drm/i915: Fix Sandybridge fence registers
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
50 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51 unsigned alignment);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
56 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 static inline bool
62 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
63 {
64 return obj_priv->gtt_space &&
65 !obj_priv->active &&
66 obj_priv->pin_count == 0;
67 }
68
69 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
70 unsigned long end)
71 {
72 drm_i915_private_t *dev_priv = dev->dev_private;
73
74 if (start >= end ||
75 (start & (PAGE_SIZE - 1)) != 0 ||
76 (end & (PAGE_SIZE - 1)) != 0) {
77 return -EINVAL;
78 }
79
80 drm_mm_init(&dev_priv->mm.gtt_space, start,
81 end - start);
82
83 dev->gtt_total = (uint32_t) (end - start);
84
85 return 0;
86 }
87
88 int
89 i915_gem_init_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91 {
92 struct drm_i915_gem_init *args = data;
93 int ret;
94
95 mutex_lock(&dev->struct_mutex);
96 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
97 mutex_unlock(&dev->struct_mutex);
98
99 return ret;
100 }
101
102 int
103 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
104 struct drm_file *file_priv)
105 {
106 struct drm_i915_gem_get_aperture *args = data;
107
108 if (!(dev->driver->driver_features & DRIVER_GEM))
109 return -ENODEV;
110
111 args->aper_size = dev->gtt_total;
112 args->aper_available_size = (args->aper_size -
113 atomic_read(&dev->pin_memory));
114
115 return 0;
116 }
117
118
119 /**
120 * Creates a new mm object and returns a handle to it.
121 */
122 int
123 i915_gem_create_ioctl(struct drm_device *dev, void *data,
124 struct drm_file *file_priv)
125 {
126 struct drm_i915_gem_create *args = data;
127 struct drm_gem_object *obj;
128 int ret;
129 u32 handle;
130
131 args->size = roundup(args->size, PAGE_SIZE);
132
133 /* Allocate the new object */
134 obj = i915_gem_alloc_object(dev, args->size);
135 if (obj == NULL)
136 return -ENOMEM;
137
138 ret = drm_gem_handle_create(file_priv, obj, &handle);
139 if (ret) {
140 drm_gem_object_unreference_unlocked(obj);
141 return ret;
142 }
143
144 /* Sink the floating reference from kref_init(handlecount) */
145 drm_gem_object_handle_unreference_unlocked(obj);
146
147 args->handle = handle;
148 return 0;
149 }
150
151 static inline int
152 fast_shmem_read(struct page **pages,
153 loff_t page_base, int page_offset,
154 char __user *data,
155 int length)
156 {
157 char __iomem *vaddr;
158 int unwritten;
159
160 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
161 if (vaddr == NULL)
162 return -ENOMEM;
163 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
164 kunmap_atomic(vaddr, KM_USER0);
165
166 if (unwritten)
167 return -EFAULT;
168
169 return 0;
170 }
171
172 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
173 {
174 drm_i915_private_t *dev_priv = obj->dev->dev_private;
175 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
176
177 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
178 obj_priv->tiling_mode != I915_TILING_NONE;
179 }
180
181 static inline void
182 slow_shmem_copy(struct page *dst_page,
183 int dst_offset,
184 struct page *src_page,
185 int src_offset,
186 int length)
187 {
188 char *dst_vaddr, *src_vaddr;
189
190 dst_vaddr = kmap(dst_page);
191 src_vaddr = kmap(src_page);
192
193 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
194
195 kunmap(src_page);
196 kunmap(dst_page);
197 }
198
199 static inline void
200 slow_shmem_bit17_copy(struct page *gpu_page,
201 int gpu_offset,
202 struct page *cpu_page,
203 int cpu_offset,
204 int length,
205 int is_read)
206 {
207 char *gpu_vaddr, *cpu_vaddr;
208
209 /* Use the unswizzled path if this page isn't affected. */
210 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
211 if (is_read)
212 return slow_shmem_copy(cpu_page, cpu_offset,
213 gpu_page, gpu_offset, length);
214 else
215 return slow_shmem_copy(gpu_page, gpu_offset,
216 cpu_page, cpu_offset, length);
217 }
218
219 gpu_vaddr = kmap(gpu_page);
220 cpu_vaddr = kmap(cpu_page);
221
222 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
223 * XORing with the other bits (A9 for Y, A9 and A10 for X)
224 */
225 while (length > 0) {
226 int cacheline_end = ALIGN(gpu_offset + 1, 64);
227 int this_length = min(cacheline_end - gpu_offset, length);
228 int swizzled_gpu_offset = gpu_offset ^ 64;
229
230 if (is_read) {
231 memcpy(cpu_vaddr + cpu_offset,
232 gpu_vaddr + swizzled_gpu_offset,
233 this_length);
234 } else {
235 memcpy(gpu_vaddr + swizzled_gpu_offset,
236 cpu_vaddr + cpu_offset,
237 this_length);
238 }
239 cpu_offset += this_length;
240 gpu_offset += this_length;
241 length -= this_length;
242 }
243
244 kunmap(cpu_page);
245 kunmap(gpu_page);
246 }
247
248 /**
249 * This is the fast shmem pread path, which attempts to copy_from_user directly
250 * from the backing pages of the object to the user's address space. On a
251 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
252 */
253 static int
254 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
255 struct drm_i915_gem_pread *args,
256 struct drm_file *file_priv)
257 {
258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
259 ssize_t remain;
260 loff_t offset, page_base;
261 char __user *user_data;
262 int page_offset, page_length;
263 int ret;
264
265 user_data = (char __user *) (uintptr_t) args->data_ptr;
266 remain = args->size;
267
268 mutex_lock(&dev->struct_mutex);
269
270 ret = i915_gem_object_get_pages(obj, 0);
271 if (ret != 0)
272 goto fail_unlock;
273
274 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
275 args->size);
276 if (ret != 0)
277 goto fail_put_pages;
278
279 obj_priv = to_intel_bo(obj);
280 offset = args->offset;
281
282 while (remain > 0) {
283 /* Operation in this page
284 *
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
288 */
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
294
295 ret = fast_shmem_read(obj_priv->pages,
296 page_base, page_offset,
297 user_data, page_length);
298 if (ret)
299 goto fail_put_pages;
300
301 remain -= page_length;
302 user_data += page_length;
303 offset += page_length;
304 }
305
306 fail_put_pages:
307 i915_gem_object_put_pages(obj);
308 fail_unlock:
309 mutex_unlock(&dev->struct_mutex);
310
311 return ret;
312 }
313
314 static int
315 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
316 {
317 int ret;
318
319 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
320
321 /* If we've insufficient memory to map in the pages, attempt
322 * to make some space by throwing out some old buffers.
323 */
324 if (ret == -ENOMEM) {
325 struct drm_device *dev = obj->dev;
326
327 ret = i915_gem_evict_something(dev, obj->size,
328 i915_gem_get_gtt_alignment(obj));
329 if (ret)
330 return ret;
331
332 ret = i915_gem_object_get_pages(obj, 0);
333 }
334
335 return ret;
336 }
337
338 /**
339 * This is the fallback shmem pread path, which allocates temporary storage
340 * in kernel space to copy_to_user into outside of the struct_mutex, so we
341 * can copy out of the object's backing pages while holding the struct mutex
342 * and not take page faults.
343 */
344 static int
345 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
346 struct drm_i915_gem_pread *args,
347 struct drm_file *file_priv)
348 {
349 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
350 struct mm_struct *mm = current->mm;
351 struct page **user_pages;
352 ssize_t remain;
353 loff_t offset, pinned_pages, i;
354 loff_t first_data_page, last_data_page, num_pages;
355 int shmem_page_index, shmem_page_offset;
356 int data_page_index, data_page_offset;
357 int page_length;
358 int ret;
359 uint64_t data_ptr = args->data_ptr;
360 int do_bit17_swizzling;
361
362 remain = args->size;
363
364 /* Pin the user pages containing the data. We can't fault while
365 * holding the struct mutex, yet we want to hold it while
366 * dereferencing the user data.
367 */
368 first_data_page = data_ptr / PAGE_SIZE;
369 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
370 num_pages = last_data_page - first_data_page + 1;
371
372 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
373 if (user_pages == NULL)
374 return -ENOMEM;
375
376 down_read(&mm->mmap_sem);
377 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
378 num_pages, 1, 0, user_pages, NULL);
379 up_read(&mm->mmap_sem);
380 if (pinned_pages < num_pages) {
381 ret = -EFAULT;
382 goto fail_put_user_pages;
383 }
384
385 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
386
387 mutex_lock(&dev->struct_mutex);
388
389 ret = i915_gem_object_get_pages_or_evict(obj);
390 if (ret)
391 goto fail_unlock;
392
393 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
394 args->size);
395 if (ret != 0)
396 goto fail_put_pages;
397
398 obj_priv = to_intel_bo(obj);
399 offset = args->offset;
400
401 while (remain > 0) {
402 /* Operation in this page
403 *
404 * shmem_page_index = page number within shmem file
405 * shmem_page_offset = offset within page in shmem file
406 * data_page_index = page number in get_user_pages return
407 * data_page_offset = offset with data_page_index page.
408 * page_length = bytes to copy for this page
409 */
410 shmem_page_index = offset / PAGE_SIZE;
411 shmem_page_offset = offset & ~PAGE_MASK;
412 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
413 data_page_offset = data_ptr & ~PAGE_MASK;
414
415 page_length = remain;
416 if ((shmem_page_offset + page_length) > PAGE_SIZE)
417 page_length = PAGE_SIZE - shmem_page_offset;
418 if ((data_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - data_page_offset;
420
421 if (do_bit17_swizzling) {
422 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
423 shmem_page_offset,
424 user_pages[data_page_index],
425 data_page_offset,
426 page_length,
427 1);
428 } else {
429 slow_shmem_copy(user_pages[data_page_index],
430 data_page_offset,
431 obj_priv->pages[shmem_page_index],
432 shmem_page_offset,
433 page_length);
434 }
435
436 remain -= page_length;
437 data_ptr += page_length;
438 offset += page_length;
439 }
440
441 fail_put_pages:
442 i915_gem_object_put_pages(obj);
443 fail_unlock:
444 mutex_unlock(&dev->struct_mutex);
445 fail_put_user_pages:
446 for (i = 0; i < pinned_pages; i++) {
447 SetPageDirty(user_pages[i]);
448 page_cache_release(user_pages[i]);
449 }
450 drm_free_large(user_pages);
451
452 return ret;
453 }
454
455 /**
456 * Reads data from the object referenced by handle.
457 *
458 * On error, the contents of *data are undefined.
459 */
460 int
461 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
462 struct drm_file *file_priv)
463 {
464 struct drm_i915_gem_pread *args = data;
465 struct drm_gem_object *obj;
466 struct drm_i915_gem_object *obj_priv;
467 int ret;
468
469 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
470 if (obj == NULL)
471 return -ENOENT;
472 obj_priv = to_intel_bo(obj);
473
474 /* Bounds check source.
475 *
476 * XXX: This could use review for overflow issues...
477 */
478 if (args->offset > obj->size || args->size > obj->size ||
479 args->offset + args->size > obj->size) {
480 drm_gem_object_unreference_unlocked(obj);
481 return -EINVAL;
482 }
483
484 if (i915_gem_object_needs_bit17_swizzle(obj)) {
485 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
486 } else {
487 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
488 if (ret != 0)
489 ret = i915_gem_shmem_pread_slow(dev, obj, args,
490 file_priv);
491 }
492
493 drm_gem_object_unreference_unlocked(obj);
494
495 return ret;
496 }
497
498 /* This is the fast write path which cannot handle
499 * page faults in the source data
500 */
501
502 static inline int
503 fast_user_write(struct io_mapping *mapping,
504 loff_t page_base, int page_offset,
505 char __user *user_data,
506 int length)
507 {
508 char *vaddr_atomic;
509 unsigned long unwritten;
510
511 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
512 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
513 user_data, length);
514 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
515 if (unwritten)
516 return -EFAULT;
517 return 0;
518 }
519
520 /* Here's the write path which can sleep for
521 * page faults
522 */
523
524 static inline void
525 slow_kernel_write(struct io_mapping *mapping,
526 loff_t gtt_base, int gtt_offset,
527 struct page *user_page, int user_offset,
528 int length)
529 {
530 char __iomem *dst_vaddr;
531 char *src_vaddr;
532
533 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
534 src_vaddr = kmap(user_page);
535
536 memcpy_toio(dst_vaddr + gtt_offset,
537 src_vaddr + user_offset,
538 length);
539
540 kunmap(user_page);
541 io_mapping_unmap(dst_vaddr);
542 }
543
544 static inline int
545 fast_shmem_write(struct page **pages,
546 loff_t page_base, int page_offset,
547 char __user *data,
548 int length)
549 {
550 char __iomem *vaddr;
551 unsigned long unwritten;
552
553 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
554 if (vaddr == NULL)
555 return -ENOMEM;
556 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
557 kunmap_atomic(vaddr, KM_USER0);
558
559 if (unwritten)
560 return -EFAULT;
561 return 0;
562 }
563
564 /**
565 * This is the fast pwrite path, where we copy the data directly from the
566 * user into the GTT, uncached.
567 */
568 static int
569 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
570 struct drm_i915_gem_pwrite *args,
571 struct drm_file *file_priv)
572 {
573 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
574 drm_i915_private_t *dev_priv = dev->dev_private;
575 ssize_t remain;
576 loff_t offset, page_base;
577 char __user *user_data;
578 int page_offset, page_length;
579 int ret;
580
581 user_data = (char __user *) (uintptr_t) args->data_ptr;
582 remain = args->size;
583 if (!access_ok(VERIFY_READ, user_data, remain))
584 return -EFAULT;
585
586
587 mutex_lock(&dev->struct_mutex);
588 ret = i915_gem_object_pin(obj, 0);
589 if (ret) {
590 mutex_unlock(&dev->struct_mutex);
591 return ret;
592 }
593 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
594 if (ret)
595 goto fail;
596
597 obj_priv = to_intel_bo(obj);
598 offset = obj_priv->gtt_offset + args->offset;
599
600 while (remain > 0) {
601 /* Operation in this page
602 *
603 * page_base = page offset within aperture
604 * page_offset = offset within page
605 * page_length = bytes to copy for this page
606 */
607 page_base = (offset & ~(PAGE_SIZE-1));
608 page_offset = offset & (PAGE_SIZE-1);
609 page_length = remain;
610 if ((page_offset + remain) > PAGE_SIZE)
611 page_length = PAGE_SIZE - page_offset;
612
613 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
614 page_offset, user_data, page_length);
615
616 /* If we get a fault while copying data, then (presumably) our
617 * source page isn't available. Return the error and we'll
618 * retry in the slow path.
619 */
620 if (ret)
621 goto fail;
622
623 remain -= page_length;
624 user_data += page_length;
625 offset += page_length;
626 }
627
628 fail:
629 i915_gem_object_unpin(obj);
630 mutex_unlock(&dev->struct_mutex);
631
632 return ret;
633 }
634
635 /**
636 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
637 * the memory and maps it using kmap_atomic for copying.
638 *
639 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
640 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
641 */
642 static int
643 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
644 struct drm_i915_gem_pwrite *args,
645 struct drm_file *file_priv)
646 {
647 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
648 drm_i915_private_t *dev_priv = dev->dev_private;
649 ssize_t remain;
650 loff_t gtt_page_base, offset;
651 loff_t first_data_page, last_data_page, num_pages;
652 loff_t pinned_pages, i;
653 struct page **user_pages;
654 struct mm_struct *mm = current->mm;
655 int gtt_page_offset, data_page_offset, data_page_index, page_length;
656 int ret;
657 uint64_t data_ptr = args->data_ptr;
658
659 remain = args->size;
660
661 /* Pin the user pages containing the data. We can't fault while
662 * holding the struct mutex, and all of the pwrite implementations
663 * want to hold it while dereferencing the user data.
664 */
665 first_data_page = data_ptr / PAGE_SIZE;
666 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
667 num_pages = last_data_page - first_data_page + 1;
668
669 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
670 if (user_pages == NULL)
671 return -ENOMEM;
672
673 down_read(&mm->mmap_sem);
674 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
675 num_pages, 0, 0, user_pages, NULL);
676 up_read(&mm->mmap_sem);
677 if (pinned_pages < num_pages) {
678 ret = -EFAULT;
679 goto out_unpin_pages;
680 }
681
682 mutex_lock(&dev->struct_mutex);
683 ret = i915_gem_object_pin(obj, 0);
684 if (ret)
685 goto out_unlock;
686
687 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
688 if (ret)
689 goto out_unpin_object;
690
691 obj_priv = to_intel_bo(obj);
692 offset = obj_priv->gtt_offset + args->offset;
693
694 while (remain > 0) {
695 /* Operation in this page
696 *
697 * gtt_page_base = page offset within aperture
698 * gtt_page_offset = offset within page in aperture
699 * data_page_index = page number in get_user_pages return
700 * data_page_offset = offset with data_page_index page.
701 * page_length = bytes to copy for this page
702 */
703 gtt_page_base = offset & PAGE_MASK;
704 gtt_page_offset = offset & ~PAGE_MASK;
705 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
706 data_page_offset = data_ptr & ~PAGE_MASK;
707
708 page_length = remain;
709 if ((gtt_page_offset + page_length) > PAGE_SIZE)
710 page_length = PAGE_SIZE - gtt_page_offset;
711 if ((data_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - data_page_offset;
713
714 slow_kernel_write(dev_priv->mm.gtt_mapping,
715 gtt_page_base, gtt_page_offset,
716 user_pages[data_page_index],
717 data_page_offset,
718 page_length);
719
720 remain -= page_length;
721 offset += page_length;
722 data_ptr += page_length;
723 }
724
725 out_unpin_object:
726 i915_gem_object_unpin(obj);
727 out_unlock:
728 mutex_unlock(&dev->struct_mutex);
729 out_unpin_pages:
730 for (i = 0; i < pinned_pages; i++)
731 page_cache_release(user_pages[i]);
732 drm_free_large(user_pages);
733
734 return ret;
735 }
736
737 /**
738 * This is the fast shmem pwrite path, which attempts to directly
739 * copy_from_user into the kmapped pages backing the object.
