Merge branch 'for-3.7' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
200 {
201 struct drm_i915_gem_object *obj;
202 int ret;
203 u32 handle;
204
205 size = roundup(size, PAGE_SIZE);
206 if (size == 0)
207 return -EINVAL;
208
209 /* Allocate the new object */
210 obj = i915_gem_alloc_object(dev, size);
211 if (obj == NULL)
212 return -ENOMEM;
213
214 ret = drm_gem_handle_create(file, &obj->base, &handle);
215 if (ret) {
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 kfree(obj);
219 return ret;
220 }
221
222 /* drop reference from allocate - handle holds it now */
223 drm_gem_object_unreference(&obj->base);
224 trace_i915_gem_object_create(obj);
225
226 *handle_p = handle;
227 return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234 {
235 /* have to work out size/pitch and return them */
236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245 {
246 return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250 * Creates a new mm object and returns a handle to it.
251 */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255 {
256 struct drm_i915_gem_create *args = data;
257
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 struct scatterlist *sg;
414 int i;
415
416 user_data = (char __user *) (uintptr_t) args->data_ptr;
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 struct page *page;
445
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
452 /* Operation in this page
453 *
454 * shmem_page_offset = offset within page in shmem file
455 * page_length = bytes to copy for this page
456 */
457 shmem_page_offset = offset_in_page(offset);
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
461
462 page = sg_page(sg);
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
471
472 hit_slowpath = 1;
473 mutex_unlock(&dev->struct_mutex);
474
475 if (!prefaulted) {
476 ret = fault_in_multipages_writeable(user_data, remain);
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
484
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
488
489 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492 mark_page_accessed(page);
493
494 if (ret)
495 goto out;
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 i915_gem_object_unpin_pages(obj);
504
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
510
511 return ret;
512 }
513
514 /**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 struct drm_file *file)
522 {
523 struct drm_i915_gem_pread *args = data;
524 struct drm_i915_gem_object *obj;
525 int ret = 0;
526
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
535 ret = i915_mutex_lock_interruptible(dev);
536 if (ret)
537 return ret;
538
539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 if (&obj->base == NULL) {
541 ret = -ENOENT;
542 goto unlock;
543 }
544
545 /* Bounds check source. */
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
548 ret = -EINVAL;
549 goto out;
550 }
551
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562 ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 void __iomem *vaddr_atomic;
582 void *vaddr;
583 unsigned long unwritten;
584
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 user_data, length);
590 io_mapping_unmap_atomic(vaddr_atomic);
591 return unwritten;
592 }
593
594 /**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
601 struct drm_i915_gem_pwrite *args,
602 struct drm_file *file)
603 {
604 drm_i915_private_t *dev_priv = dev->dev_private;
605 ssize_t remain;
606 loff_t offset, page_base;
607 char __user *user_data;
608 int page_offset, page_length, ret;
609
610 ret = i915_gem_object_pin(obj, 0, true, true);
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
624
625 offset = obj->gtt_offset + args->offset;
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
633 */
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
640 /* If we get a fault while copying data, then (presumably) our
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
643 */
644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
649
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
653 }
654
655 out_unpin:
656 i915_gem_object_unpin(obj);
657 out:
658 return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
671 {
672 char *vaddr;
673 int ret;
674
675 if (unlikely(page_do_bit17_swizzling))
676 return -EINVAL;
677
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
689
690 return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
701 {
702 char *vaddr;
703 int ret;
704
705 vaddr = kmap(page);
706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 user_data,
713 page_length);
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
722 kunmap(page);
723
724 return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
732 {
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int i;
742 struct scatterlist *sg;
743
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
746
747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
774 offset = args->offset;
775 obj->dirty = 1;
776
777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 struct page *page;
779 int partial_cacheline_write;
780
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
787 /* Operation in this page
788 *
789 * shmem_page_offset = offset within page in shmem file
790 * page_length = bytes to copy for this page
791 */
792 shmem_page_offset = offset_in_page(offset);
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
797
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
805 page = sg_page(sg);
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
815
816 hit_slowpath = 1;
817 mutex_unlock(&dev->struct_mutex);
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
822
823 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826 set_page_dirty(page);
827 mark_page_accessed(page);
828
829 if (ret)
830 goto out;
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out:
838 i915_gem_object_unpin_pages(obj);
839
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
850 }
851
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
930 }
931
932 if (ret == -EFAULT || ret == -ENOSPC)
933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936 drm_gem_object_unreference(&obj->base);
937 unlock:
938 mutex_unlock(&dev->struct_mutex);
939 return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945 {
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969 }
970
971 /*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987 }
988
989 /**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001 {
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068 }
1069
1070 /**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103 {
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136 {
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
1179 */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file)
1183 {
1184 struct drm_i915_gem_set_domain *args = data;
1185 struct drm_i915_gem_object *obj;
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
1188 int ret;
1189
1190 /* Only handle setting domains to types used by the CPU. */
1191 if (write_domain & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 if (read_domains & I915_GEM_GPU_DOMAINS)
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 return ret;
1206
1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 if (&obj->base == NULL) {
1209 ret = -ENOENT;
1210 goto unlock;
1211 }
1212
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
1230 } else {
1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 }
1233
1234 unref:
1235 drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239 }
1240
1241 /**
1242 * Called when user space has done writes to this buffer
1243 */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 struct drm_file *file)
1247 {
1248 struct drm_i915_gem_sw_finish *args = data;
1249 struct drm_i915_gem_object *obj;
1250 int ret = 0;
1251
1252 ret = i915_mutex_lock_interruptible(dev);
1253 if (ret)
1254 return ret;
1255
1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 if (&obj->base == NULL) {
1258 ret = -ENOENT;
1259 goto unlock;
1260 }
1261
1262 /* Pinned buffers may be scanout, so flush the cache */
1263 if (obj->pin_count)
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266 drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270 }
1271
1272 /**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 struct drm_file *file)
1282 {
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
1285 unsigned long addr;
1286
1287 obj = drm_gem_object_lookup(dev, file, args->handle);
1288 if (obj == NULL)
1289 return -ENOENT;
1290
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
1299 addr = vm_mmap(obj->filp, 0, args->size,
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
1302 drm_gem_object_unreference_unlocked(obj);
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
1331 drm_i915_private_t *dev_priv = dev->dev_private;
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
1344
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347 /* Now bind it into the GTT if needed */
1348 if (!obj->map_and_fenceable) {
1349 ret = i915_gem_object_unbind(obj);
1350 if (ret)
1351 goto unlock;
1352 }
1353 if (!obj->gtt_space) {
1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355 if (ret)
1356 goto unlock;
1357
1358 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 if (ret)
1360 goto unlock;
1361 }
1362
1363 if (!obj->has_global_gtt_mapping)
1364 i915_gem_gtt_bind_object(obj, obj->cache_level);
1365
1366 ret = i915_gem_object_get_fence(obj);
1367 if (ret)
1368 goto unlock;
1369
1370 if (i915_gem_object_is_inactive(obj))
1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372
1373 obj->fault_mappable = true;
1374
1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376 page_offset;
1377
1378 /* Finally, remap it using the new GTT offset */
1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381 mutex_unlock(&dev->struct_mutex);
1382 out:
1383 switch (ret) {
1384 case -EIO:
1385 /* If this -EIO is due to a gpu hang, give the reset code a
1386 * chance to clean up the mess. Otherwise return the proper
1387 * SIGBUS. */
1388 if (!atomic_read(&dev_priv->mm.wedged))
1389 return VM_FAULT_SIGBUS;
1390 case -EAGAIN:
1391 /* Give the error handler a chance to run and move the
1392 * objects off the GPU active list. Next time we service the
1393 * fault, we should be able to transition the page into the
1394 * GTT without touching the GPU (and so avoid further
1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 * with coherency, just lost writes.
1397 */
1398 set_need_resched();
1399 case 0:
1400 case -ERESTARTSYS:
1401 case -EINTR:
1402 case -EBUSY:
1403 /*
1404 * EBUSY is ok: this just means that another thread
1405 * already did the job.
1406 */
1407 return VM_FAULT_NOPAGE;
1408 case -ENOMEM:
1409 return VM_FAULT_OOM;
1410 default:
1411 WARN_ON_ONCE(ret);
1412 return VM_FAULT_SIGBUS;
1413 }
1414 }
1415
1416 /**
1417 * i915_gem_release_mmap - remove physical page mappings
1418 * @obj: obj in question
1419 *
1420 * Preserve the reservation of the mmapping with the DRM core code, but
1421 * relinquish ownership of the pages back to the system.
1422 *
1423 * It is vital that we remove the page mapping if we have mapped a tiled
1424 * object through the GTT and then lose the fence register due to
1425 * resource pressure. Similarly if the object has been moved out of the
1426 * aperture, than pages mapped into userspace must be revoked. Removing the
1427 * mapping will then trigger a page fault on the next user access, allowing
1428 * fixup by i915_gem_fault().
