Merge tag 'range-macro' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45 struct i915_address_space *vm,
46 unsigned alignment,
47 bool map_and_fenceable,
48 bool nonblocking);
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50 struct drm_i915_gem_object *obj,
51 struct drm_i915_gem_pwrite *args,
52 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 struct drm_i915_fence_reg *fence,
58 bool enable);
59
60 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
61 struct shrink_control *sc);
62 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
63 struct shrink_control *sc);
64 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
65 static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
67
68 static bool cpu_cache_is_coherent(struct drm_device *dev,
69 enum i915_cache_level level)
70 {
71 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72 }
73
74 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
75 {
76 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77 return true;
78
79 return obj->pin_display;
80 }
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
90 obj->fence_dirty = false;
91 obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97 {
98 spin_lock(&dev_priv->mm.object_stat_lock);
99 dev_priv->mm.object_count++;
100 dev_priv->mm.object_memory += size;
101 spin_unlock(&dev_priv->mm.object_stat_lock);
102 }
103
104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105 size_t size)
106 {
107 spin_lock(&dev_priv->mm.object_stat_lock);
108 dev_priv->mm.object_count--;
109 dev_priv->mm.object_memory -= size;
110 spin_unlock(&dev_priv->mm.object_stat_lock);
111 }
112
113 static int
114 i915_gem_wait_for_error(struct i915_gpu_error *error)
115 {
116 int ret;
117
118 #define EXIT_COND (!i915_reset_in_progress(error) || \
119 i915_terminally_wedged(error))
120 if (EXIT_COND)
121 return 0;
122
123 /*
124 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
125 * userspace. If it takes that long something really bad is going on and
126 * we should simply try to bail out and fail as gracefully as possible.
127 */
128 ret = wait_event_interruptible_timeout(error->reset_queue,
129 EXIT_COND,
130 10*HZ);
131 if (ret == 0) {
132 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
133 return -EIO;
134 } else if (ret < 0) {
135 return ret;
136 }
137 #undef EXIT_COND
138
139 return 0;
140 }
141
142 int i915_mutex_lock_interruptible(struct drm_device *dev)
143 {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 int ret;
146
147 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
148 if (ret)
149 return ret;
150
151 ret = mutex_lock_interruptible(&dev->struct_mutex);
152 if (ret)
153 return ret;
154
155 WARN_ON(i915_verify_lists(dev));
156 return 0;
157 }
158
159 static inline bool
160 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
161 {
162 return i915_gem_obj_bound_any(obj) && !obj->active;
163 }
164
165 int
166 i915_gem_init_ioctl(struct drm_device *dev, void *data,
167 struct drm_file *file)
168 {
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 struct drm_i915_gem_init *args = data;
171
172 if (drm_core_check_feature(dev, DRIVER_MODESET))
173 return -ENODEV;
174
175 if (args->gtt_start >= args->gtt_end ||
176 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177 return -EINVAL;
178
179 /* GEM with user mode setting was never supported on ilk and later. */
180 if (INTEL_INFO(dev)->gen >= 5)
181 return -ENODEV;
182
183 mutex_lock(&dev->struct_mutex);
184 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
185 args->gtt_end);
186 dev_priv->gtt.mappable_end = args->gtt_end;
187 mutex_unlock(&dev->struct_mutex);
188
189 return 0;
190 }
191
192 int
193 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
194 struct drm_file *file)
195 {
196 struct drm_i915_private *dev_priv = dev->dev_private;
197 struct drm_i915_gem_get_aperture *args = data;
198 struct drm_i915_gem_object *obj;
199 size_t pinned;
200
201 pinned = 0;
202 mutex_lock(&dev->struct_mutex);
203 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
204 if (obj->pin_count)
205 pinned += i915_gem_obj_ggtt_size(obj);
206 mutex_unlock(&dev->struct_mutex);
207
208 args->aper_size = dev_priv->gtt.base.total;
209 args->aper_available_size = args->aper_size - pinned;
210
211 return 0;
212 }
213
214 void *i915_gem_object_alloc(struct drm_device *dev)
215 {
216 struct drm_i915_private *dev_priv = dev->dev_private;
217 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
218 }
219
220 void i915_gem_object_free(struct drm_i915_gem_object *obj)
221 {
222 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
223 kmem_cache_free(dev_priv->slab, obj);
224 }
225
226 static int
227 i915_gem_create(struct drm_file *file,
228 struct drm_device *dev,
229 uint64_t size,
230 uint32_t *handle_p)
231 {
232 struct drm_i915_gem_object *obj;
233 int ret;
234 u32 handle;
235
236 size = roundup(size, PAGE_SIZE);
237 if (size == 0)
238 return -EINVAL;
239
240 /* Allocate the new object */
241 obj = i915_gem_alloc_object(dev, size);
242 if (obj == NULL)
243 return -ENOMEM;
244
245 ret = drm_gem_handle_create(file, &obj->base, &handle);
246 /* drop reference from allocate - handle holds it now */
247 drm_gem_object_unreference_unlocked(&obj->base);
248 if (ret)
249 return ret;
250
251 *handle_p = handle;
252 return 0;
253 }
254
255 int
256 i915_gem_dumb_create(struct drm_file *file,
257 struct drm_device *dev,
258 struct drm_mode_create_dumb *args)
259 {
260 /* have to work out size/pitch and return them */
261 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
262 args->size = args->pitch * args->height;
263 return i915_gem_create(file, dev,
264 args->size, &args->handle);
265 }
266
267 /**
268 * Creates a new mm object and returns a handle to it.
269 */
270 int
271 i915_gem_create_ioctl(struct drm_device *dev, void *data,
272 struct drm_file *file)
273 {
274 struct drm_i915_gem_create *args = data;
275
276 return i915_gem_create(file, dev,
277 args->size, &args->handle);
278 }
279
280 static inline int
281 __copy_to_user_swizzled(char __user *cpu_vaddr,
282 const char *gpu_vaddr, int gpu_offset,
283 int length)
284 {
285 int ret, cpu_offset = 0;
286
287 while (length > 0) {
288 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289 int this_length = min(cacheline_end - gpu_offset, length);
290 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292 ret = __copy_to_user(cpu_vaddr + cpu_offset,
293 gpu_vaddr + swizzled_gpu_offset,
294 this_length);
295 if (ret)
296 return ret + length;
297
298 cpu_offset += this_length;
299 gpu_offset += this_length;
300 length -= this_length;
301 }
302
303 return 0;
304 }
305
306 static inline int
307 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
308 const char __user *cpu_vaddr,
309 int length)
310 {
311 int ret, cpu_offset = 0;
312
313 while (length > 0) {
314 int cacheline_end = ALIGN(gpu_offset + 1, 64);
315 int this_length = min(cacheline_end - gpu_offset, length);
316 int swizzled_gpu_offset = gpu_offset ^ 64;
317
318 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
319 cpu_vaddr + cpu_offset,
320 this_length);
321 if (ret)
322 return ret + length;
323
324 cpu_offset += this_length;
325 gpu_offset += this_length;
326 length -= this_length;
327 }
328
329 return 0;
330 }
331
332 /* Per-page copy function for the shmem pread fastpath.
333 * Flushes invalid cachelines before reading the target if
334 * needs_clflush is set. */
335 static int
336 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
337 char __user *user_data,
338 bool page_do_bit17_swizzling, bool needs_clflush)
339 {
340 char *vaddr;
341 int ret;
342
343 if (unlikely(page_do_bit17_swizzling))
344 return -EINVAL;
345
346 vaddr = kmap_atomic(page);
347 if (needs_clflush)
348 drm_clflush_virt_range(vaddr + shmem_page_offset,
349 page_length);
350 ret = __copy_to_user_inatomic(user_data,
351 vaddr + shmem_page_offset,
352 page_length);
353 kunmap_atomic(vaddr);
354
355 return ret ? -EFAULT : 0;
356 }
357
358 static void
359 shmem_clflush_swizzled_range(char *addr, unsigned long length,
360 bool swizzled)
361 {
362 if (unlikely(swizzled)) {
363 unsigned long start = (unsigned long) addr;
364 unsigned long end = (unsigned long) addr + length;
365
366 /* For swizzling simply ensure that we always flush both
367 * channels. Lame, but simple and it works. Swizzled
368 * pwrite/pread is far from a hotpath - current userspace
369 * doesn't use it at all. */
370 start = round_down(start, 128);
371 end = round_up(end, 128);
372
373 drm_clflush_virt_range((void *)start, end - start);
374 } else {
375 drm_clflush_virt_range(addr, length);
376 }
377
378 }
379
380 /* Only difference to the fast-path function is that this can handle bit17
381 * and uses non-atomic copy and kmap functions. */
382 static int
383 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
384 char __user *user_data,
385 bool page_do_bit17_swizzling, bool needs_clflush)
386 {
387 char *vaddr;
388 int ret;
389
390 vaddr = kmap(page);
391 if (needs_clflush)
392 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
393 page_length,
394 page_do_bit17_swizzling);
395
396 if (page_do_bit17_swizzling)
397 ret = __copy_to_user_swizzled(user_data,
398 vaddr, shmem_page_offset,
399 page_length);
400 else
401 ret = __copy_to_user(user_data,
402 vaddr + shmem_page_offset,
403 page_length);
404 kunmap(page);
405
406 return ret ? - EFAULT : 0;
407 }
408
409 static int
410 i915_gem_shmem_pread(struct drm_device *dev,
411 struct drm_i915_gem_object *obj,
412 struct drm_i915_gem_pread *args,
413 struct drm_file *file)
414 {
415 char __user *user_data;
416 ssize_t remain;
417 loff_t offset;
418 int shmem_page_offset, page_length, ret = 0;
419 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
420 int prefaulted = 0;
421 int needs_clflush = 0;
422 struct sg_page_iter sg_iter;
423
424 user_data = to_user_ptr(args->data_ptr);
425 remain = args->size;
426
427 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
428
429 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
430 /* If we're not in the cpu read domain, set ourself into the gtt
431 * read domain and manually flush cachelines (if required). This
432 * optimizes for the case when the gpu will dirty the data
433 * anyway again before the next pread happens. */
434 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
435 if (i915_gem_obj_bound_any(obj)) {
436 ret = i915_gem_object_set_to_gtt_domain(obj, false);
437 if (ret)
438 return ret;
439 }
440 }
441
442 ret = i915_gem_object_get_pages(obj);
443 if (ret)
444 return ret;
445
446 i915_gem_object_pin_pages(obj);
447
448 offset = args->offset;
449
450 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
451 offset >> PAGE_SHIFT) {
452 struct page *page = sg_page_iter_page(&sg_iter);
453
454 if (remain <= 0)
455 break;
456
457 /* Operation in this page
458 *
459 * shmem_page_offset = offset within page in shmem file
460 * page_length = bytes to copy for this page
461 */
462 shmem_page_offset = offset_in_page(offset);
463 page_length = remain;
464 if ((shmem_page_offset + page_length) > PAGE_SIZE)
465 page_length = PAGE_SIZE - shmem_page_offset;
466
467 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
468 (page_to_phys(page) & (1 << 17)) != 0;
469
470 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
471 user_data, page_do_bit17_swizzling,
472 needs_clflush);
473 if (ret == 0)
474 goto next_page;
475
476 mutex_unlock(&dev->struct_mutex);
477
478 if (likely(!i915_prefault_disable) && !prefaulted) {
479 ret = fault_in_multipages_writeable(user_data, remain);
480 /* Userspace is tricking us, but we've already clobbered
481 * its pages with the prefault and promised to write the
482 * data up to the first fault. Hence ignore any errors
483 * and just continue. */
484 (void)ret;
485 prefaulted = 1;
486 }
487
488 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
489 user_data, page_do_bit17_swizzling,
490 needs_clflush);
491
492 mutex_lock(&dev->struct_mutex);
493
494 next_page:
495 mark_page_accessed(page);
496
497 if (ret)
498 goto out;
499
500 remain -= page_length;
501 user_data += page_length;
502 offset += page_length;
503 }
504
505 out:
506 i915_gem_object_unpin_pages(obj);
507
508 return ret;
509 }
510
511 /**
512 * Reads data from the object referenced by handle.
513 *
514 * On error, the contents of *data are undefined.
515 */
516 int
517 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
518 struct drm_file *file)
519 {
520 struct drm_i915_gem_pread *args = data;
521 struct drm_i915_gem_object *obj;
522 int ret = 0;
523
524 if (args->size == 0)
525 return 0;
526
527 if (!access_ok(VERIFY_WRITE,
528 to_user_ptr(args->data_ptr),
529 args->size))
530 return -EFAULT;
531
532 ret = i915_mutex_lock_interruptible(dev);
533 if (ret)
534 return ret;
535
536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
537 if (&obj->base == NULL) {
538 ret = -ENOENT;
539 goto unlock;
540 }
541
542 /* Bounds check source. */
543 if (args->offset > obj->base.size ||
544 args->size > obj->base.size - args->offset) {
545 ret = -EINVAL;
546 goto out;
547 }
548
549 /* prime objects have no backing filp to GEM pread/pwrite
550 * pages from.
551 */
552 if (!obj->base.filp) {
553 ret = -EINVAL;
554 goto out;
555 }
556
557 trace_i915_gem_object_pread(obj, args->offset, args->size);
558
559 ret = i915_gem_shmem_pread(dev, obj, args, file);
560
561 out:
562 drm_gem_object_unreference(&obj->base);
563 unlock:
564 mutex_unlock(&dev->struct_mutex);
565 return ret;
566 }
567
568 /* This is the fast write path which cannot handle
569 * page faults in the source data
570 */
571
572 static inline int
573 fast_user_write(struct io_mapping *mapping,
574 loff_t page_base, int page_offset,
575 char __user *user_data,
576 int length)
577 {
578 void __iomem *vaddr_atomic;
579 void *vaddr;
580 unsigned long unwritten;
581
582 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
583 /* We can use the cpu mem copy function because this is X86. */
584 vaddr = (void __force*)vaddr_atomic + page_offset;
585 unwritten = __copy_from_user_inatomic_nocache(vaddr,
586 user_data, length);
587 io_mapping_unmap_atomic(vaddr_atomic);
588 return unwritten;
589 }
590
591 /**
592 * This is the fast pwrite path, where we copy the data directly from the
593 * user into the GTT, uncached.
594 */
595 static int
596 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
597 struct drm_i915_gem_object *obj,
598 struct drm_i915_gem_pwrite *args,
599 struct drm_file *file)
600 {
601 drm_i915_private_t *dev_priv = dev->dev_private;
602 ssize_t remain;
603 loff_t offset, page_base;
604 char __user *user_data;
605 int page_offset, page_length, ret;
606
607 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
608 if (ret)
609 goto out;
610
611 ret = i915_gem_object_set_to_gtt_domain(obj, true);
612 if (ret)
613 goto out_unpin;
614
615 ret = i915_gem_object_put_fence(obj);
616 if (ret)
617 goto out_unpin;
618
619 user_data = to_user_ptr(args->data_ptr);
620 remain = args->size;
621
622 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
623
624 while (remain > 0) {
625 /* Operation in this page
626 *
627 * page_base = page offset within aperture
628 * page_offset = offset within page
629 * page_length = bytes to copy for this page
630 */
631 page_base = offset & PAGE_MASK;
632 page_offset = offset_in_page(offset);
633 page_length = remain;
634 if ((page_offset + remain) > PAGE_SIZE)
635 page_length = PAGE_SIZE - page_offset;
636
637 /* If we get a fault while copying data, then (presumably) our
638 * source page isn't available. Return the error and we'll
639 * retry in the slow path.
640 */
641 if (fast_user_write(dev_priv->gtt.mappable, page_base,
642 page_offset, user_data, page_length)) {
643 ret = -EFAULT;
644 goto out_unpin;
645 }
646
647 remain -= page_length;
648 user_data += page_length;
649 offset += page_length;
650 }
651
652 out_unpin:
653 i915_gem_object_unpin(obj);
654 out:
655 return ret;
656 }
657
658 /* Per-page copy function for the shmem pwrite fastpath.