740 */
741 static int
742 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
745 {
746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
747 ssize_t remain;
748 loff_t offset, page_base;
749 char __user *user_data;
750 int page_offset, page_length;
751 int ret;
752
753 user_data = (char __user *) (uintptr_t) args->data_ptr;
754 remain = args->size;
755
756 mutex_lock(&dev->struct_mutex);
757
758 ret = i915_gem_object_get_pages(obj, 0);
759 if (ret != 0)
760 goto fail_unlock;
761
762 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
763 if (ret != 0)
764 goto fail_put_pages;
765
766 obj_priv = to_intel_bo(obj);
767 offset = args->offset;
768 obj_priv->dirty = 1;
769
770 while (remain > 0) {
771 /* Operation in this page
772 *
773 * page_base = page offset within aperture
774 * page_offset = offset within page
775 * page_length = bytes to copy for this page
776 */
777 page_base = (offset & ~(PAGE_SIZE-1));
778 page_offset = offset & (PAGE_SIZE-1);
779 page_length = remain;
780 if ((page_offset + remain) > PAGE_SIZE)
781 page_length = PAGE_SIZE - page_offset;
782
783 ret = fast_shmem_write(obj_priv->pages,
784 page_base, page_offset,
785 user_data, page_length);
786 if (ret)
787 goto fail_put_pages;
788
789 remain -= page_length;
790 user_data += page_length;
791 offset += page_length;
792 }
793
794 fail_put_pages:
795 i915_gem_object_put_pages(obj);
796 fail_unlock:
797 mutex_unlock(&dev->struct_mutex);
798
799 return ret;
800 }
801
802 /**
803 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
804 * the memory and maps it using kmap_atomic for copying.
805 *
806 * This avoids taking mmap_sem for faulting on the user's address while the
807 * struct_mutex is held.
808 */
809 static int
810 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
811 struct drm_i915_gem_pwrite *args,
812 struct drm_file *file_priv)
813 {
814 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
815 struct mm_struct *mm = current->mm;
816 struct page **user_pages;
817 ssize_t remain;
818 loff_t offset, pinned_pages, i;
819 loff_t first_data_page, last_data_page, num_pages;
820 int shmem_page_index, shmem_page_offset;
821 int data_page_index, data_page_offset;
822 int page_length;
823 int ret;
824 uint64_t data_ptr = args->data_ptr;
825 int do_bit17_swizzling;
826
827 remain = args->size;
828
829 /* Pin the user pages containing the data. We can't fault while
830 * holding the struct mutex, and all of the pwrite implementations
831 * want to hold it while dereferencing the user data.
832 */
833 first_data_page = data_ptr / PAGE_SIZE;
834 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
835 num_pages = last_data_page - first_data_page + 1;
836
837 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
838 if (user_pages == NULL)
839 return -ENOMEM;
840
841 down_read(&mm->mmap_sem);
842 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
843 num_pages, 0, 0, user_pages, NULL);
844 up_read(&mm->mmap_sem);
845 if (pinned_pages < num_pages) {
846 ret = -EFAULT;
847 goto fail_put_user_pages;
848 }
849
850 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
851
852 mutex_lock(&dev->struct_mutex);
853
854 ret = i915_gem_object_get_pages_or_evict(obj);
855 if (ret)
856 goto fail_unlock;
857
858 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
859 if (ret != 0)
860 goto fail_put_pages;
861
862 obj_priv = to_intel_bo(obj);
863 offset = args->offset;
864 obj_priv->dirty = 1;
865
866 while (remain > 0) {
867 /* Operation in this page
868 *
869 * shmem_page_index = page number within shmem file
870 * shmem_page_offset = offset within page in shmem file
871 * data_page_index = page number in get_user_pages return
872 * data_page_offset = offset with data_page_index page.
873 * page_length = bytes to copy for this page
874 */
875 shmem_page_index = offset / PAGE_SIZE;
876 shmem_page_offset = offset & ~PAGE_MASK;
877 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
878 data_page_offset = data_ptr & ~PAGE_MASK;
879
880 page_length = remain;
881 if ((shmem_page_offset + page_length) > PAGE_SIZE)
882 page_length = PAGE_SIZE - shmem_page_offset;
883 if ((data_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - data_page_offset;
885
886 if (do_bit17_swizzling) {
887 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
888 shmem_page_offset,
889 user_pages[data_page_index],
890 data_page_offset,
891 page_length,
892 0);
893 } else {
894 slow_shmem_copy(obj_priv->pages[shmem_page_index],
895 shmem_page_offset,
896 user_pages[data_page_index],
897 data_page_offset,
898 page_length);
899 }
900
901 remain -= page_length;
902 data_ptr += page_length;
903 offset += page_length;
904 }
905
906 fail_put_pages:
907 i915_gem_object_put_pages(obj);
908 fail_unlock:
909 mutex_unlock(&dev->struct_mutex);
910 fail_put_user_pages:
911 for (i = 0; i < pinned_pages; i++)
912 page_cache_release(user_pages[i]);
913 drm_free_large(user_pages);
914
915 return ret;
916 }
917
918 /**
919 * Writes data to the object referenced by handle.
920 *
921 * On error, the contents of the buffer that were to be modified are undefined.
922 */
923 int
924 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
925 struct drm_file *file_priv)
926 {
927 struct drm_i915_gem_pwrite *args = data;
928 struct drm_gem_object *obj;
929 struct drm_i915_gem_object *obj_priv;
930 int ret = 0;
931
932 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
933 if (obj == NULL)
934 return -ENOENT;
935 obj_priv = to_intel_bo(obj);
936
937 /* Bounds check destination.
938 *
939 * XXX: This could use review for overflow issues...
940 */
941 if (args->offset > obj->size || args->size > obj->size ||
942 args->offset + args->size > obj->size) {
943 drm_gem_object_unreference_unlocked(obj);
944 return -EINVAL;
945 }
946
947 /* We can only do the GTT pwrite on untiled buffers, as otherwise
948 * it would end up going through the fenced access, and we'll get
949 * different detiling behavior between reading and writing.
950 * pread/pwrite currently are reading and writing from the CPU
951 * perspective, requiring manual detiling by the client.
952 */
953 if (obj_priv->phys_obj)
954 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
955 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
956 dev->gtt_total != 0 &&
957 obj->write_domain != I915_GEM_DOMAIN_CPU) {
958 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
959 if (ret == -EFAULT) {
960 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
961 file_priv);
962 }
963 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
964 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
965 } else {
966 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
967 if (ret == -EFAULT) {
968 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
969 file_priv);
970 }
971 }
972
973 #if WATCH_PWRITE
974 if (ret)
975 DRM_INFO("pwrite failed %d\n", ret);
976 #endif
977
978 drm_gem_object_unreference_unlocked(obj);
979
980 return ret;
981 }
982
983 /**
984 * Called when user space prepares to use an object with the CPU, either
985 * through the mmap ioctl's mapping or a GTT mapping.
986 */
987 int
988 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
989 struct drm_file *file_priv)
990 {
991 struct drm_i915_private *dev_priv = dev->dev_private;
992 struct drm_i915_gem_set_domain *args = data;
993 struct drm_gem_object *obj;
994 struct drm_i915_gem_object *obj_priv;
995 uint32_t read_domains = args->read_domains;
996 uint32_t write_domain = args->write_domain;
997 int ret;
998
999 if (!(dev->driver->driver_features & DRIVER_GEM))
1000 return -ENODEV;
1001
1002 /* Only handle setting domains to types used by the CPU. */
1003 if (write_domain & I915_GEM_GPU_DOMAINS)
1004 return -EINVAL;
1005
1006 if (read_domains & I915_GEM_GPU_DOMAINS)
1007 return -EINVAL;
1008
1009 /* Having something in the write domain implies it's in the read
1010 * domain, and only that read domain. Enforce that in the request.
1011 */
1012 if (write_domain != 0 && read_domains != write_domain)
1013 return -EINVAL;
1014
1015 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1016 if (obj == NULL)
1017 return -ENOENT;
1018 obj_priv = to_intel_bo(obj);
1019
1020 mutex_lock(&dev->struct_mutex);
1021
1022 intel_mark_busy(dev, obj);
1023
1024 #if WATCH_BUF
1025 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1026 obj, obj->size, read_domains, write_domain);
1027 #endif
1028 if (read_domains & I915_GEM_DOMAIN_GTT) {
1029 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1030
1031 /* Update the LRU on the fence for the CPU access that's
1032 * about to occur.
1033 */
1034 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1035 struct drm_i915_fence_reg *reg =
1036 &dev_priv->fence_regs[obj_priv->fence_reg];
1037 list_move_tail(&reg->lru_list,
1038 &dev_priv->mm.fence_list);
1039 }
1040
1041 /* Silently promote "you're not bound, there was nothing to do"
1042 * to success, since the client was just asking us to
1043 * make sure everything was done.
1044 */
1045 if (ret == -EINVAL)
1046 ret = 0;
1047 } else {
1048 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1049 }
1050
1051
1052 /* Maintain LRU order of "inactive" objects */
1053 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1054 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1055
1056 drm_gem_object_unreference(obj);
1057 mutex_unlock(&dev->struct_mutex);
1058 return ret;
1059 }
1060
1061 /**
1062 * Called when user space has done writes to this buffer
1063 */
1064 int
1065 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1066 struct drm_file *file_priv)
1067 {
1068 struct drm_i915_gem_sw_finish *args = data;
1069 struct drm_gem_object *obj;
1070 struct drm_i915_gem_object *obj_priv;
1071 int ret = 0;
1072
1073 if (!(dev->driver->driver_features & DRIVER_GEM))
1074 return -ENODEV;
1075
1076 mutex_lock(&dev->struct_mutex);
1077 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1078 if (obj == NULL) {
1079 mutex_unlock(&dev->struct_mutex);
1080 return -ENOENT;
1081 }
1082
1083 #if WATCH_BUF
1084 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1085 __func__, args->handle, obj, obj->size);
1086 #endif
1087 obj_priv = to_intel_bo(obj);
1088
1089 /* Pinned buffers may be scanout, so flush the cache */
1090 if (obj_priv->pin_count)
1091 i915_gem_object_flush_cpu_write_domain(obj);
1092
1093 drm_gem_object_unreference(obj);
1094 mutex_unlock(&dev->struct_mutex);
1095 return ret;
1096 }
1097
1098 /**
1099 * Maps the contents of an object, returning the address it is mapped
1100 * into.
1101 *
1102 * While the mapping holds a reference on the contents of the object, it doesn't
1103 * imply a ref on the object itself.
1104 */
1105 int
1106 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1107 struct drm_file *file_priv)
1108 {
1109 struct drm_i915_gem_mmap *args = data;
1110 struct drm_gem_object *obj;
1111 loff_t offset;
1112 unsigned long addr;
1113
1114 if (!(dev->driver->driver_features & DRIVER_GEM))
1115 return -ENODEV;
1116
1117 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1118 if (obj == NULL)
1119 return -ENOENT;
1120
1121 offset = args->offset;
1122
1123 down_write(&current->mm->mmap_sem);
1124 addr = do_mmap(obj->filp, 0, args->size,
1125 PROT_READ | PROT_WRITE, MAP_SHARED,
1126 args->offset);
1127 up_write(&current->mm->mmap_sem);
1128 drm_gem_object_unreference_unlocked(obj);
1129 if (IS_ERR((void *)addr))
1130 return addr;
1131
1132 args->addr_ptr = (uint64_t) addr;
1133
1134 return 0;
1135 }
1136
1137 /**
1138 * i915_gem_fault - fault a page into the GTT
1139 * vma: VMA in question
1140 * vmf: fault info
1141 *
1142 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1143 * from userspace. The fault handler takes care of binding the object to
1144 * the GTT (if needed), allocating and programming a fence register (again,
1145 * only if needed based on whether the old reg is still valid or the object
1146 * is tiled) and inserting a new PTE into the faulting process.
1147 *
1148 * Note that the faulting process may involve evicting existing objects
1149 * from the GTT and/or fence registers to make room. So performance may
1150 * suffer if the GTT working set is large or there are few fence registers
1151 * left.
1152 */
1153 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1154 {
1155 struct drm_gem_object *obj = vma->vm_private_data;
1156 struct drm_device *dev = obj->dev;
1157 drm_i915_private_t *dev_priv = dev->dev_private;
1158 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1159 pgoff_t page_offset;
1160 unsigned long pfn;
1161 int ret = 0;
1162 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1163
1164 /* We don't use vmf->pgoff since that has the fake offset */
1165 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1166 PAGE_SHIFT;
1167
1168 /* Now bind it into the GTT if needed */
1169 mutex_lock(&dev->struct_mutex);
1170 if (!obj_priv->gtt_space) {
1171 ret = i915_gem_object_bind_to_gtt(obj, 0);
1172 if (ret)
1173 goto unlock;
1174
1175 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1176 if (ret)
1177 goto unlock;
1178 }
1179
1180 /* Need a new fence register? */
1181 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1182 ret = i915_gem_object_get_fence_reg(obj);
1183 if (ret)
1184 goto unlock;
1185 }
1186
1187 if (i915_gem_object_is_inactive(obj_priv))
1188 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1189
1190 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1191 page_offset;
1192
1193 /* Finally, remap it using the new GTT offset */
1194 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1195 unlock:
1196 mutex_unlock(&dev->struct_mutex);
1197
1198 switch (ret) {
1199 case 0:
1200 case -ERESTARTSYS:
1201 return VM_FAULT_NOPAGE;
1202 case -ENOMEM:
1203 case -EAGAIN:
1204 return VM_FAULT_OOM;
1205 default:
1206 return VM_FAULT_SIGBUS;
1207 }
1208 }
1209
1210 /**
1211 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1212 * @obj: obj in question
1213 *
1214 * GEM memory mapping works by handing back to userspace a fake mmap offset
1215 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1216 * up the object based on the offset and sets up the various memory mapping
1217 * structures.
1218 *
1219 * This routine allocates and attaches a fake offset for @obj.
1220 */
1221 static int
1222 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1223 {
1224 struct drm_device *dev = obj->dev;
1225 struct drm_gem_mm *mm = dev->mm_private;
1226 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1227 struct drm_map_list *list;
1228 struct drm_local_map *map;
1229 int ret = 0;
1230
1231 /* Set the object up for mmap'ing */
1232 list = &obj->map_list;
1233 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1234 if (!list->map)
1235 return -ENOMEM;
1236
1237 map = list->map;
1238 map->type = _DRM_GEM;
1239 map->size = obj->size;
1240 map->handle = obj;
1241
1242 /* Get a DRM GEM mmap offset allocated... */
1243 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1244 obj->size / PAGE_SIZE, 0, 0);
1245 if (!list->file_offset_node) {
1246 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1247 ret = -ENOMEM;
1248 goto out_free_list;
1249 }
1250
1251 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1252 obj->size / PAGE_SIZE, 0);
1253 if (!list->file_offset_node) {
1254 ret = -ENOMEM;
1255 goto out_free_list;
1256 }
1257
1258 list->hash.key = list->file_offset_node->start;
1259 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1260 DRM_ERROR("failed to add to map hash\n");
1261 ret = -ENOMEM;
1262 goto out_free_mm;
1263 }
1264
1265 /* By now we should be all set, any drm_mmap request on the offset
1266 * below will get to our mmap & fault handler */
1267 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1268
1269 return 0;
1270
1271 out_free_mm:
1272 drm_mm_put_block(list->file_offset_node);
1273 out_free_list:
1274 kfree(list->map);
1275
1276 return ret;
1277 }
1278
1279 /**
1280 * i915_gem_release_mmap - remove physical page mappings
1281 * @obj: obj in question
1282 *
1283 * Preserve the reservation of the mmapping with the DRM core code, but
1284 * relinquish ownership of the pages back to the system.
1285 *
1286 * It is vital that we remove the page mapping if we have mapped a tiled
1287 * object through the GTT and then lose the fence register due to
1288 * resource pressure. Similarly if the object has been moved out of the
1289 * aperture, than pages mapped into userspace must be revoked. Removing the
1290 * mapping will then trigger a page fault on the next user access, allowing
1291 * fixup by i915_gem_fault().
1292 */
1293 void
1294 i915_gem_release_mmap(struct drm_gem_object *obj)
1295 {
1296 struct drm_device *dev = obj->dev;
1297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1298
1299 if (dev->dev_mapping)
1300 unmap_mapping_range(dev->dev_mapping,
1301 obj_priv->mmap_offset, obj->size, 1);
1302 }
1303
1304 static void
1305 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1306 {
1307 struct drm_device *dev = obj->dev;
1308 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1309 struct drm_gem_mm *mm = dev->mm_private;
1310 struct drm_map_list *list;
1311
1312 list = &obj->map_list;
1313 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1314
1315 if (list->file_offset_node) {
1316 drm_mm_put_block(list->file_offset_node);
1317 list->file_offset_node = NULL;
1318 }
1319
1320 if (list->map) {
1321 kfree(list->map);
1322 list->map = NULL;
1323 }
1324
1325 obj_priv->mmap_offset = 0;
1326 }
1327
1328 /**
1329 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1330 * @obj: object to check
1331 *
1332 * Return the required GTT alignment for an object, taking into account
1333 * potential fence register mapping if needed.
1334 */
1335 static uint32_t
1336 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1337 {
1338 struct drm_device *dev = obj->dev;
1339 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1340 int start, i;
1341
1342 /*
1343 * Minimum alignment is 4k (GTT page size), but might be greater
1344 * if a fence register is needed for the object.
1345 */
1346 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1347 return 4096;
1348
1349 /*
1350 * Previous chips need to be aligned to the size of the smallest
1351 * fence register that can contain the object.
1352 */
1353 if (IS_I9XX(dev))
1354 start = 1024*1024;
1355 else
1356 start = 512*1024;
1357
1358 for (i = start; i < obj->size; i <<= 1)
1359 ;
1360
1361 return i;
1362 }
1363
1364 /**
1365 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1366 * @dev: DRM device
1367 * @data: GTT mapping ioctl data
1368 * @file_priv: GEM object info
1369 *
1370 * Simply returns the fake offset to userspace so it can mmap it.
1371 * The mmap call will end up in drm_gem_mmap(), which will set things
1372 * up so we can get faults in the handler above.
1373 *
1374 * The fault handler will take care of binding the object into the GTT
1375 * (since it may have been evicted to make room for something), allocating
1376 * a fence register, and mapping the appropriate aperture address into
1377 * userspace.
1378 */
1379 int
1380 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1381 struct drm_file *file_priv)
1382 {
1383 struct drm_i915_gem_mmap_gtt *args = data;
1384 struct drm_gem_object *obj;
1385 struct drm_i915_gem_object *obj_priv;
1386 int ret;
1387
1388 if (!(dev->driver->driver_features & DRIVER_GEM))
1389 return -ENODEV;
1390
1391 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1392 if (obj == NULL)
1393 return -ENOENT;
1394
1395 mutex_lock(&dev->struct_mutex);
1396
1397 obj_priv = to_intel_bo(obj);
1398
1399 if (obj_priv->madv != I915_MADV_WILLNEED) {
1400 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1401 drm_gem_object_unreference(obj);
1402 mutex_unlock(&dev->struct_mutex);
1403 return -EINVAL;
1404 }
1405
1406
1407 if (!obj_priv->mmap_offset) {
1408 ret = i915_gem_create_mmap_offset(obj);
1409 if (ret) {
1410 drm_gem_object_unreference(obj);
1411 mutex_unlock(&dev->struct_mutex);
1412 return ret;
1413 }
1414 }
1415
1416 args->offset = obj_priv->mmap_offset;
1417
1418 /*
1419 * Pull it into the GTT so that we have a page list (makes the
1420 * initial fault faster and any subsequent flushing possible).