1429 */
1430 void
1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432 {
1433 if (!obj->fault_mappable)
1434 return;
1435
1436 if (obj->base.dev->dev_mapping)
1437 unmap_mapping_range(obj->base.dev->dev_mapping,
1438 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439 obj->base.size, 1);
1440
1441 obj->fault_mappable = false;
1442 }
1443
1444 static uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447 uint32_t gtt_size;
1448
1449 if (INTEL_INFO(dev)->gen >= 4 ||
1450 tiling_mode == I915_TILING_NONE)
1451 return size;
1452
1453 /* Previous chips need a power-of-two fence region when tiling */
1454 if (INTEL_INFO(dev)->gen == 3)
1455 gtt_size = 1024*1024;
1456 else
1457 gtt_size = 512*1024;
1458
1459 while (gtt_size < size)
1460 gtt_size <<= 1;
1461
1462 return gtt_size;
1463 }
1464
1465 /**
1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467 * @obj: object to check
1468 *
1469 * Return the required GTT alignment for an object, taking into account
1470 * potential fence register mapping.
1471 */
1472 static uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev,
1474 uint32_t size,
1475 int tiling_mode)
1476 {
1477 /*
1478 * Minimum alignment is 4k (GTT page size), but might be greater
1479 * if a fence register is needed for the object.
1480 */
1481 if (INTEL_INFO(dev)->gen >= 4 ||
1482 tiling_mode == I915_TILING_NONE)
1483 return 4096;
1484
1485 /*
1486 * Previous chips need to be aligned to the size of the smallest
1487 * fence register that can contain the object.
1488 */
1489 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 }
1491
1492 /**
1493 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494 * unfenced object
1495 * @dev: the device
1496 * @size: size of the object
1497 * @tiling_mode: tiling mode of the object
1498 *
1499 * Return the required GTT alignment for an object, only taking into account
1500 * unfenced tiled surface requirements.
1501 */
1502 uint32_t
1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504 uint32_t size,
1505 int tiling_mode)
1506 {
1507 /*
1508 * Minimum alignment is 4k (GTT page size) for sane hw.
1509 */
1510 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511 tiling_mode == I915_TILING_NONE)
1512 return 4096;
1513
1514 /* Previous hardware however needs to be aligned to a power-of-two
1515 * tile height. The simplest method for determining this is to reuse
1516 * the power-of-tile object size.
1517 */
1518 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 }
1520
1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524 int ret;
1525
1526 if (obj->base.map_list.map)
1527 return 0;
1528
1529 ret = drm_gem_create_mmap_offset(&obj->base);
1530 if (ret != -ENOSPC)
1531 return ret;
1532
1533 /* Badly fragmented mmap space? The only way we can recover
1534 * space is by destroying unwanted objects. We can't randomly release
1535 * mmap_offsets as userspace expects them to be persistent for the
1536 * lifetime of the objects. The closest we can is to release the
1537 * offsets on purgeable objects by truncating it and marking it purged,
1538 * which prevents userspace from ever using that object again.
1539 */
1540 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541 ret = drm_gem_create_mmap_offset(&obj->base);
1542 if (ret != -ENOSPC)
1543 return ret;
1544
1545 i915_gem_shrink_all(dev_priv);
1546 return drm_gem_create_mmap_offset(&obj->base);
1547 }
1548
1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550 {
1551 if (!obj->base.map_list.map)
1552 return;
1553
1554 drm_gem_free_mmap_offset(&obj->base);
1555 }
1556
1557 int
1558 i915_gem_mmap_gtt(struct drm_file *file,
1559 struct drm_device *dev,
1560 uint32_t handle,
1561 uint64_t *offset)
1562 {
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 struct drm_i915_gem_object *obj;
1565 int ret;
1566
1567 ret = i915_mutex_lock_interruptible(dev);
1568 if (ret)
1569 return ret;
1570
1571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572 if (&obj->base == NULL) {
1573 ret = -ENOENT;
1574 goto unlock;
1575 }
1576
1577 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578 ret = -E2BIG;
1579 goto out;
1580 }
1581
1582 if (obj->madv != I915_MADV_WILLNEED) {
1583 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584 ret = -EINVAL;
1585 goto out;
1586 }
1587
1588 ret = i915_gem_object_create_mmap_offset(obj);
1589 if (ret)
1590 goto out;
1591
1592 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593
1594 out:
1595 drm_gem_object_unreference(&obj->base);
1596 unlock:
1597 mutex_unlock(&dev->struct_mutex);
1598 return ret;
1599 }
1600
1601 /**
1602 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603 * @dev: DRM device
1604 * @data: GTT mapping ioctl data
1605 * @file: GEM object info
1606 *
1607 * Simply returns the fake offset to userspace so it can mmap it.
1608 * The mmap call will end up in drm_gem_mmap(), which will set things
1609 * up so we can get faults in the handler above.
1610 *
1611 * The fault handler will take care of binding the object into the GTT
1612 * (since it may have been evicted to make room for something), allocating
1613 * a fence register, and mapping the appropriate aperture address into
1614 * userspace.
1615 */
1616 int
1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619 {
1620 struct drm_i915_gem_mmap_gtt *args = data;
1621
1622 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623 }
1624
1625 /* Immediately discard the backing storage */
1626 static void
1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 {
1629 struct inode *inode;
1630
1631 i915_gem_object_free_mmap_offset(obj);
1632
1633 if (obj->base.filp == NULL)
1634 return;
1635
1636 /* Our goal here is to return as much of the memory as
1637 * is possible back to the system as we are called from OOM.
1638 * To do this we must instruct the shmfs to drop all of its
1639 * backing pages, *now*.
1640 */
1641 inode = obj->base.filp->f_path.dentry->d_inode;
1642 shmem_truncate_range(inode, 0, (loff_t)-1);
1643
1644 obj->madv = __I915_MADV_PURGED;
1645 }
1646
1647 static inline int
1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649 {
1650 return obj->madv == I915_MADV_DONTNEED;
1651 }
1652
1653 static void
1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655 {
1656 int page_count = obj->base.size / PAGE_SIZE;
1657 struct scatterlist *sg;
1658 int ret, i;
1659
1660 BUG_ON(obj->madv == __I915_MADV_PURGED);
1661
1662 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1663 if (ret) {
1664 /* In the event of a disaster, abandon all caches and
1665 * hope for the best.
1666 */
1667 WARN_ON(ret != -EIO);
1668 i915_gem_clflush_object(obj);
1669 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1670 }
1671
1672 if (i915_gem_object_needs_bit17_swizzle(obj))
1673 i915_gem_object_save_bit_17_swizzle(obj);
1674
1675 if (obj->madv == I915_MADV_DONTNEED)
1676 obj->dirty = 0;
1677
1678 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1679 struct page *page = sg_page(sg);
1680
1681 if (obj->dirty)
1682 set_page_dirty(page);
1683
1684 if (obj->madv == I915_MADV_WILLNEED)
1685 mark_page_accessed(page);
1686
1687 page_cache_release(page);
1688 }
1689 obj->dirty = 0;
1690
1691 sg_free_table(obj->pages);
1692 kfree(obj->pages);
1693 }
1694
1695 static int
1696 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1697 {
1698 const struct drm_i915_gem_object_ops *ops = obj->ops;
1699
1700 if (obj->pages == NULL)
1701 return 0;
1702
1703 BUG_ON(obj->gtt_space);
1704
1705 if (obj->pages_pin_count)
1706 return -EBUSY;
1707
1708 ops->put_pages(obj);
1709 obj->pages = NULL;
1710
1711 list_del(&obj->gtt_list);
1712 if (i915_gem_object_is_purgeable(obj))
1713 i915_gem_object_truncate(obj);
1714
1715 return 0;
1716 }
1717
1718 static long
1719 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1720 {
1721 struct drm_i915_gem_object *obj, *next;
1722 long count = 0;
1723
1724 list_for_each_entry_safe(obj, next,
1725 &dev_priv->mm.unbound_list,
1726 gtt_list) {
1727 if (i915_gem_object_is_purgeable(obj) &&
1728 i915_gem_object_put_pages(obj) == 0) {
1729 count += obj->base.size >> PAGE_SHIFT;
1730 if (count >= target)
1731 return count;
1732 }
1733 }
1734
1735 list_for_each_entry_safe(obj, next,
1736 &dev_priv->mm.inactive_list,
1737 mm_list) {
1738 if (i915_gem_object_is_purgeable(obj) &&
1739 i915_gem_object_unbind(obj) == 0 &&
1740 i915_gem_object_put_pages(obj) == 0) {
1741 count += obj->base.size >> PAGE_SHIFT;
1742 if (count >= target)
1743 return count;
1744 }
1745 }
1746
1747 return count;
1748 }
1749
1750 static void
1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752 {
1753 struct drm_i915_gem_object *obj, *next;
1754
1755 i915_gem_evict_everything(dev_priv->dev);
1756
1757 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1758 i915_gem_object_put_pages(obj);
1759 }
1760
1761 static int
1762 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1763 {
1764 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1765 int page_count, i;
1766 struct address_space *mapping;
1767 struct sg_table *st;
1768 struct scatterlist *sg;
1769 struct page *page;
1770 gfp_t gfp;
1771
1772 /* Assert that the object is not currently in any GPU domain. As it
1773 * wasn't in the GTT, there shouldn't be any way it could have been in
1774 * a GPU cache
1775 */
1776 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1777 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1778
1779 st = kmalloc(sizeof(*st), GFP_KERNEL);
1780 if (st == NULL)
1781 return -ENOMEM;
1782
1783 page_count = obj->base.size / PAGE_SIZE;
1784 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1785 sg_free_table(st);
1786 kfree(st);
1787 return -ENOMEM;
1788 }
1789
1790 /* Get the list of pages out of our struct file. They'll be pinned
1791 * at this point until we release them.