659 * Flushes invalid cachelines before writing to the target if
660 * needs_clflush_before is set and flushes out any written cachelines after
661 * writing if needs_clflush is set. */
662 static int
663 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
664 char __user *user_data,
665 bool page_do_bit17_swizzling,
666 bool needs_clflush_before,
667 bool needs_clflush_after)
668 {
669 char *vaddr;
670 int ret;
671
672 if (unlikely(page_do_bit17_swizzling))
673 return -EINVAL;
674
675 vaddr = kmap_atomic(page);
676 if (needs_clflush_before)
677 drm_clflush_virt_range(vaddr + shmem_page_offset,
678 page_length);
679 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
680 user_data,
681 page_length);
682 if (needs_clflush_after)
683 drm_clflush_virt_range(vaddr + shmem_page_offset,
684 page_length);
685 kunmap_atomic(vaddr);
686
687 return ret ? -EFAULT : 0;
688 }
689
690 /* Only difference to the fast-path function is that this can handle bit17
691 * and uses non-atomic copy and kmap functions. */
692 static int
693 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
694 char __user *user_data,
695 bool page_do_bit17_swizzling,
696 bool needs_clflush_before,
697 bool needs_clflush_after)
698 {
699 char *vaddr;
700 int ret;
701
702 vaddr = kmap(page);
703 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
704 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
705 page_length,
706 page_do_bit17_swizzling);
707 if (page_do_bit17_swizzling)
708 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
709 user_data,
710 page_length);
711 else
712 ret = __copy_from_user(vaddr + shmem_page_offset,
713 user_data,
714 page_length);
715 if (needs_clflush_after)
716 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
717 page_length,
718 page_do_bit17_swizzling);
719 kunmap(page);
720
721 return ret ? -EFAULT : 0;
722 }
723
724 static int
725 i915_gem_shmem_pwrite(struct drm_device *dev,
726 struct drm_i915_gem_object *obj,
727 struct drm_i915_gem_pwrite *args,
728 struct drm_file *file)
729 {
730 ssize_t remain;
731 loff_t offset;
732 char __user *user_data;
733 int shmem_page_offset, page_length, ret = 0;
734 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
735 int hit_slowpath = 0;
736 int needs_clflush_after = 0;
737 int needs_clflush_before = 0;
738 struct sg_page_iter sg_iter;
739
740 user_data = to_user_ptr(args->data_ptr);
741 remain = args->size;
742
743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744
745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746 /* If we're not in the cpu write domain, set ourself into the gtt
747 * write domain and manually flush cachelines (if required). This
748 * optimizes for the case when the gpu will use the data
749 * right away and we therefore have to clflush anyway. */
750 needs_clflush_after = cpu_write_needs_clflush(obj);
751 if (i915_gem_obj_bound_any(obj)) {
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 return ret;
755 }
756 }
757 /* Same trick applies to invalidate partially written cachelines read
758 * before writing. */
759 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
760 needs_clflush_before =
761 !cpu_cache_is_coherent(dev, obj->cache_level);
762
763 ret = i915_gem_object_get_pages(obj);
764 if (ret)
765 return ret;
766
767 i915_gem_object_pin_pages(obj);
768
769 offset = args->offset;
770 obj->dirty = 1;
771
772 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
773 offset >> PAGE_SHIFT) {
774 struct page *page = sg_page_iter_page(&sg_iter);
775 int partial_cacheline_write;
776
777 if (remain <= 0)
778 break;
779
780 /* Operation in this page
781 *
782 * shmem_page_offset = offset within page in shmem file
783 * page_length = bytes to copy for this page
784 */
785 shmem_page_offset = offset_in_page(offset);
786
787 page_length = remain;
788 if ((shmem_page_offset + page_length) > PAGE_SIZE)
789 page_length = PAGE_SIZE - shmem_page_offset;
790
791 /* If we don't overwrite a cacheline completely we need to be
792 * careful to have up-to-date data by first clflushing. Don't
793 * overcomplicate things and flush the entire patch. */
794 partial_cacheline_write = needs_clflush_before &&
795 ((shmem_page_offset | page_length)
796 & (boot_cpu_data.x86_clflush_size - 1));
797
798 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
799 (page_to_phys(page) & (1 << 17)) != 0;
800
801 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805 if (ret == 0)
806 goto next_page;
807
808 hit_slowpath = 1;
809 mutex_unlock(&dev->struct_mutex);
810 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
814
815 mutex_lock(&dev->struct_mutex);
816
817 next_page:
818 set_page_dirty(page);
819 mark_page_accessed(page);
820
821 if (ret)
822 goto out;
823
824 remain -= page_length;
825 user_data += page_length;
826 offset += page_length;
827 }
828
829 out:
830 i915_gem_object_unpin_pages(obj);
831
832 if (hit_slowpath) {
833 /*
834 * Fixup: Flush cpu caches in case we didn't flush the dirty
835 * cachelines in-line while writing and the object moved
836 * out of the cpu write domain while we've dropped the lock.
837 */
838 if (!needs_clflush_after &&
839 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
840 if (i915_gem_clflush_object(obj, obj->pin_display))
841 i915_gem_chipset_flush(dev);
842 }
843 }
844
845 if (needs_clflush_after)
846 i915_gem_chipset_flush(dev);
847
848 return ret;
849 }
850
851 /**
852 * Writes data to the object referenced by handle.
853 *
854 * On error, the contents of the buffer that were to be modified are undefined.
855 */
856 int
857 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
858 struct drm_file *file)
859 {
860 struct drm_i915_gem_pwrite *args = data;
861 struct drm_i915_gem_object *obj;
862 int ret;
863
864 if (args->size == 0)
865 return 0;
866
867 if (!access_ok(VERIFY_READ,
868 to_user_ptr(args->data_ptr),
869 args->size))
870 return -EFAULT;
871
872 if (likely(!i915_prefault_disable)) {
873 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
874 args->size);
875 if (ret)
876 return -EFAULT;
877 }
878
879 ret = i915_mutex_lock_interruptible(dev);
880 if (ret)
881 return ret;
882
883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
884 if (&obj->base == NULL) {
885 ret = -ENOENT;
886 goto unlock;
887 }
888
889 /* Bounds check destination. */
890 if (args->offset > obj->base.size ||
891 args->size > obj->base.size - args->offset) {
892 ret = -EINVAL;
893 goto out;
894 }
895
896 /* prime objects have no backing filp to GEM pread/pwrite
897 * pages from.
898 */
899 if (!obj->base.filp) {
900 ret = -EINVAL;
901 goto out;
902 }
903
904 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905
906 ret = -EFAULT;
907 /* We can only do the GTT pwrite on untiled buffers, as otherwise
908 * it would end up going through the fenced access, and we'll get
909 * different detiling behavior between reading and writing.
910 * pread/pwrite currently are reading and writing from the CPU
911 * perspective, requiring manual detiling by the client.
912 */
913 if (obj->phys_obj) {
914 ret = i915_gem_phys_pwrite(dev, obj, args, file);
915 goto out;
916 }
917
918 if (obj->tiling_mode == I915_TILING_NONE &&
919 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
920 cpu_write_needs_clflush(obj)) {
921 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
922 /* Note that the gtt paths might fail with non-page-backed user
923 * pointers (e.g. gtt mappings when moving data between
924 * textures). Fallback to the shmem path in that case. */
925 }
926
927 if (ret == -EFAULT || ret == -ENOSPC)
928 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
929
930 out:
931 drm_gem_object_unreference(&obj->base);
932 unlock:
933 mutex_unlock(&dev->struct_mutex);
934 return ret;
935 }
936
937 int
938 i915_gem_check_wedge(struct i915_gpu_error *error,
939 bool interruptible)
940 {
941 if (i915_reset_in_progress(error)) {
942 /* Non-interruptible callers can't handle -EAGAIN, hence return
943 * -EIO unconditionally for these. */
944 if (!interruptible)
945 return -EIO;
946
947 /* Recovery complete, but the reset failed ... */
948 if (i915_terminally_wedged(error))
949 return -EIO;
950
951 return -EAGAIN;
952 }
953
954 return 0;
955 }
956
957 /*
958 * Compare seqno against outstanding lazy request. Emit a request if they are
959 * equal.
960 */
961 static int
962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963 {
964 int ret;
965
966 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967
968 ret = 0;
969 if (seqno == ring->outstanding_lazy_request)
970 ret = i915_add_request(ring, NULL);
971
972 return ret;
973 }
974
975 /**
976 * __wait_seqno - wait until execution of seqno has finished
977 * @ring: the ring expected to report seqno
978 * @seqno: duh!
979 * @reset_counter: reset sequence associated with the given seqno
980 * @interruptible: do an interruptible wait (normally yes)
981 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
982 *
983 * Note: It is of utmost importance that the passed in seqno and reset_counter
984 * values have been read by the caller in an smp safe manner. Where read-side
985 * locks are involved, it is sufficient to read the reset_counter before
986 * unlocking the lock that protects the seqno. For lockless tricks, the
987 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
988 * inserted.
989 *
990 * Returns 0 if the seqno was found within the alloted time. Else returns the
991 * errno with remaining time filled in timeout argument.
992 */
993 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
994 unsigned reset_counter,
995 bool interruptible, struct timespec *timeout)
996 {
997 drm_i915_private_t *dev_priv = ring->dev->dev_private;
998 struct timespec before, now, wait_time={1,0};
999 unsigned long timeout_jiffies;
1000 long end;
1001 bool wait_forever = true;
1002 int ret;
1003
1004 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1005
1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007 return 0;
1008
1009 trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011 if (timeout != NULL) {
1012 wait_time = *timeout;
1013 wait_forever = false;
1014 }
1015
1016 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1017
1018 if (WARN_ON(!ring->irq_get(ring)))
1019 return -ENODEV;
1020
1021 /* Record current time in case interrupted by signal, or wedged * */
1022 getrawmonotonic(&before);
1023
1024 #define EXIT_COND \
1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026 i915_reset_in_progress(&dev_priv->gpu_error) || \
1027 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1028 do {
1029 if (interruptible)
1030 end = wait_event_interruptible_timeout(ring->irq_queue,
1031 EXIT_COND,
1032 timeout_jiffies);
1033 else
1034 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1035 timeout_jiffies);
1036
1037 /* We need to check whether any gpu reset happened in between
1038 * the caller grabbing the seqno and now ... */
1039 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1040 end = -EAGAIN;
1041
1042 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1043 * gone. */
1044 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1045 if (ret)
1046 end = ret;
1047 } while (end == 0 && wait_forever);
1048
1049 getrawmonotonic(&now);
1050
1051 ring->irq_put(ring);
1052 trace_i915_gem_request_wait_end(ring, seqno);
1053 #undef EXIT_COND
1054
1055 if (timeout) {
1056 struct timespec sleep_time = timespec_sub(now, before);
1057 *timeout = timespec_sub(*timeout, sleep_time);
1058 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1059 set_normalized_timespec(timeout, 0, 0);
1060 }
1061
1062 switch (end) {
1063 case -EIO:
1064 case -EAGAIN: /* Wedged */
1065 case -ERESTARTSYS: /* Signal */
1066 return (int)end;
1067 case 0: /* Timeout */
1068 return -ETIME;
1069 default: /* Completed */
1070 WARN_ON(end < 0); /* We're not aware of other errors */
1071 return 0;
1072 }
1073 }
1074
1075 /**
1076 * Waits for a sequence number to be signaled, and cleans up the
1077 * request and object lists appropriately for that event.
1078 */
1079 int
1080 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1081 {
1082 struct drm_device *dev = ring->dev;
1083 struct drm_i915_private *dev_priv = dev->dev_private;
1084 bool interruptible = dev_priv->mm.interruptible;
1085 int ret;
1086
1087 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1088 BUG_ON(seqno == 0);
1089
1090 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1091 if (ret)
1092 return ret;
1093
1094 ret = i915_gem_check_olr(ring, seqno);
1095 if (ret)
1096 return ret;
1097
1098 return __wait_seqno(ring, seqno,
1099 atomic_read(&dev_priv->gpu_error.reset_counter),
1100 interruptible, NULL);
1101 }
1102
1103 static int
1104 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1105 struct intel_ring_buffer *ring)
1106 {
1107 i915_gem_retire_requests_ring(ring);
1108
1109 /* Manually manage the write flush as we may have not yet
1110 * retired the buffer.
1111 *
1112 * Note that the last_write_seqno is always the earlier of
1113 * the two (read/write) seqno, so if we haved successfully waited,
1114 * we know we have passed the last write.
1115 */
1116 obj->last_write_seqno = 0;
1117 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1118
1119 return 0;
1120 }
1121
1122 /**
1123 * Ensures that all rendering to the object has completed and the object is
1124 * safe to unbind from the GTT or access from the CPU.
1125 */
1126 static __must_check int
1127 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1128 bool readonly)
1129 {
1130 struct intel_ring_buffer *ring = obj->ring;
1131 u32 seqno;
1132 int ret;
1133
1134 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1135 if (seqno == 0)
1136 return 0;
1137
1138 ret = i915_wait_seqno(ring, seqno);
1139 if (ret)
1140 return ret;
1141
1142 return i915_gem_object_wait_rendering__tail(obj, ring);
1143 }
1144
1145 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1146 * as the object state may change during this call.
1147 */
1148 static __must_check int
1149 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1150 bool readonly)
1151 {
1152 struct drm_device *dev = obj->base.dev;
1153 struct drm_i915_private *dev_priv = dev->dev_private;
1154 struct intel_ring_buffer *ring = obj->ring;
1155 unsigned reset_counter;
1156 u32 seqno;
1157 int ret;
1158
1159 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1160 BUG_ON(!dev_priv->mm.interruptible);
1161
1162 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1163 if (seqno == 0)
1164 return 0;
1165
1166 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1167 if (ret)
1168 return ret;
1169
1170 ret = i915_gem_check_olr(ring, seqno);
1171 if (ret)
1172 return ret;
1173
1174 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1175 mutex_unlock(&dev->struct_mutex);
1176 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1177 mutex_lock(&dev->struct_mutex);
1178 if (ret)
1179 return ret;
1180
1181 return i915_gem_object_wait_rendering__tail(obj, ring);
1182 }
1183
1184 /**
1185 * Called when user space prepares to use an object with the CPU, either
1186 * through the mmap ioctl's mapping or a GTT mapping.
1187 */
1188 int
1189 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1190 struct drm_file *file)
1191 {
1192 struct drm_i915_gem_set_domain *args = data;
1193 struct drm_i915_gem_object *obj;
1194 uint32_t read_domains = args->read_domains;
1195 uint32_t write_domain = args->write_domain;
1196 int ret;
1197
1198 /* Only handle setting domains to types used by the CPU. */
1199 if (write_domain & I915_GEM_GPU_DOMAINS)
1200 return -EINVAL;
1201
1202 if (read_domains & I915_GEM_GPU_DOMAINS)
1203 return -EINVAL;
1204
1205 /* Having something in the write domain implies it's in the read
1206 * domain, and only that read domain. Enforce that in the request.
1207 */
1208 if (write_domain != 0 && read_domains != write_domain)
1209 return -EINVAL;
1210
1211 ret = i915_mutex_lock_interruptible(dev);
1212 if (ret)
1213 return ret;
1214
1215 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1216 if (&obj->base == NULL) {
1217 ret = -ENOENT;
1218 goto unlock;
1219 }
1220
1221 /* Try to flush the object off the GPU without holding the lock.
1222 * We will repeat the flush holding the lock in the normal manner
1223 * to catch cases where we are gazumped.
1224 */
1225 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1226 if (ret)
1227 goto unref;
1228
1229 if (read_domains & I915_GEM_DOMAIN_GTT) {
1230 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1231
1232 /* Silently promote "you're not bound, there was nothing to do"
1233 * to success, since the client was just asking us to
1234 * make sure everything was done.
1235 */
1236 if (ret == -EINVAL)
1237 ret = 0;
1238 } else {
1239 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1240 }
1241
1242 unref:
1243 drm_gem_object_unreference(&obj->base);
1244 unlock:
1245 mutex_unlock(&dev->struct_mutex);
1246 return ret;
1247 }
1248
1249 /**
1250 * Called when user space has done writes to this buffer
1251 */
1252 int
1253 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1254 struct drm_file *file)
1255 {
1256 struct drm_i915_gem_sw_finish *args = data;
1257 struct drm_i915_gem_object *obj;
1258 int ret = 0;
1259
1260 ret = i915_mutex_lock_interruptible(dev);
1261 if (ret)
1262 return ret;
1263
1264 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1265 if (&obj->base == NULL) {
1266 ret = -ENOENT;
1267 goto unlock;
1268 }
1269
1270 /* Pinned buffers may be scanout, so flush the cache */
1271 if (obj->pin_display)
1272 i915_gem_object_flush_cpu_write_domain(obj, true);
1273
1274 drm_gem_object_unreference(&obj->base);
1275 unlock:
1276 mutex_unlock(&dev->struct_mutex);
1277 return ret;
1278 }
1279
1280 /**
1281 * Maps the contents of an object, returning the address it is mapped
1282 * into.
1283 *
1284 * While the mapping holds a reference on the contents of the object, it doesn't
1285 * imply a ref on the object itself.
1286 */
1287 int
1288 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1289 struct drm_file *file)
1290 {
1291 struct drm_i915_gem_mmap *args = data;
1292 struct drm_gem_object *obj;
1293 unsigned long addr;
1294
1295 obj = drm_gem_object_lookup(dev, file, args->handle);
1296 if (obj == NULL)
1297 return -ENOENT;
1298
1299 /* prime objects have no backing filp to GEM mmap
1300 * pages from.
1301 */
1302 if (!obj->filp) {
1303 drm_gem_object_unreference_unlocked(obj);
1304 return -EINVAL;
1305 }
1306
1307 addr = vm_mmap(obj->filp, 0, args->size,
1308 PROT_READ | PROT_WRITE, MAP_SHARED,
1309 args->offset);
1310 drm_gem_object_unreference_unlocked(obj);
1311 if (IS_ERR((void *)addr))
1312 return addr;
1313
1314 args->addr_ptr = (uint64_t) addr;
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * i915_gem_fault - fault a page into the GTT
1321 * vma: VMA in question
1322 * vmf: fault info
1323 *
1324 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1325 * from userspace. The fault handler takes care of binding the object to
1326 * the GTT (if needed), allocating and programming a fence register (again,
1327 * only if needed based on whether the old reg is still valid or the object
1328 * is tiled) and inserting a new PTE into the faulting process.
