984 */
985 int
986 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
987 struct drm_file *file)
988 {
989 struct drm_i915_gem_pwrite *args = data;
990 struct drm_i915_gem_object *obj;
991 int ret;
992
993 if (args->size == 0)
994 return 0;
995
996 if (!access_ok(VERIFY_READ,
997 to_user_ptr(args->data_ptr),
998 args->size))
999 return -EFAULT;
1000
1001 if (likely(!i915.prefault_disable)) {
1002 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1003 args->size);
1004 if (ret)
1005 return -EFAULT;
1006 }
1007
1008 ret = i915_mutex_lock_interruptible(dev);
1009 if (ret)
1010 return ret;
1011
1012 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1013 if (&obj->base == NULL) {
1014 ret = -ENOENT;
1015 goto unlock;
1016 }
1017
1018 /* Bounds check destination. */
1019 if (args->offset > obj->base.size ||
1020 args->size > obj->base.size - args->offset) {
1021 ret = -EINVAL;
1022 goto out;
1023 }
1024
1025 /* prime objects have no backing filp to GEM pread/pwrite
1026 * pages from.
1027 */
1028 if (!obj->base.filp) {
1029 ret = -EINVAL;
1030 goto out;
1031 }
1032
1033 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1034
1035 ret = -EFAULT;
1036 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1037 * it would end up going through the fenced access, and we'll get
1038 * different detiling behavior between reading and writing.
1039 * pread/pwrite currently are reading and writing from the CPU
1040 * perspective, requiring manual detiling by the client.
1041 */
1042 if (obj->phys_handle) {
1043 ret = i915_gem_phys_pwrite(obj, args, file);
1044 goto out;
1045 }
1046
1047 if (obj->tiling_mode == I915_TILING_NONE &&
1048 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1049 cpu_write_needs_clflush(obj)) {
1050 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1051 /* Note that the gtt paths might fail with non-page-backed user
1052 * pointers (e.g. gtt mappings when moving data between
1053 * textures). Fallback to the shmem path in that case. */
1054 }
1055
1056 if (ret == -EFAULT || ret == -ENOSPC)
1057 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1058
1059 out:
1060 drm_gem_object_unreference(&obj->base);
1061 unlock:
1062 mutex_unlock(&dev->struct_mutex);
1063 return ret;
1064 }
1065
1066 int
1067 i915_gem_check_wedge(struct i915_gpu_error *error,
1068 bool interruptible)
1069 {
1070 if (i915_reset_in_progress(error)) {
1071 /* Non-interruptible callers can't handle -EAGAIN, hence return
1072 * -EIO unconditionally for these. */
1073 if (!interruptible)
1074 return -EIO;
1075
1076 /* Recovery complete, but the reset failed ... */
1077 if (i915_terminally_wedged(error))
1078 return -EIO;
1079
1080 return -EAGAIN;
1081 }
1082
1083 return 0;
1084 }
1085
1086 /*
1087 * Compare seqno against outstanding lazy request. Emit a request if they are
1088 * equal.
1089 */
1090 static int
1091 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1092 {
1093 int ret;
1094
1095 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1096
1097 ret = 0;
1098 if (seqno == ring->outstanding_lazy_seqno)
1099 ret = i915_add_request(ring, NULL);
1100
1101 return ret;
1102 }
1103
1104 static void fake_irq(unsigned long data)
1105 {
1106 wake_up_process((struct task_struct *)data);
1107 }
1108
1109 static bool missed_irq(struct drm_i915_private *dev_priv,
1110 struct intel_ring_buffer *ring)
1111 {
1112 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1113 }
1114
1115 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1116 {
1117 if (file_priv == NULL)
1118 return true;
1119
1120 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1121 }
1122
1123 /**
1124 * __wait_seqno - wait until execution of seqno has finished
1125 * @ring: the ring expected to report seqno
1126 * @seqno: duh!
1127 * @reset_counter: reset sequence associated with the given seqno
1128 * @interruptible: do an interruptible wait (normally yes)
1129 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1130 *
1131 * Note: It is of utmost importance that the passed in seqno and reset_counter
1132 * values have been read by the caller in an smp safe manner. Where read-side
1133 * locks are involved, it is sufficient to read the reset_counter before
1134 * unlocking the lock that protects the seqno. For lockless tricks, the
1135 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1136 * inserted.
1137 *
1138 * Returns 0 if the seqno was found within the alloted time. Else returns the
1139 * errno with remaining time filled in timeout argument.
1140 */
1141 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1142 unsigned reset_counter,
1143 bool interruptible,
1144 struct timespec *timeout,
1145 struct drm_i915_file_private *file_priv)
1146 {
1147 struct drm_device *dev = ring->dev;
1148 struct drm_i915_private *dev_priv = dev->dev_private;
1149 const bool irq_test_in_progress =
1150 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1151 struct timespec before, now;
1152 DEFINE_WAIT(wait);
1153 unsigned long timeout_expire;
1154 int ret;
1155
1156 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1157
1158 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1159 return 0;
1160
1161 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1162
1163 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1164 gen6_rps_boost(dev_priv);
1165 if (file_priv)
1166 mod_delayed_work(dev_priv->wq,
1167 &file_priv->mm.idle_work,
1168 msecs_to_jiffies(100));
1169 }
1170
1171 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1172 return -ENODEV;
1173
1174 /* Record current time in case interrupted by signal, or wedged */
1175 trace_i915_gem_request_wait_begin(ring, seqno);
1176 getrawmonotonic(&before);
1177 for (;;) {
1178 struct timer_list timer;
1179
1180 prepare_to_wait(&ring->irq_queue, &wait,
1181 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1182
1183 /* We need to check whether any gpu reset happened in between
1184 * the caller grabbing the seqno and now ... */
1185 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1186 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1187 * is truely gone. */
1188 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1189 if (ret == 0)
1190 ret = -EAGAIN;
1191 break;
1192 }
1193
1194 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1195 ret = 0;
1196 break;
1197 }
1198
1199 if (interruptible && signal_pending(current)) {
1200 ret = -ERESTARTSYS;
1201 break;
1202 }
1203
1204 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1205 ret = -ETIME;
1206 break;
1207 }
1208
1209 timer.function = NULL;
1210 if (timeout || missed_irq(dev_priv, ring)) {
1211 unsigned long expire;
1212
1213 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1214 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1215 mod_timer(&timer, expire);
1216 }
1217
1218 io_schedule();
1219
1220 if (timer.function) {
1221 del_singleshot_timer_sync(&timer);
1222 destroy_timer_on_stack(&timer);
1223 }
1224 }
1225 getrawmonotonic(&now);
1226 trace_i915_gem_request_wait_end(ring, seqno);
1227
1228 if (!irq_test_in_progress)
1229 ring->irq_put(ring);
1230
1231 finish_wait(&ring->irq_queue, &wait);
1232
1233 if (timeout) {
1234 struct timespec sleep_time = timespec_sub(now, before);
1235 *timeout = timespec_sub(*timeout, sleep_time);
1236 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1237 set_normalized_timespec(timeout, 0, 0);
1238 }
1239
1240 return ret;
1241 }
1242
1243 /**
1244 * Waits for a sequence number to be signaled, and cleans up the
1245 * request and object lists appropriately for that event.
1246 */
1247 int
1248 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1249 {
1250 struct drm_device *dev = ring->dev;
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 bool interruptible = dev_priv->mm.interruptible;
1253 int ret;
1254
1255 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1256 BUG_ON(seqno == 0);
1257
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret)
1260 return ret;
1261
1262 ret = i915_gem_check_olr(ring, seqno);
1263 if (ret)
1264 return ret;
1265
1266 return __wait_seqno(ring, seqno,
1267 atomic_read(&dev_priv->gpu_error.reset_counter),
1268 interruptible, NULL, NULL);
1269 }
1270
1271 static int
1272 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1273 struct intel_ring_buffer *ring)
1274 {
1275 i915_gem_retire_requests_ring(ring);
1276
1277 /* Manually manage the write flush as we may have not yet
1278 * retired the buffer.
1279 *
1280 * Note that the last_write_seqno is always the earlier of
1281 * the two (read/write) seqno, so if we haved successfully waited,
1282 * we know we have passed the last write.
1283 */
1284 obj->last_write_seqno = 0;
1285 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1286
1287 return 0;
1288 }
1289
1290 /**
1291 * Ensures that all rendering to the object has completed and the object is
1292 * safe to unbind from the GTT or access from the CPU.
1293 */
1294 static __must_check int
1295 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1296 bool readonly)
1297 {
1298 struct intel_ring_buffer *ring = obj->ring;
1299 u32 seqno;
1300 int ret;
1301
1302 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1303 if (seqno == 0)
1304 return 0;
1305
1306 ret = i915_wait_seqno(ring, seqno);
1307 if (ret)
1308 return ret;
1309
1310 return i915_gem_object_wait_rendering__tail(obj, ring);
1311 }
1312
1313 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1314 * as the object state may change during this call.
1315 */
1316 static __must_check int
1317 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1318 struct drm_i915_file_private *file_priv,
1319 bool readonly)
1320 {
1321 struct drm_device *dev = obj->base.dev;
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 struct intel_ring_buffer *ring = obj->ring;
1324 unsigned reset_counter;
1325 u32 seqno;
1326 int ret;
1327
1328 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329 BUG_ON(!dev_priv->mm.interruptible);
1330
1331 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1332 if (seqno == 0)
1333 return 0;
1334
1335 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1336 if (ret)
1337 return ret;
1338
1339 ret = i915_gem_check_olr(ring, seqno);
1340 if (ret)
1341 return ret;
1342
1343 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1344 mutex_unlock(&dev->struct_mutex);
1345 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1346 mutex_lock(&dev->struct_mutex);
1347 if (ret)
1348 return ret;
1349
1350 return i915_gem_object_wait_rendering__tail(obj, ring);
1351 }
1352
1353 /**
1354 * Called when user space prepares to use an object with the CPU, either
1355 * through the mmap ioctl's mapping or a GTT mapping.
1356 */
1357 int
1358 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1359 struct drm_file *file)
1360 {
1361 struct drm_i915_gem_set_domain *args = data;
1362 struct drm_i915_gem_object *obj;
1363 uint32_t read_domains = args->read_domains;
1364 uint32_t write_domain = args->write_domain;
1365 int ret;
1366
1367 /* Only handle setting domains to types used by the CPU. */
1368 if (write_domain & I915_GEM_GPU_DOMAINS)
1369 return -EINVAL;
1370
1371 if (read_domains & I915_GEM_GPU_DOMAINS)
1372 return -EINVAL;
1373
1374 /* Having something in the write domain implies it's in the read
1375 * domain, and only that read domain. Enforce that in the request.
1376 */
1377 if (write_domain != 0 && read_domains != write_domain)
1378 return -EINVAL;
1379
1380 ret = i915_mutex_lock_interruptible(dev);
1381 if (ret)
1382 return ret;
1383
1384 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1385 if (&obj->base == NULL) {
1386 ret = -ENOENT;
1387 goto unlock;
1388 }
1389
1390 /* Try to flush the object off the GPU without holding the lock.
1391 * We will repeat the flush holding the lock in the normal manner
1392 * to catch cases where we are gazumped.
1393 */
1394 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1395 file->driver_priv,
1396 !write_domain);
1397 if (ret)
1398 goto unref;
1399
1400 if (read_domains & I915_GEM_DOMAIN_GTT) {
1401 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1402
1403 /* Silently promote "you're not bound, there was nothing to do"
1404 * to success, since the client was just asking us to
1405 * make sure everything was done.
1406 */
1407 if (ret == -EINVAL)
1408 ret = 0;
1409 } else {
1410 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1411 }
1412
1413 unref:
1414 drm_gem_object_unreference(&obj->base);
1415 unlock:
1416 mutex_unlock(&dev->struct_mutex);
1417 return ret;
1418 }
1419
1420 /**
1421 * Called when user space has done writes to this buffer
1422 */
1423 int
1424 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1425 struct drm_file *file)
1426 {
1427 struct drm_i915_gem_sw_finish *args = data;
1428 struct drm_i915_gem_object *obj;
1429 int ret = 0;
1430
1431 ret = i915_mutex_lock_interruptible(dev);
1432 if (ret)
1433 return ret;
1434
1435 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1436 if (&obj->base == NULL) {
1437 ret = -ENOENT;
1438 goto unlock;
1439 }
1440
1441 /* Pinned buffers may be scanout, so flush the cache */
1442 if (obj->pin_display)
1443 i915_gem_object_flush_cpu_write_domain(obj, true);
1444
1445 drm_gem_object_unreference(&obj->base);
1446 unlock:
1447 mutex_unlock(&dev->struct_mutex);
1448 return ret;
1449 }
1450
1451 /**
1452 * Maps the contents of an object, returning the address it is mapped
1453 * into.
1454 *
1455 * While the mapping holds a reference on the contents of the object, it doesn't
1456 * imply a ref on the object itself.
1457 */
1458 int
1459 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1460 struct drm_file *file)
1461 {
1462 struct drm_i915_gem_mmap *args = data;
1463 struct drm_gem_object *obj;
1464 unsigned long addr;
1465
1466 obj = drm_gem_object_lookup(dev, file, args->handle);
1467 if (obj == NULL)
1468 return -ENOENT;
1469
1470 /* prime objects have no backing filp to GEM mmap
1471 * pages from.
1472 */
1473 if (!obj->filp) {
1474 drm_gem_object_unreference_unlocked(obj);
1475 return -EINVAL;
1476 }
1477
1478 addr = vm_mmap(obj->filp, 0, args->size,
1479 PROT_READ | PROT_WRITE, MAP_SHARED,
1480 args->offset);
1481 drm_gem_object_unreference_unlocked(obj);
1482 if (IS_ERR((void *)addr))
1483 return addr;
1484
1485 args->addr_ptr = (uint64_t) addr;
1486
1487 return 0;
1488 }
1489
1490 /**
1491 * i915_gem_fault - fault a page into the GTT
1492 * vma: VMA in question
1493 * vmf: fault info
1494 *
1495 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1496 * from userspace. The fault handler takes care of binding the object to
1497 * the GTT (if needed), allocating and programming a fence register (again,
1498 * only if needed based on whether the old reg is still valid or the object
1499 * is tiled) and inserting a new PTE into the faulting process.
