drm/i915: Align the hangcheck wakeup to the nearest second
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable,
45 bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
71 obj->fence_dirty = false;
72 obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78 {
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85 {
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 unsigned long flags;
96 int ret;
97
98 if (!atomic_read(&dev_priv->mm.wedged))
99 return 0;
100
101 /*
102 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103 * userspace. If it takes that long something really bad is going on and
104 * we should simply try to bail out and fail as gracefully as possible.
105 */
106 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 /* GPU is hung, bump the completion count to account for
116 * the token we just consumed so that we never hit zero and
117 * end up waiting upon a subsequent completion event that
118 * will never happen.
119 */
120 spin_lock_irqsave(&x->wait.lock, flags);
121 x->done++;
122 spin_unlock_irqrestore(&x->wait.lock, flags);
123 }
124 return 0;
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129 int ret;
130
131 ret = i915_gem_wait_for_error(dev);
132 if (ret)
133 return ret;
134
135 ret = mutex_lock_interruptible(&dev->struct_mutex);
136 if (ret)
137 return ret;
138
139 WARN_ON(i915_verify_lists(dev));
140 return 0;
141 }
142
143 static inline bool
144 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145 {
146 return obj->gtt_space && !obj->active;
147 }
148
149 int
150 i915_gem_init_ioctl(struct drm_device *dev, void *data,
151 struct drm_file *file)
152 {
153 struct drm_i915_gem_init *args = data;
154
155 if (drm_core_check_feature(dev, DRIVER_MODESET))
156 return -ENODEV;
157
158 if (args->gtt_start >= args->gtt_end ||
159 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160 return -EINVAL;
161
162 /* GEM with user mode setting was never supported on ilk and later. */
163 if (INTEL_INFO(dev)->gen >= 5)
164 return -ENODEV;
165
166 mutex_lock(&dev->struct_mutex);
167 i915_gem_init_global_gtt(dev, args->gtt_start,
168 args->gtt_end, args->gtt_end);
169 mutex_unlock(&dev->struct_mutex);
170
171 return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176 struct drm_file *file)
177 {
178 struct drm_i915_private *dev_priv = dev->dev_private;
179 struct drm_i915_gem_get_aperture *args = data;
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
182
183 pinned = 0;
184 mutex_lock(&dev->struct_mutex);
185 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186 if (obj->pin_count)
187 pinned += obj->gtt_space->size;
188 mutex_unlock(&dev->struct_mutex);
189
190 args->aper_size = dev_priv->mm.gtt_total;
191 args->aper_available_size = args->aper_size - pinned;
192
193 return 0;
194 }
195
196 static int
197 i915_gem_create(struct drm_file *file,
198 struct drm_device *dev,
199 uint64_t size,
200 uint32_t *handle_p)
201 {
202 struct drm_i915_gem_object *obj;
203 int ret;
204 u32 handle;
205
206 size = roundup(size, PAGE_SIZE);
207 if (size == 0)
208 return -EINVAL;
209
210 /* Allocate the new object */
211 obj = i915_gem_alloc_object(dev, size);
212 if (obj == NULL)
213 return -ENOMEM;
214
215 ret = drm_gem_handle_create(file, &obj->base, &handle);
216 if (ret) {
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219 kfree(obj);
220 return ret;
221 }
222
223 /* drop reference from allocate - handle holds it now */
224 drm_gem_object_unreference(&obj->base);
225 trace_i915_gem_object_create(obj);
226
227 *handle_p = handle;
228 return 0;
229 }
230
231 int
232 i915_gem_dumb_create(struct drm_file *file,
233 struct drm_device *dev,
234 struct drm_mode_create_dumb *args)
235 {
236 /* have to work out size/pitch and return them */
237 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238 args->size = args->pitch * args->height;
239 return i915_gem_create(file, dev,
240 args->size, &args->handle);
241 }
242
243 int i915_gem_dumb_destroy(struct drm_file *file,
244 struct drm_device *dev,
245 uint32_t handle)
246 {
247 return drm_gem_handle_delete(file, handle);
248 }
249
250 /**
251 * Creates a new mm object and returns a handle to it.
252 */
253 int
254 i915_gem_create_ioctl(struct drm_device *dev, void *data,
255 struct drm_file *file)
256 {
257 struct drm_i915_gem_create *args = data;
258
259 return i915_gem_create(file, dev,
260 args->size, &args->handle);
261 }
262
263 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264 {
265 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266
267 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268 obj->tiling_mode != I915_TILING_NONE;
269 }
270
271 static inline int
272 __copy_to_user_swizzled(char __user *cpu_vaddr,
273 const char *gpu_vaddr, int gpu_offset,
274 int length)
275 {
276 int ret, cpu_offset = 0;
277
278 while (length > 0) {
279 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280 int this_length = min(cacheline_end - gpu_offset, length);
281 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284 gpu_vaddr + swizzled_gpu_offset,
285 this_length);
286 if (ret)
287 return ret + length;
288
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
294 return 0;
295 }
296
297 static inline int
298 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299 const char __user *cpu_vaddr,
300 int length)
301 {
302 int ret, cpu_offset = 0;
303
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310 cpu_vaddr + cpu_offset,
311 this_length);
312 if (ret)
313 return ret + length;
314
315 cpu_offset += this_length;
316 gpu_offset += this_length;
317 length -= this_length;
318 }
319
320 return 0;
321 }
322
323 /* Per-page copy function for the shmem pread fastpath.
324 * Flushes invalid cachelines before reading the target if
325 * needs_clflush is set. */
326 static int
327 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328 char __user *user_data,
329 bool page_do_bit17_swizzling, bool needs_clflush)
330 {
331 char *vaddr;
332 int ret;
333
334 if (unlikely(page_do_bit17_swizzling))
335 return -EINVAL;
336
337 vaddr = kmap_atomic(page);
338 if (needs_clflush)
339 drm_clflush_virt_range(vaddr + shmem_page_offset,
340 page_length);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + shmem_page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
346 return ret ? -EFAULT : 0;
347 }
348
349 static void
350 shmem_clflush_swizzled_range(char *addr, unsigned long length,
351 bool swizzled)
352 {
353 if (unlikely(swizzled)) {
354 unsigned long start = (unsigned long) addr;
355 unsigned long end = (unsigned long) addr + length;
356
357 /* For swizzling simply ensure that we always flush both
358 * channels. Lame, but simple and it works. Swizzled
359 * pwrite/pread is far from a hotpath - current userspace
360 * doesn't use it at all. */
361 start = round_down(start, 128);
362 end = round_up(end, 128);
363
364 drm_clflush_virt_range((void *)start, end - start);
365 } else {
366 drm_clflush_virt_range(addr, length);
367 }
368
369 }
370
371 /* Only difference to the fast-path function is that this can handle bit17
372 * and uses non-atomic copy and kmap functions. */
373 static int
374 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378 char *vaddr;
379 int ret;
380
381 vaddr = kmap(page);
382 if (needs_clflush)
383 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384 page_length,
385 page_do_bit17_swizzling);
386
387 if (page_do_bit17_swizzling)
388 ret = __copy_to_user_swizzled(user_data,
389 vaddr, shmem_page_offset,
390 page_length);
391 else
392 ret = __copy_to_user(user_data,
393 vaddr + shmem_page_offset,
394 page_length);
395 kunmap(page);
396
397 return ret ? - EFAULT : 0;
398 }
399
400 static int
401 i915_gem_shmem_pread(struct drm_device *dev,
402 struct drm_i915_gem_object *obj,
403 struct drm_i915_gem_pread *args,
404 struct drm_file *file)
405 {
406 char __user *user_data;
407 ssize_t remain;
408 loff_t offset;
409 int shmem_page_offset, page_length, ret = 0;
410 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
411 int hit_slowpath = 0;
412 int prefaulted = 0;
413 int needs_clflush = 0;
414 struct scatterlist *sg;
415 int i;
416
417 user_data = (char __user *) (uintptr_t) args->data_ptr;
418 remain = args->size;
419
420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
434 }
435
436 ret = i915_gem_object_get_pages(obj);
437 if (ret)
438 return ret;
439
440 i915_gem_object_pin_pages(obj);
441
442 offset = args->offset;
443
444 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445 struct page *page;
446
447 if (i < offset >> PAGE_SHIFT)
448 continue;
449
450 if (remain <= 0)
451 break;
452
453 /* Operation in this page
454 *
455 * shmem_page_offset = offset within page in shmem file
456 * page_length = bytes to copy for this page
457 */
458 shmem_page_offset = offset_in_page(offset);
459 page_length = remain;
460 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461 page_length = PAGE_SIZE - shmem_page_offset;
462
463 page = sg_page(sg);
464 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465 (page_to_phys(page) & (1 << 17)) != 0;
466
467 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468 user_data, page_do_bit17_swizzling,
469 needs_clflush);
470 if (ret == 0)
471 goto next_page;
472
473 hit_slowpath = 1;
474 mutex_unlock(&dev->struct_mutex);
475
476 if (!prefaulted) {
477 ret = fault_in_multipages_writeable(user_data, remain);
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
485
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
489
490 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493 mark_page_accessed(page);
494
495 if (ret)
496 goto out;
497
498 remain -= page_length;
499 user_data += page_length;
500 offset += page_length;
501 }
502
503 out:
504 i915_gem_object_unpin_pages(obj);
505
506 if (hit_slowpath) {
507 /* Fixup: Kill any reinstated backing storage pages */
508 if (obj->madv == __I915_MADV_PURGED)
509 i915_gem_object_truncate(obj);
510 }
511
512 return ret;
513 }
514
515 /**
516 * Reads data from the object referenced by handle.
517 *
518 * On error, the contents of *data are undefined.
519 */
520 int
521 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522 struct drm_file *file)
523 {
524 struct drm_i915_gem_pread *args = data;
525 struct drm_i915_gem_object *obj;
526 int ret = 0;
527
528 if (args->size == 0)
529 return 0;
530
531 if (!access_ok(VERIFY_WRITE,
532 (char __user *)(uintptr_t)args->data_ptr,
533 args->size))
534 return -EFAULT;
535
536 ret = i915_mutex_lock_interruptible(dev);
537 if (ret)
538 return ret;
539
540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541 if (&obj->base == NULL) {
542 ret = -ENOENT;
543 goto unlock;
544 }
545
546 /* Bounds check source. */
547 if (args->offset > obj->base.size ||
548 args->size > obj->base.size - args->offset) {
549 ret = -EINVAL;
550 goto out;
551 }
552
553 /* prime objects have no backing filp to GEM pread/pwrite
554 * pages from.
555 */
556 if (!obj->base.filp) {
557 ret = -EINVAL;
558 goto out;
559 }
560
561 trace_i915_gem_object_pread(obj, args->offset, args->size);
562
563 ret = i915_gem_shmem_pread(dev, obj, args, file);
564
565 out:
566 drm_gem_object_unreference(&obj->base);
567 unlock:
568 mutex_unlock(&dev->struct_mutex);
569 return ret;
570 }
571
572 /* This is the fast write path which cannot handle
573 * page faults in the source data
574 */
575
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
581 {
582 void __iomem *vaddr_atomic;
583 void *vaddr;
584 unsigned long unwritten;
585
586 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587 /* We can use the cpu mem copy function because this is X86. */
588 vaddr = (void __force*)vaddr_atomic + page_offset;
589 unwritten = __copy_from_user_inatomic_nocache(vaddr,
590 user_data, length);
591 io_mapping_unmap_atomic(vaddr_atomic);
592 return unwritten;
593 }
594
595 /**
596 * This is the fast pwrite path, where we copy the data directly from the
597 * user into the GTT, uncached.
598 */
599 static int
600 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601 struct drm_i915_gem_object *obj,
602 struct drm_i915_gem_pwrite *args,
603 struct drm_file *file)
604 {
605 drm_i915_private_t *dev_priv = dev->dev_private;
606 ssize_t remain;
607 loff_t offset, page_base;
608 char __user *user_data;
609 int page_offset, page_length, ret;
610
611 ret = i915_gem_object_pin(obj, 0, true, true);
612 if (ret)
613 goto out;
614
615 ret = i915_gem_object_set_to_gtt_domain(obj, true);
616 if (ret)
617 goto out_unpin;
618
619 ret = i915_gem_object_put_fence(obj);
620 if (ret)
621 goto out_unpin;
622
623 user_data = (char __user *) (uintptr_t) args->data_ptr;
624 remain = args->size;
625
626 offset = obj->gtt_offset + args->offset;
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
634 */
635 page_base = offset & PAGE_MASK;
636 page_offset = offset_in_page(offset);
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
641 /* If we get a fault while copying data, then (presumably) our
642 * source page isn't available. Return the error and we'll
643 * retry in the slow path.
644 */
645 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
646 page_offset, user_data, page_length)) {
647 ret = -EFAULT;
648 goto out_unpin;
649 }
650
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
654 }
655
656 out_unpin:
657 i915_gem_object_unpin(obj);
658 out:
659 return ret;
660 }
661
662 /* Per-page copy function for the shmem pwrite fastpath.