1792 *
1793 * Fail silently without starting the shrinker
1794 */
1795 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1796 gfp = mapping_gfp_mask(mapping);
1797 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1798 gfp &= ~(__GFP_IO | __GFP_WAIT);
1799 for_each_sg(st->sgl, sg, page_count, i) {
1800 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1801 if (IS_ERR(page)) {
1802 i915_gem_purge(dev_priv, page_count);
1803 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1804 }
1805 if (IS_ERR(page)) {
1806 /* We've tried hard to allocate the memory by reaping
1807 * our own buffer, now let the real VM do its job and
1808 * go down in flames if truly OOM.
1809 */
1810 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1811 gfp |= __GFP_IO | __GFP_WAIT;
1812
1813 i915_gem_shrink_all(dev_priv);
1814 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1815 if (IS_ERR(page))
1816 goto err_pages;
1817
1818 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1819 gfp &= ~(__GFP_IO | __GFP_WAIT);
1820 }
1821
1822 sg_set_page(sg, page, PAGE_SIZE, 0);
1823 }
1824
1825 if (i915_gem_object_needs_bit17_swizzle(obj))
1826 i915_gem_object_do_bit_17_swizzle(obj);
1827
1828 obj->pages = st;
1829 return 0;
1830
1831 err_pages:
1832 for_each_sg(st->sgl, sg, i, page_count)
1833 page_cache_release(sg_page(sg));
1834 sg_free_table(st);
1835 kfree(st);
1836 return PTR_ERR(page);
1837 }
1838
1839 /* Ensure that the associated pages are gathered from the backing storage
1840 * and pinned into our object. i915_gem_object_get_pages() may be called
1841 * multiple times before they are released by a single call to
1842 * i915_gem_object_put_pages() - once the pages are no longer referenced
1843 * either as a result of memory pressure (reaping pages under the shrinker)
1844 * or as the object is itself released.
1845 */
1846 int
1847 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1848 {
1849 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1850 const struct drm_i915_gem_object_ops *ops = obj->ops;
1851 int ret;
1852
1853 if (obj->pages)
1854 return 0;
1855
1856 BUG_ON(obj->pages_pin_count);
1857
1858 ret = ops->get_pages(obj);
1859 if (ret)
1860 return ret;
1861
1862 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1863 return 0;
1864 }
1865
1866 void
1867 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1868 struct intel_ring_buffer *ring,
1869 u32 seqno)
1870 {
1871 struct drm_device *dev = obj->base.dev;
1872 struct drm_i915_private *dev_priv = dev->dev_private;
1873
1874 BUG_ON(ring == NULL);
1875 obj->ring = ring;
1876
1877 /* Add a reference if we're newly entering the active list. */
1878 if (!obj->active) {
1879 drm_gem_object_reference(&obj->base);
1880 obj->active = 1;
1881 }
1882
1883 /* Move from whatever list we were on to the tail of execution. */
1884 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1885 list_move_tail(&obj->ring_list, &ring->active_list);
1886
1887 obj->last_read_seqno = seqno;
1888
1889 if (obj->fenced_gpu_access) {
1890 obj->last_fenced_seqno = seqno;
1891
1892 /* Bump MRU to take account of the delayed flush */
1893 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1894 struct drm_i915_fence_reg *reg;
1895
1896 reg = &dev_priv->fence_regs[obj->fence_reg];
1897 list_move_tail(&reg->lru_list,
1898 &dev_priv->mm.fence_list);
1899 }
1900 }
1901 }
1902
1903 static void
1904 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1905 {
1906 struct drm_device *dev = obj->base.dev;
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908
1909 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1910 BUG_ON(!obj->active);
1911
1912 if (obj->pin_count) /* are we a framebuffer? */
1913 intel_mark_fb_idle(obj);
1914
1915 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1916
1917 list_del_init(&obj->ring_list);
1918 obj->ring = NULL;
1919
1920 obj->last_read_seqno = 0;
1921 obj->last_write_seqno = 0;
1922 obj->base.write_domain = 0;
1923
1924 obj->last_fenced_seqno = 0;
1925 obj->fenced_gpu_access = false;
1926
1927 obj->active = 0;
1928 drm_gem_object_unreference(&obj->base);
1929
1930 WARN_ON(i915_verify_lists(dev));
1931 }
1932
1933 static u32
1934 i915_gem_get_seqno(struct drm_device *dev)
1935 {
1936 drm_i915_private_t *dev_priv = dev->dev_private;
1937 u32 seqno = dev_priv->next_seqno;
1938
1939 /* reserve 0 for non-seqno */
1940 if (++dev_priv->next_seqno == 0)
1941 dev_priv->next_seqno = 1;
1942
1943 return seqno;
1944 }
1945
1946 u32
1947 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1948 {
1949 if (ring->outstanding_lazy_request == 0)
1950 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1951
1952 return ring->outstanding_lazy_request;
1953 }
1954
1955 int
1956 i915_add_request(struct intel_ring_buffer *ring,
1957 struct drm_file *file,
1958 u32 *out_seqno)
1959 {
1960 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1961 struct drm_i915_gem_request *request;
1962 u32 request_ring_position;
1963 u32 seqno;
1964 int was_empty;
1965 int ret;
1966
1967 /*
1968 * Emit any outstanding flushes - execbuf can fail to emit the flush
1969 * after having emitted the batchbuffer command. Hence we need to fix
1970 * things up similar to emitting the lazy request. The difference here
1971 * is that the flush _must_ happen before the next request, no matter
1972 * what.
1973 */
1974 ret = intel_ring_flush_all_caches(ring);
1975 if (ret)
1976 return ret;
1977
1978 request = kmalloc(sizeof(*request), GFP_KERNEL);
1979 if (request == NULL)
1980 return -ENOMEM;
1981
1982 seqno = i915_gem_next_request_seqno(ring);
1983
1984 /* Record the position of the start of the request so that
1985 * should we detect the updated seqno part-way through the
1986 * GPU processing the request, we never over-estimate the
1987 * position of the head.
1988 */
1989 request_ring_position = intel_ring_get_tail(ring);
1990
1991 ret = ring->add_request(ring, &seqno);
1992 if (ret) {
1993 kfree(request);
1994 return ret;
1995 }
1996
1997 trace_i915_gem_request_add(ring, seqno);
1998
1999 request->seqno = seqno;
2000 request->ring = ring;
2001 request->tail = request_ring_position;
2002 request->emitted_jiffies = jiffies;
2003 was_empty = list_empty(&ring->request_list);
2004 list_add_tail(&request->list, &ring->request_list);
2005 request->file_priv = NULL;
2006
2007 if (file) {
2008 struct drm_i915_file_private *file_priv = file->driver_priv;
2009
2010 spin_lock(&file_priv->mm.lock);
2011 request->file_priv = file_priv;
2012 list_add_tail(&request->client_list,
2013 &file_priv->mm.request_list);
2014 spin_unlock(&file_priv->mm.lock);
2015 }
2016
2017 ring->outstanding_lazy_request = 0;
2018
2019 if (!dev_priv->mm.suspended) {
2020 if (i915_enable_hangcheck) {
2021 mod_timer(&dev_priv->hangcheck_timer,
2022 jiffies +
2023 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2024 }
2025 if (was_empty) {
2026 queue_delayed_work(dev_priv->wq,
2027 &dev_priv->mm.retire_work, HZ);
2028 intel_mark_busy(dev_priv->dev);
2029 }
2030 }
2031
2032 if (out_seqno)
2033 *out_seqno = seqno;
2034 return 0;
2035 }
2036
2037 static inline void
2038 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2039 {
2040 struct drm_i915_file_private *file_priv = request->file_priv;
2041
2042 if (!file_priv)
2043 return;
2044
2045 spin_lock(&file_priv->mm.lock);
2046 if (request->file_priv) {
2047 list_del(&request->client_list);
2048 request->file_priv = NULL;
2049 }
2050 spin_unlock(&file_priv->mm.lock);
2051 }
2052
2053 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2054 struct intel_ring_buffer *ring)
2055 {
2056 while (!list_empty(&ring->request_list)) {
2057 struct drm_i915_gem_request *request;
2058
2059 request = list_first_entry(&ring->request_list,
2060 struct drm_i915_gem_request,
2061 list);
2062
2063 list_del(&request->list);
2064 i915_gem_request_remove_from_client(request);
2065 kfree(request);
2066 }
2067
2068 while (!list_empty(&ring->active_list)) {
2069 struct drm_i915_gem_object *obj;
2070
2071 obj = list_first_entry(&ring->active_list,
2072 struct drm_i915_gem_object,
2073 ring_list);
2074
2075 i915_gem_object_move_to_inactive(obj);
2076 }
2077 }
2078
2079 static void i915_gem_reset_fences(struct drm_device *dev)
2080 {
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 int i;
2083
2084 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2085 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2086
2087 i915_gem_write_fence(dev, i, NULL);
2088
2089 if (reg->obj)
2090 i915_gem_object_fence_lost(reg->obj);
2091
2092 reg->pin_count = 0;
2093 reg->obj = NULL;
2094 INIT_LIST_HEAD(&reg->lru_list);
2095 }
2096
2097 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2098 }
2099
2100 void i915_gem_reset(struct drm_device *dev)
2101 {
2102 struct drm_i915_private *dev_priv = dev->dev_private;
2103 struct drm_i915_gem_object *obj;
2104 struct intel_ring_buffer *ring;
2105 int i;
2106
2107 for_each_ring(ring, dev_priv, i)
2108 i915_gem_reset_ring_lists(dev_priv, ring);
2109
2110 /* Move everything out of the GPU domains to ensure we do any
2111 * necessary invalidation upon reuse.