1329 *
1330 * Note that the faulting process may involve evicting existing objects
1331 * from the GTT and/or fence registers to make room. So performance may
1332 * suffer if the GTT working set is large or there are few fence registers
1333 * left.
1334 */
1335 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1336 {
1337 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1338 struct drm_device *dev = obj->base.dev;
1339 drm_i915_private_t *dev_priv = dev->dev_private;
1340 pgoff_t page_offset;
1341 unsigned long pfn;
1342 int ret = 0;
1343 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1344
1345 /* We don't use vmf->pgoff since that has the fake offset */
1346 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1347 PAGE_SHIFT;
1348
1349 ret = i915_mutex_lock_interruptible(dev);
1350 if (ret)
1351 goto out;
1352
1353 trace_i915_gem_object_fault(obj, page_offset, true, write);
1354
1355 /* Access to snoopable pages through the GTT is incoherent. */
1356 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1357 ret = -EINVAL;
1358 goto unlock;
1359 }
1360
1361 /* Now bind it into the GTT if needed */
1362 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1363 if (ret)
1364 goto unlock;
1365
1366 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1367 if (ret)
1368 goto unpin;
1369
1370 ret = i915_gem_object_get_fence(obj);
1371 if (ret)
1372 goto unpin;
1373
1374 obj->fault_mappable = true;
1375
1376 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1377 pfn >>= PAGE_SHIFT;
1378 pfn += page_offset;
1379
1380 /* Finally, remap it using the new GTT offset */
1381 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1382 unpin:
1383 i915_gem_object_unpin(obj);
1384 unlock:
1385 mutex_unlock(&dev->struct_mutex);
1386 out:
1387 switch (ret) {
1388 case -EIO:
1389 /* If this -EIO is due to a gpu hang, give the reset code a
1390 * chance to clean up the mess. Otherwise return the proper
1391 * SIGBUS. */
1392 if (i915_terminally_wedged(&dev_priv->gpu_error))
1393 return VM_FAULT_SIGBUS;
1394 case -EAGAIN:
1395 /*
1396 * EAGAIN means the gpu is hung and we'll wait for the error
1397 * handler to reset everything when re-faulting in
1398 * i915_mutex_lock_interruptible.
1399 */
1400 case 0:
1401 case -ERESTARTSYS:
1402 case -EINTR:
1403 case -EBUSY:
1404 /*
1405 * EBUSY is ok: this just means that another thread
1406 * already did the job.
1407 */
1408 return VM_FAULT_NOPAGE;
1409 case -ENOMEM:
1410 return VM_FAULT_OOM;
1411 case -ENOSPC:
1412 return VM_FAULT_SIGBUS;
1413 default:
1414 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1415 return VM_FAULT_SIGBUS;
1416 }
1417 }
1418
1419 /**
1420 * i915_gem_release_mmap - remove physical page mappings
1421 * @obj: obj in question
1422 *
1423 * Preserve the reservation of the mmapping with the DRM core code, but
1424 * relinquish ownership of the pages back to the system.
1425 *
1426 * It is vital that we remove the page mapping if we have mapped a tiled
1427 * object through the GTT and then lose the fence register due to
1428 * resource pressure. Similarly if the object has been moved out of the
1429 * aperture, than pages mapped into userspace must be revoked. Removing the
1430 * mapping will then trigger a page fault on the next user access, allowing
1431 * fixup by i915_gem_fault().
1432 */
1433 void
1434 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1435 {
1436 if (!obj->fault_mappable)
1437 return;
1438
1439 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1440 obj->fault_mappable = false;
1441 }
1442
1443 uint32_t
1444 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1445 {
1446 uint32_t gtt_size;
1447
1448 if (INTEL_INFO(dev)->gen >= 4 ||
1449 tiling_mode == I915_TILING_NONE)
1450 return size;
1451
1452 /* Previous chips need a power-of-two fence region when tiling */
1453 if (INTEL_INFO(dev)->gen == 3)
1454 gtt_size = 1024*1024;
1455 else
1456 gtt_size = 512*1024;
1457
1458 while (gtt_size < size)
1459 gtt_size <<= 1;
1460
1461 return gtt_size;
1462 }
1463
1464 /**
1465 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1466 * @obj: object to check
1467 *
1468 * Return the required GTT alignment for an object, taking into account
1469 * potential fence register mapping.
1470 */
1471 uint32_t
1472 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1473 int tiling_mode, bool fenced)
1474 {
1475 /*
1476 * Minimum alignment is 4k (GTT page size), but might be greater
1477 * if a fence register is needed for the object.
1478 */
1479 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1480 tiling_mode == I915_TILING_NONE)
1481 return 4096;
1482
1483 /*
1484 * Previous chips need to be aligned to the size of the smallest
1485 * fence register that can contain the object.
1486 */
1487 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1488 }
1489
1490 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1491 {
1492 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1493 int ret;
1494
1495 if (drm_vma_node_has_offset(&obj->base.vma_node))
1496 return 0;
1497
1498 dev_priv->mm.shrinker_no_lock_stealing = true;
1499
1500 ret = drm_gem_create_mmap_offset(&obj->base);
1501 if (ret != -ENOSPC)
1502 goto out;
1503
1504 /* Badly fragmented mmap space? The only way we can recover
1505 * space is by destroying unwanted objects. We can't randomly release
1506 * mmap_offsets as userspace expects them to be persistent for the
1507 * lifetime of the objects. The closest we can is to release the
1508 * offsets on purgeable objects by truncating it and marking it purged,
1509 * which prevents userspace from ever using that object again.
1510 */
1511 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1512 ret = drm_gem_create_mmap_offset(&obj->base);
1513 if (ret != -ENOSPC)
1514 goto out;
1515
1516 i915_gem_shrink_all(dev_priv);
1517 ret = drm_gem_create_mmap_offset(&obj->base);
1518 out:
1519 dev_priv->mm.shrinker_no_lock_stealing = false;
1520
1521 return ret;
1522 }
1523
1524 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1525 {
1526 drm_gem_free_mmap_offset(&obj->base);
1527 }
1528
1529 int
1530 i915_gem_mmap_gtt(struct drm_file *file,
1531 struct drm_device *dev,
1532 uint32_t handle,
1533 uint64_t *offset)
1534 {
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 struct drm_i915_gem_object *obj;
1537 int ret;
1538
1539 ret = i915_mutex_lock_interruptible(dev);
1540 if (ret)
1541 return ret;
1542
1543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1544 if (&obj->base == NULL) {
1545 ret = -ENOENT;
1546 goto unlock;
1547 }
1548
1549 if (obj->base.size > dev_priv->gtt.mappable_end) {
1550 ret = -E2BIG;
1551 goto out;
1552 }
1553
1554 if (obj->madv != I915_MADV_WILLNEED) {
1555 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1556 ret = -EINVAL;
1557 goto out;
1558 }
1559
1560 ret = i915_gem_object_create_mmap_offset(obj);
1561 if (ret)
1562 goto out;
1563
1564 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1565
1566 out:
1567 drm_gem_object_unreference(&obj->base);
1568 unlock:
1569 mutex_unlock(&dev->struct_mutex);
1570 return ret;
1571 }
1572
1573 /**
1574 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1575 * @dev: DRM device
1576 * @data: GTT mapping ioctl data
1577 * @file: GEM object info
1578 *
1579 * Simply returns the fake offset to userspace so it can mmap it.
1580 * The mmap call will end up in drm_gem_mmap(), which will set things
1581 * up so we can get faults in the handler above.
1582 *
1583 * The fault handler will take care of binding the object into the GTT
1584 * (since it may have been evicted to make room for something), allocating
1585 * a fence register, and mapping the appropriate aperture address into
1586 * userspace.
1587 */
1588 int
1589 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1590 struct drm_file *file)
1591 {
1592 struct drm_i915_gem_mmap_gtt *args = data;
1593
1594 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1595 }
1596
1597 /* Immediately discard the backing storage */
1598 static void
1599 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1600 {
1601 struct inode *inode;
1602
1603 i915_gem_object_free_mmap_offset(obj);
1604
1605 if (obj->base.filp == NULL)
1606 return;
1607
1608 /* Our goal here is to return as much of the memory as
1609 * is possible back to the system as we are called from OOM.
1610 * To do this we must instruct the shmfs to drop all of its
1611 * backing pages, *now*.
1612 */
1613 inode = file_inode(obj->base.filp);
1614 shmem_truncate_range(inode, 0, (loff_t)-1);
1615
1616 obj->madv = __I915_MADV_PURGED;
1617 }
1618
1619 static inline int
1620 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1621 {
1622 return obj->madv == I915_MADV_DONTNEED;
1623 }
1624
1625 static void
1626 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1627 {
1628 struct sg_page_iter sg_iter;
1629 int ret;
1630
1631 BUG_ON(obj->madv == __I915_MADV_PURGED);
1632
1633 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1634 if (ret) {
1635 /* In the event of a disaster, abandon all caches and
1636 * hope for the best.
1637 */
1638 WARN_ON(ret != -EIO);
1639 i915_gem_clflush_object(obj, true);
1640 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1641 }
1642
1643 if (i915_gem_object_needs_bit17_swizzle(obj))
1644 i915_gem_object_save_bit_17_swizzle(obj);
1645
1646 if (obj->madv == I915_MADV_DONTNEED)
1647 obj->dirty = 0;
1648
1649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1650 struct page *page = sg_page_iter_page(&sg_iter);
1651
1652 if (obj->dirty)
1653 set_page_dirty(page);
1654
1655 if (obj->madv == I915_MADV_WILLNEED)
1656 mark_page_accessed(page);
1657
1658 page_cache_release(page);
1659 }
1660 obj->dirty = 0;
1661
1662 sg_free_table(obj->pages);
1663 kfree(obj->pages);
1664 }
1665
1666 int
1667 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1668 {
1669 const struct drm_i915_gem_object_ops *ops = obj->ops;
1670
1671 if (obj->pages == NULL)
1672 return 0;
1673
1674 if (obj->pages_pin_count)
1675 return -EBUSY;
1676
1677 BUG_ON(i915_gem_obj_bound_any(obj));
1678
1679 /* ->put_pages might need to allocate memory for the bit17 swizzle
1680 * array, hence protect them from being reaped by removing them from gtt
1681 * lists early. */
1682 list_del(&obj->global_list);
1683
1684 ops->put_pages(obj);
1685 obj->pages = NULL;
1686
1687 if (i915_gem_object_is_purgeable(obj))
1688 i915_gem_object_truncate(obj);
1689
1690 return 0;
1691 }
1692
1693 static long
1694 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1695 bool purgeable_only)
1696 {
1697 struct list_head still_bound_list;
1698 struct drm_i915_gem_object *obj, *next;
1699 long count = 0;
1700
1701 list_for_each_entry_safe(obj, next,
1702 &dev_priv->mm.unbound_list,
1703 global_list) {
1704 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1705 i915_gem_object_put_pages(obj) == 0) {
1706 count += obj->base.size >> PAGE_SHIFT;
1707 if (count >= target)
1708 return count;
1709 }
1710 }
1711
1712 /*
1713 * As we may completely rewrite the bound list whilst unbinding
1714 * (due to retiring requests) we have to strictly process only
1715 * one element of the list at the time, and recheck the list
1716 * on every iteration.
1717 */
1718 INIT_LIST_HEAD(&still_bound_list);
1719 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1720 struct i915_vma *vma, *v;
1721
1722 obj = list_first_entry(&dev_priv->mm.bound_list,
1723 typeof(*obj), global_list);
1724 list_move_tail(&obj->global_list, &still_bound_list);
1725
1726 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1727 continue;
1728
1729 /*
1730 * Hold a reference whilst we unbind this object, as we may
1731 * end up waiting for and retiring requests. This might
1732 * release the final reference (held by the active list)
1733 * and result in the object being freed from under us.
1734 * in this object being freed.
1735 *
1736 * Note 1: Shrinking the bound list is special since only active
1737 * (and hence bound objects) can contain such limbo objects, so
1738 * we don't need special tricks for shrinking the unbound list.
1739 * The only other place where we have to be careful with active
1740 * objects suddenly disappearing due to retiring requests is the
1741 * eviction code.
1742 *
1743 * Note 2: Even though the bound list doesn't hold a reference
1744 * to the object we can safely grab one here: The final object
1745 * unreferencing and the bound_list are both protected by the
1746 * dev->struct_mutex and so we won't ever be able to observe an
1747 * object on the bound_list with a reference count equals 0.
1748 */
1749 drm_gem_object_reference(&obj->base);
1750
1751 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1752 if (i915_vma_unbind(vma))
1753 break;
1754
1755 if (i915_gem_object_put_pages(obj) == 0)
1756 count += obj->base.size >> PAGE_SHIFT;
1757
1758 drm_gem_object_unreference(&obj->base);
1759 }
1760 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1761
1762 return count;
1763 }
1764
1765 static long
1766 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1767 {
1768 return __i915_gem_shrink(dev_priv, target, true);
1769 }
1770
1771 static long
1772 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1773 {
1774 struct drm_i915_gem_object *obj, *next;
1775 long freed = 0;
1776
1777 i915_gem_evict_everything(dev_priv->dev);
1778
1779 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1780 global_list) {
1781 if (obj->pages_pin_count == 0)
1782 freed += obj->base.size >> PAGE_SHIFT;
1783 i915_gem_object_put_pages(obj);
1784 }
1785 return freed;
1786 }
1787
1788 static int
1789 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1790 {
1791 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1792 int page_count, i;
1793 struct address_space *mapping;
1794 struct sg_table *st;
1795 struct scatterlist *sg;
1796 struct sg_page_iter sg_iter;
1797 struct page *page;
1798 unsigned long last_pfn = 0; /* suppress gcc warning */
1799 gfp_t gfp;
1800
1801 /* Assert that the object is not currently in any GPU domain. As it
1802 * wasn't in the GTT, there shouldn't be any way it could have been in
1803 * a GPU cache
1804 */
1805 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1806 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1807
1808 st = kmalloc(sizeof(*st), GFP_KERNEL);
1809 if (st == NULL)
1810 return -ENOMEM;
1811
1812 page_count = obj->base.size / PAGE_SIZE;
1813 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1814 kfree(st);
1815 return -ENOMEM;
1816 }
1817
1818 /* Get the list of pages out of our struct file. They'll be pinned
1819 * at this point until we release them.
1820 *
1821 * Fail silently without starting the shrinker
1822 */
1823 mapping = file_inode(obj->base.filp)->i_mapping;
1824 gfp = mapping_gfp_mask(mapping);
1825 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1826 gfp &= ~(__GFP_IO | __GFP_WAIT);
1827 sg = st->sgl;
1828 st->nents = 0;
1829 for (i = 0; i < page_count; i++) {
1830 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1831 if (IS_ERR(page)) {
1832 i915_gem_purge(dev_priv, page_count);
1833 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1834 }
1835 if (IS_ERR(page)) {
1836 /* We've tried hard to allocate the memory by reaping
1837 * our own buffer, now let the real VM do its job and
1838 * go down in flames if truly OOM.
1839 */
1840 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1841 gfp |= __GFP_IO | __GFP_WAIT;
1842
1843 i915_gem_shrink_all(dev_priv);
1844 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1845 if (IS_ERR(page))
1846 goto err_pages;
1847
1848 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1849 gfp &= ~(__GFP_IO | __GFP_WAIT);
1850 }
1851 #ifdef CONFIG_SWIOTLB
1852 if (swiotlb_nr_tbl()) {
1853 st->nents++;
1854 sg_set_page(sg, page, PAGE_SIZE, 0);
1855 sg = sg_next(sg);
1856 continue;
1857 }
1858 #endif
1859 if (!i || page_to_pfn(page) != last_pfn + 1) {
1860 if (i)
1861 sg = sg_next(sg);
1862 st->nents++;
1863 sg_set_page(sg, page, PAGE_SIZE, 0);
1864 } else {
1865 sg->length += PAGE_SIZE;
1866 }
1867 last_pfn = page_to_pfn(page);
1868 }
1869 #ifdef CONFIG_SWIOTLB
1870 if (!swiotlb_nr_tbl())
1871 #endif
1872 sg_mark_end(sg);
1873 obj->pages = st;
1874
1875 if (i915_gem_object_needs_bit17_swizzle(obj))
1876 i915_gem_object_do_bit_17_swizzle(obj);
1877
1878 return 0;
1879
1880 err_pages:
1881 sg_mark_end(sg);
1882 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1883 page_cache_release(sg_page_iter_page(&sg_iter));
1884 sg_free_table(st);
1885 kfree(st);
1886 return PTR_ERR(page);
1887 }
1888
1889 /* Ensure that the associated pages are gathered from the backing storage
1890 * and pinned into our object. i915_gem_object_get_pages() may be called
1891 * multiple times before they are released by a single call to
1892 * i915_gem_object_put_pages() - once the pages are no longer referenced
1893 * either as a result of memory pressure (reaping pages under the shrinker)
1894 * or as the object is itself released.
