b46a3fd1774688e43d08d60774a8170cd3881d8b
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59
60 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61 {
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
68 obj->fence_dirty = false;
69 obj->fence_reg = I915_FENCE_REG_NONE;
70 }
71
72 /* some bookkeeping */
73 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78 }
79
80 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82 {
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85 }
86
87 static int
88 i915_gem_wait_for_error(struct drm_device *dev)
89 {
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
98 ret = wait_for_completion_interruptible(x);
99 if (ret)
100 return ret;
101
102 if (atomic_read(&dev_priv->mm.wedged)) {
103 /* GPU is hung, bump the completion count to account for
104 * the token we just consumed so that we never hit zero and
105 * end up waiting upon a subsequent completion event that
106 * will never happen.
107 */
108 spin_lock_irqsave(&x->wait.lock, flags);
109 x->done++;
110 spin_unlock_irqrestore(&x->wait.lock, flags);
111 }
112 return 0;
113 }
114
115 int i915_mutex_lock_interruptible(struct drm_device *dev)
116 {
117 int ret;
118
119 ret = i915_gem_wait_for_error(dev);
120 if (ret)
121 return ret;
122
123 ret = mutex_lock_interruptible(&dev->struct_mutex);
124 if (ret)
125 return ret;
126
127 WARN_ON(i915_verify_lists(dev));
128 return 0;
129 }
130
131 static inline bool
132 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
133 {
134 return !obj->active;
135 }
136
137 int
138 i915_gem_init_ioctl(struct drm_device *dev, void *data,
139 struct drm_file *file)
140 {
141 struct drm_i915_gem_init *args = data;
142
143 if (drm_core_check_feature(dev, DRIVER_MODESET))
144 return -ENODEV;
145
146 if (args->gtt_start >= args->gtt_end ||
147 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
148 return -EINVAL;
149
150 /* GEM with user mode setting was never supported on ilk and later. */
151 if (INTEL_INFO(dev)->gen >= 5)
152 return -ENODEV;
153
154 mutex_lock(&dev->struct_mutex);
155 i915_gem_init_global_gtt(dev, args->gtt_start,
156 args->gtt_end, args->gtt_end);
157 mutex_unlock(&dev->struct_mutex);
158
159 return 0;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_get_aperture *args = data;
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
170
171 pinned = 0;
172 mutex_lock(&dev->struct_mutex);
173 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
174 if (obj->pin_count)
175 pinned += obj->gtt_space->size;
176 mutex_unlock(&dev->struct_mutex);
177
178 args->aper_size = dev_priv->mm.gtt_total;
179 args->aper_available_size = args->aper_size - pinned;
180
181 return 0;
182 }
183
184 static int
185 i915_gem_create(struct drm_file *file,
186 struct drm_device *dev,
187 uint64_t size,
188 uint32_t *handle_p)
189 {
190 struct drm_i915_gem_object *obj;
191 int ret;
192 u32 handle;
193
194 size = roundup(size, PAGE_SIZE);
195 if (size == 0)
196 return -EINVAL;
197
198 /* Allocate the new object */
199 obj = i915_gem_alloc_object(dev, size);
200 if (obj == NULL)
201 return -ENOMEM;
202
203 ret = drm_gem_handle_create(file, &obj->base, &handle);
204 if (ret) {
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207 kfree(obj);
208 return ret;
209 }
210
211 /* drop reference from allocate - handle holds it now */
212 drm_gem_object_unreference(&obj->base);
213 trace_i915_gem_object_create(obj);
214
215 *handle_p = handle;
216 return 0;
217 }
218
219 int
220 i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223 {
224 /* have to work out size/pitch and return them */
225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229 }
230
231 int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234 {
235 return drm_gem_handle_delete(file, handle);
236 }
237
238 /**
239 * Creates a new mm object and returns a handle to it.
240 */
241 int
242 i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244 {
245 struct drm_i915_gem_create *args = data;
246
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
249 }
250
251 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252 {
253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256 obj->tiling_mode != I915_TILING_NONE;
257 }
258
259 static inline int
260 __copy_to_user_swizzled(char __user *cpu_vaddr,
261 const char *gpu_vaddr, int gpu_offset,
262 int length)
263 {
264 int ret, cpu_offset = 0;
265
266 while (length > 0) {
267 int cacheline_end = ALIGN(gpu_offset + 1, 64);
268 int this_length = min(cacheline_end - gpu_offset, length);
269 int swizzled_gpu_offset = gpu_offset ^ 64;
270
271 ret = __copy_to_user(cpu_vaddr + cpu_offset,
272 gpu_vaddr + swizzled_gpu_offset,
273 this_length);
274 if (ret)
275 return ret + length;
276
277 cpu_offset += this_length;
278 gpu_offset += this_length;
279 length -= this_length;
280 }
281
282 return 0;
283 }
284
285 static inline int
286 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
287 const char __user *cpu_vaddr,
288 int length)
289 {
290 int ret, cpu_offset = 0;
291
292 while (length > 0) {
293 int cacheline_end = ALIGN(gpu_offset + 1, 64);
294 int this_length = min(cacheline_end - gpu_offset, length);
295 int swizzled_gpu_offset = gpu_offset ^ 64;
296
297 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
298 cpu_vaddr + cpu_offset,
299 this_length);
300 if (ret)
301 return ret + length;
302
303 cpu_offset += this_length;
304 gpu_offset += this_length;
305 length -= this_length;
306 }
307
308 return 0;
309 }
310
311 /* Per-page copy function for the shmem pread fastpath.
312 * Flushes invalid cachelines before reading the target if
313 * needs_clflush is set. */
314 static int
315 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
316 char __user *user_data,
317 bool page_do_bit17_swizzling, bool needs_clflush)
318 {
319 char *vaddr;
320 int ret;
321
322 if (unlikely(page_do_bit17_swizzling))
323 return -EINVAL;
324
325 vaddr = kmap_atomic(page);
326 if (needs_clflush)
327 drm_clflush_virt_range(vaddr + shmem_page_offset,
328 page_length);
329 ret = __copy_to_user_inatomic(user_data,
330 vaddr + shmem_page_offset,
331 page_length);
332 kunmap_atomic(vaddr);
333
334 return ret;
335 }
336
337 static void
338 shmem_clflush_swizzled_range(char *addr, unsigned long length,
339 bool swizzled)
340 {
341 if (unlikely(swizzled)) {
342 unsigned long start = (unsigned long) addr;
343 unsigned long end = (unsigned long) addr + length;
344
345 /* For swizzling simply ensure that we always flush both
346 * channels. Lame, but simple and it works. Swizzled
347 * pwrite/pread is far from a hotpath - current userspace
348 * doesn't use it at all. */
349 start = round_down(start, 128);
350 end = round_up(end, 128);
351
352 drm_clflush_virt_range((void *)start, end - start);
353 } else {
354 drm_clflush_virt_range(addr, length);
355 }
356
357 }
358
359 /* Only difference to the fast-path function is that this can handle bit17
360 * and uses non-atomic copy and kmap functions. */
361 static int
362 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
363 char __user *user_data,
364 bool page_do_bit17_swizzling, bool needs_clflush)
365 {
366 char *vaddr;
367 int ret;
368
369 vaddr = kmap(page);
370 if (needs_clflush)
371 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
372 page_length,
373 page_do_bit17_swizzling);
374
375 if (page_do_bit17_swizzling)
376 ret = __copy_to_user_swizzled(user_data,
377 vaddr, shmem_page_offset,
378 page_length);
379 else
380 ret = __copy_to_user(user_data,
381 vaddr + shmem_page_offset,
382 page_length);
383 kunmap(page);
384
385 return ret;
386 }
387
388 static int
389 i915_gem_shmem_pread(struct drm_device *dev,
390 struct drm_i915_gem_object *obj,
391 struct drm_i915_gem_pread *args,
392 struct drm_file *file)
393 {
394 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
395 char __user *user_data;
396 ssize_t remain;
397 loff_t offset;
398 int shmem_page_offset, page_length, ret = 0;
399 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
400 int hit_slowpath = 0;
401 int prefaulted = 0;
402 int needs_clflush = 0;
403 int release_page;
404
405 user_data = (char __user *) (uintptr_t) args->data_ptr;
406 remain = args->size;
407
408 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
409
410 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
411 /* If we're not in the cpu read domain, set ourself into the gtt
412 * read domain and manually flush cachelines (if required). This
413 * optimizes for the case when the gpu will dirty the data
414 * anyway again before the next pread happens. */
415 if (obj->cache_level == I915_CACHE_NONE)
416 needs_clflush = 1;
417 ret = i915_gem_object_set_to_gtt_domain(obj, false);
418 if (ret)
419 return ret;
420 }
421
422 offset = args->offset;
423
424 while (remain > 0) {
425 struct page *page;
426
427 /* Operation in this page
428 *
429 * shmem_page_offset = offset within page in shmem file
430 * page_length = bytes to copy for this page
431 */
432 shmem_page_offset = offset_in_page(offset);
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
436
437 if (obj->pages) {
438 page = obj->pages[offset >> PAGE_SHIFT];
439 release_page = 0;
440 } else {
441 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
442 if (IS_ERR(page)) {
443 ret = PTR_ERR(page);
444 goto out;
445 }
446 release_page = 1;
447 }
448
449 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
450 (page_to_phys(page) & (1 << 17)) != 0;
451
452 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
453 user_data, page_do_bit17_swizzling,
454 needs_clflush);
455 if (ret == 0)
456 goto next_page;
457
458 hit_slowpath = 1;
459 page_cache_get(page);
460 mutex_unlock(&dev->struct_mutex);
461
462 if (!prefaulted) {
463 ret = fault_in_multipages_writeable(user_data, remain);
464 /* Userspace is tricking us, but we've already clobbered
465 * its pages with the prefault and promised to write the
466 * data up to the first fault. Hence ignore any errors
467 * and just continue. */
468 (void)ret;
469 prefaulted = 1;
470 }
471
472 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
473 user_data, page_do_bit17_swizzling,
474 needs_clflush);
475
476 mutex_lock(&dev->struct_mutex);
477 page_cache_release(page);
478 next_page:
479 mark_page_accessed(page);
480 if (release_page)
481 page_cache_release(page);
482
483 if (ret) {
484 ret = -EFAULT;
485 goto out;
486 }
487
488 remain -= page_length;
489 user_data += page_length;
490 offset += page_length;
491 }
492
493 out:
494 if (hit_slowpath) {
495 /* Fixup: Kill any reinstated backing storage pages */
496 if (obj->madv == __I915_MADV_PURGED)
497 i915_gem_object_truncate(obj);
498 }
499
500 return ret;
501 }
502
503 /**
504 * Reads data from the object referenced by handle.
505 *
506 * On error, the contents of *data are undefined.
507 */
508 int
509 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510 struct drm_file *file)
511 {
512 struct drm_i915_gem_pread *args = data;
513 struct drm_i915_gem_object *obj;
514 int ret = 0;
515
516 if (args->size == 0)
517 return 0;
518
519 if (!access_ok(VERIFY_WRITE,
520 (char __user *)(uintptr_t)args->data_ptr,
521 args->size))
522 return -EFAULT;
523
524 ret = i915_mutex_lock_interruptible(dev);
525 if (ret)
526 return ret;
527
528 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529 if (&obj->base == NULL) {
530 ret = -ENOENT;
531 goto unlock;
532 }
533
534 /* Bounds check source. */
535 if (args->offset > obj->base.size ||
536 args->size > obj->base.size - args->offset) {
537 ret = -EINVAL;
538 goto out;
539 }
540
541 trace_i915_gem_object_pread(obj, args->offset, args->size);
542
543 ret = i915_gem_shmem_pread(dev, obj, args, file);
544
545 out:
546 drm_gem_object_unreference(&obj->base);
547 unlock:
548 mutex_unlock(&dev->struct_mutex);
549 return ret;
550 }
551
552 /* This is the fast write path which cannot handle
553 * page faults in the source data
554 */
555
556 static inline int
557 fast_user_write(struct io_mapping *mapping,
558 loff_t page_base, int page_offset,
559 char __user *user_data,
560 int length)
561 {
562 void __iomem *vaddr_atomic;
563 void *vaddr;
564 unsigned long unwritten;
565
566 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567 /* We can use the cpu mem copy function because this is X86. */
568 vaddr = (void __force*)vaddr_atomic + page_offset;
569 unwritten = __copy_from_user_inatomic_nocache(vaddr,
570 user_data, length);
571 io_mapping_unmap_atomic(vaddr_atomic);
572 return unwritten;
573 }
574
575 /**
576 * This is the fast pwrite path, where we copy the data directly from the
577 * user into the GTT, uncached.
578 */
579 static int
580 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
581 struct drm_i915_gem_object *obj,
582 struct drm_i915_gem_pwrite *args,
583 struct drm_file *file)
584 {
585 drm_i915_private_t *dev_priv = dev->dev_private;
586 ssize_t remain;
587 loff_t offset, page_base;
588 char __user *user_data;
589 int page_offset, page_length, ret;
590
591 ret = i915_gem_object_pin(obj, 0, true);
592 if (ret)
593 goto out;
594
595 ret = i915_gem_object_set_to_gtt_domain(obj, true);
596 if (ret)
597 goto out_unpin;
598
599 ret = i915_gem_object_put_fence(obj);
600 if (ret)
601 goto out_unpin;
602
603 user_data = (char __user *) (uintptr_t) args->data_ptr;
604 remain = args->size;
605
606 offset = obj->gtt_offset + args->offset;
607
608 while (remain > 0) {
609 /* Operation in this page
610 *
611 * page_base = page offset within aperture
612 * page_offset = offset within page
613 * page_length = bytes to copy for this page
614 */
615 page_base = offset & PAGE_MASK;
616 page_offset = offset_in_page(offset);
617 page_length = remain;
618 if ((page_offset + remain) > PAGE_SIZE)
619 page_length = PAGE_SIZE - page_offset;
620
621 /* If we get a fault while copying data, then (presumably) our
622 * source page isn't available. Return the error and we'll
623 * retry in the slow path.
