drm/i915: Add support for fence registers on Ivybridge.
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69 }
70
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73 {
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76 }
77
78 static int
79 i915_gem_wait_for_error(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
104 }
105
106 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 {
108 int ret;
109
110 ret = i915_gem_wait_for_error(dev);
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
118 WARN_ON(i915_verify_lists(dev));
119 return 0;
120 }
121
122 static inline bool
123 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 {
125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 }
127
128 void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
132 {
133 drm_i915_private_t *dev_priv = dev->dev_private;
134
135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
140 dev_priv->mm.gtt_total = end - start;
141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_gem_init *args = data;
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
156
157 mutex_lock(&dev->struct_mutex);
158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 mutex_unlock(&dev->struct_mutex);
160
161 return 0;
162 }
163
164 int
165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 struct drm_file *file)
167 {
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 struct drm_i915_gem_get_aperture *args = data;
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
176 pinned = 0;
177 mutex_lock(&dev->struct_mutex);
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
180 mutex_unlock(&dev->struct_mutex);
181
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
184
185 return 0;
186 }
187
188 static int
189 i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
193 {
194 struct drm_i915_gem_object *obj;
195 int ret;
196 u32 handle;
197
198 size = roundup(size, PAGE_SIZE);
199
200 /* Allocate the new object */
201 obj = i915_gem_alloc_object(dev, size);
202 if (obj == NULL)
203 return -ENOMEM;
204
205 ret = drm_gem_handle_create(file, &obj->base, &handle);
206 if (ret) {
207 drm_gem_object_release(&obj->base);
208 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209 kfree(obj);
210 return ret;
211 }
212
213 /* drop reference from allocate - handle holds it now */
214 drm_gem_object_unreference(&obj->base);
215 trace_i915_gem_object_create(obj);
216
217 *handle_p = handle;
218 return 0;
219 }
220
221 int
222 i915_gem_dumb_create(struct drm_file *file,
223 struct drm_device *dev,
224 struct drm_mode_create_dumb *args)
225 {
226 /* have to work out size/pitch and return them */
227 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
228 args->size = args->pitch * args->height;
229 return i915_gem_create(file, dev,
230 args->size, &args->handle);
231 }
232
233 int i915_gem_dumb_destroy(struct drm_file *file,
234 struct drm_device *dev,
235 uint32_t handle)
236 {
237 return drm_gem_handle_delete(file, handle);
238 }
239
240 /**
241 * Creates a new mm object and returns a handle to it.
242 */
243 int
244 i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file)
246 {
247 struct drm_i915_gem_create *args = data;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
258 }
259
260 static inline void
261 slow_shmem_copy(struct page *dst_page,
262 int dst_offset,
263 struct page *src_page,
264 int src_offset,
265 int length)
266 {
267 char *dst_vaddr, *src_vaddr;
268
269 dst_vaddr = kmap(dst_page);
270 src_vaddr = kmap(src_page);
271
272 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273
274 kunmap(src_page);
275 kunmap(dst_page);
276 }
277
278 static inline void
279 slow_shmem_bit17_copy(struct page *gpu_page,
280 int gpu_offset,
281 struct page *cpu_page,
282 int cpu_offset,
283 int length,
284 int is_read)
285 {
286 char *gpu_vaddr, *cpu_vaddr;
287
288 /* Use the unswizzled path if this page isn't affected. */
289 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290 if (is_read)
291 return slow_shmem_copy(cpu_page, cpu_offset,
292 gpu_page, gpu_offset, length);
293 else
294 return slow_shmem_copy(gpu_page, gpu_offset,
295 cpu_page, cpu_offset, length);
296 }
297
298 gpu_vaddr = kmap(gpu_page);
299 cpu_vaddr = kmap(cpu_page);
300
301 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
302 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 */
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 if (is_read) {
310 memcpy(cpu_vaddr + cpu_offset,
311 gpu_vaddr + swizzled_gpu_offset,
312 this_length);
313 } else {
314 memcpy(gpu_vaddr + swizzled_gpu_offset,
315 cpu_vaddr + cpu_offset,
316 this_length);
317 }
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
323 kunmap(cpu_page);
324 kunmap(gpu_page);
325 }
326
327 /**
328 * This is the fast shmem pread path, which attempts to copy_from_user directly
329 * from the backing pages of the object to the user's address space. On a
330 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331 */
332 static int
333 i915_gem_shmem_pread_fast(struct drm_device *dev,
334 struct drm_i915_gem_object *obj,
335 struct drm_i915_gem_pread *args,
336 struct drm_file *file)
337 {
338 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
339 ssize_t remain;
340 loff_t offset;
341 char __user *user_data;
342 int page_offset, page_length;
343
344 user_data = (char __user *) (uintptr_t) args->data_ptr;
345 remain = args->size;
346
347 offset = args->offset;
348
349 while (remain > 0) {
350 struct page *page;
351 char *vaddr;
352 int ret;
353
354 /* Operation in this page
355 *
356 * page_offset = offset within page
357 * page_length = bytes to copy for this page
358 */
359 page_offset = offset & (PAGE_SIZE-1);
360 page_length = remain;
361 if ((page_offset + remain) > PAGE_SIZE)
362 page_length = PAGE_SIZE - page_offset;
363
364 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365 GFP_HIGHUSER | __GFP_RECLAIMABLE);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
368
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
374
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
378 return -EFAULT;
379
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
383 }
384
385 return 0;
386 }
387
388 /**
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
393 */
394 static int
395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
397 struct drm_i915_gem_pread *args,
398 struct drm_file *file)
399 {
400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
411 int do_bit17_swizzling;
412
413 remain = args->size;
414
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
418 */
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
422
423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 if (user_pages == NULL)
425 return -ENOMEM;
426
427 mutex_unlock(&dev->struct_mutex);
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430 num_pages, 1, 0, user_pages, NULL);
431 up_read(&mm->mmap_sem);
432 mutex_lock(&dev->struct_mutex);
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
435 goto out;
436 }
437
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
441 if (ret)
442 goto out;
443
444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
445
446 offset = args->offset;
447
448 while (remain > 0) {
449 struct page *page;
450
451 /* Operation in this page
452 *
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
457 */
458 shmem_page_offset = offset & ~PAGE_MASK;
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = data_ptr & ~PAGE_MASK;
461
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
467
468 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469 GFP_HIGHUSER | __GFP_RECLAIMABLE);
470 if (IS_ERR(page))
471 return PTR_ERR(page);
472
473 if (do_bit17_swizzling) {
474 slow_shmem_bit17_copy(page,
475 shmem_page_offset,
476 user_pages[data_page_index],
477 data_page_offset,
478 page_length,
479 1);
480 } else {
481 slow_shmem_copy(user_pages[data_page_index],
482 data_page_offset,
483 page,
484 shmem_page_offset,
485 page_length);
486 }
487
488 mark_page_accessed(page);
489 page_cache_release(page);
490
491 remain -= page_length;
492 data_ptr += page_length;
493 offset += page_length;
494 }
495
496 out:
497 for (i = 0; i < pinned_pages; i++) {
498 SetPageDirty(user_pages[i]);
499 mark_page_accessed(user_pages[i]);
500 page_cache_release(user_pages[i]);
501 }
502 drm_free_large(user_pages);
503
504 return ret;
505 }
506
507 /**
508 * Reads data from the object referenced by handle.
509 *
510 * On error, the contents of *data are undefined.
511 */
512 int
513 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
514 struct drm_file *file)
515 {
516 struct drm_i915_gem_pread *args = data;
517 struct drm_i915_gem_object *obj;
518 int ret = 0;
519
520 if (args->size == 0)
521 return 0;
522
523 if (!access_ok(VERIFY_WRITE,
524 (char __user *)(uintptr_t)args->data_ptr,
525 args->size))
526 return -EFAULT;
527
528 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 args->size);
530 if (ret)
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 args->offset,
554 args->size);
555 if (ret)
556 goto out;
557
558 ret = -EFAULT;
559 if (!i915_gem_object_needs_bit17_swizzle(obj))
560 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
561 if (ret == -EFAULT)
562 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 char *vaddr_atomic;
582 unsigned long unwritten;
583
584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 user_data, length);
587 io_mapping_unmap_atomic(vaddr_atomic);
588 return unwritten;
589 }
590
591 /* Here's the write path which can sleep for
592 * page faults
593 */
594
595 static inline void
596 slow_kernel_write(struct io_mapping *mapping,
597 loff_t gtt_base, int gtt_offset,
598 struct page *user_page, int user_offset,
599 int length)
600 {
601 char __iomem *dst_vaddr;
602 char *src_vaddr;
603
604 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 src_vaddr = kmap(user_page);
606
607 memcpy_toio(dst_vaddr + gtt_offset,
608 src_vaddr + user_offset,
609 length);
610
611 kunmap(user_page);
612 io_mapping_unmap(dst_vaddr);
613 }
614
615 /**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
619 static int
620 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
622 struct drm_i915_gem_pwrite *args,
623 struct drm_file *file)
624 {
625 drm_i915_private_t *dev_priv = dev->dev_private;
626 ssize_t remain;
627 loff_t offset, page_base;
628 char __user *user_data;
629 int page_offset, page_length;
630
631 user_data = (char __user *) (uintptr_t) args->data_ptr;
632 remain = args->size;
633
634 offset = obj->gtt_offset + args->offset;
635
636 while (remain > 0) {
637 /* Operation in this page
638 *
639 * page_base = page offset within aperture
640 * page_offset = offset within page
641 * page_length = bytes to copy for this page
642 */
643 page_base = (offset & ~(PAGE_SIZE-1));
644 page_offset = offset & (PAGE_SIZE-1);
645 page_length = remain;
646 if ((page_offset + remain) > PAGE_SIZE)
647 page_length = PAGE_SIZE - page_offset;
648
649 /* If we get a fault while copying data, then (presumably) our
650 * source page isn't available. Return the error and we'll
651 * retry in the slow path.
652 */
653 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 page_offset, user_data, page_length))
655
656 return -EFAULT;
657
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
661 }
662
663 return 0;
664 }
665
666 /**
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
669 *
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672 */
673 static int
674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
676 struct drm_i915_gem_pwrite *args,
677 struct drm_file *file)
678 {
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
687 int ret;
688 uint64_t data_ptr = args->data_ptr;
689
690 remain = args->size;
691
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
695 */
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
699
700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 if (user_pages == NULL)
702 return -ENOMEM;
703
704 mutex_unlock(&dev->struct_mutex);
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
709 mutex_lock(&dev->struct_mutex);
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
713 }
714
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
718
719 ret = i915_gem_object_put_fence(obj);
720 if (ret)
721 goto out_unpin_pages;
722
723 offset = obj->gtt_offset + args->offset;
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
733 */
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset & ~PAGE_MASK;
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = data_ptr & ~PAGE_MASK;
738
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
744
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
750
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
754 }
755
756 out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
759 drm_free_large(user_pages);
760
761 return ret;
762 }
763
764 /**
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
767 */
768 static int
769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
771 struct drm_i915_gem_pwrite *args,
772 struct drm_file *file)
773 {
774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775 ssize_t remain;
776 loff_t offset;
777 char __user *user_data;
778 int page_offset, page_length;
779
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
782
783 offset = args->offset;
784 obj->dirty = 1;
785
786 while (remain > 0) {
787 struct page *page;
788 char *vaddr;
789 int ret;
790
791 /* Operation in this page
792 *
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
796 page_offset = offset & (PAGE_SIZE-1);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
800
801 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802 GFP_HIGHUSER | __GFP_RECLAIMABLE);
803 if (IS_ERR(page))
804 return PTR_ERR(page);
805
806 vaddr = kmap_atomic(page, KM_USER0);
807 ret = __copy_from_user_inatomic(vaddr + page_offset,
808 user_data,
809 page_length);
810 kunmap_atomic(vaddr, KM_USER0);
811
812 set_page_dirty(page);
813 mark_page_accessed(page);
814 page_cache_release(page);
815
816 /* If we get a fault while copying data, then (presumably) our
817 * source page isn't available. Return the error and we'll
818 * retry in the slow path.
819 */
820 if (ret)
821 return -EFAULT;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 return 0;
829 }
830
831 /**
832 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833 * the memory and maps it using kmap_atomic for copying.
834 *
835 * This avoids taking mmap_sem for faulting on the user's address while the
836 * struct_mutex is held.
837 */
838 static int
839 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840 struct drm_i915_gem_object *obj,
841 struct drm_i915_gem_pwrite *args,
842 struct drm_file *file)
843 {
844 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
845 struct mm_struct *mm = current->mm;
846 struct page **user_pages;
847 ssize_t remain;
848 loff_t offset, pinned_pages, i;
849 loff_t first_data_page, last_data_page, num_pages;
850 int shmem_page_offset;
851 int data_page_index, data_page_offset;
852 int page_length;
853 int ret;
854 uint64_t data_ptr = args->data_ptr;
855 int do_bit17_swizzling;
856
857 remain = args->size;
858
859 /* Pin the user pages containing the data. We can't fault while
860 * holding the struct mutex, and all of the pwrite implementations
861 * want to hold it while dereferencing the user data.