1500 *
1501 * Note that the faulting process may involve evicting existing objects
1502 * from the GTT and/or fence registers to make room. So performance may
1503 * suffer if the GTT working set is large or there are few fence registers
1504 * left.
1505 */
1506 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1507 {
1508 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1509 struct drm_device *dev = obj->base.dev;
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511 pgoff_t page_offset;
1512 unsigned long pfn;
1513 int ret = 0;
1514 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1515
1516 intel_runtime_pm_get(dev_priv);
1517
1518 /* We don't use vmf->pgoff since that has the fake offset */
1519 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1520 PAGE_SHIFT;
1521
1522 ret = i915_mutex_lock_interruptible(dev);
1523 if (ret)
1524 goto out;
1525
1526 trace_i915_gem_object_fault(obj, page_offset, true, write);
1527
1528 /* Try to flush the object off the GPU first without holding the lock.
1529 * Upon reacquiring the lock, we will perform our sanity checks and then
1530 * repeat the flush holding the lock in the normal manner to catch cases
1531 * where we are gazumped.
1532 */
1533 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1534 if (ret)
1535 goto unlock;
1536
1537 /* Access to snoopable pages through the GTT is incoherent. */
1538 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1539 ret = -EINVAL;
1540 goto unlock;
1541 }
1542
1543 /* Now bind it into the GTT if needed */
1544 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1545 if (ret)
1546 goto unlock;
1547
1548 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549 if (ret)
1550 goto unpin;
1551
1552 ret = i915_gem_object_get_fence(obj);
1553 if (ret)
1554 goto unpin;
1555
1556 obj->fault_mappable = true;
1557
1558 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1559 pfn >>= PAGE_SHIFT;
1560 pfn += page_offset;
1561
1562 /* Finally, remap it using the new GTT offset */
1563 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1564 unpin:
1565 i915_gem_object_ggtt_unpin(obj);
1566 unlock:
1567 mutex_unlock(&dev->struct_mutex);
1568 out:
1569 switch (ret) {
1570 case -EIO:
1571 /* If this -EIO is due to a gpu hang, give the reset code a
1572 * chance to clean up the mess. Otherwise return the proper
1573 * SIGBUS. */
1574 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1575 ret = VM_FAULT_SIGBUS;
1576 break;
1577 }
1578 case -EAGAIN:
1579 /*
1580 * EAGAIN means the gpu is hung and we'll wait for the error
1581 * handler to reset everything when re-faulting in
1582 * i915_mutex_lock_interruptible.
1583 */
1584 case 0:
1585 case -ERESTARTSYS:
1586 case -EINTR:
1587 case -EBUSY:
1588 /*
1589 * EBUSY is ok: this just means that another thread
1590 * already did the job.
1591 */
1592 ret = VM_FAULT_NOPAGE;
1593 break;
1594 case -ENOMEM:
1595 ret = VM_FAULT_OOM;
1596 break;
1597 case -ENOSPC:
1598 case -EFAULT:
1599 ret = VM_FAULT_SIGBUS;
1600 break;
1601 default:
1602 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1603 ret = VM_FAULT_SIGBUS;
1604 break;
1605 }
1606
1607 intel_runtime_pm_put(dev_priv);
1608 return ret;
1609 }
1610
1611 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1612 {
1613 struct i915_vma *vma;
1614
1615 /*
1616 * Only the global gtt is relevant for gtt memory mappings, so restrict
1617 * list traversal to objects bound into the global address space. Note
1618 * that the active list should be empty, but better safe than sorry.
1619 */
1620 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1621 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1622 i915_gem_release_mmap(vma->obj);
1623 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1624 i915_gem_release_mmap(vma->obj);
1625 }
1626
1627 /**
1628 * i915_gem_release_mmap - remove physical page mappings
1629 * @obj: obj in question
1630 *
1631 * Preserve the reservation of the mmapping with the DRM core code, but
1632 * relinquish ownership of the pages back to the system.
1633 *
1634 * It is vital that we remove the page mapping if we have mapped a tiled
1635 * object through the GTT and then lose the fence register due to
1636 * resource pressure. Similarly if the object has been moved out of the
1637 * aperture, than pages mapped into userspace must be revoked. Removing the
1638 * mapping will then trigger a page fault on the next user access, allowing
1639 * fixup by i915_gem_fault().
1640 */
1641 void
1642 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1643 {
1644 if (!obj->fault_mappable)
1645 return;
1646
1647 drm_vma_node_unmap(&obj->base.vma_node,
1648 obj->base.dev->anon_inode->i_mapping);
1649 obj->fault_mappable = false;
1650 }
1651
1652 uint32_t
1653 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1654 {
1655 uint32_t gtt_size;
1656
1657 if (INTEL_INFO(dev)->gen >= 4 ||
1658 tiling_mode == I915_TILING_NONE)
1659 return size;
1660
1661 /* Previous chips need a power-of-two fence region when tiling */
1662 if (INTEL_INFO(dev)->gen == 3)
1663 gtt_size = 1024*1024;
1664 else
1665 gtt_size = 512*1024;
1666
1667 while (gtt_size < size)
1668 gtt_size <<= 1;
1669
1670 return gtt_size;
1671 }
1672
1673 /**
1674 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1675 * @obj: object to check
1676 *
1677 * Return the required GTT alignment for an object, taking into account
1678 * potential fence register mapping.
1679 */
1680 uint32_t
1681 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1682 int tiling_mode, bool fenced)
1683 {
1684 /*
1685 * Minimum alignment is 4k (GTT page size), but might be greater
1686 * if a fence register is needed for the object.
1687 */
1688 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1689 tiling_mode == I915_TILING_NONE)
1690 return 4096;
1691
1692 /*
1693 * Previous chips need to be aligned to the size of the smallest
1694 * fence register that can contain the object.
1695 */
1696 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1697 }
1698
1699 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1700 {
1701 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1702 int ret;
1703
1704 if (drm_vma_node_has_offset(&obj->base.vma_node))
1705 return 0;
1706
1707 dev_priv->mm.shrinker_no_lock_stealing = true;
1708
1709 ret = drm_gem_create_mmap_offset(&obj->base);
1710 if (ret != -ENOSPC)
1711 goto out;
1712
1713 /* Badly fragmented mmap space? The only way we can recover
1714 * space is by destroying unwanted objects. We can't randomly release
1715 * mmap_offsets as userspace expects them to be persistent for the
1716 * lifetime of the objects. The closest we can is to release the
1717 * offsets on purgeable objects by truncating it and marking it purged,
1718 * which prevents userspace from ever using that object again.
1719 */
1720 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1721 ret = drm_gem_create_mmap_offset(&obj->base);
1722 if (ret != -ENOSPC)
1723 goto out;
1724
1725 i915_gem_shrink_all(dev_priv);
1726 ret = drm_gem_create_mmap_offset(&obj->base);
1727 out:
1728 dev_priv->mm.shrinker_no_lock_stealing = false;
1729
1730 return ret;
1731 }
1732
1733 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1734 {
1735 drm_gem_free_mmap_offset(&obj->base);
1736 }
1737
1738 int
1739 i915_gem_mmap_gtt(struct drm_file *file,
1740 struct drm_device *dev,
1741 uint32_t handle,
1742 uint64_t *offset)
1743 {
1744 struct drm_i915_private *dev_priv = dev->dev_private;
1745 struct drm_i915_gem_object *obj;
1746 int ret;
1747
1748 ret = i915_mutex_lock_interruptible(dev);
1749 if (ret)
1750 return ret;
1751
1752 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1753 if (&obj->base == NULL) {
1754 ret = -ENOENT;
1755 goto unlock;
1756 }
1757
1758 if (obj->base.size > dev_priv->gtt.mappable_end) {
1759 ret = -E2BIG;
1760 goto out;
1761 }
1762
1763 if (obj->madv != I915_MADV_WILLNEED) {
1764 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1765 ret = -EFAULT;
1766 goto out;
1767 }
1768
1769 ret = i915_gem_object_create_mmap_offset(obj);
1770 if (ret)
1771 goto out;
1772
1773 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1774
1775 out:
1776 drm_gem_object_unreference(&obj->base);
1777 unlock:
1778 mutex_unlock(&dev->struct_mutex);
1779 return ret;
1780 }
1781
1782 /**
1783 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1784 * @dev: DRM device
1785 * @data: GTT mapping ioctl data
1786 * @file: GEM object info
1787 *
1788 * Simply returns the fake offset to userspace so it can mmap it.
1789 * The mmap call will end up in drm_gem_mmap(), which will set things
1790 * up so we can get faults in the handler above.
1791 *
1792 * The fault handler will take care of binding the object into the GTT
1793 * (since it may have been evicted to make room for something), allocating
1794 * a fence register, and mapping the appropriate aperture address into
1795 * userspace.
1796 */
1797 int
1798 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1799 struct drm_file *file)
1800 {
1801 struct drm_i915_gem_mmap_gtt *args = data;
1802
1803 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1804 }
1805
1806 /* Immediately discard the backing storage */
1807 static void
1808 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1809 {
1810 struct inode *inode;
1811
1812 i915_gem_object_free_mmap_offset(obj);
1813
1814 if (obj->base.filp == NULL)
1815 return;
1816
1817 /* Our goal here is to return as much of the memory as
1818 * is possible back to the system as we are called from OOM.
1819 * To do this we must instruct the shmfs to drop all of its
1820 * backing pages, *now*.
1821 */
1822 inode = file_inode(obj->base.filp);
1823 shmem_truncate_range(inode, 0, (loff_t)-1);
1824
1825 obj->madv = __I915_MADV_PURGED;
1826 }
1827
1828 static inline int
1829 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1830 {
1831 return obj->madv == I915_MADV_DONTNEED;
1832 }
1833
1834 static void
1835 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1836 {
1837 struct sg_page_iter sg_iter;
1838 int ret;
1839
1840 BUG_ON(obj->madv == __I915_MADV_PURGED);
1841
1842 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1843 if (ret) {
1844 /* In the event of a disaster, abandon all caches and
1845 * hope for the best.
1846 */
1847 WARN_ON(ret != -EIO);
1848 i915_gem_clflush_object(obj, true);
1849 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1850 }
1851
1852 if (i915_gem_object_needs_bit17_swizzle(obj))
1853 i915_gem_object_save_bit_17_swizzle(obj);
1854
1855 if (obj->madv == I915_MADV_DONTNEED)
1856 obj->dirty = 0;
1857
1858 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1859 struct page *page = sg_page_iter_page(&sg_iter);
1860
1861 if (obj->dirty)
1862 set_page_dirty(page);
1863
1864 if (obj->madv == I915_MADV_WILLNEED)
1865 mark_page_accessed(page);
1866
1867 page_cache_release(page);
1868 }
1869 obj->dirty = 0;
1870
1871 sg_free_table(obj->pages);
1872 kfree(obj->pages);
1873 }
1874
1875 int
1876 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1877 {
1878 const struct drm_i915_gem_object_ops *ops = obj->ops;
1879
1880 if (obj->pages == NULL)
1881 return 0;
1882
1883 if (obj->pages_pin_count)
1884 return -EBUSY;
1885
1886 BUG_ON(i915_gem_obj_bound_any(obj));
1887
1888 /* ->put_pages might need to allocate memory for the bit17 swizzle
1889 * array, hence protect them from being reaped by removing them from gtt
1890 * lists early. */
1891 list_del(&obj->global_list);
1892
1893 ops->put_pages(obj);
1894 obj->pages = NULL;
1895
1896 if (i915_gem_object_is_purgeable(obj))
1897 i915_gem_object_truncate(obj);
1898
1899 return 0;
1900 }
1901
1902 static unsigned long
1903 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1904 bool purgeable_only)
1905 {
1906 struct list_head still_bound_list;
1907 struct drm_i915_gem_object *obj, *next;
1908 unsigned long count = 0;
1909
1910 list_for_each_entry_safe(obj, next,
1911 &dev_priv->mm.unbound_list,
1912 global_list) {
1913 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1914 i915_gem_object_put_pages(obj) == 0) {
1915 count += obj->base.size >> PAGE_SHIFT;
1916 if (count >= target)
1917 return count;
1918 }
1919 }
1920
1921 /*
1922 * As we may completely rewrite the bound list whilst unbinding
1923 * (due to retiring requests) we have to strictly process only
1924 * one element of the list at the time, and recheck the list
1925 * on every iteration.
1926 */
1927 INIT_LIST_HEAD(&still_bound_list);
1928 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1929 struct i915_vma *vma, *v;
1930
1931 obj = list_first_entry(&dev_priv->mm.bound_list,
1932 typeof(*obj), global_list);
1933 list_move_tail(&obj->global_list, &still_bound_list);
1934
1935 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1936 continue;
1937
1938 /*
1939 * Hold a reference whilst we unbind this object, as we may
1940 * end up waiting for and retiring requests. This might
1941 * release the final reference (held by the active list)
1942 * and result in the object being freed from under us.
1943 * in this object being freed.
1944 *
1945 * Note 1: Shrinking the bound list is special since only active
1946 * (and hence bound objects) can contain such limbo objects, so
1947 * we don't need special tricks for shrinking the unbound list.
1948 * The only other place where we have to be careful with active
1949 * objects suddenly disappearing due to retiring requests is the
1950 * eviction code.
1951 *
1952 * Note 2: Even though the bound list doesn't hold a reference
1953 * to the object we can safely grab one here: The final object
1954 * unreferencing and the bound_list are both protected by the
1955 * dev->struct_mutex and so we won't ever be able to observe an
1956 * object on the bound_list with a reference count equals 0.