2112 */
2113 list_for_each_entry(obj,
2114 &dev_priv->mm.inactive_list,
2115 mm_list)
2116 {
2117 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2118 }
2119
2120 /* The fence registers are invalidated so clear them out */
2121 i915_gem_reset_fences(dev);
2122 }
2123
2124 /**
2125 * This function clears the request list as sequence numbers are passed.
2126 */
2127 void
2128 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2129 {
2130 uint32_t seqno;
2131 int i;
2132
2133 if (list_empty(&ring->request_list))
2134 return;
2135
2136 WARN_ON(i915_verify_lists(ring->dev));
2137
2138 seqno = ring->get_seqno(ring, true);
2139
2140 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2141 if (seqno >= ring->sync_seqno[i])
2142 ring->sync_seqno[i] = 0;
2143
2144 while (!list_empty(&ring->request_list)) {
2145 struct drm_i915_gem_request *request;
2146
2147 request = list_first_entry(&ring->request_list,
2148 struct drm_i915_gem_request,
2149 list);
2150
2151 if (!i915_seqno_passed(seqno, request->seqno))
2152 break;
2153
2154 trace_i915_gem_request_retire(ring, request->seqno);
2155 /* We know the GPU must have read the request to have
2156 * sent us the seqno + interrupt, so use the position
2157 * of tail of the request to update the last known position
2158 * of the GPU head.
2159 */
2160 ring->last_retired_head = request->tail;
2161
2162 list_del(&request->list);
2163 i915_gem_request_remove_from_client(request);
2164 kfree(request);
2165 }
2166
2167 /* Move any buffers on the active list that are no longer referenced
2168 * by the ringbuffer to the flushing/inactive lists as appropriate.
2169 */
2170 while (!list_empty(&ring->active_list)) {
2171 struct drm_i915_gem_object *obj;
2172
2173 obj = list_first_entry(&ring->active_list,
2174 struct drm_i915_gem_object,
2175 ring_list);
2176
2177 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2178 break;
2179
2180 i915_gem_object_move_to_inactive(obj);
2181 }
2182
2183 if (unlikely(ring->trace_irq_seqno &&
2184 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2185 ring->irq_put(ring);
2186 ring->trace_irq_seqno = 0;
2187 }
2188
2189 WARN_ON(i915_verify_lists(ring->dev));
2190 }
2191
2192 void
2193 i915_gem_retire_requests(struct drm_device *dev)
2194 {
2195 drm_i915_private_t *dev_priv = dev->dev_private;
2196 struct intel_ring_buffer *ring;
2197 int i;
2198
2199 for_each_ring(ring, dev_priv, i)
2200 i915_gem_retire_requests_ring(ring);
2201 }
2202
2203 static void
2204 i915_gem_retire_work_handler(struct work_struct *work)
2205 {
2206 drm_i915_private_t *dev_priv;
2207 struct drm_device *dev;
2208 struct intel_ring_buffer *ring;
2209 bool idle;
2210 int i;
2211
2212 dev_priv = container_of(work, drm_i915_private_t,
2213 mm.retire_work.work);
2214 dev = dev_priv->dev;
2215
2216 /* Come back later if the device is busy... */
2217 if (!mutex_trylock(&dev->struct_mutex)) {
2218 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2219 return;
2220 }
2221
2222 i915_gem_retire_requests(dev);
2223
2224 /* Send a periodic flush down the ring so we don't hold onto GEM
2225 * objects indefinitely.
2226 */
2227 idle = true;
2228 for_each_ring(ring, dev_priv, i) {
2229 if (ring->gpu_caches_dirty)
2230 i915_add_request(ring, NULL, NULL);
2231
2232 idle &= list_empty(&ring->request_list);
2233 }
2234
2235 if (!dev_priv->mm.suspended && !idle)
2236 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2237 if (idle)
2238 intel_mark_idle(dev);
2239
2240 mutex_unlock(&dev->struct_mutex);
2241 }
2242
2243 /**
2244 * Ensures that an object will eventually get non-busy by flushing any required
2245 * write domains, emitting any outstanding lazy request and retiring and
2246 * completed requests.
2247 */
2248 static int
2249 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2250 {
2251 int ret;
2252
2253 if (obj->active) {
2254 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2255 if (ret)
2256 return ret;
2257
2258 i915_gem_retire_requests_ring(obj->ring);
2259 }
2260
2261 return 0;
2262 }
2263
2264 /**
2265 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2266 * @DRM_IOCTL_ARGS: standard ioctl arguments
2267 *
2268 * Returns 0 if successful, else an error is returned with the remaining time in
2269 * the timeout parameter.
2270 * -ETIME: object is still busy after timeout
2271 * -ERESTARTSYS: signal interrupted the wait
2272 * -ENONENT: object doesn't exist
2273 * Also possible, but rare:
2274 * -EAGAIN: GPU wedged
2275 * -ENOMEM: damn
2276 * -ENODEV: Internal IRQ fail
2277 * -E?: The add request failed
2278 *
2279 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2280 * non-zero timeout parameter the wait ioctl will wait for the given number of
2281 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2282 * without holding struct_mutex the object may become re-busied before this
2283 * function completes. A similar but shorter * race condition exists in the busy
2284 * ioctl
2285 */
2286 int
2287 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2288 {
2289 struct drm_i915_gem_wait *args = data;
2290 struct drm_i915_gem_object *obj;
2291 struct intel_ring_buffer *ring = NULL;
2292 struct timespec timeout_stack, *timeout = NULL;
2293 u32 seqno = 0;
2294 int ret = 0;
2295
2296 if (args->timeout_ns >= 0) {
2297 timeout_stack = ns_to_timespec(args->timeout_ns);
2298 timeout = &timeout_stack;
2299 }
2300
2301 ret = i915_mutex_lock_interruptible(dev);
2302 if (ret)
2303 return ret;
2304
2305 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2306 if (&obj->base == NULL) {
2307 mutex_unlock(&dev->struct_mutex);
2308 return -ENOENT;
2309 }
2310
2311 /* Need to make sure the object gets inactive eventually. */
2312 ret = i915_gem_object_flush_active(obj);
2313 if (ret)
2314 goto out;
2315
2316 if (obj->active) {
2317 seqno = obj->last_read_seqno;
2318 ring = obj->ring;
2319 }
2320
2321 if (seqno == 0)
2322 goto out;
2323
2324 /* Do this after OLR check to make sure we make forward progress polling
2325 * on this IOCTL with a 0 timeout (like busy ioctl)
2326 */
2327 if (!args->timeout_ns) {
2328 ret = -ETIME;
2329 goto out;
2330 }
2331
2332 drm_gem_object_unreference(&obj->base);
2333 mutex_unlock(&dev->struct_mutex);
2334
2335 ret = __wait_seqno(ring, seqno, true, timeout);
2336 if (timeout) {
2337 WARN_ON(!timespec_valid(timeout));
2338 args->timeout_ns = timespec_to_ns(timeout);
2339 }
2340 return ret;
2341
2342 out:
2343 drm_gem_object_unreference(&obj->base);
2344 mutex_unlock(&dev->struct_mutex);
2345 return ret;
2346 }
2347
2348 /**
2349 * i915_gem_object_sync - sync an object to a ring.
2350 *
2351 * @obj: object which may be in use on another ring.
2352 * @to: ring we wish to use the object on. May be NULL.
2353 *
2354 * This code is meant to abstract object synchronization with the GPU.
2355 * Calling with NULL implies synchronizing the object with the CPU
2356 * rather than a particular GPU ring.
2357 *
2358 * Returns 0 if successful, else propagates up the lower layer error.
2359 */
2360 int
2361 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2362 struct intel_ring_buffer *to)
2363 {
2364 struct intel_ring_buffer *from = obj->ring;
2365 u32 seqno;
2366 int ret, idx;
2367
2368 if (from == NULL || to == from)
2369 return 0;
2370
2371 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2372 return i915_gem_object_wait_rendering(obj, false);
2373
2374 idx = intel_ring_sync_index(from, to);
2375
2376 seqno = obj->last_read_seqno;
2377 if (seqno <= from->sync_seqno[idx])
2378 return 0;
2379
2380 ret = i915_gem_check_olr(obj->ring, seqno);
2381 if (ret)
2382 return ret;
2383
2384 ret = to->sync_to(to, from, seqno);
2385 if (!ret)
2386 from->sync_seqno[idx] = seqno;
2387
2388 return ret;
2389 }
2390
2391 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2392 {
2393 u32 old_write_domain, old_read_domains;
2394
2395 /* Act a barrier for all accesses through the GTT */
2396 mb();
2397
2398 /* Force a pagefault for domain tracking on next user access */
2399 i915_gem_release_mmap(obj);
2400
2401 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2402 return;
2403
2404 old_read_domains = obj->base.read_domains;
2405 old_write_domain = obj->base.write_domain;
2406
2407 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2408 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2409
2410 trace_i915_gem_object_change_domain(obj,
2411 old_read_domains,
2412 old_write_domain);
2413 }
2414
2415 /**
2416 * Unbinds an object from the GTT aperture.