862 */
863 first_data_page = data_ptr / PAGE_SIZE;
864 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865 num_pages = last_data_page - first_data_page + 1;
866
867 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
868 if (user_pages == NULL)
869 return -ENOMEM;
870
871 mutex_unlock(&dev->struct_mutex);
872 down_read(&mm->mmap_sem);
873 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874 num_pages, 0, 0, user_pages, NULL);
875 up_read(&mm->mmap_sem);
876 mutex_lock(&dev->struct_mutex);
877 if (pinned_pages < num_pages) {
878 ret = -EFAULT;
879 goto out;
880 }
881
882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883 if (ret)
884 goto out;
885
886 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887
888 offset = args->offset;
889 obj->dirty = 1;
890
891 while (remain > 0) {
892 struct page *page;
893
894 /* Operation in this page
895 *
896 * shmem_page_offset = offset within page in shmem file
897 * data_page_index = page number in get_user_pages return
898 * data_page_offset = offset with data_page_index page.
899 * page_length = bytes to copy for this page
900 */
901 shmem_page_offset = offset & ~PAGE_MASK;
902 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903 data_page_offset = data_ptr & ~PAGE_MASK;
904
905 page_length = remain;
906 if ((shmem_page_offset + page_length) > PAGE_SIZE)
907 page_length = PAGE_SIZE - shmem_page_offset;
908 if ((data_page_offset + page_length) > PAGE_SIZE)
909 page_length = PAGE_SIZE - data_page_offset;
910
911 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912 GFP_HIGHUSER | __GFP_RECLAIMABLE);
913 if (IS_ERR(page)) {
914 ret = PTR_ERR(page);
915 goto out;
916 }
917
918 if (do_bit17_swizzling) {
919 slow_shmem_bit17_copy(page,
920 shmem_page_offset,
921 user_pages[data_page_index],
922 data_page_offset,
923 page_length,
924 0);
925 } else {
926 slow_shmem_copy(page,
927 shmem_page_offset,
928 user_pages[data_page_index],
929 data_page_offset,
930 page_length);
931 }
932
933 set_page_dirty(page);
934 mark_page_accessed(page);
935 page_cache_release(page);
936
937 remain -= page_length;
938 data_ptr += page_length;
939 offset += page_length;
940 }
941
942 out:
943 for (i = 0; i < pinned_pages; i++)
944 page_cache_release(user_pages[i]);
945 drm_free_large(user_pages);
946
947 return ret;
948 }
949
950 /**
951 * Writes data to the object referenced by handle.
952 *
953 * On error, the contents of the buffer that were to be modified are undefined.
954 */
955 int
956 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
957 struct drm_file *file)
958 {
959 struct drm_i915_gem_pwrite *args = data;
960 struct drm_i915_gem_object *obj;
961 int ret;
962
963 if (args->size == 0)
964 return 0;
965
966 if (!access_ok(VERIFY_READ,
967 (char __user *)(uintptr_t)args->data_ptr,
968 args->size))
969 return -EFAULT;
970
971 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972 args->size);
973 if (ret)
974 return -EFAULT;
975
976 ret = i915_mutex_lock_interruptible(dev);
977 if (ret)
978 return ret;
979
980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
981 if (&obj->base == NULL) {
982 ret = -ENOENT;
983 goto unlock;
984 }
985
986 /* Bounds check destination. */
987 if (args->offset > obj->base.size ||
988 args->size > obj->base.size - args->offset) {
989 ret = -EINVAL;
990 goto out;
991 }
992
993 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
994
995 /* We can only do the GTT pwrite on untiled buffers, as otherwise
996 * it would end up going through the fenced access, and we'll get
997 * different detiling behavior between reading and writing.
998 * pread/pwrite currently are reading and writing from the CPU
999 * perspective, requiring manual detiling by the client.
1000 */
1001 if (obj->phys_obj)
1002 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1003 else if (obj->gtt_space &&
1004 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1005 ret = i915_gem_object_pin(obj, 0, true);
1006 if (ret)
1007 goto out;
1008
1009 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010 if (ret)
1011 goto out_unpin;
1012
1013 ret = i915_gem_object_put_fence(obj);
1014 if (ret)
1015 goto out_unpin;
1016
1017 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018 if (ret == -EFAULT)
1019 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020
1021 out_unpin:
1022 i915_gem_object_unpin(obj);
1023 } else {
1024 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025 if (ret)
1026 goto out;
1027
1028 ret = -EFAULT;
1029 if (!i915_gem_object_needs_bit17_swizzle(obj))
1030 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031 if (ret == -EFAULT)
1032 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1033 }
1034
1035 out:
1036 drm_gem_object_unreference(&obj->base);
1037 unlock:
1038 mutex_unlock(&dev->struct_mutex);
1039 return ret;
1040 }
1041
1042 /**
1043 * Called when user space prepares to use an object with the CPU, either
1044 * through the mmap ioctl's mapping or a GTT mapping.
1045 */
1046 int
1047 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1048 struct drm_file *file)
1049 {
1050 struct drm_i915_gem_set_domain *args = data;
1051 struct drm_i915_gem_object *obj;
1052 uint32_t read_domains = args->read_domains;
1053 uint32_t write_domain = args->write_domain;
1054 int ret;
1055
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1058
1059 /* Only handle setting domains to types used by the CPU. */
1060 if (write_domain & I915_GEM_GPU_DOMAINS)
1061 return -EINVAL;
1062
1063 if (read_domains & I915_GEM_GPU_DOMAINS)
1064 return -EINVAL;
1065
1066 /* Having something in the write domain implies it's in the read
1067 * domain, and only that read domain. Enforce that in the request.
1068 */
1069 if (write_domain != 0 && read_domains != write_domain)
1070 return -EINVAL;
1071
1072 ret = i915_mutex_lock_interruptible(dev);
1073 if (ret)
1074 return ret;
1075
1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077 if (&obj->base == NULL) {
1078 ret = -ENOENT;
1079 goto unlock;
1080 }
1081
1082 if (read_domains & I915_GEM_DOMAIN_GTT) {
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1084
1085 /* Silently promote "you're not bound, there was nothing to do"
1086 * to success, since the client was just asking us to
1087 * make sure everything was done.
1088 */
1089 if (ret == -EINVAL)
1090 ret = 0;
1091 } else {
1092 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093 }
1094
1095 drm_gem_object_unreference(&obj->base);
1096 unlock:
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099 }
1100
1101 /**
1102 * Called when user space has done writes to this buffer
1103 */
1104 int
1105 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1106 struct drm_file *file)
1107 {
1108 struct drm_i915_gem_sw_finish *args = data;
1109 struct drm_i915_gem_object *obj;
1110 int ret = 0;
1111
1112 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 return -ENODEV;
1114
1115 ret = i915_mutex_lock_interruptible(dev);
1116 if (ret)
1117 return ret;
1118
1119 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1120 if (&obj->base == NULL) {
1121 ret = -ENOENT;
1122 goto unlock;
1123 }
1124
1125 /* Pinned buffers may be scanout, so flush the cache */
1126 if (obj->pin_count)
1127 i915_gem_object_flush_cpu_write_domain(obj);
1128
1129 drm_gem_object_unreference(&obj->base);
1130 unlock:
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1133 }
1134
1135 /**
1136 * Maps the contents of an object, returning the address it is mapped
1137 * into.
1138 *
1139 * While the mapping holds a reference on the contents of the object, it doesn't
1140 * imply a ref on the object itself.
1141 */
1142 int
1143 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1144 struct drm_file *file)
1145 {
1146 struct drm_i915_private *dev_priv = dev->dev_private;
1147 struct drm_i915_gem_mmap *args = data;
1148 struct drm_gem_object *obj;
1149 unsigned long addr;
1150
1151 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 return -ENODEV;
1153
1154 obj = drm_gem_object_lookup(dev, file, args->handle);
1155 if (obj == NULL)
1156 return -ENOENT;
1157
1158 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159 drm_gem_object_unreference_unlocked(obj);
1160 return -E2BIG;
1161 }
1162
1163 down_write(&current->mm->mmap_sem);
1164 addr = do_mmap(obj->filp, 0, args->size,
1165 PROT_READ | PROT_WRITE, MAP_SHARED,
1166 args->offset);
1167 up_write(&current->mm->mmap_sem);
1168 drm_gem_object_unreference_unlocked(obj);
1169 if (IS_ERR((void *)addr))
1170 return addr;
1171
1172 args->addr_ptr = (uint64_t) addr;
1173
1174 return 0;
1175 }
1176
1177 /**
1178 * i915_gem_fault - fault a page into the GTT
1179 * vma: VMA in question
1180 * vmf: fault info
1181 *
1182 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183 * from userspace. The fault handler takes care of binding the object to
1184 * the GTT (if needed), allocating and programming a fence register (again,
1185 * only if needed based on whether the old reg is still valid or the object
1186 * is tiled) and inserting a new PTE into the faulting process.
1187 *
1188 * Note that the faulting process may involve evicting existing objects
1189 * from the GTT and/or fence registers to make room. So performance may
1190 * suffer if the GTT working set is large or there are few fence registers
1191 * left.
1192 */
1193 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1194 {
1195 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196 struct drm_device *dev = obj->base.dev;
1197 drm_i915_private_t *dev_priv = dev->dev_private;
1198 pgoff_t page_offset;
1199 unsigned long pfn;
1200 int ret = 0;
1201 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1202
1203 /* We don't use vmf->pgoff since that has the fake offset */
1204 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 PAGE_SHIFT;
1206
1207 ret = i915_mutex_lock_interruptible(dev);
1208 if (ret)
1209 goto out;
1210
1211 trace_i915_gem_object_fault(obj, page_offset, true, write);
1212
1213 /* Now bind it into the GTT if needed */
1214 if (!obj->map_and_fenceable) {
1215 ret = i915_gem_object_unbind(obj);
1216 if (ret)
1217 goto unlock;
1218 }
1219 if (!obj->gtt_space) {
1220 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1221 if (ret)
1222 goto unlock;
1223 }
1224
1225 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226 if (ret)
1227 goto unlock;
1228
1229 if (obj->tiling_mode == I915_TILING_NONE)
1230 ret = i915_gem_object_put_fence(obj);
1231 else
1232 ret = i915_gem_object_get_fence(obj, NULL);
1233 if (ret)
1234 goto unlock;
1235
1236 if (i915_gem_object_is_inactive(obj))
1237 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1238
1239 obj->fault_mappable = true;
1240
1241 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1242 page_offset;
1243
1244 /* Finally, remap it using the new GTT offset */
1245 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1246 unlock:
1247 mutex_unlock(&dev->struct_mutex);
1248 out:
1249 switch (ret) {
1250 case -EIO:
1251 case -EAGAIN:
1252 /* Give the error handler a chance to run and move the
1253 * objects off the GPU active list. Next time we service the
1254 * fault, we should be able to transition the page into the
1255 * GTT without touching the GPU (and so avoid further
1256 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257 * with coherency, just lost writes.
1258 */
1259 set_need_resched();
1260 case 0:
1261 case -ERESTARTSYS:
1262 case -EINTR:
1263 return VM_FAULT_NOPAGE;
1264 case -ENOMEM:
1265 return VM_FAULT_OOM;
1266 default:
1267 return VM_FAULT_SIGBUS;
1268 }
1269 }
1270
1271 /**
1272 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273 * @obj: obj in question
1274 *
1275 * GEM memory mapping works by handing back to userspace a fake mmap offset
1276 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1277 * up the object based on the offset and sets up the various memory mapping
1278 * structures.
1279 *
1280 * This routine allocates and attaches a fake offset for @obj.
1281 */
1282 static int
1283 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1284 {
1285 struct drm_device *dev = obj->base.dev;
1286 struct drm_gem_mm *mm = dev->mm_private;
1287 struct drm_map_list *list;
1288 struct drm_local_map *map;
1289 int ret = 0;
1290
1291 /* Set the object up for mmap'ing */
1292 list = &obj->base.map_list;
1293 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1294 if (!list->map)
1295 return -ENOMEM;
1296
1297 map = list->map;
1298 map->type = _DRM_GEM;
1299 map->size = obj->base.size;
1300 map->handle = obj;
1301
1302 /* Get a DRM GEM mmap offset allocated... */
1303 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1304 obj->base.size / PAGE_SIZE,
1305 0, 0);
1306 if (!list->file_offset_node) {
1307 DRM_ERROR("failed to allocate offset for bo %d\n",
1308 obj->base.name);
1309 ret = -ENOSPC;
1310 goto out_free_list;
1311 }
1312
1313 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1314 obj->base.size / PAGE_SIZE,
1315 0);
1316 if (!list->file_offset_node) {
1317 ret = -ENOMEM;
1318 goto out_free_list;
1319 }
1320
1321 list->hash.key = list->file_offset_node->start;
1322 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 if (ret) {
1324 DRM_ERROR("failed to add to map hash\n");
1325 goto out_free_mm;
1326 }
1327
1328 return 0;
1329
1330 out_free_mm:
1331 drm_mm_put_block(list->file_offset_node);
1332 out_free_list:
1333 kfree(list->map);
1334 list->map = NULL;
1335
1336 return ret;
1337 }
1338
1339 /**
1340 * i915_gem_release_mmap - remove physical page mappings
1341 * @obj: obj in question
1342 *
1343 * Preserve the reservation of the mmapping with the DRM core code, but
1344 * relinquish ownership of the pages back to the system.
1345 *
1346 * It is vital that we remove the page mapping if we have mapped a tiled
1347 * object through the GTT and then lose the fence register due to
1348 * resource pressure. Similarly if the object has been moved out of the
1349 * aperture, than pages mapped into userspace must be revoked. Removing the
1350 * mapping will then trigger a page fault on the next user access, allowing
1351 * fixup by i915_gem_fault().