1421 */
1422 if (!obj_priv->agp_mem) {
1423 ret = i915_gem_object_bind_to_gtt(obj, 0);
1424 if (ret) {
1425 drm_gem_object_unreference(obj);
1426 mutex_unlock(&dev->struct_mutex);
1427 return ret;
1428 }
1429 }
1430
1431 drm_gem_object_unreference(obj);
1432 mutex_unlock(&dev->struct_mutex);
1433
1434 return 0;
1435 }
1436
1437 void
1438 i915_gem_object_put_pages(struct drm_gem_object *obj)
1439 {
1440 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1441 int page_count = obj->size / PAGE_SIZE;
1442 int i;
1443
1444 BUG_ON(obj_priv->pages_refcount == 0);
1445 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1446
1447 if (--obj_priv->pages_refcount != 0)
1448 return;
1449
1450 if (obj_priv->tiling_mode != I915_TILING_NONE)
1451 i915_gem_object_save_bit_17_swizzle(obj);
1452
1453 if (obj_priv->madv == I915_MADV_DONTNEED)
1454 obj_priv->dirty = 0;
1455
1456 for (i = 0; i < page_count; i++) {
1457 if (obj_priv->dirty)
1458 set_page_dirty(obj_priv->pages[i]);
1459
1460 if (obj_priv->madv == I915_MADV_WILLNEED)
1461 mark_page_accessed(obj_priv->pages[i]);
1462
1463 page_cache_release(obj_priv->pages[i]);
1464 }
1465 obj_priv->dirty = 0;
1466
1467 drm_free_large(obj_priv->pages);
1468 obj_priv->pages = NULL;
1469 }
1470
1471 static void
1472 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1473 struct intel_ring_buffer *ring)
1474 {
1475 struct drm_device *dev = obj->dev;
1476 drm_i915_private_t *dev_priv = dev->dev_private;
1477 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1478 BUG_ON(ring == NULL);
1479 obj_priv->ring = ring;
1480
1481 /* Add a reference if we're newly entering the active list. */
1482 if (!obj_priv->active) {
1483 drm_gem_object_reference(obj);
1484 obj_priv->active = 1;
1485 }
1486 /* Move from whatever list we were on to the tail of execution. */
1487 spin_lock(&dev_priv->mm.active_list_lock);
1488 list_move_tail(&obj_priv->list, &ring->active_list);
1489 spin_unlock(&dev_priv->mm.active_list_lock);
1490 obj_priv->last_rendering_seqno = seqno;
1491 }
1492
1493 static void
1494 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1495 {
1496 struct drm_device *dev = obj->dev;
1497 drm_i915_private_t *dev_priv = dev->dev_private;
1498 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1499
1500 BUG_ON(!obj_priv->active);
1501 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1502 obj_priv->last_rendering_seqno = 0;
1503 }
1504
1505 /* Immediately discard the backing storage */
1506 static void
1507 i915_gem_object_truncate(struct drm_gem_object *obj)
1508 {
1509 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1510 struct inode *inode;
1511
1512 /* Our goal here is to return as much of the memory as
1513 * is possible back to the system as we are called from OOM.
1514 * To do this we must instruct the shmfs to drop all of its
1515 * backing pages, *now*. Here we mirror the actions taken
1516 * when by shmem_delete_inode() to release the backing store.
1517 */
1518 inode = obj->filp->f_path.dentry->d_inode;
1519 truncate_inode_pages(inode->i_mapping, 0);
1520 if (inode->i_op->truncate_range)
1521 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1522
1523 obj_priv->madv = __I915_MADV_PURGED;
1524 }
1525
1526 static inline int
1527 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1528 {
1529 return obj_priv->madv == I915_MADV_DONTNEED;
1530 }
1531
1532 static void
1533 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1534 {
1535 struct drm_device *dev = obj->dev;
1536 drm_i915_private_t *dev_priv = dev->dev_private;
1537 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1538
1539 i915_verify_inactive(dev, __FILE__, __LINE__);
1540 if (obj_priv->pin_count != 0)
1541 list_del_init(&obj_priv->list);
1542 else
1543 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1544
1545 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1546
1547 obj_priv->last_rendering_seqno = 0;
1548 obj_priv->ring = NULL;
1549 if (obj_priv->active) {
1550 obj_priv->active = 0;
1551 drm_gem_object_unreference(obj);
1552 }
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 }
1555
1556 static void
1557 i915_gem_process_flushing_list(struct drm_device *dev,
1558 uint32_t flush_domains, uint32_t seqno,
1559 struct intel_ring_buffer *ring)
1560 {
1561 drm_i915_private_t *dev_priv = dev->dev_private;
1562 struct drm_i915_gem_object *obj_priv, *next;
1563
1564 list_for_each_entry_safe(obj_priv, next,
1565 &dev_priv->mm.gpu_write_list,
1566 gpu_write_list) {
1567 struct drm_gem_object *obj = &obj_priv->base;
1568
1569 if ((obj->write_domain & flush_domains) ==
1570 obj->write_domain &&
1571 obj_priv->ring->ring_flag == ring->ring_flag) {
1572 uint32_t old_write_domain = obj->write_domain;
1573
1574 obj->write_domain = 0;
1575 list_del_init(&obj_priv->gpu_write_list);
1576 i915_gem_object_move_to_active(obj, seqno, ring);
1577
1578 /* update the fence lru list */
1579 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1580 struct drm_i915_fence_reg *reg =
1581 &dev_priv->fence_regs[obj_priv->fence_reg];
1582 list_move_tail(&reg->lru_list,
1583 &dev_priv->mm.fence_list);
1584 }
1585
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1589 }
1590 }
1591 }
1592
1593 uint32_t
1594 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1595 uint32_t flush_domains, struct intel_ring_buffer *ring)
1596 {
1597 drm_i915_private_t *dev_priv = dev->dev_private;
1598 struct drm_i915_file_private *i915_file_priv = NULL;
1599 struct drm_i915_gem_request *request;
1600 uint32_t seqno;
1601 int was_empty;
1602
1603 if (file_priv != NULL)
1604 i915_file_priv = file_priv->driver_priv;
1605
1606 request = kzalloc(sizeof(*request), GFP_KERNEL);
1607 if (request == NULL)
1608 return 0;
1609
1610 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1611
1612 request->seqno = seqno;
1613 request->ring = ring;
1614 request->emitted_jiffies = jiffies;
1615 was_empty = list_empty(&ring->request_list);
1616 list_add_tail(&request->list, &ring->request_list);
1617
1618 if (i915_file_priv) {
1619 list_add_tail(&request->client_list,
1620 &i915_file_priv->mm.request_list);
1621 } else {
1622 INIT_LIST_HEAD(&request->client_list);
1623 }
1624
1625 /* Associate any objects on the flushing list matching the write
1626 * domain we're flushing with our flush.
1627 */
1628 if (flush_domains != 0)
1629 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1630
1631 if (!dev_priv->mm.suspended) {
1632 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1633 if (was_empty)
1634 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1635 }
1636 return seqno;
1637 }
1638
1639 /**
1640 * Command execution barrier
1641 *
1642 * Ensures that all commands in the ring are finished
1643 * before signalling the CPU
1644 */
1645 static uint32_t
1646 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1647 {
1648 uint32_t flush_domains = 0;
1649
1650 /* The sampler always gets flushed on i965 (sigh) */
1651 if (IS_I965G(dev))
1652 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1653
1654 ring->flush(dev, ring,
1655 I915_GEM_DOMAIN_COMMAND, flush_domains);
1656 return flush_domains;
1657 }
1658
1659 /**
1660 * Moves buffers associated only with the given active seqno from the active
1661 * to inactive list, potentially freeing them.
1662 */
1663 static void
1664 i915_gem_retire_request(struct drm_device *dev,
1665 struct drm_i915_gem_request *request)
1666 {
1667 drm_i915_private_t *dev_priv = dev->dev_private;
1668
1669 trace_i915_gem_request_retire(dev, request->seqno);
1670
1671 /* Move any buffers on the active list that are no longer referenced
1672 * by the ringbuffer to the flushing/inactive lists as appropriate.
1673 */
1674 spin_lock(&dev_priv->mm.active_list_lock);
1675 while (!list_empty(&request->ring->active_list)) {
1676 struct drm_gem_object *obj;
1677 struct drm_i915_gem_object *obj_priv;
1678
1679 obj_priv = list_first_entry(&request->ring->active_list,
1680 struct drm_i915_gem_object,
1681 list);
1682 obj = &obj_priv->base;
1683
1684 /* If the seqno being retired doesn't match the oldest in the
1685 * list, then the oldest in the list must still be newer than
1686 * this seqno.
1687 */
1688 if (obj_priv->last_rendering_seqno != request->seqno)
1689 goto out;
1690
1691 #if WATCH_LRU
1692 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1693 __func__, request->seqno, obj);
1694 #endif
1695
1696 if (obj->write_domain != 0)
1697 i915_gem_object_move_to_flushing(obj);
1698 else {
1699 /* Take a reference on the object so it won't be
1700 * freed while the spinlock is held. The list
1701 * protection for this spinlock is safe when breaking
1702 * the lock like this since the next thing we do
1703 * is just get the head of the list again.
1704 */
1705 drm_gem_object_reference(obj);
1706 i915_gem_object_move_to_inactive(obj);
1707 spin_unlock(&dev_priv->mm.active_list_lock);
1708 drm_gem_object_unreference(obj);
1709 spin_lock(&dev_priv->mm.active_list_lock);
1710 }
1711 }
1712 out:
1713 spin_unlock(&dev_priv->mm.active_list_lock);
1714 }
1715
1716 /**
1717 * Returns true if seq1 is later than seq2.
1718 */
1719 bool
1720 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1721 {
1722 return (int32_t)(seq1 - seq2) >= 0;
1723 }
1724
1725 uint32_t
1726 i915_get_gem_seqno(struct drm_device *dev,
1727 struct intel_ring_buffer *ring)
1728 {
1729 return ring->get_gem_seqno(dev, ring);
1730 }
1731
1732 /**
1733 * This function clears the request list as sequence numbers are passed.
1734 */
1735 static void
1736 i915_gem_retire_requests_ring(struct drm_device *dev,
1737 struct intel_ring_buffer *ring)
1738 {
1739 drm_i915_private_t *dev_priv = dev->dev_private;
1740 uint32_t seqno;
1741
1742 if (!ring->status_page.page_addr
1743 || list_empty(&ring->request_list))
1744 return;
1745
1746 seqno = i915_get_gem_seqno(dev, ring);
1747
1748 while (!list_empty(&ring->request_list)) {
1749 struct drm_i915_gem_request *request;
1750 uint32_t retiring_seqno;
1751
1752 request = list_first_entry(&ring->request_list,
1753 struct drm_i915_gem_request,
1754 list);
1755 retiring_seqno = request->seqno;
1756
1757 if (i915_seqno_passed(seqno, retiring_seqno) ||
1758 atomic_read(&dev_priv->mm.wedged)) {
1759 i915_gem_retire_request(dev, request);
1760
1761 list_del(&request->list);
1762 list_del(&request->client_list);
1763 kfree(request);
1764 } else
1765 break;
1766 }
1767
1768 if (unlikely (dev_priv->trace_irq_seqno &&
1769 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1770
1771 ring->user_irq_put(dev, ring);
1772 dev_priv->trace_irq_seqno = 0;
1773 }
1774 }
1775
1776 void
1777 i915_gem_retire_requests(struct drm_device *dev)
1778 {
1779 drm_i915_private_t *dev_priv = dev->dev_private;
1780
1781 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1782 struct drm_i915_gem_object *obj_priv, *tmp;
1783
1784 /* We must be careful that during unbind() we do not
1785 * accidentally infinitely recurse into retire requests.
1786 * Currently:
1787 * retire -> free -> unbind -> wait -> retire_ring
1788 */
1789 list_for_each_entry_safe(obj_priv, tmp,
1790 &dev_priv->mm.deferred_free_list,
1791 list)
1792 i915_gem_free_object_tail(&obj_priv->base);
1793 }
1794
1795 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1796 if (HAS_BSD(dev))
1797 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1798 }
1799
1800 void
1801 i915_gem_retire_work_handler(struct work_struct *work)
1802 {
1803 drm_i915_private_t *dev_priv;
1804 struct drm_device *dev;
1805
1806 dev_priv = container_of(work, drm_i915_private_t,
1807 mm.retire_work.work);
1808 dev = dev_priv->dev;
1809
1810 mutex_lock(&dev->struct_mutex);
1811 i915_gem_retire_requests(dev);
1812
1813 if (!dev_priv->mm.suspended &&
1814 (!list_empty(&dev_priv->render_ring.request_list) ||
1815 (HAS_BSD(dev) &&
1816 !list_empty(&dev_priv->bsd_ring.request_list))))
1817 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1818 mutex_unlock(&dev->struct_mutex);
1819 }
1820
1821 int
1822 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1823 int interruptible, struct intel_ring_buffer *ring)
1824 {
1825 drm_i915_private_t *dev_priv = dev->dev_private;
1826 u32 ier;
1827 int ret = 0;
1828
1829 BUG_ON(seqno == 0);
1830
1831 if (atomic_read(&dev_priv->mm.wedged))
1832 return -EIO;
1833
1834 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1835 if (HAS_PCH_SPLIT(dev))
1836 ier = I915_READ(DEIER) | I915_READ(GTIER);
1837 else
1838 ier = I915_READ(IER);
1839 if (!ier) {
1840 DRM_ERROR("something (likely vbetool) disabled "
1841 "interrupts, re-enabling\n");
1842 i915_driver_irq_preinstall(dev);
1843 i915_driver_irq_postinstall(dev);
1844 }
1845
1846 trace_i915_gem_request_wait_begin(dev, seqno);
1847
1848 ring->waiting_gem_seqno = seqno;
1849 ring->user_irq_get(dev, ring);
1850 if (interruptible)
1851 ret = wait_event_interruptible(ring->irq_queue,
1852 i915_seqno_passed(
1853 ring->get_gem_seqno(dev, ring), seqno)
1854 || atomic_read(&dev_priv->mm.wedged));
1855 else
1856 wait_event(ring->irq_queue,
1857 i915_seqno_passed(
1858 ring->get_gem_seqno(dev, ring), seqno)
1859 || atomic_read(&dev_priv->mm.wedged));
1860
1861 ring->user_irq_put(dev, ring);
1862 ring->waiting_gem_seqno = 0;
1863
1864 trace_i915_gem_request_wait_end(dev, seqno);
1865 }
1866 if (atomic_read(&dev_priv->mm.wedged))
1867 ret = -EIO;
1868
1869 if (ret && ret != -ERESTARTSYS)
1870 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1871 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1872
1873 /* Directly dispatch request retiring. While we have the work queue
1874 * to handle this, the waiter on a request often wants an associated
1875 * buffer to have made it to the inactive list, and we would need
1876 * a separate wait queue to handle that.
1877 */
1878 if (ret == 0)
1879 i915_gem_retire_requests_ring(dev, ring);
1880
1881 return ret;
1882 }
1883
1884 /**
1885 * Waits for a sequence number to be signaled, and cleans up the
1886 * request and object lists appropriately for that event.
1887 */
1888 static int
1889 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1890 struct intel_ring_buffer *ring)
1891 {
1892 return i915_do_wait_request(dev, seqno, 1, ring);
1893 }
1894
1895 static void
1896 i915_gem_flush(struct drm_device *dev,
1897 uint32_t invalidate_domains,
1898 uint32_t flush_domains)
1899 {
1900 drm_i915_private_t *dev_priv = dev->dev_private;
1901 if (flush_domains & I915_GEM_DOMAIN_CPU)
1902 drm_agp_chipset_flush(dev);
1903 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1904 invalidate_domains,
1905 flush_domains);
1906
1907 if (HAS_BSD(dev))
1908 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1909 invalidate_domains,
1910 flush_domains);
1911 }
1912
1913 /**
1914 * Ensures that all rendering to the object has completed and the object is
1915 * safe to unbind from the GTT or access from the CPU.
1916 */
1917 static int
1918 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1919 {
1920 struct drm_device *dev = obj->dev;
1921 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1922 int ret;
1923
1924 /* This function only exists to support waiting for existing rendering,
1925 * not for emitting required flushes.
1926 */
1927 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1928
1929 /* If there is rendering queued on the buffer being evicted, wait for
1930 * it.
1931 */
1932 if (obj_priv->active) {
1933 #if WATCH_BUF
1934 DRM_INFO("%s: object %p wait for seqno %08x\n",
1935 __func__, obj, obj_priv->last_rendering_seqno);
1936 #endif
1937 ret = i915_wait_request(dev,
1938 obj_priv->last_rendering_seqno, obj_priv->ring);
1939 if (ret != 0)
1940 return ret;
1941 }
1942
1943 return 0;
1944 }
1945
1946 /**
1947 * Unbinds an object from the GTT aperture.
1948 */
1949 int
1950 i915_gem_object_unbind(struct drm_gem_object *obj)
1951 {
1952 struct drm_device *dev = obj->dev;
1953 drm_i915_private_t *dev_priv = dev->dev_private;
1954 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1955 int ret = 0;
1956
1957 #if WATCH_BUF
1958 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1959 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1960 #endif
1961 if (obj_priv->gtt_space == NULL)
1962 return 0;
1963
1964 if (obj_priv->pin_count != 0) {
1965 DRM_ERROR("Attempting to unbind pinned buffer\n");
1966 return -EINVAL;
1967 }
1968
1969 /* blow away mappings if mapped through GTT */
1970 i915_gem_release_mmap(obj);
1971
1972 /* Move the object to the CPU domain to ensure that
1973 * any possible CPU writes while it's not in the GTT
1974 * are flushed when we go to remap it. This will
1975 * also ensure that all pending GPU writes are finished
1976 * before we unbind.
1977 */
1978 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1979 if (ret == -ERESTARTSYS)
1980 return ret;
1981 /* Continue on if we fail due to EIO, the GPU is hung so we
1982 * should be safe and we need to cleanup or else we might
1983 * cause memory corruption through use-after-free.