1895 */
1896 int
1897 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1898 {
1899 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1900 const struct drm_i915_gem_object_ops *ops = obj->ops;
1901 int ret;
1902
1903 if (obj->pages)
1904 return 0;
1905
1906 if (obj->madv != I915_MADV_WILLNEED) {
1907 DRM_ERROR("Attempting to obtain a purgeable object\n");
1908 return -EINVAL;
1909 }
1910
1911 BUG_ON(obj->pages_pin_count);
1912
1913 ret = ops->get_pages(obj);
1914 if (ret)
1915 return ret;
1916
1917 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1918 return 0;
1919 }
1920
1921 void
1922 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1923 struct intel_ring_buffer *ring)
1924 {
1925 struct drm_device *dev = obj->base.dev;
1926 struct drm_i915_private *dev_priv = dev->dev_private;
1927 u32 seqno = intel_ring_get_seqno(ring);
1928
1929 BUG_ON(ring == NULL);
1930 if (obj->ring != ring && obj->last_write_seqno) {
1931 /* Keep the seqno relative to the current ring */
1932 obj->last_write_seqno = seqno;
1933 }
1934 obj->ring = ring;
1935
1936 /* Add a reference if we're newly entering the active list. */
1937 if (!obj->active) {
1938 drm_gem_object_reference(&obj->base);
1939 obj->active = 1;
1940 }
1941
1942 list_move_tail(&obj->ring_list, &ring->active_list);
1943
1944 obj->last_read_seqno = seqno;
1945
1946 if (obj->fenced_gpu_access) {
1947 obj->last_fenced_seqno = seqno;
1948
1949 /* Bump MRU to take account of the delayed flush */
1950 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1951 struct drm_i915_fence_reg *reg;
1952
1953 reg = &dev_priv->fence_regs[obj->fence_reg];
1954 list_move_tail(&reg->lru_list,
1955 &dev_priv->mm.fence_list);
1956 }
1957 }
1958 }
1959
1960 static void
1961 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1962 {
1963 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1964 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1965 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1966
1967 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1968 BUG_ON(!obj->active);
1969
1970 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1971
1972 list_del_init(&obj->ring_list);
1973 obj->ring = NULL;
1974
1975 obj->last_read_seqno = 0;
1976 obj->last_write_seqno = 0;
1977 obj->base.write_domain = 0;
1978
1979 obj->last_fenced_seqno = 0;
1980 obj->fenced_gpu_access = false;
1981
1982 obj->active = 0;
1983 drm_gem_object_unreference(&obj->base);
1984
1985 WARN_ON(i915_verify_lists(dev));
1986 }
1987
1988 static int
1989 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1990 {
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992 struct intel_ring_buffer *ring;
1993 int ret, i, j;
1994
1995 /* Carefully retire all requests without writing to the rings */
1996 for_each_ring(ring, dev_priv, i) {
1997 ret = intel_ring_idle(ring);
1998 if (ret)
1999 return ret;
2000 }
2001 i915_gem_retire_requests(dev);
2002
2003 /* Finally reset hw state */
2004 for_each_ring(ring, dev_priv, i) {
2005 intel_ring_init_seqno(ring, seqno);
2006
2007 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2008 ring->sync_seqno[j] = 0;
2009 }
2010
2011 return 0;
2012 }
2013
2014 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2015 {
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 int ret;
2018
2019 if (seqno == 0)
2020 return -EINVAL;
2021
2022 /* HWS page needs to be set less than what we
2023 * will inject to ring
2024 */
2025 ret = i915_gem_init_seqno(dev, seqno - 1);
2026 if (ret)
2027 return ret;
2028
2029 /* Carefully set the last_seqno value so that wrap
2030 * detection still works
2031 */
2032 dev_priv->next_seqno = seqno;
2033 dev_priv->last_seqno = seqno - 1;
2034 if (dev_priv->last_seqno == 0)
2035 dev_priv->last_seqno--;
2036
2037 return 0;
2038 }
2039
2040 int
2041 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2042 {
2043 struct drm_i915_private *dev_priv = dev->dev_private;
2044
2045 /* reserve 0 for non-seqno */
2046 if (dev_priv->next_seqno == 0) {
2047 int ret = i915_gem_init_seqno(dev, 0);
2048 if (ret)
2049 return ret;
2050
2051 dev_priv->next_seqno = 1;
2052 }
2053
2054 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2055 return 0;
2056 }
2057
2058 int __i915_add_request(struct intel_ring_buffer *ring,
2059 struct drm_file *file,
2060 struct drm_i915_gem_object *obj,
2061 u32 *out_seqno)
2062 {
2063 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2064 struct drm_i915_gem_request *request;
2065 u32 request_ring_position, request_start;
2066 int was_empty;
2067 int ret;
2068
2069 request_start = intel_ring_get_tail(ring);
2070 /*
2071 * Emit any outstanding flushes - execbuf can fail to emit the flush
2072 * after having emitted the batchbuffer command. Hence we need to fix
2073 * things up similar to emitting the lazy request. The difference here
2074 * is that the flush _must_ happen before the next request, no matter
2075 * what.
2076 */
2077 ret = intel_ring_flush_all_caches(ring);
2078 if (ret)
2079 return ret;
2080
2081 request = kmalloc(sizeof(*request), GFP_KERNEL);
2082 if (request == NULL)
2083 return -ENOMEM;
2084
2085
2086 /* Record the position of the start of the request so that
2087 * should we detect the updated seqno part-way through the
2088 * GPU processing the request, we never over-estimate the
2089 * position of the head.
2090 */
2091 request_ring_position = intel_ring_get_tail(ring);
2092
2093 ret = ring->add_request(ring);
2094 if (ret) {
2095 kfree(request);
2096 return ret;
2097 }
2098
2099 request->seqno = intel_ring_get_seqno(ring);
2100 request->ring = ring;
2101 request->head = request_start;
2102 request->tail = request_ring_position;
2103 request->ctx = ring->last_context;
2104 request->batch_obj = obj;
2105
2106 /* Whilst this request exists, batch_obj will be on the
2107 * active_list, and so will hold the active reference. Only when this
2108 * request is retired will the the batch_obj be moved onto the
2109 * inactive_list and lose its active reference. Hence we do not need
2110 * to explicitly hold another reference here.
2111 */
2112
2113 if (request->ctx)
2114 i915_gem_context_reference(request->ctx);
2115
2116 request->emitted_jiffies = jiffies;
2117 was_empty = list_empty(&ring->request_list);
2118 list_add_tail(&request->list, &ring->request_list);
2119 request->file_priv = NULL;
2120
2121 if (file) {
2122 struct drm_i915_file_private *file_priv = file->driver_priv;
2123
2124 spin_lock(&file_priv->mm.lock);
2125 request->file_priv = file_priv;
2126 list_add_tail(&request->client_list,
2127 &file_priv->mm.request_list);
2128 spin_unlock(&file_priv->mm.lock);
2129 }
2130
2131 trace_i915_gem_request_add(ring, request->seqno);
2132 ring->outstanding_lazy_request = 0;
2133
2134 if (!dev_priv->ums.mm_suspended) {
2135 i915_queue_hangcheck(ring->dev);
2136
2137 if (was_empty) {
2138 queue_delayed_work(dev_priv->wq,
2139 &dev_priv->mm.retire_work,
2140 round_jiffies_up_relative(HZ));
2141 intel_mark_busy(dev_priv->dev);
2142 }
2143 }
2144
2145 if (out_seqno)
2146 *out_seqno = request->seqno;
2147 return 0;
2148 }
2149
2150 static inline void
2151 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2152 {
2153 struct drm_i915_file_private *file_priv = request->file_priv;
2154
2155 if (!file_priv)
2156 return;
2157
2158 spin_lock(&file_priv->mm.lock);
2159 if (request->file_priv) {
2160 list_del(&request->client_list);
2161 request->file_priv = NULL;
2162 }
2163 spin_unlock(&file_priv->mm.lock);
2164 }
2165
2166 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2167 struct i915_address_space *vm)
2168 {
2169 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2170 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2171 return true;
2172
2173 return false;
2174 }
2175
2176 static bool i915_head_inside_request(const u32 acthd_unmasked,
2177 const u32 request_start,
2178 const u32 request_end)
2179 {
2180 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2181
2182 if (request_start < request_end) {
2183 if (acthd >= request_start && acthd < request_end)
2184 return true;
2185 } else if (request_start > request_end) {
2186 if (acthd >= request_start || acthd < request_end)
2187 return true;
2188 }
2189
2190 return false;
2191 }
2192
2193 static struct i915_address_space *
2194 request_to_vm(struct drm_i915_gem_request *request)
2195 {
2196 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2197 struct i915_address_space *vm;
2198
2199 vm = &dev_priv->gtt.base;
2200
2201 return vm;
2202 }
2203
2204 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2205 const u32 acthd, bool *inside)
2206 {
2207 /* There is a possibility that unmasked head address
2208 * pointing inside the ring, matches the batch_obj address range.
2209 * However this is extremely unlikely.
2210 */
2211 if (request->batch_obj) {
2212 if (i915_head_inside_object(acthd, request->batch_obj,
2213 request_to_vm(request))) {
2214 *inside = true;
2215 return true;
2216 }
2217 }
2218
2219 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2220 *inside = false;
2221 return true;
2222 }
2223
2224 return false;
2225 }
2226
2227 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2228 struct drm_i915_gem_request *request,
2229 u32 acthd)
2230 {
2231 struct i915_ctx_hang_stats *hs = NULL;
2232 bool inside, guilty;
2233 unsigned long offset = 0;
2234
2235 /* Innocent until proven guilty */
2236 guilty = false;
2237
2238 if (request->batch_obj)
2239 offset = i915_gem_obj_offset(request->batch_obj,
2240 request_to_vm(request));
2241
2242 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2243 i915_request_guilty(request, acthd, &inside)) {
2244 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2245 ring->name,
2246 inside ? "inside" : "flushing",
2247 offset,
2248 request->ctx ? request->ctx->id : 0,
2249 acthd);
2250
2251 guilty = true;
2252 }
2253
2254 /* If contexts are disabled or this is the default context, use
2255 * file_priv->reset_state
2256 */
2257 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2258 hs = &request->ctx->hang_stats;
2259 else if (request->file_priv)
2260 hs = &request->file_priv->hang_stats;
2261
2262 if (hs) {
2263 if (guilty)
2264 hs->batch_active++;
2265 else
2266 hs->batch_pending++;
2267 }
2268 }
2269
2270 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2271 {
2272 list_del(&request->list);
2273 i915_gem_request_remove_from_client(request);
2274
2275 if (request->ctx)
2276 i915_gem_context_unreference(request->ctx);
2277
2278 kfree(request);
2279 }
2280
2281 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2282 struct intel_ring_buffer *ring)
2283 {
2284 u32 completed_seqno;
2285 u32 acthd;
2286
2287 acthd = intel_ring_get_active_head(ring);
2288 completed_seqno = ring->get_seqno(ring, false);
2289
2290 while (!list_empty(&ring->request_list)) {
2291 struct drm_i915_gem_request *request;
2292
2293 request = list_first_entry(&ring->request_list,
2294 struct drm_i915_gem_request,
2295 list);
2296
2297 if (request->seqno > completed_seqno)
2298 i915_set_reset_status(ring, request, acthd);
2299
2300 i915_gem_free_request(request);
2301 }
2302
2303 while (!list_empty(&ring->active_list)) {
2304 struct drm_i915_gem_object *obj;
2305
2306 obj = list_first_entry(&ring->active_list,
2307 struct drm_i915_gem_object,
2308 ring_list);
2309
2310 i915_gem_object_move_to_inactive(obj);
2311 }
2312 }
2313
2314 void i915_gem_restore_fences(struct drm_device *dev)
2315 {
2316 struct drm_i915_private *dev_priv = dev->dev_private;
2317 int i;
2318
2319 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2320 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2321
2322 /*
2323 * Commit delayed tiling changes if we have an object still
2324 * attached to the fence, otherwise just clear the fence.
2325 */
2326 if (reg->obj) {
2327 i915_gem_object_update_fence(reg->obj, reg,
2328 reg->obj->tiling_mode);
2329 } else {
2330 i915_gem_write_fence(dev, i, NULL);
2331 }
2332 }
2333 }
2334
2335 void i915_gem_reset(struct drm_device *dev)
2336 {
2337 struct drm_i915_private *dev_priv = dev->dev_private;
2338 struct intel_ring_buffer *ring;
2339 int i;
2340
2341 for_each_ring(ring, dev_priv, i)
2342 i915_gem_reset_ring_lists(dev_priv, ring);
2343
2344 i915_gem_restore_fences(dev);
2345 }
2346
2347 /**
2348 * This function clears the request list as sequence numbers are passed.
2349 */
2350 void
2351 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2352 {
2353 uint32_t seqno;
2354
2355 if (list_empty(&ring->request_list))
2356 return;
2357
2358 WARN_ON(i915_verify_lists(ring->dev));
2359
2360 seqno = ring->get_seqno(ring, true);
2361
2362 while (!list_empty(&ring->request_list)) {
2363 struct drm_i915_gem_request *request;
2364
2365 request = list_first_entry(&ring->request_list,
2366 struct drm_i915_gem_request,
2367 list);
2368
2369 if (!i915_seqno_passed(seqno, request->seqno))
2370 break;
2371
2372 trace_i915_gem_request_retire(ring, request->seqno);
2373 /* We know the GPU must have read the request to have
2374 * sent us the seqno + interrupt, so use the position
2375 * of tail of the request to update the last known position
2376 * of the GPU head.
2377 */
2378 ring->last_retired_head = request->tail;
2379
2380 i915_gem_free_request(request);
2381 }
2382
2383 /* Move any buffers on the active list that are no longer referenced
2384 * by the ringbuffer to the flushing/inactive lists as appropriate.
2385 */
2386 while (!list_empty(&ring->active_list)) {
2387 struct drm_i915_gem_object *obj;
2388
2389 obj = list_first_entry(&ring->active_list,
2390 struct drm_i915_gem_object,
2391 ring_list);
2392
2393 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2394 break;
2395
2396 i915_gem_object_move_to_inactive(obj);
2397 }
2398
2399 if (unlikely(ring->trace_irq_seqno &&
2400 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2401 ring->irq_put(ring);
2402 ring->trace_irq_seqno = 0;
2403 }
2404
2405 WARN_ON(i915_verify_lists(ring->dev));
2406 }
2407
2408 void
2409 i915_gem_retire_requests(struct drm_device *dev)
2410 {
2411 drm_i915_private_t *dev_priv = dev->dev_private;
2412 struct intel_ring_buffer *ring;
2413 int i;
2414
2415 for_each_ring(ring, dev_priv, i)
2416 i915_gem_retire_requests_ring(ring);
2417 }
2418
2419 static void
2420 i915_gem_retire_work_handler(struct work_struct *work)
2421 {
2422 drm_i915_private_t *dev_priv;
2423 struct drm_device *dev;
2424 struct intel_ring_buffer *ring;
2425 bool idle;
2426 int i;
2427
2428 dev_priv = container_of(work, drm_i915_private_t,
2429 mm.retire_work.work);
2430 dev = dev_priv->dev;
2431
2432 /* Come back later if the device is busy... */
2433 if (!mutex_trylock(&dev->struct_mutex)) {
2434 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2435 round_jiffies_up_relative(HZ));
2436 return;
2437 }
2438
2439 i915_gem_retire_requests(dev);
2440
2441 /* Send a periodic flush down the ring so we don't hold onto GEM
2442 * objects indefinitely.
2443 */
2444 idle = true;
2445 for_each_ring(ring, dev_priv, i) {
2446 if (ring->gpu_caches_dirty)
2447 i915_add_request(ring, NULL);
2448
2449 idle &= list_empty(&ring->request_list);
2450 }
2451
2452 if (!dev_priv->ums.mm_suspended && !idle)
2453 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2454 round_jiffies_up_relative(HZ));
2455 if (idle)
2456 intel_mark_idle(dev);
2457
2458 mutex_unlock(&dev->struct_mutex);
2459 }
2460
2461 /**
2462 * Ensures that an object will eventually get non-busy by flushing any required
2463 * write domains, emitting any outstanding lazy request and retiring and
2464 * completed requests.
2465 */
2466 static int
2467 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2468 {
2469 int ret;
2470
2471 if (obj->active) {
2472 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2473 if (ret)
2474 return ret;
2475
2476 i915_gem_retire_requests_ring(obj->ring);
2477 }
2478
2479 return 0;
2480 }
2481
2482 /**
2483 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2484 * @DRM_IOCTL_ARGS: standard ioctl arguments
2485 *
2486 * Returns 0 if successful, else an error is returned with the remaining time in
2487 * the timeout parameter.