1352 */
1353 void
1354 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1355 {
1356 if (!obj->fault_mappable)
1357 return;
1358
1359 if (obj->base.dev->dev_mapping)
1360 unmap_mapping_range(obj->base.dev->dev_mapping,
1361 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1362 obj->base.size, 1);
1363
1364 obj->fault_mappable = false;
1365 }
1366
1367 static void
1368 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1369 {
1370 struct drm_device *dev = obj->base.dev;
1371 struct drm_gem_mm *mm = dev->mm_private;
1372 struct drm_map_list *list = &obj->base.map_list;
1373
1374 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1375 drm_mm_put_block(list->file_offset_node);
1376 kfree(list->map);
1377 list->map = NULL;
1378 }
1379
1380 static uint32_t
1381 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1382 {
1383 struct drm_device *dev = obj->base.dev;
1384 uint32_t size;
1385
1386 if (INTEL_INFO(dev)->gen >= 4 ||
1387 obj->tiling_mode == I915_TILING_NONE)
1388 return obj->base.size;
1389
1390 /* Previous chips need a power-of-two fence region when tiling */
1391 if (INTEL_INFO(dev)->gen == 3)
1392 size = 1024*1024;
1393 else
1394 size = 512*1024;
1395
1396 while (size < obj->base.size)
1397 size <<= 1;
1398
1399 return size;
1400 }
1401
1402 /**
1403 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1404 * @obj: object to check
1405 *
1406 * Return the required GTT alignment for an object, taking into account
1407 * potential fence register mapping.
1408 */
1409 static uint32_t
1410 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1411 {
1412 struct drm_device *dev = obj->base.dev;
1413
1414 /*
1415 * Minimum alignment is 4k (GTT page size), but might be greater
1416 * if a fence register is needed for the object.
1417 */
1418 if (INTEL_INFO(dev)->gen >= 4 ||
1419 obj->tiling_mode == I915_TILING_NONE)
1420 return 4096;
1421
1422 /*
1423 * Previous chips need to be aligned to the size of the smallest
1424 * fence register that can contain the object.
1425 */
1426 return i915_gem_get_gtt_size(obj);
1427 }
1428
1429 /**
1430 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1431 * unfenced object
1432 * @obj: object to check
1433 *
1434 * Return the required GTT alignment for an object, only taking into account
1435 * unfenced tiled surface requirements.
1436 */
1437 uint32_t
1438 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1439 {
1440 struct drm_device *dev = obj->base.dev;
1441 int tile_height;
1442
1443 /*
1444 * Minimum alignment is 4k (GTT page size) for sane hw.
1445 */
1446 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1447 obj->tiling_mode == I915_TILING_NONE)
1448 return 4096;
1449
1450 /*
1451 * Older chips need unfenced tiled buffers to be aligned to the left
1452 * edge of an even tile row (where tile rows are counted as if the bo is
1453 * placed in a fenced gtt region).
1454 */
1455 if (IS_GEN2(dev) ||
1456 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1457 tile_height = 32;
1458 else
1459 tile_height = 8;
1460
1461 return tile_height * obj->stride * 2;
1462 }
1463
1464 int
1465 i915_gem_mmap_gtt(struct drm_file *file,
1466 struct drm_device *dev,
1467 uint32_t handle,
1468 uint64_t *offset)
1469 {
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 struct drm_i915_gem_object *obj;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1480
1481 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1482 if (&obj->base == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
1486
1487 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1488 ret = -E2BIG;
1489 goto unlock;
1490 }
1491
1492 if (obj->madv != I915_MADV_WILLNEED) {
1493 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1494 ret = -EINVAL;
1495 goto out;
1496 }
1497
1498 if (!obj->base.map_list.map) {
1499 ret = i915_gem_create_mmap_offset(obj);
1500 if (ret)
1501 goto out;
1502 }
1503
1504 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1505
1506 out:
1507 drm_gem_object_unreference(&obj->base);
1508 unlock:
1509 mutex_unlock(&dev->struct_mutex);
1510 return ret;
1511 }
1512
1513 /**
1514 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1515 * @dev: DRM device
1516 * @data: GTT mapping ioctl data
1517 * @file: GEM object info
1518 *
1519 * Simply returns the fake offset to userspace so it can mmap it.
1520 * The mmap call will end up in drm_gem_mmap(), which will set things
1521 * up so we can get faults in the handler above.
1522 *
1523 * The fault handler will take care of binding the object into the GTT
1524 * (since it may have been evicted to make room for something), allocating
1525 * a fence register, and mapping the appropriate aperture address into
1526 * userspace.
1527 */
1528 int
1529 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1530 struct drm_file *file)
1531 {
1532 struct drm_i915_gem_mmap_gtt *args = data;
1533
1534 if (!(dev->driver->driver_features & DRIVER_GEM))
1535 return -ENODEV;
1536
1537 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1538 }
1539
1540
1541 static int
1542 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1543 gfp_t gfpmask)
1544 {
1545 int page_count, i;
1546 struct address_space *mapping;
1547 struct inode *inode;
1548 struct page *page;
1549
1550 /* Get the list of pages out of our struct file. They'll be pinned
1551 * at this point until we release them.
1552 */
1553 page_count = obj->base.size / PAGE_SIZE;
1554 BUG_ON(obj->pages != NULL);
1555 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1556 if (obj->pages == NULL)
1557 return -ENOMEM;
1558
1559 inode = obj->base.filp->f_path.dentry->d_inode;
1560 mapping = inode->i_mapping;
1561 for (i = 0; i < page_count; i++) {
1562 page = read_cache_page_gfp(mapping, i,
1563 GFP_HIGHUSER |
1564 __GFP_COLD |
1565 __GFP_RECLAIMABLE |
1566 gfpmask);
1567 if (IS_ERR(page))
1568 goto err_pages;
1569
1570 obj->pages[i] = page;
1571 }
1572
1573 if (obj->tiling_mode != I915_TILING_NONE)
1574 i915_gem_object_do_bit_17_swizzle(obj);
1575
1576 return 0;
1577
1578 err_pages:
1579 while (i--)
1580 page_cache_release(obj->pages[i]);
1581
1582 drm_free_large(obj->pages);
1583 obj->pages = NULL;
1584 return PTR_ERR(page);
1585 }
1586
1587 static void
1588 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1589 {
1590 int page_count = obj->base.size / PAGE_SIZE;
1591 int i;
1592
1593 BUG_ON(obj->madv == __I915_MADV_PURGED);
1594
1595 if (obj->tiling_mode != I915_TILING_NONE)
1596 i915_gem_object_save_bit_17_swizzle(obj);
1597
1598 if (obj->madv == I915_MADV_DONTNEED)
1599 obj->dirty = 0;
1600
1601 for (i = 0; i < page_count; i++) {
1602 if (obj->dirty)
1603 set_page_dirty(obj->pages[i]);
1604
1605 if (obj->madv == I915_MADV_WILLNEED)
1606 mark_page_accessed(obj->pages[i]);
1607
1608 page_cache_release(obj->pages[i]);
1609 }
1610 obj->dirty = 0;
1611
1612 drm_free_large(obj->pages);
1613 obj->pages = NULL;
1614 }
1615
1616 void
1617 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1618 struct intel_ring_buffer *ring,
1619 u32 seqno)
1620 {
1621 struct drm_device *dev = obj->base.dev;
1622 struct drm_i915_private *dev_priv = dev->dev_private;
1623
1624 BUG_ON(ring == NULL);
1625 obj->ring = ring;
1626
1627 /* Add a reference if we're newly entering the active list. */
1628 if (!obj->active) {
1629 drm_gem_object_reference(&obj->base);
1630 obj->active = 1;
1631 }
1632
1633 /* Move from whatever list we were on to the tail of execution. */
1634 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1635 list_move_tail(&obj->ring_list, &ring->active_list);
1636
1637 obj->last_rendering_seqno = seqno;
1638 if (obj->fenced_gpu_access) {
1639 struct drm_i915_fence_reg *reg;
1640
1641 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1642
1643 obj->last_fenced_seqno = seqno;
1644 obj->last_fenced_ring = ring;
1645
1646 reg = &dev_priv->fence_regs[obj->fence_reg];
1647 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1648 }
1649 }
1650
1651 static void
1652 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1653 {
1654 list_del_init(&obj->ring_list);
1655 obj->last_rendering_seqno = 0;
1656 }
1657
1658 static void
1659 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1660 {
1661 struct drm_device *dev = obj->base.dev;
1662 drm_i915_private_t *dev_priv = dev->dev_private;
1663
1664 BUG_ON(!obj->active);
1665 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1666
1667 i915_gem_object_move_off_active(obj);
1668 }
1669
1670 static void
1671 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1672 {
1673 struct drm_device *dev = obj->base.dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675
1676 if (obj->pin_count != 0)
1677 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1678 else
1679 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1680
1681 BUG_ON(!list_empty(&obj->gpu_write_list));
1682 BUG_ON(!obj->active);
1683 obj->ring = NULL;
1684
1685 i915_gem_object_move_off_active(obj);
1686 obj->fenced_gpu_access = false;
1687
1688 obj->active = 0;
1689 obj->pending_gpu_write = false;
1690 drm_gem_object_unreference(&obj->base);
1691
1692 WARN_ON(i915_verify_lists(dev));
1693 }
1694
1695 /* Immediately discard the backing storage */
1696 static void
1697 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1698 {
1699 struct inode *inode;
1700
1701 /* Our goal here is to return as much of the memory as
1702 * is possible back to the system as we are called from OOM.
1703 * To do this we must instruct the shmfs to drop all of its
1704 * backing pages, *now*. Here we mirror the actions taken
1705 * when by shmem_delete_inode() to release the backing store.
1706 */
1707 inode = obj->base.filp->f_path.dentry->d_inode;
1708 truncate_inode_pages(inode->i_mapping, 0);
1709 if (inode->i_op->truncate_range)
1710 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1711
1712 obj->madv = __I915_MADV_PURGED;
1713 }
1714
1715 static inline int
1716 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1717 {
1718 return obj->madv == I915_MADV_DONTNEED;
1719 }
1720
1721 static void
1722 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1723 uint32_t flush_domains)
1724 {
1725 struct drm_i915_gem_object *obj, *next;
1726
1727 list_for_each_entry_safe(obj, next,
1728 &ring->gpu_write_list,
1729 gpu_write_list) {
1730 if (obj->base.write_domain & flush_domains) {
1731 uint32_t old_write_domain = obj->base.write_domain;
1732
1733 obj->base.write_domain = 0;
1734 list_del_init(&obj->gpu_write_list);
1735 i915_gem_object_move_to_active(obj, ring,
1736 i915_gem_next_request_seqno(ring));
1737
1738 trace_i915_gem_object_change_domain(obj,
1739 obj->base.read_domains,
1740 old_write_domain);
1741 }
1742 }
1743 }
1744
1745 int
1746 i915_add_request(struct intel_ring_buffer *ring,
1747 struct drm_file *file,
1748 struct drm_i915_gem_request *request)
1749 {
1750 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1751 uint32_t seqno;
1752 int was_empty;
1753 int ret;
1754
1755 BUG_ON(request == NULL);
1756
1757 ret = ring->add_request(ring, &seqno);
1758 if (ret)
1759 return ret;
1760
1761 trace_i915_gem_request_add(ring, seqno);
1762
1763 request->seqno = seqno;
1764 request->ring = ring;
1765 request->emitted_jiffies = jiffies;
1766 was_empty = list_empty(&ring->request_list);
1767 list_add_tail(&request->list, &ring->request_list);
1768
1769 if (file) {
1770 struct drm_i915_file_private *file_priv = file->driver_priv;
1771
1772 spin_lock(&file_priv->mm.lock);
1773 request->file_priv = file_priv;
1774 list_add_tail(&request->client_list,
1775 &file_priv->mm.request_list);
1776 spin_unlock(&file_priv->mm.lock);
1777 }
1778
1779 ring->outstanding_lazy_request = false;
1780
1781 if (!dev_priv->mm.suspended) {
1782 mod_timer(&dev_priv->hangcheck_timer,
1783 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1784 if (was_empty)
1785 queue_delayed_work(dev_priv->wq,
1786 &dev_priv->mm.retire_work, HZ);
1787 }
1788 return 0;
1789 }
1790
1791 static inline void
1792 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1793 {
1794 struct drm_i915_file_private *file_priv = request->file_priv;
1795
1796 if (!file_priv)
1797 return;
1798
1799 spin_lock(&file_priv->mm.lock);
1800 if (request->file_priv) {
1801 list_del(&request->client_list);
1802 request->file_priv = NULL;
1803 }
1804 spin_unlock(&file_priv->mm.lock);
1805 }
1806
1807 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1808 struct intel_ring_buffer *ring)
1809 {
1810 while (!list_empty(&ring->request_list)) {
1811 struct drm_i915_gem_request *request;
1812
1813 request = list_first_entry(&ring->request_list,
1814 struct drm_i915_gem_request,
1815 list);
1816
1817 list_del(&request->list);
1818 i915_gem_request_remove_from_client(request);
1819 kfree(request);
1820 }
1821
1822 while (!list_empty(&ring->active_list)) {
1823 struct drm_i915_gem_object *obj;
1824
1825 obj = list_first_entry(&ring->active_list,
1826 struct drm_i915_gem_object,
1827 ring_list);
1828
1829 obj->base.write_domain = 0;
1830 list_del_init(&obj->gpu_write_list);
1831 i915_gem_object_move_to_inactive(obj);
1832 }
1833 }
1834
1835 static void i915_gem_reset_fences(struct drm_device *dev)
1836 {
1837 struct drm_i915_private *dev_priv = dev->dev_private;
1838 int i;
1839
1840 for (i = 0; i < 16; i++) {
1841 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1842 struct drm_i915_gem_object *obj = reg->obj;
1843
1844 if (!obj)
1845 continue;
1846
1847 if (obj->tiling_mode)
1848 i915_gem_release_mmap(obj);
1849
1850 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1851 reg->obj->fenced_gpu_access = false;
1852 reg->obj->last_fenced_seqno = 0;
1853 reg->obj->last_fenced_ring = NULL;
1854 i915_gem_clear_fence_reg(dev, reg);
1855 }
1856 }
1857
1858 void i915_gem_reset(struct drm_device *dev)
1859 {
1860 struct drm_i915_private *dev_priv = dev->dev_private;
1861 struct drm_i915_gem_object *obj;
1862 int i;
1863
1864 for (i = 0; i < I915_NUM_RINGS; i++)
1865 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1866
1867 /* Remove anything from the flushing lists. The GPU cache is likely
1868 * to be lost on reset along with the data, so simply move the
1869 * lost bo to the inactive list.