1957 */
1958 drm_gem_object_reference(&obj->base);
1959
1960 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1961 if (i915_vma_unbind(vma))
1962 break;
1963
1964 if (i915_gem_object_put_pages(obj) == 0)
1965 count += obj->base.size >> PAGE_SHIFT;
1966
1967 drm_gem_object_unreference(&obj->base);
1968 }
1969 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1970
1971 return count;
1972 }
1973
1974 static unsigned long
1975 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1976 {
1977 return __i915_gem_shrink(dev_priv, target, true);
1978 }
1979
1980 static unsigned long
1981 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1982 {
1983 struct drm_i915_gem_object *obj, *next;
1984 long freed = 0;
1985
1986 i915_gem_evict_everything(dev_priv->dev);
1987
1988 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1989 global_list) {
1990 if (i915_gem_object_put_pages(obj) == 0)
1991 freed += obj->base.size >> PAGE_SHIFT;
1992 }
1993 return freed;
1994 }
1995
1996 static int
1997 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1998 {
1999 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2000 int page_count, i;
2001 struct address_space *mapping;
2002 struct sg_table *st;
2003 struct scatterlist *sg;
2004 struct sg_page_iter sg_iter;
2005 struct page *page;
2006 unsigned long last_pfn = 0; /* suppress gcc warning */
2007 gfp_t gfp;
2008
2009 /* Assert that the object is not currently in any GPU domain. As it
2010 * wasn't in the GTT, there shouldn't be any way it could have been in
2011 * a GPU cache
2012 */
2013 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2014 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2015
2016 st = kmalloc(sizeof(*st), GFP_KERNEL);
2017 if (st == NULL)
2018 return -ENOMEM;
2019
2020 page_count = obj->base.size / PAGE_SIZE;
2021 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2022 kfree(st);
2023 return -ENOMEM;
2024 }
2025
2026 /* Get the list of pages out of our struct file. They'll be pinned
2027 * at this point until we release them.
2028 *
2029 * Fail silently without starting the shrinker
2030 */
2031 mapping = file_inode(obj->base.filp)->i_mapping;
2032 gfp = mapping_gfp_mask(mapping);
2033 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2034 gfp &= ~(__GFP_IO | __GFP_WAIT);
2035 sg = st->sgl;
2036 st->nents = 0;
2037 for (i = 0; i < page_count; i++) {
2038 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2039 if (IS_ERR(page)) {
2040 i915_gem_purge(dev_priv, page_count);
2041 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2042 }
2043 if (IS_ERR(page)) {
2044 /* We've tried hard to allocate the memory by reaping
2045 * our own buffer, now let the real VM do its job and
2046 * go down in flames if truly OOM.
2047 */
2048 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2049 gfp |= __GFP_IO | __GFP_WAIT;
2050
2051 i915_gem_shrink_all(dev_priv);
2052 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053 if (IS_ERR(page))
2054 goto err_pages;
2055
2056 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2057 gfp &= ~(__GFP_IO | __GFP_WAIT);
2058 }
2059 #ifdef CONFIG_SWIOTLB
2060 if (swiotlb_nr_tbl()) {
2061 st->nents++;
2062 sg_set_page(sg, page, PAGE_SIZE, 0);
2063 sg = sg_next(sg);
2064 continue;
2065 }
2066 #endif
2067 if (!i || page_to_pfn(page) != last_pfn + 1) {
2068 if (i)
2069 sg = sg_next(sg);
2070 st->nents++;
2071 sg_set_page(sg, page, PAGE_SIZE, 0);
2072 } else {
2073 sg->length += PAGE_SIZE;
2074 }
2075 last_pfn = page_to_pfn(page);
2076
2077 /* Check that the i965g/gm workaround works. */
2078 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2079 }
2080 #ifdef CONFIG_SWIOTLB
2081 if (!swiotlb_nr_tbl())
2082 #endif
2083 sg_mark_end(sg);
2084 obj->pages = st;
2085
2086 if (i915_gem_object_needs_bit17_swizzle(obj))
2087 i915_gem_object_do_bit_17_swizzle(obj);
2088
2089 return 0;
2090
2091 err_pages:
2092 sg_mark_end(sg);
2093 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2094 page_cache_release(sg_page_iter_page(&sg_iter));
2095 sg_free_table(st);
2096 kfree(st);
2097 return PTR_ERR(page);
2098 }
2099
2100 /* Ensure that the associated pages are gathered from the backing storage
2101 * and pinned into our object. i915_gem_object_get_pages() may be called
2102 * multiple times before they are released by a single call to
2103 * i915_gem_object_put_pages() - once the pages are no longer referenced
2104 * either as a result of memory pressure (reaping pages under the shrinker)
2105 * or as the object is itself released.
2106 */
2107 int
2108 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2109 {
2110 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2111 const struct drm_i915_gem_object_ops *ops = obj->ops;
2112 int ret;
2113
2114 if (obj->pages)
2115 return 0;
2116
2117 if (obj->madv != I915_MADV_WILLNEED) {
2118 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2119 return -EFAULT;
2120 }
2121
2122 BUG_ON(obj->pages_pin_count);
2123
2124 ret = ops->get_pages(obj);
2125 if (ret)
2126 return ret;
2127
2128 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2129 return 0;
2130 }
2131
2132 static void
2133 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2134 struct intel_ring_buffer *ring)
2135 {
2136 struct drm_device *dev = obj->base.dev;
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 u32 seqno = intel_ring_get_seqno(ring);
2139
2140 BUG_ON(ring == NULL);
2141 if (obj->ring != ring && obj->last_write_seqno) {
2142 /* Keep the seqno relative to the current ring */
2143 obj->last_write_seqno = seqno;
2144 }
2145 obj->ring = ring;
2146
2147 /* Add a reference if we're newly entering the active list. */
2148 if (!obj->active) {
2149 drm_gem_object_reference(&obj->base);
2150 obj->active = 1;
2151 }
2152
2153 list_move_tail(&obj->ring_list, &ring->active_list);
2154
2155 obj->last_read_seqno = seqno;
2156
2157 if (obj->fenced_gpu_access) {
2158 obj->last_fenced_seqno = seqno;
2159
2160 /* Bump MRU to take account of the delayed flush */
2161 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2162 struct drm_i915_fence_reg *reg;
2163
2164 reg = &dev_priv->fence_regs[obj->fence_reg];
2165 list_move_tail(&reg->lru_list,
2166 &dev_priv->mm.fence_list);
2167 }
2168 }
2169 }
2170
2171 void i915_vma_move_to_active(struct i915_vma *vma,
2172 struct intel_ring_buffer *ring)
2173 {
2174 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2175 return i915_gem_object_move_to_active(vma->obj, ring);
2176 }
2177
2178 static void
2179 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2180 {
2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182 struct i915_address_space *vm;
2183 struct i915_vma *vma;
2184
2185 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2186 BUG_ON(!obj->active);
2187
2188 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2189 vma = i915_gem_obj_to_vma(obj, vm);
2190 if (vma && !list_empty(&vma->mm_list))
2191 list_move_tail(&vma->mm_list, &vm->inactive_list);
2192 }
2193
2194 list_del_init(&obj->ring_list);
2195 obj->ring = NULL;
2196
2197 obj->last_read_seqno = 0;
2198 obj->last_write_seqno = 0;
2199 obj->base.write_domain = 0;
2200
2201 obj->last_fenced_seqno = 0;
2202 obj->fenced_gpu_access = false;
2203
2204 obj->active = 0;
2205 drm_gem_object_unreference(&obj->base);
2206
2207 WARN_ON(i915_verify_lists(dev));
2208 }
2209
2210 static int
2211 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2212 {
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_ring_buffer *ring;
2215 int ret, i, j;
2216
2217 /* Carefully retire all requests without writing to the rings */
2218 for_each_ring(ring, dev_priv, i) {
2219 ret = intel_ring_idle(ring);
2220 if (ret)
2221 return ret;
2222 }
2223 i915_gem_retire_requests(dev);
2224
2225 /* Finally reset hw state */
2226 for_each_ring(ring, dev_priv, i) {
2227 intel_ring_init_seqno(ring, seqno);
2228
2229 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2230 ring->sync_seqno[j] = 0;
2231 }
2232
2233 return 0;
2234 }
2235
2236 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2237 {
2238 struct drm_i915_private *dev_priv = dev->dev_private;
2239 int ret;
2240
2241 if (seqno == 0)
2242 return -EINVAL;
2243
2244 /* HWS page needs to be set less than what we
2245 * will inject to ring
2246 */
2247 ret = i915_gem_init_seqno(dev, seqno - 1);
2248 if (ret)
2249 return ret;
2250
2251 /* Carefully set the last_seqno value so that wrap
2252 * detection still works
2253 */
2254 dev_priv->next_seqno = seqno;
2255 dev_priv->last_seqno = seqno - 1;
2256 if (dev_priv->last_seqno == 0)
2257 dev_priv->last_seqno--;
2258
2259 return 0;
2260 }
2261
2262 int
2263 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2264 {
2265 struct drm_i915_private *dev_priv = dev->dev_private;
2266
2267 /* reserve 0 for non-seqno */
2268 if (dev_priv->next_seqno == 0) {
2269 int ret = i915_gem_init_seqno(dev, 0);
2270 if (ret)
2271 return ret;
2272
2273 dev_priv->next_seqno = 1;
2274 }
2275
2276 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2277 return 0;
2278 }
2279
2280 int __i915_add_request(struct intel_ring_buffer *ring,
2281 struct drm_file *file,
2282 struct drm_i915_gem_object *obj,
2283 u32 *out_seqno)
2284 {
2285 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2286 struct drm_i915_gem_request *request;
2287 u32 request_ring_position, request_start;
2288 int ret;
2289
2290 request_start = intel_ring_get_tail(ring);
2291 /*
2292 * Emit any outstanding flushes - execbuf can fail to emit the flush
2293 * after having emitted the batchbuffer command. Hence we need to fix
2294 * things up similar to emitting the lazy request. The difference here
2295 * is that the flush _must_ happen before the next request, no matter
2296 * what.
2297 */
2298 ret = intel_ring_flush_all_caches(ring);
2299 if (ret)
2300 return ret;
2301
2302 request = ring->preallocated_lazy_request;
2303 if (WARN_ON(request == NULL))
2304 return -ENOMEM;
2305
2306 /* Record the position of the start of the request so that
2307 * should we detect the updated seqno part-way through the
2308 * GPU processing the request, we never over-estimate the
2309 * position of the head.
2310 */
2311 request_ring_position = intel_ring_get_tail(ring);
2312
2313 ret = ring->add_request(ring);
2314 if (ret)
2315 return ret;
2316
2317 request->seqno = intel_ring_get_seqno(ring);
2318 request->ring = ring;
2319 request->head = request_start;
2320 request->tail = request_ring_position;
2321
2322 /* Whilst this request exists, batch_obj will be on the
2323 * active_list, and so will hold the active reference. Only when this
2324 * request is retired will the the batch_obj be moved onto the
2325 * inactive_list and lose its active reference. Hence we do not need
2326 * to explicitly hold another reference here.
2327 */
2328 request->batch_obj = obj;
2329
2330 /* Hold a reference to the current context so that we can inspect
2331 * it later in case a hangcheck error event fires.
2332 */
2333 request->ctx = ring->last_context;
2334 if (request->ctx)
2335 i915_gem_context_reference(request->ctx);
2336
2337 request->emitted_jiffies = jiffies;
2338 list_add_tail(&request->list, &ring->request_list);
2339 request->file_priv = NULL;
2340
2341 if (file) {
2342 struct drm_i915_file_private *file_priv = file->driver_priv;
2343
2344 spin_lock(&file_priv->mm.lock);
2345 request->file_priv = file_priv;
2346 list_add_tail(&request->client_list,
2347 &file_priv->mm.request_list);
2348 spin_unlock(&file_priv->mm.lock);
2349 }
2350
2351 trace_i915_gem_request_add(ring, request->seqno);
2352 ring->outstanding_lazy_seqno = 0;
2353 ring->preallocated_lazy_request = NULL;
2354
2355 if (!dev_priv->ums.mm_suspended) {
2356 i915_queue_hangcheck(ring->dev);
2357
2358 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2359 queue_delayed_work(dev_priv->wq,
2360 &dev_priv->mm.retire_work,
2361 round_jiffies_up_relative(HZ));
2362 intel_mark_busy(dev_priv->dev);
2363 }
2364
2365 if (out_seqno)
2366 *out_seqno = request->seqno;
2367 return 0;
2368 }
2369
2370 static inline void
2371 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2372 {
2373 struct drm_i915_file_private *file_priv = request->file_priv;
2374
2375 if (!file_priv)
2376 return;
2377
2378 spin_lock(&file_priv->mm.lock);
2379 list_del(&request->client_list);
2380 request->file_priv = NULL;
2381 spin_unlock(&file_priv->mm.lock);
2382 }
2383
2384 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2385 const struct i915_hw_context *ctx)
2386 {
2387 unsigned long elapsed;
2388
2389 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2390
2391 if (ctx->hang_stats.banned)
2392 return true;
2393
2394 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2395 if (!i915_gem_context_is_default(ctx)) {
2396 DRM_DEBUG("context hanging too fast, banning!\n");
2397 return true;
2398 } else if (dev_priv->gpu_error.stop_rings == 0) {
2399 DRM_ERROR("gpu hanging too fast, banning!\n");
2400 return true;
2401 }
2402 }
2403
2404 return false;
2405 }
2406
2407 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2408 struct i915_hw_context *ctx,
2409 const bool guilty)
2410 {
2411 struct i915_ctx_hang_stats *hs;
2412
2413 if (WARN_ON(!ctx))
2414 return;
2415
2416 hs = &ctx->hang_stats;
2417
2418 if (guilty) {
2419 hs->banned = i915_context_is_banned(dev_priv, ctx);
2420 hs->batch_active++;
2421 hs->guilty_ts = get_seconds();
2422 } else {
2423 hs->batch_pending++;
2424 }
2425 }
2426
2427 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2428 {
2429 list_del(&request->list);
2430 i915_gem_request_remove_from_client(request);
2431
2432 if (request->ctx)
2433 i915_gem_context_unreference(request->ctx);
2434
2435 kfree(request);
2436 }
2437
2438 struct drm_i915_gem_request *
2439 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2440 {
2441 struct drm_i915_gem_request *request;
2442 u32 completed_seqno;
2443
2444 completed_seqno = ring->get_seqno(ring, false);
2445
2446 list_for_each_entry(request, &ring->request_list, list) {
2447 if (i915_seqno_passed(completed_seqno, request->seqno))
2448 continue;
2449
2450 return request;
2451 }
2452
2453 return NULL;
2454 }
2455
2456 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2457 struct intel_ring_buffer *ring)
2458 {
2459 struct drm_i915_gem_request *request;
2460 bool ring_hung;
2461
2462 request = i915_gem_find_active_request(ring);
2463
2464 if (request == NULL)
2465 return;
2466
2467 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2468
2469 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2470
2471 list_for_each_entry_continue(request, &ring->request_list, list)
2472 i915_set_reset_status(dev_priv, request->ctx, false);
2473 }
2474
2475 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2476 struct intel_ring_buffer *ring)
2477 {
2478 while (!list_empty(&ring->active_list)) {
2479 struct drm_i915_gem_object *obj;
2480
2481 obj = list_first_entry(&ring->active_list,
2482 struct drm_i915_gem_object,
2483 ring_list);
2484
2485 i915_gem_object_move_to_inactive(obj);
2486 }
2487
2488 /*
2489 * We must free the requests after all the corresponding objects have
2490 * been moved off active lists. Which is the same order as the normal
2491 * retire_requests function does. This is important if object hold
2492 * implicit references on things like e.g. ppgtt address spaces through
2493 * the request.