2417 */
2418 int
2419 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2420 {
2421 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2422 int ret = 0;
2423
2424 if (obj->gtt_space == NULL)
2425 return 0;
2426
2427 if (obj->pin_count)
2428 return -EBUSY;
2429
2430 BUG_ON(obj->pages == NULL);
2431
2432 ret = i915_gem_object_finish_gpu(obj);
2433 if (ret)
2434 return ret;
2435 /* Continue on if we fail due to EIO, the GPU is hung so we
2436 * should be safe and we need to cleanup or else we might
2437 * cause memory corruption through use-after-free.
2438 */
2439
2440 i915_gem_object_finish_gtt(obj);
2441
2442 /* release the fence reg _after_ flushing */
2443 ret = i915_gem_object_put_fence(obj);
2444 if (ret)
2445 return ret;
2446
2447 trace_i915_gem_object_unbind(obj);
2448
2449 if (obj->has_global_gtt_mapping)
2450 i915_gem_gtt_unbind_object(obj);
2451 if (obj->has_aliasing_ppgtt_mapping) {
2452 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2453 obj->has_aliasing_ppgtt_mapping = 0;
2454 }
2455 i915_gem_gtt_finish_object(obj);
2456
2457 list_del(&obj->mm_list);
2458 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2459 /* Avoid an unnecessary call to unbind on rebind. */
2460 obj->map_and_fenceable = true;
2461
2462 drm_mm_put_block(obj->gtt_space);
2463 obj->gtt_space = NULL;
2464 obj->gtt_offset = 0;
2465
2466 return 0;
2467 }
2468
2469 static int i915_ring_idle(struct intel_ring_buffer *ring)
2470 {
2471 if (list_empty(&ring->active_list))
2472 return 0;
2473
2474 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2475 }
2476
2477 int i915_gpu_idle(struct drm_device *dev)
2478 {
2479 drm_i915_private_t *dev_priv = dev->dev_private;
2480 struct intel_ring_buffer *ring;
2481 int ret, i;
2482
2483 /* Flush everything onto the inactive list. */
2484 for_each_ring(ring, dev_priv, i) {
2485 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2486 if (ret)
2487 return ret;
2488
2489 ret = i915_ring_idle(ring);
2490 if (ret)
2491 return ret;
2492 }
2493
2494 return 0;
2495 }
2496
2497 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2498 struct drm_i915_gem_object *obj)
2499 {
2500 drm_i915_private_t *dev_priv = dev->dev_private;
2501 uint64_t val;
2502
2503 if (obj) {
2504 u32 size = obj->gtt_space->size;
2505
2506 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2507 0xfffff000) << 32;
2508 val |= obj->gtt_offset & 0xfffff000;
2509 val |= (uint64_t)((obj->stride / 128) - 1) <<
2510 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2511
2512 if (obj->tiling_mode == I915_TILING_Y)
2513 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2514 val |= I965_FENCE_REG_VALID;
2515 } else
2516 val = 0;
2517
2518 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2519 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2520 }
2521
2522 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2523 struct drm_i915_gem_object *obj)
2524 {
2525 drm_i915_private_t *dev_priv = dev->dev_private;
2526 uint64_t val;
2527
2528 if (obj) {
2529 u32 size = obj->gtt_space->size;
2530
2531 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2532 0xfffff000) << 32;
2533 val |= obj->gtt_offset & 0xfffff000;
2534 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2535 if (obj->tiling_mode == I915_TILING_Y)
2536 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2537 val |= I965_FENCE_REG_VALID;
2538 } else
2539 val = 0;
2540
2541 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2542 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2543 }
2544
2545 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2546 struct drm_i915_gem_object *obj)
2547 {
2548 drm_i915_private_t *dev_priv = dev->dev_private;
2549 u32 val;
2550
2551 if (obj) {
2552 u32 size = obj->gtt_space->size;
2553 int pitch_val;
2554 int tile_width;
2555
2556 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2557 (size & -size) != size ||
2558 (obj->gtt_offset & (size - 1)),
2559 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2560 obj->gtt_offset, obj->map_and_fenceable, size);
2561
2562 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2563 tile_width = 128;
2564 else
2565 tile_width = 512;
2566
2567 /* Note: pitch better be a power of two tile widths */
2568 pitch_val = obj->stride / tile_width;
2569 pitch_val = ffs(pitch_val) - 1;
2570
2571 val = obj->gtt_offset;
2572 if (obj->tiling_mode == I915_TILING_Y)
2573 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2574 val |= I915_FENCE_SIZE_BITS(size);
2575 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2576 val |= I830_FENCE_REG_VALID;
2577 } else
2578 val = 0;
2579
2580 if (reg < 8)
2581 reg = FENCE_REG_830_0 + reg * 4;
2582 else
2583 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2584
2585 I915_WRITE(reg, val);
2586 POSTING_READ(reg);
2587 }
2588
2589 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2590 struct drm_i915_gem_object *obj)
2591 {
2592 drm_i915_private_t *dev_priv = dev->dev_private;
2593 uint32_t val;
2594
2595 if (obj) {
2596 u32 size = obj->gtt_space->size;
2597 uint32_t pitch_val;
2598
2599 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2600 (size & -size) != size ||
2601 (obj->gtt_offset & (size - 1)),
2602 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2603 obj->gtt_offset, size);
2604
2605 pitch_val = obj->stride / 128;
2606 pitch_val = ffs(pitch_val) - 1;
2607
2608 val = obj->gtt_offset;
2609 if (obj->tiling_mode == I915_TILING_Y)
2610 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2611 val |= I830_FENCE_SIZE_BITS(size);
2612 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2613 val |= I830_FENCE_REG_VALID;
2614 } else
2615 val = 0;
2616
2617 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2618 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2619 }
2620
2621 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2622 struct drm_i915_gem_object *obj)
2623 {
2624 switch (INTEL_INFO(dev)->gen) {
2625 case 7:
2626 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2627 case 5:
2628 case 4: i965_write_fence_reg(dev, reg, obj); break;
2629 case 3: i915_write_fence_reg(dev, reg, obj); break;
2630 case 2: i830_write_fence_reg(dev, reg, obj); break;
2631 default: break;
2632 }
2633 }
2634
2635 static inline int fence_number(struct drm_i915_private *dev_priv,
2636 struct drm_i915_fence_reg *fence)
2637 {
2638 return fence - dev_priv->fence_regs;
2639 }
2640
2641 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2642 struct drm_i915_fence_reg *fence,
2643 bool enable)
2644 {
2645 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2646 int reg = fence_number(dev_priv, fence);
2647
2648 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2649
2650 if (enable) {
2651 obj->fence_reg = reg;
2652 fence->obj = obj;
2653 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2654 } else {
2655 obj->fence_reg = I915_FENCE_REG_NONE;
2656 fence->obj = NULL;
2657 list_del_init(&fence->lru_list);
2658 }
2659 }
2660
2661 static int
2662 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2663 {
2664 if (obj->last_fenced_seqno) {
2665 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2666 if (ret)
2667 return ret;
2668
2669 obj->last_fenced_seqno = 0;
2670 }
2671
2672 /* Ensure that all CPU reads are completed before installing a fence
2673 * and all writes before removing the fence.
2674 */
2675 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2676 mb();
2677
2678 obj->fenced_gpu_access = false;
2679 return 0;
2680 }
2681
2682 int
2683 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2684 {
2685 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2686 int ret;
2687
2688 ret = i915_gem_object_flush_fence(obj);
2689 if (ret)
2690 return ret;
2691
2692 if (obj->fence_reg == I915_FENCE_REG_NONE)
2693 return 0;
2694
2695 i915_gem_object_update_fence(obj,
2696 &dev_priv->fence_regs[obj->fence_reg],
2697 false);
2698 i915_gem_object_fence_lost(obj);
2699
2700 return 0;
2701 }
2702
2703 static struct drm_i915_fence_reg *
2704 i915_find_fence_reg(struct drm_device *dev)
2705 {
2706 struct drm_i915_private *dev_priv = dev->dev_private;
2707 struct drm_i915_fence_reg *reg, *avail;
2708 int i;
2709
2710 /* First try to find a free reg */
2711 avail = NULL;
2712 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2713 reg = &dev_priv->fence_regs[i];
2714 if (!reg->obj)
2715 return reg;
2716
2717 if (!reg->pin_count)
2718 avail = reg;
2719 }
2720
2721 if (avail == NULL)
2722 return NULL;
2723
2724 /* None available, try to steal one or wait for a user to finish */
2725 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2726 if (reg->pin_count)
2727 continue;
2728
2729 return reg;
2730 }
2731
2732 return NULL;
2733 }
2734
2735 /**
2736 * i915_gem_object_get_fence - set up fencing for an object
2737 * @obj: object to map through a fence reg
2738 *
2739 * When mapping objects through the GTT, userspace wants to be able to write
2740 * to them without having to worry about swizzling if the object is tiled.
2741 * This function walks the fence regs looking for a free one for @obj,
2742 * stealing one if it can't find any.
2743 *
2744 * It then sets up the reg based on the object's properties: address, pitch
2745 * and tiling format.
2746 *
2747 * For an untiled surface, this removes any existing fence.
2748 */
2749 int
2750 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2751 {
2752 struct drm_device *dev = obj->base.dev;
2753 struct drm_i915_private *dev_priv = dev->dev_private;
2754 bool enable = obj->tiling_mode != I915_TILING_NONE;
2755 struct drm_i915_fence_reg *reg;
2756 int ret;
2757
2758 /* Have we updated the tiling parameters upon the object and so
2759 * will need to serialise the write to the associated fence register?