1870 */
1871 while (!list_empty(&dev_priv->mm.flushing_list)) {
1872 obj= list_first_entry(&dev_priv->mm.flushing_list,
1873 struct drm_i915_gem_object,
1874 mm_list);
1875
1876 obj->base.write_domain = 0;
1877 list_del_init(&obj->gpu_write_list);
1878 i915_gem_object_move_to_inactive(obj);
1879 }
1880
1881 /* Move everything out of the GPU domains to ensure we do any
1882 * necessary invalidation upon reuse.
1883 */
1884 list_for_each_entry(obj,
1885 &dev_priv->mm.inactive_list,
1886 mm_list)
1887 {
1888 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1889 }
1890
1891 /* The fence registers are invalidated so clear them out */
1892 i915_gem_reset_fences(dev);
1893 }
1894
1895 /**
1896 * This function clears the request list as sequence numbers are passed.
1897 */
1898 static void
1899 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1900 {
1901 uint32_t seqno;
1902 int i;
1903
1904 if (list_empty(&ring->request_list))
1905 return;
1906
1907 WARN_ON(i915_verify_lists(ring->dev));
1908
1909 seqno = ring->get_seqno(ring);
1910
1911 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1912 if (seqno >= ring->sync_seqno[i])
1913 ring->sync_seqno[i] = 0;
1914
1915 while (!list_empty(&ring->request_list)) {
1916 struct drm_i915_gem_request *request;
1917
1918 request = list_first_entry(&ring->request_list,
1919 struct drm_i915_gem_request,
1920 list);
1921
1922 if (!i915_seqno_passed(seqno, request->seqno))
1923 break;
1924
1925 trace_i915_gem_request_retire(ring, request->seqno);
1926
1927 list_del(&request->list);
1928 i915_gem_request_remove_from_client(request);
1929 kfree(request);
1930 }
1931
1932 /* Move any buffers on the active list that are no longer referenced
1933 * by the ringbuffer to the flushing/inactive lists as appropriate.
1934 */
1935 while (!list_empty(&ring->active_list)) {
1936 struct drm_i915_gem_object *obj;
1937
1938 obj= list_first_entry(&ring->active_list,
1939 struct drm_i915_gem_object,
1940 ring_list);
1941
1942 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1943 break;
1944
1945 if (obj->base.write_domain != 0)
1946 i915_gem_object_move_to_flushing(obj);
1947 else
1948 i915_gem_object_move_to_inactive(obj);
1949 }
1950
1951 if (unlikely(ring->trace_irq_seqno &&
1952 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1953 ring->irq_put(ring);
1954 ring->trace_irq_seqno = 0;
1955 }
1956
1957 WARN_ON(i915_verify_lists(ring->dev));
1958 }
1959
1960 void
1961 i915_gem_retire_requests(struct drm_device *dev)
1962 {
1963 drm_i915_private_t *dev_priv = dev->dev_private;
1964 int i;
1965
1966 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1967 struct drm_i915_gem_object *obj, *next;
1968
1969 /* We must be careful that during unbind() we do not
1970 * accidentally infinitely recurse into retire requests.
1971 * Currently:
1972 * retire -> free -> unbind -> wait -> retire_ring
1973 */
1974 list_for_each_entry_safe(obj, next,
1975 &dev_priv->mm.deferred_free_list,
1976 mm_list)
1977 i915_gem_free_object_tail(obj);
1978 }
1979
1980 for (i = 0; i < I915_NUM_RINGS; i++)
1981 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1982 }
1983
1984 static void
1985 i915_gem_retire_work_handler(struct work_struct *work)
1986 {
1987 drm_i915_private_t *dev_priv;
1988 struct drm_device *dev;
1989 bool idle;
1990 int i;
1991
1992 dev_priv = container_of(work, drm_i915_private_t,
1993 mm.retire_work.work);
1994 dev = dev_priv->dev;
1995
1996 /* Come back later if the device is busy... */
1997 if (!mutex_trylock(&dev->struct_mutex)) {
1998 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1999 return;
2000 }
2001
2002 i915_gem_retire_requests(dev);
2003
2004 /* Send a periodic flush down the ring so we don't hold onto GEM
2005 * objects indefinitely.
2006 */
2007 idle = true;
2008 for (i = 0; i < I915_NUM_RINGS; i++) {
2009 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2010
2011 if (!list_empty(&ring->gpu_write_list)) {
2012 struct drm_i915_gem_request *request;
2013 int ret;
2014
2015 ret = i915_gem_flush_ring(ring,
2016 0, I915_GEM_GPU_DOMAINS);
2017 request = kzalloc(sizeof(*request), GFP_KERNEL);
2018 if (ret || request == NULL ||
2019 i915_add_request(ring, NULL, request))
2020 kfree(request);
2021 }
2022
2023 idle &= list_empty(&ring->request_list);
2024 }
2025
2026 if (!dev_priv->mm.suspended && !idle)
2027 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2028
2029 mutex_unlock(&dev->struct_mutex);
2030 }
2031
2032 /**
2033 * Waits for a sequence number to be signaled, and cleans up the
2034 * request and object lists appropriately for that event.
2035 */
2036 int
2037 i915_wait_request(struct intel_ring_buffer *ring,
2038 uint32_t seqno)
2039 {
2040 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2041 u32 ier;
2042 int ret = 0;
2043
2044 BUG_ON(seqno == 0);
2045
2046 if (atomic_read(&dev_priv->mm.wedged)) {
2047 struct completion *x = &dev_priv->error_completion;
2048 bool recovery_complete;
2049 unsigned long flags;
2050
2051 /* Give the error handler a chance to run. */
2052 spin_lock_irqsave(&x->wait.lock, flags);
2053 recovery_complete = x->done > 0;
2054 spin_unlock_irqrestore(&x->wait.lock, flags);
2055
2056 return recovery_complete ? -EIO : -EAGAIN;
2057 }
2058
2059 if (seqno == ring->outstanding_lazy_request) {
2060 struct drm_i915_gem_request *request;
2061
2062 request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 if (request == NULL)
2064 return -ENOMEM;
2065
2066 ret = i915_add_request(ring, NULL, request);
2067 if (ret) {
2068 kfree(request);
2069 return ret;
2070 }
2071
2072 seqno = request->seqno;
2073 }
2074
2075 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2076 if (HAS_PCH_SPLIT(ring->dev))
2077 ier = I915_READ(DEIER) | I915_READ(GTIER);
2078 else
2079 ier = I915_READ(IER);
2080 if (!ier) {
2081 DRM_ERROR("something (likely vbetool) disabled "
2082 "interrupts, re-enabling\n");
2083 i915_driver_irq_preinstall(ring->dev);
2084 i915_driver_irq_postinstall(ring->dev);
2085 }
2086
2087 trace_i915_gem_request_wait_begin(ring, seqno);
2088
2089 ring->waiting_seqno = seqno;
2090 if (ring->irq_get(ring)) {
2091 if (dev_priv->mm.interruptible)
2092 ret = wait_event_interruptible(ring->irq_queue,
2093 i915_seqno_passed(ring->get_seqno(ring), seqno)
2094 || atomic_read(&dev_priv->mm.wedged));
2095 else
2096 wait_event(ring->irq_queue,
2097 i915_seqno_passed(ring->get_seqno(ring), seqno)
2098 || atomic_read(&dev_priv->mm.wedged));
2099
2100 ring->irq_put(ring);
2101 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2102 seqno) ||
2103 atomic_read(&dev_priv->mm.wedged), 3000))
2104 ret = -EBUSY;
2105 ring->waiting_seqno = 0;
2106
2107 trace_i915_gem_request_wait_end(ring, seqno);
2108 }
2109 if (atomic_read(&dev_priv->mm.wedged))
2110 ret = -EAGAIN;
2111
2112 if (ret && ret != -ERESTARTSYS)
2113 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2114 __func__, ret, seqno, ring->get_seqno(ring),
2115 dev_priv->next_seqno);
2116
2117 /* Directly dispatch request retiring. While we have the work queue
2118 * to handle this, the waiter on a request often wants an associated
2119 * buffer to have made it to the inactive list, and we would need
2120 * a separate wait queue to handle that.
2121 */
2122 if (ret == 0)
2123 i915_gem_retire_requests_ring(ring);
2124
2125 return ret;
2126 }
2127
2128 /**
2129 * Ensures that all rendering to the object has completed and the object is
2130 * safe to unbind from the GTT or access from the CPU.
2131 */
2132 int
2133 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2134 {
2135 int ret;
2136
2137 /* This function only exists to support waiting for existing rendering,
2138 * not for emitting required flushes.
2139 */
2140 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2141
2142 /* If there is rendering queued on the buffer being evicted, wait for
2143 * it.
2144 */
2145 if (obj->active) {
2146 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2147 if (ret)
2148 return ret;
2149 }
2150
2151 return 0;
2152 }
2153
2154 /**
2155 * Unbinds an object from the GTT aperture.
2156 */
2157 int
2158 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2159 {
2160 int ret = 0;
2161
2162 if (obj->gtt_space == NULL)
2163 return 0;
2164
2165 if (obj->pin_count != 0) {
2166 DRM_ERROR("Attempting to unbind pinned buffer\n");
2167 return -EINVAL;
2168 }
2169
2170 /* blow away mappings if mapped through GTT */
2171 i915_gem_release_mmap(obj);
2172
2173 /* Move the object to the CPU domain to ensure that
2174 * any possible CPU writes while it's not in the GTT
2175 * are flushed when we go to remap it. This will
2176 * also ensure that all pending GPU writes are finished
2177 * before we unbind.
2178 */
2179 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2180 if (ret == -ERESTARTSYS)
2181 return ret;
2182 /* Continue on if we fail due to EIO, the GPU is hung so we
2183 * should be safe and we need to cleanup or else we might
2184 * cause memory corruption through use-after-free.