663 * Flushes invalid cachelines before writing to the target if
664 * needs_clflush_before is set and flushes out any written cachelines after
665 * writing if needs_clflush is set. */
666 static int
667 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668 char __user *user_data,
669 bool page_do_bit17_swizzling,
670 bool needs_clflush_before,
671 bool needs_clflush_after)
672 {
673 char *vaddr;
674 int ret;
675
676 if (unlikely(page_do_bit17_swizzling))
677 return -EINVAL;
678
679 vaddr = kmap_atomic(page);
680 if (needs_clflush_before)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684 user_data,
685 page_length);
686 if (needs_clflush_after)
687 drm_clflush_virt_range(vaddr + shmem_page_offset,
688 page_length);
689 kunmap_atomic(vaddr);
690
691 return ret ? -EFAULT : 0;
692 }
693
694 /* Only difference to the fast-path function is that this can handle bit17
695 * and uses non-atomic copy and kmap functions. */
696 static int
697 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698 char __user *user_data,
699 bool page_do_bit17_swizzling,
700 bool needs_clflush_before,
701 bool needs_clflush_after)
702 {
703 char *vaddr;
704 int ret;
705
706 vaddr = kmap(page);
707 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709 page_length,
710 page_do_bit17_swizzling);
711 if (page_do_bit17_swizzling)
712 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713 user_data,
714 page_length);
715 else
716 ret = __copy_from_user(vaddr + shmem_page_offset,
717 user_data,
718 page_length);
719 if (needs_clflush_after)
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
723 kunmap(page);
724
725 return ret ? -EFAULT : 0;
726 }
727
728 static int
729 i915_gem_shmem_pwrite(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file)
733 {
734 ssize_t remain;
735 loff_t offset;
736 char __user *user_data;
737 int shmem_page_offset, page_length, ret = 0;
738 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739 int hit_slowpath = 0;
740 int needs_clflush_after = 0;
741 int needs_clflush_before = 0;
742 int i;
743 struct scatterlist *sg;
744
745 user_data = (char __user *) (uintptr_t) args->data_ptr;
746 remain = args->size;
747
748 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
749
750 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
751 /* If we're not in the cpu write domain, set ourself into the gtt
752 * write domain and manually flush cachelines (if required). This
753 * optimizes for the case when the gpu will use the data
754 * right away and we therefore have to clflush anyway. */
755 if (obj->cache_level == I915_CACHE_NONE)
756 needs_clflush_after = 1;
757 if (obj->gtt_space) {
758 ret = i915_gem_object_set_to_gtt_domain(obj, true);
759 if (ret)
760 return ret;
761 }
762 }
763 /* Same trick applies for invalidate partially written cachelines before
764 * writing. */
765 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
766 && obj->cache_level == I915_CACHE_NONE)
767 needs_clflush_before = 1;
768
769 ret = i915_gem_object_get_pages(obj);
770 if (ret)
771 return ret;
772
773 i915_gem_object_pin_pages(obj);
774
775 offset = args->offset;
776 obj->dirty = 1;
777
778 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
779 struct page *page;
780 int partial_cacheline_write;
781
782 if (i < offset >> PAGE_SHIFT)
783 continue;
784
785 if (remain <= 0)
786 break;
787
788 /* Operation in this page
789 *
790 * shmem_page_offset = offset within page in shmem file
791 * page_length = bytes to copy for this page
792 */
793 shmem_page_offset = offset_in_page(offset);
794
795 page_length = remain;
796 if ((shmem_page_offset + page_length) > PAGE_SIZE)
797 page_length = PAGE_SIZE - shmem_page_offset;
798
799 /* If we don't overwrite a cacheline completely we need to be
800 * careful to have up-to-date data by first clflushing. Don't
801 * overcomplicate things and flush the entire patch. */
802 partial_cacheline_write = needs_clflush_before &&
803 ((shmem_page_offset | page_length)
804 & (boot_cpu_data.x86_clflush_size - 1));
805
806 page = sg_page(sg);
807 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808 (page_to_phys(page) & (1 << 17)) != 0;
809
810 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
814 if (ret == 0)
815 goto next_page;
816
817 hit_slowpath = 1;
818 mutex_unlock(&dev->struct_mutex);
819 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
820 user_data, page_do_bit17_swizzling,
821 partial_cacheline_write,
822 needs_clflush_after);
823
824 mutex_lock(&dev->struct_mutex);
825
826 next_page:
827 set_page_dirty(page);
828 mark_page_accessed(page);
829
830 if (ret)
831 goto out;
832
833 remain -= page_length;
834 user_data += page_length;
835 offset += page_length;
836 }
837
838 out:
839 i915_gem_object_unpin_pages(obj);
840
841 if (hit_slowpath) {
842 /* Fixup: Kill any reinstated backing storage pages */
843 if (obj->madv == __I915_MADV_PURGED)
844 i915_gem_object_truncate(obj);
845 /* and flush dirty cachelines in case the object isn't in the cpu write
846 * domain anymore. */
847 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
848 i915_gem_clflush_object(obj);
849 intel_gtt_chipset_flush();
850 }
851 }
852
853 if (needs_clflush_after)
854 intel_gtt_chipset_flush();
855
856 return ret;
857 }
858
859 /**
860 * Writes data to the object referenced by handle.
861 *
862 * On error, the contents of the buffer that were to be modified are undefined.
863 */
864 int
865 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
866 struct drm_file *file)
867 {
868 struct drm_i915_gem_pwrite *args = data;
869 struct drm_i915_gem_object *obj;
870 int ret;
871
872 if (args->size == 0)
873 return 0;
874
875 if (!access_ok(VERIFY_READ,
876 (char __user *)(uintptr_t)args->data_ptr,
877 args->size))
878 return -EFAULT;
879
880 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
881 args->size);
882 if (ret)
883 return -EFAULT;
884
885 ret = i915_mutex_lock_interruptible(dev);
886 if (ret)
887 return ret;
888
889 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
890 if (&obj->base == NULL) {
891 ret = -ENOENT;
892 goto unlock;
893 }
894
895 /* Bounds check destination. */
896 if (args->offset > obj->base.size ||
897 args->size > obj->base.size - args->offset) {
898 ret = -EINVAL;
899 goto out;
900 }
901
902 /* prime objects have no backing filp to GEM pread/pwrite
903 * pages from.
904 */
905 if (!obj->base.filp) {
906 ret = -EINVAL;
907 goto out;
908 }
909
910 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
911
912 ret = -EFAULT;
913 /* We can only do the GTT pwrite on untiled buffers, as otherwise
914 * it would end up going through the fenced access, and we'll get
915 * different detiling behavior between reading and writing.
916 * pread/pwrite currently are reading and writing from the CPU
917 * perspective, requiring manual detiling by the client.
918 */
919 if (obj->phys_obj) {
920 ret = i915_gem_phys_pwrite(dev, obj, args, file);
921 goto out;
922 }
923
924 if (obj->cache_level == I915_CACHE_NONE &&
925 obj->tiling_mode == I915_TILING_NONE &&
926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
931 }
932
933 if (ret == -EFAULT || ret == -ENOSPC)
934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935
936 out:
937 drm_gem_object_unreference(&obj->base);
938 unlock:
939 mutex_unlock(&dev->struct_mutex);
940 return ret;
941 }
942
943 int
944 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
945 bool interruptible)
946 {
947 if (atomic_read(&dev_priv->mm.wedged)) {
948 struct completion *x = &dev_priv->error_completion;
949 bool recovery_complete;
950 unsigned long flags;
951
952 /* Give the error handler a chance to run. */
953 spin_lock_irqsave(&x->wait.lock, flags);
954 recovery_complete = x->done > 0;
955 spin_unlock_irqrestore(&x->wait.lock, flags);
956
957 /* Non-interruptible callers can't handle -EAGAIN, hence return
958 * -EIO unconditionally for these. */
959 if (!interruptible)
960 return -EIO;
961
962 /* Recovery complete, but still wedged means reset failure. */
963 if (recovery_complete)
964 return -EIO;
965
966 return -EAGAIN;
967 }
968
969 return 0;
970 }
971
972 /*
973 * Compare seqno against outstanding lazy request. Emit a request if they are
974 * equal.
975 */
976 static int
977 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
978 {
979 int ret;
980
981 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
982
983 ret = 0;
984 if (seqno == ring->outstanding_lazy_request)
985 ret = i915_add_request(ring, NULL, NULL);
986
987 return ret;
988 }
989
990 /**
991 * __wait_seqno - wait until execution of seqno has finished
992 * @ring: the ring expected to report seqno
993 * @seqno: duh!
994 * @interruptible: do an interruptible wait (normally yes)
995 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
996 *
997 * Returns 0 if the seqno was found within the alloted time. Else returns the
998 * errno with remaining time filled in timeout argument.
999 */
1000 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1001 bool interruptible, struct timespec *timeout)
1002 {
1003 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1004 struct timespec before, now, wait_time={1,0};
1005 unsigned long timeout_jiffies;
1006 long end;
1007 bool wait_forever = true;
1008 int ret;
1009
1010 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1011 return 0;
1012
1013 trace_i915_gem_request_wait_begin(ring, seqno);
1014
1015 if (timeout != NULL) {
1016 wait_time = *timeout;
1017 wait_forever = false;
1018 }
1019
1020 timeout_jiffies = timespec_to_jiffies(&wait_time);
1021
1022 if (WARN_ON(!ring->irq_get(ring)))
1023 return -ENODEV;
1024
1025 /* Record current time in case interrupted by signal, or wedged * */
1026 getrawmonotonic(&before);
1027
1028 #define EXIT_COND \
1029 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1030 atomic_read(&dev_priv->mm.wedged))
1031 do {
1032 if (interruptible)
1033 end = wait_event_interruptible_timeout(ring->irq_queue,
1034 EXIT_COND,
1035 timeout_jiffies);
1036 else
1037 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1038 timeout_jiffies);
1039
1040 ret = i915_gem_check_wedge(dev_priv, interruptible);
1041 if (ret)
1042 end = ret;
1043 } while (end == 0 && wait_forever);
1044
1045 getrawmonotonic(&now);
1046
1047 ring->irq_put(ring);
1048 trace_i915_gem_request_wait_end(ring, seqno);
1049 #undef EXIT_COND
1050
1051 if (timeout) {
1052 struct timespec sleep_time = timespec_sub(now, before);
1053 *timeout = timespec_sub(*timeout, sleep_time);
1054 }
1055
1056 switch (end) {
1057 case -EIO:
1058 case -EAGAIN: /* Wedged */
1059 case -ERESTARTSYS: /* Signal */
1060 return (int)end;
1061 case 0: /* Timeout */
1062 if (timeout)
1063 set_normalized_timespec(timeout, 0, 0);
1064 return -ETIME;
1065 default: /* Completed */
1066 WARN_ON(end < 0); /* We're not aware of other errors */
1067 return 0;
1068 }
1069 }
1070
1071 /**
1072 * Waits for a sequence number to be signaled, and cleans up the
1073 * request and object lists appropriately for that event.
1074 */
1075 int
1076 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1077 {
1078 struct drm_device *dev = ring->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 bool interruptible = dev_priv->mm.interruptible;
1081 int ret;
1082
1083 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1084 BUG_ON(seqno == 0);
1085
1086 ret = i915_gem_check_wedge(dev_priv, interruptible);
1087 if (ret)
1088 return ret;
1089
1090 ret = i915_gem_check_olr(ring, seqno);
1091 if (ret)
1092 return ret;
1093
1094 return __wait_seqno(ring, seqno, interruptible, NULL);
1095 }
1096
1097 /**
1098 * Ensures that all rendering to the object has completed and the object is
1099 * safe to unbind from the GTT or access from the CPU.
1100 */
1101 static __must_check int
1102 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1103 bool readonly)
1104 {
1105 struct intel_ring_buffer *ring = obj->ring;
1106 u32 seqno;
1107 int ret;
1108
1109 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1110 if (seqno == 0)
1111 return 0;
1112
1113 ret = i915_wait_seqno(ring, seqno);
1114 if (ret)
1115 return ret;
1116
1117 i915_gem_retire_requests_ring(ring);
1118
1119 /* Manually manage the write flush as we may have not yet
1120 * retired the buffer.
1121 */
1122 if (obj->last_write_seqno &&
1123 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1124 obj->last_write_seqno = 0;
1125 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126 }
1127
1128 return 0;
1129 }
1130
1131 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1132 * as the object state may change during this call.
1133 */
1134 static __must_check int
1135 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1136 bool readonly)
1137 {
1138 struct drm_device *dev = obj->base.dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct intel_ring_buffer *ring = obj->ring;
1141 u32 seqno;
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1145 BUG_ON(!dev_priv->mm.interruptible);
1146
1147 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1148 if (seqno == 0)
1149 return 0;
1150
1151 ret = i915_gem_check_wedge(dev_priv, true);
1152 if (ret)
1153 return ret;
1154
1155 ret = i915_gem_check_olr(ring, seqno);
1156 if (ret)
1157 return ret;
1158
1159 mutex_unlock(&dev->struct_mutex);
1160 ret = __wait_seqno(ring, seqno, true, NULL);
1161 mutex_lock(&dev->struct_mutex);
1162
1163 i915_gem_retire_requests_ring(ring);
1164
1165 /* Manually manage the write flush as we may have not yet
1166 * retired the buffer.
1167 */
1168 if (obj->last_write_seqno &&
1169 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1170 obj->last_write_seqno = 0;
1171 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1172 }
1173
1174 return ret;
1175 }
1176
1177 /**
1178 * Called when user space prepares to use an object with the CPU, either
1179 * through the mmap ioctl's mapping or a GTT mapping.
1180 */
1181 int
1182 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1183 struct drm_file *file)
1184 {
1185 struct drm_i915_gem_set_domain *args = data;
1186 struct drm_i915_gem_object *obj;
1187 uint32_t read_domains = args->read_domains;
1188 uint32_t write_domain = args->write_domain;
1189 int ret;
1190
1191 /* Only handle setting domains to types used by the CPU. */
1192 if (write_domain & I915_GEM_GPU_DOMAINS)
1193 return -EINVAL;
1194
1195 if (read_domains & I915_GEM_GPU_DOMAINS)
1196 return -EINVAL;
1197
1198 /* Having something in the write domain implies it's in the read
1199 * domain, and only that read domain. Enforce that in the request.
1200 */
1201 if (write_domain != 0 && read_domains != write_domain)
1202 return -EINVAL;
1203
1204 ret = i915_mutex_lock_interruptible(dev);
1205 if (ret)
1206 return ret;
1207
1208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1209 if (&obj->base == NULL) {
1210 ret = -ENOENT;
1211 goto unlock;
1212 }
1213
1214 /* Try to flush the object off the GPU without holding the lock.
1215 * We will repeat the flush holding the lock in the normal manner
1216 * to catch cases where we are gazumped.
1217 */
1218 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1219 if (ret)
1220 goto unref;
1221
1222 if (read_domains & I915_GEM_DOMAIN_GTT) {
1223 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1224
1225 /* Silently promote "you're not bound, there was nothing to do"
1226 * to success, since the client was just asking us to
1227 * make sure everything was done.
1228 */
1229 if (ret == -EINVAL)
1230 ret = 0;
1231 } else {
1232 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1233 }
1234
1235 unref:
1236 drm_gem_object_unreference(&obj->base);
1237 unlock:
1238 mutex_unlock(&dev->struct_mutex);
1239 return ret;
1240 }
1241
1242 /**
1243 * Called when user space has done writes to this buffer
1244 */
1245 int
1246 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1247 struct drm_file *file)
1248 {
1249 struct drm_i915_gem_sw_finish *args = data;
1250 struct drm_i915_gem_object *obj;
1251 int ret = 0;
1252
1253 ret = i915_mutex_lock_interruptible(dev);
1254 if (ret)
1255 return ret;
1256
1257 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1258 if (&obj->base == NULL) {
1259 ret = -ENOENT;
1260 goto unlock;
1261 }
1262
1263 /* Pinned buffers may be scanout, so flush the cache */
1264 if (obj->pin_count)
1265 i915_gem_object_flush_cpu_write_domain(obj);
1266
1267 drm_gem_object_unreference(&obj->base);
1268 unlock:
1269 mutex_unlock(&dev->struct_mutex);
1270 return ret;
1271 }
1272
1273 /**
1274 * Maps the contents of an object, returning the address it is mapped
1275 * into.
1276 *
1277 * While the mapping holds a reference on the contents of the object, it doesn't
1278 * imply a ref on the object itself.
1279 */
1280 int
1281 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1282 struct drm_file *file)
1283 {
1284 struct drm_i915_gem_mmap *args = data;
1285 struct drm_gem_object *obj;
1286 unsigned long addr;
1287
1288 obj = drm_gem_object_lookup(dev, file, args->handle);
1289 if (obj == NULL)
1290 return -ENOENT;
1291
1292 /* prime objects have no backing filp to GEM mmap
1293 * pages from.