1984 */
1985
1986 /* release the fence reg _after_ flushing */
1987 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1988 i915_gem_clear_fence_reg(obj);
1989
1990 if (obj_priv->agp_mem != NULL) {
1991 drm_unbind_agp(obj_priv->agp_mem);
1992 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1993 obj_priv->agp_mem = NULL;
1994 }
1995
1996 i915_gem_object_put_pages(obj);
1997 BUG_ON(obj_priv->pages_refcount);
1998
1999 if (obj_priv->gtt_space) {
2000 atomic_dec(&dev->gtt_count);
2001 atomic_sub(obj->size, &dev->gtt_memory);
2002
2003 drm_mm_put_block(obj_priv->gtt_space);
2004 obj_priv->gtt_space = NULL;
2005 }
2006
2007 /* Remove ourselves from the LRU list if present. */
2008 spin_lock(&dev_priv->mm.active_list_lock);
2009 if (!list_empty(&obj_priv->list))
2010 list_del_init(&obj_priv->list);
2011 spin_unlock(&dev_priv->mm.active_list_lock);
2012
2013 if (i915_gem_object_is_purgeable(obj_priv))
2014 i915_gem_object_truncate(obj);
2015
2016 trace_i915_gem_object_unbind(obj);
2017
2018 return ret;
2019 }
2020
2021 int
2022 i915_gpu_idle(struct drm_device *dev)
2023 {
2024 drm_i915_private_t *dev_priv = dev->dev_private;
2025 bool lists_empty;
2026 uint32_t seqno1, seqno2;
2027 int ret;
2028
2029 spin_lock(&dev_priv->mm.active_list_lock);
2030 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2031 list_empty(&dev_priv->render_ring.active_list) &&
2032 (!HAS_BSD(dev) ||
2033 list_empty(&dev_priv->bsd_ring.active_list)));
2034 spin_unlock(&dev_priv->mm.active_list_lock);
2035
2036 if (lists_empty)
2037 return 0;
2038
2039 /* Flush everything onto the inactive list. */
2040 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2041 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2042 &dev_priv->render_ring);
2043 if (seqno1 == 0)
2044 return -ENOMEM;
2045 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2046
2047 if (HAS_BSD(dev)) {
2048 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2049 &dev_priv->bsd_ring);
2050 if (seqno2 == 0)
2051 return -ENOMEM;
2052
2053 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2054 if (ret)
2055 return ret;
2056 }
2057
2058
2059 return ret;
2060 }
2061
2062 int
2063 i915_gem_object_get_pages(struct drm_gem_object *obj,
2064 gfp_t gfpmask)
2065 {
2066 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2067 int page_count, i;
2068 struct address_space *mapping;
2069 struct inode *inode;
2070 struct page *page;
2071
2072 BUG_ON(obj_priv->pages_refcount
2073 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2074
2075 if (obj_priv->pages_refcount++ != 0)
2076 return 0;
2077
2078 /* Get the list of pages out of our struct file. They'll be pinned
2079 * at this point until we release them.
2080 */
2081 page_count = obj->size / PAGE_SIZE;
2082 BUG_ON(obj_priv->pages != NULL);
2083 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2084 if (obj_priv->pages == NULL) {
2085 obj_priv->pages_refcount--;
2086 return -ENOMEM;
2087 }
2088
2089 inode = obj->filp->f_path.dentry->d_inode;
2090 mapping = inode->i_mapping;
2091 for (i = 0; i < page_count; i++) {
2092 page = read_cache_page_gfp(mapping, i,
2093 GFP_HIGHUSER |
2094 __GFP_COLD |
2095 __GFP_RECLAIMABLE |
2096 gfpmask);
2097 if (IS_ERR(page))
2098 goto err_pages;
2099
2100 obj_priv->pages[i] = page;
2101 }
2102
2103 if (obj_priv->tiling_mode != I915_TILING_NONE)
2104 i915_gem_object_do_bit_17_swizzle(obj);
2105
2106 return 0;
2107
2108 err_pages:
2109 while (i--)
2110 page_cache_release(obj_priv->pages[i]);
2111
2112 drm_free_large(obj_priv->pages);
2113 obj_priv->pages = NULL;
2114 obj_priv->pages_refcount--;
2115 return PTR_ERR(page);
2116 }
2117
2118 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2119 {
2120 struct drm_gem_object *obj = reg->obj;
2121 struct drm_device *dev = obj->dev;
2122 drm_i915_private_t *dev_priv = dev->dev_private;
2123 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2124 int regnum = obj_priv->fence_reg;
2125 uint64_t val;
2126
2127 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2128 0xfffff000) << 32;
2129 val |= obj_priv->gtt_offset & 0xfffff000;
2130 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2131 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2132
2133 if (obj_priv->tiling_mode == I915_TILING_Y)
2134 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2135 val |= I965_FENCE_REG_VALID;
2136
2137 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2138 }
2139
2140 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2141 {
2142 struct drm_gem_object *obj = reg->obj;
2143 struct drm_device *dev = obj->dev;
2144 drm_i915_private_t *dev_priv = dev->dev_private;
2145 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2146 int regnum = obj_priv->fence_reg;
2147 uint64_t val;
2148
2149 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2150 0xfffff000) << 32;
2151 val |= obj_priv->gtt_offset & 0xfffff000;
2152 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2153 if (obj_priv->tiling_mode == I915_TILING_Y)
2154 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2155 val |= I965_FENCE_REG_VALID;
2156
2157 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2158 }
2159
2160 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2161 {
2162 struct drm_gem_object *obj = reg->obj;
2163 struct drm_device *dev = obj->dev;
2164 drm_i915_private_t *dev_priv = dev->dev_private;
2165 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2166 int regnum = obj_priv->fence_reg;
2167 int tile_width;
2168 uint32_t fence_reg, val;
2169 uint32_t pitch_val;
2170
2171 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2172 (obj_priv->gtt_offset & (obj->size - 1))) {
2173 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2174 __func__, obj_priv->gtt_offset, obj->size);
2175 return;
2176 }
2177
2178 if (obj_priv->tiling_mode == I915_TILING_Y &&
2179 HAS_128_BYTE_Y_TILING(dev))
2180 tile_width = 128;
2181 else
2182 tile_width = 512;
2183
2184 /* Note: pitch better be a power of two tile widths */
2185 pitch_val = obj_priv->stride / tile_width;
2186 pitch_val = ffs(pitch_val) - 1;
2187
2188 if (obj_priv->tiling_mode == I915_TILING_Y &&
2189 HAS_128_BYTE_Y_TILING(dev))
2190 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2191 else
2192 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2193
2194 val = obj_priv->gtt_offset;
2195 if (obj_priv->tiling_mode == I915_TILING_Y)
2196 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2197 val |= I915_FENCE_SIZE_BITS(obj->size);
2198 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2199 val |= I830_FENCE_REG_VALID;
2200
2201 if (regnum < 8)
2202 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2203 else
2204 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2205 I915_WRITE(fence_reg, val);
2206 }
2207
2208 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2209 {
2210 struct drm_gem_object *obj = reg->obj;
2211 struct drm_device *dev = obj->dev;
2212 drm_i915_private_t *dev_priv = dev->dev_private;
2213 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2214 int regnum = obj_priv->fence_reg;
2215 uint32_t val;
2216 uint32_t pitch_val;
2217 uint32_t fence_size_bits;
2218
2219 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2220 (obj_priv->gtt_offset & (obj->size - 1))) {
2221 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2222 __func__, obj_priv->gtt_offset);
2223 return;
2224 }
2225
2226 pitch_val = obj_priv->stride / 128;
2227 pitch_val = ffs(pitch_val) - 1;
2228 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2229
2230 val = obj_priv->gtt_offset;
2231 if (obj_priv->tiling_mode == I915_TILING_Y)
2232 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2233 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2234 WARN_ON(fence_size_bits & ~0x00000f00);
2235 val |= fence_size_bits;
2236 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2237 val |= I830_FENCE_REG_VALID;
2238
2239 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2240 }
2241
2242 static int i915_find_fence_reg(struct drm_device *dev)
2243 {
2244 struct drm_i915_fence_reg *reg = NULL;
2245 struct drm_i915_gem_object *obj_priv = NULL;
2246 struct drm_i915_private *dev_priv = dev->dev_private;
2247 struct drm_gem_object *obj = NULL;
2248 int i, avail, ret;
2249
2250 /* First try to find a free reg */
2251 avail = 0;
2252 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2253 reg = &dev_priv->fence_regs[i];
2254 if (!reg->obj)
2255 return i;
2256
2257 obj_priv = to_intel_bo(reg->obj);
2258 if (!obj_priv->pin_count)
2259 avail++;
2260 }
2261
2262 if (avail == 0)
2263 return -ENOSPC;
2264
2265 /* None available, try to steal one or wait for a user to finish */
2266 i = I915_FENCE_REG_NONE;
2267 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2268 lru_list) {
2269 obj = reg->obj;
2270 obj_priv = to_intel_bo(obj);
2271
2272 if (obj_priv->pin_count)
2273 continue;
2274
2275 /* found one! */
2276 i = obj_priv->fence_reg;
2277 break;
2278 }
2279
2280 BUG_ON(i == I915_FENCE_REG_NONE);
2281
2282 /* We only have a reference on obj from the active list. put_fence_reg
2283 * might drop that one, causing a use-after-free in it. So hold a
2284 * private reference to obj like the other callers of put_fence_reg
2285 * (set_tiling ioctl) do. */
2286 drm_gem_object_reference(obj);
2287 ret = i915_gem_object_put_fence_reg(obj);
2288 drm_gem_object_unreference(obj);
2289 if (ret != 0)
2290 return ret;
2291
2292 return i;
2293 }
2294
2295 /**
2296 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2297 * @obj: object to map through a fence reg
2298 *
2299 * When mapping objects through the GTT, userspace wants to be able to write
2300 * to them without having to worry about swizzling if the object is tiled.
2301 *
2302 * This function walks the fence regs looking for a free one for @obj,
2303 * stealing one if it can't find any.
2304 *
2305 * It then sets up the reg based on the object's properties: address, pitch
2306 * and tiling format.
2307 */
2308 int
2309 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2310 {
2311 struct drm_device *dev = obj->dev;
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2314 struct drm_i915_fence_reg *reg = NULL;
2315 int ret;
2316
2317 /* Just update our place in the LRU if our fence is getting used. */
2318 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2319 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2320 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2321 return 0;
2322 }
2323
2324 switch (obj_priv->tiling_mode) {
2325 case I915_TILING_NONE:
2326 WARN(1, "allocating a fence for non-tiled object?\n");
2327 break;
2328 case I915_TILING_X:
2329 if (!obj_priv->stride)
2330 return -EINVAL;
2331 WARN((obj_priv->stride & (512 - 1)),
2332 "object 0x%08x is X tiled but has non-512B pitch\n",
2333 obj_priv->gtt_offset);
2334 break;
2335 case I915_TILING_Y:
2336 if (!obj_priv->stride)
2337 return -EINVAL;
2338 WARN((obj_priv->stride & (128 - 1)),
2339 "object 0x%08x is Y tiled but has non-128B pitch\n",
2340 obj_priv->gtt_offset);
2341 break;
2342 }
2343
2344 ret = i915_find_fence_reg(dev);
2345 if (ret < 0)
2346 return ret;
2347
2348 obj_priv->fence_reg = ret;
2349 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2350 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2351
2352 reg->obj = obj;
2353
2354 switch (INTEL_INFO(dev)->gen) {
2355 case 6:
2356 sandybridge_write_fence_reg(reg);
2357 break;
2358 case 5:
2359 case 4:
2360 i965_write_fence_reg(reg);
2361 break;
2362 case 3:
2363 i915_write_fence_reg(reg);
2364 break;
2365 case 2:
2366 i830_write_fence_reg(reg);
2367 break;
2368 }
2369
2370 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2371 obj_priv->tiling_mode);
2372
2373 return 0;
2374 }
2375
2376 /**
2377 * i915_gem_clear_fence_reg - clear out fence register info
2378 * @obj: object to clear
2379 *
2380 * Zeroes out the fence register itself and clears out the associated
2381 * data structures in dev_priv and obj_priv.
2382 */
2383 static void
2384 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2385 {
2386 struct drm_device *dev = obj->dev;
2387 drm_i915_private_t *dev_priv = dev->dev_private;
2388 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2389 struct drm_i915_fence_reg *reg =
2390 &dev_priv->fence_regs[obj_priv->fence_reg];
2391 uint32_t fence_reg;
2392
2393 switch (INTEL_INFO(dev)->gen) {
2394 case 6:
2395 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2396 (obj_priv->fence_reg * 8), 0);
2397 break;
2398 case 5:
2399 case 4:
2400 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2401 break;
2402 case 3:
2403 if (obj_priv->fence_reg > 8)
2404 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2405 else
2406 case 2:
2407 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2408
2409 I915_WRITE(fence_reg, 0);
2410 break;
2411 }
2412
2413 reg->obj = NULL;
2414 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2415 list_del_init(&reg->lru_list);
2416 }
2417
2418 /**
2419 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2420 * to the buffer to finish, and then resets the fence register.
2421 * @obj: tiled object holding a fence register.
2422 *
2423 * Zeroes out the fence register itself and clears out the associated
2424 * data structures in dev_priv and obj_priv.
2425 */
2426 int
2427 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2428 {
2429 struct drm_device *dev = obj->dev;
2430 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2431
2432 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2433 return 0;
2434
2435 /* If we've changed tiling, GTT-mappings of the object
2436 * need to re-fault to ensure that the correct fence register
2437 * setup is in place.
2438 */
2439 i915_gem_release_mmap(obj);
2440
2441 /* On the i915, GPU access to tiled buffers is via a fence,
2442 * therefore we must wait for any outstanding access to complete
2443 * before clearing the fence.
2444 */
2445 if (!IS_I965G(dev)) {
2446 int ret;
2447
2448 ret = i915_gem_object_flush_gpu_write_domain(obj);
2449 if (ret != 0)
2450 return ret;
2451
2452 ret = i915_gem_object_wait_rendering(obj);
2453 if (ret != 0)
2454 return ret;
2455 }
2456
2457 i915_gem_object_flush_gtt_write_domain(obj);
2458 i915_gem_clear_fence_reg (obj);
2459
2460 return 0;
2461 }
2462
2463 /**
2464 * Finds free space in the GTT aperture and binds the object there.
2465 */
2466 static int
2467 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2468 {
2469 struct drm_device *dev = obj->dev;
2470 drm_i915_private_t *dev_priv = dev->dev_private;
2471 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2472 struct drm_mm_node *free_space;
2473 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2474 int ret;
2475
2476 if (obj_priv->madv != I915_MADV_WILLNEED) {
2477 DRM_ERROR("Attempting to bind a purgeable object\n");
2478 return -EINVAL;
2479 }
2480
2481 if (alignment == 0)
2482 alignment = i915_gem_get_gtt_alignment(obj);
2483 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2484 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2485 return -EINVAL;
2486 }
2487
2488 /* If the object is bigger than the entire aperture, reject it early
2489 * before evicting everything in a vain attempt to find space.
2490 */
2491 if (obj->size > dev->gtt_total) {
2492 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2493 return -E2BIG;
2494 }
2495
2496 search_free:
2497 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2498 obj->size, alignment, 0);
2499 if (free_space != NULL) {
2500 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2501 alignment);
2502 if (obj_priv->gtt_space != NULL)
2503 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2504 }
2505 if (obj_priv->gtt_space == NULL) {
2506 /* If the gtt is empty and we're still having trouble
2507 * fitting our object in, we're out of memory.
2508 */
2509 #if WATCH_LRU
2510 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2511 #endif
2512 ret = i915_gem_evict_something(dev, obj->size, alignment);
2513 if (ret)
2514 return ret;
2515
2516 goto search_free;
2517 }
2518
2519 #if WATCH_BUF
2520 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2521 obj->size, obj_priv->gtt_offset);
2522 #endif
2523 ret = i915_gem_object_get_pages(obj, gfpmask);
2524 if (ret) {
2525 drm_mm_put_block(obj_priv->gtt_space);
2526 obj_priv->gtt_space = NULL;
2527
2528 if (ret == -ENOMEM) {
2529 /* first try to clear up some space from the GTT */
2530 ret = i915_gem_evict_something(dev, obj->size,
2531 alignment);
2532 if (ret) {
2533 /* now try to shrink everyone else */
2534 if (gfpmask) {
2535 gfpmask = 0;
2536 goto search_free;
2537 }
2538
2539 return ret;
2540 }
2541
2542 goto search_free;
2543 }
2544
2545 return ret;
2546 }
2547
2548 /* Create an AGP memory structure pointing at our pages, and bind it
2549 * into the GTT.
2550 */
2551 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2552 obj_priv->pages,
2553 obj->size >> PAGE_SHIFT,
2554 obj_priv->gtt_offset,
2555 obj_priv->agp_type);
2556 if (obj_priv->agp_mem == NULL) {
2557 i915_gem_object_put_pages(obj);
2558 drm_mm_put_block(obj_priv->gtt_space);
2559 obj_priv->gtt_space = NULL;
2560
2561 ret = i915_gem_evict_something(dev, obj->size, alignment);
2562 if (ret)
2563 return ret;
2564
2565 goto search_free;
2566 }
2567 atomic_inc(&dev->gtt_count);
2568 atomic_add(obj->size, &dev->gtt_memory);
2569
2570 /* keep track of bounds object by adding it to the inactive list */
2571 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2572
2573 /* Assert that the object is not currently in any GPU domain. As it
2574 * wasn't in the GTT, there shouldn't be any way it could have been in
2575 * a GPU cache
2576 */
2577 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2578 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2579
2580 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2581
2582 return 0;
2583 }
2584
2585 void
2586 i915_gem_clflush_object(struct drm_gem_object *obj)
2587 {
2588 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2589
2590 /* If we don't have a page list set up, then we're not pinned
2591 * to GPU, and we can ignore the cache flush because it'll happen
2592 * again at bind time.
2593 */
2594 if (obj_priv->pages == NULL)
2595 return;
2596
2597 trace_i915_gem_object_clflush(obj);
2598
2599 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2600 }
2601
2602 /** Flushes any GPU write domain for the object if it's dirty. */
2603 static int
2604 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2605 {
2606 struct drm_device *dev = obj->dev;
2607 uint32_t old_write_domain;
2608 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2609
2610 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2611 return 0;
2612
2613 /* Queue the GPU write cache flushing we need. */
2614 old_write_domain = obj->write_domain;
2615 i915_gem_flush(dev, 0, obj->write_domain);
2616 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2617 return -ENOMEM;
2618
2619 trace_i915_gem_object_change_domain(obj,
2620 obj->read_domains,
2621 old_write_domain);
2622 return 0;
2623 }
2624
2625 /** Flushes the GTT write domain for the object if it's dirty. */
2626 static void
2627 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2628 {
2629 uint32_t old_write_domain;
2630
2631 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2632 return;
2633
2634 /* No actual flushing is required for the GTT write domain. Writes
2635 * to it immediately go to main memory as far as we know, so there's
2636 * no chipset flush. It also doesn't land in render cache.