2185 */
2186 if (ret) {
2187 i915_gem_clflush_object(obj);
2188 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2189 }
2190
2191 /* release the fence reg _after_ flushing */
2192 ret = i915_gem_object_put_fence(obj);
2193 if (ret == -ERESTARTSYS)
2194 return ret;
2195
2196 trace_i915_gem_object_unbind(obj);
2197
2198 i915_gem_gtt_unbind_object(obj);
2199 i915_gem_object_put_pages_gtt(obj);
2200
2201 list_del_init(&obj->gtt_list);
2202 list_del_init(&obj->mm_list);
2203 /* Avoid an unnecessary call to unbind on rebind. */
2204 obj->map_and_fenceable = true;
2205
2206 drm_mm_put_block(obj->gtt_space);
2207 obj->gtt_space = NULL;
2208 obj->gtt_offset = 0;
2209
2210 if (i915_gem_object_is_purgeable(obj))
2211 i915_gem_object_truncate(obj);
2212
2213 return ret;
2214 }
2215
2216 int
2217 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2218 uint32_t invalidate_domains,
2219 uint32_t flush_domains)
2220 {
2221 int ret;
2222
2223 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2224 return 0;
2225
2226 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2227
2228 ret = ring->flush(ring, invalidate_domains, flush_domains);
2229 if (ret)
2230 return ret;
2231
2232 if (flush_domains & I915_GEM_GPU_DOMAINS)
2233 i915_gem_process_flushing_list(ring, flush_domains);
2234
2235 return 0;
2236 }
2237
2238 static int i915_ring_idle(struct intel_ring_buffer *ring)
2239 {
2240 int ret;
2241
2242 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2243 return 0;
2244
2245 if (!list_empty(&ring->gpu_write_list)) {
2246 ret = i915_gem_flush_ring(ring,
2247 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2248 if (ret)
2249 return ret;
2250 }
2251
2252 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2253 }
2254
2255 int
2256 i915_gpu_idle(struct drm_device *dev)
2257 {
2258 drm_i915_private_t *dev_priv = dev->dev_private;
2259 bool lists_empty;
2260 int ret, i;
2261
2262 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2263 list_empty(&dev_priv->mm.active_list));
2264 if (lists_empty)
2265 return 0;
2266
2267 /* Flush everything onto the inactive list. */
2268 for (i = 0; i < I915_NUM_RINGS; i++) {
2269 ret = i915_ring_idle(&dev_priv->ring[i]);
2270 if (ret)
2271 return ret;
2272 }
2273
2274 return 0;
2275 }
2276
2277 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2278 struct intel_ring_buffer *pipelined)
2279 {
2280 struct drm_device *dev = obj->base.dev;
2281 drm_i915_private_t *dev_priv = dev->dev_private;
2282 u32 size = obj->gtt_space->size;
2283 int regnum = obj->fence_reg;
2284 uint64_t val;
2285
2286 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2287 0xfffff000) << 32;
2288 val |= obj->gtt_offset & 0xfffff000;
2289 val |= (uint64_t)((obj->stride / 128) - 1) <<
2290 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2291
2292 if (obj->tiling_mode == I915_TILING_Y)
2293 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2294 val |= I965_FENCE_REG_VALID;
2295
2296 if (pipelined) {
2297 int ret = intel_ring_begin(pipelined, 6);
2298 if (ret)
2299 return ret;
2300
2301 intel_ring_emit(pipelined, MI_NOOP);
2302 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2303 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2304 intel_ring_emit(pipelined, (u32)val);
2305 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2306 intel_ring_emit(pipelined, (u32)(val >> 32));
2307 intel_ring_advance(pipelined);
2308 } else
2309 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2310
2311 return 0;
2312 }
2313
2314 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2315 struct intel_ring_buffer *pipelined)
2316 {
2317 struct drm_device *dev = obj->base.dev;
2318 drm_i915_private_t *dev_priv = dev->dev_private;
2319 u32 size = obj->gtt_space->size;
2320 int regnum = obj->fence_reg;
2321 uint64_t val;
2322
2323 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2324 0xfffff000) << 32;
2325 val |= obj->gtt_offset & 0xfffff000;
2326 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2327 if (obj->tiling_mode == I915_TILING_Y)
2328 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2329 val |= I965_FENCE_REG_VALID;
2330
2331 if (pipelined) {
2332 int ret = intel_ring_begin(pipelined, 6);
2333 if (ret)
2334 return ret;
2335
2336 intel_ring_emit(pipelined, MI_NOOP);
2337 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2338 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2339 intel_ring_emit(pipelined, (u32)val);
2340 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2341 intel_ring_emit(pipelined, (u32)(val >> 32));
2342 intel_ring_advance(pipelined);
2343 } else
2344 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2345
2346 return 0;
2347 }
2348
2349 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2350 struct intel_ring_buffer *pipelined)
2351 {
2352 struct drm_device *dev = obj->base.dev;
2353 drm_i915_private_t *dev_priv = dev->dev_private;
2354 u32 size = obj->gtt_space->size;
2355 u32 fence_reg, val, pitch_val;
2356 int tile_width;
2357
2358 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2359 (size & -size) != size ||
2360 (obj->gtt_offset & (size - 1)),
2361 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2362 obj->gtt_offset, obj->map_and_fenceable, size))
2363 return -EINVAL;
2364
2365 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2366 tile_width = 128;
2367 else
2368 tile_width = 512;
2369
2370 /* Note: pitch better be a power of two tile widths */
2371 pitch_val = obj->stride / tile_width;
2372 pitch_val = ffs(pitch_val) - 1;
2373
2374 val = obj->gtt_offset;
2375 if (obj->tiling_mode == I915_TILING_Y)
2376 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2377 val |= I915_FENCE_SIZE_BITS(size);
2378 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2379 val |= I830_FENCE_REG_VALID;
2380
2381 fence_reg = obj->fence_reg;
2382 if (fence_reg < 8)
2383 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2384 else
2385 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2386
2387 if (pipelined) {
2388 int ret = intel_ring_begin(pipelined, 4);
2389 if (ret)
2390 return ret;
2391
2392 intel_ring_emit(pipelined, MI_NOOP);
2393 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2394 intel_ring_emit(pipelined, fence_reg);
2395 intel_ring_emit(pipelined, val);
2396 intel_ring_advance(pipelined);
2397 } else
2398 I915_WRITE(fence_reg, val);
2399
2400 return 0;
2401 }
2402
2403 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2404 struct intel_ring_buffer *pipelined)
2405 {
2406 struct drm_device *dev = obj->base.dev;
2407 drm_i915_private_t *dev_priv = dev->dev_private;
2408 u32 size = obj->gtt_space->size;
2409 int regnum = obj->fence_reg;
2410 uint32_t val;
2411 uint32_t pitch_val;
2412
2413 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2414 (size & -size) != size ||
2415 (obj->gtt_offset & (size - 1)),
2416 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2417 obj->gtt_offset, size))
2418 return -EINVAL;
2419
2420 pitch_val = obj->stride / 128;
2421 pitch_val = ffs(pitch_val) - 1;
2422
2423 val = obj->gtt_offset;
2424 if (obj->tiling_mode == I915_TILING_Y)
2425 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2426 val |= I830_FENCE_SIZE_BITS(size);
2427 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2428 val |= I830_FENCE_REG_VALID;
2429
2430 if (pipelined) {
2431 int ret = intel_ring_begin(pipelined, 4);
2432 if (ret)
2433 return ret;
2434
2435 intel_ring_emit(pipelined, MI_NOOP);
2436 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2437 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2438 intel_ring_emit(pipelined, val);
2439 intel_ring_advance(pipelined);
2440 } else
2441 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2442
2443 return 0;
2444 }
2445
2446 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2447 {
2448 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2449 }
2450
2451 static int
2452 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2453 struct intel_ring_buffer *pipelined)
2454 {
2455 int ret;
2456
2457 if (obj->fenced_gpu_access) {
2458 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2459 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2460 0, obj->base.write_domain);
2461 if (ret)
2462 return ret;
2463 }
2464
2465 obj->fenced_gpu_access = false;
2466 }
2467
2468 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2469 if (!ring_passed_seqno(obj->last_fenced_ring,
2470 obj->last_fenced_seqno)) {
2471 ret = i915_wait_request(obj->last_fenced_ring,
2472 obj->last_fenced_seqno);
2473 if (ret)
2474 return ret;
2475 }
2476
2477 obj->last_fenced_seqno = 0;
2478 obj->last_fenced_ring = NULL;
2479 }
2480
2481 /* Ensure that all CPU reads are completed before installing a fence
2482 * and all writes before removing the fence.
2483 */
2484 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2485 mb();
2486
2487 return 0;
2488 }
2489
2490 int
2491 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2492 {
2493 int ret;
2494
2495 if (obj->tiling_mode)
2496 i915_gem_release_mmap(obj);
2497
2498 ret = i915_gem_object_flush_fence(obj, NULL);
2499 if (ret)
2500 return ret;
2501
2502 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2504 i915_gem_clear_fence_reg(obj->base.dev,
2505 &dev_priv->fence_regs[obj->fence_reg]);
2506
2507 obj->fence_reg = I915_FENCE_REG_NONE;
2508 }
2509
2510 return 0;
2511 }
2512
2513 static struct drm_i915_fence_reg *
2514 i915_find_fence_reg(struct drm_device *dev,
2515 struct intel_ring_buffer *pipelined)
2516 {
2517 struct drm_i915_private *dev_priv = dev->dev_private;
2518 struct drm_i915_fence_reg *reg, *first, *avail;
2519 int i;
2520
2521 /* First try to find a free reg */
2522 avail = NULL;
2523 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2524 reg = &dev_priv->fence_regs[i];
2525 if (!reg->obj)
2526 return reg;
2527
2528 if (!reg->obj->pin_count)
2529 avail = reg;
2530 }
2531
2532 if (avail == NULL)
2533 return NULL;
2534
2535 /* None available, try to steal one or wait for a user to finish */
2536 avail = first = NULL;
2537 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2538 if (reg->obj->pin_count)
2539 continue;
2540
2541 if (first == NULL)
2542 first = reg;
2543
2544 if (!pipelined ||
2545 !reg->obj->last_fenced_ring ||
2546 reg->obj->last_fenced_ring == pipelined) {
2547 avail = reg;
2548 break;
2549 }
2550 }
2551
2552 if (avail == NULL)
2553 avail = first;
2554
2555 return avail;
2556 }
2557
2558 /**
2559 * i915_gem_object_get_fence - set up a fence reg for an object
2560 * @obj: object to map through a fence reg
2561 * @pipelined: ring on which to queue the change, or NULL for CPU access
2562 * @interruptible: must we wait uninterruptibly for the register to retire?
2563 *
2564 * When mapping objects through the GTT, userspace wants to be able to write
2565 * to them without having to worry about swizzling if the object is tiled.
2566 *
2567 * This function walks the fence regs looking for a free one for @obj,
2568 * stealing one if it can't find any.
2569 *
2570 * It then sets up the reg based on the object's properties: address, pitch
2571 * and tiling format.
2572 */
2573 int
2574 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2575 struct intel_ring_buffer *pipelined)
2576 {
2577 struct drm_device *dev = obj->base.dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct drm_i915_fence_reg *reg;
2580 int ret;
2581
2582 /* XXX disable pipelining. There are bugs. Shocking. */
2583 pipelined = NULL;
2584
2585 /* Just update our place in the LRU if our fence is getting reused. */
2586 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2587 reg = &dev_priv->fence_regs[obj->fence_reg];
2588 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2589
2590 if (obj->tiling_changed) {
2591 ret = i915_gem_object_flush_fence(obj, pipelined);
2592 if (ret)
2593 return ret;
2594
2595 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2596 pipelined = NULL;
2597
2598 if (pipelined) {
2599 reg->setup_seqno =
2600 i915_gem_next_request_seqno(pipelined);
2601 obj->last_fenced_seqno = reg->setup_seqno;
2602 obj->last_fenced_ring = pipelined;
2603 }
2604
2605 goto update;
2606 }
2607
2608 if (!pipelined) {
2609 if (reg->setup_seqno) {
2610 if (!ring_passed_seqno(obj->last_fenced_ring,
2611 reg->setup_seqno)) {
2612 ret = i915_wait_request(obj->last_fenced_ring,
2613 reg->setup_seqno);
2614 if (ret)
2615 return ret;
2616 }
2617
2618 reg->setup_seqno = 0;
2619 }
2620 } else if (obj->last_fenced_ring &&
2621 obj->last_fenced_ring != pipelined) {
2622 ret = i915_gem_object_flush_fence(obj, pipelined);
2623 if (ret)
2624 return ret;
2625 }
2626
2627 return 0;
2628 }
2629
2630 reg = i915_find_fence_reg(dev, pipelined);
2631 if (reg == NULL)
2632 return -ENOSPC;
2633
2634 ret = i915_gem_object_flush_fence(obj, pipelined);
2635 if (ret)
2636 return ret;
2637
2638 if (reg->obj) {
2639 struct drm_i915_gem_object *old = reg->obj;
2640
2641 drm_gem_object_reference(&old->base);
2642
2643 if (old->tiling_mode)
2644 i915_gem_release_mmap(old);
2645
2646 ret = i915_gem_object_flush_fence(old, pipelined);
2647 if (ret) {
2648 drm_gem_object_unreference(&old->base);
2649 return ret;
2650 }
2651
2652 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2653 pipelined = NULL;
2654
2655 old->fence_reg = I915_FENCE_REG_NONE;
2656 old->last_fenced_ring = pipelined;
2657 old->last_fenced_seqno =
2658 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2659
2660 drm_gem_object_unreference(&old->base);
2661 } else if (obj->last_fenced_seqno == 0)
2662 pipelined = NULL;
2663
2664 reg->obj = obj;
2665 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2666 obj->fence_reg = reg - dev_priv->fence_regs;
2667 obj->last_fenced_ring = pipelined;
2668
2669 reg->setup_seqno =
2670 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2671 obj->last_fenced_seqno = reg->setup_seqno;
2672
2673 update:
2674 obj->tiling_changed = false;
2675 switch (INTEL_INFO(dev)->gen) {
2676 case 7:
2677 case 6:
2678 ret = sandybridge_write_fence_reg(obj, pipelined);
2679 break;
2680 case 5:
2681 case 4:
2682 ret = i965_write_fence_reg(obj, pipelined);
2683 break;
2684 case 3:
2685 ret = i915_write_fence_reg(obj, pipelined);
2686 break;
2687 case 2:
2688 ret = i830_write_fence_reg(obj, pipelined);
2689 break;
2690 }
2691
2692 return ret;
2693 }
2694
2695 /**
2696 * i915_gem_clear_fence_reg - clear out fence register info
2697 * @obj: object to clear
2698 *
2699 * Zeroes out the fence register itself and clears out the associated
2700 * data structures in dev_priv and obj.
2701 */
2702 static void
2703 i915_gem_clear_fence_reg(struct drm_device *dev,
2704 struct drm_i915_fence_reg *reg)
2705 {
2706 drm_i915_private_t *dev_priv = dev->dev_private;
2707 uint32_t fence_reg = reg - dev_priv->fence_regs;
2708
2709 switch (INTEL_INFO(dev)->gen) {
2710 case 7:
2711 case 6:
2712 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2713 break;
2714 case 5:
2715 case 4:
2716 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2717 break;
2718 case 3:
2719 if (fence_reg >= 8)
2720 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2721 else
2722 case 2:
2723 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2724
2725 I915_WRITE(fence_reg, 0);
2726 break;
2727 }
2728
2729 list_del_init(&reg->lru_list);
2730 reg->obj = NULL;
2731 reg->setup_seqno = 0;
2732 }
2733
2734 /**
2735 * Finds free space in the GTT aperture and binds the object there.