1294 */
1295 if (!obj->filp) {
1296 drm_gem_object_unreference_unlocked(obj);
1297 return -EINVAL;
1298 }
1299
1300 addr = vm_mmap(obj->filp, 0, args->size,
1301 PROT_READ | PROT_WRITE, MAP_SHARED,
1302 args->offset);
1303 drm_gem_object_unreference_unlocked(obj);
1304 if (IS_ERR((void *)addr))
1305 return addr;
1306
1307 args->addr_ptr = (uint64_t) addr;
1308
1309 return 0;
1310 }
1311
1312 /**
1313 * i915_gem_fault - fault a page into the GTT
1314 * vma: VMA in question
1315 * vmf: fault info
1316 *
1317 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1318 * from userspace. The fault handler takes care of binding the object to
1319 * the GTT (if needed), allocating and programming a fence register (again,
1320 * only if needed based on whether the old reg is still valid or the object
1321 * is tiled) and inserting a new PTE into the faulting process.
1322 *
1323 * Note that the faulting process may involve evicting existing objects
1324 * from the GTT and/or fence registers to make room. So performance may
1325 * suffer if the GTT working set is large or there are few fence registers
1326 * left.
1327 */
1328 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1329 {
1330 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1331 struct drm_device *dev = obj->base.dev;
1332 drm_i915_private_t *dev_priv = dev->dev_private;
1333 pgoff_t page_offset;
1334 unsigned long pfn;
1335 int ret = 0;
1336 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1337
1338 /* We don't use vmf->pgoff since that has the fake offset */
1339 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1340 PAGE_SHIFT;
1341
1342 ret = i915_mutex_lock_interruptible(dev);
1343 if (ret)
1344 goto out;
1345
1346 trace_i915_gem_object_fault(obj, page_offset, true, write);
1347
1348 /* Now bind it into the GTT if needed */
1349 if (!obj->map_and_fenceable) {
1350 ret = i915_gem_object_unbind(obj);
1351 if (ret)
1352 goto unlock;
1353 }
1354 if (!obj->gtt_space) {
1355 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1356 if (ret)
1357 goto unlock;
1358
1359 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1360 if (ret)
1361 goto unlock;
1362 }
1363
1364 if (!obj->has_global_gtt_mapping)
1365 i915_gem_gtt_bind_object(obj, obj->cache_level);
1366
1367 ret = i915_gem_object_get_fence(obj);
1368 if (ret)
1369 goto unlock;
1370
1371 if (i915_gem_object_is_inactive(obj))
1372 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1373
1374 obj->fault_mappable = true;
1375
1376 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1377 page_offset;
1378
1379 /* Finally, remap it using the new GTT offset */
1380 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381 unlock:
1382 mutex_unlock(&dev->struct_mutex);
1383 out:
1384 switch (ret) {
1385 case -EIO:
1386 /* If this -EIO is due to a gpu hang, give the reset code a
1387 * chance to clean up the mess. Otherwise return the proper
1388 * SIGBUS. */
1389 if (!atomic_read(&dev_priv->mm.wedged))
1390 return VM_FAULT_SIGBUS;
1391 case -EAGAIN:
1392 /* Give the error handler a chance to run and move the
1393 * objects off the GPU active list. Next time we service the
1394 * fault, we should be able to transition the page into the
1395 * GTT without touching the GPU (and so avoid further
1396 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1397 * with coherency, just lost writes.
1398 */
1399 set_need_resched();
1400 case 0:
1401 case -ERESTARTSYS:
1402 case -EINTR:
1403 return VM_FAULT_NOPAGE;
1404 case -ENOMEM:
1405 return VM_FAULT_OOM;
1406 default:
1407 return VM_FAULT_SIGBUS;
1408 }
1409 }
1410
1411 /**
1412 * i915_gem_release_mmap - remove physical page mappings
1413 * @obj: obj in question
1414 *
1415 * Preserve the reservation of the mmapping with the DRM core code, but
1416 * relinquish ownership of the pages back to the system.
1417 *
1418 * It is vital that we remove the page mapping if we have mapped a tiled
1419 * object through the GTT and then lose the fence register due to
1420 * resource pressure. Similarly if the object has been moved out of the
1421 * aperture, than pages mapped into userspace must be revoked. Removing the
1422 * mapping will then trigger a page fault on the next user access, allowing
1423 * fixup by i915_gem_fault().
1424 */
1425 void
1426 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1427 {
1428 if (!obj->fault_mappable)
1429 return;
1430
1431 if (obj->base.dev->dev_mapping)
1432 unmap_mapping_range(obj->base.dev->dev_mapping,
1433 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1434 obj->base.size, 1);
1435
1436 obj->fault_mappable = false;
1437 }
1438
1439 static uint32_t
1440 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1441 {
1442 uint32_t gtt_size;
1443
1444 if (INTEL_INFO(dev)->gen >= 4 ||
1445 tiling_mode == I915_TILING_NONE)
1446 return size;
1447
1448 /* Previous chips need a power-of-two fence region when tiling */
1449 if (INTEL_INFO(dev)->gen == 3)
1450 gtt_size = 1024*1024;
1451 else
1452 gtt_size = 512*1024;
1453
1454 while (gtt_size < size)
1455 gtt_size <<= 1;
1456
1457 return gtt_size;
1458 }
1459
1460 /**
1461 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1462 * @obj: object to check
1463 *
1464 * Return the required GTT alignment for an object, taking into account
1465 * potential fence register mapping.
1466 */
1467 static uint32_t
1468 i915_gem_get_gtt_alignment(struct drm_device *dev,
1469 uint32_t size,
1470 int tiling_mode)
1471 {
1472 /*
1473 * Minimum alignment is 4k (GTT page size), but might be greater
1474 * if a fence register is needed for the object.
1475 */
1476 if (INTEL_INFO(dev)->gen >= 4 ||
1477 tiling_mode == I915_TILING_NONE)
1478 return 4096;
1479
1480 /*
1481 * Previous chips need to be aligned to the size of the smallest
1482 * fence register that can contain the object.
1483 */
1484 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1485 }
1486
1487 /**
1488 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1489 * unfenced object
1490 * @dev: the device
1491 * @size: size of the object
1492 * @tiling_mode: tiling mode of the object
1493 *
1494 * Return the required GTT alignment for an object, only taking into account
1495 * unfenced tiled surface requirements.
1496 */
1497 uint32_t
1498 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1499 uint32_t size,
1500 int tiling_mode)
1501 {
1502 /*
1503 * Minimum alignment is 4k (GTT page size) for sane hw.
1504 */
1505 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1506 tiling_mode == I915_TILING_NONE)
1507 return 4096;
1508
1509 /* Previous hardware however needs to be aligned to a power-of-two
1510 * tile height. The simplest method for determining this is to reuse
1511 * the power-of-tile object size.
1512 */
1513 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1514 }
1515
1516 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1517 {
1518 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1519 int ret;
1520
1521 if (obj->base.map_list.map)
1522 return 0;
1523
1524 ret = drm_gem_create_mmap_offset(&obj->base);
1525 if (ret != -ENOSPC)
1526 return ret;
1527
1528 /* Badly fragmented mmap space? The only way we can recover
1529 * space is by destroying unwanted objects. We can't randomly release
1530 * mmap_offsets as userspace expects them to be persistent for the
1531 * lifetime of the objects. The closest we can is to release the
1532 * offsets on purgeable objects by truncating it and marking it purged,
1533 * which prevents userspace from ever using that object again.
1534 */
1535 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1536 ret = drm_gem_create_mmap_offset(&obj->base);
1537 if (ret != -ENOSPC)
1538 return ret;
1539
1540 i915_gem_shrink_all(dev_priv);
1541 return drm_gem_create_mmap_offset(&obj->base);
1542 }
1543
1544 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1545 {
1546 if (!obj->base.map_list.map)
1547 return;
1548
1549 drm_gem_free_mmap_offset(&obj->base);
1550 }
1551
1552 int
1553 i915_gem_mmap_gtt(struct drm_file *file,
1554 struct drm_device *dev,
1555 uint32_t handle,
1556 uint64_t *offset)
1557 {
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 struct drm_i915_gem_object *obj;
1560 int ret;
1561
1562 ret = i915_mutex_lock_interruptible(dev);
1563 if (ret)
1564 return ret;
1565
1566 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1567 if (&obj->base == NULL) {
1568 ret = -ENOENT;
1569 goto unlock;
1570 }
1571
1572 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1573 ret = -E2BIG;
1574 goto out;
1575 }
1576
1577 if (obj->madv != I915_MADV_WILLNEED) {
1578 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1579 ret = -EINVAL;
1580 goto out;
1581 }
1582
1583 ret = i915_gem_object_create_mmap_offset(obj);
1584 if (ret)
1585 goto out;
1586
1587 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1588
1589 out:
1590 drm_gem_object_unreference(&obj->base);
1591 unlock:
1592 mutex_unlock(&dev->struct_mutex);
1593 return ret;
1594 }
1595
1596 /**
1597 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1598 * @dev: DRM device
1599 * @data: GTT mapping ioctl data
1600 * @file: GEM object info
1601 *
1602 * Simply returns the fake offset to userspace so it can mmap it.
1603 * The mmap call will end up in drm_gem_mmap(), which will set things
1604 * up so we can get faults in the handler above.
1605 *
1606 * The fault handler will take care of binding the object into the GTT
1607 * (since it may have been evicted to make room for something), allocating
1608 * a fence register, and mapping the appropriate aperture address into
1609 * userspace.
1610 */
1611 int
1612 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1613 struct drm_file *file)
1614 {
1615 struct drm_i915_gem_mmap_gtt *args = data;
1616
1617 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1618 }
1619
1620 /* Immediately discard the backing storage */
1621 static void
1622 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1623 {
1624 struct inode *inode;
1625
1626 i915_gem_object_free_mmap_offset(obj);
1627
1628 if (obj->base.filp == NULL)
1629 return;
1630
1631 /* Our goal here is to return as much of the memory as
1632 * is possible back to the system as we are called from OOM.
1633 * To do this we must instruct the shmfs to drop all of its
1634 * backing pages, *now*.
1635 */
1636 inode = obj->base.filp->f_path.dentry->d_inode;
1637 shmem_truncate_range(inode, 0, (loff_t)-1);
1638
1639 obj->madv = __I915_MADV_PURGED;
1640 }
1641
1642 static inline int
1643 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1644 {
1645 return obj->madv == I915_MADV_DONTNEED;
1646 }
1647
1648 static void
1649 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1650 {
1651 int page_count = obj->base.size / PAGE_SIZE;
1652 struct scatterlist *sg;
1653 int ret, i;
1654
1655 BUG_ON(obj->madv == __I915_MADV_PURGED);
1656
1657 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1658 if (ret) {
1659 /* In the event of a disaster, abandon all caches and
1660 * hope for the best.
1661 */
1662 WARN_ON(ret != -EIO);
1663 i915_gem_clflush_object(obj);
1664 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1665 }
1666
1667 if (i915_gem_object_needs_bit17_swizzle(obj))
1668 i915_gem_object_save_bit_17_swizzle(obj);
1669
1670 if (obj->madv == I915_MADV_DONTNEED)
1671 obj->dirty = 0;
1672
1673 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1674 struct page *page = sg_page(sg);
1675
1676 if (obj->dirty)
1677 set_page_dirty(page);
1678
1679 if (obj->madv == I915_MADV_WILLNEED)
1680 mark_page_accessed(page);
1681
1682 page_cache_release(page);
1683 }
1684 obj->dirty = 0;
1685
1686 sg_free_table(obj->pages);
1687 kfree(obj->pages);
1688 }
1689
1690 static int
1691 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1692 {
1693 const struct drm_i915_gem_object_ops *ops = obj->ops;
1694
1695 if (obj->pages == NULL)
1696 return 0;
1697
1698 BUG_ON(obj->gtt_space);
1699
1700 if (obj->pages_pin_count)
1701 return -EBUSY;
1702
1703 ops->put_pages(obj);
1704 obj->pages = NULL;
1705
1706 list_del(&obj->gtt_list);
1707 if (i915_gem_object_is_purgeable(obj))
1708 i915_gem_object_truncate(obj);
1709
1710 return 0;
1711 }
1712
1713 static long
1714 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1715 {
1716 struct drm_i915_gem_object *obj, *next;
1717 long count = 0;
1718
1719 list_for_each_entry_safe(obj, next,
1720 &dev_priv->mm.unbound_list,
1721 gtt_list) {
1722 if (i915_gem_object_is_purgeable(obj) &&
1723 i915_gem_object_put_pages(obj) == 0) {
1724 count += obj->base.size >> PAGE_SHIFT;
1725 if (count >= target)
1726 return count;
1727 }
1728 }
1729
1730 list_for_each_entry_safe(obj, next,
1731 &dev_priv->mm.inactive_list,
1732 mm_list) {
1733 if (i915_gem_object_is_purgeable(obj) &&
1734 i915_gem_object_unbind(obj) == 0 &&
1735 i915_gem_object_put_pages(obj) == 0) {
1736 count += obj->base.size >> PAGE_SHIFT;
1737 if (count >= target)
1738 return count;
1739 }
1740 }
1741
1742 return count;
1743 }
1744
1745 static void
1746 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1747 {
1748 struct drm_i915_gem_object *obj, *next;
1749
1750 i915_gem_evict_everything(dev_priv->dev);
1751
1752 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1753 i915_gem_object_put_pages(obj);
1754 }
1755
1756 static int
1757 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1758 {
1759 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1760 int page_count, i;
1761 struct address_space *mapping;
1762 struct sg_table *st;
1763 struct scatterlist *sg;
1764 struct page *page;
1765 gfp_t gfp;
1766
1767 /* Assert that the object is not currently in any GPU domain. As it
1768 * wasn't in the GTT, there shouldn't be any way it could have been in
1769 * a GPU cache
1770 */
1771 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1772 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1773
1774 st = kmalloc(sizeof(*st), GFP_KERNEL);
1775 if (st == NULL)
1776 return -ENOMEM;
1777
1778 page_count = obj->base.size / PAGE_SIZE;
1779 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1780 sg_free_table(st);
1781 kfree(st);
1782 return -ENOMEM;
1783 }
1784
1785 /* Get the list of pages out of our struct file. They'll be pinned
1786 * at this point until we release them.
1787 *
1788 * Fail silently without starting the shrinker
1789 */
1790 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1791 gfp = mapping_gfp_mask(mapping);
1792 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1793 gfp &= ~(__GFP_IO | __GFP_WAIT);
1794 for_each_sg(st->sgl, sg, page_count, i) {
1795 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796 if (IS_ERR(page)) {
1797 i915_gem_purge(dev_priv, page_count);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 }
1800 if (IS_ERR(page)) {
1801 /* We've tried hard to allocate the memory by reaping
1802 * our own buffer, now let the real VM do its job and
1803 * go down in flames if truly OOM.