2494 */
2495 while (!list_empty(&ring->request_list)) {
2496 struct drm_i915_gem_request *request;
2497
2498 request = list_first_entry(&ring->request_list,
2499 struct drm_i915_gem_request,
2500 list);
2501
2502 i915_gem_free_request(request);
2503 }
2504 }
2505
2506 void i915_gem_restore_fences(struct drm_device *dev)
2507 {
2508 struct drm_i915_private *dev_priv = dev->dev_private;
2509 int i;
2510
2511 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2512 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2513
2514 /*
2515 * Commit delayed tiling changes if we have an object still
2516 * attached to the fence, otherwise just clear the fence.
2517 */
2518 if (reg->obj) {
2519 i915_gem_object_update_fence(reg->obj, reg,
2520 reg->obj->tiling_mode);
2521 } else {
2522 i915_gem_write_fence(dev, i, NULL);
2523 }
2524 }
2525 }
2526
2527 void i915_gem_reset(struct drm_device *dev)
2528 {
2529 struct drm_i915_private *dev_priv = dev->dev_private;
2530 struct intel_ring_buffer *ring;
2531 int i;
2532
2533 /*
2534 * Before we free the objects from the requests, we need to inspect
2535 * them for finding the guilty party. As the requests only borrow
2536 * their reference to the objects, the inspection must be done first.
2537 */
2538 for_each_ring(ring, dev_priv, i)
2539 i915_gem_reset_ring_status(dev_priv, ring);
2540
2541 for_each_ring(ring, dev_priv, i)
2542 i915_gem_reset_ring_cleanup(dev_priv, ring);
2543
2544 i915_gem_cleanup_ringbuffer(dev);
2545
2546 i915_gem_context_reset(dev);
2547
2548 i915_gem_restore_fences(dev);
2549 }
2550
2551 /**
2552 * This function clears the request list as sequence numbers are passed.
2553 */
2554 static void
2555 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2556 {
2557 uint32_t seqno;
2558
2559 if (list_empty(&ring->request_list))
2560 return;
2561
2562 WARN_ON(i915_verify_lists(ring->dev));
2563
2564 seqno = ring->get_seqno(ring, true);
2565
2566 /* Move any buffers on the active list that are no longer referenced
2567 * by the ringbuffer to the flushing/inactive lists as appropriate,
2568 * before we free the context associated with the requests.
2569 */
2570 while (!list_empty(&ring->active_list)) {
2571 struct drm_i915_gem_object *obj;
2572
2573 obj = list_first_entry(&ring->active_list,
2574 struct drm_i915_gem_object,
2575 ring_list);
2576
2577 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2578 break;
2579
2580 i915_gem_object_move_to_inactive(obj);
2581 }
2582
2583
2584 while (!list_empty(&ring->request_list)) {
2585 struct drm_i915_gem_request *request;
2586
2587 request = list_first_entry(&ring->request_list,
2588 struct drm_i915_gem_request,
2589 list);
2590
2591 if (!i915_seqno_passed(seqno, request->seqno))
2592 break;
2593
2594 trace_i915_gem_request_retire(ring, request->seqno);
2595 /* We know the GPU must have read the request to have
2596 * sent us the seqno + interrupt, so use the position
2597 * of tail of the request to update the last known position
2598 * of the GPU head.
2599 */
2600 ring->last_retired_head = request->tail;
2601
2602 i915_gem_free_request(request);
2603 }
2604
2605 if (unlikely(ring->trace_irq_seqno &&
2606 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2607 ring->irq_put(ring);
2608 ring->trace_irq_seqno = 0;
2609 }
2610
2611 WARN_ON(i915_verify_lists(ring->dev));
2612 }
2613
2614 bool
2615 i915_gem_retire_requests(struct drm_device *dev)
2616 {
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 struct intel_ring_buffer *ring;
2619 bool idle = true;
2620 int i;
2621
2622 for_each_ring(ring, dev_priv, i) {
2623 i915_gem_retire_requests_ring(ring);
2624 idle &= list_empty(&ring->request_list);
2625 }
2626
2627 if (idle)
2628 mod_delayed_work(dev_priv->wq,
2629 &dev_priv->mm.idle_work,
2630 msecs_to_jiffies(100));
2631
2632 return idle;
2633 }
2634
2635 static void
2636 i915_gem_retire_work_handler(struct work_struct *work)
2637 {
2638 struct drm_i915_private *dev_priv =
2639 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2640 struct drm_device *dev = dev_priv->dev;
2641 bool idle;
2642
2643 /* Come back later if the device is busy... */
2644 idle = false;
2645 if (mutex_trylock(&dev->struct_mutex)) {
2646 idle = i915_gem_retire_requests(dev);
2647 mutex_unlock(&dev->struct_mutex);
2648 }
2649 if (!idle)
2650 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2651 round_jiffies_up_relative(HZ));
2652 }
2653
2654 static void
2655 i915_gem_idle_work_handler(struct work_struct *work)
2656 {
2657 struct drm_i915_private *dev_priv =
2658 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2659
2660 intel_mark_idle(dev_priv->dev);
2661 }
2662
2663 /**
2664 * Ensures that an object will eventually get non-busy by flushing any required
2665 * write domains, emitting any outstanding lazy request and retiring and
2666 * completed requests.
2667 */
2668 static int
2669 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2670 {
2671 int ret;
2672
2673 if (obj->active) {
2674 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2675 if (ret)
2676 return ret;
2677
2678 i915_gem_retire_requests_ring(obj->ring);
2679 }
2680
2681 return 0;
2682 }
2683
2684 /**
2685 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686 * @DRM_IOCTL_ARGS: standard ioctl arguments
2687 *
2688 * Returns 0 if successful, else an error is returned with the remaining time in
2689 * the timeout parameter.
2690 * -ETIME: object is still busy after timeout
2691 * -ERESTARTSYS: signal interrupted the wait
2692 * -ENONENT: object doesn't exist
2693 * Also possible, but rare:
2694 * -EAGAIN: GPU wedged
2695 * -ENOMEM: damn
2696 * -ENODEV: Internal IRQ fail
2697 * -E?: The add request failed
2698 *
2699 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2700 * non-zero timeout parameter the wait ioctl will wait for the given number of
2701 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2702 * without holding struct_mutex the object may become re-busied before this
2703 * function completes. A similar but shorter * race condition exists in the busy
2704 * ioctl
2705 */
2706 int
2707 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2708 {
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 struct drm_i915_gem_wait *args = data;
2711 struct drm_i915_gem_object *obj;
2712 struct intel_ring_buffer *ring = NULL;
2713 struct timespec timeout_stack, *timeout = NULL;
2714 unsigned reset_counter;
2715 u32 seqno = 0;
2716 int ret = 0;
2717
2718 if (args->timeout_ns >= 0) {
2719 timeout_stack = ns_to_timespec(args->timeout_ns);
2720 timeout = &timeout_stack;
2721 }
2722
2723 ret = i915_mutex_lock_interruptible(dev);
2724 if (ret)
2725 return ret;
2726
2727 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2728 if (&obj->base == NULL) {
2729 mutex_unlock(&dev->struct_mutex);
2730 return -ENOENT;
2731 }
2732
2733 /* Need to make sure the object gets inactive eventually. */
2734 ret = i915_gem_object_flush_active(obj);
2735 if (ret)
2736 goto out;
2737
2738 if (obj->active) {
2739 seqno = obj->last_read_seqno;
2740 ring = obj->ring;
2741 }
2742
2743 if (seqno == 0)
2744 goto out;
2745
2746 /* Do this after OLR check to make sure we make forward progress polling
2747 * on this IOCTL with a 0 timeout (like busy ioctl)
2748 */
2749 if (!args->timeout_ns) {
2750 ret = -ETIME;
2751 goto out;
2752 }
2753
2754 drm_gem_object_unreference(&obj->base);
2755 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2756 mutex_unlock(&dev->struct_mutex);
2757
2758 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2759 if (timeout)
2760 args->timeout_ns = timespec_to_ns(timeout);
2761 return ret;
2762
2763 out:
2764 drm_gem_object_unreference(&obj->base);
2765 mutex_unlock(&dev->struct_mutex);
2766 return ret;
2767 }
2768
2769 /**
2770 * i915_gem_object_sync - sync an object to a ring.
2771 *
2772 * @obj: object which may be in use on another ring.
2773 * @to: ring we wish to use the object on. May be NULL.
2774 *
2775 * This code is meant to abstract object synchronization with the GPU.
2776 * Calling with NULL implies synchronizing the object with the CPU
2777 * rather than a particular GPU ring.
2778 *
2779 * Returns 0 if successful, else propagates up the lower layer error.
2780 */
2781 int
2782 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2783 struct intel_ring_buffer *to)
2784 {
2785 struct intel_ring_buffer *from = obj->ring;
2786 u32 seqno;
2787 int ret, idx;
2788
2789 if (from == NULL || to == from)
2790 return 0;
2791
2792 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2793 return i915_gem_object_wait_rendering(obj, false);
2794
2795 idx = intel_ring_sync_index(from, to);
2796
2797 seqno = obj->last_read_seqno;
2798 if (seqno <= from->sync_seqno[idx])
2799 return 0;
2800
2801 ret = i915_gem_check_olr(obj->ring, seqno);
2802 if (ret)
2803 return ret;
2804
2805 trace_i915_gem_ring_sync_to(from, to, seqno);
2806 ret = to->sync_to(to, from, seqno);
2807 if (!ret)
2808 /* We use last_read_seqno because sync_to()
2809 * might have just caused seqno wrap under
2810 * the radar.
2811 */
2812 from->sync_seqno[idx] = obj->last_read_seqno;
2813
2814 return ret;
2815 }
2816
2817 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2818 {
2819 u32 old_write_domain, old_read_domains;
2820
2821 /* Force a pagefault for domain tracking on next user access */
2822 i915_gem_release_mmap(obj);
2823
2824 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2825 return;
2826
2827 /* Wait for any direct GTT access to complete */
2828 mb();
2829
2830 old_read_domains = obj->base.read_domains;
2831 old_write_domain = obj->base.write_domain;
2832
2833 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2834 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2835
2836 trace_i915_gem_object_change_domain(obj,
2837 old_read_domains,
2838 old_write_domain);
2839 }
2840
2841 int i915_vma_unbind(struct i915_vma *vma)
2842 {
2843 struct drm_i915_gem_object *obj = vma->obj;
2844 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2845 int ret;
2846
2847 if (list_empty(&vma->vma_link))
2848 return 0;
2849
2850 if (!drm_mm_node_allocated(&vma->node)) {
2851 i915_gem_vma_destroy(vma);
2852 return 0;
2853 }
2854
2855 if (vma->pin_count)
2856 return -EBUSY;
2857
2858 BUG_ON(obj->pages == NULL);
2859
2860 ret = i915_gem_object_finish_gpu(obj);
2861 if (ret)
2862 return ret;
2863 /* Continue on if we fail due to EIO, the GPU is hung so we
2864 * should be safe and we need to cleanup or else we might
2865 * cause memory corruption through use-after-free.
2866 */
2867
2868 i915_gem_object_finish_gtt(obj);
2869
2870 /* release the fence reg _after_ flushing */
2871 ret = i915_gem_object_put_fence(obj);
2872 if (ret)
2873 return ret;
2874
2875 trace_i915_vma_unbind(vma);
2876
2877 vma->unbind_vma(vma);
2878
2879 i915_gem_gtt_finish_object(obj);
2880
2881 list_del_init(&vma->mm_list);
2882 /* Avoid an unnecessary call to unbind on rebind. */
2883 if (i915_is_ggtt(vma->vm))
2884 obj->map_and_fenceable = true;
2885
2886 drm_mm_remove_node(&vma->node);
2887 i915_gem_vma_destroy(vma);
2888
2889 /* Since the unbound list is global, only move to that list if
2890 * no more VMAs exist. */
2891 if (list_empty(&obj->vma_list))
2892 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2893
2894 /* And finally now the object is completely decoupled from this vma,
2895 * we can drop its hold on the backing storage and allow it to be
2896 * reaped by the shrinker.
2897 */
2898 i915_gem_object_unpin_pages(obj);
2899
2900 return 0;
2901 }
2902
2903 int i915_gpu_idle(struct drm_device *dev)
2904 {
2905 struct drm_i915_private *dev_priv = dev->dev_private;
2906 struct intel_ring_buffer *ring;
2907 int ret, i;
2908
2909 /* Flush everything onto the inactive list. */
2910 for_each_ring(ring, dev_priv, i) {
2911 ret = i915_switch_context(ring, ring->default_context);
2912 if (ret)
2913 return ret;
2914
2915 ret = intel_ring_idle(ring);
2916 if (ret)
2917 return ret;
2918 }
2919
2920 return 0;
2921 }
2922
2923 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2924 struct drm_i915_gem_object *obj)
2925 {
2926 struct drm_i915_private *dev_priv = dev->dev_private;
2927 int fence_reg;
2928 int fence_pitch_shift;
2929
2930 if (INTEL_INFO(dev)->gen >= 6) {
2931 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2932 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2933 } else {
2934 fence_reg = FENCE_REG_965_0;
2935 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2936 }
2937
2938 fence_reg += reg * 8;
2939
2940 /* To w/a incoherency with non-atomic 64-bit register updates,
2941 * we split the 64-bit update into two 32-bit writes. In order
2942 * for a partial fence not to be evaluated between writes, we
2943 * precede the update with write to turn off the fence register,
2944 * and only enable the fence as the last step.