2736 */
2737 static int
2738 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2739 unsigned alignment,
2740 bool map_and_fenceable)
2741 {
2742 struct drm_device *dev = obj->base.dev;
2743 drm_i915_private_t *dev_priv = dev->dev_private;
2744 struct drm_mm_node *free_space;
2745 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2746 u32 size, fence_size, fence_alignment, unfenced_alignment;
2747 bool mappable, fenceable;
2748 int ret;
2749
2750 if (obj->madv != I915_MADV_WILLNEED) {
2751 DRM_ERROR("Attempting to bind a purgeable object\n");
2752 return -EINVAL;
2753 }
2754
2755 fence_size = i915_gem_get_gtt_size(obj);
2756 fence_alignment = i915_gem_get_gtt_alignment(obj);
2757 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2758
2759 if (alignment == 0)
2760 alignment = map_and_fenceable ? fence_alignment :
2761 unfenced_alignment;
2762 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2763 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2764 return -EINVAL;
2765 }
2766
2767 size = map_and_fenceable ? fence_size : obj->base.size;
2768
2769 /* If the object is bigger than the entire aperture, reject it early
2770 * before evicting everything in a vain attempt to find space.
2771 */
2772 if (obj->base.size >
2773 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2774 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2775 return -E2BIG;
2776 }
2777
2778 search_free:
2779 if (map_and_fenceable)
2780 free_space =
2781 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2782 size, alignment, 0,
2783 dev_priv->mm.gtt_mappable_end,
2784 0);
2785 else
2786 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2787 size, alignment, 0);
2788
2789 if (free_space != NULL) {
2790 if (map_and_fenceable)
2791 obj->gtt_space =
2792 drm_mm_get_block_range_generic(free_space,
2793 size, alignment, 0,
2794 dev_priv->mm.gtt_mappable_end,
2795 0);
2796 else
2797 obj->gtt_space =
2798 drm_mm_get_block(free_space, size, alignment);
2799 }
2800 if (obj->gtt_space == NULL) {
2801 /* If the gtt is empty and we're still having trouble
2802 * fitting our object in, we're out of memory.
2803 */
2804 ret = i915_gem_evict_something(dev, size, alignment,
2805 map_and_fenceable);
2806 if (ret)
2807 return ret;
2808
2809 goto search_free;
2810 }
2811
2812 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2813 if (ret) {
2814 drm_mm_put_block(obj->gtt_space);
2815 obj->gtt_space = NULL;
2816
2817 if (ret == -ENOMEM) {
2818 /* first try to reclaim some memory by clearing the GTT */
2819 ret = i915_gem_evict_everything(dev, false);
2820 if (ret) {
2821 /* now try to shrink everyone else */
2822 if (gfpmask) {
2823 gfpmask = 0;
2824 goto search_free;
2825 }
2826
2827 return -ENOMEM;
2828 }
2829
2830 goto search_free;
2831 }
2832
2833 return ret;
2834 }
2835
2836 ret = i915_gem_gtt_bind_object(obj);
2837 if (ret) {
2838 i915_gem_object_put_pages_gtt(obj);
2839 drm_mm_put_block(obj->gtt_space);
2840 obj->gtt_space = NULL;
2841
2842 if (i915_gem_evict_everything(dev, false))
2843 return ret;
2844
2845 goto search_free;
2846 }
2847
2848 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2849 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2850
2851 /* Assert that the object is not currently in any GPU domain. As it
2852 * wasn't in the GTT, there shouldn't be any way it could have been in
2853 * a GPU cache
2854 */
2855 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2856 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2857
2858 obj->gtt_offset = obj->gtt_space->start;
2859
2860 fenceable =
2861 obj->gtt_space->size == fence_size &&
2862 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2863
2864 mappable =
2865 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2866
2867 obj->map_and_fenceable = mappable && fenceable;
2868
2869 trace_i915_gem_object_bind(obj, map_and_fenceable);
2870 return 0;
2871 }
2872
2873 void
2874 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2875 {
2876 /* If we don't have a page list set up, then we're not pinned
2877 * to GPU, and we can ignore the cache flush because it'll happen
2878 * again at bind time.
2879 */
2880 if (obj->pages == NULL)
2881 return;
2882
2883 /* If the GPU is snooping the contents of the CPU cache,
2884 * we do not need to manually clear the CPU cache lines. However,
2885 * the caches are only snooped when the render cache is
2886 * flushed/invalidated. As we always have to emit invalidations
2887 * and flushes when moving into and out of the RENDER domain, correct
2888 * snooping behaviour occurs naturally as the result of our domain
2889 * tracking.
2890 */
2891 if (obj->cache_level != I915_CACHE_NONE)
2892 return;
2893
2894 trace_i915_gem_object_clflush(obj);
2895
2896 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2897 }
2898
2899 /** Flushes any GPU write domain for the object if it's dirty. */
2900 static int
2901 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2902 {
2903 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2904 return 0;
2905
2906 /* Queue the GPU write cache flushing we need. */
2907 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2908 }
2909
2910 /** Flushes the GTT write domain for the object if it's dirty. */
2911 static void
2912 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2913 {
2914 uint32_t old_write_domain;
2915
2916 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2917 return;
2918
2919 /* No actual flushing is required for the GTT write domain. Writes
2920 * to it immediately go to main memory as far as we know, so there's
2921 * no chipset flush. It also doesn't land in render cache.
2922 *
2923 * However, we do have to enforce the order so that all writes through
2924 * the GTT land before any writes to the device, such as updates to
2925 * the GATT itself.
2926 */
2927 wmb();
2928
2929 i915_gem_release_mmap(obj);
2930
2931 old_write_domain = obj->base.write_domain;
2932 obj->base.write_domain = 0;
2933
2934 trace_i915_gem_object_change_domain(obj,
2935 obj->base.read_domains,
2936 old_write_domain);
2937 }
2938
2939 /** Flushes the CPU write domain for the object if it's dirty. */
2940 static void
2941 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2942 {
2943 uint32_t old_write_domain;
2944
2945 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2946 return;
2947
2948 i915_gem_clflush_object(obj);
2949 intel_gtt_chipset_flush();
2950 old_write_domain = obj->base.write_domain;
2951 obj->base.write_domain = 0;
2952
2953 trace_i915_gem_object_change_domain(obj,
2954 obj->base.read_domains,
2955 old_write_domain);
2956 }
2957
2958 /**
2959 * Moves a single object to the GTT read, and possibly write domain.
2960 *
2961 * This function returns when the move is complete, including waiting on
2962 * flushes to occur.
2963 */
2964 int
2965 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2966 {
2967 uint32_t old_write_domain, old_read_domains;
2968 int ret;
2969
2970 /* Not valid to be called on unbound objects. */
2971 if (obj->gtt_space == NULL)
2972 return -EINVAL;
2973
2974 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2975 return 0;
2976
2977 ret = i915_gem_object_flush_gpu_write_domain(obj);
2978 if (ret)
2979 return ret;
2980
2981 if (obj->pending_gpu_write || write) {
2982 ret = i915_gem_object_wait_rendering(obj);
2983 if (ret)
2984 return ret;
2985 }
2986
2987 i915_gem_object_flush_cpu_write_domain(obj);
2988
2989 old_write_domain = obj->base.write_domain;
2990 old_read_domains = obj->base.read_domains;
2991
2992 /* It should now be out of any other write domains, and we can update
2993 * the domain values for our changes.
2994 */
2995 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2996 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2997 if (write) {
2998 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2999 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3000 obj->dirty = 1;
3001 }
3002
3003 trace_i915_gem_object_change_domain(obj,
3004 old_read_domains,
3005 old_write_domain);
3006
3007 return 0;
3008 }
3009
3010 /*
3011 * Prepare buffer for display plane. Use uninterruptible for possible flush
3012 * wait, as in modesetting process we're not supposed to be interrupted.
3013 */
3014 int
3015 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3016 struct intel_ring_buffer *pipelined)
3017 {
3018 uint32_t old_read_domains;
3019 int ret;
3020
3021 /* Not valid to be called on unbound objects. */
3022 if (obj->gtt_space == NULL)
3023 return -EINVAL;
3024
3025 ret = i915_gem_object_flush_gpu_write_domain(obj);
3026 if (ret)
3027 return ret;
3028
3029
3030 /* Currently, we are always called from an non-interruptible context. */
3031 if (pipelined != obj->ring) {
3032 ret = i915_gem_object_wait_rendering(obj);
3033 if (ret)
3034 return ret;
3035 }
3036
3037 i915_gem_object_flush_cpu_write_domain(obj);
3038
3039 old_read_domains = obj->base.read_domains;
3040 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3041
3042 trace_i915_gem_object_change_domain(obj,
3043 old_read_domains,
3044 obj->base.write_domain);
3045
3046 return 0;
3047 }
3048
3049 int
3050 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3051 {
3052 int ret;
3053
3054 if (!obj->active)
3055 return 0;
3056
3057 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3058 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3059 if (ret)
3060 return ret;
3061 }
3062
3063 return i915_gem_object_wait_rendering(obj);
3064 }
3065
3066 /**
3067 * Moves a single object to the CPU read, and possibly write domain.
3068 *
3069 * This function returns when the move is complete, including waiting on
3070 * flushes to occur.
3071 */
3072 static int
3073 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3074 {
3075 uint32_t old_write_domain, old_read_domains;
3076 int ret;
3077
3078 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3079 return 0;
3080
3081 ret = i915_gem_object_flush_gpu_write_domain(obj);
3082 if (ret)
3083 return ret;
3084
3085 ret = i915_gem_object_wait_rendering(obj);
3086 if (ret)
3087 return ret;
3088
3089 i915_gem_object_flush_gtt_write_domain(obj);
3090
3091 /* If we have a partially-valid cache of the object in the CPU,
3092 * finish invalidating it and free the per-page flags.
3093 */
3094 i915_gem_object_set_to_full_cpu_read_domain(obj);
3095
3096 old_write_domain = obj->base.write_domain;
3097 old_read_domains = obj->base.read_domains;
3098
3099 /* Flush the CPU cache if it's still invalid. */
3100 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3101 i915_gem_clflush_object(obj);
3102
3103 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3104 }
3105
3106 /* It should now be out of any other write domains, and we can update
3107 * the domain values for our changes.
3108 */
3109 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3110
3111 /* If we're writing through the CPU, then the GPU read domains will
3112 * need to be invalidated at next use.
3113 */
3114 if (write) {
3115 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3116 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3117 }
3118
3119 trace_i915_gem_object_change_domain(obj,
3120 old_read_domains,
3121 old_write_domain);
3122
3123 return 0;
3124 }
3125
3126 /**
3127 * Moves the object from a partially CPU read to a full one.
3128 *
3129 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3130 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3131 */
3132 static void
3133 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3134 {
3135 if (!obj->page_cpu_valid)
3136 return;
3137
3138 /* If we're partially in the CPU read domain, finish moving it in.
3139 */
3140 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3141 int i;
3142
3143 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3144 if (obj->page_cpu_valid[i])
3145 continue;
3146 drm_clflush_pages(obj->pages + i, 1);
3147 }
3148 }
3149
3150 /* Free the page_cpu_valid mappings which are now stale, whether
3151 * or not we've got I915_GEM_DOMAIN_CPU.
3152 */
3153 kfree(obj->page_cpu_valid);
3154 obj->page_cpu_valid = NULL;
3155 }
3156
3157 /**
3158 * Set the CPU read domain on a range of the object.
3159 *
3160 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3161 * not entirely valid. The page_cpu_valid member of the object flags which
3162 * pages have been flushed, and will be respected by
3163 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3164 * of the whole object.
3165 *
3166 * This function returns when the move is complete, including waiting on
3167 * flushes to occur.
3168 */
3169 static int
3170 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3171 uint64_t offset, uint64_t size)
3172 {
3173 uint32_t old_read_domains;
3174 int i, ret;
3175
3176 if (offset == 0 && size == obj->base.size)
3177 return i915_gem_object_set_to_cpu_domain(obj, 0);
3178
3179 ret = i915_gem_object_flush_gpu_write_domain(obj);
3180 if (ret)
3181 return ret;
3182
3183 ret = i915_gem_object_wait_rendering(obj);
3184 if (ret)
3185 return ret;
3186
3187 i915_gem_object_flush_gtt_write_domain(obj);
3188
3189 /* If we're already fully in the CPU read domain, we're done. */
3190 if (obj->page_cpu_valid == NULL &&
3191 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3192 return 0;
3193
3194 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3195 * newly adding I915_GEM_DOMAIN_CPU
3196 */
3197 if (obj->page_cpu_valid == NULL) {
3198 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3199 GFP_KERNEL);
3200 if (obj->page_cpu_valid == NULL)
3201 return -ENOMEM;
3202 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3203 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3204
3205 /* Flush the cache on any pages that are still invalid from the CPU's
3206 * perspective.
3207 */
3208 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3209 i++) {
3210 if (obj->page_cpu_valid[i])
3211 continue;
3212
3213 drm_clflush_pages(obj->pages + i, 1);
3214
3215 obj->page_cpu_valid[i] = 1;
3216 }
3217
3218 /* It should now be out of any other write domains, and we can update
3219 * the domain values for our changes.
3220 */
3221 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3222
3223 old_read_domains = obj->base.read_domains;
3224 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3225
3226 trace_i915_gem_object_change_domain(obj,
3227 old_read_domains,
3228 obj->base.write_domain);
3229
3230 return 0;
3231 }
3232
3233 /* Throttle our rendering by waiting until the ring has completed our requests
3234 * emitted over 20 msec ago.
3235 *
3236 * Note that if we were to use the current jiffies each time around the loop,
3237 * we wouldn't escape the function with any frames outstanding if the time to
3238 * render a frame was over 20ms.
3239 *
3240 * This should get us reasonable parallelism between CPU and GPU but also
3241 * relatively low latency when blocking on a particular request to finish.