1804 */
1805 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1806 gfp |= __GFP_IO | __GFP_WAIT;
1807
1808 i915_gem_shrink_all(dev_priv);
1809 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1810 if (IS_ERR(page))
1811 goto err_pages;
1812
1813 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1814 gfp &= ~(__GFP_IO | __GFP_WAIT);
1815 }
1816
1817 sg_set_page(sg, page, PAGE_SIZE, 0);
1818 }
1819
1820 if (i915_gem_object_needs_bit17_swizzle(obj))
1821 i915_gem_object_do_bit_17_swizzle(obj);
1822
1823 obj->pages = st;
1824 return 0;
1825
1826 err_pages:
1827 for_each_sg(st->sgl, sg, i, page_count)
1828 page_cache_release(sg_page(sg));
1829 sg_free_table(st);
1830 kfree(st);
1831 return PTR_ERR(page);
1832 }
1833
1834 /* Ensure that the associated pages are gathered from the backing storage
1835 * and pinned into our object. i915_gem_object_get_pages() may be called
1836 * multiple times before they are released by a single call to
1837 * i915_gem_object_put_pages() - once the pages are no longer referenced
1838 * either as a result of memory pressure (reaping pages under the shrinker)
1839 * or as the object is itself released.
1840 */
1841 int
1842 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1843 {
1844 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1845 const struct drm_i915_gem_object_ops *ops = obj->ops;
1846 int ret;
1847
1848 if (obj->pages)
1849 return 0;
1850
1851 BUG_ON(obj->pages_pin_count);
1852
1853 ret = ops->get_pages(obj);
1854 if (ret)
1855 return ret;
1856
1857 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1858 return 0;
1859 }
1860
1861 void
1862 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1863 struct intel_ring_buffer *ring,
1864 u32 seqno)
1865 {
1866 struct drm_device *dev = obj->base.dev;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868
1869 BUG_ON(ring == NULL);
1870 obj->ring = ring;
1871
1872 /* Add a reference if we're newly entering the active list. */
1873 if (!obj->active) {
1874 drm_gem_object_reference(&obj->base);
1875 obj->active = 1;
1876 }
1877
1878 /* Move from whatever list we were on to the tail of execution. */
1879 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1880 list_move_tail(&obj->ring_list, &ring->active_list);
1881
1882 obj->last_read_seqno = seqno;
1883
1884 if (obj->fenced_gpu_access) {
1885 obj->last_fenced_seqno = seqno;
1886
1887 /* Bump MRU to take account of the delayed flush */
1888 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1889 struct drm_i915_fence_reg *reg;
1890
1891 reg = &dev_priv->fence_regs[obj->fence_reg];
1892 list_move_tail(&reg->lru_list,
1893 &dev_priv->mm.fence_list);
1894 }
1895 }
1896 }
1897
1898 static void
1899 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1900 {
1901 struct drm_device *dev = obj->base.dev;
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903
1904 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1905 BUG_ON(!obj->active);
1906
1907 if (obj->pin_count) /* are we a framebuffer? */
1908 intel_mark_fb_idle(obj);
1909
1910 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1911
1912 list_del_init(&obj->ring_list);
1913 obj->ring = NULL;
1914
1915 obj->last_read_seqno = 0;
1916 obj->last_write_seqno = 0;
1917 obj->base.write_domain = 0;
1918
1919 obj->last_fenced_seqno = 0;
1920 obj->fenced_gpu_access = false;
1921
1922 obj->active = 0;
1923 drm_gem_object_unreference(&obj->base);
1924
1925 WARN_ON(i915_verify_lists(dev));
1926 }
1927
1928 static u32
1929 i915_gem_get_seqno(struct drm_device *dev)
1930 {
1931 drm_i915_private_t *dev_priv = dev->dev_private;
1932 u32 seqno = dev_priv->next_seqno;
1933
1934 /* reserve 0 for non-seqno */
1935 if (++dev_priv->next_seqno == 0)
1936 dev_priv->next_seqno = 1;
1937
1938 return seqno;
1939 }
1940
1941 u32
1942 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1943 {
1944 if (ring->outstanding_lazy_request == 0)
1945 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1946
1947 return ring->outstanding_lazy_request;
1948 }
1949
1950 int
1951 i915_add_request(struct intel_ring_buffer *ring,
1952 struct drm_file *file,
1953 struct drm_i915_gem_request *request)
1954 {
1955 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1956 uint32_t seqno;
1957 u32 request_ring_position;
1958 int was_empty;
1959 int ret;
1960
1961 /*
1962 * Emit any outstanding flushes - execbuf can fail to emit the flush
1963 * after having emitted the batchbuffer command. Hence we need to fix
1964 * things up similar to emitting the lazy request. The difference here
1965 * is that the flush _must_ happen before the next request, no matter
1966 * what.
1967 */
1968 ret = intel_ring_flush_all_caches(ring);
1969 if (ret)
1970 return ret;
1971
1972 if (request == NULL) {
1973 request = kmalloc(sizeof(*request), GFP_KERNEL);
1974 if (request == NULL)
1975 return -ENOMEM;
1976 }
1977
1978 seqno = i915_gem_next_request_seqno(ring);
1979
1980 /* Record the position of the start of the request so that
1981 * should we detect the updated seqno part-way through the
1982 * GPU processing the request, we never over-estimate the
1983 * position of the head.
1984 */
1985 request_ring_position = intel_ring_get_tail(ring);
1986
1987 ret = ring->add_request(ring, &seqno);
1988 if (ret) {
1989 kfree(request);
1990 return ret;
1991 }
1992
1993 trace_i915_gem_request_add(ring, seqno);
1994
1995 request->seqno = seqno;
1996 request->ring = ring;
1997 request->tail = request_ring_position;
1998 request->emitted_jiffies = jiffies;
1999 was_empty = list_empty(&ring->request_list);
2000 list_add_tail(&request->list, &ring->request_list);
2001 request->file_priv = NULL;
2002
2003 if (file) {
2004 struct drm_i915_file_private *file_priv = file->driver_priv;
2005
2006 spin_lock(&file_priv->mm.lock);
2007 request->file_priv = file_priv;
2008 list_add_tail(&request->client_list,
2009 &file_priv->mm.request_list);
2010 spin_unlock(&file_priv->mm.lock);
2011 }
2012
2013 ring->outstanding_lazy_request = 0;
2014
2015 if (!dev_priv->mm.suspended) {
2016 if (i915_enable_hangcheck) {
2017 mod_timer(&dev_priv->hangcheck_timer,
2018 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2019 }
2020 if (was_empty) {
2021 queue_delayed_work(dev_priv->wq,
2022 &dev_priv->mm.retire_work, HZ);
2023 intel_mark_busy(dev_priv->dev);
2024 }
2025 }
2026
2027 return 0;
2028 }
2029
2030 static inline void
2031 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2032 {
2033 struct drm_i915_file_private *file_priv = request->file_priv;
2034
2035 if (!file_priv)
2036 return;
2037
2038 spin_lock(&file_priv->mm.lock);
2039 if (request->file_priv) {
2040 list_del(&request->client_list);
2041 request->file_priv = NULL;
2042 }
2043 spin_unlock(&file_priv->mm.lock);
2044 }
2045
2046 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2047 struct intel_ring_buffer *ring)
2048 {
2049 while (!list_empty(&ring->request_list)) {
2050 struct drm_i915_gem_request *request;
2051
2052 request = list_first_entry(&ring->request_list,
2053 struct drm_i915_gem_request,
2054 list);
2055
2056 list_del(&request->list);
2057 i915_gem_request_remove_from_client(request);
2058 kfree(request);
2059 }
2060
2061 while (!list_empty(&ring->active_list)) {
2062 struct drm_i915_gem_object *obj;
2063
2064 obj = list_first_entry(&ring->active_list,
2065 struct drm_i915_gem_object,
2066 ring_list);
2067
2068 i915_gem_object_move_to_inactive(obj);
2069 }
2070 }
2071
2072 static void i915_gem_reset_fences(struct drm_device *dev)
2073 {
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075 int i;
2076
2077 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2078 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2079
2080 i915_gem_write_fence(dev, i, NULL);
2081
2082 if (reg->obj)
2083 i915_gem_object_fence_lost(reg->obj);
2084
2085 reg->pin_count = 0;
2086 reg->obj = NULL;
2087 INIT_LIST_HEAD(&reg->lru_list);
2088 }
2089
2090 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2091 }
2092
2093 void i915_gem_reset(struct drm_device *dev)
2094 {
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct drm_i915_gem_object *obj;
2097 struct intel_ring_buffer *ring;
2098 int i;
2099
2100 for_each_ring(ring, dev_priv, i)
2101 i915_gem_reset_ring_lists(dev_priv, ring);
2102
2103 /* Move everything out of the GPU domains to ensure we do any
2104 * necessary invalidation upon reuse.
2105 */
2106 list_for_each_entry(obj,
2107 &dev_priv->mm.inactive_list,
2108 mm_list)
2109 {
2110 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2111 }
2112
2113 /* The fence registers are invalidated so clear them out */
2114 i915_gem_reset_fences(dev);
2115 }
2116
2117 /**
2118 * This function clears the request list as sequence numbers are passed.
2119 */
2120 void
2121 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2122 {
2123 uint32_t seqno;
2124 int i;
2125
2126 if (list_empty(&ring->request_list))
2127 return;
2128
2129 WARN_ON(i915_verify_lists(ring->dev));
2130
2131 seqno = ring->get_seqno(ring, true);
2132
2133 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2134 if (seqno >= ring->sync_seqno[i])
2135 ring->sync_seqno[i] = 0;
2136
2137 while (!list_empty(&ring->request_list)) {
2138 struct drm_i915_gem_request *request;
2139
2140 request = list_first_entry(&ring->request_list,
2141 struct drm_i915_gem_request,
2142 list);
2143
2144 if (!i915_seqno_passed(seqno, request->seqno))
2145 break;
2146
2147 trace_i915_gem_request_retire(ring, request->seqno);
2148 /* We know the GPU must have read the request to have
2149 * sent us the seqno + interrupt, so use the position
2150 * of tail of the request to update the last known position
2151 * of the GPU head.
2152 */
2153 ring->last_retired_head = request->tail;
2154
2155 list_del(&request->list);
2156 i915_gem_request_remove_from_client(request);
2157 kfree(request);
2158 }
2159
2160 /* Move any buffers on the active list that are no longer referenced
2161 * by the ringbuffer to the flushing/inactive lists as appropriate.
2162 */
2163 while (!list_empty(&ring->active_list)) {
2164 struct drm_i915_gem_object *obj;
2165
2166 obj = list_first_entry(&ring->active_list,
2167 struct drm_i915_gem_object,
2168 ring_list);
2169
2170 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2171 break;
2172
2173 i915_gem_object_move_to_inactive(obj);
2174 }
2175
2176 if (unlikely(ring->trace_irq_seqno &&
2177 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2178 ring->irq_put(ring);
2179 ring->trace_irq_seqno = 0;
2180 }
2181
2182 WARN_ON(i915_verify_lists(ring->dev));
2183 }
2184
2185 void
2186 i915_gem_retire_requests(struct drm_device *dev)
2187 {
2188 drm_i915_private_t *dev_priv = dev->dev_private;
2189 struct intel_ring_buffer *ring;
2190 int i;
2191
2192 for_each_ring(ring, dev_priv, i)
2193 i915_gem_retire_requests_ring(ring);
2194 }
2195
2196 static void
2197 i915_gem_retire_work_handler(struct work_struct *work)
2198 {
2199 drm_i915_private_t *dev_priv;
2200 struct drm_device *dev;
2201 struct intel_ring_buffer *ring;
2202 bool idle;
2203 int i;
2204
2205 dev_priv = container_of(work, drm_i915_private_t,
2206 mm.retire_work.work);
2207 dev = dev_priv->dev;
2208
2209 /* Come back later if the device is busy... */
2210 if (!mutex_trylock(&dev->struct_mutex)) {
2211 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2212 return;
2213 }
2214
2215 i915_gem_retire_requests(dev);
2216
2217 /* Send a periodic flush down the ring so we don't hold onto GEM
2218 * objects indefinitely.
2219 */
2220 idle = true;
2221 for_each_ring(ring, dev_priv, i) {
2222 if (ring->gpu_caches_dirty)
2223 i915_add_request(ring, NULL, NULL);
2224
2225 idle &= list_empty(&ring->request_list);
2226 }
2227
2228 if (!dev_priv->mm.suspended && !idle)
2229 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2230 if (idle)
2231 intel_mark_idle(dev);
2232
2233 mutex_unlock(&dev->struct_mutex);
2234 }
2235
2236 /**
2237 * Ensures that an object will eventually get non-busy by flushing any required
2238 * write domains, emitting any outstanding lazy request and retiring and
2239 * completed requests.
2240 */
2241 static int
2242 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2243 {
2244 int ret;
2245
2246 if (obj->active) {
2247 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2248 if (ret)
2249 return ret;
2250
2251 i915_gem_retire_requests_ring(obj->ring);
2252 }
2253
2254 return 0;
2255 }
2256
2257 /**
2258 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2259 * @DRM_IOCTL_ARGS: standard ioctl arguments
2260 *
2261 * Returns 0 if successful, else an error is returned with the remaining time in
2262 * the timeout parameter.
2263 * -ETIME: object is still busy after timeout
2264 * -ERESTARTSYS: signal interrupted the wait
2265 * -ENONENT: object doesn't exist
2266 * Also possible, but rare:
2267 * -EAGAIN: GPU wedged
2268 * -ENOMEM: damn
2269 * -ENODEV: Internal IRQ fail
2270 * -E?: The add request failed
2271 *
2272 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2273 * non-zero timeout parameter the wait ioctl will wait for the given number of
2274 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2275 * without holding struct_mutex the object may become re-busied before this
2276 * function completes. A similar but shorter * race condition exists in the busy
2277 * ioctl
2278 */
2279 int
2280 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2281 {
2282 struct drm_i915_gem_wait *args = data;
2283 struct drm_i915_gem_object *obj;
2284 struct intel_ring_buffer *ring = NULL;
2285 struct timespec timeout_stack, *timeout = NULL;
2286 u32 seqno = 0;
2287 int ret = 0;
2288
2289 if (args->timeout_ns >= 0) {
2290 timeout_stack = ns_to_timespec(args->timeout_ns);
2291 timeout = &timeout_stack;
2292 }
2293
2294 ret = i915_mutex_lock_interruptible(dev);
2295 if (ret)
2296 return ret;
2297
2298 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2299 if (&obj->base == NULL) {
2300 mutex_unlock(&dev->struct_mutex);
2301 return -ENOENT;
2302 }
2303
2304 /* Need to make sure the object gets inactive eventually. */
2305 ret = i915_gem_object_flush_active(obj);
2306 if (ret)
2307 goto out;
2308
2309 if (obj->active) {
2310 seqno = obj->last_read_seqno;
2311 ring = obj->ring;
2312 }
2313
2314 if (seqno == 0)
2315 goto out;
2316
2317 /* Do this after OLR check to make sure we make forward progress polling
2318 * on this IOCTL with a 0 timeout (like busy ioctl)
2319 */
2320 if (!args->timeout_ns) {
2321 ret = -ETIME;
2322 goto out;
2323 }
2324
2325 drm_gem_object_unreference(&obj->base);
2326 mutex_unlock(&dev->struct_mutex);
2327
2328 ret = __wait_seqno(ring, seqno, true, timeout);
2329 if (timeout) {
2330 WARN_ON(!timespec_valid(timeout));
2331 args->timeout_ns = timespec_to_ns(timeout);
2332 }
2333 return ret;
2334
2335 out:
2336 drm_gem_object_unreference(&obj->base);
2337 mutex_unlock(&dev->struct_mutex);
2338 return ret;
2339 }
2340
2341 /**
2342 * i915_gem_object_sync - sync an object to a ring.