2488 * -ETIME: object is still busy after timeout
2489 * -ERESTARTSYS: signal interrupted the wait
2490 * -ENONENT: object doesn't exist
2491 * Also possible, but rare:
2492 * -EAGAIN: GPU wedged
2493 * -ENOMEM: damn
2494 * -ENODEV: Internal IRQ fail
2495 * -E?: The add request failed
2496 *
2497 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2498 * non-zero timeout parameter the wait ioctl will wait for the given number of
2499 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2500 * without holding struct_mutex the object may become re-busied before this
2501 * function completes. A similar but shorter * race condition exists in the busy
2502 * ioctl
2503 */
2504 int
2505 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2506 {
2507 drm_i915_private_t *dev_priv = dev->dev_private;
2508 struct drm_i915_gem_wait *args = data;
2509 struct drm_i915_gem_object *obj;
2510 struct intel_ring_buffer *ring = NULL;
2511 struct timespec timeout_stack, *timeout = NULL;
2512 unsigned reset_counter;
2513 u32 seqno = 0;
2514 int ret = 0;
2515
2516 if (args->timeout_ns >= 0) {
2517 timeout_stack = ns_to_timespec(args->timeout_ns);
2518 timeout = &timeout_stack;
2519 }
2520
2521 ret = i915_mutex_lock_interruptible(dev);
2522 if (ret)
2523 return ret;
2524
2525 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2526 if (&obj->base == NULL) {
2527 mutex_unlock(&dev->struct_mutex);
2528 return -ENOENT;
2529 }
2530
2531 /* Need to make sure the object gets inactive eventually. */
2532 ret = i915_gem_object_flush_active(obj);
2533 if (ret)
2534 goto out;
2535
2536 if (obj->active) {
2537 seqno = obj->last_read_seqno;
2538 ring = obj->ring;
2539 }
2540
2541 if (seqno == 0)
2542 goto out;
2543
2544 /* Do this after OLR check to make sure we make forward progress polling
2545 * on this IOCTL with a 0 timeout (like busy ioctl)
2546 */
2547 if (!args->timeout_ns) {
2548 ret = -ETIME;
2549 goto out;
2550 }
2551
2552 drm_gem_object_unreference(&obj->base);
2553 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2554 mutex_unlock(&dev->struct_mutex);
2555
2556 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2557 if (timeout)
2558 args->timeout_ns = timespec_to_ns(timeout);
2559 return ret;
2560
2561 out:
2562 drm_gem_object_unreference(&obj->base);
2563 mutex_unlock(&dev->struct_mutex);
2564 return ret;
2565 }
2566
2567 /**
2568 * i915_gem_object_sync - sync an object to a ring.
2569 *
2570 * @obj: object which may be in use on another ring.
2571 * @to: ring we wish to use the object on. May be NULL.
2572 *
2573 * This code is meant to abstract object synchronization with the GPU.
2574 * Calling with NULL implies synchronizing the object with the CPU
2575 * rather than a particular GPU ring.
2576 *
2577 * Returns 0 if successful, else propagates up the lower layer error.
2578 */
2579 int
2580 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2581 struct intel_ring_buffer *to)
2582 {
2583 struct intel_ring_buffer *from = obj->ring;
2584 u32 seqno;
2585 int ret, idx;
2586
2587 if (from == NULL || to == from)
2588 return 0;
2589
2590 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2591 return i915_gem_object_wait_rendering(obj, false);
2592
2593 idx = intel_ring_sync_index(from, to);
2594
2595 seqno = obj->last_read_seqno;
2596 if (seqno <= from->sync_seqno[idx])
2597 return 0;
2598
2599 ret = i915_gem_check_olr(obj->ring, seqno);
2600 if (ret)
2601 return ret;
2602
2603 ret = to->sync_to(to, from, seqno);
2604 if (!ret)
2605 /* We use last_read_seqno because sync_to()
2606 * might have just caused seqno wrap under
2607 * the radar.
2608 */
2609 from->sync_seqno[idx] = obj->last_read_seqno;
2610
2611 return ret;
2612 }
2613
2614 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2615 {
2616 u32 old_write_domain, old_read_domains;
2617
2618 /* Force a pagefault for domain tracking on next user access */
2619 i915_gem_release_mmap(obj);
2620
2621 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2622 return;
2623
2624 /* Wait for any direct GTT access to complete */
2625 mb();
2626
2627 old_read_domains = obj->base.read_domains;
2628 old_write_domain = obj->base.write_domain;
2629
2630 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2631 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2632
2633 trace_i915_gem_object_change_domain(obj,
2634 old_read_domains,
2635 old_write_domain);
2636 }
2637
2638 int i915_vma_unbind(struct i915_vma *vma)
2639 {
2640 struct drm_i915_gem_object *obj = vma->obj;
2641 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2642 int ret;
2643
2644 if (list_empty(&vma->vma_link))
2645 return 0;
2646
2647 if (!drm_mm_node_allocated(&vma->node))
2648 goto destroy;
2649
2650 if (obj->pin_count)
2651 return -EBUSY;
2652
2653 BUG_ON(obj->pages == NULL);
2654
2655 ret = i915_gem_object_finish_gpu(obj);
2656 if (ret)
2657 return ret;
2658 /* Continue on if we fail due to EIO, the GPU is hung so we
2659 * should be safe and we need to cleanup or else we might
2660 * cause memory corruption through use-after-free.
2661 */
2662
2663 i915_gem_object_finish_gtt(obj);
2664
2665 /* release the fence reg _after_ flushing */
2666 ret = i915_gem_object_put_fence(obj);
2667 if (ret)
2668 return ret;
2669
2670 trace_i915_vma_unbind(vma);
2671
2672 if (obj->has_global_gtt_mapping)
2673 i915_gem_gtt_unbind_object(obj);
2674 if (obj->has_aliasing_ppgtt_mapping) {
2675 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2676 obj->has_aliasing_ppgtt_mapping = 0;
2677 }
2678 i915_gem_gtt_finish_object(obj);
2679 i915_gem_object_unpin_pages(obj);
2680
2681 list_del(&vma->mm_list);
2682 /* Avoid an unnecessary call to unbind on rebind. */
2683 if (i915_is_ggtt(vma->vm))
2684 obj->map_and_fenceable = true;
2685
2686 drm_mm_remove_node(&vma->node);
2687
2688 destroy:
2689 i915_gem_vma_destroy(vma);
2690
2691 /* Since the unbound list is global, only move to that list if
2692 * no more VMAs exist.
2693 * NB: Until we have real VMAs there will only ever be one */
2694 WARN_ON(!list_empty(&obj->vma_list));
2695 if (list_empty(&obj->vma_list))
2696 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * Unbinds an object from the global GTT aperture.
2703 */
2704 int
2705 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2706 {
2707 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2708 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2709
2710 if (!i915_gem_obj_ggtt_bound(obj))
2711 return 0;
2712
2713 if (obj->pin_count)
2714 return -EBUSY;
2715
2716 BUG_ON(obj->pages == NULL);
2717
2718 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2719 }
2720
2721 int i915_gpu_idle(struct drm_device *dev)
2722 {
2723 drm_i915_private_t *dev_priv = dev->dev_private;
2724 struct intel_ring_buffer *ring;
2725 int ret, i;
2726
2727 /* Flush everything onto the inactive list. */
2728 for_each_ring(ring, dev_priv, i) {
2729 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2730 if (ret)
2731 return ret;
2732
2733 ret = intel_ring_idle(ring);
2734 if (ret)
2735 return ret;
2736 }
2737
2738 return 0;
2739 }
2740
2741 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2742 struct drm_i915_gem_object *obj)
2743 {
2744 drm_i915_private_t *dev_priv = dev->dev_private;
2745 int fence_reg;
2746 int fence_pitch_shift;
2747
2748 if (INTEL_INFO(dev)->gen >= 6) {
2749 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2750 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2751 } else {
2752 fence_reg = FENCE_REG_965_0;
2753 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2754 }
2755
2756 fence_reg += reg * 8;
2757
2758 /* To w/a incoherency with non-atomic 64-bit register updates,
2759 * we split the 64-bit update into two 32-bit writes. In order
2760 * for a partial fence not to be evaluated between writes, we
2761 * precede the update with write to turn off the fence register,
2762 * and only enable the fence as the last step.
2763 *
2764 * For extra levels of paranoia, we make sure each step lands
2765 * before applying the next step.
2766 */
2767 I915_WRITE(fence_reg, 0);
2768 POSTING_READ(fence_reg);
2769
2770 if (obj) {
2771 u32 size = i915_gem_obj_ggtt_size(obj);
2772 uint64_t val;
2773
2774 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2775 0xfffff000) << 32;
2776 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2777 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2778 if (obj->tiling_mode == I915_TILING_Y)
2779 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2780 val |= I965_FENCE_REG_VALID;
2781
2782 I915_WRITE(fence_reg + 4, val >> 32);
2783 POSTING_READ(fence_reg + 4);
2784
2785 I915_WRITE(fence_reg + 0, val);
2786 POSTING_READ(fence_reg);
2787 } else {
2788 I915_WRITE(fence_reg + 4, 0);
2789 POSTING_READ(fence_reg + 4);
2790 }
2791 }
2792
2793 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2794 struct drm_i915_gem_object *obj)
2795 {
2796 drm_i915_private_t *dev_priv = dev->dev_private;
2797 u32 val;
2798
2799 if (obj) {
2800 u32 size = i915_gem_obj_ggtt_size(obj);
2801 int pitch_val;
2802 int tile_width;
2803
2804 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2805 (size & -size) != size ||
2806 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2807 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2808 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2809
2810 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2811 tile_width = 128;
2812 else
2813 tile_width = 512;
2814
2815 /* Note: pitch better be a power of two tile widths */
2816 pitch_val = obj->stride / tile_width;
2817 pitch_val = ffs(pitch_val) - 1;
2818
2819 val = i915_gem_obj_ggtt_offset(obj);
2820 if (obj->tiling_mode == I915_TILING_Y)
2821 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2822 val |= I915_FENCE_SIZE_BITS(size);
2823 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2824 val |= I830_FENCE_REG_VALID;
2825 } else
2826 val = 0;
2827
2828 if (reg < 8)
2829 reg = FENCE_REG_830_0 + reg * 4;
2830 else
2831 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2832
2833 I915_WRITE(reg, val);
2834 POSTING_READ(reg);
2835 }
2836
2837 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2838 struct drm_i915_gem_object *obj)
2839 {
2840 drm_i915_private_t *dev_priv = dev->dev_private;
2841 uint32_t val;
2842
2843 if (obj) {
2844 u32 size = i915_gem_obj_ggtt_size(obj);
2845 uint32_t pitch_val;
2846
2847 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2848 (size & -size) != size ||
2849 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2850 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2851 i915_gem_obj_ggtt_offset(obj), size);
2852
2853 pitch_val = obj->stride / 128;
2854 pitch_val = ffs(pitch_val) - 1;
2855
2856 val = i915_gem_obj_ggtt_offset(obj);
2857 if (obj->tiling_mode == I915_TILING_Y)
2858 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2859 val |= I830_FENCE_SIZE_BITS(size);
2860 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2861 val |= I830_FENCE_REG_VALID;
2862 } else
2863 val = 0;
2864
2865 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2866 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2867 }
2868
2869 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2870 {
2871 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2872 }
2873
2874 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2875 struct drm_i915_gem_object *obj)
2876 {
2877 struct drm_i915_private *dev_priv = dev->dev_private;
2878
2879 /* Ensure that all CPU reads are completed before installing a fence
2880 * and all writes before removing the fence.
2881 */
2882 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2883 mb();
2884
2885 WARN(obj && (!obj->stride || !obj->tiling_mode),
2886 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2887 obj->stride, obj->tiling_mode);
2888
2889 switch (INTEL_INFO(dev)->gen) {
2890 case 7:
2891 case 6:
2892 case 5:
2893 case 4: i965_write_fence_reg(dev, reg, obj); break;
2894 case 3: i915_write_fence_reg(dev, reg, obj); break;
2895 case 2: i830_write_fence_reg(dev, reg, obj); break;
2896 default: BUG();
2897 }
2898
2899 /* And similarly be paranoid that no direct access to this region
2900 * is reordered to before the fence is installed.
2901 */
2902 if (i915_gem_object_needs_mb(obj))
2903 mb();
2904 }
2905
2906 static inline int fence_number(struct drm_i915_private *dev_priv,
2907 struct drm_i915_fence_reg *fence)
2908 {
2909 return fence - dev_priv->fence_regs;
2910 }
2911
2912 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2913 struct drm_i915_fence_reg *fence,
2914 bool enable)
2915 {
2916 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2917 int reg = fence_number(dev_priv, fence);
2918
2919 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2920
2921 if (enable) {
2922 obj->fence_reg = reg;
2923 fence->obj = obj;
2924 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2925 } else {
2926 obj->fence_reg = I915_FENCE_REG_NONE;
2927 fence->obj = NULL;
2928 list_del_init(&fence->lru_list);
2929 }
2930 obj->fence_dirty = false;
2931 }
2932
2933 static int
2934 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2935 {
2936 if (obj->last_fenced_seqno) {
2937 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2938 if (ret)
2939 return ret;
2940
2941 obj->last_fenced_seqno = 0;
2942 }
2943
2944 obj->fenced_gpu_access = false;
2945 return 0;
2946 }
2947
2948 int
2949 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2950 {
2951 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2952 struct drm_i915_fence_reg *fence;
2953 int ret;
2954
2955 ret = i915_gem_object_wait_fence(obj);
2956 if (ret)
2957 return ret;
2958
2959 if (obj->fence_reg == I915_FENCE_REG_NONE)
2960 return 0;
2961
2962 fence = &dev_priv->fence_regs[obj->fence_reg];
2963
2964 i915_gem_object_fence_lost(obj);
2965 i915_gem_object_update_fence(obj, fence, false);
2966
2967 return 0;
2968 }
2969
2970 static struct drm_i915_fence_reg *
2971 i915_find_fence_reg(struct drm_device *dev)
2972 {
2973 struct drm_i915_private *dev_priv = dev->dev_private;
2974 struct drm_i915_fence_reg *reg, *avail;
2975 int i;
2976
2977 /* First try to find a free reg */
2978 avail = NULL;
2979 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2980 reg = &dev_priv->fence_regs[i];
2981 if (!reg->obj)
2982 return reg;
2983
2984 if (!reg->pin_count)
2985 avail = reg;
2986 }
2987
2988 if (avail == NULL)
2989 return NULL;
2990
2991 /* None available, try to steal one or wait for a user to finish */
2992 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2993 if (reg->pin_count)
2994 continue;
2995
2996 return reg;
2997 }
2998
2999 return NULL;
3000 }
3001
3002 /**
3003 * i915_gem_object_get_fence - set up fencing for an object
3004 * @obj: object to map through a fence reg
3005 *
3006 * When mapping objects through the GTT, userspace wants to be able to write
3007 * to them without having to worry about swizzling if the object is tiled.
3008 * This function walks the fence regs looking for a free one for @obj,
3009 * stealing one if it can't find any.
3010 *
3011 * It then sets up the reg based on the object's properties: address, pitch
3012 * and tiling format.
3013 *
3014 * For an untiled surface, this removes any existing fence.
3015 */
3016 int
3017 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3018 {
3019 struct drm_device *dev = obj->base.dev;
3020 struct drm_i915_private *dev_priv = dev->dev_private;
3021 bool enable = obj->tiling_mode != I915_TILING_NONE;
3022 struct drm_i915_fence_reg *reg;
3023 int ret;
3024
3025 /* Have we updated the tiling parameters upon the object and so
3026 * will need to serialise the write to the associated fence register?
3027 */
3028 if (obj->fence_dirty) {
3029 ret = i915_gem_object_wait_fence(obj);
3030 if (ret)
3031 return ret;
3032 }
3033
3034 /* Just update our place in the LRU if our fence is getting reused. */
3035 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3036 reg = &dev_priv->fence_regs[obj->fence_reg];
3037 if (!obj->fence_dirty) {
3038 list_move_tail(&reg->lru_list,
3039 &dev_priv->mm.fence_list);
3040 return 0;
3041 }
3042 } else if (enable) {
3043 reg = i915_find_fence_reg(dev);
3044 if (reg == NULL)
3045 return -EDEADLK;
3046
3047 if (reg->obj) {
3048 struct drm_i915_gem_object *old = reg->obj;
3049
3050 ret = i915_gem_object_wait_fence(old);
3051 if (ret)
3052 return ret;
3053
3054 i915_gem_object_fence_lost(old);
3055 }
3056 } else
3057 return 0;
3058
3059 i915_gem_object_update_fence(obj, reg, enable);
3060
3061 return 0;
3062 }
3063
3064 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3065 struct drm_mm_node *gtt_space,
3066 unsigned long cache_level)
3067 {
3068 struct drm_mm_node *other;
3069
3070 /* On non-LLC machines we have to be careful when putting differing
3071 * types of snoopable memory together to avoid the prefetcher
3072 * crossing memory domains and dying.
3073 */
3074 if (HAS_LLC(dev))
3075 return true;
3076
3077 if (!drm_mm_node_allocated(gtt_space))
3078 return true;
3079
3080 if (list_empty(&gtt_space->node_list))
3081 return true;
3082
3083 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3084 if (other->allocated && !other->hole_follows && other->color != cache_level)
3085 return false;
3086
3087 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3088 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3089 return false;
3090
3091 return true;
3092 }
3093
3094 static void i915_gem_verify_gtt(struct drm_device *dev)
3095 {
3096 #if WATCH_GTT
3097 struct drm_i915_private *dev_priv = dev->dev_private;
3098 struct drm_i915_gem_object *obj;
3099 int err = 0;
3100
3101 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3102 if (obj->gtt_space == NULL) {
3103 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3104 err++;
3105 continue;
3106 }
3107
3108 if (obj->cache_level != obj->gtt_space->color) {
3109 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3110 i915_gem_obj_ggtt_offset(obj),
3111 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3112 obj->cache_level,
3113 obj->gtt_space->color);
3114 err++;
3115 continue;
3116 }
3117
3118 if (!i915_gem_valid_gtt_space(dev,
3119 obj->gtt_space,
3120 obj->cache_level)) {
3121 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3122 i915_gem_obj_ggtt_offset(obj),
3123 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3124 obj->cache_level);
3125 err++;
3126 continue;
3127 }
3128 }
3129
3130 WARN_ON(err);
3131 #endif
3132 }
3133
3134 /**
3135 * Finds free space in the GTT aperture and binds the object there.