2637 */
2638 old_write_domain = obj->write_domain;
2639 obj->write_domain = 0;
2640
2641 trace_i915_gem_object_change_domain(obj,
2642 obj->read_domains,
2643 old_write_domain);
2644 }
2645
2646 /** Flushes the CPU write domain for the object if it's dirty. */
2647 static void
2648 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2649 {
2650 struct drm_device *dev = obj->dev;
2651 uint32_t old_write_domain;
2652
2653 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2654 return;
2655
2656 i915_gem_clflush_object(obj);
2657 drm_agp_chipset_flush(dev);
2658 old_write_domain = obj->write_domain;
2659 obj->write_domain = 0;
2660
2661 trace_i915_gem_object_change_domain(obj,
2662 obj->read_domains,
2663 old_write_domain);
2664 }
2665
2666 int
2667 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2668 {
2669 int ret = 0;
2670
2671 switch (obj->write_domain) {
2672 case I915_GEM_DOMAIN_GTT:
2673 i915_gem_object_flush_gtt_write_domain(obj);
2674 break;
2675 case I915_GEM_DOMAIN_CPU:
2676 i915_gem_object_flush_cpu_write_domain(obj);
2677 break;
2678 default:
2679 ret = i915_gem_object_flush_gpu_write_domain(obj);
2680 break;
2681 }
2682
2683 return ret;
2684 }
2685
2686 /**
2687 * Moves a single object to the GTT read, and possibly write domain.
2688 *
2689 * This function returns when the move is complete, including waiting on
2690 * flushes to occur.
2691 */
2692 int
2693 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2694 {
2695 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2696 uint32_t old_write_domain, old_read_domains;
2697 int ret;
2698
2699 /* Not valid to be called on unbound objects. */
2700 if (obj_priv->gtt_space == NULL)
2701 return -EINVAL;
2702
2703 ret = i915_gem_object_flush_gpu_write_domain(obj);
2704 if (ret != 0)
2705 return ret;
2706
2707 /* Wait on any GPU rendering and flushing to occur. */
2708 ret = i915_gem_object_wait_rendering(obj);
2709 if (ret != 0)
2710 return ret;
2711
2712 old_write_domain = obj->write_domain;
2713 old_read_domains = obj->read_domains;
2714
2715 /* If we're writing through the GTT domain, then CPU and GPU caches
2716 * will need to be invalidated at next use.
2717 */
2718 if (write)
2719 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2720
2721 i915_gem_object_flush_cpu_write_domain(obj);
2722
2723 /* It should now be out of any other write domains, and we can update
2724 * the domain values for our changes.
2725 */
2726 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2727 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2728 if (write) {
2729 obj->write_domain = I915_GEM_DOMAIN_GTT;
2730 obj_priv->dirty = 1;
2731 }
2732
2733 trace_i915_gem_object_change_domain(obj,
2734 old_read_domains,
2735 old_write_domain);
2736
2737 return 0;
2738 }
2739
2740 /*
2741 * Prepare buffer for display plane. Use uninterruptible for possible flush
2742 * wait, as in modesetting process we're not supposed to be interrupted.
2743 */
2744 int
2745 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2746 {
2747 struct drm_device *dev = obj->dev;
2748 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2749 uint32_t old_write_domain, old_read_domains;
2750 int ret;
2751
2752 /* Not valid to be called on unbound objects. */
2753 if (obj_priv->gtt_space == NULL)
2754 return -EINVAL;
2755
2756 ret = i915_gem_object_flush_gpu_write_domain(obj);
2757 if (ret)
2758 return ret;
2759
2760 /* Wait on any GPU rendering and flushing to occur. */
2761 if (obj_priv->active) {
2762 #if WATCH_BUF
2763 DRM_INFO("%s: object %p wait for seqno %08x\n",
2764 __func__, obj, obj_priv->last_rendering_seqno);
2765 #endif
2766 ret = i915_do_wait_request(dev,
2767 obj_priv->last_rendering_seqno,
2768 0,
2769 obj_priv->ring);
2770 if (ret != 0)
2771 return ret;
2772 }
2773
2774 i915_gem_object_flush_cpu_write_domain(obj);
2775
2776 old_write_domain = obj->write_domain;
2777 old_read_domains = obj->read_domains;
2778
2779 /* It should now be out of any other write domains, and we can update
2780 * the domain values for our changes.
2781 */
2782 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2783 obj->read_domains = I915_GEM_DOMAIN_GTT;
2784 obj->write_domain = I915_GEM_DOMAIN_GTT;
2785 obj_priv->dirty = 1;
2786
2787 trace_i915_gem_object_change_domain(obj,
2788 old_read_domains,
2789 old_write_domain);
2790
2791 return 0;
2792 }
2793
2794 /**
2795 * Moves a single object to the CPU read, and possibly write domain.
2796 *
2797 * This function returns when the move is complete, including waiting on
2798 * flushes to occur.
2799 */
2800 static int
2801 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2802 {
2803 uint32_t old_write_domain, old_read_domains;
2804 int ret;
2805
2806 ret = i915_gem_object_flush_gpu_write_domain(obj);
2807 if (ret)
2808 return ret;
2809
2810 /* Wait on any GPU rendering and flushing to occur. */
2811 ret = i915_gem_object_wait_rendering(obj);
2812 if (ret != 0)
2813 return ret;
2814
2815 i915_gem_object_flush_gtt_write_domain(obj);
2816
2817 /* If we have a partially-valid cache of the object in the CPU,
2818 * finish invalidating it and free the per-page flags.
2819 */
2820 i915_gem_object_set_to_full_cpu_read_domain(obj);
2821
2822 old_write_domain = obj->write_domain;
2823 old_read_domains = obj->read_domains;
2824
2825 /* Flush the CPU cache if it's still invalid. */
2826 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2827 i915_gem_clflush_object(obj);
2828
2829 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2830 }
2831
2832 /* It should now be out of any other write domains, and we can update
2833 * the domain values for our changes.
2834 */
2835 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2836
2837 /* If we're writing through the CPU, then the GPU read domains will
2838 * need to be invalidated at next use.
2839 */
2840 if (write) {
2841 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2842 obj->write_domain = I915_GEM_DOMAIN_CPU;
2843 }
2844
2845 trace_i915_gem_object_change_domain(obj,
2846 old_read_domains,
2847 old_write_domain);
2848
2849 return 0;
2850 }
2851
2852 /*
2853 * Set the next domain for the specified object. This
2854 * may not actually perform the necessary flushing/invaliding though,
2855 * as that may want to be batched with other set_domain operations
2856 *
2857 * This is (we hope) the only really tricky part of gem. The goal
2858 * is fairly simple -- track which caches hold bits of the object
2859 * and make sure they remain coherent. A few concrete examples may
2860 * help to explain how it works. For shorthand, we use the notation
2861 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2862 * a pair of read and write domain masks.
2863 *
2864 * Case 1: the batch buffer
2865 *
2866 * 1. Allocated
2867 * 2. Written by CPU
2868 * 3. Mapped to GTT
2869 * 4. Read by GPU
2870 * 5. Unmapped from GTT
2871 * 6. Freed
2872 *
2873 * Let's take these a step at a time
2874 *
2875 * 1. Allocated
2876 * Pages allocated from the kernel may still have
2877 * cache contents, so we set them to (CPU, CPU) always.
2878 * 2. Written by CPU (using pwrite)
2879 * The pwrite function calls set_domain (CPU, CPU) and
2880 * this function does nothing (as nothing changes)
2881 * 3. Mapped by GTT
2882 * This function asserts that the object is not
2883 * currently in any GPU-based read or write domains
2884 * 4. Read by GPU
2885 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2886 * As write_domain is zero, this function adds in the
2887 * current read domains (CPU+COMMAND, 0).
2888 * flush_domains is set to CPU.
2889 * invalidate_domains is set to COMMAND
2890 * clflush is run to get data out of the CPU caches
2891 * then i915_dev_set_domain calls i915_gem_flush to
2892 * emit an MI_FLUSH and drm_agp_chipset_flush
2893 * 5. Unmapped from GTT
2894 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2895 * flush_domains and invalidate_domains end up both zero
2896 * so no flushing/invalidating happens
2897 * 6. Freed
2898 * yay, done
2899 *
2900 * Case 2: The shared render buffer
2901 *
2902 * 1. Allocated
2903 * 2. Mapped to GTT
2904 * 3. Read/written by GPU
2905 * 4. set_domain to (CPU,CPU)
2906 * 5. Read/written by CPU
2907 * 6. Read/written by GPU
2908 *
2909 * 1. Allocated
2910 * Same as last example, (CPU, CPU)
2911 * 2. Mapped to GTT
2912 * Nothing changes (assertions find that it is not in the GPU)
2913 * 3. Read/written by GPU
2914 * execbuffer calls set_domain (RENDER, RENDER)
2915 * flush_domains gets CPU
2916 * invalidate_domains gets GPU
2917 * clflush (obj)
2918 * MI_FLUSH and drm_agp_chipset_flush
2919 * 4. set_domain (CPU, CPU)
2920 * flush_domains gets GPU
2921 * invalidate_domains gets CPU
2922 * wait_rendering (obj) to make sure all drawing is complete.
2923 * This will include an MI_FLUSH to get the data from GPU
2924 * to memory
2925 * clflush (obj) to invalidate the CPU cache
2926 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2927 * 5. Read/written by CPU
2928 * cache lines are loaded and dirtied
2929 * 6. Read written by GPU
2930 * Same as last GPU access
2931 *
2932 * Case 3: The constant buffer
2933 *
2934 * 1. Allocated
2935 * 2. Written by CPU
2936 * 3. Read by GPU
2937 * 4. Updated (written) by CPU again
2938 * 5. Read by GPU
2939 *
2940 * 1. Allocated
2941 * (CPU, CPU)
2942 * 2. Written by CPU
2943 * (CPU, CPU)
2944 * 3. Read by GPU
2945 * (CPU+RENDER, 0)
2946 * flush_domains = CPU
2947 * invalidate_domains = RENDER
2948 * clflush (obj)
2949 * MI_FLUSH
2950 * drm_agp_chipset_flush
2951 * 4. Updated (written) by CPU again
2952 * (CPU, CPU)
2953 * flush_domains = 0 (no previous write domain)
2954 * invalidate_domains = 0 (no new read domains)
2955 * 5. Read by GPU
2956 * (CPU+RENDER, 0)
2957 * flush_domains = CPU
2958 * invalidate_domains = RENDER
2959 * clflush (obj)
2960 * MI_FLUSH
2961 * drm_agp_chipset_flush
2962 */
2963 static void
2964 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2965 {
2966 struct drm_device *dev = obj->dev;
2967 drm_i915_private_t *dev_priv = dev->dev_private;
2968 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2969 uint32_t invalidate_domains = 0;
2970 uint32_t flush_domains = 0;
2971 uint32_t old_read_domains;
2972
2973 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2974 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2975
2976 intel_mark_busy(dev, obj);
2977
2978 #if WATCH_BUF
2979 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2980 __func__, obj,
2981 obj->read_domains, obj->pending_read_domains,
2982 obj->write_domain, obj->pending_write_domain);
2983 #endif
2984 /*
2985 * If the object isn't moving to a new write domain,
2986 * let the object stay in multiple read domains
2987 */
2988 if (obj->pending_write_domain == 0)
2989 obj->pending_read_domains |= obj->read_domains;
2990 else
2991 obj_priv->dirty = 1;
2992
2993 /*
2994 * Flush the current write domain if
2995 * the new read domains don't match. Invalidate
2996 * any read domains which differ from the old
2997 * write domain
2998 */
2999 if (obj->write_domain &&
3000 obj->write_domain != obj->pending_read_domains) {
3001 flush_domains |= obj->write_domain;
3002 invalidate_domains |=
3003 obj->pending_read_domains & ~obj->write_domain;
3004 }
3005 /*
3006 * Invalidate any read caches which may have
3007 * stale data. That is, any new read domains.
3008 */
3009 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3010 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3011 #if WATCH_BUF
3012 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3013 __func__, flush_domains, invalidate_domains);
3014 #endif
3015 i915_gem_clflush_object(obj);
3016 }
3017
3018 old_read_domains = obj->read_domains;
3019
3020 /* The actual obj->write_domain will be updated with
3021 * pending_write_domain after we emit the accumulated flush for all
3022 * of our domain changes in execbuffers (which clears objects'
3023 * write_domains). So if we have a current write domain that we
3024 * aren't changing, set pending_write_domain to that.
3025 */
3026 if (flush_domains == 0 && obj->pending_write_domain == 0)
3027 obj->pending_write_domain = obj->write_domain;
3028 obj->read_domains = obj->pending_read_domains;
3029
3030 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3031 if (obj_priv->ring == &dev_priv->render_ring)
3032 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3033 else if (obj_priv->ring == &dev_priv->bsd_ring)
3034 dev_priv->flush_rings |= FLUSH_BSD_RING;
3035 }
3036
3037 dev->invalidate_domains |= invalidate_domains;
3038 dev->flush_domains |= flush_domains;
3039 #if WATCH_BUF
3040 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3041 __func__,
3042 obj->read_domains, obj->write_domain,
3043 dev->invalidate_domains, dev->flush_domains);
3044 #endif
3045
3046 trace_i915_gem_object_change_domain(obj,
3047 old_read_domains,
3048 obj->write_domain);
3049 }
3050
3051 /**
3052 * Moves the object from a partially CPU read to a full one.
3053 *
3054 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3055 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3056 */
3057 static void
3058 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3059 {
3060 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3061
3062 if (!obj_priv->page_cpu_valid)
3063 return;
3064
3065 /* If we're partially in the CPU read domain, finish moving it in.
3066 */
3067 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3068 int i;
3069
3070 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3071 if (obj_priv->page_cpu_valid[i])
3072 continue;
3073 drm_clflush_pages(obj_priv->pages + i, 1);
3074 }
3075 }
3076
3077 /* Free the page_cpu_valid mappings which are now stale, whether
3078 * or not we've got I915_GEM_DOMAIN_CPU.
3079 */
3080 kfree(obj_priv->page_cpu_valid);
3081 obj_priv->page_cpu_valid = NULL;
3082 }
3083
3084 /**
3085 * Set the CPU read domain on a range of the object.
3086 *
3087 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3088 * not entirely valid. The page_cpu_valid member of the object flags which
3089 * pages have been flushed, and will be respected by
3090 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3091 * of the whole object.
3092 *
3093 * This function returns when the move is complete, including waiting on
3094 * flushes to occur.
3095 */
3096 static int
3097 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3098 uint64_t offset, uint64_t size)
3099 {
3100 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3101 uint32_t old_read_domains;
3102 int i, ret;
3103
3104 if (offset == 0 && size == obj->size)
3105 return i915_gem_object_set_to_cpu_domain(obj, 0);
3106
3107 ret = i915_gem_object_flush_gpu_write_domain(obj);
3108 if (ret)
3109 return ret;
3110
3111 /* Wait on any GPU rendering and flushing to occur. */
3112 ret = i915_gem_object_wait_rendering(obj);
3113 if (ret != 0)
3114 return ret;
3115 i915_gem_object_flush_gtt_write_domain(obj);
3116
3117 /* If we're already fully in the CPU read domain, we're done. */
3118 if (obj_priv->page_cpu_valid == NULL &&
3119 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3120 return 0;
3121
3122 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3123 * newly adding I915_GEM_DOMAIN_CPU
3124 */
3125 if (obj_priv->page_cpu_valid == NULL) {
3126 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3127 GFP_KERNEL);
3128 if (obj_priv->page_cpu_valid == NULL)
3129 return -ENOMEM;
3130 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3131 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3132
3133 /* Flush the cache on any pages that are still invalid from the CPU's
3134 * perspective.
3135 */
3136 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3137 i++) {
3138 if (obj_priv->page_cpu_valid[i])
3139 continue;
3140
3141 drm_clflush_pages(obj_priv->pages + i, 1);
3142
3143 obj_priv->page_cpu_valid[i] = 1;
3144 }
3145
3146 /* It should now be out of any other write domains, and we can update
3147 * the domain values for our changes.
3148 */
3149 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3150
3151 old_read_domains = obj->read_domains;
3152 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3153
3154 trace_i915_gem_object_change_domain(obj,
3155 old_read_domains,
3156 obj->write_domain);
3157
3158 return 0;
3159 }
3160
3161 /**
3162 * Pin an object to the GTT and evaluate the relocations landing in it.
3163 */
3164 static int
3165 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3166 struct drm_file *file_priv,
3167 struct drm_i915_gem_exec_object2 *entry,
3168 struct drm_i915_gem_relocation_entry *relocs)
3169 {
3170 struct drm_device *dev = obj->dev;
3171 drm_i915_private_t *dev_priv = dev->dev_private;
3172 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3173 int i, ret;
3174 void __iomem *reloc_page;
3175 bool need_fence;
3176
3177 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3178 obj_priv->tiling_mode != I915_TILING_NONE;
3179
3180 /* Check fence reg constraints and rebind if necessary */
3181 if (need_fence &&
3182 !i915_gem_object_fence_offset_ok(obj,
3183 obj_priv->tiling_mode)) {
3184 ret = i915_gem_object_unbind(obj);
3185 if (ret)
3186 return ret;
3187 }
3188
3189 /* Choose the GTT offset for our buffer and put it there. */
3190 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3191 if (ret)
3192 return ret;
3193
3194 /*
3195 * Pre-965 chips need a fence register set up in order to
3196 * properly handle blits to/from tiled surfaces.
3197 */
3198 if (need_fence) {
3199 ret = i915_gem_object_get_fence_reg(obj);
3200 if (ret != 0) {
3201 i915_gem_object_unpin(obj);
3202 return ret;
3203 }
3204 }
3205
3206 entry->offset = obj_priv->gtt_offset;
3207
3208 /* Apply the relocations, using the GTT aperture to avoid cache
3209 * flushing requirements.