2343 *
2344 * @obj: object which may be in use on another ring.
2345 * @to: ring we wish to use the object on. May be NULL.
2346 *
2347 * This code is meant to abstract object synchronization with the GPU.
2348 * Calling with NULL implies synchronizing the object with the CPU
2349 * rather than a particular GPU ring.
2350 *
2351 * Returns 0 if successful, else propagates up the lower layer error.
2352 */
2353 int
2354 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2355 struct intel_ring_buffer *to)
2356 {
2357 struct intel_ring_buffer *from = obj->ring;
2358 u32 seqno;
2359 int ret, idx;
2360
2361 if (from == NULL || to == from)
2362 return 0;
2363
2364 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2365 return i915_gem_object_wait_rendering(obj, false);
2366
2367 idx = intel_ring_sync_index(from, to);
2368
2369 seqno = obj->last_read_seqno;
2370 if (seqno <= from->sync_seqno[idx])
2371 return 0;
2372
2373 ret = i915_gem_check_olr(obj->ring, seqno);
2374 if (ret)
2375 return ret;
2376
2377 ret = to->sync_to(to, from, seqno);
2378 if (!ret)
2379 from->sync_seqno[idx] = seqno;
2380
2381 return ret;
2382 }
2383
2384 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2385 {
2386 u32 old_write_domain, old_read_domains;
2387
2388 /* Act a barrier for all accesses through the GTT */
2389 mb();
2390
2391 /* Force a pagefault for domain tracking on next user access */
2392 i915_gem_release_mmap(obj);
2393
2394 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2395 return;
2396
2397 old_read_domains = obj->base.read_domains;
2398 old_write_domain = obj->base.write_domain;
2399
2400 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2401 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2402
2403 trace_i915_gem_object_change_domain(obj,
2404 old_read_domains,
2405 old_write_domain);
2406 }
2407
2408 /**
2409 * Unbinds an object from the GTT aperture.
2410 */
2411 int
2412 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2413 {
2414 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2415 int ret = 0;
2416
2417 if (obj->gtt_space == NULL)
2418 return 0;
2419
2420 if (obj->pin_count)
2421 return -EBUSY;
2422
2423 BUG_ON(obj->pages == NULL);
2424
2425 ret = i915_gem_object_finish_gpu(obj);
2426 if (ret)
2427 return ret;
2428 /* Continue on if we fail due to EIO, the GPU is hung so we
2429 * should be safe and we need to cleanup or else we might
2430 * cause memory corruption through use-after-free.
2431 */
2432
2433 i915_gem_object_finish_gtt(obj);
2434
2435 /* release the fence reg _after_ flushing */
2436 ret = i915_gem_object_put_fence(obj);
2437 if (ret)
2438 return ret;
2439
2440 trace_i915_gem_object_unbind(obj);
2441
2442 if (obj->has_global_gtt_mapping)
2443 i915_gem_gtt_unbind_object(obj);
2444 if (obj->has_aliasing_ppgtt_mapping) {
2445 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2446 obj->has_aliasing_ppgtt_mapping = 0;
2447 }
2448 i915_gem_gtt_finish_object(obj);
2449
2450 list_del(&obj->mm_list);
2451 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2452 /* Avoid an unnecessary call to unbind on rebind. */
2453 obj->map_and_fenceable = true;
2454
2455 drm_mm_put_block(obj->gtt_space);
2456 obj->gtt_space = NULL;
2457 obj->gtt_offset = 0;
2458
2459 return 0;
2460 }
2461
2462 static int i915_ring_idle(struct intel_ring_buffer *ring)
2463 {
2464 if (list_empty(&ring->active_list))
2465 return 0;
2466
2467 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2468 }
2469
2470 int i915_gpu_idle(struct drm_device *dev)
2471 {
2472 drm_i915_private_t *dev_priv = dev->dev_private;
2473 struct intel_ring_buffer *ring;
2474 int ret, i;
2475
2476 /* Flush everything onto the inactive list. */
2477 for_each_ring(ring, dev_priv, i) {
2478 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2479 if (ret)
2480 return ret;
2481
2482 ret = i915_ring_idle(ring);
2483 if (ret)
2484 return ret;
2485 }
2486
2487 return 0;
2488 }
2489
2490 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2491 struct drm_i915_gem_object *obj)
2492 {
2493 drm_i915_private_t *dev_priv = dev->dev_private;
2494 uint64_t val;
2495
2496 if (obj) {
2497 u32 size = obj->gtt_space->size;
2498
2499 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2500 0xfffff000) << 32;
2501 val |= obj->gtt_offset & 0xfffff000;
2502 val |= (uint64_t)((obj->stride / 128) - 1) <<
2503 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2504
2505 if (obj->tiling_mode == I915_TILING_Y)
2506 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2507 val |= I965_FENCE_REG_VALID;
2508 } else
2509 val = 0;
2510
2511 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2512 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2513 }
2514
2515 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2516 struct drm_i915_gem_object *obj)
2517 {
2518 drm_i915_private_t *dev_priv = dev->dev_private;
2519 uint64_t val;
2520
2521 if (obj) {
2522 u32 size = obj->gtt_space->size;
2523
2524 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2525 0xfffff000) << 32;
2526 val |= obj->gtt_offset & 0xfffff000;
2527 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2528 if (obj->tiling_mode == I915_TILING_Y)
2529 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2530 val |= I965_FENCE_REG_VALID;
2531 } else
2532 val = 0;
2533
2534 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2535 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2536 }
2537
2538 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2539 struct drm_i915_gem_object *obj)
2540 {
2541 drm_i915_private_t *dev_priv = dev->dev_private;
2542 u32 val;
2543
2544 if (obj) {
2545 u32 size = obj->gtt_space->size;
2546 int pitch_val;
2547 int tile_width;
2548
2549 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2550 (size & -size) != size ||
2551 (obj->gtt_offset & (size - 1)),
2552 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2553 obj->gtt_offset, obj->map_and_fenceable, size);
2554
2555 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2556 tile_width = 128;
2557 else
2558 tile_width = 512;
2559
2560 /* Note: pitch better be a power of two tile widths */
2561 pitch_val = obj->stride / tile_width;
2562 pitch_val = ffs(pitch_val) - 1;
2563
2564 val = obj->gtt_offset;
2565 if (obj->tiling_mode == I915_TILING_Y)
2566 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2567 val |= I915_FENCE_SIZE_BITS(size);
2568 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2569 val |= I830_FENCE_REG_VALID;
2570 } else
2571 val = 0;
2572
2573 if (reg < 8)
2574 reg = FENCE_REG_830_0 + reg * 4;
2575 else
2576 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2577
2578 I915_WRITE(reg, val);
2579 POSTING_READ(reg);
2580 }
2581
2582 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2583 struct drm_i915_gem_object *obj)
2584 {
2585 drm_i915_private_t *dev_priv = dev->dev_private;
2586 uint32_t val;
2587
2588 if (obj) {
2589 u32 size = obj->gtt_space->size;
2590 uint32_t pitch_val;
2591
2592 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2593 (size & -size) != size ||
2594 (obj->gtt_offset & (size - 1)),
2595 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2596 obj->gtt_offset, size);
2597
2598 pitch_val = obj->stride / 128;
2599 pitch_val = ffs(pitch_val) - 1;
2600
2601 val = obj->gtt_offset;
2602 if (obj->tiling_mode == I915_TILING_Y)
2603 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2604 val |= I830_FENCE_SIZE_BITS(size);
2605 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2606 val |= I830_FENCE_REG_VALID;
2607 } else
2608 val = 0;
2609
2610 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2611 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2612 }
2613
2614 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2615 struct drm_i915_gem_object *obj)
2616 {
2617 switch (INTEL_INFO(dev)->gen) {
2618 case 7:
2619 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2620 case 5:
2621 case 4: i965_write_fence_reg(dev, reg, obj); break;
2622 case 3: i915_write_fence_reg(dev, reg, obj); break;
2623 case 2: i830_write_fence_reg(dev, reg, obj); break;
2624 default: break;
2625 }
2626 }
2627
2628 static inline int fence_number(struct drm_i915_private *dev_priv,
2629 struct drm_i915_fence_reg *fence)
2630 {
2631 return fence - dev_priv->fence_regs;
2632 }
2633
2634 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2635 struct drm_i915_fence_reg *fence,
2636 bool enable)
2637 {
2638 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2639 int reg = fence_number(dev_priv, fence);
2640
2641 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2642
2643 if (enable) {
2644 obj->fence_reg = reg;
2645 fence->obj = obj;
2646 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2647 } else {
2648 obj->fence_reg = I915_FENCE_REG_NONE;
2649 fence->obj = NULL;
2650 list_del_init(&fence->lru_list);
2651 }
2652 }
2653
2654 static int
2655 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2656 {
2657 if (obj->last_fenced_seqno) {
2658 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2659 if (ret)
2660 return ret;
2661
2662 obj->last_fenced_seqno = 0;
2663 }
2664
2665 /* Ensure that all CPU reads are completed before installing a fence
2666 * and all writes before removing the fence.
2667 */
2668 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2669 mb();
2670
2671 obj->fenced_gpu_access = false;
2672 return 0;
2673 }
2674
2675 int
2676 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2677 {
2678 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2679 int ret;
2680
2681 ret = i915_gem_object_flush_fence(obj);
2682 if (ret)
2683 return ret;
2684
2685 if (obj->fence_reg == I915_FENCE_REG_NONE)
2686 return 0;
2687
2688 i915_gem_object_update_fence(obj,
2689 &dev_priv->fence_regs[obj->fence_reg],
2690 false);
2691 i915_gem_object_fence_lost(obj);
2692
2693 return 0;
2694 }
2695
2696 static struct drm_i915_fence_reg *
2697 i915_find_fence_reg(struct drm_device *dev)
2698 {
2699 struct drm_i915_private *dev_priv = dev->dev_private;
2700 struct drm_i915_fence_reg *reg, *avail;
2701 int i;
2702
2703 /* First try to find a free reg */
2704 avail = NULL;
2705 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2706 reg = &dev_priv->fence_regs[i];
2707 if (!reg->obj)
2708 return reg;
2709
2710 if (!reg->pin_count)
2711 avail = reg;
2712 }
2713
2714 if (avail == NULL)
2715 return NULL;
2716
2717 /* None available, try to steal one or wait for a user to finish */
2718 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2719 if (reg->pin_count)
2720 continue;
2721
2722 return reg;
2723 }
2724
2725 return NULL;
2726 }
2727
2728 /**
2729 * i915_gem_object_get_fence - set up fencing for an object
2730 * @obj: object to map through a fence reg
2731 *
2732 * When mapping objects through the GTT, userspace wants to be able to write
2733 * to them without having to worry about swizzling if the object is tiled.
2734 * This function walks the fence regs looking for a free one for @obj,
2735 * stealing one if it can't find any.
2736 *
2737 * It then sets up the reg based on the object's properties: address, pitch
2738 * and tiling format.
2739 *
2740 * For an untiled surface, this removes any existing fence.
2741 */
2742 int
2743 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2744 {
2745 struct drm_device *dev = obj->base.dev;
2746 struct drm_i915_private *dev_priv = dev->dev_private;
2747 bool enable = obj->tiling_mode != I915_TILING_NONE;
2748 struct drm_i915_fence_reg *reg;
2749 int ret;
2750
2751 /* Have we updated the tiling parameters upon the object and so
2752 * will need to serialise the write to the associated fence register?
2753 */
2754 if (obj->fence_dirty) {
2755 ret = i915_gem_object_flush_fence(obj);
2756 if (ret)
2757 return ret;
2758 }
2759
2760 /* Just update our place in the LRU if our fence is getting reused. */
2761 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2762 reg = &dev_priv->fence_regs[obj->fence_reg];
2763 if (!obj->fence_dirty) {
2764 list_move_tail(&reg->lru_list,
2765 &dev_priv->mm.fence_list);
2766 return 0;
2767 }
2768 } else if (enable) {
2769 reg = i915_find_fence_reg(dev);
2770 if (reg == NULL)
2771 return -EDEADLK;
2772
2773 if (reg->obj) {
2774 struct drm_i915_gem_object *old = reg->obj;
2775
2776 ret = i915_gem_object_flush_fence(old);
2777 if (ret)
2778 return ret;
2779
2780 i915_gem_object_fence_lost(old);
2781 }
2782 } else
2783 return 0;
2784
2785 i915_gem_object_update_fence(obj, reg, enable);
2786 obj->fence_dirty = false;
2787
2788 return 0;
2789 }
2790
2791 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2792 struct drm_mm_node *gtt_space,
2793 unsigned long cache_level)
2794 {
2795 struct drm_mm_node *other;
2796
2797 /* On non-LLC machines we have to be careful when putting differing
2798 * types of snoopable memory together to avoid the prefetcher
2799 * crossing memory domains and dieing.
2800 */
2801 if (HAS_LLC(dev))
2802 return true;
2803
2804 if (gtt_space == NULL)
2805 return true;
2806
2807 if (list_empty(&gtt_space->node_list))
2808 return true;
2809
2810 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2811 if (other->allocated && !other->hole_follows && other->color != cache_level)
2812 return false;
2813
2814 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2815 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2816 return false;
2817
2818 return true;
2819 }
2820
2821 static void i915_gem_verify_gtt(struct drm_device *dev)
2822 {
2823 #if WATCH_GTT
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct drm_i915_gem_object *obj;
2826 int err = 0;
2827
2828 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2829 if (obj->gtt_space == NULL) {
2830 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2831 err++;
2832 continue;
2833 }
2834
2835 if (obj->cache_level != obj->gtt_space->color) {
2836 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2837 obj->gtt_space->start,
2838 obj->gtt_space->start + obj->gtt_space->size,
2839 obj->cache_level,
2840 obj->gtt_space->color);
2841 err++;
2842 continue;
2843 }
2844
2845 if (!i915_gem_valid_gtt_space(dev,
2846 obj->gtt_space,
2847 obj->cache_level)) {
2848 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2849 obj->gtt_space->start,
2850 obj->gtt_space->start + obj->gtt_space->size,
2851 obj->cache_level);
2852 err++;
2853 continue;
2854 }
2855 }
2856
2857 WARN_ON(err);
2858 #endif
2859 }
2860
2861 /**
2862 * Finds free space in the GTT aperture and binds the object there.