3136 */
3137 static int
3138 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3139 struct i915_address_space *vm,
3140 unsigned alignment,
3141 bool map_and_fenceable,
3142 bool nonblocking)
3143 {
3144 struct drm_device *dev = obj->base.dev;
3145 drm_i915_private_t *dev_priv = dev->dev_private;
3146 u32 size, fence_size, fence_alignment, unfenced_alignment;
3147 size_t gtt_max =
3148 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3149 struct i915_vma *vma;
3150 int ret;
3151
3152 fence_size = i915_gem_get_gtt_size(dev,
3153 obj->base.size,
3154 obj->tiling_mode);
3155 fence_alignment = i915_gem_get_gtt_alignment(dev,
3156 obj->base.size,
3157 obj->tiling_mode, true);
3158 unfenced_alignment =
3159 i915_gem_get_gtt_alignment(dev,
3160 obj->base.size,
3161 obj->tiling_mode, false);
3162
3163 if (alignment == 0)
3164 alignment = map_and_fenceable ? fence_alignment :
3165 unfenced_alignment;
3166 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3167 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3168 return -EINVAL;
3169 }
3170
3171 size = map_and_fenceable ? fence_size : obj->base.size;
3172
3173 /* If the object is bigger than the entire aperture, reject it early
3174 * before evicting everything in a vain attempt to find space.
3175 */
3176 if (obj->base.size > gtt_max) {
3177 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3178 obj->base.size,
3179 map_and_fenceable ? "mappable" : "total",
3180 gtt_max);
3181 return -E2BIG;
3182 }
3183
3184 ret = i915_gem_object_get_pages(obj);
3185 if (ret)
3186 return ret;
3187
3188 i915_gem_object_pin_pages(obj);
3189
3190 BUG_ON(!i915_is_ggtt(vm));
3191
3192 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3193 if (IS_ERR(vma)) {
3194 ret = PTR_ERR(vma);
3195 goto err_unpin;
3196 }
3197
3198 /* For now we only ever use 1 vma per object */
3199 WARN_ON(!list_is_singular(&obj->vma_list));
3200
3201 search_free:
3202 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3203 size, alignment,
3204 obj->cache_level, 0, gtt_max,
3205 DRM_MM_SEARCH_DEFAULT);
3206 if (ret) {
3207 ret = i915_gem_evict_something(dev, vm, size, alignment,
3208 obj->cache_level,
3209 map_and_fenceable,
3210 nonblocking);
3211 if (ret == 0)
3212 goto search_free;
3213
3214 goto err_free_vma;
3215 }
3216 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3217 obj->cache_level))) {
3218 ret = -EINVAL;
3219 goto err_remove_node;
3220 }
3221
3222 ret = i915_gem_gtt_prepare_object(obj);
3223 if (ret)
3224 goto err_remove_node;
3225
3226 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3227 list_add_tail(&vma->mm_list, &vm->inactive_list);
3228
3229 if (i915_is_ggtt(vm)) {
3230 bool mappable, fenceable;
3231
3232 fenceable = (vma->node.size == fence_size &&
3233 (vma->node.start & (fence_alignment - 1)) == 0);
3234
3235 mappable = (vma->node.start + obj->base.size <=
3236 dev_priv->gtt.mappable_end);
3237
3238 obj->map_and_fenceable = mappable && fenceable;
3239 }
3240
3241 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3242
3243 trace_i915_vma_bind(vma, map_and_fenceable);
3244 i915_gem_verify_gtt(dev);
3245 return 0;
3246
3247 err_remove_node:
3248 drm_mm_remove_node(&vma->node);
3249 err_free_vma:
3250 i915_gem_vma_destroy(vma);
3251 err_unpin:
3252 i915_gem_object_unpin_pages(obj);
3253 return ret;
3254 }
3255
3256 bool
3257 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3258 bool force)
3259 {
3260 /* If we don't have a page list set up, then we're not pinned
3261 * to GPU, and we can ignore the cache flush because it'll happen
3262 * again at bind time.
3263 */
3264 if (obj->pages == NULL)
3265 return false;
3266
3267 /*
3268 * Stolen memory is always coherent with the GPU as it is explicitly
3269 * marked as wc by the system, or the system is cache-coherent.
3270 */
3271 if (obj->stolen)
3272 return false;
3273
3274 /* If the GPU is snooping the contents of the CPU cache,
3275 * we do not need to manually clear the CPU cache lines. However,
3276 * the caches are only snooped when the render cache is
3277 * flushed/invalidated. As we always have to emit invalidations
3278 * and flushes when moving into and out of the RENDER domain, correct
3279 * snooping behaviour occurs naturally as the result of our domain
3280 * tracking.
3281 */
3282 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3283 return false;
3284
3285 trace_i915_gem_object_clflush(obj);
3286 drm_clflush_sg(obj->pages);
3287
3288 return true;
3289 }
3290
3291 /** Flushes the GTT write domain for the object if it's dirty. */
3292 static void
3293 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3294 {
3295 uint32_t old_write_domain;
3296
3297 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3298 return;
3299
3300 /* No actual flushing is required for the GTT write domain. Writes
3301 * to it immediately go to main memory as far as we know, so there's
3302 * no chipset flush. It also doesn't land in render cache.
3303 *
3304 * However, we do have to enforce the order so that all writes through
3305 * the GTT land before any writes to the device, such as updates to
3306 * the GATT itself.
3307 */
3308 wmb();
3309
3310 old_write_domain = obj->base.write_domain;
3311 obj->base.write_domain = 0;
3312
3313 trace_i915_gem_object_change_domain(obj,
3314 obj->base.read_domains,
3315 old_write_domain);
3316 }
3317
3318 /** Flushes the CPU write domain for the object if it's dirty. */
3319 static void
3320 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3321 bool force)
3322 {
3323 uint32_t old_write_domain;
3324
3325 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3326 return;
3327
3328 if (i915_gem_clflush_object(obj, force))
3329 i915_gem_chipset_flush(obj->base.dev);
3330
3331 old_write_domain = obj->base.write_domain;
3332 obj->base.write_domain = 0;
3333
3334 trace_i915_gem_object_change_domain(obj,
3335 obj->base.read_domains,
3336 old_write_domain);
3337 }
3338
3339 /**
3340 * Moves a single object to the GTT read, and possibly write domain.
3341 *
3342 * This function returns when the move is complete, including waiting on
3343 * flushes to occur.
3344 */
3345 int
3346 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3347 {
3348 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3349 uint32_t old_write_domain, old_read_domains;
3350 int ret;
3351
3352 /* Not valid to be called on unbound objects. */
3353 if (!i915_gem_obj_bound_any(obj))
3354 return -EINVAL;
3355
3356 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3357 return 0;
3358
3359 ret = i915_gem_object_wait_rendering(obj, !write);
3360 if (ret)
3361 return ret;
3362
3363 i915_gem_object_flush_cpu_write_domain(obj, false);
3364
3365 /* Serialise direct access to this object with the barriers for
3366 * coherent writes from the GPU, by effectively invalidating the
3367 * GTT domain upon first access.
3368 */
3369 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3370 mb();
3371
3372 old_write_domain = obj->base.write_domain;
3373 old_read_domains = obj->base.read_domains;
3374
3375 /* It should now be out of any other write domains, and we can update
3376 * the domain values for our changes.
3377 */
3378 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3379 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3380 if (write) {
3381 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3382 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3383 obj->dirty = 1;
3384 }
3385
3386 trace_i915_gem_object_change_domain(obj,
3387 old_read_domains,
3388 old_write_domain);
3389
3390 /* And bump the LRU for this access */
3391 if (i915_gem_object_is_inactive(obj)) {
3392 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3393 &dev_priv->gtt.base);
3394 if (vma)
3395 list_move_tail(&vma->mm_list,
3396 &dev_priv->gtt.base.inactive_list);
3397
3398 }
3399
3400 return 0;
3401 }
3402
3403 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3404 enum i915_cache_level cache_level)
3405 {
3406 struct drm_device *dev = obj->base.dev;
3407 drm_i915_private_t *dev_priv = dev->dev_private;
3408 struct i915_vma *vma;
3409 int ret;
3410
3411 if (obj->cache_level == cache_level)
3412 return 0;
3413
3414 if (obj->pin_count) {
3415 DRM_DEBUG("can not change the cache level of pinned objects\n");
3416 return -EBUSY;
3417 }
3418
3419 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3420 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3421 ret = i915_vma_unbind(vma);
3422 if (ret)
3423 return ret;
3424
3425 break;
3426 }
3427 }
3428
3429 if (i915_gem_obj_bound_any(obj)) {
3430 ret = i915_gem_object_finish_gpu(obj);
3431 if (ret)
3432 return ret;
3433
3434 i915_gem_object_finish_gtt(obj);
3435
3436 /* Before SandyBridge, you could not use tiling or fence
3437 * registers with snooped memory, so relinquish any fences
3438 * currently pointing to our region in the aperture.
3439 */
3440 if (INTEL_INFO(dev)->gen < 6) {
3441 ret = i915_gem_object_put_fence(obj);
3442 if (ret)
3443 return ret;
3444 }
3445
3446 if (obj->has_global_gtt_mapping)
3447 i915_gem_gtt_bind_object(obj, cache_level);
3448 if (obj->has_aliasing_ppgtt_mapping)
3449 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3450 obj, cache_level);
3451 }
3452
3453 list_for_each_entry(vma, &obj->vma_list, vma_link)
3454 vma->node.color = cache_level;
3455 obj->cache_level = cache_level;
3456
3457 if (cpu_write_needs_clflush(obj)) {
3458 u32 old_read_domains, old_write_domain;
3459
3460 /* If we're coming from LLC cached, then we haven't
3461 * actually been tracking whether the data is in the
3462 * CPU cache or not, since we only allow one bit set
3463 * in obj->write_domain and have been skipping the clflushes.
3464 * Just set it to the CPU cache for now.
3465 */
3466 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3467
3468 old_read_domains = obj->base.read_domains;
3469 old_write_domain = obj->base.write_domain;
3470
3471 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3472 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3473
3474 trace_i915_gem_object_change_domain(obj,
3475 old_read_domains,
3476 old_write_domain);
3477 }
3478
3479 i915_gem_verify_gtt(dev);
3480 return 0;
3481 }
3482
3483 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3484 struct drm_file *file)
3485 {
3486 struct drm_i915_gem_caching *args = data;
3487 struct drm_i915_gem_object *obj;
3488 int ret;
3489
3490 ret = i915_mutex_lock_interruptible(dev);
3491 if (ret)
3492 return ret;
3493
3494 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3495 if (&obj->base == NULL) {
3496 ret = -ENOENT;
3497 goto unlock;
3498 }
3499
3500 switch (obj->cache_level) {
3501 case I915_CACHE_LLC:
3502 case I915_CACHE_L3_LLC:
3503 args->caching = I915_CACHING_CACHED;
3504 break;
3505
3506 case I915_CACHE_WT:
3507 args->caching = I915_CACHING_DISPLAY;
3508 break;
3509
3510 default:
3511 args->caching = I915_CACHING_NONE;
3512 break;
3513 }
3514
3515 drm_gem_object_unreference(&obj->base);
3516 unlock:
3517 mutex_unlock(&dev->struct_mutex);
3518 return ret;
3519 }
3520
3521 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3522 struct drm_file *file)
3523 {
3524 struct drm_i915_gem_caching *args = data;
3525 struct drm_i915_gem_object *obj;
3526 enum i915_cache_level level;
3527 int ret;
3528
3529 switch (args->caching) {
3530 case I915_CACHING_NONE:
3531 level = I915_CACHE_NONE;
3532 break;
3533 case I915_CACHING_CACHED:
3534 level = I915_CACHE_LLC;
3535 break;
3536 case I915_CACHING_DISPLAY:
3537 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3538 break;
3539 default:
3540 return -EINVAL;
3541 }
3542
3543 ret = i915_mutex_lock_interruptible(dev);
3544 if (ret)
3545 return ret;
3546
3547 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3548 if (&obj->base == NULL) {
3549 ret = -ENOENT;
3550 goto unlock;
3551 }
3552
3553 ret = i915_gem_object_set_cache_level(obj, level);
3554
3555 drm_gem_object_unreference(&obj->base);
3556 unlock:
3557 mutex_unlock(&dev->struct_mutex);
3558 return ret;
3559 }
3560
3561 static bool is_pin_display(struct drm_i915_gem_object *obj)
3562 {
3563 /* There are 3 sources that pin objects:
3564 * 1. The display engine (scanouts, sprites, cursors);
3565 * 2. Reservations for execbuffer;
3566 * 3. The user.
3567 *
3568 * We can ignore reservations as we hold the struct_mutex and
3569 * are only called outside of the reservation path. The user
3570 * can only increment pin_count once, and so if after
3571 * subtracting the potential reference by the user, any pin_count
3572 * remains, it must be due to another use by the display engine.
3573 */
3574 return obj->pin_count - !!obj->user_pin_count;
3575 }
3576
3577 /*
3578 * Prepare buffer for display plane (scanout, cursors, etc).
3579 * Can be called from an uninterruptible phase (modesetting) and allows
3580 * any flushes to be pipelined (for pageflips).
3581 */
3582 int
3583 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3584 u32 alignment,
3585 struct intel_ring_buffer *pipelined)
3586 {
3587 u32 old_read_domains, old_write_domain;
3588 int ret;
3589
3590 if (pipelined != obj->ring) {
3591 ret = i915_gem_object_sync(obj, pipelined);
3592 if (ret)
3593 return ret;
3594 }
3595
3596 /* Mark the pin_display early so that we account for the
3597 * display coherency whilst setting up the cache domains.
3598 */
3599 obj->pin_display = true;
3600
3601 /* The display engine is not coherent with the LLC cache on gen6. As
3602 * a result, we make sure that the pinning that is about to occur is
3603 * done with uncached PTEs. This is lowest common denominator for all
3604 * chipsets.
3605 *
3606 * However for gen6+, we could do better by using the GFDT bit instead
3607 * of uncaching, which would allow us to flush all the LLC-cached data
3608 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3609 */
3610 ret = i915_gem_object_set_cache_level(obj,
3611 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3612 if (ret)
3613 goto err_unpin_display;
3614
3615 /* As the user may map the buffer once pinned in the display plane
3616 * (e.g. libkms for the bootup splash), we have to ensure that we
3617 * always use map_and_fenceable for all scanout buffers.
3618 */
3619 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3620 if (ret)
3621 goto err_unpin_display;
3622
3623 i915_gem_object_flush_cpu_write_domain(obj, true);
3624
3625 old_write_domain = obj->base.write_domain;
3626 old_read_domains = obj->base.read_domains;
3627
3628 /* It should now be out of any other write domains, and we can update
3629 * the domain values for our changes.
3630 */
3631 obj->base.write_domain = 0;
3632 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3633
3634 trace_i915_gem_object_change_domain(obj,
3635 old_read_domains,
3636 old_write_domain);
3637
3638 return 0;
3639
3640 err_unpin_display:
3641 obj->pin_display = is_pin_display(obj);
3642 return ret;
3643 }
3644
3645 void
3646 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3647 {
3648 i915_gem_object_unpin(obj);
3649 obj->pin_display = is_pin_display(obj);
3650 }
3651
3652 int
3653 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3654 {
3655 int ret;
3656
3657 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3658 return 0;
3659
3660 ret = i915_gem_object_wait_rendering(obj, false);
3661 if (ret)
3662 return ret;
3663
3664 /* Ensure that we invalidate the GPU's caches and TLBs. */
3665 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3666 return 0;
3667 }
3668
3669 /**
3670 * Moves a single object to the CPU read, and possibly write domain.
3671 *
3672 * This function returns when the move is complete, including waiting on
3673 * flushes to occur.
3674 */
3675 int
3676 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3677 {
3678 uint32_t old_write_domain, old_read_domains;
3679 int ret;
3680
3681 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3682 return 0;
3683
3684 ret = i915_gem_object_wait_rendering(obj, !write);
3685 if (ret)
3686 return ret;
3687
3688 i915_gem_object_flush_gtt_write_domain(obj);
3689
3690 old_write_domain = obj->base.write_domain;
3691 old_read_domains = obj->base.read_domains;
3692
3693 /* Flush the CPU cache if it's still invalid. */
3694 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3695 i915_gem_clflush_object(obj, false);
3696
3697 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3698 }
3699
3700 /* It should now be out of any other write domains, and we can update
3701 * the domain values for our changes.
3702 */
3703 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3704
3705 /* If we're writing through the CPU, then the GPU read domains will
3706 * need to be invalidated at next use.
3707 */
3708 if (write) {
3709 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3710 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3711 }
3712
3713 trace_i915_gem_object_change_domain(obj,
3714 old_read_domains,
3715 old_write_domain);
3716
3717 return 0;
3718 }
3719
3720 /* Throttle our rendering by waiting until the ring has completed our requests
3721 * emitted over 20 msec ago.