3210 */
3211 for (i = 0; i < entry->relocation_count; i++) {
3212 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3213 struct drm_gem_object *target_obj;
3214 struct drm_i915_gem_object *target_obj_priv;
3215 uint32_t reloc_val, reloc_offset;
3216 uint32_t __iomem *reloc_entry;
3217
3218 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3219 reloc->target_handle);
3220 if (target_obj == NULL) {
3221 i915_gem_object_unpin(obj);
3222 return -ENOENT;
3223 }
3224 target_obj_priv = to_intel_bo(target_obj);
3225
3226 #if WATCH_RELOC
3227 DRM_INFO("%s: obj %p offset %08x target %d "
3228 "read %08x write %08x gtt %08x "
3229 "presumed %08x delta %08x\n",
3230 __func__,
3231 obj,
3232 (int) reloc->offset,
3233 (int) reloc->target_handle,
3234 (int) reloc->read_domains,
3235 (int) reloc->write_domain,
3236 (int) target_obj_priv->gtt_offset,
3237 (int) reloc->presumed_offset,
3238 reloc->delta);
3239 #endif
3240
3241 /* The target buffer should have appeared before us in the
3242 * exec_object list, so it should have a GTT space bound by now.
3243 */
3244 if (target_obj_priv->gtt_space == NULL) {
3245 DRM_ERROR("No GTT space found for object %d\n",
3246 reloc->target_handle);
3247 drm_gem_object_unreference(target_obj);
3248 i915_gem_object_unpin(obj);
3249 return -EINVAL;
3250 }
3251
3252 /* Validate that the target is in a valid r/w GPU domain */
3253 if (reloc->write_domain & (reloc->write_domain - 1)) {
3254 DRM_ERROR("reloc with multiple write domains: "
3255 "obj %p target %d offset %d "
3256 "read %08x write %08x",
3257 obj, reloc->target_handle,
3258 (int) reloc->offset,
3259 reloc->read_domains,
3260 reloc->write_domain);
3261 return -EINVAL;
3262 }
3263 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3264 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3265 DRM_ERROR("reloc with read/write CPU domains: "
3266 "obj %p target %d offset %d "
3267 "read %08x write %08x",
3268 obj, reloc->target_handle,
3269 (int) reloc->offset,
3270 reloc->read_domains,
3271 reloc->write_domain);
3272 drm_gem_object_unreference(target_obj);
3273 i915_gem_object_unpin(obj);
3274 return -EINVAL;
3275 }
3276 if (reloc->write_domain && target_obj->pending_write_domain &&
3277 reloc->write_domain != target_obj->pending_write_domain) {
3278 DRM_ERROR("Write domain conflict: "
3279 "obj %p target %d offset %d "
3280 "new %08x old %08x\n",
3281 obj, reloc->target_handle,
3282 (int) reloc->offset,
3283 reloc->write_domain,
3284 target_obj->pending_write_domain);
3285 drm_gem_object_unreference(target_obj);
3286 i915_gem_object_unpin(obj);
3287 return -EINVAL;
3288 }
3289
3290 target_obj->pending_read_domains |= reloc->read_domains;
3291 target_obj->pending_write_domain |= reloc->write_domain;
3292
3293 /* If the relocation already has the right value in it, no
3294 * more work needs to be done.
3295 */
3296 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3297 drm_gem_object_unreference(target_obj);
3298 continue;
3299 }
3300
3301 /* Check that the relocation address is valid... */
3302 if (reloc->offset > obj->size - 4) {
3303 DRM_ERROR("Relocation beyond object bounds: "
3304 "obj %p target %d offset %d size %d.\n",
3305 obj, reloc->target_handle,
3306 (int) reloc->offset, (int) obj->size);
3307 drm_gem_object_unreference(target_obj);
3308 i915_gem_object_unpin(obj);
3309 return -EINVAL;
3310 }
3311 if (reloc->offset & 3) {
3312 DRM_ERROR("Relocation not 4-byte aligned: "
3313 "obj %p target %d offset %d.\n",
3314 obj, reloc->target_handle,
3315 (int) reloc->offset);
3316 drm_gem_object_unreference(target_obj);
3317 i915_gem_object_unpin(obj);
3318 return -EINVAL;
3319 }
3320
3321 /* and points to somewhere within the target object. */
3322 if (reloc->delta >= target_obj->size) {
3323 DRM_ERROR("Relocation beyond target object bounds: "
3324 "obj %p target %d delta %d size %d.\n",
3325 obj, reloc->target_handle,
3326 (int) reloc->delta, (int) target_obj->size);
3327 drm_gem_object_unreference(target_obj);
3328 i915_gem_object_unpin(obj);
3329 return -EINVAL;
3330 }
3331
3332 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3333 if (ret != 0) {
3334 drm_gem_object_unreference(target_obj);
3335 i915_gem_object_unpin(obj);
3336 return -EINVAL;
3337 }
3338
3339 /* Map the page containing the relocation we're going to
3340 * perform.
3341 */
3342 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3343 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3344 (reloc_offset &
3345 ~(PAGE_SIZE - 1)),
3346 KM_USER0);
3347 reloc_entry = (uint32_t __iomem *)(reloc_page +
3348 (reloc_offset & (PAGE_SIZE - 1)));
3349 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3350
3351 #if WATCH_BUF
3352 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3353 obj, (unsigned int) reloc->offset,
3354 readl(reloc_entry), reloc_val);
3355 #endif
3356 writel(reloc_val, reloc_entry);
3357 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3358
3359 /* The updated presumed offset for this entry will be
3360 * copied back out to the user.
3361 */
3362 reloc->presumed_offset = target_obj_priv->gtt_offset;
3363
3364 drm_gem_object_unreference(target_obj);
3365 }
3366
3367 #if WATCH_BUF
3368 if (0)
3369 i915_gem_dump_object(obj, 128, __func__, ~0);
3370 #endif
3371 return 0;
3372 }
3373
3374 /* Throttle our rendering by waiting until the ring has completed our requests
3375 * emitted over 20 msec ago.
3376 *
3377 * Note that if we were to use the current jiffies each time around the loop,
3378 * we wouldn't escape the function with any frames outstanding if the time to
3379 * render a frame was over 20ms.
3380 *
3381 * This should get us reasonable parallelism between CPU and GPU but also
3382 * relatively low latency when blocking on a particular request to finish.
3383 */
3384 static int
3385 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3386 {
3387 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3388 int ret = 0;
3389 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3390
3391 mutex_lock(&dev->struct_mutex);
3392 while (!list_empty(&i915_file_priv->mm.request_list)) {
3393 struct drm_i915_gem_request *request;
3394
3395 request = list_first_entry(&i915_file_priv->mm.request_list,
3396 struct drm_i915_gem_request,
3397 client_list);
3398
3399 if (time_after_eq(request->emitted_jiffies, recent_enough))
3400 break;
3401
3402 ret = i915_wait_request(dev, request->seqno, request->ring);
3403 if (ret != 0)
3404 break;
3405 }
3406 mutex_unlock(&dev->struct_mutex);
3407
3408 return ret;
3409 }
3410
3411 static int
3412 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3413 uint32_t buffer_count,
3414 struct drm_i915_gem_relocation_entry **relocs)
3415 {
3416 uint32_t reloc_count = 0, reloc_index = 0, i;
3417 int ret;
3418
3419 *relocs = NULL;
3420 for (i = 0; i < buffer_count; i++) {
3421 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3422 return -EINVAL;
3423 reloc_count += exec_list[i].relocation_count;
3424 }
3425
3426 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3427 if (*relocs == NULL) {
3428 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3429 return -ENOMEM;
3430 }
3431
3432 for (i = 0; i < buffer_count; i++) {
3433 struct drm_i915_gem_relocation_entry __user *user_relocs;
3434
3435 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3436
3437 ret = copy_from_user(&(*relocs)[reloc_index],
3438 user_relocs,
3439 exec_list[i].relocation_count *
3440 sizeof(**relocs));
3441 if (ret != 0) {
3442 drm_free_large(*relocs);
3443 *relocs = NULL;
3444 return -EFAULT;
3445 }
3446
3447 reloc_index += exec_list[i].relocation_count;
3448 }
3449
3450 return 0;
3451 }
3452
3453 static int
3454 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3455 uint32_t buffer_count,
3456 struct drm_i915_gem_relocation_entry *relocs)
3457 {
3458 uint32_t reloc_count = 0, i;
3459 int ret = 0;
3460
3461 if (relocs == NULL)
3462 return 0;
3463
3464 for (i = 0; i < buffer_count; i++) {
3465 struct drm_i915_gem_relocation_entry __user *user_relocs;
3466 int unwritten;
3467
3468 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3469
3470 unwritten = copy_to_user(user_relocs,
3471 &relocs[reloc_count],
3472 exec_list[i].relocation_count *
3473 sizeof(*relocs));
3474
3475 if (unwritten) {
3476 ret = -EFAULT;
3477 goto err;
3478 }
3479
3480 reloc_count += exec_list[i].relocation_count;
3481 }
3482
3483 err:
3484 drm_free_large(relocs);
3485
3486 return ret;
3487 }
3488
3489 static int
3490 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3491 uint64_t exec_offset)
3492 {
3493 uint32_t exec_start, exec_len;
3494
3495 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3496 exec_len = (uint32_t) exec->batch_len;
3497
3498 if ((exec_start | exec_len) & 0x7)
3499 return -EINVAL;
3500
3501 if (!exec_start)
3502 return -EINVAL;
3503
3504 return 0;
3505 }
3506
3507 static int
3508 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3509 struct drm_gem_object **object_list,
3510 int count)
3511 {
3512 drm_i915_private_t *dev_priv = dev->dev_private;
3513 struct drm_i915_gem_object *obj_priv;
3514 DEFINE_WAIT(wait);
3515 int i, ret = 0;
3516
3517 for (;;) {
3518 prepare_to_wait(&dev_priv->pending_flip_queue,
3519 &wait, TASK_INTERRUPTIBLE);
3520 for (i = 0; i < count; i++) {
3521 obj_priv = to_intel_bo(object_list[i]);
3522 if (atomic_read(&obj_priv->pending_flip) > 0)
3523 break;
3524 }
3525 if (i == count)
3526 break;
3527
3528 if (!signal_pending(current)) {
3529 mutex_unlock(&dev->struct_mutex);
3530 schedule();
3531 mutex_lock(&dev->struct_mutex);
3532 continue;
3533 }
3534 ret = -ERESTARTSYS;
3535 break;
3536 }
3537 finish_wait(&dev_priv->pending_flip_queue, &wait);
3538
3539 return ret;
3540 }
3541
3542
3543 int
3544 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3545 struct drm_file *file_priv,
3546 struct drm_i915_gem_execbuffer2 *args,
3547 struct drm_i915_gem_exec_object2 *exec_list)
3548 {
3549 drm_i915_private_t *dev_priv = dev->dev_private;
3550 struct drm_gem_object **object_list = NULL;
3551 struct drm_gem_object *batch_obj;
3552 struct drm_i915_gem_object *obj_priv;
3553 struct drm_clip_rect *cliprects = NULL;
3554 struct drm_i915_gem_relocation_entry *relocs = NULL;
3555 int ret = 0, ret2, i, pinned = 0;
3556 uint64_t exec_offset;
3557 uint32_t seqno, flush_domains, reloc_index;
3558 int pin_tries, flips;
3559
3560 struct intel_ring_buffer *ring = NULL;
3561
3562 #if WATCH_EXEC
3563 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3564 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3565 #endif
3566 if (args->flags & I915_EXEC_BSD) {
3567 if (!HAS_BSD(dev)) {
3568 DRM_ERROR("execbuf with wrong flag\n");
3569 return -EINVAL;
3570 }
3571 ring = &dev_priv->bsd_ring;
3572 } else {
3573 ring = &dev_priv->render_ring;
3574 }
3575
3576 if (args->buffer_count < 1) {
3577 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3578 return -EINVAL;
3579 }
3580 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3581 if (object_list == NULL) {
3582 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3583 args->buffer_count);
3584 ret = -ENOMEM;
3585 goto pre_mutex_err;
3586 }
3587
3588 if (args->num_cliprects != 0) {
3589 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3590 GFP_KERNEL);
3591 if (cliprects == NULL) {
3592 ret = -ENOMEM;
3593 goto pre_mutex_err;
3594 }
3595
3596 ret = copy_from_user(cliprects,
3597 (struct drm_clip_rect __user *)
3598 (uintptr_t) args->cliprects_ptr,
3599 sizeof(*cliprects) * args->num_cliprects);
3600 if (ret != 0) {
3601 DRM_ERROR("copy %d cliprects failed: %d\n",
3602 args->num_cliprects, ret);
3603 ret = -EFAULT;
3604 goto pre_mutex_err;
3605 }
3606 }
3607
3608 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3609 &relocs);
3610 if (ret != 0)
3611 goto pre_mutex_err;
3612
3613 mutex_lock(&dev->struct_mutex);
3614
3615 i915_verify_inactive(dev, __FILE__, __LINE__);
3616
3617 if (atomic_read(&dev_priv->mm.wedged)) {
3618 mutex_unlock(&dev->struct_mutex);
3619 ret = -EIO;
3620 goto pre_mutex_err;
3621 }
3622
3623 if (dev_priv->mm.suspended) {
3624 mutex_unlock(&dev->struct_mutex);
3625 ret = -EBUSY;
3626 goto pre_mutex_err;
3627 }
3628
3629 /* Look up object handles */
3630 flips = 0;
3631 for (i = 0; i < args->buffer_count; i++) {
3632 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3633 exec_list[i].handle);
3634 if (object_list[i] == NULL) {
3635 DRM_ERROR("Invalid object handle %d at index %d\n",
3636 exec_list[i].handle, i);
3637 /* prevent error path from reading uninitialized data */
3638 args->buffer_count = i + 1;
3639 ret = -ENOENT;
3640 goto err;
3641 }
3642
3643 obj_priv = to_intel_bo(object_list[i]);
3644 if (obj_priv->in_execbuffer) {
3645 DRM_ERROR("Object %p appears more than once in object list\n",
3646 object_list[i]);
3647 /* prevent error path from reading uninitialized data */
3648 args->buffer_count = i + 1;
3649 ret = -EINVAL;
3650 goto err;
3651 }
3652 obj_priv->in_execbuffer = true;
3653 flips += atomic_read(&obj_priv->pending_flip);
3654 }
3655
3656 if (flips > 0) {
3657 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3658 args->buffer_count);
3659 if (ret)
3660 goto err;
3661 }
3662
3663 /* Pin and relocate */
3664 for (pin_tries = 0; ; pin_tries++) {
3665 ret = 0;
3666 reloc_index = 0;
3667
3668 for (i = 0; i < args->buffer_count; i++) {
3669 object_list[i]->pending_read_domains = 0;
3670 object_list[i]->pending_write_domain = 0;
3671 ret = i915_gem_object_pin_and_relocate(object_list[i],
3672 file_priv,
3673 &exec_list[i],
3674 &relocs[reloc_index]);
3675 if (ret)
3676 break;
3677 pinned = i + 1;
3678 reloc_index += exec_list[i].relocation_count;
3679 }
3680 /* success */
3681 if (ret == 0)
3682 break;
3683
3684 /* error other than GTT full, or we've already tried again */
3685 if (ret != -ENOSPC || pin_tries >= 1) {
3686 if (ret != -ERESTARTSYS) {
3687 unsigned long long total_size = 0;
3688 int num_fences = 0;
3689 for (i = 0; i < args->buffer_count; i++) {
3690 obj_priv = to_intel_bo(object_list[i]);
3691
3692 total_size += object_list[i]->size;
3693 num_fences +=
3694 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3695 obj_priv->tiling_mode != I915_TILING_NONE;
3696 }
3697 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3698 pinned+1, args->buffer_count,
3699 total_size, num_fences,
3700 ret);
3701 DRM_ERROR("%d objects [%d pinned], "
3702 "%d object bytes [%d pinned], "
3703 "%d/%d gtt bytes\n",
3704 atomic_read(&dev->object_count),
3705 atomic_read(&dev->pin_count),
3706 atomic_read(&dev->object_memory),
3707 atomic_read(&dev->pin_memory),
3708 atomic_read(&dev->gtt_memory),
3709 dev->gtt_total);
3710 }
3711 goto err;
3712 }
3713
3714 /* unpin all of our buffers */
3715 for (i = 0; i < pinned; i++)
3716 i915_gem_object_unpin(object_list[i]);
3717 pinned = 0;
3718
3719 /* evict everyone we can from the aperture */
3720 ret = i915_gem_evict_everything(dev);
3721 if (ret && ret != -ENOSPC)
3722 goto err;
3723 }
3724
3725 /* Set the pending read domains for the batch buffer to COMMAND */
3726 batch_obj = object_list[args->buffer_count-1];
3727 if (batch_obj->pending_write_domain) {
3728 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3729 ret = -EINVAL;
3730 goto err;
3731 }
3732 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3733
3734 /* Sanity check the batch buffer, prior to moving objects */
3735 exec_offset = exec_list[args->buffer_count - 1].offset;
3736 ret = i915_gem_check_execbuffer (args, exec_offset);
3737 if (ret != 0) {
3738 DRM_ERROR("execbuf with invalid offset/length\n");
3739 goto err;
3740 }
3741
3742 i915_verify_inactive(dev, __FILE__, __LINE__);
3743
3744 /* Zero the global flush/invalidate flags. These
3745 * will be modified as new domains are computed
3746 * for each object
3747 */
3748 dev->invalidate_domains = 0;
3749 dev->flush_domains = 0;
3750 dev_priv->flush_rings = 0;
3751
3752 for (i = 0; i < args->buffer_count; i++) {
3753 struct drm_gem_object *obj = object_list[i];
3754
3755 /* Compute new gpu domains and update invalidate/flush */
3756 i915_gem_object_set_to_gpu_domain(obj);
3757 }
3758
3759 i915_verify_inactive(dev, __FILE__, __LINE__);
3760
3761 if (dev->invalidate_domains | dev->flush_domains) {
3762 #if WATCH_EXEC
3763 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3764 __func__,
3765 dev->invalidate_domains,
3766 dev->flush_domains);
3767 #endif
3768 i915_gem_flush(dev,
3769 dev->invalidate_domains,
3770 dev->flush_domains);
3771 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
3772 (void)i915_add_request(dev, file_priv,
3773 dev->flush_domains,
3774 &dev_priv->render_ring);
3775 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3776 (void)i915_add_request(dev, file_priv,
3777 dev->flush_domains,
3778 &dev_priv->bsd_ring);
3779 }
3780
3781 for (i = 0; i < args->buffer_count; i++) {
3782 struct drm_gem_object *obj = object_list[i];
3783 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3784 uint32_t old_write_domain = obj->write_domain;
3785
3786 obj->write_domain = obj->pending_write_domain;
3787 if (obj->write_domain)
3788 list_move_tail(&obj_priv->gpu_write_list,
3789 &dev_priv->mm.gpu_write_list);
3790 else
3791 list_del_init(&obj_priv->gpu_write_list);
3792
3793 trace_i915_gem_object_change_domain(obj,
3794 obj->read_domains,
3795 old_write_domain);
3796 }
3797
3798 i915_verify_inactive(dev, __FILE__, __LINE__);
3799
3800 #if WATCH_COHERENCY
3801 for (i = 0; i < args->buffer_count; i++) {
3802 i915_gem_object_check_coherency(object_list[i],
3803 exec_list[i].handle);
3804 }
3805 #endif
3806
3807 #if WATCH_EXEC
3808 i915_gem_dump_object(batch_obj,
3809 args->batch_len,
3810 __func__,
3811 ~0);
3812 #endif
3813
3814 /* Exec the batchbuffer */
3815 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3816 cliprects, exec_offset);
3817 if (ret) {
3818 DRM_ERROR("dispatch failed %d\n", ret);
3819 goto err;
3820 }
3821
3822 /*
3823 * Ensure that the commands in the batch buffer are
3824 * finished before the interrupt fires
3825 */
3826 flush_domains = i915_retire_commands(dev, ring);
3827
3828 i915_verify_inactive(dev, __FILE__, __LINE__);
3829
3830 /*
3831 * Get a seqno representing the execution of the current buffer,
3832 * which we can wait on. We would like to mitigate these interrupts,
3833 * likely by only creating seqnos occasionally (so that we have
3834 * *some* interrupts representing completion of buffers that we can
3835 * wait on when trying to clear up gtt space).