2863 */
2864 static int
2865 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2866 unsigned alignment,
2867 bool map_and_fenceable,
2868 bool nonblocking)
2869 {
2870 struct drm_device *dev = obj->base.dev;
2871 drm_i915_private_t *dev_priv = dev->dev_private;
2872 struct drm_mm_node *free_space;
2873 u32 size, fence_size, fence_alignment, unfenced_alignment;
2874 bool mappable, fenceable;
2875 int ret;
2876
2877 if (obj->madv != I915_MADV_WILLNEED) {
2878 DRM_ERROR("Attempting to bind a purgeable object\n");
2879 return -EINVAL;
2880 }
2881
2882 fence_size = i915_gem_get_gtt_size(dev,
2883 obj->base.size,
2884 obj->tiling_mode);
2885 fence_alignment = i915_gem_get_gtt_alignment(dev,
2886 obj->base.size,
2887 obj->tiling_mode);
2888 unfenced_alignment =
2889 i915_gem_get_unfenced_gtt_alignment(dev,
2890 obj->base.size,
2891 obj->tiling_mode);
2892
2893 if (alignment == 0)
2894 alignment = map_and_fenceable ? fence_alignment :
2895 unfenced_alignment;
2896 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2897 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2898 return -EINVAL;
2899 }
2900
2901 size = map_and_fenceable ? fence_size : obj->base.size;
2902
2903 /* If the object is bigger than the entire aperture, reject it early
2904 * before evicting everything in a vain attempt to find space.
2905 */
2906 if (obj->base.size >
2907 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2908 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2909 return -E2BIG;
2910 }
2911
2912 ret = i915_gem_object_get_pages(obj);
2913 if (ret)
2914 return ret;
2915
2916 search_free:
2917 if (map_and_fenceable)
2918 free_space =
2919 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2920 size, alignment, obj->cache_level,
2921 0, dev_priv->mm.gtt_mappable_end,
2922 false);
2923 else
2924 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2925 size, alignment, obj->cache_level,
2926 false);
2927
2928 if (free_space != NULL) {
2929 if (map_and_fenceable)
2930 obj->gtt_space =
2931 drm_mm_get_block_range_generic(free_space,
2932 size, alignment, obj->cache_level,
2933 0, dev_priv->mm.gtt_mappable_end,
2934 false);
2935 else
2936 obj->gtt_space =
2937 drm_mm_get_block_generic(free_space,
2938 size, alignment, obj->cache_level,
2939 false);
2940 }
2941 if (obj->gtt_space == NULL) {
2942 ret = i915_gem_evict_something(dev, size, alignment,
2943 obj->cache_level,
2944 map_and_fenceable,
2945 nonblocking);
2946 if (ret)
2947 return ret;
2948
2949 goto search_free;
2950 }
2951 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2952 obj->gtt_space,
2953 obj->cache_level))) {
2954 drm_mm_put_block(obj->gtt_space);
2955 obj->gtt_space = NULL;
2956 return -EINVAL;
2957 }
2958
2959
2960 ret = i915_gem_gtt_prepare_object(obj);
2961 if (ret) {
2962 drm_mm_put_block(obj->gtt_space);
2963 obj->gtt_space = NULL;
2964 return ret;
2965 }
2966
2967 if (!dev_priv->mm.aliasing_ppgtt)
2968 i915_gem_gtt_bind_object(obj, obj->cache_level);
2969
2970 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2971 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2972
2973 obj->gtt_offset = obj->gtt_space->start;
2974
2975 fenceable =
2976 obj->gtt_space->size == fence_size &&
2977 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2978
2979 mappable =
2980 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2981
2982 obj->map_and_fenceable = mappable && fenceable;
2983
2984 trace_i915_gem_object_bind(obj, map_and_fenceable);
2985 i915_gem_verify_gtt(dev);
2986 return 0;
2987 }
2988
2989 void
2990 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2991 {
2992 /* If we don't have a page list set up, then we're not pinned
2993 * to GPU, and we can ignore the cache flush because it'll happen
2994 * again at bind time.
2995 */
2996 if (obj->pages == NULL)
2997 return;
2998
2999 /* If the GPU is snooping the contents of the CPU cache,
3000 * we do not need to manually clear the CPU cache lines. However,
3001 * the caches are only snooped when the render cache is
3002 * flushed/invalidated. As we always have to emit invalidations
3003 * and flushes when moving into and out of the RENDER domain, correct
3004 * snooping behaviour occurs naturally as the result of our domain
3005 * tracking.
3006 */
3007 if (obj->cache_level != I915_CACHE_NONE)
3008 return;
3009
3010 trace_i915_gem_object_clflush(obj);
3011
3012 drm_clflush_sg(obj->pages);
3013 }
3014
3015 /** Flushes the GTT write domain for the object if it's dirty. */
3016 static void
3017 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3018 {
3019 uint32_t old_write_domain;
3020
3021 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3022 return;
3023
3024 /* No actual flushing is required for the GTT write domain. Writes
3025 * to it immediately go to main memory as far as we know, so there's
3026 * no chipset flush. It also doesn't land in render cache.
3027 *
3028 * However, we do have to enforce the order so that all writes through
3029 * the GTT land before any writes to the device, such as updates to
3030 * the GATT itself.
3031 */
3032 wmb();
3033
3034 old_write_domain = obj->base.write_domain;
3035 obj->base.write_domain = 0;
3036
3037 trace_i915_gem_object_change_domain(obj,
3038 obj->base.read_domains,
3039 old_write_domain);
3040 }
3041
3042 /** Flushes the CPU write domain for the object if it's dirty. */
3043 static void
3044 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3045 {
3046 uint32_t old_write_domain;
3047
3048 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3049 return;
3050
3051 i915_gem_clflush_object(obj);
3052 intel_gtt_chipset_flush();
3053 old_write_domain = obj->base.write_domain;
3054 obj->base.write_domain = 0;
3055
3056 trace_i915_gem_object_change_domain(obj,
3057 obj->base.read_domains,
3058 old_write_domain);
3059 }
3060
3061 /**
3062 * Moves a single object to the GTT read, and possibly write domain.
3063 *
3064 * This function returns when the move is complete, including waiting on
3065 * flushes to occur.
3066 */
3067 int
3068 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3069 {
3070 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3071 uint32_t old_write_domain, old_read_domains;
3072 int ret;
3073
3074 /* Not valid to be called on unbound objects. */
3075 if (obj->gtt_space == NULL)
3076 return -EINVAL;
3077
3078 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3079 return 0;
3080
3081 ret = i915_gem_object_wait_rendering(obj, !write);
3082 if (ret)
3083 return ret;
3084
3085 i915_gem_object_flush_cpu_write_domain(obj);
3086
3087 old_write_domain = obj->base.write_domain;
3088 old_read_domains = obj->base.read_domains;
3089
3090 /* It should now be out of any other write domains, and we can update
3091 * the domain values for our changes.
3092 */
3093 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3094 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3095 if (write) {
3096 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3097 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3098 obj->dirty = 1;
3099 }
3100
3101 trace_i915_gem_object_change_domain(obj,
3102 old_read_domains,
3103 old_write_domain);
3104
3105 /* And bump the LRU for this access */
3106 if (i915_gem_object_is_inactive(obj))
3107 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3108
3109 return 0;
3110 }
3111
3112 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3113 enum i915_cache_level cache_level)
3114 {
3115 struct drm_device *dev = obj->base.dev;
3116 drm_i915_private_t *dev_priv = dev->dev_private;
3117 int ret;
3118
3119 if (obj->cache_level == cache_level)
3120 return 0;
3121
3122 if (obj->pin_count) {
3123 DRM_DEBUG("can not change the cache level of pinned objects\n");
3124 return -EBUSY;
3125 }
3126
3127 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3128 ret = i915_gem_object_unbind(obj);
3129 if (ret)
3130 return ret;
3131 }
3132
3133 if (obj->gtt_space) {
3134 ret = i915_gem_object_finish_gpu(obj);
3135 if (ret)
3136 return ret;
3137
3138 i915_gem_object_finish_gtt(obj);
3139
3140 /* Before SandyBridge, you could not use tiling or fence
3141 * registers with snooped memory, so relinquish any fences
3142 * currently pointing to our region in the aperture.
3143 */
3144 if (INTEL_INFO(dev)->gen < 6) {
3145 ret = i915_gem_object_put_fence(obj);
3146 if (ret)
3147 return ret;
3148 }
3149
3150 if (obj->has_global_gtt_mapping)
3151 i915_gem_gtt_bind_object(obj, cache_level);
3152 if (obj->has_aliasing_ppgtt_mapping)
3153 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3154 obj, cache_level);
3155
3156 obj->gtt_space->color = cache_level;
3157 }
3158
3159 if (cache_level == I915_CACHE_NONE) {
3160 u32 old_read_domains, old_write_domain;
3161
3162 /* If we're coming from LLC cached, then we haven't
3163 * actually been tracking whether the data is in the
3164 * CPU cache or not, since we only allow one bit set
3165 * in obj->write_domain and have been skipping the clflushes.
3166 * Just set it to the CPU cache for now.
3167 */
3168 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3169 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3170
3171 old_read_domains = obj->base.read_domains;
3172 old_write_domain = obj->base.write_domain;
3173
3174 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3175 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3176
3177 trace_i915_gem_object_change_domain(obj,
3178 old_read_domains,
3179 old_write_domain);
3180 }
3181
3182 obj->cache_level = cache_level;
3183 i915_gem_verify_gtt(dev);
3184 return 0;
3185 }
3186
3187 int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
3188 struct drm_file *file)
3189 {
3190 struct drm_i915_gem_cacheing *args = data;
3191 struct drm_i915_gem_object *obj;
3192 int ret;
3193
3194 ret = i915_mutex_lock_interruptible(dev);
3195 if (ret)
3196 return ret;
3197
3198 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3199 if (&obj->base == NULL) {
3200 ret = -ENOENT;
3201 goto unlock;
3202 }
3203
3204 args->cacheing = obj->cache_level != I915_CACHE_NONE;
3205
3206 drm_gem_object_unreference(&obj->base);
3207 unlock:
3208 mutex_unlock(&dev->struct_mutex);
3209 return ret;
3210 }
3211
3212 int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
3213 struct drm_file *file)
3214 {
3215 struct drm_i915_gem_cacheing *args = data;
3216 struct drm_i915_gem_object *obj;
3217 enum i915_cache_level level;
3218 int ret;
3219
3220 ret = i915_mutex_lock_interruptible(dev);
3221 if (ret)
3222 return ret;
3223
3224 switch (args->cacheing) {
3225 case I915_CACHEING_NONE:
3226 level = I915_CACHE_NONE;
3227 break;
3228 case I915_CACHEING_CACHED:
3229 level = I915_CACHE_LLC;
3230 break;
3231 default:
3232 return -EINVAL;
3233 }
3234
3235 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3236 if (&obj->base == NULL) {
3237 ret = -ENOENT;
3238 goto unlock;
3239 }
3240
3241 ret = i915_gem_object_set_cache_level(obj, level);
3242
3243 drm_gem_object_unreference(&obj->base);
3244 unlock:
3245 mutex_unlock(&dev->struct_mutex);
3246 return ret;
3247 }
3248
3249 /*
3250 * Prepare buffer for display plane (scanout, cursors, etc).
3251 * Can be called from an uninterruptible phase (modesetting) and allows
3252 * any flushes to be pipelined (for pageflips).
3253 */
3254 int
3255 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3256 u32 alignment,
3257 struct intel_ring_buffer *pipelined)
3258 {
3259 u32 old_read_domains, old_write_domain;
3260 int ret;
3261
3262 if (pipelined != obj->ring) {
3263 ret = i915_gem_object_sync(obj, pipelined);
3264 if (ret)
3265 return ret;
3266 }
3267
3268 /* The display engine is not coherent with the LLC cache on gen6. As
3269 * a result, we make sure that the pinning that is about to occur is
3270 * done with uncached PTEs. This is lowest common denominator for all
3271 * chipsets.
3272 *
3273 * However for gen6+, we could do better by using the GFDT bit instead
3274 * of uncaching, which would allow us to flush all the LLC-cached data
3275 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3276 */
3277 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3278 if (ret)
3279 return ret;
3280
3281 /* As the user may map the buffer once pinned in the display plane
3282 * (e.g. libkms for the bootup splash), we have to ensure that we
3283 * always use map_and_fenceable for all scanout buffers.
3284 */
3285 ret = i915_gem_object_pin(obj, alignment, true, false);
3286 if (ret)
3287 return ret;
3288
3289 i915_gem_object_flush_cpu_write_domain(obj);
3290
3291 old_write_domain = obj->base.write_domain;
3292 old_read_domains = obj->base.read_domains;
3293
3294 /* It should now be out of any other write domains, and we can update
3295 * the domain values for our changes.
3296 */
3297 obj->base.write_domain = 0;
3298 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3299
3300 trace_i915_gem_object_change_domain(obj,
3301 old_read_domains,
3302 old_write_domain);
3303
3304 return 0;
3305 }
3306
3307 int
3308 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3309 {
3310 int ret;
3311
3312 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3313 return 0;
3314
3315 ret = i915_gem_object_wait_rendering(obj, false);
3316 if (ret)
3317 return ret;
3318
3319 /* Ensure that we invalidate the GPU's caches and TLBs. */
3320 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3321 return 0;
3322 }
3323
3324 /**
3325 * Moves a single object to the CPU read, and possibly write domain.
3326 *
3327 * This function returns when the move is complete, including waiting on
3328 * flushes to occur.
3329 */
3330 int
3331 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3332 {
3333 uint32_t old_write_domain, old_read_domains;
3334 int ret;
3335
3336 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3337 return 0;
3338
3339 ret = i915_gem_object_wait_rendering(obj, !write);
3340 if (ret)
3341 return ret;
3342
3343 i915_gem_object_flush_gtt_write_domain(obj);
3344
3345 old_write_domain = obj->base.write_domain;
3346 old_read_domains = obj->base.read_domains;
3347
3348 /* Flush the CPU cache if it's still invalid. */
3349 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3350 i915_gem_clflush_object(obj);
3351
3352 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3353 }
3354
3355 /* It should now be out of any other write domains, and we can update
3356 * the domain values for our changes.
3357 */
3358 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3359
3360 /* If we're writing through the CPU, then the GPU read domains will
3361 * need to be invalidated at next use.
3362 */
3363 if (write) {
3364 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3365 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3366 }
3367
3368 trace_i915_gem_object_change_domain(obj,
3369 old_read_domains,
3370 old_write_domain);
3371
3372 return 0;
3373 }
3374
3375 /* Throttle our rendering by waiting until the ring has completed our requests
3376 * emitted over 20 msec ago.
3377 *
3378 * Note that if we were to use the current jiffies each time around the loop,
3379 * we wouldn't escape the function with any frames outstanding if the time to
3380 * render a frame was over 20ms.