2760 */
2761 if (obj->fence_dirty) {
2762 ret = i915_gem_object_flush_fence(obj);
2763 if (ret)
2764 return ret;
2765 }
2766
2767 /* Just update our place in the LRU if our fence is getting reused. */
2768 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2769 reg = &dev_priv->fence_regs[obj->fence_reg];
2770 if (!obj->fence_dirty) {
2771 list_move_tail(&reg->lru_list,
2772 &dev_priv->mm.fence_list);
2773 return 0;
2774 }
2775 } else if (enable) {
2776 reg = i915_find_fence_reg(dev);
2777 if (reg == NULL)
2778 return -EDEADLK;
2779
2780 if (reg->obj) {
2781 struct drm_i915_gem_object *old = reg->obj;
2782
2783 ret = i915_gem_object_flush_fence(old);
2784 if (ret)
2785 return ret;
2786
2787 i915_gem_object_fence_lost(old);
2788 }
2789 } else
2790 return 0;
2791
2792 i915_gem_object_update_fence(obj, reg, enable);
2793 obj->fence_dirty = false;
2794
2795 return 0;
2796 }
2797
2798 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2799 struct drm_mm_node *gtt_space,
2800 unsigned long cache_level)
2801 {
2802 struct drm_mm_node *other;
2803
2804 /* On non-LLC machines we have to be careful when putting differing
2805 * types of snoopable memory together to avoid the prefetcher
2806 * crossing memory domains and dieing.
2807 */
2808 if (HAS_LLC(dev))
2809 return true;
2810
2811 if (gtt_space == NULL)
2812 return true;
2813
2814 if (list_empty(&gtt_space->node_list))
2815 return true;
2816
2817 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2818 if (other->allocated && !other->hole_follows && other->color != cache_level)
2819 return false;
2820
2821 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2822 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2823 return false;
2824
2825 return true;
2826 }
2827
2828 static void i915_gem_verify_gtt(struct drm_device *dev)
2829 {
2830 #if WATCH_GTT
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832 struct drm_i915_gem_object *obj;
2833 int err = 0;
2834
2835 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2836 if (obj->gtt_space == NULL) {
2837 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2838 err++;
2839 continue;
2840 }
2841
2842 if (obj->cache_level != obj->gtt_space->color) {
2843 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2844 obj->gtt_space->start,
2845 obj->gtt_space->start + obj->gtt_space->size,
2846 obj->cache_level,
2847 obj->gtt_space->color);
2848 err++;
2849 continue;
2850 }
2851
2852 if (!i915_gem_valid_gtt_space(dev,
2853 obj->gtt_space,
2854 obj->cache_level)) {
2855 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2856 obj->gtt_space->start,
2857 obj->gtt_space->start + obj->gtt_space->size,
2858 obj->cache_level);
2859 err++;
2860 continue;
2861 }
2862 }
2863
2864 WARN_ON(err);
2865 #endif
2866 }
2867
2868 /**
2869 * Finds free space in the GTT aperture and binds the object there.
2870 */
2871 static int
2872 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2873 unsigned alignment,
2874 bool map_and_fenceable,
2875 bool nonblocking)
2876 {
2877 struct drm_device *dev = obj->base.dev;
2878 drm_i915_private_t *dev_priv = dev->dev_private;
2879 struct drm_mm_node *free_space;
2880 u32 size, fence_size, fence_alignment, unfenced_alignment;
2881 bool mappable, fenceable;
2882 int ret;
2883
2884 if (obj->madv != I915_MADV_WILLNEED) {
2885 DRM_ERROR("Attempting to bind a purgeable object\n");
2886 return -EINVAL;
2887 }
2888
2889 fence_size = i915_gem_get_gtt_size(dev,
2890 obj->base.size,
2891 obj->tiling_mode);
2892 fence_alignment = i915_gem_get_gtt_alignment(dev,
2893 obj->base.size,
2894 obj->tiling_mode);
2895 unfenced_alignment =
2896 i915_gem_get_unfenced_gtt_alignment(dev,
2897 obj->base.size,
2898 obj->tiling_mode);
2899
2900 if (alignment == 0)
2901 alignment = map_and_fenceable ? fence_alignment :
2902 unfenced_alignment;
2903 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2904 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2905 return -EINVAL;
2906 }
2907
2908 size = map_and_fenceable ? fence_size : obj->base.size;
2909
2910 /* If the object is bigger than the entire aperture, reject it early
2911 * before evicting everything in a vain attempt to find space.
2912 */
2913 if (obj->base.size >
2914 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2915 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2916 return -E2BIG;
2917 }
2918
2919 ret = i915_gem_object_get_pages(obj);
2920 if (ret)
2921 return ret;
2922
2923 search_free:
2924 if (map_and_fenceable)
2925 free_space =
2926 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2927 size, alignment, obj->cache_level,
2928 0, dev_priv->mm.gtt_mappable_end,
2929 false);
2930 else
2931 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2932 size, alignment, obj->cache_level,
2933 false);
2934
2935 if (free_space != NULL) {
2936 if (map_and_fenceable)
2937 obj->gtt_space =
2938 drm_mm_get_block_range_generic(free_space,
2939 size, alignment, obj->cache_level,
2940 0, dev_priv->mm.gtt_mappable_end,
2941 false);
2942 else
2943 obj->gtt_space =
2944 drm_mm_get_block_generic(free_space,
2945 size, alignment, obj->cache_level,
2946 false);
2947 }
2948 if (obj->gtt_space == NULL) {
2949 ret = i915_gem_evict_something(dev, size, alignment,
2950 obj->cache_level,
2951 map_and_fenceable,
2952 nonblocking);
2953 if (ret)
2954 return ret;
2955
2956 goto search_free;
2957 }
2958 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2959 obj->gtt_space,
2960 obj->cache_level))) {
2961 drm_mm_put_block(obj->gtt_space);
2962 obj->gtt_space = NULL;
2963 return -EINVAL;
2964 }
2965
2966
2967 ret = i915_gem_gtt_prepare_object(obj);
2968 if (ret) {
2969 drm_mm_put_block(obj->gtt_space);
2970 obj->gtt_space = NULL;
2971 return ret;
2972 }
2973
2974 if (!dev_priv->mm.aliasing_ppgtt)
2975 i915_gem_gtt_bind_object(obj, obj->cache_level);
2976
2977 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2978 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2979
2980 obj->gtt_offset = obj->gtt_space->start;
2981
2982 fenceable =
2983 obj->gtt_space->size == fence_size &&
2984 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2985
2986 mappable =
2987 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2988
2989 obj->map_and_fenceable = mappable && fenceable;
2990
2991 trace_i915_gem_object_bind(obj, map_and_fenceable);
2992 i915_gem_verify_gtt(dev);
2993 return 0;
2994 }
2995
2996 void
2997 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2998 {
2999 /* If we don't have a page list set up, then we're not pinned
3000 * to GPU, and we can ignore the cache flush because it'll happen
3001 * again at bind time.
3002 */
3003 if (obj->pages == NULL)
3004 return;
3005
3006 /* If the GPU is snooping the contents of the CPU cache,
3007 * we do not need to manually clear the CPU cache lines. However,
3008 * the caches are only snooped when the render cache is
3009 * flushed/invalidated. As we always have to emit invalidations
3010 * and flushes when moving into and out of the RENDER domain, correct
3011 * snooping behaviour occurs naturally as the result of our domain
3012 * tracking.
3013 */
3014 if (obj->cache_level != I915_CACHE_NONE)
3015 return;
3016
3017 trace_i915_gem_object_clflush(obj);
3018
3019 drm_clflush_sg(obj->pages);
3020 }
3021
3022 /** Flushes the GTT write domain for the object if it's dirty. */
3023 static void
3024 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3025 {
3026 uint32_t old_write_domain;
3027
3028 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3029 return;
3030
3031 /* No actual flushing is required for the GTT write domain. Writes
3032 * to it immediately go to main memory as far as we know, so there's
3033 * no chipset flush. It also doesn't land in render cache.
3034 *
3035 * However, we do have to enforce the order so that all writes through
3036 * the GTT land before any writes to the device, such as updates to
3037 * the GATT itself.
3038 */
3039 wmb();
3040
3041 old_write_domain = obj->base.write_domain;
3042 obj->base.write_domain = 0;
3043
3044 trace_i915_gem_object_change_domain(obj,
3045 obj->base.read_domains,
3046 old_write_domain);
3047 }
3048
3049 /** Flushes the CPU write domain for the object if it's dirty. */
3050 static void
3051 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3052 {
3053 uint32_t old_write_domain;
3054
3055 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3056 return;
3057
3058 i915_gem_clflush_object(obj);
3059 intel_gtt_chipset_flush();
3060 old_write_domain = obj->base.write_domain;
3061 obj->base.write_domain = 0;
3062
3063 trace_i915_gem_object_change_domain(obj,
3064 obj->base.read_domains,
3065 old_write_domain);
3066 }
3067
3068 /**
3069 * Moves a single object to the GTT read, and possibly write domain.
3070 *
3071 * This function returns when the move is complete, including waiting on
3072 * flushes to occur.