624 */
625 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
626 page_offset, user_data, page_length)) {
627 ret = -EFAULT;
628 goto out_unpin;
629 }
630
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
634 }
635
636 out_unpin:
637 i915_gem_object_unpin(obj);
638 out:
639 return ret;
640 }
641
642 /* Per-page copy function for the shmem pwrite fastpath.
643 * Flushes invalid cachelines before writing to the target if
644 * needs_clflush_before is set and flushes out any written cachelines after
645 * writing if needs_clflush is set. */
646 static int
647 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
648 char __user *user_data,
649 bool page_do_bit17_swizzling,
650 bool needs_clflush_before,
651 bool needs_clflush_after)
652 {
653 char *vaddr;
654 int ret;
655
656 if (unlikely(page_do_bit17_swizzling))
657 return -EINVAL;
658
659 vaddr = kmap_atomic(page);
660 if (needs_clflush_before)
661 drm_clflush_virt_range(vaddr + shmem_page_offset,
662 page_length);
663 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
664 user_data,
665 page_length);
666 if (needs_clflush_after)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 kunmap_atomic(vaddr);
670
671 return ret;
672 }
673
674 /* Only difference to the fast-path function is that this can handle bit17
675 * and uses non-atomic copy and kmap functions. */
676 static int
677 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
678 char __user *user_data,
679 bool page_do_bit17_swizzling,
680 bool needs_clflush_before,
681 bool needs_clflush_after)
682 {
683 char *vaddr;
684 int ret;
685
686 vaddr = kmap(page);
687 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
688 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
689 page_length,
690 page_do_bit17_swizzling);
691 if (page_do_bit17_swizzling)
692 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
693 user_data,
694 page_length);
695 else
696 ret = __copy_from_user(vaddr + shmem_page_offset,
697 user_data,
698 page_length);
699 if (needs_clflush_after)
700 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
701 page_length,
702 page_do_bit17_swizzling);
703 kunmap(page);
704
705 return ret;
706 }
707
708 static int
709 i915_gem_shmem_pwrite(struct drm_device *dev,
710 struct drm_i915_gem_object *obj,
711 struct drm_i915_gem_pwrite *args,
712 struct drm_file *file)
713 {
714 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
715 ssize_t remain;
716 loff_t offset;
717 char __user *user_data;
718 int shmem_page_offset, page_length, ret = 0;
719 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
720 int hit_slowpath = 0;
721 int needs_clflush_after = 0;
722 int needs_clflush_before = 0;
723 int release_page;
724
725 user_data = (char __user *) (uintptr_t) args->data_ptr;
726 remain = args->size;
727
728 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
729
730 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
731 /* If we're not in the cpu write domain, set ourself into the gtt
732 * write domain and manually flush cachelines (if required). This
733 * optimizes for the case when the gpu will use the data
734 * right away and we therefore have to clflush anyway. */
735 if (obj->cache_level == I915_CACHE_NONE)
736 needs_clflush_after = 1;
737 ret = i915_gem_object_set_to_gtt_domain(obj, true);
738 if (ret)
739 return ret;
740 }
741 /* Same trick applies for invalidate partially written cachelines before
742 * writing. */
743 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
744 && obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_before = 1;
746
747 offset = args->offset;
748 obj->dirty = 1;
749
750 while (remain > 0) {
751 struct page *page;
752 int partial_cacheline_write;
753
754 /* Operation in this page
755 *
756 * shmem_page_offset = offset within page in shmem file
757 * page_length = bytes to copy for this page
758 */
759 shmem_page_offset = offset_in_page(offset);
760
761 page_length = remain;
762 if ((shmem_page_offset + page_length) > PAGE_SIZE)
763 page_length = PAGE_SIZE - shmem_page_offset;
764
765 /* If we don't overwrite a cacheline completely we need to be
766 * careful to have up-to-date data by first clflushing. Don't
767 * overcomplicate things and flush the entire patch. */
768 partial_cacheline_write = needs_clflush_before &&
769 ((shmem_page_offset | page_length)
770 & (boot_cpu_data.x86_clflush_size - 1));
771
772 if (obj->pages) {
773 page = obj->pages[offset >> PAGE_SHIFT];
774 release_page = 0;
775 } else {
776 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
777 if (IS_ERR(page)) {
778 ret = PTR_ERR(page);
779 goto out;
780 }
781 release_page = 1;
782 }
783
784 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
785 (page_to_phys(page) & (1 << 17)) != 0;
786
787 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
788 user_data, page_do_bit17_swizzling,
789 partial_cacheline_write,
790 needs_clflush_after);
791 if (ret == 0)
792 goto next_page;
793
794 hit_slowpath = 1;
795 page_cache_get(page);
796 mutex_unlock(&dev->struct_mutex);
797
798 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
799 user_data, page_do_bit17_swizzling,
800 partial_cacheline_write,
801 needs_clflush_after);
802
803 mutex_lock(&dev->struct_mutex);
804 page_cache_release(page);
805 next_page:
806 set_page_dirty(page);
807 mark_page_accessed(page);
808 if (release_page)
809 page_cache_release(page);
810
811 if (ret) {
812 ret = -EFAULT;
813 goto out;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out:
822 if (hit_slowpath) {
823 /* Fixup: Kill any reinstated backing storage pages */
824 if (obj->madv == __I915_MADV_PURGED)
825 i915_gem_object_truncate(obj);
826 /* and flush dirty cachelines in case the object isn't in the cpu write
827 * domain anymore. */
828 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829 i915_gem_clflush_object(obj);
830 intel_gtt_chipset_flush();
831 }
832 }
833
834 if (needs_clflush_after)
835 intel_gtt_chipset_flush();
836
837 return ret;
838 }
839
840 /**
841 * Writes data to the object referenced by handle.
842 *
843 * On error, the contents of the buffer that were to be modified are undefined.
844 */
845 int
846 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847 struct drm_file *file)
848 {
849 struct drm_i915_gem_pwrite *args = data;
850 struct drm_i915_gem_object *obj;
851 int ret;
852
853 if (args->size == 0)
854 return 0;
855
856 if (!access_ok(VERIFY_READ,
857 (char __user *)(uintptr_t)args->data_ptr,
858 args->size))
859 return -EFAULT;
860
861 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
862 args->size);
863 if (ret)
864 return -EFAULT;
865
866 ret = i915_mutex_lock_interruptible(dev);
867 if (ret)
868 return ret;
869
870 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
871 if (&obj->base == NULL) {
872 ret = -ENOENT;
873 goto unlock;
874 }
875
876 /* Bounds check destination. */
877 if (args->offset > obj->base.size ||
878 args->size > obj->base.size - args->offset) {
879 ret = -EINVAL;
880 goto out;
881 }
882
883 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
885 ret = -EFAULT;
886 /* We can only do the GTT pwrite on untiled buffers, as otherwise
887 * it would end up going through the fenced access, and we'll get
888 * different detiling behavior between reading and writing.
889 * pread/pwrite currently are reading and writing from the CPU
890 * perspective, requiring manual detiling by the client.
891 */
892 if (obj->phys_obj) {
893 ret = i915_gem_phys_pwrite(dev, obj, args, file);
894 goto out;
895 }
896
897 if (obj->gtt_space &&
898 obj->cache_level == I915_CACHE_NONE &&
899 obj->tiling_mode == I915_TILING_NONE &&
900 obj->map_and_fenceable &&
901 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
902 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
903 /* Note that the gtt paths might fail with non-page-backed user
904 * pointers (e.g. gtt mappings when moving data between
905 * textures). Fallback to the shmem path in that case. */
906 }
907
908 if (ret == -EFAULT)
909 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
910
911 out:
912 drm_gem_object_unreference(&obj->base);
913 unlock:
914 mutex_unlock(&dev->struct_mutex);
915 return ret;
916 }
917
918 /**
919 * Called when user space prepares to use an object with the CPU, either
920 * through the mmap ioctl's mapping or a GTT mapping.
921 */
922 int
923 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
924 struct drm_file *file)
925 {
926 struct drm_i915_gem_set_domain *args = data;
927 struct drm_i915_gem_object *obj;
928 uint32_t read_domains = args->read_domains;
929 uint32_t write_domain = args->write_domain;
930 int ret;
931
932 /* Only handle setting domains to types used by the CPU. */
933 if (write_domain & I915_GEM_GPU_DOMAINS)
934 return -EINVAL;
935
936 if (read_domains & I915_GEM_GPU_DOMAINS)
937 return -EINVAL;
938
939 /* Having something in the write domain implies it's in the read
940 * domain, and only that read domain. Enforce that in the request.
941 */
942 if (write_domain != 0 && read_domains != write_domain)
943 return -EINVAL;
944
945 ret = i915_mutex_lock_interruptible(dev);
946 if (ret)
947 return ret;
948
949 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950 if (&obj->base == NULL) {
951 ret = -ENOENT;
952 goto unlock;
953 }
954
955 if (read_domains & I915_GEM_DOMAIN_GTT) {
956 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
957
958 /* Silently promote "you're not bound, there was nothing to do"
959 * to success, since the client was just asking us to
960 * make sure everything was done.
961 */
962 if (ret == -EINVAL)
963 ret = 0;
964 } else {
965 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
966 }
967
968 drm_gem_object_unreference(&obj->base);
969 unlock:
970 mutex_unlock(&dev->struct_mutex);
971 return ret;
972 }
973
974 /**
975 * Called when user space has done writes to this buffer
976 */
977 int
978 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
980 {
981 struct drm_i915_gem_sw_finish *args = data;
982 struct drm_i915_gem_object *obj;
983 int ret = 0;
984
985 ret = i915_mutex_lock_interruptible(dev);
986 if (ret)
987 return ret;
988
989 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
990 if (&obj->base == NULL) {
991 ret = -ENOENT;
992 goto unlock;
993 }
994
995 /* Pinned buffers may be scanout, so flush the cache */
996 if (obj->pin_count)
997 i915_gem_object_flush_cpu_write_domain(obj);
998
999 drm_gem_object_unreference(&obj->base);
1000 unlock:
1001 mutex_unlock(&dev->struct_mutex);
1002 return ret;
1003 }
1004
1005 /**
1006 * Maps the contents of an object, returning the address it is mapped
1007 * into.
1008 *
1009 * While the mapping holds a reference on the contents of the object, it doesn't
1010 * imply a ref on the object itself.
1011 */
1012 int
1013 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1014 struct drm_file *file)
1015 {
1016 struct drm_i915_gem_mmap *args = data;
1017 struct drm_gem_object *obj;
1018 unsigned long addr;
1019
1020 obj = drm_gem_object_lookup(dev, file, args->handle);
1021 if (obj == NULL)
1022 return -ENOENT;
1023
1024 down_write(&current->mm->mmap_sem);
1025 addr = do_mmap(obj->filp, 0, args->size,
1026 PROT_READ | PROT_WRITE, MAP_SHARED,
1027 args->offset);
1028 up_write(&current->mm->mmap_sem);
1029 drm_gem_object_unreference_unlocked(obj);
1030 if (IS_ERR((void *)addr))
1031 return addr;
1032
1033 args->addr_ptr = (uint64_t) addr;
1034
1035 return 0;
1036 }
1037
1038 /**
1039 * i915_gem_fault - fault a page into the GTT
1040 * vma: VMA in question
1041 * vmf: fault info
1042 *
1043 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1044 * from userspace. The fault handler takes care of binding the object to
1045 * the GTT (if needed), allocating and programming a fence register (again,
1046 * only if needed based on whether the old reg is still valid or the object
1047 * is tiled) and inserting a new PTE into the faulting process.
1048 *
1049 * Note that the faulting process may involve evicting existing objects
1050 * from the GTT and/or fence registers to make room. So performance may
1051 * suffer if the GTT working set is large or there are few fence registers
1052 * left.
1053 */
1054 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1055 {
1056 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1057 struct drm_device *dev = obj->base.dev;
1058 drm_i915_private_t *dev_priv = dev->dev_private;
1059 pgoff_t page_offset;
1060 unsigned long pfn;
1061 int ret = 0;
1062 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1063
1064 /* We don't use vmf->pgoff since that has the fake offset */
1065 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1066 PAGE_SHIFT;
1067
1068 ret = i915_mutex_lock_interruptible(dev);
1069 if (ret)
1070 goto out;
1071
1072 trace_i915_gem_object_fault(obj, page_offset, true, write);
1073
1074 /* Now bind it into the GTT if needed */
1075 if (!obj->map_and_fenceable) {
1076 ret = i915_gem_object_unbind(obj);
1077 if (ret)
1078 goto unlock;
1079 }
1080 if (!obj->gtt_space) {
1081 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1082 if (ret)
1083 goto unlock;
1084
1085 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1086 if (ret)
1087 goto unlock;
1088 }
1089
1090 if (!obj->has_global_gtt_mapping)
1091 i915_gem_gtt_bind_object(obj, obj->cache_level);
1092
1093 ret = i915_gem_object_get_fence(obj);
1094 if (ret)
1095 goto unlock;
1096
1097 if (i915_gem_object_is_inactive(obj))
1098 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1099
1100 obj->fault_mappable = true;
1101
1102 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1103 page_offset;
1104
1105 /* Finally, remap it using the new GTT offset */
1106 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1107 unlock:
1108 mutex_unlock(&dev->struct_mutex);
1109 out:
1110 switch (ret) {
1111 case -EIO:
1112 case -EAGAIN:
1113 /* Give the error handler a chance to run and move the
1114 * objects off the GPU active list. Next time we service the
1115 * fault, we should be able to transition the page into the
1116 * GTT without touching the GPU (and so avoid further
1117 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1118 * with coherency, just lost writes.
1119 */
1120 set_need_resched();
1121 case 0:
1122 case -ERESTARTSYS:
1123 case -EINTR:
1124 return VM_FAULT_NOPAGE;
1125 case -ENOMEM:
1126 return VM_FAULT_OOM;
1127 default:
1128 return VM_FAULT_SIGBUS;
1129 }
1130 }
1131
1132 /**
1133 * i915_gem_release_mmap - remove physical page mappings
1134 * @obj: obj in question
1135 *
1136 * Preserve the reservation of the mmapping with the DRM core code, but
1137 * relinquish ownership of the pages back to the system.