2945 *
2946 * For extra levels of paranoia, we make sure each step lands
2947 * before applying the next step.
2948 */
2949 I915_WRITE(fence_reg, 0);
2950 POSTING_READ(fence_reg);
2951
2952 if (obj) {
2953 u32 size = i915_gem_obj_ggtt_size(obj);
2954 uint64_t val;
2955
2956 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2957 0xfffff000) << 32;
2958 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2959 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2960 if (obj->tiling_mode == I915_TILING_Y)
2961 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2962 val |= I965_FENCE_REG_VALID;
2963
2964 I915_WRITE(fence_reg + 4, val >> 32);
2965 POSTING_READ(fence_reg + 4);
2966
2967 I915_WRITE(fence_reg + 0, val);
2968 POSTING_READ(fence_reg);
2969 } else {
2970 I915_WRITE(fence_reg + 4, 0);
2971 POSTING_READ(fence_reg + 4);
2972 }
2973 }
2974
2975 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2976 struct drm_i915_gem_object *obj)
2977 {
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 u32 val;
2980
2981 if (obj) {
2982 u32 size = i915_gem_obj_ggtt_size(obj);
2983 int pitch_val;
2984 int tile_width;
2985
2986 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2987 (size & -size) != size ||
2988 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2989 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2990 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2991
2992 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2993 tile_width = 128;
2994 else
2995 tile_width = 512;
2996
2997 /* Note: pitch better be a power of two tile widths */
2998 pitch_val = obj->stride / tile_width;
2999 pitch_val = ffs(pitch_val) - 1;
3000
3001 val = i915_gem_obj_ggtt_offset(obj);
3002 if (obj->tiling_mode == I915_TILING_Y)
3003 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3004 val |= I915_FENCE_SIZE_BITS(size);
3005 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3006 val |= I830_FENCE_REG_VALID;
3007 } else
3008 val = 0;
3009
3010 if (reg < 8)
3011 reg = FENCE_REG_830_0 + reg * 4;
3012 else
3013 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3014
3015 I915_WRITE(reg, val);
3016 POSTING_READ(reg);
3017 }
3018
3019 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3020 struct drm_i915_gem_object *obj)
3021 {
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 uint32_t val;
3024
3025 if (obj) {
3026 u32 size = i915_gem_obj_ggtt_size(obj);
3027 uint32_t pitch_val;
3028
3029 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3030 (size & -size) != size ||
3031 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3032 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3033 i915_gem_obj_ggtt_offset(obj), size);
3034
3035 pitch_val = obj->stride / 128;
3036 pitch_val = ffs(pitch_val) - 1;
3037
3038 val = i915_gem_obj_ggtt_offset(obj);
3039 if (obj->tiling_mode == I915_TILING_Y)
3040 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3041 val |= I830_FENCE_SIZE_BITS(size);
3042 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3043 val |= I830_FENCE_REG_VALID;
3044 } else
3045 val = 0;
3046
3047 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3048 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3049 }
3050
3051 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3052 {
3053 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3054 }
3055
3056 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3057 struct drm_i915_gem_object *obj)
3058 {
3059 struct drm_i915_private *dev_priv = dev->dev_private;
3060
3061 /* Ensure that all CPU reads are completed before installing a fence
3062 * and all writes before removing the fence.
3063 */
3064 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3065 mb();
3066
3067 WARN(obj && (!obj->stride || !obj->tiling_mode),
3068 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3069 obj->stride, obj->tiling_mode);
3070
3071 switch (INTEL_INFO(dev)->gen) {
3072 case 8:
3073 case 7:
3074 case 6:
3075 case 5:
3076 case 4: i965_write_fence_reg(dev, reg, obj); break;
3077 case 3: i915_write_fence_reg(dev, reg, obj); break;
3078 case 2: i830_write_fence_reg(dev, reg, obj); break;
3079 default: BUG();
3080 }
3081
3082 /* And similarly be paranoid that no direct access to this region
3083 * is reordered to before the fence is installed.
3084 */
3085 if (i915_gem_object_needs_mb(obj))
3086 mb();
3087 }
3088
3089 static inline int fence_number(struct drm_i915_private *dev_priv,
3090 struct drm_i915_fence_reg *fence)
3091 {
3092 return fence - dev_priv->fence_regs;
3093 }
3094
3095 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3096 struct drm_i915_fence_reg *fence,
3097 bool enable)
3098 {
3099 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3100 int reg = fence_number(dev_priv, fence);
3101
3102 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3103
3104 if (enable) {
3105 obj->fence_reg = reg;
3106 fence->obj = obj;
3107 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3108 } else {
3109 obj->fence_reg = I915_FENCE_REG_NONE;
3110 fence->obj = NULL;
3111 list_del_init(&fence->lru_list);
3112 }
3113 obj->fence_dirty = false;
3114 }
3115
3116 static int
3117 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3118 {
3119 if (obj->last_fenced_seqno) {
3120 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3121 if (ret)
3122 return ret;
3123
3124 obj->last_fenced_seqno = 0;
3125 }
3126
3127 obj->fenced_gpu_access = false;
3128 return 0;
3129 }
3130
3131 int
3132 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3133 {
3134 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3135 struct drm_i915_fence_reg *fence;
3136 int ret;
3137
3138 ret = i915_gem_object_wait_fence(obj);
3139 if (ret)
3140 return ret;
3141
3142 if (obj->fence_reg == I915_FENCE_REG_NONE)
3143 return 0;
3144
3145 fence = &dev_priv->fence_regs[obj->fence_reg];
3146
3147 i915_gem_object_fence_lost(obj);
3148 i915_gem_object_update_fence(obj, fence, false);
3149
3150 return 0;
3151 }
3152
3153 static struct drm_i915_fence_reg *
3154 i915_find_fence_reg(struct drm_device *dev)
3155 {
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157 struct drm_i915_fence_reg *reg, *avail;
3158 int i;
3159
3160 /* First try to find a free reg */
3161 avail = NULL;
3162 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3163 reg = &dev_priv->fence_regs[i];
3164 if (!reg->obj)
3165 return reg;
3166
3167 if (!reg->pin_count)
3168 avail = reg;
3169 }
3170
3171 if (avail == NULL)
3172 goto deadlock;
3173
3174 /* None available, try to steal one or wait for a user to finish */
3175 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3176 if (reg->pin_count)
3177 continue;
3178
3179 return reg;
3180 }
3181
3182 deadlock:
3183 /* Wait for completion of pending flips which consume fences */
3184 if (intel_has_pending_fb_unpin(dev))
3185 return ERR_PTR(-EAGAIN);
3186
3187 return ERR_PTR(-EDEADLK);
3188 }
3189
3190 /**
3191 * i915_gem_object_get_fence - set up fencing for an object
3192 * @obj: object to map through a fence reg
3193 *
3194 * When mapping objects through the GTT, userspace wants to be able to write
3195 * to them without having to worry about swizzling if the object is tiled.
3196 * This function walks the fence regs looking for a free one for @obj,
3197 * stealing one if it can't find any.
3198 *
3199 * It then sets up the reg based on the object's properties: address, pitch
3200 * and tiling format.
3201 *
3202 * For an untiled surface, this removes any existing fence.
3203 */
3204 int
3205 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3206 {
3207 struct drm_device *dev = obj->base.dev;
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 bool enable = obj->tiling_mode != I915_TILING_NONE;
3210 struct drm_i915_fence_reg *reg;
3211 int ret;
3212
3213 /* Have we updated the tiling parameters upon the object and so
3214 * will need to serialise the write to the associated fence register?
3215 */
3216 if (obj->fence_dirty) {
3217 ret = i915_gem_object_wait_fence(obj);
3218 if (ret)
3219 return ret;
3220 }
3221
3222 /* Just update our place in the LRU if our fence is getting reused. */
3223 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3224 reg = &dev_priv->fence_regs[obj->fence_reg];
3225 if (!obj->fence_dirty) {
3226 list_move_tail(&reg->lru_list,
3227 &dev_priv->mm.fence_list);
3228 return 0;
3229 }
3230 } else if (enable) {
3231 reg = i915_find_fence_reg(dev);
3232 if (IS_ERR(reg))
3233 return PTR_ERR(reg);
3234
3235 if (reg->obj) {
3236 struct drm_i915_gem_object *old = reg->obj;
3237
3238 ret = i915_gem_object_wait_fence(old);
3239 if (ret)
3240 return ret;
3241
3242 i915_gem_object_fence_lost(old);
3243 }
3244 } else
3245 return 0;
3246
3247 i915_gem_object_update_fence(obj, reg, enable);
3248
3249 return 0;
3250 }
3251
3252 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3253 struct drm_mm_node *gtt_space,
3254 unsigned long cache_level)
3255 {
3256 struct drm_mm_node *other;
3257
3258 /* On non-LLC machines we have to be careful when putting differing
3259 * types of snoopable memory together to avoid the prefetcher
3260 * crossing memory domains and dying.
3261 */
3262 if (HAS_LLC(dev))
3263 return true;
3264
3265 if (!drm_mm_node_allocated(gtt_space))
3266 return true;
3267
3268 if (list_empty(&gtt_space->node_list))
3269 return true;
3270
3271 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3272 if (other->allocated && !other->hole_follows && other->color != cache_level)
3273 return false;
3274
3275 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3276 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3277 return false;
3278
3279 return true;
3280 }
3281
3282 static void i915_gem_verify_gtt(struct drm_device *dev)
3283 {
3284 #if WATCH_GTT
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286 struct drm_i915_gem_object *obj;
3287 int err = 0;
3288
3289 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3290 if (obj->gtt_space == NULL) {
3291 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3292 err++;
3293 continue;
3294 }
3295
3296 if (obj->cache_level != obj->gtt_space->color) {
3297 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3298 i915_gem_obj_ggtt_offset(obj),
3299 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3300 obj->cache_level,
3301 obj->gtt_space->color);
3302 err++;
3303 continue;
3304 }
3305
3306 if (!i915_gem_valid_gtt_space(dev,
3307 obj->gtt_space,
3308 obj->cache_level)) {
3309 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3310 i915_gem_obj_ggtt_offset(obj),
3311 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3312 obj->cache_level);
3313 err++;
3314 continue;
3315 }
3316 }
3317
3318 WARN_ON(err);
3319 #endif
3320 }
3321
3322 /**
3323 * Finds free space in the GTT aperture and binds the object there.
3324 */
3325 static struct i915_vma *
3326 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3327 struct i915_address_space *vm,
3328 unsigned alignment,
3329 unsigned flags)
3330 {
3331 struct drm_device *dev = obj->base.dev;
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3333 u32 size, fence_size, fence_alignment, unfenced_alignment;
3334 size_t gtt_max =
3335 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3336 struct i915_vma *vma;
3337 int ret;
3338
3339 fence_size = i915_gem_get_gtt_size(dev,
3340 obj->base.size,
3341 obj->tiling_mode);
3342 fence_alignment = i915_gem_get_gtt_alignment(dev,
3343 obj->base.size,
3344 obj->tiling_mode, true);
3345 unfenced_alignment =
3346 i915_gem_get_gtt_alignment(dev,
3347 obj->base.size,
3348 obj->tiling_mode, false);
3349
3350 if (alignment == 0)
3351 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3352 unfenced_alignment;
3353 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3354 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3355 return ERR_PTR(-EINVAL);
3356 }
3357
3358 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3359
3360 /* If the object is bigger than the entire aperture, reject it early
3361 * before evicting everything in a vain attempt to find space.
3362 */
3363 if (obj->base.size > gtt_max) {
3364 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3365 obj->base.size,
3366 flags & PIN_MAPPABLE ? "mappable" : "total",
3367 gtt_max);
3368 return ERR_PTR(-E2BIG);
3369 }
3370
3371 ret = i915_gem_object_get_pages(obj);
3372 if (ret)
3373 return ERR_PTR(ret);
3374
3375 i915_gem_object_pin_pages(obj);
3376
3377 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3378 if (IS_ERR(vma))
3379 goto err_unpin;
3380
3381 search_free:
3382 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3383 size, alignment,
3384 obj->cache_level, 0, gtt_max,
3385 DRM_MM_SEARCH_DEFAULT,
3386 DRM_MM_CREATE_DEFAULT);
3387 if (ret) {
3388 ret = i915_gem_evict_something(dev, vm, size, alignment,
3389 obj->cache_level, flags);
3390 if (ret == 0)
3391 goto search_free;
3392
3393 goto err_free_vma;
3394 }
3395 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3396 obj->cache_level))) {
3397 ret = -EINVAL;
3398 goto err_remove_node;
3399 }
3400
3401 ret = i915_gem_gtt_prepare_object(obj);
3402 if (ret)
3403 goto err_remove_node;
3404
3405 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3406 list_add_tail(&vma->mm_list, &vm->inactive_list);
3407
3408 if (i915_is_ggtt(vm)) {
3409 bool mappable, fenceable;
3410
3411 fenceable = (vma->node.size == fence_size &&
3412 (vma->node.start & (fence_alignment - 1)) == 0);
3413
3414 mappable = (vma->node.start + obj->base.size <=
3415 dev_priv->gtt.mappable_end);
3416
3417 obj->map_and_fenceable = mappable && fenceable;
3418 }
3419
3420 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3421
3422 trace_i915_vma_bind(vma, flags);
3423 vma->bind_vma(vma, obj->cache_level,
3424 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3425
3426 i915_gem_verify_gtt(dev);
3427 return vma;
3428
3429 err_remove_node:
3430 drm_mm_remove_node(&vma->node);
3431 err_free_vma:
3432 i915_gem_vma_destroy(vma);
3433 vma = ERR_PTR(ret);
3434 err_unpin:
3435 i915_gem_object_unpin_pages(obj);
3436 return vma;
3437 }
3438
3439 bool
3440 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3441 bool force)
3442 {
3443 /* If we don't have a page list set up, then we're not pinned
3444 * to GPU, and we can ignore the cache flush because it'll happen
3445 * again at bind time.