3722 *
3723 * Note that if we were to use the current jiffies each time around the loop,
3724 * we wouldn't escape the function with any frames outstanding if the time to
3725 * render a frame was over 20ms.
3726 *
3727 * This should get us reasonable parallelism between CPU and GPU but also
3728 * relatively low latency when blocking on a particular request to finish.
3729 */
3730 static int
3731 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3732 {
3733 struct drm_i915_private *dev_priv = dev->dev_private;
3734 struct drm_i915_file_private *file_priv = file->driver_priv;
3735 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3736 struct drm_i915_gem_request *request;
3737 struct intel_ring_buffer *ring = NULL;
3738 unsigned reset_counter;
3739 u32 seqno = 0;
3740 int ret;
3741
3742 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3743 if (ret)
3744 return ret;
3745
3746 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3747 if (ret)
3748 return ret;
3749
3750 spin_lock(&file_priv->mm.lock);
3751 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3752 if (time_after_eq(request->emitted_jiffies, recent_enough))
3753 break;
3754
3755 ring = request->ring;
3756 seqno = request->seqno;
3757 }
3758 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3759 spin_unlock(&file_priv->mm.lock);
3760
3761 if (seqno == 0)
3762 return 0;
3763
3764 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3765 if (ret == 0)
3766 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3767
3768 return ret;
3769 }
3770
3771 int
3772 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3773 struct i915_address_space *vm,
3774 uint32_t alignment,
3775 bool map_and_fenceable,
3776 bool nonblocking)
3777 {
3778 struct i915_vma *vma;
3779 int ret;
3780
3781 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3782 return -EBUSY;
3783
3784 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3785
3786 vma = i915_gem_obj_to_vma(obj, vm);
3787
3788 if (vma) {
3789 if ((alignment &&
3790 vma->node.start & (alignment - 1)) ||
3791 (map_and_fenceable && !obj->map_and_fenceable)) {
3792 WARN(obj->pin_count,
3793 "bo is already pinned with incorrect alignment:"
3794 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3795 " obj->map_and_fenceable=%d\n",
3796 i915_gem_obj_offset(obj, vm), alignment,
3797 map_and_fenceable,
3798 obj->map_and_fenceable);
3799 ret = i915_vma_unbind(vma);
3800 if (ret)
3801 return ret;
3802 }
3803 }
3804
3805 if (!i915_gem_obj_bound(obj, vm)) {
3806 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3807
3808 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3809 map_and_fenceable,
3810 nonblocking);
3811 if (ret)
3812 return ret;
3813
3814 if (!dev_priv->mm.aliasing_ppgtt)
3815 i915_gem_gtt_bind_object(obj, obj->cache_level);
3816 }
3817
3818 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3819 i915_gem_gtt_bind_object(obj, obj->cache_level);
3820
3821 obj->pin_count++;
3822 obj->pin_mappable |= map_and_fenceable;
3823
3824 return 0;
3825 }
3826
3827 void
3828 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3829 {
3830 BUG_ON(obj->pin_count == 0);
3831 BUG_ON(!i915_gem_obj_bound_any(obj));
3832
3833 if (--obj->pin_count == 0)
3834 obj->pin_mappable = false;
3835 }
3836
3837 int
3838 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3839 struct drm_file *file)
3840 {
3841 struct drm_i915_gem_pin *args = data;
3842 struct drm_i915_gem_object *obj;
3843 int ret;
3844
3845 ret = i915_mutex_lock_interruptible(dev);
3846 if (ret)
3847 return ret;
3848
3849 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3850 if (&obj->base == NULL) {
3851 ret = -ENOENT;
3852 goto unlock;
3853 }
3854
3855 if (obj->madv != I915_MADV_WILLNEED) {
3856 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3857 ret = -EINVAL;
3858 goto out;
3859 }
3860
3861 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3862 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3863 args->handle);
3864 ret = -EINVAL;
3865 goto out;
3866 }
3867
3868 if (obj->user_pin_count == 0) {
3869 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3870 if (ret)
3871 goto out;
3872 }
3873
3874 obj->user_pin_count++;
3875 obj->pin_filp = file;
3876
3877 args->offset = i915_gem_obj_ggtt_offset(obj);
3878 out:
3879 drm_gem_object_unreference(&obj->base);
3880 unlock:
3881 mutex_unlock(&dev->struct_mutex);
3882 return ret;
3883 }
3884
3885 int
3886 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3887 struct drm_file *file)
3888 {
3889 struct drm_i915_gem_pin *args = data;
3890 struct drm_i915_gem_object *obj;
3891 int ret;
3892
3893 ret = i915_mutex_lock_interruptible(dev);
3894 if (ret)
3895 return ret;
3896
3897 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3898 if (&obj->base == NULL) {
3899 ret = -ENOENT;
3900 goto unlock;
3901 }
3902
3903 if (obj->pin_filp != file) {
3904 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3905 args->handle);
3906 ret = -EINVAL;
3907 goto out;
3908 }
3909 obj->user_pin_count--;
3910 if (obj->user_pin_count == 0) {
3911 obj->pin_filp = NULL;
3912 i915_gem_object_unpin(obj);
3913 }
3914
3915 out:
3916 drm_gem_object_unreference(&obj->base);
3917 unlock:
3918 mutex_unlock(&dev->struct_mutex);
3919 return ret;
3920 }
3921
3922 int
3923 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3924 struct drm_file *file)
3925 {
3926 struct drm_i915_gem_busy *args = data;
3927 struct drm_i915_gem_object *obj;
3928 int ret;
3929
3930 ret = i915_mutex_lock_interruptible(dev);
3931 if (ret)
3932 return ret;
3933
3934 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3935 if (&obj->base == NULL) {
3936 ret = -ENOENT;
3937 goto unlock;
3938 }
3939
3940 /* Count all active objects as busy, even if they are currently not used
3941 * by the gpu. Users of this interface expect objects to eventually
3942 * become non-busy without any further actions, therefore emit any
3943 * necessary flushes here.
3944 */
3945 ret = i915_gem_object_flush_active(obj);
3946
3947 args->busy = obj->active;
3948 if (obj->ring) {
3949 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3950 args->busy |= intel_ring_flag(obj->ring) << 16;
3951 }
3952
3953 drm_gem_object_unreference(&obj->base);
3954 unlock:
3955 mutex_unlock(&dev->struct_mutex);
3956 return ret;
3957 }
3958
3959 int
3960 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3961 struct drm_file *file_priv)
3962 {
3963 return i915_gem_ring_throttle(dev, file_priv);
3964 }
3965
3966 int
3967 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3968 struct drm_file *file_priv)
3969 {
3970 struct drm_i915_gem_madvise *args = data;
3971 struct drm_i915_gem_object *obj;
3972 int ret;
3973
3974 switch (args->madv) {
3975 case I915_MADV_DONTNEED:
3976 case I915_MADV_WILLNEED:
3977 break;
3978 default:
3979 return -EINVAL;
3980 }
3981
3982 ret = i915_mutex_lock_interruptible(dev);
3983 if (ret)
3984 return ret;
3985
3986 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3987 if (&obj->base == NULL) {
3988 ret = -ENOENT;
3989 goto unlock;
3990 }
3991
3992 if (obj->pin_count) {
3993 ret = -EINVAL;
3994 goto out;
3995 }
3996
3997 if (obj->madv != __I915_MADV_PURGED)
3998 obj->madv = args->madv;
3999
4000 /* if the object is no longer attached, discard its backing storage */
4001 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4002 i915_gem_object_truncate(obj);
4003
4004 args->retained = obj->madv != __I915_MADV_PURGED;
4005
4006 out:
4007 drm_gem_object_unreference(&obj->base);
4008 unlock:
4009 mutex_unlock(&dev->struct_mutex);
4010 return ret;
4011 }
4012
4013 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4014 const struct drm_i915_gem_object_ops *ops)
4015 {
4016 INIT_LIST_HEAD(&obj->global_list);
4017 INIT_LIST_HEAD(&obj->ring_list);
4018 INIT_LIST_HEAD(&obj->exec_list);
4019 INIT_LIST_HEAD(&obj->obj_exec_link);
4020 INIT_LIST_HEAD(&obj->vma_list);
4021
4022 obj->ops = ops;
4023
4024 obj->fence_reg = I915_FENCE_REG_NONE;
4025 obj->madv = I915_MADV_WILLNEED;
4026 /* Avoid an unnecessary call to unbind on the first bind. */
4027 obj->map_and_fenceable = true;
4028
4029 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4030 }
4031
4032 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4033 .get_pages = i915_gem_object_get_pages_gtt,
4034 .put_pages = i915_gem_object_put_pages_gtt,
4035 };
4036
4037 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4038 size_t size)
4039 {
4040 struct drm_i915_gem_object *obj;
4041 struct address_space *mapping;
4042 gfp_t mask;
4043
4044 obj = i915_gem_object_alloc(dev);
4045 if (obj == NULL)
4046 return NULL;
4047
4048 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4049 i915_gem_object_free(obj);
4050 return NULL;
4051 }
4052
4053 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4054 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4055 /* 965gm cannot relocate objects above 4GiB. */
4056 mask &= ~__GFP_HIGHMEM;
4057 mask |= __GFP_DMA32;
4058 }
4059
4060 mapping = file_inode(obj->base.filp)->i_mapping;
4061 mapping_set_gfp_mask(mapping, mask);
4062
4063 i915_gem_object_init(obj, &i915_gem_object_ops);
4064
4065 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4066 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4067
4068 if (HAS_LLC(dev)) {
4069 /* On some devices, we can have the GPU use the LLC (the CPU
4070 * cache) for about a 10% performance improvement
4071 * compared to uncached. Graphics requests other than
4072 * display scanout are coherent with the CPU in
4073 * accessing this cache. This means in this mode we
4074 * don't need to clflush on the CPU side, and on the
4075 * GPU side we only need to flush internal caches to
4076 * get data visible to the CPU.
4077 *
4078 * However, we maintain the display planes as UC, and so
4079 * need to rebind when first used as such.
4080 */
4081 obj->cache_level = I915_CACHE_LLC;
4082 } else
4083 obj->cache_level = I915_CACHE_NONE;
4084
4085 trace_i915_gem_object_create(obj);
4086
4087 return obj;
4088 }
4089
4090 int i915_gem_init_object(struct drm_gem_object *obj)
4091 {
4092 BUG();
4093
4094 return 0;
4095 }
4096
4097 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4098 {
4099 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4100 struct drm_device *dev = obj->base.dev;
4101 drm_i915_private_t *dev_priv = dev->dev_private;
4102 struct i915_vma *vma, *next;
4103
4104 trace_i915_gem_object_destroy(obj);
4105
4106 if (obj->phys_obj)
4107 i915_gem_detach_phys_object(dev, obj);
4108
4109 obj->pin_count = 0;
4110 /* NB: 0 or 1 elements */
4111 WARN_ON(!list_empty(&obj->vma_list) &&
4112 !list_is_singular(&obj->vma_list));
4113 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4114 int ret = i915_vma_unbind(vma);
4115 if (WARN_ON(ret == -ERESTARTSYS)) {
4116 bool was_interruptible;
4117
4118 was_interruptible = dev_priv->mm.interruptible;
4119 dev_priv->mm.interruptible = false;
4120
4121 WARN_ON(i915_vma_unbind(vma));
4122
4123 dev_priv->mm.interruptible = was_interruptible;
4124 }
4125 }
4126
4127 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4128 * before progressing. */
4129 if (obj->stolen)
4130 i915_gem_object_unpin_pages(obj);
4131
4132 if (WARN_ON(obj->pages_pin_count))
4133 obj->pages_pin_count = 0;
4134 i915_gem_object_put_pages(obj);
4135 i915_gem_object_free_mmap_offset(obj);
4136 i915_gem_object_release_stolen(obj);
4137
4138 BUG_ON(obj->pages);
4139
4140 if (obj->base.import_attach)
4141 drm_prime_gem_destroy(&obj->base, NULL);
4142
4143 drm_gem_object_release(&obj->base);
4144 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4145
4146 kfree(obj->bit_17);
4147 i915_gem_object_free(obj);
4148 }
4149
4150 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4151 struct i915_address_space *vm)
4152 {
4153 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4154 if (vma == NULL)
4155 return ERR_PTR(-ENOMEM);
4156
4157 INIT_LIST_HEAD(&vma->vma_link);
4158 INIT_LIST_HEAD(&vma->mm_list);
4159 INIT_LIST_HEAD(&vma->exec_list);
4160 vma->vm = vm;
4161 vma->obj = obj;
4162
4163 /* Keep GGTT vmas first to make debug easier */
4164 if (i915_is_ggtt(vm))
4165 list_add(&vma->vma_link, &obj->vma_list);
4166 else
4167 list_add_tail(&vma->vma_link, &obj->vma_list);
4168
4169 return vma;
4170 }
4171
4172 void i915_gem_vma_destroy(struct i915_vma *vma)
4173 {
4174 WARN_ON(vma->node.allocated);
4175 list_del(&vma->vma_link);
4176 kfree(vma);
4177 }
4178
4179 int
4180 i915_gem_idle(struct drm_device *dev)
4181 {
4182 drm_i915_private_t *dev_priv = dev->dev_private;
4183 int ret;
4184
4185 if (dev_priv->ums.mm_suspended) {
4186 mutex_unlock(&dev->struct_mutex);
4187 return 0;
4188 }
4189
4190 ret = i915_gpu_idle(dev);
4191 if (ret) {
4192 mutex_unlock(&dev->struct_mutex);
4193 return ret;
4194 }
4195 i915_gem_retire_requests(dev);
4196
4197 /* Under UMS, be paranoid and evict. */
4198 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4199 i915_gem_evict_everything(dev);
4200
4201 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4202
4203 i915_kernel_lost_context(dev);
4204 i915_gem_cleanup_ringbuffer(dev);
4205
4206 /* Cancel the retire work handler, which should be idle now. */
4207 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4208
4209 return 0;
4210 }
4211
4212 void i915_gem_l3_remap(struct drm_device *dev)
4213 {
4214 drm_i915_private_t *dev_priv = dev->dev_private;
4215 u32 misccpctl;
4216 int i;
4217
4218 if (!HAS_L3_GPU_CACHE(dev))
4219 return;
4220
4221 if (!dev_priv->l3_parity.remap_info)
4222 return;
4223
4224 misccpctl = I915_READ(GEN7_MISCCPCTL);
4225 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4226 POSTING_READ(GEN7_MISCCPCTL);
4227
4228 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4229 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4230 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4231 DRM_DEBUG("0x%x was already programmed to %x\n",
4232 GEN7_L3LOG_BASE + i, remap);
4233 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4234 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4235 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4236 }
4237
4238 /* Make sure all the writes land before disabling dop clock gating */
4239 POSTING_READ(GEN7_L3LOG_BASE);
4240
4241 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4242 }
4243
4244 void i915_gem_init_swizzling(struct drm_device *dev)
4245 {
4246 drm_i915_private_t *dev_priv = dev->dev_private;
4247
4248 if (INTEL_INFO(dev)->gen < 5 ||
4249 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4250 return;
4251
4252 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4253 DISP_TILE_SURFACE_SWIZZLING);
4254
4255 if (IS_GEN5(dev))
4256 return;
4257
4258 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4259 if (IS_GEN6(dev))
4260 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4261 else if (IS_GEN7(dev))
4262 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4263 else
4264 BUG();
4265 }
4266
4267 static bool
4268 intel_enable_blt(struct drm_device *dev)
4269 {
4270 if (!HAS_BLT(dev))
4271 return false;
4272
4273 /* The blitter was dysfunctional on early prototypes */
4274 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4275 DRM_INFO("BLT not supported on this pre-production hardware;"
4276 " graphics performance will be degraded.\n");
4277 return false;
4278 }
4279
4280 return true;
4281 }
4282
4283 static int i915_gem_init_rings(struct drm_device *dev)
4284 {
4285 struct drm_i915_private *dev_priv = dev->dev_private;
4286 int ret;
4287
4288 ret = intel_init_render_ring_buffer(dev);
4289 if (ret)
4290 return ret;
4291
4292 if (HAS_BSD(dev)) {
4293 ret = intel_init_bsd_ring_buffer(dev);
4294 if (ret)
4295 goto cleanup_render_ring;
4296 }
4297
4298 if (intel_enable_blt(dev)) {
4299 ret = intel_init_blt_ring_buffer(dev);
4300 if (ret)
4301 goto cleanup_bsd_ring;
4302 }
4303
4304 if (HAS_VEBOX(dev)) {
4305 ret = intel_init_vebox_ring_buffer(dev);
4306 if (ret)
4307 goto cleanup_blt_ring;
4308 }
4309
4310
4311 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4312 if (ret)
4313 goto cleanup_vebox_ring;
4314
4315 return 0;
4316
4317 cleanup_vebox_ring:
4318 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4319 cleanup_blt_ring:
4320 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4321 cleanup_bsd_ring:
4322 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4323 cleanup_render_ring:
4324 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4325
4326 return ret;
4327 }
4328
4329 int
4330 i915_gem_init_hw(struct drm_device *dev)
4331 {
4332 drm_i915_private_t *dev_priv = dev->dev_private;
4333 int ret;
4334
4335 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4336 return -EIO;
4337
4338 if (dev_priv->ellc_size)
4339 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4340
4341 if (HAS_PCH_NOP(dev)) {
4342 u32 temp = I915_READ(GEN7_MSG_CTL);
4343 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4344 I915_WRITE(GEN7_MSG_CTL, temp);
4345 }
4346
4347 i915_gem_l3_remap(dev);
4348
4349 i915_gem_init_swizzling(dev);
4350
4351 ret = i915_gem_init_rings(dev);
4352 if (ret)
4353 return ret;
4354
4355 /*
4356 * XXX: There was some w/a described somewhere suggesting loading
4357 * contexts before PPGTT.