1138 *
1139 * It is vital that we remove the page mapping if we have mapped a tiled
1140 * object through the GTT and then lose the fence register due to
1141 * resource pressure. Similarly if the object has been moved out of the
1142 * aperture, than pages mapped into userspace must be revoked. Removing the
1143 * mapping will then trigger a page fault on the next user access, allowing
1144 * fixup by i915_gem_fault().
1145 */
1146 void
1147 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1148 {
1149 if (!obj->fault_mappable)
1150 return;
1151
1152 if (obj->base.dev->dev_mapping)
1153 unmap_mapping_range(obj->base.dev->dev_mapping,
1154 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1155 obj->base.size, 1);
1156
1157 obj->fault_mappable = false;
1158 }
1159
1160 static uint32_t
1161 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1162 {
1163 uint32_t gtt_size;
1164
1165 if (INTEL_INFO(dev)->gen >= 4 ||
1166 tiling_mode == I915_TILING_NONE)
1167 return size;
1168
1169 /* Previous chips need a power-of-two fence region when tiling */
1170 if (INTEL_INFO(dev)->gen == 3)
1171 gtt_size = 1024*1024;
1172 else
1173 gtt_size = 512*1024;
1174
1175 while (gtt_size < size)
1176 gtt_size <<= 1;
1177
1178 return gtt_size;
1179 }
1180
1181 /**
1182 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1183 * @obj: object to check
1184 *
1185 * Return the required GTT alignment for an object, taking into account
1186 * potential fence register mapping.
1187 */
1188 static uint32_t
1189 i915_gem_get_gtt_alignment(struct drm_device *dev,
1190 uint32_t size,
1191 int tiling_mode)
1192 {
1193 /*
1194 * Minimum alignment is 4k (GTT page size), but might be greater
1195 * if a fence register is needed for the object.
1196 */
1197 if (INTEL_INFO(dev)->gen >= 4 ||
1198 tiling_mode == I915_TILING_NONE)
1199 return 4096;
1200
1201 /*
1202 * Previous chips need to be aligned to the size of the smallest
1203 * fence register that can contain the object.
1204 */
1205 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1206 }
1207
1208 /**
1209 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1210 * unfenced object
1211 * @dev: the device
1212 * @size: size of the object
1213 * @tiling_mode: tiling mode of the object
1214 *
1215 * Return the required GTT alignment for an object, only taking into account
1216 * unfenced tiled surface requirements.
1217 */
1218 uint32_t
1219 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1220 uint32_t size,
1221 int tiling_mode)
1222 {
1223 /*
1224 * Minimum alignment is 4k (GTT page size) for sane hw.
1225 */
1226 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1227 tiling_mode == I915_TILING_NONE)
1228 return 4096;
1229
1230 /* Previous hardware however needs to be aligned to a power-of-two
1231 * tile height. The simplest method for determining this is to reuse
1232 * the power-of-tile object size.
1233 */
1234 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1235 }
1236
1237 int
1238 i915_gem_mmap_gtt(struct drm_file *file,
1239 struct drm_device *dev,
1240 uint32_t handle,
1241 uint64_t *offset)
1242 {
1243 struct drm_i915_private *dev_priv = dev->dev_private;
1244 struct drm_i915_gem_object *obj;
1245 int ret;
1246
1247 ret = i915_mutex_lock_interruptible(dev);
1248 if (ret)
1249 return ret;
1250
1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1252 if (&obj->base == NULL) {
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
1256
1257 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1258 ret = -E2BIG;
1259 goto out;
1260 }
1261
1262 if (obj->madv != I915_MADV_WILLNEED) {
1263 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1264 ret = -EINVAL;
1265 goto out;
1266 }
1267
1268 if (!obj->base.map_list.map) {
1269 ret = drm_gem_create_mmap_offset(&obj->base);
1270 if (ret)
1271 goto out;
1272 }
1273
1274 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1275
1276 out:
1277 drm_gem_object_unreference(&obj->base);
1278 unlock:
1279 mutex_unlock(&dev->struct_mutex);
1280 return ret;
1281 }
1282
1283 /**
1284 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1285 * @dev: DRM device
1286 * @data: GTT mapping ioctl data
1287 * @file: GEM object info
1288 *
1289 * Simply returns the fake offset to userspace so it can mmap it.
1290 * The mmap call will end up in drm_gem_mmap(), which will set things
1291 * up so we can get faults in the handler above.
1292 *
1293 * The fault handler will take care of binding the object into the GTT
1294 * (since it may have been evicted to make room for something), allocating
1295 * a fence register, and mapping the appropriate aperture address into
1296 * userspace.
1297 */
1298 int
1299 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1300 struct drm_file *file)
1301 {
1302 struct drm_i915_gem_mmap_gtt *args = data;
1303
1304 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1305 }
1306
1307
1308 static int
1309 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1310 gfp_t gfpmask)
1311 {
1312 int page_count, i;
1313 struct address_space *mapping;
1314 struct inode *inode;
1315 struct page *page;
1316
1317 /* Get the list of pages out of our struct file. They'll be pinned
1318 * at this point until we release them.
1319 */
1320 page_count = obj->base.size / PAGE_SIZE;
1321 BUG_ON(obj->pages != NULL);
1322 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1323 if (obj->pages == NULL)
1324 return -ENOMEM;
1325
1326 inode = obj->base.filp->f_path.dentry->d_inode;
1327 mapping = inode->i_mapping;
1328 gfpmask |= mapping_gfp_mask(mapping);
1329
1330 for (i = 0; i < page_count; i++) {
1331 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1332 if (IS_ERR(page))
1333 goto err_pages;
1334
1335 obj->pages[i] = page;
1336 }
1337
1338 if (i915_gem_object_needs_bit17_swizzle(obj))
1339 i915_gem_object_do_bit_17_swizzle(obj);
1340
1341 return 0;
1342
1343 err_pages:
1344 while (i--)
1345 page_cache_release(obj->pages[i]);
1346
1347 drm_free_large(obj->pages);
1348 obj->pages = NULL;
1349 return PTR_ERR(page);
1350 }
1351
1352 static void
1353 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1354 {
1355 int page_count = obj->base.size / PAGE_SIZE;
1356 int i;
1357
1358 BUG_ON(obj->madv == __I915_MADV_PURGED);
1359
1360 if (i915_gem_object_needs_bit17_swizzle(obj))
1361 i915_gem_object_save_bit_17_swizzle(obj);
1362
1363 if (obj->madv == I915_MADV_DONTNEED)
1364 obj->dirty = 0;
1365
1366 for (i = 0; i < page_count; i++) {
1367 if (obj->dirty)
1368 set_page_dirty(obj->pages[i]);
1369
1370 if (obj->madv == I915_MADV_WILLNEED)
1371 mark_page_accessed(obj->pages[i]);
1372
1373 page_cache_release(obj->pages[i]);
1374 }
1375 obj->dirty = 0;
1376
1377 drm_free_large(obj->pages);
1378 obj->pages = NULL;
1379 }
1380
1381 void
1382 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1383 struct intel_ring_buffer *ring,
1384 u32 seqno)
1385 {
1386 struct drm_device *dev = obj->base.dev;
1387 struct drm_i915_private *dev_priv = dev->dev_private;
1388
1389 BUG_ON(ring == NULL);
1390 obj->ring = ring;
1391
1392 /* Add a reference if we're newly entering the active list. */
1393 if (!obj->active) {
1394 drm_gem_object_reference(&obj->base);
1395 obj->active = 1;
1396 }
1397
1398 /* Move from whatever list we were on to the tail of execution. */
1399 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1400 list_move_tail(&obj->ring_list, &ring->active_list);
1401
1402 obj->last_rendering_seqno = seqno;
1403
1404 if (obj->fenced_gpu_access) {
1405 obj->last_fenced_seqno = seqno;
1406
1407 /* Bump MRU to take account of the delayed flush */
1408 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1409 struct drm_i915_fence_reg *reg;
1410
1411 reg = &dev_priv->fence_regs[obj->fence_reg];
1412 list_move_tail(&reg->lru_list,
1413 &dev_priv->mm.fence_list);
1414 }
1415 }
1416 }
1417
1418 static void
1419 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1420 {
1421 list_del_init(&obj->ring_list);
1422 obj->last_rendering_seqno = 0;
1423 obj->last_fenced_seqno = 0;
1424 }
1425
1426 static void
1427 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1428 {
1429 struct drm_device *dev = obj->base.dev;
1430 drm_i915_private_t *dev_priv = dev->dev_private;
1431
1432 BUG_ON(!obj->active);
1433 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1434
1435 i915_gem_object_move_off_active(obj);
1436 }
1437
1438 static void
1439 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1440 {
1441 struct drm_device *dev = obj->base.dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443
1444 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1445
1446 BUG_ON(!list_empty(&obj->gpu_write_list));
1447 BUG_ON(!obj->active);
1448 obj->ring = NULL;
1449
1450 i915_gem_object_move_off_active(obj);
1451 obj->fenced_gpu_access = false;
1452
1453 obj->active = 0;
1454 obj->pending_gpu_write = false;
1455 drm_gem_object_unreference(&obj->base);
1456
1457 WARN_ON(i915_verify_lists(dev));
1458 }
1459
1460 /* Immediately discard the backing storage */
1461 static void
1462 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1463 {
1464 struct inode *inode;
1465
1466 /* Our goal here is to return as much of the memory as
1467 * is possible back to the system as we are called from OOM.
1468 * To do this we must instruct the shmfs to drop all of its
1469 * backing pages, *now*.
1470 */
1471 inode = obj->base.filp->f_path.dentry->d_inode;
1472 shmem_truncate_range(inode, 0, (loff_t)-1);
1473
1474 if (obj->base.map_list.map)
1475 drm_gem_free_mmap_offset(&obj->base);
1476
1477 obj->madv = __I915_MADV_PURGED;
1478 }
1479
1480 static inline int
1481 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1482 {
1483 return obj->madv == I915_MADV_DONTNEED;
1484 }
1485
1486 static void
1487 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1488 uint32_t flush_domains)
1489 {
1490 struct drm_i915_gem_object *obj, *next;
1491
1492 list_for_each_entry_safe(obj, next,
1493 &ring->gpu_write_list,
1494 gpu_write_list) {
1495 if (obj->base.write_domain & flush_domains) {
1496 uint32_t old_write_domain = obj->base.write_domain;
1497
1498 obj->base.write_domain = 0;
1499 list_del_init(&obj->gpu_write_list);
1500 i915_gem_object_move_to_active(obj, ring,
1501 i915_gem_next_request_seqno(ring));
1502
1503 trace_i915_gem_object_change_domain(obj,
1504 obj->base.read_domains,
1505 old_write_domain);
1506 }
1507 }
1508 }
1509
1510 static u32
1511 i915_gem_get_seqno(struct drm_device *dev)
1512 {
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 u32 seqno = dev_priv->next_seqno;
1515
1516 /* reserve 0 for non-seqno */
1517 if (++dev_priv->next_seqno == 0)
1518 dev_priv->next_seqno = 1;
1519
1520 return seqno;
1521 }
1522
1523 u32
1524 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1525 {
1526 if (ring->outstanding_lazy_request == 0)
1527 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1528
1529 return ring->outstanding_lazy_request;
1530 }
1531
1532 int
1533 i915_add_request(struct intel_ring_buffer *ring,
1534 struct drm_file *file,
1535 struct drm_i915_gem_request *request)
1536 {
1537 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1538 uint32_t seqno;
1539 u32 request_ring_position;
1540 int was_empty;
1541 int ret;
1542
1543 BUG_ON(request == NULL);
1544 seqno = i915_gem_next_request_seqno(ring);
1545
1546 /* Record the position of the start of the request so that
1547 * should we detect the updated seqno part-way through the
1548 * GPU processing the request, we never over-estimate the
1549 * position of the head.
1550 */
1551 request_ring_position = intel_ring_get_tail(ring);
1552
1553 ret = ring->add_request(ring, &seqno);
1554 if (ret)
1555 return ret;
1556
1557 trace_i915_gem_request_add(ring, seqno);
1558
1559 request->seqno = seqno;
1560 request->ring = ring;
1561 request->tail = request_ring_position;
1562 request->emitted_jiffies = jiffies;
1563 was_empty = list_empty(&ring->request_list);
1564 list_add_tail(&request->list, &ring->request_list);
1565
1566 if (file) {
1567 struct drm_i915_file_private *file_priv = file->driver_priv;
1568
1569 spin_lock(&file_priv->mm.lock);
1570 request->file_priv = file_priv;
1571 list_add_tail(&request->client_list,
1572 &file_priv->mm.request_list);
1573 spin_unlock(&file_priv->mm.lock);
1574 }
1575
1576 ring->outstanding_lazy_request = 0;
1577
1578 if (!dev_priv->mm.suspended) {
1579 if (i915_enable_hangcheck) {
1580 mod_timer(&dev_priv->hangcheck_timer,
1581 jiffies +
1582 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1583 }
1584 if (was_empty)
1585 queue_delayed_work(dev_priv->wq,
1586 &dev_priv->mm.retire_work, HZ);
1587 }
1588 return 0;
1589 }
1590
1591 static inline void
1592 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1593 {
1594 struct drm_i915_file_private *file_priv = request->file_priv;
1595
1596 if (!file_priv)
1597 return;
1598
1599 spin_lock(&file_priv->mm.lock);
1600 if (request->file_priv) {
1601 list_del(&request->client_list);
1602 request->file_priv = NULL;
1603 }
1604 spin_unlock(&file_priv->mm.lock);
1605 }
1606
1607 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1608 struct intel_ring_buffer *ring)
1609 {
1610 while (!list_empty(&ring->request_list)) {
1611 struct drm_i915_gem_request *request;
1612
1613 request = list_first_entry(&ring->request_list,
1614 struct drm_i915_gem_request,
1615 list);
1616
1617 list_del(&request->list);
1618 i915_gem_request_remove_from_client(request);
1619 kfree(request);
1620 }
1621
1622 while (!list_empty(&ring->active_list)) {
1623 struct drm_i915_gem_object *obj;
1624
1625 obj = list_first_entry(&ring->active_list,
1626 struct drm_i915_gem_object,
1627 ring_list);
1628
1629 obj->base.write_domain = 0;
1630 list_del_init(&obj->gpu_write_list);
1631 i915_gem_object_move_to_inactive(obj);
1632 }
1633 }
1634
1635 static void i915_gem_reset_fences(struct drm_device *dev)
1636 {
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 int i;
1639
1640 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1641 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1642
1643 i915_gem_write_fence(dev, i, NULL);
1644
1645 if (reg->obj)
1646 i915_gem_object_fence_lost(reg->obj);
1647
1648 reg->pin_count = 0;
1649 reg->obj = NULL;
1650 INIT_LIST_HEAD(&reg->lru_list);
1651 }
1652
1653 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1654 }
1655
1656 void i915_gem_reset(struct drm_device *dev)
1657 {
1658 struct drm_i915_private *dev_priv = dev->dev_private;
1659 struct drm_i915_gem_object *obj;
1660 int i;
1661
1662 for (i = 0; i < I915_NUM_RINGS; i++)
1663 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1664
1665 /* Remove anything from the flushing lists. The GPU cache is likely
1666 * to be lost on reset along with the data, so simply move the
1667 * lost bo to the inactive list.