3446 */
3447 if (obj->pages == NULL)
3448 return false;
3449
3450 /*
3451 * Stolen memory is always coherent with the GPU as it is explicitly
3452 * marked as wc by the system, or the system is cache-coherent.
3453 */
3454 if (obj->stolen)
3455 return false;
3456
3457 /* If the GPU is snooping the contents of the CPU cache,
3458 * we do not need to manually clear the CPU cache lines. However,
3459 * the caches are only snooped when the render cache is
3460 * flushed/invalidated. As we always have to emit invalidations
3461 * and flushes when moving into and out of the RENDER domain, correct
3462 * snooping behaviour occurs naturally as the result of our domain
3463 * tracking.
3464 */
3465 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3466 return false;
3467
3468 trace_i915_gem_object_clflush(obj);
3469 drm_clflush_sg(obj->pages);
3470
3471 return true;
3472 }
3473
3474 /** Flushes the GTT write domain for the object if it's dirty. */
3475 static void
3476 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3477 {
3478 uint32_t old_write_domain;
3479
3480 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3481 return;
3482
3483 /* No actual flushing is required for the GTT write domain. Writes
3484 * to it immediately go to main memory as far as we know, so there's
3485 * no chipset flush. It also doesn't land in render cache.
3486 *
3487 * However, we do have to enforce the order so that all writes through
3488 * the GTT land before any writes to the device, such as updates to
3489 * the GATT itself.
3490 */
3491 wmb();
3492
3493 old_write_domain = obj->base.write_domain;
3494 obj->base.write_domain = 0;
3495
3496 trace_i915_gem_object_change_domain(obj,
3497 obj->base.read_domains,
3498 old_write_domain);
3499 }
3500
3501 /** Flushes the CPU write domain for the object if it's dirty. */
3502 static void
3503 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3504 bool force)
3505 {
3506 uint32_t old_write_domain;
3507
3508 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3509 return;
3510
3511 if (i915_gem_clflush_object(obj, force))
3512 i915_gem_chipset_flush(obj->base.dev);
3513
3514 old_write_domain = obj->base.write_domain;
3515 obj->base.write_domain = 0;
3516
3517 trace_i915_gem_object_change_domain(obj,
3518 obj->base.read_domains,
3519 old_write_domain);
3520 }
3521
3522 /**
3523 * Moves a single object to the GTT read, and possibly write domain.
3524 *
3525 * This function returns when the move is complete, including waiting on
3526 * flushes to occur.
3527 */
3528 int
3529 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3530 {
3531 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3532 uint32_t old_write_domain, old_read_domains;
3533 int ret;
3534
3535 /* Not valid to be called on unbound objects. */
3536 if (!i915_gem_obj_bound_any(obj))
3537 return -EINVAL;
3538
3539 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3540 return 0;
3541
3542 ret = i915_gem_object_wait_rendering(obj, !write);
3543 if (ret)
3544 return ret;
3545
3546 i915_gem_object_flush_cpu_write_domain(obj, false);
3547
3548 /* Serialise direct access to this object with the barriers for
3549 * coherent writes from the GPU, by effectively invalidating the
3550 * GTT domain upon first access.
3551 */
3552 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3553 mb();
3554
3555 old_write_domain = obj->base.write_domain;
3556 old_read_domains = obj->base.read_domains;
3557
3558 /* It should now be out of any other write domains, and we can update
3559 * the domain values for our changes.
3560 */
3561 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3562 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3563 if (write) {
3564 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3565 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3566 obj->dirty = 1;
3567 }
3568
3569 trace_i915_gem_object_change_domain(obj,
3570 old_read_domains,
3571 old_write_domain);
3572
3573 /* And bump the LRU for this access */
3574 if (i915_gem_object_is_inactive(obj)) {
3575 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3576 if (vma)
3577 list_move_tail(&vma->mm_list,
3578 &dev_priv->gtt.base.inactive_list);
3579
3580 }
3581
3582 return 0;
3583 }
3584
3585 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3586 enum i915_cache_level cache_level)
3587 {
3588 struct drm_device *dev = obj->base.dev;
3589 struct i915_vma *vma, *next;
3590 int ret;
3591
3592 if (obj->cache_level == cache_level)
3593 return 0;
3594
3595 if (i915_gem_obj_is_pinned(obj)) {
3596 DRM_DEBUG("can not change the cache level of pinned objects\n");
3597 return -EBUSY;
3598 }
3599
3600 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3601 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3602 ret = i915_vma_unbind(vma);
3603 if (ret)
3604 return ret;
3605 }
3606 }
3607
3608 if (i915_gem_obj_bound_any(obj)) {
3609 ret = i915_gem_object_finish_gpu(obj);
3610 if (ret)
3611 return ret;
3612
3613 i915_gem_object_finish_gtt(obj);
3614
3615 /* Before SandyBridge, you could not use tiling or fence
3616 * registers with snooped memory, so relinquish any fences
3617 * currently pointing to our region in the aperture.
3618 */
3619 if (INTEL_INFO(dev)->gen < 6) {
3620 ret = i915_gem_object_put_fence(obj);
3621 if (ret)
3622 return ret;
3623 }
3624
3625 list_for_each_entry(vma, &obj->vma_list, vma_link)
3626 if (drm_mm_node_allocated(&vma->node))
3627 vma->bind_vma(vma, cache_level,
3628 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3629 }
3630
3631 list_for_each_entry(vma, &obj->vma_list, vma_link)
3632 vma->node.color = cache_level;
3633 obj->cache_level = cache_level;
3634
3635 if (cpu_write_needs_clflush(obj)) {
3636 u32 old_read_domains, old_write_domain;
3637
3638 /* If we're coming from LLC cached, then we haven't
3639 * actually been tracking whether the data is in the
3640 * CPU cache or not, since we only allow one bit set
3641 * in obj->write_domain and have been skipping the clflushes.
3642 * Just set it to the CPU cache for now.
3643 */
3644 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3645
3646 old_read_domains = obj->base.read_domains;
3647 old_write_domain = obj->base.write_domain;
3648
3649 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3650 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3651
3652 trace_i915_gem_object_change_domain(obj,
3653 old_read_domains,
3654 old_write_domain);
3655 }
3656
3657 i915_gem_verify_gtt(dev);
3658 return 0;
3659 }
3660
3661 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3662 struct drm_file *file)
3663 {
3664 struct drm_i915_gem_caching *args = data;
3665 struct drm_i915_gem_object *obj;
3666 int ret;
3667
3668 ret = i915_mutex_lock_interruptible(dev);
3669 if (ret)
3670 return ret;
3671
3672 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3673 if (&obj->base == NULL) {
3674 ret = -ENOENT;
3675 goto unlock;
3676 }
3677
3678 switch (obj->cache_level) {
3679 case I915_CACHE_LLC:
3680 case I915_CACHE_L3_LLC:
3681 args->caching = I915_CACHING_CACHED;
3682 break;
3683
3684 case I915_CACHE_WT:
3685 args->caching = I915_CACHING_DISPLAY;
3686 break;
3687
3688 default:
3689 args->caching = I915_CACHING_NONE;
3690 break;
3691 }
3692
3693 drm_gem_object_unreference(&obj->base);
3694 unlock:
3695 mutex_unlock(&dev->struct_mutex);
3696 return ret;
3697 }
3698
3699 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3700 struct drm_file *file)
3701 {
3702 struct drm_i915_gem_caching *args = data;
3703 struct drm_i915_gem_object *obj;
3704 enum i915_cache_level level;
3705 int ret;
3706
3707 switch (args->caching) {
3708 case I915_CACHING_NONE:
3709 level = I915_CACHE_NONE;
3710 break;
3711 case I915_CACHING_CACHED:
3712 level = I915_CACHE_LLC;
3713 break;
3714 case I915_CACHING_DISPLAY:
3715 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3716 break;
3717 default:
3718 return -EINVAL;
3719 }
3720
3721 ret = i915_mutex_lock_interruptible(dev);
3722 if (ret)
3723 return ret;
3724
3725 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3726 if (&obj->base == NULL) {
3727 ret = -ENOENT;
3728 goto unlock;
3729 }
3730
3731 ret = i915_gem_object_set_cache_level(obj, level);
3732
3733 drm_gem_object_unreference(&obj->base);
3734 unlock:
3735 mutex_unlock(&dev->struct_mutex);
3736 return ret;
3737 }
3738
3739 static bool is_pin_display(struct drm_i915_gem_object *obj)
3740 {
3741 /* There are 3 sources that pin objects:
3742 * 1. The display engine (scanouts, sprites, cursors);
3743 * 2. Reservations for execbuffer;
3744 * 3. The user.
3745 *
3746 * We can ignore reservations as we hold the struct_mutex and
3747 * are only called outside of the reservation path. The user
3748 * can only increment pin_count once, and so if after
3749 * subtracting the potential reference by the user, any pin_count
3750 * remains, it must be due to another use by the display engine.
3751 */
3752 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3753 }
3754
3755 /*
3756 * Prepare buffer for display plane (scanout, cursors, etc).
3757 * Can be called from an uninterruptible phase (modesetting) and allows
3758 * any flushes to be pipelined (for pageflips).
3759 */
3760 int
3761 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3762 u32 alignment,
3763 struct intel_ring_buffer *pipelined)
3764 {
3765 u32 old_read_domains, old_write_domain;
3766 int ret;
3767
3768 if (pipelined != obj->ring) {
3769 ret = i915_gem_object_sync(obj, pipelined);
3770 if (ret)
3771 return ret;
3772 }
3773
3774 /* Mark the pin_display early so that we account for the
3775 * display coherency whilst setting up the cache domains.
3776 */
3777 obj->pin_display = true;
3778
3779 /* The display engine is not coherent with the LLC cache on gen6. As
3780 * a result, we make sure that the pinning that is about to occur is
3781 * done with uncached PTEs. This is lowest common denominator for all
3782 * chipsets.
3783 *
3784 * However for gen6+, we could do better by using the GFDT bit instead
3785 * of uncaching, which would allow us to flush all the LLC-cached data
3786 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3787 */
3788 ret = i915_gem_object_set_cache_level(obj,
3789 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3790 if (ret)
3791 goto err_unpin_display;
3792
3793 /* As the user may map the buffer once pinned in the display plane
3794 * (e.g. libkms for the bootup splash), we have to ensure that we
3795 * always use map_and_fenceable for all scanout buffers.
3796 */
3797 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3798 if (ret)
3799 goto err_unpin_display;
3800
3801 i915_gem_object_flush_cpu_write_domain(obj, true);
3802
3803 old_write_domain = obj->base.write_domain;
3804 old_read_domains = obj->base.read_domains;
3805
3806 /* It should now be out of any other write domains, and we can update
3807 * the domain values for our changes.
3808 */
3809 obj->base.write_domain = 0;
3810 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3811
3812 trace_i915_gem_object_change_domain(obj,
3813 old_read_domains,
3814 old_write_domain);
3815
3816 return 0;
3817
3818 err_unpin_display:
3819 obj->pin_display = is_pin_display(obj);
3820 return ret;
3821 }
3822
3823 void
3824 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3825 {
3826 i915_gem_object_ggtt_unpin(obj);
3827 obj->pin_display = is_pin_display(obj);
3828 }
3829
3830 int
3831 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3832 {
3833 int ret;
3834
3835 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3836 return 0;
3837
3838 ret = i915_gem_object_wait_rendering(obj, false);
3839 if (ret)
3840 return ret;
3841
3842 /* Ensure that we invalidate the GPU's caches and TLBs. */
3843 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3844 return 0;
3845 }
3846
3847 /**
3848 * Moves a single object to the CPU read, and possibly write domain.
3849 *
3850 * This function returns when the move is complete, including waiting on
3851 * flushes to occur.
3852 */
3853 int
3854 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3855 {
3856 uint32_t old_write_domain, old_read_domains;
3857 int ret;
3858
3859 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3860 return 0;
3861
3862 ret = i915_gem_object_wait_rendering(obj, !write);
3863 if (ret)
3864 return ret;
3865
3866 i915_gem_object_flush_gtt_write_domain(obj);
3867
3868 old_write_domain = obj->base.write_domain;
3869 old_read_domains = obj->base.read_domains;
3870
3871 /* Flush the CPU cache if it's still invalid. */
3872 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3873 i915_gem_clflush_object(obj, false);
3874
3875 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3876 }
3877
3878 /* It should now be out of any other write domains, and we can update
3879 * the domain values for our changes.
3880 */
3881 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3882
3883 /* If we're writing through the CPU, then the GPU read domains will
3884 * need to be invalidated at next use.
3885 */
3886 if (write) {
3887 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3888 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3889 }
3890
3891 trace_i915_gem_object_change_domain(obj,
3892 old_read_domains,
3893 old_write_domain);
3894
3895 return 0;
3896 }
3897
3898 /* Throttle our rendering by waiting until the ring has completed our requests
3899 * emitted over 20 msec ago.
3900 *
3901 * Note that if we were to use the current jiffies each time around the loop,
3902 * we wouldn't escape the function with any frames outstanding if the time to
3903 * render a frame was over 20ms.
3904 *
3905 * This should get us reasonable parallelism between CPU and GPU but also
3906 * relatively low latency when blocking on a particular request to finish.