3242 */
3243 static int
3244 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3245 {
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 struct drm_i915_file_private *file_priv = file->driver_priv;
3248 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3249 struct drm_i915_gem_request *request;
3250 struct intel_ring_buffer *ring = NULL;
3251 u32 seqno = 0;
3252 int ret;
3253
3254 if (atomic_read(&dev_priv->mm.wedged))
3255 return -EIO;
3256
3257 spin_lock(&file_priv->mm.lock);
3258 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3259 if (time_after_eq(request->emitted_jiffies, recent_enough))
3260 break;
3261
3262 ring = request->ring;
3263 seqno = request->seqno;
3264 }
3265 spin_unlock(&file_priv->mm.lock);
3266
3267 if (seqno == 0)
3268 return 0;
3269
3270 ret = 0;
3271 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3272 /* And wait for the seqno passing without holding any locks and
3273 * causing extra latency for others. This is safe as the irq
3274 * generation is designed to be run atomically and so is
3275 * lockless.
3276 */
3277 if (ring->irq_get(ring)) {
3278 ret = wait_event_interruptible(ring->irq_queue,
3279 i915_seqno_passed(ring->get_seqno(ring), seqno)
3280 || atomic_read(&dev_priv->mm.wedged));
3281 ring->irq_put(ring);
3282
3283 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3284 ret = -EIO;
3285 }
3286 }
3287
3288 if (ret == 0)
3289 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3290
3291 return ret;
3292 }
3293
3294 int
3295 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3296 uint32_t alignment,
3297 bool map_and_fenceable)
3298 {
3299 struct drm_device *dev = obj->base.dev;
3300 struct drm_i915_private *dev_priv = dev->dev_private;
3301 int ret;
3302
3303 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3304 WARN_ON(i915_verify_lists(dev));
3305
3306 if (obj->gtt_space != NULL) {
3307 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3308 (map_and_fenceable && !obj->map_and_fenceable)) {
3309 WARN(obj->pin_count,
3310 "bo is already pinned with incorrect alignment:"
3311 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3312 " obj->map_and_fenceable=%d\n",
3313 obj->gtt_offset, alignment,
3314 map_and_fenceable,
3315 obj->map_and_fenceable);
3316 ret = i915_gem_object_unbind(obj);
3317 if (ret)
3318 return ret;
3319 }
3320 }
3321
3322 if (obj->gtt_space == NULL) {
3323 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3324 map_and_fenceable);
3325 if (ret)
3326 return ret;
3327 }
3328
3329 if (obj->pin_count++ == 0) {
3330 if (!obj->active)
3331 list_move_tail(&obj->mm_list,
3332 &dev_priv->mm.pinned_list);
3333 }
3334 obj->pin_mappable |= map_and_fenceable;
3335
3336 WARN_ON(i915_verify_lists(dev));
3337 return 0;
3338 }
3339
3340 void
3341 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3342 {
3343 struct drm_device *dev = obj->base.dev;
3344 drm_i915_private_t *dev_priv = dev->dev_private;
3345
3346 WARN_ON(i915_verify_lists(dev));
3347 BUG_ON(obj->pin_count == 0);
3348 BUG_ON(obj->gtt_space == NULL);
3349
3350 if (--obj->pin_count == 0) {
3351 if (!obj->active)
3352 list_move_tail(&obj->mm_list,
3353 &dev_priv->mm.inactive_list);
3354 obj->pin_mappable = false;
3355 }
3356 WARN_ON(i915_verify_lists(dev));
3357 }
3358
3359 int
3360 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3361 struct drm_file *file)
3362 {
3363 struct drm_i915_gem_pin *args = data;
3364 struct drm_i915_gem_object *obj;
3365 int ret;
3366
3367 ret = i915_mutex_lock_interruptible(dev);
3368 if (ret)
3369 return ret;
3370
3371 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3372 if (&obj->base == NULL) {
3373 ret = -ENOENT;
3374 goto unlock;
3375 }
3376
3377 if (obj->madv != I915_MADV_WILLNEED) {
3378 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3379 ret = -EINVAL;
3380 goto out;
3381 }
3382
3383 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3384 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3385 args->handle);
3386 ret = -EINVAL;
3387 goto out;
3388 }
3389
3390 obj->user_pin_count++;
3391 obj->pin_filp = file;
3392 if (obj->user_pin_count == 1) {
3393 ret = i915_gem_object_pin(obj, args->alignment, true);
3394 if (ret)
3395 goto out;
3396 }
3397
3398 /* XXX - flush the CPU caches for pinned objects
3399 * as the X server doesn't manage domains yet
3400 */
3401 i915_gem_object_flush_cpu_write_domain(obj);
3402 args->offset = obj->gtt_offset;
3403 out:
3404 drm_gem_object_unreference(&obj->base);
3405 unlock:
3406 mutex_unlock(&dev->struct_mutex);
3407 return ret;
3408 }
3409
3410 int
3411 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3412 struct drm_file *file)
3413 {
3414 struct drm_i915_gem_pin *args = data;
3415 struct drm_i915_gem_object *obj;
3416 int ret;
3417
3418 ret = i915_mutex_lock_interruptible(dev);
3419 if (ret)
3420 return ret;
3421
3422 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3423 if (&obj->base == NULL) {
3424 ret = -ENOENT;
3425 goto unlock;
3426 }
3427
3428 if (obj->pin_filp != file) {
3429 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3430 args->handle);
3431 ret = -EINVAL;
3432 goto out;
3433 }
3434 obj->user_pin_count--;
3435 if (obj->user_pin_count == 0) {
3436 obj->pin_filp = NULL;
3437 i915_gem_object_unpin(obj);
3438 }
3439
3440 out:
3441 drm_gem_object_unreference(&obj->base);
3442 unlock:
3443 mutex_unlock(&dev->struct_mutex);
3444 return ret;
3445 }
3446
3447 int
3448 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3449 struct drm_file *file)
3450 {
3451 struct drm_i915_gem_busy *args = data;
3452 struct drm_i915_gem_object *obj;
3453 int ret;
3454
3455 ret = i915_mutex_lock_interruptible(dev);
3456 if (ret)
3457 return ret;
3458
3459 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3460 if (&obj->base == NULL) {
3461 ret = -ENOENT;
3462 goto unlock;
3463 }
3464
3465 /* Count all active objects as busy, even if they are currently not used
3466 * by the gpu. Users of this interface expect objects to eventually
3467 * become non-busy without any further actions, therefore emit any
3468 * necessary flushes here.
3469 */
3470 args->busy = obj->active;
3471 if (args->busy) {
3472 /* Unconditionally flush objects, even when the gpu still uses this
3473 * object. Userspace calling this function indicates that it wants to
3474 * use this buffer rather sooner than later, so issuing the required
3475 * flush earlier is beneficial.
3476 */
3477 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3478 ret = i915_gem_flush_ring(obj->ring,
3479 0, obj->base.write_domain);
3480 } else if (obj->ring->outstanding_lazy_request ==
3481 obj->last_rendering_seqno) {
3482 struct drm_i915_gem_request *request;
3483
3484 /* This ring is not being cleared by active usage,
3485 * so emit a request to do so.
3486 */
3487 request = kzalloc(sizeof(*request), GFP_KERNEL);
3488 if (request)
3489 ret = i915_add_request(obj->ring, NULL,request);
3490 else
3491 ret = -ENOMEM;
3492 }
3493
3494 /* Update the active list for the hardware's current position.
3495 * Otherwise this only updates on a delayed timer or when irqs
3496 * are actually unmasked, and our working set ends up being
3497 * larger than required.
3498 */
3499 i915_gem_retire_requests_ring(obj->ring);
3500
3501 args->busy = obj->active;
3502 }
3503
3504 drm_gem_object_unreference(&obj->base);
3505 unlock:
3506 mutex_unlock(&dev->struct_mutex);
3507 return ret;
3508 }
3509
3510 int
3511 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3512 struct drm_file *file_priv)
3513 {
3514 return i915_gem_ring_throttle(dev, file_priv);
3515 }
3516
3517 int
3518 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3519 struct drm_file *file_priv)
3520 {
3521 struct drm_i915_gem_madvise *args = data;
3522 struct drm_i915_gem_object *obj;
3523 int ret;
3524
3525 switch (args->madv) {
3526 case I915_MADV_DONTNEED:
3527 case I915_MADV_WILLNEED:
3528 break;
3529 default:
3530 return -EINVAL;
3531 }
3532
3533 ret = i915_mutex_lock_interruptible(dev);
3534 if (ret)
3535 return ret;
3536
3537 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3538 if (&obj->base == NULL) {
3539 ret = -ENOENT;
3540 goto unlock;
3541 }
3542
3543 if (obj->pin_count) {
3544 ret = -EINVAL;
3545 goto out;
3546 }
3547
3548 if (obj->madv != __I915_MADV_PURGED)
3549 obj->madv = args->madv;
3550
3551 /* if the object is no longer bound, discard its backing storage */
3552 if (i915_gem_object_is_purgeable(obj) &&
3553 obj->gtt_space == NULL)
3554 i915_gem_object_truncate(obj);
3555
3556 args->retained = obj->madv != __I915_MADV_PURGED;
3557
3558 out:
3559 drm_gem_object_unreference(&obj->base);
3560 unlock:
3561 mutex_unlock(&dev->struct_mutex);
3562 return ret;
3563 }
3564
3565 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3566 size_t size)
3567 {
3568 struct drm_i915_private *dev_priv = dev->dev_private;
3569 struct drm_i915_gem_object *obj;
3570
3571 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3572 if (obj == NULL)
3573 return NULL;
3574
3575 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3576 kfree(obj);
3577 return NULL;
3578 }
3579
3580 i915_gem_info_add_obj(dev_priv, size);
3581
3582 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3583 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3584
3585 obj->cache_level = I915_CACHE_NONE;
3586 obj->base.driver_private = NULL;
3587 obj->fence_reg = I915_FENCE_REG_NONE;
3588 INIT_LIST_HEAD(&obj->mm_list);
3589 INIT_LIST_HEAD(&obj->gtt_list);
3590 INIT_LIST_HEAD(&obj->ring_list);
3591 INIT_LIST_HEAD(&obj->exec_list);
3592 INIT_LIST_HEAD(&obj->gpu_write_list);
3593 obj->madv = I915_MADV_WILLNEED;
3594 /* Avoid an unnecessary call to unbind on the first bind. */
3595 obj->map_and_fenceable = true;
3596
3597 return obj;
3598 }
3599
3600 int i915_gem_init_object(struct drm_gem_object *obj)
3601 {
3602 BUG();
3603
3604 return 0;
3605 }
3606
3607 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3608 {
3609 struct drm_device *dev = obj->base.dev;
3610 drm_i915_private_t *dev_priv = dev->dev_private;
3611 int ret;
3612
3613 ret = i915_gem_object_unbind(obj);
3614 if (ret == -ERESTARTSYS) {
3615 list_move(&obj->mm_list,
3616 &dev_priv->mm.deferred_free_list);
3617 return;
3618 }
3619
3620 trace_i915_gem_object_destroy(obj);
3621
3622 if (obj->base.map_list.map)
3623 i915_gem_free_mmap_offset(obj);
3624
3625 drm_gem_object_release(&obj->base);
3626 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3627
3628 kfree(obj->page_cpu_valid);
3629 kfree(obj->bit_17);
3630 kfree(obj);
3631 }
3632
3633 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3634 {
3635 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3636 struct drm_device *dev = obj->base.dev;
3637
3638 while (obj->pin_count > 0)
3639 i915_gem_object_unpin(obj);
3640
3641 if (obj->phys_obj)
3642 i915_gem_detach_phys_object(dev, obj);
3643
3644 i915_gem_free_object_tail(obj);
3645 }
3646
3647 int
3648 i915_gem_idle(struct drm_device *dev)
3649 {
3650 drm_i915_private_t *dev_priv = dev->dev_private;
3651 int ret;
3652
3653 mutex_lock(&dev->struct_mutex);
3654
3655 if (dev_priv->mm.suspended) {
3656 mutex_unlock(&dev->struct_mutex);
3657 return 0;
3658 }
3659
3660 ret = i915_gpu_idle(dev);
3661 if (ret) {
3662 mutex_unlock(&dev->struct_mutex);
3663 return ret;
3664 }
3665
3666 /* Under UMS, be paranoid and evict. */
3667 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3668 ret = i915_gem_evict_inactive(dev, false);
3669 if (ret) {
3670 mutex_unlock(&dev->struct_mutex);
3671 return ret;
3672 }
3673 }
3674
3675 i915_gem_reset_fences(dev);
3676
3677 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3678 * We need to replace this with a semaphore, or something.
3679 * And not confound mm.suspended!