1668 */
1669 while (!list_empty(&dev_priv->mm.flushing_list)) {
1670 obj = list_first_entry(&dev_priv->mm.flushing_list,
1671 struct drm_i915_gem_object,
1672 mm_list);
1673
1674 obj->base.write_domain = 0;
1675 list_del_init(&obj->gpu_write_list);
1676 i915_gem_object_move_to_inactive(obj);
1677 }
1678
1679 /* Move everything out of the GPU domains to ensure we do any
1680 * necessary invalidation upon reuse.
1681 */
1682 list_for_each_entry(obj,
1683 &dev_priv->mm.inactive_list,
1684 mm_list)
1685 {
1686 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1687 }
1688
1689 /* The fence registers are invalidated so clear them out */
1690 i915_gem_reset_fences(dev);
1691 }
1692
1693 /**
1694 * This function clears the request list as sequence numbers are passed.
1695 */
1696 void
1697 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1698 {
1699 uint32_t seqno;
1700 int i;
1701
1702 if (list_empty(&ring->request_list))
1703 return;
1704
1705 WARN_ON(i915_verify_lists(ring->dev));
1706
1707 seqno = ring->get_seqno(ring);
1708
1709 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1710 if (seqno >= ring->sync_seqno[i])
1711 ring->sync_seqno[i] = 0;
1712
1713 while (!list_empty(&ring->request_list)) {
1714 struct drm_i915_gem_request *request;
1715
1716 request = list_first_entry(&ring->request_list,
1717 struct drm_i915_gem_request,
1718 list);
1719
1720 if (!i915_seqno_passed(seqno, request->seqno))
1721 break;
1722
1723 trace_i915_gem_request_retire(ring, request->seqno);
1724 /* We know the GPU must have read the request to have
1725 * sent us the seqno + interrupt, so use the position
1726 * of tail of the request to update the last known position
1727 * of the GPU head.
1728 */
1729 ring->last_retired_head = request->tail;
1730
1731 list_del(&request->list);
1732 i915_gem_request_remove_from_client(request);
1733 kfree(request);
1734 }
1735
1736 /* Move any buffers on the active list that are no longer referenced
1737 * by the ringbuffer to the flushing/inactive lists as appropriate.
1738 */
1739 while (!list_empty(&ring->active_list)) {
1740 struct drm_i915_gem_object *obj;
1741
1742 obj = list_first_entry(&ring->active_list,
1743 struct drm_i915_gem_object,
1744 ring_list);
1745
1746 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1747 break;
1748
1749 if (obj->base.write_domain != 0)
1750 i915_gem_object_move_to_flushing(obj);
1751 else
1752 i915_gem_object_move_to_inactive(obj);
1753 }
1754
1755 if (unlikely(ring->trace_irq_seqno &&
1756 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1757 ring->irq_put(ring);
1758 ring->trace_irq_seqno = 0;
1759 }
1760
1761 WARN_ON(i915_verify_lists(ring->dev));
1762 }
1763
1764 void
1765 i915_gem_retire_requests(struct drm_device *dev)
1766 {
1767 drm_i915_private_t *dev_priv = dev->dev_private;
1768 int i;
1769
1770 for (i = 0; i < I915_NUM_RINGS; i++)
1771 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1772 }
1773
1774 static void
1775 i915_gem_retire_work_handler(struct work_struct *work)
1776 {
1777 drm_i915_private_t *dev_priv;
1778 struct drm_device *dev;
1779 bool idle;
1780 int i;
1781
1782 dev_priv = container_of(work, drm_i915_private_t,
1783 mm.retire_work.work);
1784 dev = dev_priv->dev;
1785
1786 /* Come back later if the device is busy... */
1787 if (!mutex_trylock(&dev->struct_mutex)) {
1788 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1789 return;
1790 }
1791
1792 i915_gem_retire_requests(dev);
1793
1794 /* Send a periodic flush down the ring so we don't hold onto GEM
1795 * objects indefinitely.
1796 */
1797 idle = true;
1798 for (i = 0; i < I915_NUM_RINGS; i++) {
1799 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1800
1801 if (!list_empty(&ring->gpu_write_list)) {
1802 struct drm_i915_gem_request *request;
1803 int ret;
1804
1805 ret = i915_gem_flush_ring(ring,
1806 0, I915_GEM_GPU_DOMAINS);
1807 request = kzalloc(sizeof(*request), GFP_KERNEL);
1808 if (ret || request == NULL ||
1809 i915_add_request(ring, NULL, request))
1810 kfree(request);
1811 }
1812
1813 idle &= list_empty(&ring->request_list);
1814 }
1815
1816 if (!dev_priv->mm.suspended && !idle)
1817 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1818
1819 mutex_unlock(&dev->struct_mutex);
1820 }
1821
1822 /**
1823 * Waits for a sequence number to be signaled, and cleans up the
1824 * request and object lists appropriately for that event.
1825 */
1826 int
1827 i915_wait_request(struct intel_ring_buffer *ring,
1828 uint32_t seqno,
1829 bool do_retire)
1830 {
1831 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1832 u32 ier;
1833 int ret = 0;
1834
1835 BUG_ON(seqno == 0);
1836
1837 if (atomic_read(&dev_priv->mm.wedged)) {
1838 struct completion *x = &dev_priv->error_completion;
1839 bool recovery_complete;
1840 unsigned long flags;
1841
1842 /* Give the error handler a chance to run. */
1843 spin_lock_irqsave(&x->wait.lock, flags);
1844 recovery_complete = x->done > 0;
1845 spin_unlock_irqrestore(&x->wait.lock, flags);
1846
1847 return recovery_complete ? -EIO : -EAGAIN;
1848 }
1849
1850 if (seqno == ring->outstanding_lazy_request) {
1851 struct drm_i915_gem_request *request;
1852
1853 request = kzalloc(sizeof(*request), GFP_KERNEL);
1854 if (request == NULL)
1855 return -ENOMEM;
1856
1857 ret = i915_add_request(ring, NULL, request);
1858 if (ret) {
1859 kfree(request);
1860 return ret;
1861 }
1862
1863 seqno = request->seqno;
1864 }
1865
1866 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1867 if (HAS_PCH_SPLIT(ring->dev))
1868 ier = I915_READ(DEIER) | I915_READ(GTIER);
1869 else if (IS_VALLEYVIEW(ring->dev))
1870 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1871 else
1872 ier = I915_READ(IER);
1873 if (!ier) {
1874 DRM_ERROR("something (likely vbetool) disabled "
1875 "interrupts, re-enabling\n");
1876 ring->dev->driver->irq_preinstall(ring->dev);
1877 ring->dev->driver->irq_postinstall(ring->dev);
1878 }
1879
1880 trace_i915_gem_request_wait_begin(ring, seqno);
1881
1882 ring->waiting_seqno = seqno;
1883 if (ring->irq_get(ring)) {
1884 if (dev_priv->mm.interruptible)
1885 ret = wait_event_interruptible(ring->irq_queue,
1886 i915_seqno_passed(ring->get_seqno(ring), seqno)
1887 || atomic_read(&dev_priv->mm.wedged));
1888 else
1889 wait_event(ring->irq_queue,
1890 i915_seqno_passed(ring->get_seqno(ring), seqno)
1891 || atomic_read(&dev_priv->mm.wedged));
1892
1893 ring->irq_put(ring);
1894 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1895 seqno) ||
1896 atomic_read(&dev_priv->mm.wedged), 3000))
1897 ret = -EBUSY;
1898 ring->waiting_seqno = 0;
1899
1900 trace_i915_gem_request_wait_end(ring, seqno);
1901 }
1902 if (atomic_read(&dev_priv->mm.wedged))
1903 ret = -EAGAIN;
1904
1905 /* Directly dispatch request retiring. While we have the work queue
1906 * to handle this, the waiter on a request often wants an associated
1907 * buffer to have made it to the inactive list, and we would need
1908 * a separate wait queue to handle that.
1909 */
1910 if (ret == 0 && do_retire)
1911 i915_gem_retire_requests_ring(ring);
1912
1913 return ret;
1914 }
1915
1916 /**
1917 * Ensures that all rendering to the object has completed and the object is
1918 * safe to unbind from the GTT or access from the CPU.
1919 */
1920 int
1921 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1922 {
1923 int ret;
1924
1925 /* This function only exists to support waiting for existing rendering,
1926 * not for emitting required flushes.
1927 */
1928 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1929
1930 /* If there is rendering queued on the buffer being evicted, wait for
1931 * it.
1932 */
1933 if (obj->active) {
1934 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1935 true);
1936 if (ret)
1937 return ret;
1938 }
1939
1940 return 0;
1941 }
1942
1943 /**
1944 * i915_gem_object_sync - sync an object to a ring.
1945 *
1946 * @obj: object which may be in use on another ring.
1947 * @to: ring we wish to use the object on. May be NULL.
1948 *
1949 * This code is meant to abstract object synchronization with the GPU.
1950 * Calling with NULL implies synchronizing the object with the CPU
1951 * rather than a particular GPU ring.
1952 *
1953 * Returns 0 if successful, else propagates up the lower layer error.
1954 */
1955 int
1956 i915_gem_object_sync(struct drm_i915_gem_object *obj,
1957 struct intel_ring_buffer *to)
1958 {
1959 struct intel_ring_buffer *from = obj->ring;
1960 u32 seqno;
1961 int ret, idx;
1962
1963 if (from == NULL || to == from)
1964 return 0;
1965
1966 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1967 return i915_gem_object_wait_rendering(obj);
1968
1969 idx = intel_ring_sync_index(from, to);
1970
1971 seqno = obj->last_rendering_seqno;
1972 if (seqno <= from->sync_seqno[idx])
1973 return 0;
1974
1975 if (seqno == from->outstanding_lazy_request) {
1976 struct drm_i915_gem_request *request;
1977
1978 request = kzalloc(sizeof(*request), GFP_KERNEL);
1979 if (request == NULL)
1980 return -ENOMEM;
1981
1982 ret = i915_add_request(from, NULL, request);
1983 if (ret) {
1984 kfree(request);
1985 return ret;
1986 }
1987
1988 seqno = request->seqno;
1989 }
1990
1991
1992 ret = to->sync_to(to, from, seqno);
1993 if (!ret)
1994 from->sync_seqno[idx] = seqno;
1995
1996 return ret;
1997 }
1998
1999 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2000 {
2001 u32 old_write_domain, old_read_domains;
2002
2003 /* Act a barrier for all accesses through the GTT */
2004 mb();
2005
2006 /* Force a pagefault for domain tracking on next user access */
2007 i915_gem_release_mmap(obj);
2008
2009 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2010 return;
2011
2012 old_read_domains = obj->base.read_domains;
2013 old_write_domain = obj->base.write_domain;
2014
2015 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2016 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2017
2018 trace_i915_gem_object_change_domain(obj,
2019 old_read_domains,
2020 old_write_domain);
2021 }
2022
2023 /**
2024 * Unbinds an object from the GTT aperture.
2025 */
2026 int
2027 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2028 {
2029 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2030 int ret = 0;
2031
2032 if (obj->gtt_space == NULL)
2033 return 0;
2034
2035 if (obj->pin_count != 0) {
2036 DRM_ERROR("Attempting to unbind pinned buffer\n");
2037 return -EINVAL;
2038 }
2039
2040 ret = i915_gem_object_finish_gpu(obj);
2041 if (ret)
2042 return ret;
2043 /* Continue on if we fail due to EIO, the GPU is hung so we
2044 * should be safe and we need to cleanup or else we might
2045 * cause memory corruption through use-after-free.
2046 */
2047
2048 i915_gem_object_finish_gtt(obj);
2049
2050 /* Move the object to the CPU domain to ensure that
2051 * any possible CPU writes while it's not in the GTT
2052 * are flushed when we go to remap it.
2053 */
2054 if (ret == 0)
2055 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2056 if (ret == -ERESTARTSYS)
2057 return ret;
2058 if (ret) {
2059 /* In the event of a disaster, abandon all caches and
2060 * hope for the best.