3907 */
3908 static int
3909 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3910 {
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912 struct drm_i915_file_private *file_priv = file->driver_priv;
3913 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3914 struct drm_i915_gem_request *request;
3915 struct intel_ring_buffer *ring = NULL;
3916 unsigned reset_counter;
3917 u32 seqno = 0;
3918 int ret;
3919
3920 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3921 if (ret)
3922 return ret;
3923
3924 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3925 if (ret)
3926 return ret;
3927
3928 spin_lock(&file_priv->mm.lock);
3929 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3930 if (time_after_eq(request->emitted_jiffies, recent_enough))
3931 break;
3932
3933 ring = request->ring;
3934 seqno = request->seqno;
3935 }
3936 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3937 spin_unlock(&file_priv->mm.lock);
3938
3939 if (seqno == 0)
3940 return 0;
3941
3942 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3943 if (ret == 0)
3944 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3945
3946 return ret;
3947 }
3948
3949 int
3950 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3951 struct i915_address_space *vm,
3952 uint32_t alignment,
3953 unsigned flags)
3954 {
3955 struct i915_vma *vma;
3956 int ret;
3957
3958 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3959 return -EINVAL;
3960
3961 vma = i915_gem_obj_to_vma(obj, vm);
3962 if (vma) {
3963 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3964 return -EBUSY;
3965
3966 if ((alignment &&
3967 vma->node.start & (alignment - 1)) ||
3968 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3969 WARN(vma->pin_count,
3970 "bo is already pinned with incorrect alignment:"
3971 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3972 " obj->map_and_fenceable=%d\n",
3973 i915_gem_obj_offset(obj, vm), alignment,
3974 flags & PIN_MAPPABLE,
3975 obj->map_and_fenceable);
3976 ret = i915_vma_unbind(vma);
3977 if (ret)
3978 return ret;
3979
3980 vma = NULL;
3981 }
3982 }
3983
3984 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3985 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3986 if (IS_ERR(vma))
3987 return PTR_ERR(vma);
3988 }
3989
3990 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3991 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3992
3993 vma->pin_count++;
3994 if (flags & PIN_MAPPABLE)
3995 obj->pin_mappable |= true;
3996
3997 return 0;
3998 }
3999
4000 void
4001 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4002 {
4003 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4004
4005 BUG_ON(!vma);
4006 BUG_ON(vma->pin_count == 0);
4007 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4008
4009 if (--vma->pin_count == 0)
4010 obj->pin_mappable = false;
4011 }
4012
4013 int
4014 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4015 struct drm_file *file)
4016 {
4017 struct drm_i915_gem_pin *args = data;
4018 struct drm_i915_gem_object *obj;
4019 int ret;
4020
4021 if (INTEL_INFO(dev)->gen >= 6)
4022 return -ENODEV;
4023
4024 ret = i915_mutex_lock_interruptible(dev);
4025 if (ret)
4026 return ret;
4027
4028 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4029 if (&obj->base == NULL) {
4030 ret = -ENOENT;
4031 goto unlock;
4032 }
4033
4034 if (obj->madv != I915_MADV_WILLNEED) {
4035 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4036 ret = -EFAULT;
4037 goto out;
4038 }
4039
4040 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4041 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4042 args->handle);
4043 ret = -EINVAL;
4044 goto out;
4045 }
4046
4047 if (obj->user_pin_count == ULONG_MAX) {
4048 ret = -EBUSY;
4049 goto out;
4050 }
4051
4052 if (obj->user_pin_count == 0) {
4053 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4054 if (ret)
4055 goto out;
4056 }
4057
4058 obj->user_pin_count++;
4059 obj->pin_filp = file;
4060
4061 args->offset = i915_gem_obj_ggtt_offset(obj);
4062 out:
4063 drm_gem_object_unreference(&obj->base);
4064 unlock:
4065 mutex_unlock(&dev->struct_mutex);
4066 return ret;
4067 }
4068
4069 int
4070 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4071 struct drm_file *file)
4072 {
4073 struct drm_i915_gem_pin *args = data;
4074 struct drm_i915_gem_object *obj;
4075 int ret;
4076
4077 ret = i915_mutex_lock_interruptible(dev);
4078 if (ret)
4079 return ret;
4080
4081 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4082 if (&obj->base == NULL) {
4083 ret = -ENOENT;
4084 goto unlock;
4085 }
4086
4087 if (obj->pin_filp != file) {
4088 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4089 args->handle);
4090 ret = -EINVAL;
4091 goto out;
4092 }
4093 obj->user_pin_count--;
4094 if (obj->user_pin_count == 0) {
4095 obj->pin_filp = NULL;
4096 i915_gem_object_ggtt_unpin(obj);
4097 }
4098
4099 out:
4100 drm_gem_object_unreference(&obj->base);
4101 unlock:
4102 mutex_unlock(&dev->struct_mutex);
4103 return ret;
4104 }
4105
4106 int
4107 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4108 struct drm_file *file)
4109 {
4110 struct drm_i915_gem_busy *args = data;
4111 struct drm_i915_gem_object *obj;
4112 int ret;
4113
4114 ret = i915_mutex_lock_interruptible(dev);
4115 if (ret)
4116 return ret;
4117
4118 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4119 if (&obj->base == NULL) {
4120 ret = -ENOENT;
4121 goto unlock;
4122 }
4123
4124 /* Count all active objects as busy, even if they are currently not used
4125 * by the gpu. Users of this interface expect objects to eventually
4126 * become non-busy without any further actions, therefore emit any
4127 * necessary flushes here.
4128 */
4129 ret = i915_gem_object_flush_active(obj);
4130
4131 args->busy = obj->active;
4132 if (obj->ring) {
4133 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4134 args->busy |= intel_ring_flag(obj->ring) << 16;
4135 }
4136
4137 drm_gem_object_unreference(&obj->base);
4138 unlock:
4139 mutex_unlock(&dev->struct_mutex);
4140 return ret;
4141 }
4142
4143 int
4144 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4145 struct drm_file *file_priv)
4146 {
4147 return i915_gem_ring_throttle(dev, file_priv);
4148 }
4149
4150 int
4151 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file_priv)
4153 {
4154 struct drm_i915_gem_madvise *args = data;
4155 struct drm_i915_gem_object *obj;
4156 int ret;
4157
4158 switch (args->madv) {
4159 case I915_MADV_DONTNEED:
4160 case I915_MADV_WILLNEED:
4161 break;
4162 default:
4163 return -EINVAL;
4164 }
4165
4166 ret = i915_mutex_lock_interruptible(dev);
4167 if (ret)
4168 return ret;
4169
4170 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4171 if (&obj->base == NULL) {
4172 ret = -ENOENT;
4173 goto unlock;
4174 }
4175
4176 if (i915_gem_obj_is_pinned(obj)) {
4177 ret = -EINVAL;
4178 goto out;
4179 }
4180
4181 if (obj->madv != __I915_MADV_PURGED)
4182 obj->madv = args->madv;
4183
4184 /* if the object is no longer attached, discard its backing storage */
4185 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4186 i915_gem_object_truncate(obj);
4187
4188 args->retained = obj->madv != __I915_MADV_PURGED;
4189
4190 out:
4191 drm_gem_object_unreference(&obj->base);
4192 unlock:
4193 mutex_unlock(&dev->struct_mutex);
4194 return ret;
4195 }
4196
4197 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4198 const struct drm_i915_gem_object_ops *ops)
4199 {
4200 INIT_LIST_HEAD(&obj->global_list);
4201 INIT_LIST_HEAD(&obj->ring_list);
4202 INIT_LIST_HEAD(&obj->obj_exec_link);
4203 INIT_LIST_HEAD(&obj->vma_list);
4204
4205 obj->ops = ops;
4206
4207 obj->fence_reg = I915_FENCE_REG_NONE;
4208 obj->madv = I915_MADV_WILLNEED;
4209 /* Avoid an unnecessary call to unbind on the first bind. */
4210 obj->map_and_fenceable = true;
4211
4212 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4213 }
4214
4215 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4216 .get_pages = i915_gem_object_get_pages_gtt,
4217 .put_pages = i915_gem_object_put_pages_gtt,
4218 };
4219
4220 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4221 size_t size)
4222 {
4223 struct drm_i915_gem_object *obj;
4224 struct address_space *mapping;
4225 gfp_t mask;
4226
4227 obj = i915_gem_object_alloc(dev);
4228 if (obj == NULL)
4229 return NULL;
4230
4231 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4232 i915_gem_object_free(obj);
4233 return NULL;
4234 }
4235
4236 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4237 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4238 /* 965gm cannot relocate objects above 4GiB. */
4239 mask &= ~__GFP_HIGHMEM;
4240 mask |= __GFP_DMA32;
4241 }
4242
4243 mapping = file_inode(obj->base.filp)->i_mapping;
4244 mapping_set_gfp_mask(mapping, mask);
4245
4246 i915_gem_object_init(obj, &i915_gem_object_ops);
4247
4248 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4249 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4250
4251 if (HAS_LLC(dev)) {
4252 /* On some devices, we can have the GPU use the LLC (the CPU
4253 * cache) for about a 10% performance improvement
4254 * compared to uncached. Graphics requests other than
4255 * display scanout are coherent with the CPU in
4256 * accessing this cache. This means in this mode we
4257 * don't need to clflush on the CPU side, and on the
4258 * GPU side we only need to flush internal caches to
4259 * get data visible to the CPU.
4260 *
4261 * However, we maintain the display planes as UC, and so
4262 * need to rebind when first used as such.
4263 */
4264 obj->cache_level = I915_CACHE_LLC;
4265 } else
4266 obj->cache_level = I915_CACHE_NONE;
4267
4268 trace_i915_gem_object_create(obj);
4269
4270 return obj;
4271 }
4272
4273 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4274 {
4275 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4276 struct drm_device *dev = obj->base.dev;
4277 struct drm_i915_private *dev_priv = dev->dev_private;
4278 struct i915_vma *vma, *next;
4279
4280 intel_runtime_pm_get(dev_priv);
4281
4282 trace_i915_gem_object_destroy(obj);
4283
4284 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4285 int ret;
4286
4287 vma->pin_count = 0;
4288 ret = i915_vma_unbind(vma);
4289 if (WARN_ON(ret == -ERESTARTSYS)) {
4290 bool was_interruptible;
4291
4292 was_interruptible = dev_priv->mm.interruptible;
4293 dev_priv->mm.interruptible = false;
4294
4295 WARN_ON(i915_vma_unbind(vma));
4296
4297 dev_priv->mm.interruptible = was_interruptible;
4298 }
4299 }
4300
4301 i915_gem_object_detach_phys(obj);
4302
4303 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4304 * before progressing. */
4305 if (obj->stolen)
4306 i915_gem_object_unpin_pages(obj);
4307
4308 if (WARN_ON(obj->pages_pin_count))
4309 obj->pages_pin_count = 0;
4310 i915_gem_object_put_pages(obj);
4311 i915_gem_object_free_mmap_offset(obj);
4312 i915_gem_object_release_stolen(obj);
4313
4314 BUG_ON(obj->pages);
4315
4316 if (obj->base.import_attach)
4317 drm_prime_gem_destroy(&obj->base, NULL);
4318
4319 drm_gem_object_release(&obj->base);
4320 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4321
4322 kfree(obj->bit_17);
4323 i915_gem_object_free(obj);
4324
4325 intel_runtime_pm_put(dev_priv);
4326 }
4327
4328 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4329 struct i915_address_space *vm)
4330 {
4331 struct i915_vma *vma;
4332 list_for_each_entry(vma, &obj->vma_list, vma_link)
4333 if (vma->vm == vm)
4334 return vma;
4335
4336 return NULL;
4337 }
4338
4339 void i915_gem_vma_destroy(struct i915_vma *vma)
4340 {
4341 WARN_ON(vma->node.allocated);
4342
4343 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4344 if (!list_empty(&vma->exec_list))
4345 return;
4346
4347 list_del(&vma->vma_link);
4348
4349 kfree(vma);
4350 }
4351
4352 int
4353 i915_gem_suspend(struct drm_device *dev)
4354 {
4355 struct drm_i915_private *dev_priv = dev->dev_private;
4356 int ret = 0;
4357
4358 mutex_lock(&dev->struct_mutex);
4359 if (dev_priv->ums.mm_suspended)
4360 goto err;
4361
4362 ret = i915_gpu_idle(dev);
4363 if (ret)
4364 goto err;
4365
4366 i915_gem_retire_requests(dev);
4367
4368 /* Under UMS, be paranoid and evict. */
4369 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4370 i915_gem_evict_everything(dev);
4371
4372 i915_kernel_lost_context(dev);
4373 i915_gem_cleanup_ringbuffer(dev);
4374
4375 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4376 * We need to replace this with a semaphore, or something.
4377 * And not confound ums.mm_suspended!
4378 */
4379 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4380 DRIVER_MODESET);
4381 mutex_unlock(&dev->struct_mutex);
4382
4383 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4384 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4385 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4386
4387 return 0;
4388
4389 err:
4390 mutex_unlock(&dev->struct_mutex);
4391 return ret;
4392 }
4393
4394 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4395 {
4396 struct drm_device *dev = ring->dev;
4397 struct drm_i915_private *dev_priv = dev->dev_private;
4398 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4399 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4400 int i, ret;
4401
4402 if (!HAS_L3_DPF(dev) || !remap_info)
4403 return 0;
4404
4405 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4406 if (ret)
4407 return ret;
4408
4409 /*
4410 * Note: We do not worry about the concurrent register cacheline hang
4411 * here because no other code should access these registers other than
4412 * at initialization time.