3073 */
3074 int
3075 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3076 {
3077 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3078 uint32_t old_write_domain, old_read_domains;
3079 int ret;
3080
3081 /* Not valid to be called on unbound objects. */
3082 if (obj->gtt_space == NULL)
3083 return -EINVAL;
3084
3085 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3086 return 0;
3087
3088 ret = i915_gem_object_wait_rendering(obj, !write);
3089 if (ret)
3090 return ret;
3091
3092 i915_gem_object_flush_cpu_write_domain(obj);
3093
3094 old_write_domain = obj->base.write_domain;
3095 old_read_domains = obj->base.read_domains;
3096
3097 /* It should now be out of any other write domains, and we can update
3098 * the domain values for our changes.
3099 */
3100 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3101 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3102 if (write) {
3103 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3104 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3105 obj->dirty = 1;
3106 }
3107
3108 trace_i915_gem_object_change_domain(obj,
3109 old_read_domains,
3110 old_write_domain);
3111
3112 /* And bump the LRU for this access */
3113 if (i915_gem_object_is_inactive(obj))
3114 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3115
3116 return 0;
3117 }
3118
3119 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3120 enum i915_cache_level cache_level)
3121 {
3122 struct drm_device *dev = obj->base.dev;
3123 drm_i915_private_t *dev_priv = dev->dev_private;
3124 int ret;
3125
3126 if (obj->cache_level == cache_level)
3127 return 0;
3128
3129 if (obj->pin_count) {
3130 DRM_DEBUG("can not change the cache level of pinned objects\n");
3131 return -EBUSY;
3132 }
3133
3134 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3135 ret = i915_gem_object_unbind(obj);
3136 if (ret)
3137 return ret;
3138 }
3139
3140 if (obj->gtt_space) {
3141 ret = i915_gem_object_finish_gpu(obj);
3142 if (ret)
3143 return ret;
3144
3145 i915_gem_object_finish_gtt(obj);
3146
3147 /* Before SandyBridge, you could not use tiling or fence
3148 * registers with snooped memory, so relinquish any fences
3149 * currently pointing to our region in the aperture.
3150 */
3151 if (INTEL_INFO(dev)->gen < 6) {
3152 ret = i915_gem_object_put_fence(obj);
3153 if (ret)
3154 return ret;
3155 }
3156
3157 if (obj->has_global_gtt_mapping)
3158 i915_gem_gtt_bind_object(obj, cache_level);
3159 if (obj->has_aliasing_ppgtt_mapping)
3160 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3161 obj, cache_level);
3162
3163 obj->gtt_space->color = cache_level;
3164 }
3165
3166 if (cache_level == I915_CACHE_NONE) {
3167 u32 old_read_domains, old_write_domain;
3168
3169 /* If we're coming from LLC cached, then we haven't
3170 * actually been tracking whether the data is in the
3171 * CPU cache or not, since we only allow one bit set
3172 * in obj->write_domain and have been skipping the clflushes.
3173 * Just set it to the CPU cache for now.
3174 */
3175 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3176 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3177
3178 old_read_domains = obj->base.read_domains;
3179 old_write_domain = obj->base.write_domain;
3180
3181 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3182 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3183
3184 trace_i915_gem_object_change_domain(obj,
3185 old_read_domains,
3186 old_write_domain);
3187 }
3188
3189 obj->cache_level = cache_level;
3190 i915_gem_verify_gtt(dev);
3191 return 0;
3192 }
3193
3194 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3195 struct drm_file *file)
3196 {
3197 struct drm_i915_gem_caching *args = data;
3198 struct drm_i915_gem_object *obj;
3199 int ret;
3200
3201 ret = i915_mutex_lock_interruptible(dev);
3202 if (ret)
3203 return ret;
3204
3205 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3206 if (&obj->base == NULL) {
3207 ret = -ENOENT;
3208 goto unlock;
3209 }
3210
3211 args->caching = obj->cache_level != I915_CACHE_NONE;
3212
3213 drm_gem_object_unreference(&obj->base);
3214 unlock:
3215 mutex_unlock(&dev->struct_mutex);
3216 return ret;
3217 }
3218
3219 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3220 struct drm_file *file)
3221 {
3222 struct drm_i915_gem_caching *args = data;
3223 struct drm_i915_gem_object *obj;
3224 enum i915_cache_level level;
3225 int ret;
3226
3227 switch (args->caching) {
3228 case I915_CACHING_NONE:
3229 level = I915_CACHE_NONE;
3230 break;
3231 case I915_CACHING_CACHED:
3232 level = I915_CACHE_LLC;
3233 break;
3234 default:
3235 return -EINVAL;
3236 }
3237
3238 ret = i915_mutex_lock_interruptible(dev);
3239 if (ret)
3240 return ret;
3241
3242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243 if (&obj->base == NULL) {
3244 ret = -ENOENT;
3245 goto unlock;
3246 }
3247
3248 ret = i915_gem_object_set_cache_level(obj, level);
3249
3250 drm_gem_object_unreference(&obj->base);
3251 unlock:
3252 mutex_unlock(&dev->struct_mutex);
3253 return ret;
3254 }
3255
3256 /*
3257 * Prepare buffer for display plane (scanout, cursors, etc).
3258 * Can be called from an uninterruptible phase (modesetting) and allows
3259 * any flushes to be pipelined (for pageflips).
3260 */
3261 int
3262 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3263 u32 alignment,
3264 struct intel_ring_buffer *pipelined)
3265 {
3266 u32 old_read_domains, old_write_domain;
3267 int ret;
3268
3269 if (pipelined != obj->ring) {
3270 ret = i915_gem_object_sync(obj, pipelined);
3271 if (ret)
3272 return ret;
3273 }
3274
3275 /* The display engine is not coherent with the LLC cache on gen6. As
3276 * a result, we make sure that the pinning that is about to occur is
3277 * done with uncached PTEs. This is lowest common denominator for all
3278 * chipsets.
3279 *
3280 * However for gen6+, we could do better by using the GFDT bit instead
3281 * of uncaching, which would allow us to flush all the LLC-cached data
3282 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3283 */
3284 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3285 if (ret)
3286 return ret;
3287
3288 /* As the user may map the buffer once pinned in the display plane
3289 * (e.g. libkms for the bootup splash), we have to ensure that we
3290 * always use map_and_fenceable for all scanout buffers.
3291 */
3292 ret = i915_gem_object_pin(obj, alignment, true, false);
3293 if (ret)
3294 return ret;
3295
3296 i915_gem_object_flush_cpu_write_domain(obj);
3297
3298 old_write_domain = obj->base.write_domain;
3299 old_read_domains = obj->base.read_domains;
3300
3301 /* It should now be out of any other write domains, and we can update
3302 * the domain values for our changes.
3303 */
3304 obj->base.write_domain = 0;
3305 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3306
3307 trace_i915_gem_object_change_domain(obj,
3308 old_read_domains,
3309 old_write_domain);
3310
3311 return 0;
3312 }
3313
3314 int
3315 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3316 {
3317 int ret;
3318
3319 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3320 return 0;
3321
3322 ret = i915_gem_object_wait_rendering(obj, false);
3323 if (ret)
3324 return ret;
3325
3326 /* Ensure that we invalidate the GPU's caches and TLBs. */
3327 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3328 return 0;
3329 }
3330
3331 /**
3332 * Moves a single object to the CPU read, and possibly write domain.
3333 *
3334 * This function returns when the move is complete, including waiting on
3335 * flushes to occur.
3336 */
3337 int
3338 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3339 {
3340 uint32_t old_write_domain, old_read_domains;
3341 int ret;
3342
3343 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3344 return 0;
3345
3346 ret = i915_gem_object_wait_rendering(obj, !write);
3347 if (ret)
3348 return ret;
3349
3350 i915_gem_object_flush_gtt_write_domain(obj);
3351
3352 old_write_domain = obj->base.write_domain;
3353 old_read_domains = obj->base.read_domains;
3354
3355 /* Flush the CPU cache if it's still invalid. */
3356 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3357 i915_gem_clflush_object(obj);
3358
3359 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3360 }
3361
3362 /* It should now be out of any other write domains, and we can update
3363 * the domain values for our changes.
3364 */
3365 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3366
3367 /* If we're writing through the CPU, then the GPU read domains will
3368 * need to be invalidated at next use.
3369 */
3370 if (write) {
3371 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3373 }
3374
3375 trace_i915_gem_object_change_domain(obj,
3376 old_read_domains,
3377 old_write_domain);
3378
3379 return 0;
3380 }
3381
3382 /* Throttle our rendering by waiting until the ring has completed our requests
3383 * emitted over 20 msec ago.
3384 *
3385 * Note that if we were to use the current jiffies each time around the loop,
3386 * we wouldn't escape the function with any frames outstanding if the time to
3387 * render a frame was over 20ms.
3388 *
3389 * This should get us reasonable parallelism between CPU and GPU but also
3390 * relatively low latency when blocking on a particular request to finish.