2061 */
2062 i915_gem_clflush_object(obj);
2063 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2064 }
2065
2066 /* release the fence reg _after_ flushing */
2067 ret = i915_gem_object_put_fence(obj);
2068 if (ret)
2069 return ret;
2070
2071 trace_i915_gem_object_unbind(obj);
2072
2073 if (obj->has_global_gtt_mapping)
2074 i915_gem_gtt_unbind_object(obj);
2075 if (obj->has_aliasing_ppgtt_mapping) {
2076 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2077 obj->has_aliasing_ppgtt_mapping = 0;
2078 }
2079 i915_gem_gtt_finish_object(obj);
2080
2081 i915_gem_object_put_pages_gtt(obj);
2082
2083 list_del_init(&obj->gtt_list);
2084 list_del_init(&obj->mm_list);
2085 /* Avoid an unnecessary call to unbind on rebind. */
2086 obj->map_and_fenceable = true;
2087
2088 drm_mm_put_block(obj->gtt_space);
2089 obj->gtt_space = NULL;
2090 obj->gtt_offset = 0;
2091
2092 if (i915_gem_object_is_purgeable(obj))
2093 i915_gem_object_truncate(obj);
2094
2095 return ret;
2096 }
2097
2098 int
2099 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2100 uint32_t invalidate_domains,
2101 uint32_t flush_domains)
2102 {
2103 int ret;
2104
2105 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2106 return 0;
2107
2108 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2109
2110 ret = ring->flush(ring, invalidate_domains, flush_domains);
2111 if (ret)
2112 return ret;
2113
2114 if (flush_domains & I915_GEM_GPU_DOMAINS)
2115 i915_gem_process_flushing_list(ring, flush_domains);
2116
2117 return 0;
2118 }
2119
2120 static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2121 {
2122 int ret;
2123
2124 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2125 return 0;
2126
2127 if (!list_empty(&ring->gpu_write_list)) {
2128 ret = i915_gem_flush_ring(ring,
2129 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2130 if (ret)
2131 return ret;
2132 }
2133
2134 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2135 do_retire);
2136 }
2137
2138 int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2139 {
2140 drm_i915_private_t *dev_priv = dev->dev_private;
2141 int ret, i;
2142
2143 /* Flush everything onto the inactive list. */
2144 for (i = 0; i < I915_NUM_RINGS; i++) {
2145 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2146 if (ret)
2147 return ret;
2148 }
2149
2150 return 0;
2151 }
2152
2153 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2154 struct drm_i915_gem_object *obj)
2155 {
2156 drm_i915_private_t *dev_priv = dev->dev_private;
2157 uint64_t val;
2158
2159 if (obj) {
2160 u32 size = obj->gtt_space->size;
2161
2162 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2163 0xfffff000) << 32;
2164 val |= obj->gtt_offset & 0xfffff000;
2165 val |= (uint64_t)((obj->stride / 128) - 1) <<
2166 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2167
2168 if (obj->tiling_mode == I915_TILING_Y)
2169 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2170 val |= I965_FENCE_REG_VALID;
2171 } else
2172 val = 0;
2173
2174 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2175 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2176 }
2177
2178 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2179 struct drm_i915_gem_object *obj)
2180 {
2181 drm_i915_private_t *dev_priv = dev->dev_private;
2182 uint64_t val;
2183
2184 if (obj) {
2185 u32 size = obj->gtt_space->size;
2186
2187 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2188 0xfffff000) << 32;
2189 val |= obj->gtt_offset & 0xfffff000;
2190 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2191 if (obj->tiling_mode == I915_TILING_Y)
2192 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2193 val |= I965_FENCE_REG_VALID;
2194 } else
2195 val = 0;
2196
2197 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2198 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2199 }
2200
2201 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2202 struct drm_i915_gem_object *obj)
2203 {
2204 drm_i915_private_t *dev_priv = dev->dev_private;
2205 u32 val;
2206
2207 if (obj) {
2208 u32 size = obj->gtt_space->size;
2209 int pitch_val;
2210 int tile_width;
2211
2212 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2213 (size & -size) != size ||
2214 (obj->gtt_offset & (size - 1)),
2215 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2216 obj->gtt_offset, obj->map_and_fenceable, size);
2217
2218 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2219 tile_width = 128;
2220 else
2221 tile_width = 512;
2222
2223 /* Note: pitch better be a power of two tile widths */
2224 pitch_val = obj->stride / tile_width;
2225 pitch_val = ffs(pitch_val) - 1;
2226
2227 val = obj->gtt_offset;
2228 if (obj->tiling_mode == I915_TILING_Y)
2229 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2230 val |= I915_FENCE_SIZE_BITS(size);
2231 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2232 val |= I830_FENCE_REG_VALID;
2233 } else
2234 val = 0;
2235
2236 if (reg < 8)
2237 reg = FENCE_REG_830_0 + reg * 4;
2238 else
2239 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2240
2241 I915_WRITE(reg, val);
2242 POSTING_READ(reg);
2243 }
2244
2245 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2246 struct drm_i915_gem_object *obj)
2247 {
2248 drm_i915_private_t *dev_priv = dev->dev_private;
2249 uint32_t val;
2250
2251 if (obj) {
2252 u32 size = obj->gtt_space->size;
2253 uint32_t pitch_val;
2254
2255 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2256 (size & -size) != size ||
2257 (obj->gtt_offset & (size - 1)),
2258 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2259 obj->gtt_offset, size);
2260
2261 pitch_val = obj->stride / 128;
2262 pitch_val = ffs(pitch_val) - 1;
2263
2264 val = obj->gtt_offset;
2265 if (obj->tiling_mode == I915_TILING_Y)
2266 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2267 val |= I830_FENCE_SIZE_BITS(size);
2268 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2269 val |= I830_FENCE_REG_VALID;
2270 } else
2271 val = 0;
2272
2273 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2274 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2275 }
2276
2277 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2278 struct drm_i915_gem_object *obj)
2279 {
2280 switch (INTEL_INFO(dev)->gen) {
2281 case 7:
2282 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2283 case 5:
2284 case 4: i965_write_fence_reg(dev, reg, obj); break;
2285 case 3: i915_write_fence_reg(dev, reg, obj); break;
2286 case 2: i830_write_fence_reg(dev, reg, obj); break;
2287 default: break;
2288 }
2289 }
2290
2291 static inline int fence_number(struct drm_i915_private *dev_priv,
2292 struct drm_i915_fence_reg *fence)
2293 {
2294 return fence - dev_priv->fence_regs;
2295 }
2296
2297 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2298 struct drm_i915_fence_reg *fence,
2299 bool enable)
2300 {
2301 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2302 int reg = fence_number(dev_priv, fence);
2303
2304 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2305
2306 if (enable) {
2307 obj->fence_reg = reg;
2308 fence->obj = obj;
2309 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2310 } else {
2311 obj->fence_reg = I915_FENCE_REG_NONE;
2312 fence->obj = NULL;
2313 list_del_init(&fence->lru_list);
2314 }
2315 }
2316
2317 static int
2318 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2319 {
2320 int ret;
2321
2322 if (obj->fenced_gpu_access) {
2323 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2324 ret = i915_gem_flush_ring(obj->ring,
2325 0, obj->base.write_domain);
2326 if (ret)
2327 return ret;
2328 }
2329
2330 obj->fenced_gpu_access = false;
2331 }
2332
2333 if (obj->last_fenced_seqno) {
2334 ret = i915_wait_request(obj->ring,
2335 obj->last_fenced_seqno,
2336 false);
2337 if (ret)
2338 return ret;
2339
2340 obj->last_fenced_seqno = 0;
2341 }
2342
2343 /* Ensure that all CPU reads are completed before installing a fence
2344 * and all writes before removing the fence.
2345 */
2346 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2347 mb();
2348
2349 return 0;
2350 }
2351
2352 int
2353 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2354 {
2355 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2356 int ret;
2357
2358 ret = i915_gem_object_flush_fence(obj);
2359 if (ret)
2360 return ret;
2361
2362 if (obj->fence_reg == I915_FENCE_REG_NONE)
2363 return 0;
2364
2365 i915_gem_object_update_fence(obj,
2366 &dev_priv->fence_regs[obj->fence_reg],
2367 false);
2368 i915_gem_object_fence_lost(obj);
2369
2370 return 0;
2371 }
2372
2373 static struct drm_i915_fence_reg *
2374 i915_find_fence_reg(struct drm_device *dev)
2375 {
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377 struct drm_i915_fence_reg *reg, *avail;
2378 int i;
2379
2380 /* First try to find a free reg */
2381 avail = NULL;
2382 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2383 reg = &dev_priv->fence_regs[i];
2384 if (!reg->obj)
2385 return reg;
2386
2387 if (!reg->pin_count)
2388 avail = reg;
2389 }
2390
2391 if (avail == NULL)
2392 return NULL;
2393
2394 /* None available, try to steal one or wait for a user to finish */
2395 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2396 if (reg->pin_count)
2397 continue;
2398
2399 return reg;
2400 }
2401
2402 return NULL;
2403 }
2404
2405 /**
2406 * i915_gem_object_get_fence - set up fencing for an object
2407 * @obj: object to map through a fence reg
2408 *
2409 * When mapping objects through the GTT, userspace wants to be able to write
2410 * to them without having to worry about swizzling if the object is tiled.
2411 * This function walks the fence regs looking for a free one for @obj,
2412 * stealing one if it can't find any.
2413 *
2414 * It then sets up the reg based on the object's properties: address, pitch
2415 * and tiling format.
2416 *
2417 * For an untiled surface, this removes any existing fence.
2418 */
2419 int
2420 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2421 {
2422 struct drm_device *dev = obj->base.dev;
2423 struct drm_i915_private *dev_priv = dev->dev_private;
2424 bool enable = obj->tiling_mode != I915_TILING_NONE;
2425 struct drm_i915_fence_reg *reg;
2426 int ret;
2427
2428 /* Have we updated the tiling parameters upon the object and so
2429 * will need to serialise the write to the associated fence register?
2430 */
2431 if (obj->fence_dirty) {
2432 ret = i915_gem_object_flush_fence(obj);
2433 if (ret)
2434 return ret;
2435 }
2436
2437 /* Just update our place in the LRU if our fence is getting reused. */
2438 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2439 reg = &dev_priv->fence_regs[obj->fence_reg];
2440 if (!obj->fence_dirty) {
2441 list_move_tail(&reg->lru_list,
2442 &dev_priv->mm.fence_list);
2443 return 0;
2444 }
2445 } else if (enable) {
2446 reg = i915_find_fence_reg(dev);
2447 if (reg == NULL)
2448 return -EDEADLK;
2449
2450 if (reg->obj) {
2451 struct drm_i915_gem_object *old = reg->obj;
2452
2453 ret = i915_gem_object_flush_fence(old);
2454 if (ret)
2455 return ret;
2456
2457 i915_gem_object_fence_lost(old);
2458 }
2459 } else
2460 return 0;
2461
2462 i915_gem_object_update_fence(obj, reg, enable);
2463 obj->fence_dirty = false;
2464
2465 return 0;
2466 }
2467
2468 /**
2469 * Finds free space in the GTT aperture and binds the object there.
2470 */
2471 static int
2472 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2473 unsigned alignment,
2474 bool map_and_fenceable)
2475 {
2476 struct drm_device *dev = obj->base.dev;
2477 drm_i915_private_t *dev_priv = dev->dev_private;
2478 struct drm_mm_node *free_space;
2479 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2480 u32 size, fence_size, fence_alignment, unfenced_alignment;
2481 bool mappable, fenceable;
2482 int ret;
2483
2484 if (obj->madv != I915_MADV_WILLNEED) {
2485 DRM_ERROR("Attempting to bind a purgeable object\n");
2486 return -EINVAL;
2487 }
2488
2489 fence_size = i915_gem_get_gtt_size(dev,
2490 obj->base.size,
2491 obj->tiling_mode);
2492 fence_alignment = i915_gem_get_gtt_alignment(dev,
2493 obj->base.size,
2494 obj->tiling_mode);
2495 unfenced_alignment =
2496 i915_gem_get_unfenced_gtt_alignment(dev,
2497 obj->base.size,
2498 obj->tiling_mode);
2499
2500 if (alignment == 0)
2501 alignment = map_and_fenceable ? fence_alignment :
2502 unfenced_alignment;
2503 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2504 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2505 return -EINVAL;
2506 }
2507
2508 size = map_and_fenceable ? fence_size : obj->base.size;
2509
2510 /* If the object is bigger than the entire aperture, reject it early
2511 * before evicting everything in a vain attempt to find space.
2512 */
2513 if (obj->base.size >
2514 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2515 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2516 return -E2BIG;
2517 }
2518
2519 search_free:
2520 if (map_and_fenceable)
2521 free_space =
2522 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2523 size, alignment, 0,
2524 dev_priv->mm.gtt_mappable_end,
2525 0);
2526 else
2527 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2528 size, alignment, 0);
2529
2530 if (free_space != NULL) {
2531 if (map_and_fenceable)
2532 obj->gtt_space =
2533 drm_mm_get_block_range_generic(free_space,
2534 size, alignment, 0,
2535 dev_priv->mm.gtt_mappable_end,
2536 0);
2537 else
2538 obj->gtt_space =
2539 drm_mm_get_block(free_space, size, alignment);
2540 }
2541 if (obj->gtt_space == NULL) {
2542 /* If the gtt is empty and we're still having trouble
2543 * fitting our object in, we're out of memory.