3381 *
3382 * This should get us reasonable parallelism between CPU and GPU but also
3383 * relatively low latency when blocking on a particular request to finish.
3384 */
3385 static int
3386 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3387 {
3388 struct drm_i915_private *dev_priv = dev->dev_private;
3389 struct drm_i915_file_private *file_priv = file->driver_priv;
3390 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3391 struct drm_i915_gem_request *request;
3392 struct intel_ring_buffer *ring = NULL;
3393 u32 seqno = 0;
3394 int ret;
3395
3396 if (atomic_read(&dev_priv->mm.wedged))
3397 return -EIO;
3398
3399 spin_lock(&file_priv->mm.lock);
3400 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3401 if (time_after_eq(request->emitted_jiffies, recent_enough))
3402 break;
3403
3404 ring = request->ring;
3405 seqno = request->seqno;
3406 }
3407 spin_unlock(&file_priv->mm.lock);
3408
3409 if (seqno == 0)
3410 return 0;
3411
3412 ret = __wait_seqno(ring, seqno, true, NULL);
3413 if (ret == 0)
3414 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3415
3416 return ret;
3417 }
3418
3419 int
3420 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3421 uint32_t alignment,
3422 bool map_and_fenceable,
3423 bool nonblocking)
3424 {
3425 int ret;
3426
3427 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3428 return -EBUSY;
3429
3430 if (obj->gtt_space != NULL) {
3431 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3432 (map_and_fenceable && !obj->map_and_fenceable)) {
3433 WARN(obj->pin_count,
3434 "bo is already pinned with incorrect alignment:"
3435 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3436 " obj->map_and_fenceable=%d\n",
3437 obj->gtt_offset, alignment,
3438 map_and_fenceable,
3439 obj->map_and_fenceable);
3440 ret = i915_gem_object_unbind(obj);
3441 if (ret)
3442 return ret;
3443 }
3444 }
3445
3446 if (obj->gtt_space == NULL) {
3447 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3448 map_and_fenceable,
3449 nonblocking);
3450 if (ret)
3451 return ret;
3452 }
3453
3454 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3455 i915_gem_gtt_bind_object(obj, obj->cache_level);
3456
3457 obj->pin_count++;
3458 obj->pin_mappable |= map_and_fenceable;
3459
3460 return 0;
3461 }
3462
3463 void
3464 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3465 {
3466 BUG_ON(obj->pin_count == 0);
3467 BUG_ON(obj->gtt_space == NULL);
3468
3469 if (--obj->pin_count == 0)
3470 obj->pin_mappable = false;
3471 }
3472
3473 int
3474 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3475 struct drm_file *file)
3476 {
3477 struct drm_i915_gem_pin *args = data;
3478 struct drm_i915_gem_object *obj;
3479 int ret;
3480
3481 ret = i915_mutex_lock_interruptible(dev);
3482 if (ret)
3483 return ret;
3484
3485 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3486 if (&obj->base == NULL) {
3487 ret = -ENOENT;
3488 goto unlock;
3489 }
3490
3491 if (obj->madv != I915_MADV_WILLNEED) {
3492 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3493 ret = -EINVAL;
3494 goto out;
3495 }
3496
3497 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3498 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3499 args->handle);
3500 ret = -EINVAL;
3501 goto out;
3502 }
3503
3504 obj->user_pin_count++;
3505 obj->pin_filp = file;
3506 if (obj->user_pin_count == 1) {
3507 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3508 if (ret)
3509 goto out;
3510 }
3511
3512 /* XXX - flush the CPU caches for pinned objects
3513 * as the X server doesn't manage domains yet
3514 */
3515 i915_gem_object_flush_cpu_write_domain(obj);
3516 args->offset = obj->gtt_offset;
3517 out:
3518 drm_gem_object_unreference(&obj->base);
3519 unlock:
3520 mutex_unlock(&dev->struct_mutex);
3521 return ret;
3522 }
3523
3524 int
3525 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3526 struct drm_file *file)
3527 {
3528 struct drm_i915_gem_pin *args = data;
3529 struct drm_i915_gem_object *obj;
3530 int ret;
3531
3532 ret = i915_mutex_lock_interruptible(dev);
3533 if (ret)
3534 return ret;
3535
3536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3537 if (&obj->base == NULL) {
3538 ret = -ENOENT;
3539 goto unlock;
3540 }
3541
3542 if (obj->pin_filp != file) {
3543 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3544 args->handle);
3545 ret = -EINVAL;
3546 goto out;
3547 }
3548 obj->user_pin_count--;
3549 if (obj->user_pin_count == 0) {
3550 obj->pin_filp = NULL;
3551 i915_gem_object_unpin(obj);
3552 }
3553
3554 out:
3555 drm_gem_object_unreference(&obj->base);
3556 unlock:
3557 mutex_unlock(&dev->struct_mutex);
3558 return ret;
3559 }
3560
3561 int
3562 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3563 struct drm_file *file)
3564 {
3565 struct drm_i915_gem_busy *args = data;
3566 struct drm_i915_gem_object *obj;
3567 int ret;
3568
3569 ret = i915_mutex_lock_interruptible(dev);
3570 if (ret)
3571 return ret;
3572
3573 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3574 if (&obj->base == NULL) {
3575 ret = -ENOENT;
3576 goto unlock;
3577 }
3578
3579 /* Count all active objects as busy, even if they are currently not used
3580 * by the gpu. Users of this interface expect objects to eventually
3581 * become non-busy without any further actions, therefore emit any
3582 * necessary flushes here.
3583 */
3584 ret = i915_gem_object_flush_active(obj);
3585
3586 args->busy = obj->active;
3587 if (obj->ring) {
3588 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3589 args->busy |= intel_ring_flag(obj->ring) << 16;
3590 }
3591
3592 drm_gem_object_unreference(&obj->base);
3593 unlock:
3594 mutex_unlock(&dev->struct_mutex);
3595 return ret;
3596 }
3597
3598 int
3599 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3600 struct drm_file *file_priv)
3601 {
3602 return i915_gem_ring_throttle(dev, file_priv);
3603 }
3604
3605 int
3606 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3607 struct drm_file *file_priv)
3608 {
3609 struct drm_i915_gem_madvise *args = data;
3610 struct drm_i915_gem_object *obj;
3611 int ret;
3612
3613 switch (args->madv) {
3614 case I915_MADV_DONTNEED:
3615 case I915_MADV_WILLNEED:
3616 break;
3617 default:
3618 return -EINVAL;
3619 }
3620
3621 ret = i915_mutex_lock_interruptible(dev);
3622 if (ret)
3623 return ret;
3624
3625 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3626 if (&obj->base == NULL) {
3627 ret = -ENOENT;
3628 goto unlock;
3629 }
3630
3631 if (obj->pin_count) {
3632 ret = -EINVAL;
3633 goto out;
3634 }
3635
3636 if (obj->madv != __I915_MADV_PURGED)
3637 obj->madv = args->madv;
3638
3639 /* if the object is no longer attached, discard its backing storage */
3640 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3641 i915_gem_object_truncate(obj);
3642
3643 args->retained = obj->madv != __I915_MADV_PURGED;
3644
3645 out:
3646 drm_gem_object_unreference(&obj->base);
3647 unlock:
3648 mutex_unlock(&dev->struct_mutex);
3649 return ret;
3650 }
3651
3652 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3653 const struct drm_i915_gem_object_ops *ops)
3654 {
3655 INIT_LIST_HEAD(&obj->mm_list);
3656 INIT_LIST_HEAD(&obj->gtt_list);
3657 INIT_LIST_HEAD(&obj->ring_list);
3658 INIT_LIST_HEAD(&obj->exec_list);
3659
3660 obj->ops = ops;
3661
3662 obj->fence_reg = I915_FENCE_REG_NONE;
3663 obj->madv = I915_MADV_WILLNEED;
3664 /* Avoid an unnecessary call to unbind on the first bind. */
3665 obj->map_and_fenceable = true;
3666
3667 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3668 }
3669
3670 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3671 .get_pages = i915_gem_object_get_pages_gtt,
3672 .put_pages = i915_gem_object_put_pages_gtt,
3673 };
3674
3675 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3676 size_t size)
3677 {
3678 struct drm_i915_gem_object *obj;
3679 struct address_space *mapping;
3680 u32 mask;
3681
3682 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3683 if (obj == NULL)
3684 return NULL;
3685
3686 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3687 kfree(obj);
3688 return NULL;
3689 }
3690
3691 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3692 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3693 /* 965gm cannot relocate objects above 4GiB. */
3694 mask &= ~__GFP_HIGHMEM;
3695 mask |= __GFP_DMA32;
3696 }
3697
3698 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3699 mapping_set_gfp_mask(mapping, mask);
3700
3701 i915_gem_object_init(obj, &i915_gem_object_ops);
3702
3703 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3704 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3705
3706 if (HAS_LLC(dev)) {
3707 /* On some devices, we can have the GPU use the LLC (the CPU
3708 * cache) for about a 10% performance improvement
3709 * compared to uncached. Graphics requests other than
3710 * display scanout are coherent with the CPU in
3711 * accessing this cache. This means in this mode we
3712 * don't need to clflush on the CPU side, and on the
3713 * GPU side we only need to flush internal caches to
3714 * get data visible to the CPU.
3715 *
3716 * However, we maintain the display planes as UC, and so
3717 * need to rebind when first used as such.
3718 */
3719 obj->cache_level = I915_CACHE_LLC;
3720 } else
3721 obj->cache_level = I915_CACHE_NONE;
3722
3723 return obj;
3724 }
3725
3726 int i915_gem_init_object(struct drm_gem_object *obj)
3727 {
3728 BUG();
3729
3730 return 0;
3731 }
3732
3733 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3734 {
3735 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3736 struct drm_device *dev = obj->base.dev;
3737 drm_i915_private_t *dev_priv = dev->dev_private;
3738
3739 trace_i915_gem_object_destroy(obj);
3740
3741 if (obj->phys_obj)
3742 i915_gem_detach_phys_object(dev, obj);
3743
3744 obj->pin_count = 0;
3745 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3746 bool was_interruptible;
3747
3748 was_interruptible = dev_priv->mm.interruptible;
3749 dev_priv->mm.interruptible = false;
3750
3751 WARN_ON(i915_gem_object_unbind(obj));
3752
3753 dev_priv->mm.interruptible = was_interruptible;
3754 }
3755
3756 obj->pages_pin_count = 0;
3757 i915_gem_object_put_pages(obj);
3758 i915_gem_object_free_mmap_offset(obj);
3759
3760 BUG_ON(obj->pages);
3761
3762 if (obj->base.import_attach)
3763 drm_prime_gem_destroy(&obj->base, NULL);
3764
3765 drm_gem_object_release(&obj->base);
3766 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3767
3768 kfree(obj->bit_17);
3769 kfree(obj);
3770 }
3771
3772 int
3773 i915_gem_idle(struct drm_device *dev)
3774 {
3775 drm_i915_private_t *dev_priv = dev->dev_private;
3776 int ret;
3777
3778 mutex_lock(&dev->struct_mutex);
3779
3780 if (dev_priv->mm.suspended) {
3781 mutex_unlock(&dev->struct_mutex);
3782 return 0;
3783 }
3784
3785 ret = i915_gpu_idle(dev);
3786 if (ret) {
3787 mutex_unlock(&dev->struct_mutex);
3788 return ret;
3789 }
3790 i915_gem_retire_requests(dev);
3791
3792 /* Under UMS, be paranoid and evict. */
3793 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3794 i915_gem_evict_everything(dev);
3795
3796 i915_gem_reset_fences(dev);
3797
3798 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3799 * We need to replace this with a semaphore, or something.
3800 * And not confound mm.suspended!
3801 */
3802 dev_priv->mm.suspended = 1;
3803 del_timer_sync(&dev_priv->hangcheck_timer);
3804
3805 i915_kernel_lost_context(dev);
3806 i915_gem_cleanup_ringbuffer(dev);
3807
3808 mutex_unlock(&dev->struct_mutex);
3809
3810 /* Cancel the retire work handler, which should be idle now. */
3811 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3812
3813 return 0;
3814 }
3815
3816 void i915_gem_l3_remap(struct drm_device *dev)
3817 {
3818 drm_i915_private_t *dev_priv = dev->dev_private;
3819 u32 misccpctl;
3820 int i;
3821
3822 if (!IS_IVYBRIDGE(dev))
3823 return;
3824
3825 if (!dev_priv->mm.l3_remap_info)
3826 return;
3827
3828 misccpctl = I915_READ(GEN7_MISCCPCTL);
3829 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3830 POSTING_READ(GEN7_MISCCPCTL);
3831
3832 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3833 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3834 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3835 DRM_DEBUG("0x%x was already programmed to %x\n",
3836 GEN7_L3LOG_BASE + i, remap);
3837 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3838 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3839 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3840 }
3841
3842 /* Make sure all the writes land before disabling dop clock gating */
3843 POSTING_READ(GEN7_L3LOG_BASE);
3844
3845 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3846 }
3847
3848 void i915_gem_init_swizzling(struct drm_device *dev)
3849 {
3850 drm_i915_private_t *dev_priv = dev->dev_private;
3851
3852 if (INTEL_INFO(dev)->gen < 5 ||
3853 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3854 return;
3855
3856 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3857 DISP_TILE_SURFACE_SWIZZLING);
3858
3859 if (IS_GEN5(dev))
3860 return;
3861
3862 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3863 if (IS_GEN6(dev))
3864 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3865 else
3866 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3867 }
3868
3869 void i915_gem_init_ppgtt(struct drm_device *dev)
3870 {
3871 drm_i915_private_t *dev_priv = dev->dev_private;
3872 uint32_t pd_offset;
3873 struct intel_ring_buffer *ring;
3874 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3875 uint32_t __iomem *pd_addr;
3876 uint32_t pd_entry;
3877 int i;
3878
3879 if (!dev_priv->mm.aliasing_ppgtt)
3880 return;
3881
3882
3883 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3884 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3885 dma_addr_t pt_addr;
3886
3887 if (dev_priv->mm.gtt->needs_dmar)
3888 pt_addr = ppgtt->pt_dma_addr[i];
3889 else
3890 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3891
3892 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3893 pd_entry |= GEN6_PDE_VALID;
3894
3895 writel(pd_entry, pd_addr + i);
3896 }
3897 readl(pd_addr);
3898
3899 pd_offset = ppgtt->pd_offset;
3900 pd_offset /= 64; /* in cachelines, */
3901 pd_offset <<= 16;
3902
3903 if (INTEL_INFO(dev)->gen == 6) {
3904 uint32_t ecochk, gab_ctl, ecobits;
3905
3906 ecobits = I915_READ(GAC_ECO_BITS);
3907 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3908
3909 gab_ctl = I915_READ(GAB_CTL);
3910 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3911
3912 ecochk = I915_READ(GAM_ECOCHK);
3913 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3914 ECOCHK_PPGTT_CACHE64B);
3915 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3916 } else if (INTEL_INFO(dev)->gen >= 7) {
3917 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3918 /* GFX_MODE is per-ring on gen7+ */
3919 }
3920
3921 for_each_ring(ring, dev_priv, i) {
3922 if (INTEL_INFO(dev)->gen >= 7)
3923 I915_WRITE(RING_MODE_GEN7(ring),
3924 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3925
3926 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3927 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3928 }
3929 }
3930
3931 static bool
3932 intel_enable_blt(struct drm_device *dev)
3933 {
3934 if (!HAS_BLT(dev))
3935 return false;
3936
3937 /* The blitter was dysfunctional on early prototypes */
3938 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3939 DRM_INFO("BLT not supported on this pre-production hardware;"
3940 " graphics performance will be degraded.\n");
3941 return false;
3942 }
3943
3944 return true;
3945 }
3946
3947 int
3948 i915_gem_init_hw(struct drm_device *dev)
3949 {
3950 drm_i915_private_t *dev_priv = dev->dev_private;
3951 int ret;
3952
3953 if (!intel_enable_gtt())
3954 return -EIO;
3955
3956 i915_gem_l3_remap(dev);
3957
3958 i915_gem_init_swizzling(dev);
3959
3960 ret = intel_init_render_ring_buffer(dev);
3961 if (ret)
3962 return ret;
3963
3964 if (HAS_BSD(dev)) {
3965 ret = intel_init_bsd_ring_buffer(dev);
3966 if (ret)
3967 goto cleanup_render_ring;
3968 }
3969
3970 if (intel_enable_blt(dev)) {
3971 ret = intel_init_blt_ring_buffer(dev);
3972 if (ret)
3973 goto cleanup_bsd_ring;
3974 }
3975
3976 dev_priv->next_seqno = 1;
3977
3978 /*
3979 * XXX: There was some w/a described somewhere suggesting loading
3980 * contexts before PPGTT.