4358 */
4359 i915_gem_context_init(dev);
4360 if (dev_priv->mm.aliasing_ppgtt) {
4361 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4362 if (ret) {
4363 i915_gem_cleanup_aliasing_ppgtt(dev);
4364 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4365 }
4366 }
4367
4368 return 0;
4369 }
4370
4371 int i915_gem_init(struct drm_device *dev)
4372 {
4373 struct drm_i915_private *dev_priv = dev->dev_private;
4374 int ret;
4375
4376 mutex_lock(&dev->struct_mutex);
4377
4378 if (IS_VALLEYVIEW(dev)) {
4379 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4380 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4381 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4382 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4383 }
4384
4385 i915_gem_init_global_gtt(dev);
4386
4387 ret = i915_gem_init_hw(dev);
4388 mutex_unlock(&dev->struct_mutex);
4389 if (ret) {
4390 i915_gem_cleanup_aliasing_ppgtt(dev);
4391 return ret;
4392 }
4393
4394 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4395 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4396 dev_priv->dri1.allow_batchbuffer = 1;
4397 return 0;
4398 }
4399
4400 void
4401 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4402 {
4403 drm_i915_private_t *dev_priv = dev->dev_private;
4404 struct intel_ring_buffer *ring;
4405 int i;
4406
4407 for_each_ring(ring, dev_priv, i)
4408 intel_cleanup_ring_buffer(ring);
4409 }
4410
4411 int
4412 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4413 struct drm_file *file_priv)
4414 {
4415 struct drm_i915_private *dev_priv = dev->dev_private;
4416 int ret;
4417
4418 if (drm_core_check_feature(dev, DRIVER_MODESET))
4419 return 0;
4420
4421 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4422 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4423 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4424 }
4425
4426 mutex_lock(&dev->struct_mutex);
4427 dev_priv->ums.mm_suspended = 0;
4428
4429 ret = i915_gem_init_hw(dev);
4430 if (ret != 0) {
4431 mutex_unlock(&dev->struct_mutex);
4432 return ret;
4433 }
4434
4435 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4436 mutex_unlock(&dev->struct_mutex);
4437
4438 ret = drm_irq_install(dev);
4439 if (ret)
4440 goto cleanup_ringbuffer;
4441
4442 return 0;
4443
4444 cleanup_ringbuffer:
4445 mutex_lock(&dev->struct_mutex);
4446 i915_gem_cleanup_ringbuffer(dev);
4447 dev_priv->ums.mm_suspended = 1;
4448 mutex_unlock(&dev->struct_mutex);
4449
4450 return ret;
4451 }
4452
4453 int
4454 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4455 struct drm_file *file_priv)
4456 {
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458 int ret;
4459
4460 if (drm_core_check_feature(dev, DRIVER_MODESET))
4461 return 0;
4462
4463 drm_irq_uninstall(dev);
4464
4465 mutex_lock(&dev->struct_mutex);
4466 ret = i915_gem_idle(dev);
4467
4468 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4469 * We need to replace this with a semaphore, or something.
4470 * And not confound ums.mm_suspended!
4471 */
4472 if (ret != 0)
4473 dev_priv->ums.mm_suspended = 1;
4474 mutex_unlock(&dev->struct_mutex);
4475
4476 return ret;
4477 }
4478
4479 void
4480 i915_gem_lastclose(struct drm_device *dev)
4481 {
4482 int ret;
4483
4484 if (drm_core_check_feature(dev, DRIVER_MODESET))
4485 return;
4486
4487 mutex_lock(&dev->struct_mutex);
4488 ret = i915_gem_idle(dev);
4489 if (ret)
4490 DRM_ERROR("failed to idle hardware: %d\n", ret);
4491 mutex_unlock(&dev->struct_mutex);
4492 }
4493
4494 static void
4495 init_ring_lists(struct intel_ring_buffer *ring)
4496 {
4497 INIT_LIST_HEAD(&ring->active_list);
4498 INIT_LIST_HEAD(&ring->request_list);
4499 }
4500
4501 static void i915_init_vm(struct drm_i915_private *dev_priv,
4502 struct i915_address_space *vm)
4503 {
4504 vm->dev = dev_priv->dev;
4505 INIT_LIST_HEAD(&vm->active_list);
4506 INIT_LIST_HEAD(&vm->inactive_list);
4507 INIT_LIST_HEAD(&vm->global_link);
4508 list_add(&vm->global_link, &dev_priv->vm_list);
4509 }
4510
4511 void
4512 i915_gem_load(struct drm_device *dev)
4513 {
4514 drm_i915_private_t *dev_priv = dev->dev_private;
4515 int i;
4516
4517 dev_priv->slab =
4518 kmem_cache_create("i915_gem_object",
4519 sizeof(struct drm_i915_gem_object), 0,
4520 SLAB_HWCACHE_ALIGN,
4521 NULL);
4522
4523 INIT_LIST_HEAD(&dev_priv->vm_list);
4524 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4525
4526 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4527 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4528 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4529 for (i = 0; i < I915_NUM_RINGS; i++)
4530 init_ring_lists(&dev_priv->ring[i]);
4531 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4532 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4533 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4534 i915_gem_retire_work_handler);
4535 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4536
4537 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4538 if (IS_GEN3(dev)) {
4539 I915_WRITE(MI_ARB_STATE,
4540 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4541 }
4542
4543 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4544
4545 /* Old X drivers will take 0-2 for front, back, depth buffers */
4546 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4547 dev_priv->fence_reg_start = 3;
4548
4549 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4550 dev_priv->num_fence_regs = 32;
4551 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4552 dev_priv->num_fence_regs = 16;
4553 else
4554 dev_priv->num_fence_regs = 8;
4555
4556 /* Initialize fence registers to zero */
4557 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4558 i915_gem_restore_fences(dev);
4559
4560 i915_gem_detect_bit_6_swizzle(dev);
4561 init_waitqueue_head(&dev_priv->pending_flip_queue);
4562
4563 dev_priv->mm.interruptible = true;
4564
4565 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4566 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4567 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4568 register_shrinker(&dev_priv->mm.inactive_shrinker);
4569 }
4570
4571 /*
4572 * Create a physically contiguous memory object for this object
4573 * e.g. for cursor + overlay regs
4574 */
4575 static int i915_gem_init_phys_object(struct drm_device *dev,
4576 int id, int size, int align)
4577 {
4578 drm_i915_private_t *dev_priv = dev->dev_private;
4579 struct drm_i915_gem_phys_object *phys_obj;
4580 int ret;
4581
4582 if (dev_priv->mm.phys_objs[id - 1] || !size)
4583 return 0;
4584
4585 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4586 if (!phys_obj)
4587 return -ENOMEM;
4588
4589 phys_obj->id = id;
4590
4591 phys_obj->handle = drm_pci_alloc(dev, size, align);
4592 if (!phys_obj->handle) {
4593 ret = -ENOMEM;
4594 goto kfree_obj;
4595 }
4596 #ifdef CONFIG_X86
4597 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4598 #endif
4599
4600 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4601
4602 return 0;
4603 kfree_obj:
4604 kfree(phys_obj);
4605 return ret;
4606 }
4607
4608 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4609 {
4610 drm_i915_private_t *dev_priv = dev->dev_private;
4611 struct drm_i915_gem_phys_object *phys_obj;
4612
4613 if (!dev_priv->mm.phys_objs[id - 1])
4614 return;
4615
4616 phys_obj = dev_priv->mm.phys_objs[id - 1];
4617 if (phys_obj->cur_obj) {
4618 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4619 }
4620
4621 #ifdef CONFIG_X86
4622 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4623 #endif
4624 drm_pci_free(dev, phys_obj->handle);
4625 kfree(phys_obj);
4626 dev_priv->mm.phys_objs[id - 1] = NULL;
4627 }
4628
4629 void i915_gem_free_all_phys_object(struct drm_device *dev)
4630 {
4631 int i;
4632
4633 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4634 i915_gem_free_phys_object(dev, i);
4635 }
4636
4637 void i915_gem_detach_phys_object(struct drm_device *dev,
4638 struct drm_i915_gem_object *obj)
4639 {
4640 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4641 char *vaddr;
4642 int i;
4643 int page_count;
4644
4645 if (!obj->phys_obj)
4646 return;
4647 vaddr = obj->phys_obj->handle->vaddr;
4648
4649 page_count = obj->base.size / PAGE_SIZE;
4650 for (i = 0; i < page_count; i++) {
4651 struct page *page = shmem_read_mapping_page(mapping, i);
4652 if (!IS_ERR(page)) {
4653 char *dst = kmap_atomic(page);
4654 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4655 kunmap_atomic(dst);
4656
4657 drm_clflush_pages(&page, 1);
4658
4659 set_page_dirty(page);
4660 mark_page_accessed(page);
4661 page_cache_release(page);
4662 }
4663 }
4664 i915_gem_chipset_flush(dev);
4665
4666 obj->phys_obj->cur_obj = NULL;
4667 obj->phys_obj = NULL;
4668 }
4669
4670 int
4671 i915_gem_attach_phys_object(struct drm_device *dev,
4672 struct drm_i915_gem_object *obj,
4673 int id,
4674 int align)
4675 {
4676 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4677 drm_i915_private_t *dev_priv = dev->dev_private;
4678 int ret = 0;
4679 int page_count;
4680 int i;
4681
4682 if (id > I915_MAX_PHYS_OBJECT)
4683 return -EINVAL;
4684
4685 if (obj->phys_obj) {
4686 if (obj->phys_obj->id == id)
4687 return 0;
4688 i915_gem_detach_phys_object(dev, obj);
4689 }
4690
4691 /* create a new object */
4692 if (!dev_priv->mm.phys_objs[id - 1]) {
4693 ret = i915_gem_init_phys_object(dev, id,
4694 obj->base.size, align);
4695 if (ret) {
4696 DRM_ERROR("failed to init phys object %d size: %zu\n",
4697 id, obj->base.size);
4698 return ret;
4699 }
4700 }
4701
4702 /* bind to the object */
4703 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4704 obj->phys_obj->cur_obj = obj;
4705
4706 page_count = obj->base.size / PAGE_SIZE;
4707
4708 for (i = 0; i < page_count; i++) {
4709 struct page *page;
4710 char *dst, *src;
4711
4712 page = shmem_read_mapping_page(mapping, i);
4713 if (IS_ERR(page))
4714 return PTR_ERR(page);
4715
4716 src = kmap_atomic(page);
4717 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4718 memcpy(dst, src, PAGE_SIZE);
4719 kunmap_atomic(src);
4720
4721 mark_page_accessed(page);
4722 page_cache_release(page);
4723 }
4724
4725 return 0;
4726 }
4727
4728 static int
4729 i915_gem_phys_pwrite(struct drm_device *dev,
4730 struct drm_i915_gem_object *obj,
4731 struct drm_i915_gem_pwrite *args,
4732 struct drm_file *file_priv)
4733 {
4734 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4735 char __user *user_data = to_user_ptr(args->data_ptr);
4736
4737 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4738 unsigned long unwritten;
4739
4740 /* The physical object once assigned is fixed for the lifetime
4741 * of the obj, so we can safely drop the lock and continue
4742 * to access vaddr.
4743 */
4744 mutex_unlock(&dev->struct_mutex);
4745 unwritten = copy_from_user(vaddr, user_data, args->size);
4746 mutex_lock(&dev->struct_mutex);
4747 if (unwritten)
4748 return -EFAULT;
4749 }
4750
4751 i915_gem_chipset_flush(dev);
4752 return 0;
4753 }
4754
4755 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4756 {
4757 struct drm_i915_file_private *file_priv = file->driver_priv;
4758
4759 /* Clean up our request list when the client is going away, so that
4760 * later retire_requests won't dereference our soon-to-be-gone
4761 * file_priv.
4762 */
4763 spin_lock(&file_priv->mm.lock);
4764 while (!list_empty(&file_priv->mm.request_list)) {
4765 struct drm_i915_gem_request *request;
4766
4767 request = list_first_entry(&file_priv->mm.request_list,
4768 struct drm_i915_gem_request,
4769 client_list);
4770 list_del(&request->client_list);
4771 request->file_priv = NULL;
4772 }
4773 spin_unlock(&file_priv->mm.lock);
4774 }
4775
4776 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4777 {
4778 if (!mutex_is_locked(mutex))
4779 return false;
4780
4781 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4782 return mutex->owner == task;
4783 #else
4784 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4785 return false;
4786 #endif
4787 }
4788
4789 static unsigned long
4790 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4791 {
4792 struct drm_i915_private *dev_priv =
4793 container_of(shrinker,
4794 struct drm_i915_private,
4795 mm.inactive_shrinker);
4796 struct drm_device *dev = dev_priv->dev;
4797 struct drm_i915_gem_object *obj;
4798 bool unlock = true;
4799 unsigned long count;
4800
4801 if (!mutex_trylock(&dev->struct_mutex)) {
4802 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4803 return 0;
4804
4805 if (dev_priv->mm.shrinker_no_lock_stealing)
4806 return 0;
4807
4808 unlock = false;
4809 }
4810
4811 count = 0;
4812 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4813 if (obj->pages_pin_count == 0)
4814 count += obj->base.size >> PAGE_SHIFT;
4815
4816 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4817 if (obj->active)
4818 continue;
4819
4820 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4821 count += obj->base.size >> PAGE_SHIFT;
4822 }
4823
4824 if (unlock)
4825 mutex_unlock(&dev->struct_mutex);
4826 return count;
4827 }
4828
4829 /* All the new VM stuff */
4830 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4831 struct i915_address_space *vm)
4832 {
4833 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4834 struct i915_vma *vma;
4835
4836 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4837 vm = &dev_priv->gtt.base;
4838
4839 BUG_ON(list_empty(&o->vma_list));
4840 list_for_each_entry(vma, &o->vma_list, vma_link) {
4841 if (vma->vm == vm)
4842 return vma->node.start;
4843
4844 }
4845 return -1;
4846 }
4847
4848 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4849 struct i915_address_space *vm)
4850 {
4851 struct i915_vma *vma;
4852
4853 list_for_each_entry(vma, &o->vma_list, vma_link)
4854 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4855 return true;
4856
4857 return false;
4858 }
4859
4860 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4861 {
4862 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4863 struct i915_address_space *vm;
4864
4865 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4866 if (i915_gem_obj_bound(o, vm))
4867 return true;
4868
4869 return false;
4870 }
4871
4872 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4873 struct i915_address_space *vm)
4874 {
4875 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4876 struct i915_vma *vma;
4877
4878 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4879 vm = &dev_priv->gtt.base;
4880
4881 BUG_ON(list_empty(&o->vma_list));
4882
4883 list_for_each_entry(vma, &o->vma_list, vma_link)
4884 if (vma->vm == vm)
4885 return vma->node.size;
4886
4887 return 0;
4888 }
4889
4890 static unsigned long
4891 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4892 {
4893 struct drm_i915_private *dev_priv =
4894 container_of(shrinker,
4895 struct drm_i915_private,
4896 mm.inactive_shrinker);
4897 struct drm_device *dev = dev_priv->dev;
4898 int nr_to_scan = sc->nr_to_scan;
4899 unsigned long freed;
4900 bool unlock = true;
4901
4902 if (!mutex_trylock(&dev->struct_mutex)) {
4903 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4904 return SHRINK_STOP;
4905
4906 if (dev_priv->mm.shrinker_no_lock_stealing)
4907 return SHRINK_STOP;
4908
4909 unlock = false;
4910 }
4911
4912 freed = i915_gem_purge(dev_priv, nr_to_scan);
4913 if (freed < nr_to_scan)
4914 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
4915 false);
4916 if (freed < nr_to_scan)
4917 freed += i915_gem_shrink_all(dev_priv);
4918
4919 if (unlock)
4920 mutex_unlock(&dev->struct_mutex);
4921 return freed;
4922 }
4923
4924 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4925 struct i915_address_space *vm)
4926 {
4927 struct i915_vma *vma;
4928 list_for_each_entry(vma, &obj->vma_list, vma_link)
4929 if (vma->vm == vm)
4930 return vma;
4931
4932 return NULL;
4933 }
4934
4935 struct i915_vma *
4936 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4937 struct i915_address_space *vm)
4938 {
4939 struct i915_vma *vma;
4940
4941 vma = i915_gem_obj_to_vma(obj, vm);
4942 if (!vma)
4943 vma = i915_gem_vma_create(obj, vm);
4944
4945 return vma;
4946 }
This page took 0.156375 seconds and 5 git commands to generate.