2544 */
2545 ret = i915_gem_evict_something(dev, size, alignment,
2546 map_and_fenceable);
2547 if (ret)
2548 return ret;
2549
2550 goto search_free;
2551 }
2552
2553 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2554 if (ret) {
2555 drm_mm_put_block(obj->gtt_space);
2556 obj->gtt_space = NULL;
2557
2558 if (ret == -ENOMEM) {
2559 /* first try to reclaim some memory by clearing the GTT */
2560 ret = i915_gem_evict_everything(dev, false);
2561 if (ret) {
2562 /* now try to shrink everyone else */
2563 if (gfpmask) {
2564 gfpmask = 0;
2565 goto search_free;
2566 }
2567
2568 return -ENOMEM;
2569 }
2570
2571 goto search_free;
2572 }
2573
2574 return ret;
2575 }
2576
2577 ret = i915_gem_gtt_prepare_object(obj);
2578 if (ret) {
2579 i915_gem_object_put_pages_gtt(obj);
2580 drm_mm_put_block(obj->gtt_space);
2581 obj->gtt_space = NULL;
2582
2583 if (i915_gem_evict_everything(dev, false))
2584 return ret;
2585
2586 goto search_free;
2587 }
2588
2589 if (!dev_priv->mm.aliasing_ppgtt)
2590 i915_gem_gtt_bind_object(obj, obj->cache_level);
2591
2592 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2593 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2594
2595 /* Assert that the object is not currently in any GPU domain. As it
2596 * wasn't in the GTT, there shouldn't be any way it could have been in
2597 * a GPU cache
2598 */
2599 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2600 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2601
2602 obj->gtt_offset = obj->gtt_space->start;
2603
2604 fenceable =
2605 obj->gtt_space->size == fence_size &&
2606 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2607
2608 mappable =
2609 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2610
2611 obj->map_and_fenceable = mappable && fenceable;
2612
2613 trace_i915_gem_object_bind(obj, map_and_fenceable);
2614 return 0;
2615 }
2616
2617 void
2618 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2619 {
2620 /* If we don't have a page list set up, then we're not pinned
2621 * to GPU, and we can ignore the cache flush because it'll happen
2622 * again at bind time.
2623 */
2624 if (obj->pages == NULL)
2625 return;
2626
2627 /* If the GPU is snooping the contents of the CPU cache,
2628 * we do not need to manually clear the CPU cache lines. However,
2629 * the caches are only snooped when the render cache is
2630 * flushed/invalidated. As we always have to emit invalidations
2631 * and flushes when moving into and out of the RENDER domain, correct
2632 * snooping behaviour occurs naturally as the result of our domain
2633 * tracking.
2634 */
2635 if (obj->cache_level != I915_CACHE_NONE)
2636 return;
2637
2638 trace_i915_gem_object_clflush(obj);
2639
2640 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2641 }
2642
2643 /** Flushes any GPU write domain for the object if it's dirty. */
2644 static int
2645 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2646 {
2647 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2648 return 0;
2649
2650 /* Queue the GPU write cache flushing we need. */
2651 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2652 }
2653
2654 /** Flushes the GTT write domain for the object if it's dirty. */
2655 static void
2656 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2657 {
2658 uint32_t old_write_domain;
2659
2660 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2661 return;
2662
2663 /* No actual flushing is required for the GTT write domain. Writes
2664 * to it immediately go to main memory as far as we know, so there's
2665 * no chipset flush. It also doesn't land in render cache.
2666 *
2667 * However, we do have to enforce the order so that all writes through
2668 * the GTT land before any writes to the device, such as updates to
2669 * the GATT itself.
2670 */
2671 wmb();
2672
2673 old_write_domain = obj->base.write_domain;
2674 obj->base.write_domain = 0;
2675
2676 trace_i915_gem_object_change_domain(obj,
2677 obj->base.read_domains,
2678 old_write_domain);
2679 }
2680
2681 /** Flushes the CPU write domain for the object if it's dirty. */
2682 static void
2683 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2684 {
2685 uint32_t old_write_domain;
2686
2687 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2688 return;
2689
2690 i915_gem_clflush_object(obj);
2691 intel_gtt_chipset_flush();
2692 old_write_domain = obj->base.write_domain;
2693 obj->base.write_domain = 0;
2694
2695 trace_i915_gem_object_change_domain(obj,
2696 obj->base.read_domains,
2697 old_write_domain);
2698 }
2699
2700 /**
2701 * Moves a single object to the GTT read, and possibly write domain.
2702 *
2703 * This function returns when the move is complete, including waiting on
2704 * flushes to occur.
2705 */
2706 int
2707 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2708 {
2709 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2710 uint32_t old_write_domain, old_read_domains;
2711 int ret;
2712
2713 /* Not valid to be called on unbound objects. */
2714 if (obj->gtt_space == NULL)
2715 return -EINVAL;
2716
2717 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2718 return 0;
2719
2720 ret = i915_gem_object_flush_gpu_write_domain(obj);
2721 if (ret)
2722 return ret;
2723
2724 if (obj->pending_gpu_write || write) {
2725 ret = i915_gem_object_wait_rendering(obj);
2726 if (ret)
2727 return ret;
2728 }
2729
2730 i915_gem_object_flush_cpu_write_domain(obj);
2731
2732 old_write_domain = obj->base.write_domain;
2733 old_read_domains = obj->base.read_domains;
2734
2735 /* It should now be out of any other write domains, and we can update
2736 * the domain values for our changes.
2737 */
2738 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2739 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2740 if (write) {
2741 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2742 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2743 obj->dirty = 1;
2744 }
2745
2746 trace_i915_gem_object_change_domain(obj,
2747 old_read_domains,
2748 old_write_domain);
2749
2750 /* And bump the LRU for this access */
2751 if (i915_gem_object_is_inactive(obj))
2752 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2753
2754 return 0;
2755 }
2756
2757 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2758 enum i915_cache_level cache_level)
2759 {
2760 struct drm_device *dev = obj->base.dev;
2761 drm_i915_private_t *dev_priv = dev->dev_private;
2762 int ret;
2763
2764 if (obj->cache_level == cache_level)
2765 return 0;
2766
2767 if (obj->pin_count) {
2768 DRM_DEBUG("can not change the cache level of pinned objects\n");
2769 return -EBUSY;
2770 }
2771
2772 if (obj->gtt_space) {
2773 ret = i915_gem_object_finish_gpu(obj);
2774 if (ret)
2775 return ret;
2776
2777 i915_gem_object_finish_gtt(obj);
2778
2779 /* Before SandyBridge, you could not use tiling or fence
2780 * registers with snooped memory, so relinquish any fences
2781 * currently pointing to our region in the aperture.
2782 */
2783 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2784 ret = i915_gem_object_put_fence(obj);
2785 if (ret)
2786 return ret;
2787 }
2788
2789 if (obj->has_global_gtt_mapping)
2790 i915_gem_gtt_bind_object(obj, cache_level);
2791 if (obj->has_aliasing_ppgtt_mapping)
2792 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2793 obj, cache_level);
2794 }
2795
2796 if (cache_level == I915_CACHE_NONE) {
2797 u32 old_read_domains, old_write_domain;
2798
2799 /* If we're coming from LLC cached, then we haven't
2800 * actually been tracking whether the data is in the
2801 * CPU cache or not, since we only allow one bit set
2802 * in obj->write_domain and have been skipping the clflushes.
2803 * Just set it to the CPU cache for now.
2804 */
2805 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2806 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2807
2808 old_read_domains = obj->base.read_domains;
2809 old_write_domain = obj->base.write_domain;
2810
2811 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2812 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2813
2814 trace_i915_gem_object_change_domain(obj,
2815 old_read_domains,
2816 old_write_domain);
2817 }
2818
2819 obj->cache_level = cache_level;
2820 return 0;
2821 }
2822
2823 /*
2824 * Prepare buffer for display plane (scanout, cursors, etc).
2825 * Can be called from an uninterruptible phase (modesetting) and allows
2826 * any flushes to be pipelined (for pageflips).
2827 */
2828 int
2829 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2830 u32 alignment,
2831 struct intel_ring_buffer *pipelined)
2832 {
2833 u32 old_read_domains, old_write_domain;
2834 int ret;
2835
2836 ret = i915_gem_object_flush_gpu_write_domain(obj);
2837 if (ret)
2838 return ret;
2839
2840 if (pipelined != obj->ring) {
2841 ret = i915_gem_object_sync(obj, pipelined);
2842 if (ret)
2843 return ret;
2844 }
2845
2846 /* The display engine is not coherent with the LLC cache on gen6. As
2847 * a result, we make sure that the pinning that is about to occur is
2848 * done with uncached PTEs. This is lowest common denominator for all
2849 * chipsets.
2850 *
2851 * However for gen6+, we could do better by using the GFDT bit instead
2852 * of uncaching, which would allow us to flush all the LLC-cached data
2853 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2854 */
2855 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2856 if (ret)
2857 return ret;
2858
2859 /* As the user may map the buffer once pinned in the display plane
2860 * (e.g. libkms for the bootup splash), we have to ensure that we
2861 * always use map_and_fenceable for all scanout buffers.
2862 */
2863 ret = i915_gem_object_pin(obj, alignment, true);
2864 if (ret)
2865 return ret;
2866
2867 i915_gem_object_flush_cpu_write_domain(obj);
2868
2869 old_write_domain = obj->base.write_domain;
2870 old_read_domains = obj->base.read_domains;
2871
2872 /* It should now be out of any other write domains, and we can update
2873 * the domain values for our changes.
2874 */
2875 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2876 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2877
2878 trace_i915_gem_object_change_domain(obj,
2879 old_read_domains,
2880 old_write_domain);
2881
2882 return 0;
2883 }
2884
2885 int
2886 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2887 {
2888 int ret;
2889
2890 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2891 return 0;
2892
2893 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2894 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2895 if (ret)
2896 return ret;
2897 }
2898
2899 ret = i915_gem_object_wait_rendering(obj);
2900 if (ret)
2901 return ret;
2902
2903 /* Ensure that we invalidate the GPU's caches and TLBs. */
2904 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2905 return 0;
2906 }
2907
2908 /**
2909 * Moves a single object to the CPU read, and possibly write domain.
2910 *
2911 * This function returns when the move is complete, including waiting on
2912 * flushes to occur.
2913 */
2914 int
2915 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2916 {
2917 uint32_t old_write_domain, old_read_domains;
2918 int ret;
2919
2920 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2921 return 0;
2922
2923 ret = i915_gem_object_flush_gpu_write_domain(obj);
2924 if (ret)
2925 return ret;
2926
2927 if (write || obj->pending_gpu_write) {
2928 ret = i915_gem_object_wait_rendering(obj);
2929 if (ret)
2930 return ret;
2931 }
2932
2933 i915_gem_object_flush_gtt_write_domain(obj);
2934
2935 old_write_domain = obj->base.write_domain;
2936 old_read_domains = obj->base.read_domains;
2937
2938 /* Flush the CPU cache if it's still invalid. */
2939 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2940 i915_gem_clflush_object(obj);
2941
2942 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2943 }
2944
2945 /* It should now be out of any other write domains, and we can update
2946 * the domain values for our changes.
2947 */
2948 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2949
2950 /* If we're writing through the CPU, then the GPU read domains will
2951 * need to be invalidated at next use.
2952 */
2953 if (write) {
2954 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2955 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2956 }
2957
2958 trace_i915_gem_object_change_domain(obj,
2959 old_read_domains,
2960 old_write_domain);
2961
2962 return 0;
2963 }
2964
2965 /* Throttle our rendering by waiting until the ring has completed our requests
2966 * emitted over 20 msec ago.
2967 *
2968 * Note that if we were to use the current jiffies each time around the loop,
2969 * we wouldn't escape the function with any frames outstanding if the time to
2970 * render a frame was over 20ms.
2971 *
2972 * This should get us reasonable parallelism between CPU and GPU but also
2973 * relatively low latency when blocking on a particular request to finish.
2974 */
2975 static int
2976 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2977 {
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 struct drm_i915_file_private *file_priv = file->driver_priv;
2980 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
2981 struct drm_i915_gem_request *request;
2982 struct intel_ring_buffer *ring = NULL;
2983 u32 seqno = 0;
2984 int ret;
2985
2986 if (atomic_read(&dev_priv->mm.wedged))
2987 return -EIO;
2988
2989 spin_lock(&file_priv->mm.lock);
2990 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
2991 if (time_after_eq(request->emitted_jiffies, recent_enough))
2992 break;
2993
2994 ring = request->ring;
2995 seqno = request->seqno;
2996 }
2997 spin_unlock(&file_priv->mm.lock);
2998
2999 if (seqno == 0)
3000 return 0;
3001
3002 ret = 0;
3003 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3004 /* And wait for the seqno passing without holding any locks and
3005 * causing extra latency for others. This is safe as the irq
3006 * generation is designed to be run atomically and so is
3007 * lockless.