3981 */
3982 i915_gem_context_init(dev);
3983 i915_gem_init_ppgtt(dev);
3984
3985 return 0;
3986
3987 cleanup_bsd_ring:
3988 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3989 cleanup_render_ring:
3990 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3991 return ret;
3992 }
3993
3994 static bool
3995 intel_enable_ppgtt(struct drm_device *dev)
3996 {
3997 if (i915_enable_ppgtt >= 0)
3998 return i915_enable_ppgtt;
3999
4000 #ifdef CONFIG_INTEL_IOMMU
4001 /* Disable ppgtt on SNB if VT-d is on. */
4002 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4003 return false;
4004 #endif
4005
4006 return true;
4007 }
4008
4009 int i915_gem_init(struct drm_device *dev)
4010 {
4011 struct drm_i915_private *dev_priv = dev->dev_private;
4012 unsigned long gtt_size, mappable_size;
4013 int ret;
4014
4015 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4016 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4017
4018 mutex_lock(&dev->struct_mutex);
4019 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4020 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4021 * aperture accordingly when using aliasing ppgtt. */
4022 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4023
4024 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4025
4026 ret = i915_gem_init_aliasing_ppgtt(dev);
4027 if (ret) {
4028 mutex_unlock(&dev->struct_mutex);
4029 return ret;
4030 }
4031 } else {
4032 /* Let GEM Manage all of the aperture.
4033 *
4034 * However, leave one page at the end still bound to the scratch
4035 * page. There are a number of places where the hardware
4036 * apparently prefetches past the end of the object, and we've
4037 * seen multiple hangs with the GPU head pointer stuck in a
4038 * batchbuffer bound at the last page of the aperture. One page
4039 * should be enough to keep any prefetching inside of the
4040 * aperture.
4041 */
4042 i915_gem_init_global_gtt(dev, 0, mappable_size,
4043 gtt_size);
4044 }
4045
4046 ret = i915_gem_init_hw(dev);
4047 mutex_unlock(&dev->struct_mutex);
4048 if (ret) {
4049 i915_gem_cleanup_aliasing_ppgtt(dev);
4050 return ret;
4051 }
4052
4053 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4054 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4055 dev_priv->dri1.allow_batchbuffer = 1;
4056 return 0;
4057 }
4058
4059 void
4060 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4061 {
4062 drm_i915_private_t *dev_priv = dev->dev_private;
4063 struct intel_ring_buffer *ring;
4064 int i;
4065
4066 for_each_ring(ring, dev_priv, i)
4067 intel_cleanup_ring_buffer(ring);
4068 }
4069
4070 int
4071 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4072 struct drm_file *file_priv)
4073 {
4074 drm_i915_private_t *dev_priv = dev->dev_private;
4075 int ret;
4076
4077 if (drm_core_check_feature(dev, DRIVER_MODESET))
4078 return 0;
4079
4080 if (atomic_read(&dev_priv->mm.wedged)) {
4081 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4082 atomic_set(&dev_priv->mm.wedged, 0);
4083 }
4084
4085 mutex_lock(&dev->struct_mutex);
4086 dev_priv->mm.suspended = 0;
4087
4088 ret = i915_gem_init_hw(dev);
4089 if (ret != 0) {
4090 mutex_unlock(&dev->struct_mutex);
4091 return ret;
4092 }
4093
4094 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4095 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4096 mutex_unlock(&dev->struct_mutex);
4097
4098 ret = drm_irq_install(dev);
4099 if (ret)
4100 goto cleanup_ringbuffer;
4101
4102 return 0;
4103
4104 cleanup_ringbuffer:
4105 mutex_lock(&dev->struct_mutex);
4106 i915_gem_cleanup_ringbuffer(dev);
4107 dev_priv->mm.suspended = 1;
4108 mutex_unlock(&dev->struct_mutex);
4109
4110 return ret;
4111 }
4112
4113 int
4114 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4115 struct drm_file *file_priv)
4116 {
4117 if (drm_core_check_feature(dev, DRIVER_MODESET))
4118 return 0;
4119
4120 drm_irq_uninstall(dev);
4121 return i915_gem_idle(dev);
4122 }
4123
4124 void
4125 i915_gem_lastclose(struct drm_device *dev)
4126 {
4127 int ret;
4128
4129 if (drm_core_check_feature(dev, DRIVER_MODESET))
4130 return;
4131
4132 ret = i915_gem_idle(dev);
4133 if (ret)
4134 DRM_ERROR("failed to idle hardware: %d\n", ret);
4135 }
4136
4137 static void
4138 init_ring_lists(struct intel_ring_buffer *ring)
4139 {
4140 INIT_LIST_HEAD(&ring->active_list);
4141 INIT_LIST_HEAD(&ring->request_list);
4142 }
4143
4144 void
4145 i915_gem_load(struct drm_device *dev)
4146 {
4147 int i;
4148 drm_i915_private_t *dev_priv = dev->dev_private;
4149
4150 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4151 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4152 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4153 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4154 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4155 for (i = 0; i < I915_NUM_RINGS; i++)
4156 init_ring_lists(&dev_priv->ring[i]);
4157 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4158 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4159 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4160 i915_gem_retire_work_handler);
4161 init_completion(&dev_priv->error_completion);
4162
4163 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4164 if (IS_GEN3(dev)) {
4165 I915_WRITE(MI_ARB_STATE,
4166 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4167 }
4168
4169 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4170
4171 /* Old X drivers will take 0-2 for front, back, depth buffers */
4172 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4173 dev_priv->fence_reg_start = 3;
4174
4175 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4176 dev_priv->num_fence_regs = 16;
4177 else
4178 dev_priv->num_fence_regs = 8;
4179
4180 /* Initialize fence registers to zero */
4181 i915_gem_reset_fences(dev);
4182
4183 i915_gem_detect_bit_6_swizzle(dev);
4184 init_waitqueue_head(&dev_priv->pending_flip_queue);
4185
4186 dev_priv->mm.interruptible = true;
4187
4188 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4189 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4190 register_shrinker(&dev_priv->mm.inactive_shrinker);
4191 }
4192
4193 /*
4194 * Create a physically contiguous memory object for this object
4195 * e.g. for cursor + overlay regs
4196 */
4197 static int i915_gem_init_phys_object(struct drm_device *dev,
4198 int id, int size, int align)
4199 {
4200 drm_i915_private_t *dev_priv = dev->dev_private;
4201 struct drm_i915_gem_phys_object *phys_obj;
4202 int ret;
4203
4204 if (dev_priv->mm.phys_objs[id - 1] || !size)
4205 return 0;
4206
4207 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4208 if (!phys_obj)
4209 return -ENOMEM;
4210
4211 phys_obj->id = id;
4212
4213 phys_obj->handle = drm_pci_alloc(dev, size, align);
4214 if (!phys_obj->handle) {
4215 ret = -ENOMEM;
4216 goto kfree_obj;
4217 }
4218 #ifdef CONFIG_X86
4219 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4220 #endif
4221
4222 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4223
4224 return 0;
4225 kfree_obj:
4226 kfree(phys_obj);
4227 return ret;
4228 }
4229
4230 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4231 {
4232 drm_i915_private_t *dev_priv = dev->dev_private;
4233 struct drm_i915_gem_phys_object *phys_obj;
4234
4235 if (!dev_priv->mm.phys_objs[id - 1])
4236 return;
4237
4238 phys_obj = dev_priv->mm.phys_objs[id - 1];
4239 if (phys_obj->cur_obj) {
4240 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4241 }
4242
4243 #ifdef CONFIG_X86
4244 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4245 #endif
4246 drm_pci_free(dev, phys_obj->handle);
4247 kfree(phys_obj);
4248 dev_priv->mm.phys_objs[id - 1] = NULL;
4249 }
4250
4251 void i915_gem_free_all_phys_object(struct drm_device *dev)
4252 {
4253 int i;
4254
4255 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4256 i915_gem_free_phys_object(dev, i);
4257 }
4258
4259 void i915_gem_detach_phys_object(struct drm_device *dev,
4260 struct drm_i915_gem_object *obj)
4261 {
4262 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4263 char *vaddr;
4264 int i;
4265 int page_count;
4266
4267 if (!obj->phys_obj)
4268 return;
4269 vaddr = obj->phys_obj->handle->vaddr;
4270
4271 page_count = obj->base.size / PAGE_SIZE;
4272 for (i = 0; i < page_count; i++) {
4273 struct page *page = shmem_read_mapping_page(mapping, i);
4274 if (!IS_ERR(page)) {
4275 char *dst = kmap_atomic(page);
4276 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4277 kunmap_atomic(dst);
4278
4279 drm_clflush_pages(&page, 1);
4280
4281 set_page_dirty(page);
4282 mark_page_accessed(page);
4283 page_cache_release(page);
4284 }
4285 }
4286 intel_gtt_chipset_flush();
4287
4288 obj->phys_obj->cur_obj = NULL;
4289 obj->phys_obj = NULL;
4290 }
4291
4292 int
4293 i915_gem_attach_phys_object(struct drm_device *dev,
4294 struct drm_i915_gem_object *obj,
4295 int id,
4296 int align)
4297 {
4298 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4299 drm_i915_private_t *dev_priv = dev->dev_private;
4300 int ret = 0;
4301 int page_count;
4302 int i;
4303
4304 if (id > I915_MAX_PHYS_OBJECT)
4305 return -EINVAL;
4306
4307 if (obj->phys_obj) {
4308 if (obj->phys_obj->id == id)
4309 return 0;
4310 i915_gem_detach_phys_object(dev, obj);
4311 }
4312
4313 /* create a new object */
4314 if (!dev_priv->mm.phys_objs[id - 1]) {
4315 ret = i915_gem_init_phys_object(dev, id,
4316 obj->base.size, align);
4317 if (ret) {
4318 DRM_ERROR("failed to init phys object %d size: %zu\n",
4319 id, obj->base.size);
4320 return ret;
4321 }
4322 }
4323
4324 /* bind to the object */
4325 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4326 obj->phys_obj->cur_obj = obj;
4327
4328 page_count = obj->base.size / PAGE_SIZE;
4329
4330 for (i = 0; i < page_count; i++) {
4331 struct page *page;
4332 char *dst, *src;
4333
4334 page = shmem_read_mapping_page(mapping, i);
4335 if (IS_ERR(page))
4336 return PTR_ERR(page);
4337
4338 src = kmap_atomic(page);
4339 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4340 memcpy(dst, src, PAGE_SIZE);
4341 kunmap_atomic(src);
4342
4343 mark_page_accessed(page);
4344 page_cache_release(page);
4345 }
4346
4347 return 0;
4348 }
4349
4350 static int
4351 i915_gem_phys_pwrite(struct drm_device *dev,
4352 struct drm_i915_gem_object *obj,
4353 struct drm_i915_gem_pwrite *args,
4354 struct drm_file *file_priv)
4355 {
4356 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4357 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4358
4359 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4360 unsigned long unwritten;
4361
4362 /* The physical object once assigned is fixed for the lifetime
4363 * of the obj, so we can safely drop the lock and continue
4364 * to access vaddr.
4365 */
4366 mutex_unlock(&dev->struct_mutex);
4367 unwritten = copy_from_user(vaddr, user_data, args->size);
4368 mutex_lock(&dev->struct_mutex);
4369 if (unwritten)
4370 return -EFAULT;
4371 }
4372
4373 intel_gtt_chipset_flush();
4374 return 0;
4375 }
4376
4377 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4378 {
4379 struct drm_i915_file_private *file_priv = file->driver_priv;
4380
4381 /* Clean up our request list when the client is going away, so that
4382 * later retire_requests won't dereference our soon-to-be-gone
4383 * file_priv.
4384 */
4385 spin_lock(&file_priv->mm.lock);
4386 while (!list_empty(&file_priv->mm.request_list)) {
4387 struct drm_i915_gem_request *request;
4388
4389 request = list_first_entry(&file_priv->mm.request_list,
4390 struct drm_i915_gem_request,
4391 client_list);
4392 list_del(&request->client_list);
4393 request->file_priv = NULL;
4394 }
4395 spin_unlock(&file_priv->mm.lock);
4396 }
4397
4398 static int
4399 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4400 {
4401 struct drm_i915_private *dev_priv =
4402 container_of(shrinker,
4403 struct drm_i915_private,
4404 mm.inactive_shrinker);
4405 struct drm_device *dev = dev_priv->dev;
4406 struct drm_i915_gem_object *obj;
4407 int nr_to_scan = sc->nr_to_scan;
4408 int cnt;
4409
4410 if (!mutex_trylock(&dev->struct_mutex))
4411 return 0;
4412
4413 if (nr_to_scan) {
4414 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4415 if (nr_to_scan > 0)
4416 i915_gem_shrink_all(dev_priv);
4417 }
4418
4419 cnt = 0;
4420 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4421 if (obj->pages_pin_count == 0)
4422 cnt += obj->base.size >> PAGE_SHIFT;
4423 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4424 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4425 cnt += obj->base.size >> PAGE_SHIFT;
4426
4427 mutex_unlock(&dev->struct_mutex);
4428 return cnt;
4429 }
This page took 0.142972 seconds and 5 git commands to generate.