3836 */
3837 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3838 BUG_ON(seqno == 0);
3839 for (i = 0; i < args->buffer_count; i++) {
3840 struct drm_gem_object *obj = object_list[i];
3841 obj_priv = to_intel_bo(obj);
3842
3843 i915_gem_object_move_to_active(obj, seqno, ring);
3844 #if WATCH_LRU
3845 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3846 #endif
3847 }
3848 #if WATCH_LRU
3849 i915_dump_lru(dev, __func__);
3850 #endif
3851
3852 i915_verify_inactive(dev, __FILE__, __LINE__);
3853
3854 err:
3855 for (i = 0; i < pinned; i++)
3856 i915_gem_object_unpin(object_list[i]);
3857
3858 for (i = 0; i < args->buffer_count; i++) {
3859 if (object_list[i]) {
3860 obj_priv = to_intel_bo(object_list[i]);
3861 obj_priv->in_execbuffer = false;
3862 }
3863 drm_gem_object_unreference(object_list[i]);
3864 }
3865
3866 mutex_unlock(&dev->struct_mutex);
3867
3868 pre_mutex_err:
3869 /* Copy the updated relocations out regardless of current error
3870 * state. Failure to update the relocs would mean that the next
3871 * time userland calls execbuf, it would do so with presumed offset
3872 * state that didn't match the actual object state.
3873 */
3874 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3875 relocs);
3876 if (ret2 != 0) {
3877 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3878
3879 if (ret == 0)
3880 ret = ret2;
3881 }
3882
3883 drm_free_large(object_list);
3884 kfree(cliprects);
3885
3886 return ret;
3887 }
3888
3889 /*
3890 * Legacy execbuffer just creates an exec2 list from the original exec object
3891 * list array and passes it to the real function.
3892 */
3893 int
3894 i915_gem_execbuffer(struct drm_device *dev, void *data,
3895 struct drm_file *file_priv)
3896 {
3897 struct drm_i915_gem_execbuffer *args = data;
3898 struct drm_i915_gem_execbuffer2 exec2;
3899 struct drm_i915_gem_exec_object *exec_list = NULL;
3900 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3901 int ret, i;
3902
3903 #if WATCH_EXEC
3904 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3905 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3906 #endif
3907
3908 if (args->buffer_count < 1) {
3909 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3910 return -EINVAL;
3911 }
3912
3913 /* Copy in the exec list from userland */
3914 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3915 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3916 if (exec_list == NULL || exec2_list == NULL) {
3917 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3918 args->buffer_count);
3919 drm_free_large(exec_list);
3920 drm_free_large(exec2_list);
3921 return -ENOMEM;
3922 }
3923 ret = copy_from_user(exec_list,
3924 (struct drm_i915_relocation_entry __user *)
3925 (uintptr_t) args->buffers_ptr,
3926 sizeof(*exec_list) * args->buffer_count);
3927 if (ret != 0) {
3928 DRM_ERROR("copy %d exec entries failed %d\n",
3929 args->buffer_count, ret);
3930 drm_free_large(exec_list);
3931 drm_free_large(exec2_list);
3932 return -EFAULT;
3933 }
3934
3935 for (i = 0; i < args->buffer_count; i++) {
3936 exec2_list[i].handle = exec_list[i].handle;
3937 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3938 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3939 exec2_list[i].alignment = exec_list[i].alignment;
3940 exec2_list[i].offset = exec_list[i].offset;
3941 if (!IS_I965G(dev))
3942 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3943 else
3944 exec2_list[i].flags = 0;
3945 }
3946
3947 exec2.buffers_ptr = args->buffers_ptr;
3948 exec2.buffer_count = args->buffer_count;
3949 exec2.batch_start_offset = args->batch_start_offset;
3950 exec2.batch_len = args->batch_len;
3951 exec2.DR1 = args->DR1;
3952 exec2.DR4 = args->DR4;
3953 exec2.num_cliprects = args->num_cliprects;
3954 exec2.cliprects_ptr = args->cliprects_ptr;
3955 exec2.flags = I915_EXEC_RENDER;
3956
3957 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3958 if (!ret) {
3959 /* Copy the new buffer offsets back to the user's exec list. */
3960 for (i = 0; i < args->buffer_count; i++)
3961 exec_list[i].offset = exec2_list[i].offset;
3962 /* ... and back out to userspace */
3963 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3964 (uintptr_t) args->buffers_ptr,
3965 exec_list,
3966 sizeof(*exec_list) * args->buffer_count);
3967 if (ret) {
3968 ret = -EFAULT;
3969 DRM_ERROR("failed to copy %d exec entries "
3970 "back to user (%d)\n",
3971 args->buffer_count, ret);
3972 }
3973 }
3974
3975 drm_free_large(exec_list);
3976 drm_free_large(exec2_list);
3977 return ret;
3978 }
3979
3980 int
3981 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3982 struct drm_file *file_priv)
3983 {
3984 struct drm_i915_gem_execbuffer2 *args = data;
3985 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3986 int ret;
3987
3988 #if WATCH_EXEC
3989 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3990 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3991 #endif
3992
3993 if (args->buffer_count < 1) {
3994 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3995 return -EINVAL;
3996 }
3997
3998 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3999 if (exec2_list == NULL) {
4000 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4001 args->buffer_count);
4002 return -ENOMEM;
4003 }
4004 ret = copy_from_user(exec2_list,
4005 (struct drm_i915_relocation_entry __user *)
4006 (uintptr_t) args->buffers_ptr,
4007 sizeof(*exec2_list) * args->buffer_count);
4008 if (ret != 0) {
4009 DRM_ERROR("copy %d exec entries failed %d\n",
4010 args->buffer_count, ret);
4011 drm_free_large(exec2_list);
4012 return -EFAULT;
4013 }
4014
4015 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4016 if (!ret) {
4017 /* Copy the new buffer offsets back to the user's exec list. */
4018 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4019 (uintptr_t) args->buffers_ptr,
4020 exec2_list,
4021 sizeof(*exec2_list) * args->buffer_count);
4022 if (ret) {
4023 ret = -EFAULT;
4024 DRM_ERROR("failed to copy %d exec entries "
4025 "back to user (%d)\n",
4026 args->buffer_count, ret);
4027 }
4028 }
4029
4030 drm_free_large(exec2_list);
4031 return ret;
4032 }
4033
4034 int
4035 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4036 {
4037 struct drm_device *dev = obj->dev;
4038 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4039 int ret;
4040
4041 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4042
4043 i915_verify_inactive(dev, __FILE__, __LINE__);
4044
4045 if (obj_priv->gtt_space != NULL) {
4046 if (alignment == 0)
4047 alignment = i915_gem_get_gtt_alignment(obj);
4048 if (obj_priv->gtt_offset & (alignment - 1)) {
4049 WARN(obj_priv->pin_count,
4050 "bo is already pinned with incorrect alignment:"
4051 " offset=%x, req.alignment=%x\n",
4052 obj_priv->gtt_offset, alignment);
4053 ret = i915_gem_object_unbind(obj);
4054 if (ret)
4055 return ret;
4056 }
4057 }
4058
4059 if (obj_priv->gtt_space == NULL) {
4060 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4061 if (ret)
4062 return ret;
4063 }
4064
4065 obj_priv->pin_count++;
4066
4067 /* If the object is not active and not pending a flush,
4068 * remove it from the inactive list
4069 */
4070 if (obj_priv->pin_count == 1) {
4071 atomic_inc(&dev->pin_count);
4072 atomic_add(obj->size, &dev->pin_memory);
4073 if (!obj_priv->active &&
4074 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4075 list_del_init(&obj_priv->list);
4076 }
4077 i915_verify_inactive(dev, __FILE__, __LINE__);
4078
4079 return 0;
4080 }
4081
4082 void
4083 i915_gem_object_unpin(struct drm_gem_object *obj)
4084 {
4085 struct drm_device *dev = obj->dev;
4086 drm_i915_private_t *dev_priv = dev->dev_private;
4087 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4088
4089 i915_verify_inactive(dev, __FILE__, __LINE__);
4090 obj_priv->pin_count--;
4091 BUG_ON(obj_priv->pin_count < 0);
4092 BUG_ON(obj_priv->gtt_space == NULL);
4093
4094 /* If the object is no longer pinned, and is
4095 * neither active nor being flushed, then stick it on
4096 * the inactive list
4097 */
4098 if (obj_priv->pin_count == 0) {
4099 if (!obj_priv->active &&
4100 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4101 list_move_tail(&obj_priv->list,
4102 &dev_priv->mm.inactive_list);
4103 atomic_dec(&dev->pin_count);
4104 atomic_sub(obj->size, &dev->pin_memory);
4105 }
4106 i915_verify_inactive(dev, __FILE__, __LINE__);
4107 }
4108
4109 int
4110 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4111 struct drm_file *file_priv)
4112 {
4113 struct drm_i915_gem_pin *args = data;
4114 struct drm_gem_object *obj;
4115 struct drm_i915_gem_object *obj_priv;
4116 int ret;
4117
4118 mutex_lock(&dev->struct_mutex);
4119
4120 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4121 if (obj == NULL) {
4122 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4123 args->handle);
4124 mutex_unlock(&dev->struct_mutex);
4125 return -ENOENT;
4126 }
4127 obj_priv = to_intel_bo(obj);
4128
4129 if (obj_priv->madv != I915_MADV_WILLNEED) {
4130 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4131 drm_gem_object_unreference(obj);
4132 mutex_unlock(&dev->struct_mutex);
4133 return -EINVAL;
4134 }
4135
4136 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4137 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4138 args->handle);
4139 drm_gem_object_unreference(obj);
4140 mutex_unlock(&dev->struct_mutex);
4141 return -EINVAL;
4142 }
4143
4144 obj_priv->user_pin_count++;
4145 obj_priv->pin_filp = file_priv;
4146 if (obj_priv->user_pin_count == 1) {
4147 ret = i915_gem_object_pin(obj, args->alignment);
4148 if (ret != 0) {
4149 drm_gem_object_unreference(obj);
4150 mutex_unlock(&dev->struct_mutex);
4151 return ret;
4152 }
4153 }
4154
4155 /* XXX - flush the CPU caches for pinned objects
4156 * as the X server doesn't manage domains yet
4157 */
4158 i915_gem_object_flush_cpu_write_domain(obj);
4159 args->offset = obj_priv->gtt_offset;
4160 drm_gem_object_unreference(obj);
4161 mutex_unlock(&dev->struct_mutex);
4162
4163 return 0;
4164 }
4165
4166 int
4167 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4168 struct drm_file *file_priv)
4169 {
4170 struct drm_i915_gem_pin *args = data;
4171 struct drm_gem_object *obj;
4172 struct drm_i915_gem_object *obj_priv;
4173
4174 mutex_lock(&dev->struct_mutex);
4175
4176 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4177 if (obj == NULL) {
4178 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4179 args->handle);
4180 mutex_unlock(&dev->struct_mutex);
4181 return -ENOENT;
4182 }
4183
4184 obj_priv = to_intel_bo(obj);
4185 if (obj_priv->pin_filp != file_priv) {
4186 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4187 args->handle);
4188 drm_gem_object_unreference(obj);
4189 mutex_unlock(&dev->struct_mutex);
4190 return -EINVAL;
4191 }
4192 obj_priv->user_pin_count--;
4193 if (obj_priv->user_pin_count == 0) {
4194 obj_priv->pin_filp = NULL;
4195 i915_gem_object_unpin(obj);
4196 }
4197
4198 drm_gem_object_unreference(obj);
4199 mutex_unlock(&dev->struct_mutex);
4200 return 0;
4201 }
4202
4203 int
4204 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4205 struct drm_file *file_priv)
4206 {
4207 struct drm_i915_gem_busy *args = data;
4208 struct drm_gem_object *obj;
4209 struct drm_i915_gem_object *obj_priv;
4210
4211 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4212 if (obj == NULL) {
4213 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4214 args->handle);
4215 return -ENOENT;
4216 }
4217
4218 mutex_lock(&dev->struct_mutex);
4219
4220 /* Count all active objects as busy, even if they are currently not used
4221 * by the gpu. Users of this interface expect objects to eventually
4222 * become non-busy without any further actions, therefore emit any
4223 * necessary flushes here.
4224 */
4225 obj_priv = to_intel_bo(obj);
4226 args->busy = obj_priv->active;
4227 if (args->busy) {
4228 /* Unconditionally flush objects, even when the gpu still uses this
4229 * object. Userspace calling this function indicates that it wants to
4230 * use this buffer rather sooner than later, so issuing the required
4231 * flush earlier is beneficial.
4232 */
4233 if (obj->write_domain) {
4234 i915_gem_flush(dev, 0, obj->write_domain);
4235 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4236 }
4237
4238 /* Update the active list for the hardware's current position.
4239 * Otherwise this only updates on a delayed timer or when irqs
4240 * are actually unmasked, and our working set ends up being
4241 * larger than required.
4242 */
4243 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4244
4245 args->busy = obj_priv->active;
4246 }
4247
4248 drm_gem_object_unreference(obj);
4249 mutex_unlock(&dev->struct_mutex);
4250 return 0;
4251 }
4252
4253 int
4254 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4255 struct drm_file *file_priv)
4256 {
4257 return i915_gem_ring_throttle(dev, file_priv);
4258 }
4259
4260 int
4261 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4262 struct drm_file *file_priv)
4263 {
4264 struct drm_i915_gem_madvise *args = data;
4265 struct drm_gem_object *obj;
4266 struct drm_i915_gem_object *obj_priv;
4267
4268 switch (args->madv) {
4269 case I915_MADV_DONTNEED:
4270 case I915_MADV_WILLNEED:
4271 break;
4272 default:
4273 return -EINVAL;
4274 }
4275
4276 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4277 if (obj == NULL) {
4278 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4279 args->handle);
4280 return -ENOENT;
4281 }
4282
4283 mutex_lock(&dev->struct_mutex);
4284 obj_priv = to_intel_bo(obj);
4285
4286 if (obj_priv->pin_count) {
4287 drm_gem_object_unreference(obj);
4288 mutex_unlock(&dev->struct_mutex);
4289
4290 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4291 return -EINVAL;
4292 }
4293
4294 if (obj_priv->madv != __I915_MADV_PURGED)
4295 obj_priv->madv = args->madv;
4296
4297 /* if the object is no longer bound, discard its backing storage */
4298 if (i915_gem_object_is_purgeable(obj_priv) &&
4299 obj_priv->gtt_space == NULL)
4300 i915_gem_object_truncate(obj);
4301
4302 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4303
4304 drm_gem_object_unreference(obj);
4305 mutex_unlock(&dev->struct_mutex);
4306
4307 return 0;
4308 }
4309
4310 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4311 size_t size)
4312 {
4313 struct drm_i915_gem_object *obj;
4314
4315 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4316 if (obj == NULL)
4317 return NULL;
4318
4319 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4320 kfree(obj);
4321 return NULL;
4322 }
4323
4324 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4325 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4326
4327 obj->agp_type = AGP_USER_MEMORY;
4328 obj->base.driver_private = NULL;
4329 obj->fence_reg = I915_FENCE_REG_NONE;
4330 INIT_LIST_HEAD(&obj->list);
4331 INIT_LIST_HEAD(&obj->gpu_write_list);
4332 obj->madv = I915_MADV_WILLNEED;
4333
4334 trace_i915_gem_object_create(&obj->base);
4335
4336 return &obj->base;
4337 }
4338
4339 int i915_gem_init_object(struct drm_gem_object *obj)
4340 {
4341 BUG();
4342
4343 return 0;
4344 }
4345
4346 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4347 {
4348 struct drm_device *dev = obj->dev;
4349 drm_i915_private_t *dev_priv = dev->dev_private;
4350 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4351 int ret;
4352
4353 ret = i915_gem_object_unbind(obj);
4354 if (ret == -ERESTARTSYS) {
4355 list_move(&obj_priv->list,
4356 &dev_priv->mm.deferred_free_list);
4357 return;
4358 }
4359
4360 if (obj_priv->mmap_offset)
4361 i915_gem_free_mmap_offset(obj);
4362
4363 drm_gem_object_release(obj);
4364
4365 kfree(obj_priv->page_cpu_valid);
4366 kfree(obj_priv->bit_17);
4367 kfree(obj_priv);
4368 }
4369
4370 void i915_gem_free_object(struct drm_gem_object *obj)
4371 {
4372 struct drm_device *dev = obj->dev;
4373 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4374
4375 trace_i915_gem_object_destroy(obj);
4376
4377 while (obj_priv->pin_count > 0)
4378 i915_gem_object_unpin(obj);
4379
4380 if (obj_priv->phys_obj)
4381 i915_gem_detach_phys_object(dev, obj);
4382
4383 i915_gem_free_object_tail(obj);
4384 }
4385
4386 int
4387 i915_gem_idle(struct drm_device *dev)
4388 {
4389 drm_i915_private_t *dev_priv = dev->dev_private;
4390 int ret;
4391
4392 mutex_lock(&dev->struct_mutex);
4393
4394 if (dev_priv->mm.suspended ||
4395 (dev_priv->render_ring.gem_object == NULL) ||
4396 (HAS_BSD(dev) &&
4397 dev_priv->bsd_ring.gem_object == NULL)) {
4398 mutex_unlock(&dev->struct_mutex);
4399 return 0;
4400 }
4401
4402 ret = i915_gpu_idle(dev);
4403 if (ret) {
4404 mutex_unlock(&dev->struct_mutex);
4405 return ret;
4406 }
4407
4408 /* Under UMS, be paranoid and evict. */
4409 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4410 ret = i915_gem_evict_inactive(dev);
4411 if (ret) {
4412 mutex_unlock(&dev->struct_mutex);
4413 return ret;
4414 }
4415 }
4416
4417 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4418 * We need to replace this with a semaphore, or something.