3008 */
3009 if (ring->irq_get(ring)) {
3010 ret = wait_event_interruptible(ring->irq_queue,
3011 i915_seqno_passed(ring->get_seqno(ring), seqno)
3012 || atomic_read(&dev_priv->mm.wedged));
3013 ring->irq_put(ring);
3014
3015 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3016 ret = -EIO;
3017 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3018 seqno) ||
3019 atomic_read(&dev_priv->mm.wedged), 3000)) {
3020 ret = -EBUSY;
3021 }
3022 }
3023
3024 if (ret == 0)
3025 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3026
3027 return ret;
3028 }
3029
3030 int
3031 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3032 uint32_t alignment,
3033 bool map_and_fenceable)
3034 {
3035 int ret;
3036
3037 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3038
3039 if (obj->gtt_space != NULL) {
3040 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3041 (map_and_fenceable && !obj->map_and_fenceable)) {
3042 WARN(obj->pin_count,
3043 "bo is already pinned with incorrect alignment:"
3044 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3045 " obj->map_and_fenceable=%d\n",
3046 obj->gtt_offset, alignment,
3047 map_and_fenceable,
3048 obj->map_and_fenceable);
3049 ret = i915_gem_object_unbind(obj);
3050 if (ret)
3051 return ret;
3052 }
3053 }
3054
3055 if (obj->gtt_space == NULL) {
3056 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3057 map_and_fenceable);
3058 if (ret)
3059 return ret;
3060 }
3061
3062 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3063 i915_gem_gtt_bind_object(obj, obj->cache_level);
3064
3065 obj->pin_count++;
3066 obj->pin_mappable |= map_and_fenceable;
3067
3068 return 0;
3069 }
3070
3071 void
3072 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3073 {
3074 BUG_ON(obj->pin_count == 0);
3075 BUG_ON(obj->gtt_space == NULL);
3076
3077 if (--obj->pin_count == 0)
3078 obj->pin_mappable = false;
3079 }
3080
3081 int
3082 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3083 struct drm_file *file)
3084 {
3085 struct drm_i915_gem_pin *args = data;
3086 struct drm_i915_gem_object *obj;
3087 int ret;
3088
3089 ret = i915_mutex_lock_interruptible(dev);
3090 if (ret)
3091 return ret;
3092
3093 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3094 if (&obj->base == NULL) {
3095 ret = -ENOENT;
3096 goto unlock;
3097 }
3098
3099 if (obj->madv != I915_MADV_WILLNEED) {
3100 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3101 ret = -EINVAL;
3102 goto out;
3103 }
3104
3105 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3106 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3107 args->handle);
3108 ret = -EINVAL;
3109 goto out;
3110 }
3111
3112 obj->user_pin_count++;
3113 obj->pin_filp = file;
3114 if (obj->user_pin_count == 1) {
3115 ret = i915_gem_object_pin(obj, args->alignment, true);
3116 if (ret)
3117 goto out;
3118 }
3119
3120 /* XXX - flush the CPU caches for pinned objects
3121 * as the X server doesn't manage domains yet
3122 */
3123 i915_gem_object_flush_cpu_write_domain(obj);
3124 args->offset = obj->gtt_offset;
3125 out:
3126 drm_gem_object_unreference(&obj->base);
3127 unlock:
3128 mutex_unlock(&dev->struct_mutex);
3129 return ret;
3130 }
3131
3132 int
3133 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3134 struct drm_file *file)
3135 {
3136 struct drm_i915_gem_pin *args = data;
3137 struct drm_i915_gem_object *obj;
3138 int ret;
3139
3140 ret = i915_mutex_lock_interruptible(dev);
3141 if (ret)
3142 return ret;
3143
3144 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3145 if (&obj->base == NULL) {
3146 ret = -ENOENT;
3147 goto unlock;
3148 }
3149
3150 if (obj->pin_filp != file) {
3151 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3152 args->handle);
3153 ret = -EINVAL;
3154 goto out;
3155 }
3156 obj->user_pin_count--;
3157 if (obj->user_pin_count == 0) {
3158 obj->pin_filp = NULL;
3159 i915_gem_object_unpin(obj);
3160 }
3161
3162 out:
3163 drm_gem_object_unreference(&obj->base);
3164 unlock:
3165 mutex_unlock(&dev->struct_mutex);
3166 return ret;
3167 }
3168
3169 int
3170 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3171 struct drm_file *file)
3172 {
3173 struct drm_i915_gem_busy *args = data;
3174 struct drm_i915_gem_object *obj;
3175 int ret;
3176
3177 ret = i915_mutex_lock_interruptible(dev);
3178 if (ret)
3179 return ret;
3180
3181 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3182 if (&obj->base == NULL) {
3183 ret = -ENOENT;
3184 goto unlock;
3185 }
3186
3187 /* Count all active objects as busy, even if they are currently not used
3188 * by the gpu. Users of this interface expect objects to eventually
3189 * become non-busy without any further actions, therefore emit any
3190 * necessary flushes here.
3191 */
3192 args->busy = obj->active;
3193 if (args->busy) {
3194 /* Unconditionally flush objects, even when the gpu still uses this
3195 * object. Userspace calling this function indicates that it wants to
3196 * use this buffer rather sooner than later, so issuing the required
3197 * flush earlier is beneficial.
3198 */
3199 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3200 ret = i915_gem_flush_ring(obj->ring,
3201 0, obj->base.write_domain);
3202 } else if (obj->ring->outstanding_lazy_request ==
3203 obj->last_rendering_seqno) {
3204 struct drm_i915_gem_request *request;
3205
3206 /* This ring is not being cleared by active usage,
3207 * so emit a request to do so.
3208 */
3209 request = kzalloc(sizeof(*request), GFP_KERNEL);
3210 if (request) {
3211 ret = i915_add_request(obj->ring, NULL, request);
3212 if (ret)
3213 kfree(request);
3214 } else
3215 ret = -ENOMEM;
3216 }
3217
3218 /* Update the active list for the hardware's current position.
3219 * Otherwise this only updates on a delayed timer or when irqs
3220 * are actually unmasked, and our working set ends up being
3221 * larger than required.
3222 */
3223 i915_gem_retire_requests_ring(obj->ring);
3224
3225 args->busy = obj->active;
3226 }
3227
3228 drm_gem_object_unreference(&obj->base);
3229 unlock:
3230 mutex_unlock(&dev->struct_mutex);
3231 return ret;
3232 }
3233
3234 int
3235 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3236 struct drm_file *file_priv)
3237 {
3238 return i915_gem_ring_throttle(dev, file_priv);
3239 }
3240
3241 int
3242 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3243 struct drm_file *file_priv)
3244 {
3245 struct drm_i915_gem_madvise *args = data;
3246 struct drm_i915_gem_object *obj;
3247 int ret;
3248
3249 switch (args->madv) {
3250 case I915_MADV_DONTNEED:
3251 case I915_MADV_WILLNEED:
3252 break;
3253 default:
3254 return -EINVAL;
3255 }
3256
3257 ret = i915_mutex_lock_interruptible(dev);
3258 if (ret)
3259 return ret;
3260
3261 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3262 if (&obj->base == NULL) {
3263 ret = -ENOENT;
3264 goto unlock;
3265 }
3266
3267 if (obj->pin_count) {
3268 ret = -EINVAL;
3269 goto out;
3270 }
3271
3272 if (obj->madv != __I915_MADV_PURGED)
3273 obj->madv = args->madv;
3274
3275 /* if the object is no longer bound, discard its backing storage */
3276 if (i915_gem_object_is_purgeable(obj) &&
3277 obj->gtt_space == NULL)
3278 i915_gem_object_truncate(obj);
3279
3280 args->retained = obj->madv != __I915_MADV_PURGED;
3281
3282 out:
3283 drm_gem_object_unreference(&obj->base);
3284 unlock:
3285 mutex_unlock(&dev->struct_mutex);
3286 return ret;
3287 }
3288
3289 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3290 size_t size)
3291 {
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct drm_i915_gem_object *obj;
3294 struct address_space *mapping;
3295
3296 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3297 if (obj == NULL)
3298 return NULL;
3299
3300 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3301 kfree(obj);
3302 return NULL;
3303 }
3304
3305 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3306 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3307
3308 i915_gem_info_add_obj(dev_priv, size);
3309
3310 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3311 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3312
3313 if (HAS_LLC(dev)) {
3314 /* On some devices, we can have the GPU use the LLC (the CPU
3315 * cache) for about a 10% performance improvement
3316 * compared to uncached. Graphics requests other than
3317 * display scanout are coherent with the CPU in
3318 * accessing this cache. This means in this mode we
3319 * don't need to clflush on the CPU side, and on the
3320 * GPU side we only need to flush internal caches to
3321 * get data visible to the CPU.
3322 *
3323 * However, we maintain the display planes as UC, and so
3324 * need to rebind when first used as such.
3325 */
3326 obj->cache_level = I915_CACHE_LLC;
3327 } else
3328 obj->cache_level = I915_CACHE_NONE;
3329
3330 obj->base.driver_private = NULL;
3331 obj->fence_reg = I915_FENCE_REG_NONE;
3332 INIT_LIST_HEAD(&obj->mm_list);
3333 INIT_LIST_HEAD(&obj->gtt_list);
3334 INIT_LIST_HEAD(&obj->ring_list);
3335 INIT_LIST_HEAD(&obj->exec_list);
3336 INIT_LIST_HEAD(&obj->gpu_write_list);
3337 obj->madv = I915_MADV_WILLNEED;
3338 /* Avoid an unnecessary call to unbind on the first bind. */
3339 obj->map_and_fenceable = true;
3340
3341 return obj;
3342 }
3343
3344 int i915_gem_init_object(struct drm_gem_object *obj)
3345 {
3346 BUG();
3347
3348 return 0;
3349 }
3350
3351 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3352 {
3353 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3354 struct drm_device *dev = obj->base.dev;
3355 drm_i915_private_t *dev_priv = dev->dev_private;
3356
3357 trace_i915_gem_object_destroy(obj);
3358
3359 if (obj->phys_obj)
3360 i915_gem_detach_phys_object(dev, obj);
3361
3362 obj->pin_count = 0;
3363 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3364 bool was_interruptible;
3365
3366 was_interruptible = dev_priv->mm.interruptible;
3367 dev_priv->mm.interruptible = false;
3368
3369 WARN_ON(i915_gem_object_unbind(obj));
3370
3371 dev_priv->mm.interruptible = was_interruptible;
3372 }
3373
3374 if (obj->base.map_list.map)
3375 drm_gem_free_mmap_offset(&obj->base);
3376
3377 drm_gem_object_release(&obj->base);
3378 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3379
3380 kfree(obj->bit_17);
3381 kfree(obj);
3382 }
3383
3384 int
3385 i915_gem_idle(struct drm_device *dev)
3386 {
3387 drm_i915_private_t *dev_priv = dev->dev_private;
3388 int ret;
3389
3390 mutex_lock(&dev->struct_mutex);
3391
3392 if (dev_priv->mm.suspended) {
3393 mutex_unlock(&dev->struct_mutex);
3394 return 0;
3395 }
3396
3397 ret = i915_gpu_idle(dev, true);
3398 if (ret) {
3399 mutex_unlock(&dev->struct_mutex);
3400 return ret;
3401 }
3402
3403 /* Under UMS, be paranoid and evict. */
3404 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3405 i915_gem_evict_everything(dev, false);
3406
3407 i915_gem_reset_fences(dev);
3408
3409 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3410 * We need to replace this with a semaphore, or something.
3411 * And not confound mm.suspended!
3412 */
3413 dev_priv->mm.suspended = 1;
3414 del_timer_sync(&dev_priv->hangcheck_timer);
3415
3416 i915_kernel_lost_context(dev);
3417 i915_gem_cleanup_ringbuffer(dev);
3418
3419 mutex_unlock(&dev->struct_mutex);
3420
3421 /* Cancel the retire work handler, which should be idle now. */
3422 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3423
3424 return 0;
3425 }
3426
3427 void i915_gem_init_swizzling(struct drm_device *dev)
3428 {
3429 drm_i915_private_t *dev_priv = dev->dev_private;
3430
3431 if (INTEL_INFO(dev)->gen < 5 ||
3432 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3433 return;
3434
3435 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3436 DISP_TILE_SURFACE_SWIZZLING);
3437
3438 if (IS_GEN5(dev))
3439 return;
3440
3441 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3442 if (IS_GEN6(dev))
3443 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3444 else
3445 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3446 }
3447
3448 void i915_gem_init_ppgtt(struct drm_device *dev)
3449 {
3450 drm_i915_private_t *dev_priv = dev->dev_private;
3451 uint32_t pd_offset;
3452 struct intel_ring_buffer *ring;
3453 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3454 uint32_t __iomem *pd_addr;
3455 uint32_t pd_entry;
3456 int i;
3457
3458 if (!dev_priv->mm.aliasing_ppgtt)
3459 return;
3460
3461
3462 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3463 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3464 dma_addr_t pt_addr;
3465
3466 if (dev_priv->mm.gtt->needs_dmar)
3467 pt_addr = ppgtt->pt_dma_addr[i];
3468 else
3469 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3470
3471 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3472 pd_entry |= GEN6_PDE_VALID;
3473
3474 writel(pd_entry, pd_addr + i);
3475 }
3476 readl(pd_addr);
3477
3478 pd_offset = ppgtt->pd_offset;
3479 pd_offset /= 64; /* in cachelines, */
3480 pd_offset <<= 16;
3481
3482 if (INTEL_INFO(dev)->gen == 6) {
3483 uint32_t ecochk, gab_ctl, ecobits;
3484
3485 ecobits = I915_READ(GAC_ECO_BITS);
3486 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3487
3488 gab_ctl = I915_READ(GAB_CTL);
3489 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3490
3491 ecochk = I915_READ(GAM_ECOCHK);
3492 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3493 ECOCHK_PPGTT_CACHE64B);
3494 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3495 } else if (INTEL_INFO(dev)->gen >= 7) {
3496 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3497 /* GFX_MODE is per-ring on gen7+ */
3498 }
3499
3500 for (i = 0; i < I915_NUM_RINGS; i++) {
3501 ring = &dev_priv->ring[i];
3502
3503 if (INTEL_INFO(dev)->gen >= 7)
3504 I915_WRITE(RING_MODE_GEN7(ring),
3505 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3506
3507 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3508 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3509 }
3510 }
3511
3512 int
3513 i915_gem_init_hw(struct drm_device *dev)
3514 {
3515 drm_i915_private_t *dev_priv = dev->dev_private;
3516 int ret;
3517
3518 i915_gem_init_swizzling(dev);
3519
3520 ret = intel_init_render_ring_buffer(dev);
3521 if (ret)
3522 return ret;
3523
3524 if (HAS_BSD(dev)) {
3525 ret = intel_init_bsd_ring_buffer(dev);
3526 if (ret)
3527 goto cleanup_render_ring;
3528 }
3529
3530 if (HAS_BLT(dev)) {
3531 ret = intel_init_blt_ring_buffer(dev);
3532 if (ret)
3533 goto cleanup_bsd_ring;
3534 }
3535
3536 dev_priv->next_seqno = 1;
3537
3538 i915_gem_init_ppgtt(dev);
3539
3540 return 0;
3541
3542 cleanup_bsd_ring:
3543 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3544 cleanup_render_ring:
3545 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3546 return ret;
3547 }
3548
3549 static bool
3550 intel_enable_ppgtt(struct drm_device *dev)
3551 {
3552 if (i915_enable_ppgtt >= 0)
3553 return i915_enable_ppgtt;
3554
3555 #ifdef CONFIG_INTEL_IOMMU
3556 /* Disable ppgtt on SNB if VT-d is on. */
3557 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3558 return false;
3559 #endif
3560
3561 return true;
3562 }
3563
3564 int i915_gem_init(struct drm_device *dev)
3565 {
3566 struct drm_i915_private *dev_priv = dev->dev_private;
3567 unsigned long gtt_size, mappable_size;
3568 int ret;
3569
3570 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3571 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3572
3573 mutex_lock(&dev->struct_mutex);
3574 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3575 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3576 * aperture accordingly when using aliasing ppgtt. */
3577 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3578
3579 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3580
3581 ret = i915_gem_init_aliasing_ppgtt(dev);
3582 if (ret) {
3583 mutex_unlock(&dev->struct_mutex);
3584 return ret;
3585 }
3586 } else {
3587 /* Let GEM Manage all of the aperture.