3680 */
3681 dev_priv->mm.suspended = 1;
3682 del_timer_sync(&dev_priv->hangcheck_timer);
3683
3684 i915_kernel_lost_context(dev);
3685 i915_gem_cleanup_ringbuffer(dev);
3686
3687 mutex_unlock(&dev->struct_mutex);
3688
3689 /* Cancel the retire work handler, which should be idle now. */
3690 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3691
3692 return 0;
3693 }
3694
3695 int
3696 i915_gem_init_ringbuffer(struct drm_device *dev)
3697 {
3698 drm_i915_private_t *dev_priv = dev->dev_private;
3699 int ret;
3700
3701 ret = intel_init_render_ring_buffer(dev);
3702 if (ret)
3703 return ret;
3704
3705 if (HAS_BSD(dev)) {
3706 ret = intel_init_bsd_ring_buffer(dev);
3707 if (ret)
3708 goto cleanup_render_ring;
3709 }
3710
3711 if (HAS_BLT(dev)) {
3712 ret = intel_init_blt_ring_buffer(dev);
3713 if (ret)
3714 goto cleanup_bsd_ring;
3715 }
3716
3717 dev_priv->next_seqno = 1;
3718
3719 return 0;
3720
3721 cleanup_bsd_ring:
3722 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3723 cleanup_render_ring:
3724 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3725 return ret;
3726 }
3727
3728 void
3729 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3730 {
3731 drm_i915_private_t *dev_priv = dev->dev_private;
3732 int i;
3733
3734 for (i = 0; i < I915_NUM_RINGS; i++)
3735 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3736 }
3737
3738 int
3739 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3740 struct drm_file *file_priv)
3741 {
3742 drm_i915_private_t *dev_priv = dev->dev_private;
3743 int ret, i;
3744
3745 if (drm_core_check_feature(dev, DRIVER_MODESET))
3746 return 0;
3747
3748 if (atomic_read(&dev_priv->mm.wedged)) {
3749 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3750 atomic_set(&dev_priv->mm.wedged, 0);
3751 }
3752
3753 mutex_lock(&dev->struct_mutex);
3754 dev_priv->mm.suspended = 0;
3755
3756 ret = i915_gem_init_ringbuffer(dev);
3757 if (ret != 0) {
3758 mutex_unlock(&dev->struct_mutex);
3759 return ret;
3760 }
3761
3762 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3763 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3764 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3765 for (i = 0; i < I915_NUM_RINGS; i++) {
3766 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3767 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3768 }
3769 mutex_unlock(&dev->struct_mutex);
3770
3771 ret = drm_irq_install(dev);
3772 if (ret)
3773 goto cleanup_ringbuffer;
3774
3775 return 0;
3776
3777 cleanup_ringbuffer:
3778 mutex_lock(&dev->struct_mutex);
3779 i915_gem_cleanup_ringbuffer(dev);
3780 dev_priv->mm.suspended = 1;
3781 mutex_unlock(&dev->struct_mutex);
3782
3783 return ret;
3784 }
3785
3786 int
3787 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3788 struct drm_file *file_priv)
3789 {
3790 if (drm_core_check_feature(dev, DRIVER_MODESET))
3791 return 0;
3792
3793 drm_irq_uninstall(dev);
3794 return i915_gem_idle(dev);
3795 }
3796
3797 void
3798 i915_gem_lastclose(struct drm_device *dev)
3799 {
3800 int ret;
3801
3802 if (drm_core_check_feature(dev, DRIVER_MODESET))
3803 return;
3804
3805 ret = i915_gem_idle(dev);
3806 if (ret)
3807 DRM_ERROR("failed to idle hardware: %d\n", ret);
3808 }
3809
3810 static void
3811 init_ring_lists(struct intel_ring_buffer *ring)
3812 {
3813 INIT_LIST_HEAD(&ring->active_list);
3814 INIT_LIST_HEAD(&ring->request_list);
3815 INIT_LIST_HEAD(&ring->gpu_write_list);
3816 }
3817
3818 void
3819 i915_gem_load(struct drm_device *dev)
3820 {
3821 int i;
3822 drm_i915_private_t *dev_priv = dev->dev_private;
3823
3824 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3825 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3826 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3827 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3828 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3829 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3830 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3831 for (i = 0; i < I915_NUM_RINGS; i++)
3832 init_ring_lists(&dev_priv->ring[i]);
3833 for (i = 0; i < 16; i++)
3834 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3835 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3836 i915_gem_retire_work_handler);
3837 init_completion(&dev_priv->error_completion);
3838
3839 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3840 if (IS_GEN3(dev)) {
3841 u32 tmp = I915_READ(MI_ARB_STATE);
3842 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3843 /* arb state is a masked write, so set bit + bit in mask */
3844 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3845 I915_WRITE(MI_ARB_STATE, tmp);
3846 }
3847 }
3848
3849 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3850
3851 /* Old X drivers will take 0-2 for front, back, depth buffers */
3852 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3853 dev_priv->fence_reg_start = 3;
3854
3855 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3856 dev_priv->num_fence_regs = 16;
3857 else
3858 dev_priv->num_fence_regs = 8;
3859
3860 /* Initialize fence registers to zero */
3861 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3862 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3863 }
3864
3865 i915_gem_detect_bit_6_swizzle(dev);
3866 init_waitqueue_head(&dev_priv->pending_flip_queue);
3867
3868 dev_priv->mm.interruptible = true;
3869
3870 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3871 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3872 register_shrinker(&dev_priv->mm.inactive_shrinker);
3873 }
3874
3875 /*
3876 * Create a physically contiguous memory object for this object
3877 * e.g. for cursor + overlay regs
3878 */
3879 static int i915_gem_init_phys_object(struct drm_device *dev,
3880 int id, int size, int align)
3881 {
3882 drm_i915_private_t *dev_priv = dev->dev_private;
3883 struct drm_i915_gem_phys_object *phys_obj;
3884 int ret;
3885
3886 if (dev_priv->mm.phys_objs[id - 1] || !size)
3887 return 0;
3888
3889 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3890 if (!phys_obj)
3891 return -ENOMEM;
3892
3893 phys_obj->id = id;
3894
3895 phys_obj->handle = drm_pci_alloc(dev, size, align);
3896 if (!phys_obj->handle) {
3897 ret = -ENOMEM;
3898 goto kfree_obj;
3899 }
3900 #ifdef CONFIG_X86
3901 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3902 #endif
3903
3904 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3905
3906 return 0;
3907 kfree_obj:
3908 kfree(phys_obj);
3909 return ret;
3910 }
3911
3912 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3913 {
3914 drm_i915_private_t *dev_priv = dev->dev_private;
3915 struct drm_i915_gem_phys_object *phys_obj;
3916
3917 if (!dev_priv->mm.phys_objs[id - 1])
3918 return;
3919
3920 phys_obj = dev_priv->mm.phys_objs[id - 1];
3921 if (phys_obj->cur_obj) {
3922 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3923 }
3924
3925 #ifdef CONFIG_X86
3926 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3927 #endif
3928 drm_pci_free(dev, phys_obj->handle);
3929 kfree(phys_obj);
3930 dev_priv->mm.phys_objs[id - 1] = NULL;
3931 }
3932
3933 void i915_gem_free_all_phys_object(struct drm_device *dev)
3934 {
3935 int i;
3936
3937 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3938 i915_gem_free_phys_object(dev, i);
3939 }
3940
3941 void i915_gem_detach_phys_object(struct drm_device *dev,
3942 struct drm_i915_gem_object *obj)
3943 {
3944 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3945 char *vaddr;
3946 int i;
3947 int page_count;
3948
3949 if (!obj->phys_obj)
3950 return;
3951 vaddr = obj->phys_obj->handle->vaddr;
3952
3953 page_count = obj->base.size / PAGE_SIZE;
3954 for (i = 0; i < page_count; i++) {
3955 struct page *page = read_cache_page_gfp(mapping, i,
3956 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3957 if (!IS_ERR(page)) {
3958 char *dst = kmap_atomic(page);
3959 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3960 kunmap_atomic(dst);
3961
3962 drm_clflush_pages(&page, 1);
3963
3964 set_page_dirty(page);
3965 mark_page_accessed(page);
3966 page_cache_release(page);
3967 }
3968 }
3969 intel_gtt_chipset_flush();
3970
3971 obj->phys_obj->cur_obj = NULL;
3972 obj->phys_obj = NULL;
3973 }
3974
3975 int
3976 i915_gem_attach_phys_object(struct drm_device *dev,
3977 struct drm_i915_gem_object *obj,
3978 int id,
3979 int align)
3980 {
3981 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3982 drm_i915_private_t *dev_priv = dev->dev_private;
3983 int ret = 0;
3984 int page_count;
3985 int i;
3986
3987 if (id > I915_MAX_PHYS_OBJECT)
3988 return -EINVAL;
3989
3990 if (obj->phys_obj) {
3991 if (obj->phys_obj->id == id)
3992 return 0;
3993 i915_gem_detach_phys_object(dev, obj);
3994 }
3995
3996 /* create a new object */
3997 if (!dev_priv->mm.phys_objs[id - 1]) {
3998 ret = i915_gem_init_phys_object(dev, id,
3999 obj->base.size, align);
4000 if (ret) {
4001 DRM_ERROR("failed to init phys object %d size: %zu\n",
4002 id, obj->base.size);
4003 return ret;
4004 }
4005 }
4006
4007 /* bind to the object */
4008 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4009 obj->phys_obj->cur_obj = obj;
4010
4011 page_count = obj->base.size / PAGE_SIZE;
4012
4013 for (i = 0; i < page_count; i++) {
4014 struct page *page;
4015 char *dst, *src;
4016
4017 page = read_cache_page_gfp(mapping, i,
4018 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4019 if (IS_ERR(page))
4020 return PTR_ERR(page);
4021
4022 src = kmap_atomic(page);
4023 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4024 memcpy(dst, src, PAGE_SIZE);
4025 kunmap_atomic(src);
4026
4027 mark_page_accessed(page);
4028 page_cache_release(page);
4029 }
4030
4031 return 0;
4032 }
4033
4034 static int
4035 i915_gem_phys_pwrite(struct drm_device *dev,
4036 struct drm_i915_gem_object *obj,
4037 struct drm_i915_gem_pwrite *args,
4038 struct drm_file *file_priv)
4039 {
4040 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4041 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4042
4043 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4044 unsigned long unwritten;
4045
4046 /* The physical object once assigned is fixed for the lifetime
4047 * of the obj, so we can safely drop the lock and continue
4048 * to access vaddr.
4049 */
4050 mutex_unlock(&dev->struct_mutex);
4051 unwritten = copy_from_user(vaddr, user_data, args->size);
4052 mutex_lock(&dev->struct_mutex);
4053 if (unwritten)
4054 return -EFAULT;
4055 }
4056
4057 intel_gtt_chipset_flush();
4058 return 0;
4059 }
4060
4061 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4062 {
4063 struct drm_i915_file_private *file_priv = file->driver_priv;
4064
4065 /* Clean up our request list when the client is going away, so that
4066 * later retire_requests won't dereference our soon-to-be-gone
4067 * file_priv.
4068 */
4069 spin_lock(&file_priv->mm.lock);
4070 while (!list_empty(&file_priv->mm.request_list)) {
4071 struct drm_i915_gem_request *request;
4072
4073 request = list_first_entry(&file_priv->mm.request_list,
4074 struct drm_i915_gem_request,
4075 client_list);
4076 list_del(&request->client_list);
4077 request->file_priv = NULL;
4078 }
4079 spin_unlock(&file_priv->mm.lock);
4080 }
4081
4082 static int
4083 i915_gpu_is_active(struct drm_device *dev)
4084 {
4085 drm_i915_private_t *dev_priv = dev->dev_private;
4086 int lists_empty;
4087
4088 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4089 list_empty(&dev_priv->mm.active_list);
4090
4091 return !lists_empty;
4092 }
4093
4094 static int
4095 i915_gem_inactive_shrink(struct shrinker *shrinker,
4096 int nr_to_scan,
4097 gfp_t gfp_mask)
4098 {
4099 struct drm_i915_private *dev_priv =
4100 container_of(shrinker,
4101 struct drm_i915_private,
4102 mm.inactive_shrinker);
4103 struct drm_device *dev = dev_priv->dev;
4104 struct drm_i915_gem_object *obj, *next;
4105 int cnt;
4106
4107 if (!mutex_trylock(&dev->struct_mutex))
4108 return 0;
4109
4110 /* "fast-path" to count number of available objects */
4111 if (nr_to_scan == 0) {
4112 cnt = 0;
4113 list_for_each_entry(obj,
4114 &dev_priv->mm.inactive_list,
4115 mm_list)
4116 cnt++;
4117 mutex_unlock(&dev->struct_mutex);
4118 return cnt / 100 * sysctl_vfs_cache_pressure;
4119 }
4120
4121 rescan:
4122 /* first scan for clean buffers */
4123 i915_gem_retire_requests(dev);
4124
4125 list_for_each_entry_safe(obj, next,
4126 &dev_priv->mm.inactive_list,
4127 mm_list) {
4128 if (i915_gem_object_is_purgeable(obj)) {
4129 if (i915_gem_object_unbind(obj) == 0 &&
4130 --nr_to_scan == 0)
4131 break;
4132 }
4133 }
4134
4135 /* second pass, evict/count anything still on the inactive list */
4136 cnt = 0;
4137 list_for_each_entry_safe(obj, next,
4138 &dev_priv->mm.inactive_list,
4139 mm_list) {
4140 if (nr_to_scan &&
4141 i915_gem_object_unbind(obj) == 0)
4142 nr_to_scan--;
4143 else
4144 cnt++;
4145 }
4146
4147 if (nr_to_scan && i915_gpu_is_active(dev)) {
4148 /*
4149 * We are desperate for pages, so as a last resort, wait
4150 * for the GPU to finish and discard whatever we can.
4151 * This has a dramatic impact to reduce the number of
4152 * OOM-killer events whilst running the GPU aggressively.
4153 */
4154 if (i915_gpu_idle(dev) == 0)
4155 goto rescan;
4156 }
4157 mutex_unlock(&dev->struct_mutex);
4158 return cnt / 100 * sysctl_vfs_cache_pressure;
4159 }
This page took 0.164345 seconds and 5 git commands to generate.