4419 * And not confound mm.suspended!
4420 */
4421 dev_priv->mm.suspended = 1;
4422 del_timer(&dev_priv->hangcheck_timer);
4423
4424 i915_kernel_lost_context(dev);
4425 i915_gem_cleanup_ringbuffer(dev);
4426
4427 mutex_unlock(&dev->struct_mutex);
4428
4429 /* Cancel the retire work handler, which should be idle now. */
4430 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4431
4432 return 0;
4433 }
4434
4435 /*
4436 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4437 * over cache flushing.
4438 */
4439 static int
4440 i915_gem_init_pipe_control(struct drm_device *dev)
4441 {
4442 drm_i915_private_t *dev_priv = dev->dev_private;
4443 struct drm_gem_object *obj;
4444 struct drm_i915_gem_object *obj_priv;
4445 int ret;
4446
4447 obj = i915_gem_alloc_object(dev, 4096);
4448 if (obj == NULL) {
4449 DRM_ERROR("Failed to allocate seqno page\n");
4450 ret = -ENOMEM;
4451 goto err;
4452 }
4453 obj_priv = to_intel_bo(obj);
4454 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4455
4456 ret = i915_gem_object_pin(obj, 4096);
4457 if (ret)
4458 goto err_unref;
4459
4460 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4461 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4462 if (dev_priv->seqno_page == NULL)
4463 goto err_unpin;
4464
4465 dev_priv->seqno_obj = obj;
4466 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4467
4468 return 0;
4469
4470 err_unpin:
4471 i915_gem_object_unpin(obj);
4472 err_unref:
4473 drm_gem_object_unreference(obj);
4474 err:
4475 return ret;
4476 }
4477
4478
4479 static void
4480 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4481 {
4482 drm_i915_private_t *dev_priv = dev->dev_private;
4483 struct drm_gem_object *obj;
4484 struct drm_i915_gem_object *obj_priv;
4485
4486 obj = dev_priv->seqno_obj;
4487 obj_priv = to_intel_bo(obj);
4488 kunmap(obj_priv->pages[0]);
4489 i915_gem_object_unpin(obj);
4490 drm_gem_object_unreference(obj);
4491 dev_priv->seqno_obj = NULL;
4492
4493 dev_priv->seqno_page = NULL;
4494 }
4495
4496 int
4497 i915_gem_init_ringbuffer(struct drm_device *dev)
4498 {
4499 drm_i915_private_t *dev_priv = dev->dev_private;
4500 int ret;
4501
4502 dev_priv->render_ring = render_ring;
4503
4504 if (!I915_NEED_GFX_HWS(dev)) {
4505 dev_priv->render_ring.status_page.page_addr
4506 = dev_priv->status_page_dmah->vaddr;
4507 memset(dev_priv->render_ring.status_page.page_addr,
4508 0, PAGE_SIZE);
4509 }
4510
4511 if (HAS_PIPE_CONTROL(dev)) {
4512 ret = i915_gem_init_pipe_control(dev);
4513 if (ret)
4514 return ret;
4515 }
4516
4517 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4518 if (ret)
4519 goto cleanup_pipe_control;
4520
4521 if (HAS_BSD(dev)) {
4522 dev_priv->bsd_ring = bsd_ring;
4523 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4524 if (ret)
4525 goto cleanup_render_ring;
4526 }
4527
4528 dev_priv->next_seqno = 1;
4529
4530 return 0;
4531
4532 cleanup_render_ring:
4533 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4534 cleanup_pipe_control:
4535 if (HAS_PIPE_CONTROL(dev))
4536 i915_gem_cleanup_pipe_control(dev);
4537 return ret;
4538 }
4539
4540 void
4541 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4542 {
4543 drm_i915_private_t *dev_priv = dev->dev_private;
4544
4545 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4546 if (HAS_BSD(dev))
4547 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4548 if (HAS_PIPE_CONTROL(dev))
4549 i915_gem_cleanup_pipe_control(dev);
4550 }
4551
4552 int
4553 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4554 struct drm_file *file_priv)
4555 {
4556 drm_i915_private_t *dev_priv = dev->dev_private;
4557 int ret;
4558
4559 if (drm_core_check_feature(dev, DRIVER_MODESET))
4560 return 0;
4561
4562 if (atomic_read(&dev_priv->mm.wedged)) {
4563 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4564 atomic_set(&dev_priv->mm.wedged, 0);
4565 }
4566
4567 mutex_lock(&dev->struct_mutex);
4568 dev_priv->mm.suspended = 0;
4569
4570 ret = i915_gem_init_ringbuffer(dev);
4571 if (ret != 0) {
4572 mutex_unlock(&dev->struct_mutex);
4573 return ret;
4574 }
4575
4576 spin_lock(&dev_priv->mm.active_list_lock);
4577 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4578 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4579 spin_unlock(&dev_priv->mm.active_list_lock);
4580
4581 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4582 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4583 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4584 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4585 mutex_unlock(&dev->struct_mutex);
4586
4587 ret = drm_irq_install(dev);
4588 if (ret)
4589 goto cleanup_ringbuffer;
4590
4591 return 0;
4592
4593 cleanup_ringbuffer:
4594 mutex_lock(&dev->struct_mutex);
4595 i915_gem_cleanup_ringbuffer(dev);
4596 dev_priv->mm.suspended = 1;
4597 mutex_unlock(&dev->struct_mutex);
4598
4599 return ret;
4600 }
4601
4602 int
4603 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4604 struct drm_file *file_priv)
4605 {
4606 if (drm_core_check_feature(dev, DRIVER_MODESET))
4607 return 0;
4608
4609 drm_irq_uninstall(dev);
4610 return i915_gem_idle(dev);
4611 }
4612
4613 void
4614 i915_gem_lastclose(struct drm_device *dev)
4615 {
4616 int ret;
4617
4618 if (drm_core_check_feature(dev, DRIVER_MODESET))
4619 return;
4620
4621 ret = i915_gem_idle(dev);
4622 if (ret)
4623 DRM_ERROR("failed to idle hardware: %d\n", ret);
4624 }
4625
4626 void
4627 i915_gem_load(struct drm_device *dev)
4628 {
4629 int i;
4630 drm_i915_private_t *dev_priv = dev->dev_private;
4631
4632 spin_lock_init(&dev_priv->mm.active_list_lock);
4633 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4634 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4635 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4636 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4637 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4638 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4639 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4640 if (HAS_BSD(dev)) {
4641 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4642 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4643 }
4644 for (i = 0; i < 16; i++)
4645 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4646 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4647 i915_gem_retire_work_handler);
4648 spin_lock(&shrink_list_lock);
4649 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4650 spin_unlock(&shrink_list_lock);
4651
4652 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4653 if (IS_GEN3(dev)) {
4654 u32 tmp = I915_READ(MI_ARB_STATE);
4655 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4656 /* arb state is a masked write, so set bit + bit in mask */
4657 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4658 I915_WRITE(MI_ARB_STATE, tmp);
4659 }
4660 }
4661
4662 /* Old X drivers will take 0-2 for front, back, depth buffers */
4663 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4664 dev_priv->fence_reg_start = 3;
4665
4666 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4667 dev_priv->num_fence_regs = 16;
4668 else
4669 dev_priv->num_fence_regs = 8;
4670
4671 /* Initialize fence registers to zero */
4672 if (IS_I965G(dev)) {
4673 for (i = 0; i < 16; i++)
4674 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4675 } else {
4676 for (i = 0; i < 8; i++)
4677 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4678 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4679 for (i = 0; i < 8; i++)
4680 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4681 }
4682 i915_gem_detect_bit_6_swizzle(dev);
4683 init_waitqueue_head(&dev_priv->pending_flip_queue);
4684 }
4685
4686 /*
4687 * Create a physically contiguous memory object for this object
4688 * e.g. for cursor + overlay regs
4689 */
4690 int i915_gem_init_phys_object(struct drm_device *dev,
4691 int id, int size, int align)
4692 {
4693 drm_i915_private_t *dev_priv = dev->dev_private;
4694 struct drm_i915_gem_phys_object *phys_obj;
4695 int ret;
4696
4697 if (dev_priv->mm.phys_objs[id - 1] || !size)
4698 return 0;
4699
4700 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4701 if (!phys_obj)
4702 return -ENOMEM;
4703
4704 phys_obj->id = id;
4705
4706 phys_obj->handle = drm_pci_alloc(dev, size, align);
4707 if (!phys_obj->handle) {
4708 ret = -ENOMEM;
4709 goto kfree_obj;
4710 }
4711 #ifdef CONFIG_X86
4712 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4713 #endif
4714
4715 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4716
4717 return 0;
4718 kfree_obj:
4719 kfree(phys_obj);
4720 return ret;
4721 }
4722
4723 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4724 {
4725 drm_i915_private_t *dev_priv = dev->dev_private;
4726 struct drm_i915_gem_phys_object *phys_obj;
4727
4728 if (!dev_priv->mm.phys_objs[id - 1])
4729 return;
4730
4731 phys_obj = dev_priv->mm.phys_objs[id - 1];
4732 if (phys_obj->cur_obj) {
4733 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4734 }
4735
4736 #ifdef CONFIG_X86
4737 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4738 #endif
4739 drm_pci_free(dev, phys_obj->handle);
4740 kfree(phys_obj);
4741 dev_priv->mm.phys_objs[id - 1] = NULL;
4742 }
4743
4744 void i915_gem_free_all_phys_object(struct drm_device *dev)
4745 {
4746 int i;
4747
4748 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4749 i915_gem_free_phys_object(dev, i);
4750 }
4751
4752 void i915_gem_detach_phys_object(struct drm_device *dev,
4753 struct drm_gem_object *obj)
4754 {
4755 struct drm_i915_gem_object *obj_priv;
4756 int i;
4757 int ret;
4758 int page_count;
4759
4760 obj_priv = to_intel_bo(obj);
4761 if (!obj_priv->phys_obj)
4762 return;
4763
4764 ret = i915_gem_object_get_pages(obj, 0);
4765 if (ret)
4766 goto out;
4767
4768 page_count = obj->size / PAGE_SIZE;
4769
4770 for (i = 0; i < page_count; i++) {
4771 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4772 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4773
4774 memcpy(dst, src, PAGE_SIZE);
4775 kunmap_atomic(dst, KM_USER0);
4776 }
4777 drm_clflush_pages(obj_priv->pages, page_count);
4778 drm_agp_chipset_flush(dev);
4779
4780 i915_gem_object_put_pages(obj);
4781 out:
4782 obj_priv->phys_obj->cur_obj = NULL;
4783 obj_priv->phys_obj = NULL;
4784 }
4785
4786 int
4787 i915_gem_attach_phys_object(struct drm_device *dev,
4788 struct drm_gem_object *obj,
4789 int id,
4790 int align)
4791 {
4792 drm_i915_private_t *dev_priv = dev->dev_private;
4793 struct drm_i915_gem_object *obj_priv;
4794 int ret = 0;
4795 int page_count;
4796 int i;
4797
4798 if (id > I915_MAX_PHYS_OBJECT)
4799 return -EINVAL;
4800
4801 obj_priv = to_intel_bo(obj);
4802
4803 if (obj_priv->phys_obj) {
4804 if (obj_priv->phys_obj->id == id)
4805 return 0;
4806 i915_gem_detach_phys_object(dev, obj);
4807 }
4808
4809 /* create a new object */
4810 if (!dev_priv->mm.phys_objs[id - 1]) {
4811 ret = i915_gem_init_phys_object(dev, id,
4812 obj->size, align);
4813 if (ret) {
4814 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4815 goto out;
4816 }
4817 }
4818
4819 /* bind to the object */
4820 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4821 obj_priv->phys_obj->cur_obj = obj;
4822
4823 ret = i915_gem_object_get_pages(obj, 0);
4824 if (ret) {
4825 DRM_ERROR("failed to get page list\n");
4826 goto out;
4827 }
4828
4829 page_count = obj->size / PAGE_SIZE;
4830
4831 for (i = 0; i < page_count; i++) {
4832 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4833 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4834
4835 memcpy(dst, src, PAGE_SIZE);
4836 kunmap_atomic(src, KM_USER0);
4837 }
4838
4839 i915_gem_object_put_pages(obj);
4840
4841 return 0;
4842 out:
4843 return ret;
4844 }
4845
4846 static int
4847 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4848 struct drm_i915_gem_pwrite *args,
4849 struct drm_file *file_priv)
4850 {
4851 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4852 void *obj_addr;
4853 int ret;
4854 char __user *user_data;
4855
4856 user_data = (char __user *) (uintptr_t) args->data_ptr;
4857 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4858
4859 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4860 ret = copy_from_user(obj_addr, user_data, args->size);
4861 if (ret)
4862 return -EFAULT;
4863
4864 drm_agp_chipset_flush(dev);
4865 return 0;
4866 }
4867
4868 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4869 {
4870 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4871
4872 /* Clean up our request list when the client is going away, so that
4873 * later retire_requests won't dereference our soon-to-be-gone
4874 * file_priv.
4875 */
4876 mutex_lock(&dev->struct_mutex);
4877 while (!list_empty(&i915_file_priv->mm.request_list))
4878 list_del_init(i915_file_priv->mm.request_list.next);
4879 mutex_unlock(&dev->struct_mutex);
4880 }
4881
4882 static int
4883 i915_gpu_is_active(struct drm_device *dev)
4884 {
4885 drm_i915_private_t *dev_priv = dev->dev_private;
4886 int lists_empty;
4887
4888 spin_lock(&dev_priv->mm.active_list_lock);
4889 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4890 list_empty(&dev_priv->render_ring.active_list);
4891 if (HAS_BSD(dev))
4892 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4893 spin_unlock(&dev_priv->mm.active_list_lock);
4894
4895 return !lists_empty;
4896 }
4897
4898 static int
4899 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4900 {
4901 drm_i915_private_t *dev_priv, *next_dev;
4902 struct drm_i915_gem_object *obj_priv, *next_obj;
4903 int cnt = 0;
4904 int would_deadlock = 1;
4905
4906 /* "fast-path" to count number of available objects */
4907 if (nr_to_scan == 0) {
4908 spin_lock(&shrink_list_lock);
4909 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4910 struct drm_device *dev = dev_priv->dev;
4911
4912 if (mutex_trylock(&dev->struct_mutex)) {
4913 list_for_each_entry(obj_priv,
4914 &dev_priv->mm.inactive_list,
4915 list)
4916 cnt++;
4917 mutex_unlock(&dev->struct_mutex);
4918 }
4919 }
4920 spin_unlock(&shrink_list_lock);
4921
4922 return (cnt / 100) * sysctl_vfs_cache_pressure;
4923 }
4924
4925 spin_lock(&shrink_list_lock);
4926
4927 rescan:
4928 /* first scan for clean buffers */
4929 list_for_each_entry_safe(dev_priv, next_dev,
4930 &shrink_list, mm.shrink_list) {
4931 struct drm_device *dev = dev_priv->dev;
4932
4933 if (! mutex_trylock(&dev->struct_mutex))
4934 continue;
4935
4936 spin_unlock(&shrink_list_lock);
4937 i915_gem_retire_requests(dev);
4938
4939 list_for_each_entry_safe(obj_priv, next_obj,
4940 &dev_priv->mm.inactive_list,
4941 list) {
4942 if (i915_gem_object_is_purgeable(obj_priv)) {
4943 i915_gem_object_unbind(&obj_priv->base);
4944 if (--nr_to_scan <= 0)
4945 break;
4946 }
4947 }
4948
4949 spin_lock(&shrink_list_lock);
4950 mutex_unlock(&dev->struct_mutex);
4951
4952 would_deadlock = 0;
4953
4954 if (nr_to_scan <= 0)
4955 break;
4956 }
4957
4958 /* second pass, evict/count anything still on the inactive list */
4959 list_for_each_entry_safe(dev_priv, next_dev,
4960 &shrink_list, mm.shrink_list) {
4961 struct drm_device *dev = dev_priv->dev;
4962
4963 if (! mutex_trylock(&dev->struct_mutex))
4964 continue;
4965
4966 spin_unlock(&shrink_list_lock);
4967
4968 list_for_each_entry_safe(obj_priv, next_obj,
4969 &dev_priv->mm.inactive_list,
4970 list) {
4971 if (nr_to_scan > 0) {
4972 i915_gem_object_unbind(&obj_priv->base);
4973 nr_to_scan--;
4974 } else
4975 cnt++;
4976 }
4977
4978 spin_lock(&shrink_list_lock);
4979 mutex_unlock(&dev->struct_mutex);
4980
4981 would_deadlock = 0;
4982 }
4983
4984 if (nr_to_scan) {
4985 int active = 0;
4986
4987 /*
4988 * We are desperate for pages, so as a last resort, wait
4989 * for the GPU to finish and discard whatever we can.
4990 * This has a dramatic impact to reduce the number of
4991 * OOM-killer events whilst running the GPU aggressively.
4992 */
4993 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4994 struct drm_device *dev = dev_priv->dev;
4995
4996 if (!mutex_trylock(&dev->struct_mutex))
4997 continue;
4998
4999 spin_unlock(&shrink_list_lock);
5000
5001 if (i915_gpu_is_active(dev)) {
5002 i915_gpu_idle(dev);
5003 active++;
5004 }
5005
5006 spin_lock(&shrink_list_lock);
5007 mutex_unlock(&dev->struct_mutex);
5008 }
5009
5010 if (active)
5011 goto rescan;
5012 }
5013
5014 spin_unlock(&shrink_list_lock);
5015
5016 if (would_deadlock)
5017 return -1;
5018 else if (cnt > 0)
5019 return (cnt / 100) * sysctl_vfs_cache_pressure;
5020 else
5021 return 0;
5022 }
5023
5024 static struct shrinker shrinker = {
5025 .shrink = i915_gem_shrink,
5026 .seeks = DEFAULT_SEEKS,
5027 };
5028
5029 __init void
5030 i915_gem_shrinker_init(void)
5031 {
5032 register_shrinker(&shrinker);
5033 }
5034
5035 __exit void
5036 i915_gem_shrinker_exit(void)
5037 {
5038 unregister_shrinker(&shrinker);
5039 }
This page took 0.14836 seconds and 5 git commands to generate.