3588 *
3589 * However, leave one page at the end still bound to the scratch
3590 * page. There are a number of places where the hardware
3591 * apparently prefetches past the end of the object, and we've
3592 * seen multiple hangs with the GPU head pointer stuck in a
3593 * batchbuffer bound at the last page of the aperture. One page
3594 * should be enough to keep any prefetching inside of the
3595 * aperture.
3596 */
3597 i915_gem_init_global_gtt(dev, 0, mappable_size,
3598 gtt_size);
3599 }
3600
3601 ret = i915_gem_init_hw(dev);
3602 mutex_unlock(&dev->struct_mutex);
3603 if (ret) {
3604 i915_gem_cleanup_aliasing_ppgtt(dev);
3605 return ret;
3606 }
3607
3608 /* Allow hardware batchbuffers unless told otherwise. */
3609 dev_priv->allow_batchbuffer = 1;
3610 return 0;
3611 }
3612
3613 void
3614 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3615 {
3616 drm_i915_private_t *dev_priv = dev->dev_private;
3617 int i;
3618
3619 for (i = 0; i < I915_NUM_RINGS; i++)
3620 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3621 }
3622
3623 int
3624 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3625 struct drm_file *file_priv)
3626 {
3627 drm_i915_private_t *dev_priv = dev->dev_private;
3628 int ret, i;
3629
3630 if (drm_core_check_feature(dev, DRIVER_MODESET))
3631 return 0;
3632
3633 if (atomic_read(&dev_priv->mm.wedged)) {
3634 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3635 atomic_set(&dev_priv->mm.wedged, 0);
3636 }
3637
3638 mutex_lock(&dev->struct_mutex);
3639 dev_priv->mm.suspended = 0;
3640
3641 ret = i915_gem_init_hw(dev);
3642 if (ret != 0) {
3643 mutex_unlock(&dev->struct_mutex);
3644 return ret;
3645 }
3646
3647 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3648 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3649 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3650 for (i = 0; i < I915_NUM_RINGS; i++) {
3651 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3652 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3653 }
3654 mutex_unlock(&dev->struct_mutex);
3655
3656 ret = drm_irq_install(dev);
3657 if (ret)
3658 goto cleanup_ringbuffer;
3659
3660 return 0;
3661
3662 cleanup_ringbuffer:
3663 mutex_lock(&dev->struct_mutex);
3664 i915_gem_cleanup_ringbuffer(dev);
3665 dev_priv->mm.suspended = 1;
3666 mutex_unlock(&dev->struct_mutex);
3667
3668 return ret;
3669 }
3670
3671 int
3672 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3673 struct drm_file *file_priv)
3674 {
3675 if (drm_core_check_feature(dev, DRIVER_MODESET))
3676 return 0;
3677
3678 drm_irq_uninstall(dev);
3679 return i915_gem_idle(dev);
3680 }
3681
3682 void
3683 i915_gem_lastclose(struct drm_device *dev)
3684 {
3685 int ret;
3686
3687 if (drm_core_check_feature(dev, DRIVER_MODESET))
3688 return;
3689
3690 ret = i915_gem_idle(dev);
3691 if (ret)
3692 DRM_ERROR("failed to idle hardware: %d\n", ret);
3693 }
3694
3695 static void
3696 init_ring_lists(struct intel_ring_buffer *ring)
3697 {
3698 INIT_LIST_HEAD(&ring->active_list);
3699 INIT_LIST_HEAD(&ring->request_list);
3700 INIT_LIST_HEAD(&ring->gpu_write_list);
3701 }
3702
3703 void
3704 i915_gem_load(struct drm_device *dev)
3705 {
3706 int i;
3707 drm_i915_private_t *dev_priv = dev->dev_private;
3708
3709 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3710 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3711 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3712 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3713 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3714 for (i = 0; i < I915_NUM_RINGS; i++)
3715 init_ring_lists(&dev_priv->ring[i]);
3716 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3717 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3718 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3719 i915_gem_retire_work_handler);
3720 init_completion(&dev_priv->error_completion);
3721
3722 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3723 if (IS_GEN3(dev)) {
3724 I915_WRITE(MI_ARB_STATE,
3725 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3726 }
3727
3728 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3729
3730 /* Old X drivers will take 0-2 for front, back, depth buffers */
3731 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3732 dev_priv->fence_reg_start = 3;
3733
3734 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3735 dev_priv->num_fence_regs = 16;
3736 else
3737 dev_priv->num_fence_regs = 8;
3738
3739 /* Initialize fence registers to zero */
3740 i915_gem_reset_fences(dev);
3741
3742 i915_gem_detect_bit_6_swizzle(dev);
3743 init_waitqueue_head(&dev_priv->pending_flip_queue);
3744
3745 dev_priv->mm.interruptible = true;
3746
3747 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3748 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3749 register_shrinker(&dev_priv->mm.inactive_shrinker);
3750 }
3751
3752 /*
3753 * Create a physically contiguous memory object for this object
3754 * e.g. for cursor + overlay regs
3755 */
3756 static int i915_gem_init_phys_object(struct drm_device *dev,
3757 int id, int size, int align)
3758 {
3759 drm_i915_private_t *dev_priv = dev->dev_private;
3760 struct drm_i915_gem_phys_object *phys_obj;
3761 int ret;
3762
3763 if (dev_priv->mm.phys_objs[id - 1] || !size)
3764 return 0;
3765
3766 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3767 if (!phys_obj)
3768 return -ENOMEM;
3769
3770 phys_obj->id = id;
3771
3772 phys_obj->handle = drm_pci_alloc(dev, size, align);
3773 if (!phys_obj->handle) {
3774 ret = -ENOMEM;
3775 goto kfree_obj;
3776 }
3777 #ifdef CONFIG_X86
3778 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3779 #endif
3780
3781 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3782
3783 return 0;
3784 kfree_obj:
3785 kfree(phys_obj);
3786 return ret;
3787 }
3788
3789 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3790 {
3791 drm_i915_private_t *dev_priv = dev->dev_private;
3792 struct drm_i915_gem_phys_object *phys_obj;
3793
3794 if (!dev_priv->mm.phys_objs[id - 1])
3795 return;
3796
3797 phys_obj = dev_priv->mm.phys_objs[id - 1];
3798 if (phys_obj->cur_obj) {
3799 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3800 }
3801
3802 #ifdef CONFIG_X86
3803 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3804 #endif
3805 drm_pci_free(dev, phys_obj->handle);
3806 kfree(phys_obj);
3807 dev_priv->mm.phys_objs[id - 1] = NULL;
3808 }
3809
3810 void i915_gem_free_all_phys_object(struct drm_device *dev)
3811 {
3812 int i;
3813
3814 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3815 i915_gem_free_phys_object(dev, i);
3816 }
3817
3818 void i915_gem_detach_phys_object(struct drm_device *dev,
3819 struct drm_i915_gem_object *obj)
3820 {
3821 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3822 char *vaddr;
3823 int i;
3824 int page_count;
3825
3826 if (!obj->phys_obj)
3827 return;
3828 vaddr = obj->phys_obj->handle->vaddr;
3829
3830 page_count = obj->base.size / PAGE_SIZE;
3831 for (i = 0; i < page_count; i++) {
3832 struct page *page = shmem_read_mapping_page(mapping, i);
3833 if (!IS_ERR(page)) {
3834 char *dst = kmap_atomic(page);
3835 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3836 kunmap_atomic(dst);
3837
3838 drm_clflush_pages(&page, 1);
3839
3840 set_page_dirty(page);
3841 mark_page_accessed(page);
3842 page_cache_release(page);
3843 }
3844 }
3845 intel_gtt_chipset_flush();
3846
3847 obj->phys_obj->cur_obj = NULL;
3848 obj->phys_obj = NULL;
3849 }
3850
3851 int
3852 i915_gem_attach_phys_object(struct drm_device *dev,
3853 struct drm_i915_gem_object *obj,
3854 int id,
3855 int align)
3856 {
3857 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3858 drm_i915_private_t *dev_priv = dev->dev_private;
3859 int ret = 0;
3860 int page_count;
3861 int i;
3862
3863 if (id > I915_MAX_PHYS_OBJECT)
3864 return -EINVAL;
3865
3866 if (obj->phys_obj) {
3867 if (obj->phys_obj->id == id)
3868 return 0;
3869 i915_gem_detach_phys_object(dev, obj);
3870 }
3871
3872 /* create a new object */
3873 if (!dev_priv->mm.phys_objs[id - 1]) {
3874 ret = i915_gem_init_phys_object(dev, id,
3875 obj->base.size, align);
3876 if (ret) {
3877 DRM_ERROR("failed to init phys object %d size: %zu\n",
3878 id, obj->base.size);
3879 return ret;
3880 }
3881 }
3882
3883 /* bind to the object */
3884 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3885 obj->phys_obj->cur_obj = obj;
3886
3887 page_count = obj->base.size / PAGE_SIZE;
3888
3889 for (i = 0; i < page_count; i++) {
3890 struct page *page;
3891 char *dst, *src;
3892
3893 page = shmem_read_mapping_page(mapping, i);
3894 if (IS_ERR(page))
3895 return PTR_ERR(page);
3896
3897 src = kmap_atomic(page);
3898 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3899 memcpy(dst, src, PAGE_SIZE);
3900 kunmap_atomic(src);
3901
3902 mark_page_accessed(page);
3903 page_cache_release(page);
3904 }
3905
3906 return 0;
3907 }
3908
3909 static int
3910 i915_gem_phys_pwrite(struct drm_device *dev,
3911 struct drm_i915_gem_object *obj,
3912 struct drm_i915_gem_pwrite *args,
3913 struct drm_file *file_priv)
3914 {
3915 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3916 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3917
3918 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3919 unsigned long unwritten;
3920
3921 /* The physical object once assigned is fixed for the lifetime
3922 * of the obj, so we can safely drop the lock and continue
3923 * to access vaddr.
3924 */
3925 mutex_unlock(&dev->struct_mutex);
3926 unwritten = copy_from_user(vaddr, user_data, args->size);
3927 mutex_lock(&dev->struct_mutex);
3928 if (unwritten)
3929 return -EFAULT;
3930 }
3931
3932 intel_gtt_chipset_flush();
3933 return 0;
3934 }
3935
3936 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3937 {
3938 struct drm_i915_file_private *file_priv = file->driver_priv;
3939
3940 /* Clean up our request list when the client is going away, so that
3941 * later retire_requests won't dereference our soon-to-be-gone
3942 * file_priv.
3943 */
3944 spin_lock(&file_priv->mm.lock);
3945 while (!list_empty(&file_priv->mm.request_list)) {
3946 struct drm_i915_gem_request *request;
3947
3948 request = list_first_entry(&file_priv->mm.request_list,
3949 struct drm_i915_gem_request,
3950 client_list);
3951 list_del(&request->client_list);
3952 request->file_priv = NULL;
3953 }
3954 spin_unlock(&file_priv->mm.lock);
3955 }
3956
3957 static int
3958 i915_gpu_is_active(struct drm_device *dev)
3959 {
3960 drm_i915_private_t *dev_priv = dev->dev_private;
3961 int lists_empty;
3962
3963 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3964 list_empty(&dev_priv->mm.active_list);
3965
3966 return !lists_empty;
3967 }
3968
3969 static int
3970 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3971 {
3972 struct drm_i915_private *dev_priv =
3973 container_of(shrinker,
3974 struct drm_i915_private,
3975 mm.inactive_shrinker);
3976 struct drm_device *dev = dev_priv->dev;
3977 struct drm_i915_gem_object *obj, *next;
3978 int nr_to_scan = sc->nr_to_scan;
3979 int cnt;
3980
3981 if (!mutex_trylock(&dev->struct_mutex))
3982 return 0;
3983
3984 /* "fast-path" to count number of available objects */
3985 if (nr_to_scan == 0) {
3986 cnt = 0;
3987 list_for_each_entry(obj,
3988 &dev_priv->mm.inactive_list,
3989 mm_list)
3990 cnt++;
3991 mutex_unlock(&dev->struct_mutex);
3992 return cnt / 100 * sysctl_vfs_cache_pressure;
3993 }
3994
3995 rescan:
3996 /* first scan for clean buffers */
3997 i915_gem_retire_requests(dev);
3998
3999 list_for_each_entry_safe(obj, next,
4000 &dev_priv->mm.inactive_list,
4001 mm_list) {
4002 if (i915_gem_object_is_purgeable(obj)) {
4003 if (i915_gem_object_unbind(obj) == 0 &&
4004 --nr_to_scan == 0)
4005 break;
4006 }
4007 }
4008
4009 /* second pass, evict/count anything still on the inactive list */
4010 cnt = 0;
4011 list_for_each_entry_safe(obj, next,
4012 &dev_priv->mm.inactive_list,
4013 mm_list) {
4014 if (nr_to_scan &&
4015 i915_gem_object_unbind(obj) == 0)
4016 nr_to_scan--;
4017 else
4018 cnt++;
4019 }
4020
4021 if (nr_to_scan && i915_gpu_is_active(dev)) {
4022 /*
4023 * We are desperate for pages, so as a last resort, wait
4024 * for the GPU to finish and discard whatever we can.
4025 * This has a dramatic impact to reduce the number of
4026 * OOM-killer events whilst running the GPU aggressively.
4027 */
4028 if (i915_gpu_idle(dev, true) == 0)
4029 goto rescan;
4030 }
4031 mutex_unlock(&dev->struct_mutex);
4032 return cnt / 100 * sysctl_vfs_cache_pressure;
4033 }
This page took 0.110141 seconds and 4 git commands to generate.