4413 */
4414 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4415 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4416 intel_ring_emit(ring, reg_base + i);
4417 intel_ring_emit(ring, remap_info[i/4]);
4418 }
4419
4420 intel_ring_advance(ring);
4421
4422 return ret;
4423 }
4424
4425 void i915_gem_init_swizzling(struct drm_device *dev)
4426 {
4427 struct drm_i915_private *dev_priv = dev->dev_private;
4428
4429 if (INTEL_INFO(dev)->gen < 5 ||
4430 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4431 return;
4432
4433 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4434 DISP_TILE_SURFACE_SWIZZLING);
4435
4436 if (IS_GEN5(dev))
4437 return;
4438
4439 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4440 if (IS_GEN6(dev))
4441 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4442 else if (IS_GEN7(dev))
4443 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4444 else if (IS_GEN8(dev))
4445 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4446 else
4447 BUG();
4448 }
4449
4450 static bool
4451 intel_enable_blt(struct drm_device *dev)
4452 {
4453 if (!HAS_BLT(dev))
4454 return false;
4455
4456 /* The blitter was dysfunctional on early prototypes */
4457 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4458 DRM_INFO("BLT not supported on this pre-production hardware;"
4459 " graphics performance will be degraded.\n");
4460 return false;
4461 }
4462
4463 return true;
4464 }
4465
4466 static int i915_gem_init_rings(struct drm_device *dev)
4467 {
4468 struct drm_i915_private *dev_priv = dev->dev_private;
4469 int ret;
4470
4471 ret = intel_init_render_ring_buffer(dev);
4472 if (ret)
4473 return ret;
4474
4475 if (HAS_BSD(dev)) {
4476 ret = intel_init_bsd_ring_buffer(dev);
4477 if (ret)
4478 goto cleanup_render_ring;
4479 }
4480
4481 if (intel_enable_blt(dev)) {
4482 ret = intel_init_blt_ring_buffer(dev);
4483 if (ret)
4484 goto cleanup_bsd_ring;
4485 }
4486
4487 if (HAS_VEBOX(dev)) {
4488 ret = intel_init_vebox_ring_buffer(dev);
4489 if (ret)
4490 goto cleanup_blt_ring;
4491 }
4492
4493
4494 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4495 if (ret)
4496 goto cleanup_vebox_ring;
4497
4498 return 0;
4499
4500 cleanup_vebox_ring:
4501 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4502 cleanup_blt_ring:
4503 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4504 cleanup_bsd_ring:
4505 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4506 cleanup_render_ring:
4507 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4508
4509 return ret;
4510 }
4511
4512 int
4513 i915_gem_init_hw(struct drm_device *dev)
4514 {
4515 struct drm_i915_private *dev_priv = dev->dev_private;
4516 int ret, i;
4517
4518 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4519 return -EIO;
4520
4521 if (dev_priv->ellc_size)
4522 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4523
4524 if (IS_HASWELL(dev))
4525 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4526 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4527
4528 if (HAS_PCH_NOP(dev)) {
4529 if (IS_IVYBRIDGE(dev)) {
4530 u32 temp = I915_READ(GEN7_MSG_CTL);
4531 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4532 I915_WRITE(GEN7_MSG_CTL, temp);
4533 } else if (INTEL_INFO(dev)->gen >= 7) {
4534 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4535 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4536 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4537 }
4538 }
4539
4540 i915_gem_init_swizzling(dev);
4541
4542 ret = i915_gem_init_rings(dev);
4543 if (ret)
4544 return ret;
4545
4546 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4547 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4548
4549 /*
4550 * XXX: Contexts should only be initialized once. Doing a switch to the
4551 * default context switch however is something we'd like to do after
4552 * reset or thaw (the latter may not actually be necessary for HW, but
4553 * goes with our code better). Context switching requires rings (for
4554 * the do_switch), but before enabling PPGTT. So don't move this.
4555 */
4556 ret = i915_gem_context_enable(dev_priv);
4557 if (ret) {
4558 DRM_ERROR("Context enable failed %d\n", ret);
4559 goto err_out;
4560 }
4561
4562 return 0;
4563
4564 err_out:
4565 i915_gem_cleanup_ringbuffer(dev);
4566 return ret;
4567 }
4568
4569 int i915_gem_init(struct drm_device *dev)
4570 {
4571 struct drm_i915_private *dev_priv = dev->dev_private;
4572 int ret;
4573
4574 mutex_lock(&dev->struct_mutex);
4575
4576 if (IS_VALLEYVIEW(dev)) {
4577 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4578 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4579 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4580 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4581 }
4582
4583 i915_gem_init_global_gtt(dev);
4584
4585 ret = i915_gem_context_init(dev);
4586 if (ret) {
4587 mutex_unlock(&dev->struct_mutex);
4588 return ret;
4589 }
4590
4591 ret = i915_gem_init_hw(dev);
4592 mutex_unlock(&dev->struct_mutex);
4593 if (ret) {
4594 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4595 i915_gem_context_fini(dev);
4596 drm_mm_takedown(&dev_priv->gtt.base.mm);
4597 return ret;
4598 }
4599
4600 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4601 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4602 dev_priv->dri1.allow_batchbuffer = 1;
4603 return 0;
4604 }
4605
4606 void
4607 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4608 {
4609 struct drm_i915_private *dev_priv = dev->dev_private;
4610 struct intel_ring_buffer *ring;
4611 int i;
4612
4613 for_each_ring(ring, dev_priv, i)
4614 intel_cleanup_ring_buffer(ring);
4615 }
4616
4617 int
4618 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4619 struct drm_file *file_priv)
4620 {
4621 struct drm_i915_private *dev_priv = dev->dev_private;
4622 int ret;
4623
4624 if (drm_core_check_feature(dev, DRIVER_MODESET))
4625 return 0;
4626
4627 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4628 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4629 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4630 }
4631
4632 mutex_lock(&dev->struct_mutex);
4633 dev_priv->ums.mm_suspended = 0;
4634
4635 ret = i915_gem_init_hw(dev);
4636 if (ret != 0) {
4637 mutex_unlock(&dev->struct_mutex);
4638 return ret;
4639 }
4640
4641 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4642 mutex_unlock(&dev->struct_mutex);
4643
4644 ret = drm_irq_install(dev);
4645 if (ret)
4646 goto cleanup_ringbuffer;
4647
4648 return 0;
4649
4650 cleanup_ringbuffer:
4651 mutex_lock(&dev->struct_mutex);
4652 i915_gem_cleanup_ringbuffer(dev);
4653 dev_priv->ums.mm_suspended = 1;
4654 mutex_unlock(&dev->struct_mutex);
4655
4656 return ret;
4657 }
4658
4659 int
4660 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4661 struct drm_file *file_priv)
4662 {
4663 if (drm_core_check_feature(dev, DRIVER_MODESET))
4664 return 0;
4665
4666 drm_irq_uninstall(dev);
4667
4668 return i915_gem_suspend(dev);
4669 }
4670
4671 void
4672 i915_gem_lastclose(struct drm_device *dev)
4673 {
4674 int ret;
4675
4676 if (drm_core_check_feature(dev, DRIVER_MODESET))
4677 return;
4678
4679 ret = i915_gem_suspend(dev);
4680 if (ret)
4681 DRM_ERROR("failed to idle hardware: %d\n", ret);
4682 }
4683
4684 static void
4685 init_ring_lists(struct intel_ring_buffer *ring)
4686 {
4687 INIT_LIST_HEAD(&ring->active_list);
4688 INIT_LIST_HEAD(&ring->request_list);
4689 }
4690
4691 void i915_init_vm(struct drm_i915_private *dev_priv,
4692 struct i915_address_space *vm)
4693 {
4694 if (!i915_is_ggtt(vm))
4695 drm_mm_init(&vm->mm, vm->start, vm->total);
4696 vm->dev = dev_priv->dev;
4697 INIT_LIST_HEAD(&vm->active_list);
4698 INIT_LIST_HEAD(&vm->inactive_list);
4699 INIT_LIST_HEAD(&vm->global_link);
4700 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4701 }
4702
4703 void
4704 i915_gem_load(struct drm_device *dev)
4705 {
4706 struct drm_i915_private *dev_priv = dev->dev_private;
4707 int i;
4708
4709 dev_priv->slab =
4710 kmem_cache_create("i915_gem_object",
4711 sizeof(struct drm_i915_gem_object), 0,
4712 SLAB_HWCACHE_ALIGN,
4713 NULL);
4714
4715 INIT_LIST_HEAD(&dev_priv->vm_list);
4716 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4717
4718 INIT_LIST_HEAD(&dev_priv->context_list);
4719 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4720 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4721 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4722 for (i = 0; i < I915_NUM_RINGS; i++)
4723 init_ring_lists(&dev_priv->ring[i]);
4724 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4725 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4726 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4727 i915_gem_retire_work_handler);
4728 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4729 i915_gem_idle_work_handler);
4730 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4731
4732 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4733 if (IS_GEN3(dev)) {
4734 I915_WRITE(MI_ARB_STATE,
4735 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4736 }
4737
4738 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4739
4740 /* Old X drivers will take 0-2 for front, back, depth buffers */
4741 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4742 dev_priv->fence_reg_start = 3;
4743
4744 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4745 dev_priv->num_fence_regs = 32;
4746 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4747 dev_priv->num_fence_regs = 16;
4748 else
4749 dev_priv->num_fence_regs = 8;
4750
4751 /* Initialize fence registers to zero */
4752 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4753 i915_gem_restore_fences(dev);
4754
4755 i915_gem_detect_bit_6_swizzle(dev);
4756 init_waitqueue_head(&dev_priv->pending_flip_queue);
4757
4758 dev_priv->mm.interruptible = true;
4759
4760 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4761 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4762 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4763 register_shrinker(&dev_priv->mm.inactive_shrinker);
4764 }
4765
4766 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4767 {
4768 struct drm_i915_file_private *file_priv = file->driver_priv;
4769
4770 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4771
4772 /* Clean up our request list when the client is going away, so that
4773 * later retire_requests won't dereference our soon-to-be-gone
4774 * file_priv.
4775 */
4776 spin_lock(&file_priv->mm.lock);
4777 while (!list_empty(&file_priv->mm.request_list)) {
4778 struct drm_i915_gem_request *request;
4779
4780 request = list_first_entry(&file_priv->mm.request_list,
4781 struct drm_i915_gem_request,
4782 client_list);
4783 list_del(&request->client_list);
4784 request->file_priv = NULL;
4785 }
4786 spin_unlock(&file_priv->mm.lock);
4787 }
4788
4789 static void
4790 i915_gem_file_idle_work_handler(struct work_struct *work)
4791 {
4792 struct drm_i915_file_private *file_priv =
4793 container_of(work, typeof(*file_priv), mm.idle_work.work);
4794
4795 atomic_set(&file_priv->rps_wait_boost, false);
4796 }
4797
4798 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4799 {
4800 struct drm_i915_file_private *file_priv;
4801 int ret;
4802
4803 DRM_DEBUG_DRIVER("\n");
4804
4805 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4806 if (!file_priv)
4807 return -ENOMEM;
4808
4809 file->driver_priv = file_priv;
4810 file_priv->dev_priv = dev->dev_private;
4811 file_priv->file = file;
4812
4813 spin_lock_init(&file_priv->mm.lock);
4814 INIT_LIST_HEAD(&file_priv->mm.request_list);
4815 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4816 i915_gem_file_idle_work_handler);
4817
4818 ret = i915_gem_context_open(dev, file);
4819 if (ret)
4820 kfree(file_priv);
4821
4822 return ret;
4823 }
4824
4825 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4826 {
4827 if (!mutex_is_locked(mutex))
4828 return false;
4829
4830 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4831 return mutex->owner == task;
4832 #else
4833 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4834 return false;
4835 #endif
4836 }
4837
4838 static unsigned long
4839 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4840 {
4841 struct drm_i915_private *dev_priv =
4842 container_of(shrinker,
4843 struct drm_i915_private,
4844 mm.inactive_shrinker);
4845 struct drm_device *dev = dev_priv->dev;
4846 struct drm_i915_gem_object *obj;
4847 bool unlock = true;
4848 unsigned long count;
4849
4850 if (!mutex_trylock(&dev->struct_mutex)) {
4851 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4852 return 0;
4853
4854 if (dev_priv->mm.shrinker_no_lock_stealing)
4855 return 0;
4856
4857 unlock = false;
4858 }
4859
4860 count = 0;
4861 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4862 if (obj->pages_pin_count == 0)
4863 count += obj->base.size >> PAGE_SHIFT;
4864
4865 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4866 if (obj->active)
4867 continue;
4868
4869 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4870 count += obj->base.size >> PAGE_SHIFT;
4871 }
4872
4873 if (unlock)
4874 mutex_unlock(&dev->struct_mutex);
4875
4876 return count;
4877 }
4878
4879 /* All the new VM stuff */
4880 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4881 struct i915_address_space *vm)
4882 {
4883 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4884 struct i915_vma *vma;
4885
4886 if (!dev_priv->mm.aliasing_ppgtt ||
4887 vm == &dev_priv->mm.aliasing_ppgtt->base)
4888 vm = &dev_priv->gtt.base;
4889
4890 BUG_ON(list_empty(&o->vma_list));
4891 list_for_each_entry(vma, &o->vma_list, vma_link) {
4892 if (vma->vm == vm)
4893 return vma->node.start;
4894
4895 }
4896 return -1;
4897 }
4898
4899 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4900 struct i915_address_space *vm)
4901 {
4902 struct i915_vma *vma;
4903
4904 list_for_each_entry(vma, &o->vma_list, vma_link)
4905 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4906 return true;
4907
4908 return false;
4909 }
4910
4911 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4912 {
4913 struct i915_vma *vma;
4914
4915 list_for_each_entry(vma, &o->vma_list, vma_link)
4916 if (drm_mm_node_allocated(&vma->node))
4917 return true;
4918
4919 return false;
4920 }
4921
4922 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4923 struct i915_address_space *vm)
4924 {
4925 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4926 struct i915_vma *vma;
4927
4928 if (!dev_priv->mm.aliasing_ppgtt ||
4929 vm == &dev_priv->mm.aliasing_ppgtt->base)
4930 vm = &dev_priv->gtt.base;
4931
4932 BUG_ON(list_empty(&o->vma_list));
4933
4934 list_for_each_entry(vma, &o->vma_list, vma_link)
4935 if (vma->vm == vm)
4936 return vma->node.size;
4937
4938 return 0;
4939 }
4940
4941 static unsigned long
4942 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4943 {
4944 struct drm_i915_private *dev_priv =
4945 container_of(shrinker,
4946 struct drm_i915_private,
4947 mm.inactive_shrinker);
4948 struct drm_device *dev = dev_priv->dev;
4949 unsigned long freed;
4950 bool unlock = true;
4951
4952 if (!mutex_trylock(&dev->struct_mutex)) {
4953 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4954 return SHRINK_STOP;
4955
4956 if (dev_priv->mm.shrinker_no_lock_stealing)
4957 return SHRINK_STOP;
4958
4959 unlock = false;
4960 }
4961
4962 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
4963 if (freed < sc->nr_to_scan)
4964 freed += __i915_gem_shrink(dev_priv,
4965 sc->nr_to_scan - freed,
4966 false);
4967 if (freed < sc->nr_to_scan)
4968 freed += i915_gem_shrink_all(dev_priv);
4969
4970 if (unlock)
4971 mutex_unlock(&dev->struct_mutex);
4972
4973 return freed;
4974 }
4975
4976 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4977 {
4978 struct i915_vma *vma;
4979
4980 if (WARN_ON(list_empty(&obj->vma_list)))
4981 return NULL;
4982
4983 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
4984 if (vma->vm != obj_to_ggtt(obj))
4985 return NULL;
4986
4987 return vma;
4988 }
This page took 0.140265 seconds and 5 git commands to generate.