3391 */
3392 static int
3393 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3394 {
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 struct drm_i915_file_private *file_priv = file->driver_priv;
3397 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3398 struct drm_i915_gem_request *request;
3399 struct intel_ring_buffer *ring = NULL;
3400 u32 seqno = 0;
3401 int ret;
3402
3403 if (atomic_read(&dev_priv->mm.wedged))
3404 return -EIO;
3405
3406 spin_lock(&file_priv->mm.lock);
3407 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3408 if (time_after_eq(request->emitted_jiffies, recent_enough))
3409 break;
3410
3411 ring = request->ring;
3412 seqno = request->seqno;
3413 }
3414 spin_unlock(&file_priv->mm.lock);
3415
3416 if (seqno == 0)
3417 return 0;
3418
3419 ret = __wait_seqno(ring, seqno, true, NULL);
3420 if (ret == 0)
3421 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3422
3423 return ret;
3424 }
3425
3426 int
3427 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3428 uint32_t alignment,
3429 bool map_and_fenceable,
3430 bool nonblocking)
3431 {
3432 int ret;
3433
3434 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3435 return -EBUSY;
3436
3437 if (obj->gtt_space != NULL) {
3438 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3439 (map_and_fenceable && !obj->map_and_fenceable)) {
3440 WARN(obj->pin_count,
3441 "bo is already pinned with incorrect alignment:"
3442 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3443 " obj->map_and_fenceable=%d\n",
3444 obj->gtt_offset, alignment,
3445 map_and_fenceable,
3446 obj->map_and_fenceable);
3447 ret = i915_gem_object_unbind(obj);
3448 if (ret)
3449 return ret;
3450 }
3451 }
3452
3453 if (obj->gtt_space == NULL) {
3454 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3455 map_and_fenceable,
3456 nonblocking);
3457 if (ret)
3458 return ret;
3459 }
3460
3461 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3462 i915_gem_gtt_bind_object(obj, obj->cache_level);
3463
3464 obj->pin_count++;
3465 obj->pin_mappable |= map_and_fenceable;
3466
3467 return 0;
3468 }
3469
3470 void
3471 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3472 {
3473 BUG_ON(obj->pin_count == 0);
3474 BUG_ON(obj->gtt_space == NULL);
3475
3476 if (--obj->pin_count == 0)
3477 obj->pin_mappable = false;
3478 }
3479
3480 int
3481 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3482 struct drm_file *file)
3483 {
3484 struct drm_i915_gem_pin *args = data;
3485 struct drm_i915_gem_object *obj;
3486 int ret;
3487
3488 ret = i915_mutex_lock_interruptible(dev);
3489 if (ret)
3490 return ret;
3491
3492 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3493 if (&obj->base == NULL) {
3494 ret = -ENOENT;
3495 goto unlock;
3496 }
3497
3498 if (obj->madv != I915_MADV_WILLNEED) {
3499 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3500 ret = -EINVAL;
3501 goto out;
3502 }
3503
3504 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3505 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3506 args->handle);
3507 ret = -EINVAL;
3508 goto out;
3509 }
3510
3511 obj->user_pin_count++;
3512 obj->pin_filp = file;
3513 if (obj->user_pin_count == 1) {
3514 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3515 if (ret)
3516 goto out;
3517 }
3518
3519 /* XXX - flush the CPU caches for pinned objects
3520 * as the X server doesn't manage domains yet
3521 */
3522 i915_gem_object_flush_cpu_write_domain(obj);
3523 args->offset = obj->gtt_offset;
3524 out:
3525 drm_gem_object_unreference(&obj->base);
3526 unlock:
3527 mutex_unlock(&dev->struct_mutex);
3528 return ret;
3529 }
3530
3531 int
3532 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3533 struct drm_file *file)
3534 {
3535 struct drm_i915_gem_pin *args = data;
3536 struct drm_i915_gem_object *obj;
3537 int ret;
3538
3539 ret = i915_mutex_lock_interruptible(dev);
3540 if (ret)
3541 return ret;
3542
3543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3544 if (&obj->base == NULL) {
3545 ret = -ENOENT;
3546 goto unlock;
3547 }
3548
3549 if (obj->pin_filp != file) {
3550 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3551 args->handle);
3552 ret = -EINVAL;
3553 goto out;
3554 }
3555 obj->user_pin_count--;
3556 if (obj->user_pin_count == 0) {
3557 obj->pin_filp = NULL;
3558 i915_gem_object_unpin(obj);
3559 }
3560
3561 out:
3562 drm_gem_object_unreference(&obj->base);
3563 unlock:
3564 mutex_unlock(&dev->struct_mutex);
3565 return ret;
3566 }
3567
3568 int
3569 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3570 struct drm_file *file)
3571 {
3572 struct drm_i915_gem_busy *args = data;
3573 struct drm_i915_gem_object *obj;
3574 int ret;
3575
3576 ret = i915_mutex_lock_interruptible(dev);
3577 if (ret)
3578 return ret;
3579
3580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3581 if (&obj->base == NULL) {
3582 ret = -ENOENT;
3583 goto unlock;
3584 }
3585
3586 /* Count all active objects as busy, even if they are currently not used
3587 * by the gpu. Users of this interface expect objects to eventually
3588 * become non-busy without any further actions, therefore emit any
3589 * necessary flushes here.
3590 */
3591 ret = i915_gem_object_flush_active(obj);
3592
3593 args->busy = obj->active;
3594 if (obj->ring) {
3595 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3596 args->busy |= intel_ring_flag(obj->ring) << 16;
3597 }
3598
3599 drm_gem_object_unreference(&obj->base);
3600 unlock:
3601 mutex_unlock(&dev->struct_mutex);
3602 return ret;
3603 }
3604
3605 int
3606 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3607 struct drm_file *file_priv)
3608 {
3609 return i915_gem_ring_throttle(dev, file_priv);
3610 }
3611
3612 int
3613 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3614 struct drm_file *file_priv)
3615 {
3616 struct drm_i915_gem_madvise *args = data;
3617 struct drm_i915_gem_object *obj;
3618 int ret;
3619
3620 switch (args->madv) {
3621 case I915_MADV_DONTNEED:
3622 case I915_MADV_WILLNEED:
3623 break;
3624 default:
3625 return -EINVAL;
3626 }
3627
3628 ret = i915_mutex_lock_interruptible(dev);
3629 if (ret)
3630 return ret;
3631
3632 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3633 if (&obj->base == NULL) {
3634 ret = -ENOENT;
3635 goto unlock;
3636 }
3637
3638 if (obj->pin_count) {
3639 ret = -EINVAL;
3640 goto out;
3641 }
3642
3643 if (obj->madv != __I915_MADV_PURGED)
3644 obj->madv = args->madv;
3645
3646 /* if the object is no longer attached, discard its backing storage */
3647 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3648 i915_gem_object_truncate(obj);
3649
3650 args->retained = obj->madv != __I915_MADV_PURGED;
3651
3652 out:
3653 drm_gem_object_unreference(&obj->base);
3654 unlock:
3655 mutex_unlock(&dev->struct_mutex);
3656 return ret;
3657 }
3658
3659 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3660 const struct drm_i915_gem_object_ops *ops)
3661 {
3662 INIT_LIST_HEAD(&obj->mm_list);
3663 INIT_LIST_HEAD(&obj->gtt_list);
3664 INIT_LIST_HEAD(&obj->ring_list);
3665 INIT_LIST_HEAD(&obj->exec_list);
3666
3667 obj->ops = ops;
3668
3669 obj->fence_reg = I915_FENCE_REG_NONE;
3670 obj->madv = I915_MADV_WILLNEED;
3671 /* Avoid an unnecessary call to unbind on the first bind. */
3672 obj->map_and_fenceable = true;
3673
3674 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3675 }
3676
3677 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3678 .get_pages = i915_gem_object_get_pages_gtt,
3679 .put_pages = i915_gem_object_put_pages_gtt,
3680 };
3681
3682 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3683 size_t size)
3684 {
3685 struct drm_i915_gem_object *obj;
3686 struct address_space *mapping;
3687 u32 mask;
3688
3689 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3690 if (obj == NULL)
3691 return NULL;
3692
3693 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3694 kfree(obj);
3695 return NULL;
3696 }
3697
3698 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3699 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3700 /* 965gm cannot relocate objects above 4GiB. */
3701 mask &= ~__GFP_HIGHMEM;
3702 mask |= __GFP_DMA32;
3703 }
3704
3705 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3706 mapping_set_gfp_mask(mapping, mask);
3707
3708 i915_gem_object_init(obj, &i915_gem_object_ops);
3709
3710 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3711 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3712
3713 if (HAS_LLC(dev)) {
3714 /* On some devices, we can have the GPU use the LLC (the CPU
3715 * cache) for about a 10% performance improvement
3716 * compared to uncached. Graphics requests other than
3717 * display scanout are coherent with the CPU in
3718 * accessing this cache. This means in this mode we
3719 * don't need to clflush on the CPU side, and on the
3720 * GPU side we only need to flush internal caches to
3721 * get data visible to the CPU.
3722 *
3723 * However, we maintain the display planes as UC, and so
3724 * need to rebind when first used as such.
3725 */
3726 obj->cache_level = I915_CACHE_LLC;
3727 } else
3728 obj->cache_level = I915_CACHE_NONE;
3729
3730 return obj;
3731 }
3732
3733 int i915_gem_init_object(struct drm_gem_object *obj)
3734 {
3735 BUG();
3736
3737 return 0;
3738 }
3739
3740 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3741 {
3742 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3743 struct drm_device *dev = obj->base.dev;
3744 drm_i915_private_t *dev_priv = dev->dev_private;
3745
3746 trace_i915_gem_object_destroy(obj);
3747
3748 if (obj->phys_obj)
3749 i915_gem_detach_phys_object(dev, obj);
3750
3751 obj->pin_count = 0;
3752 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3753 bool was_interruptible;
3754
3755 was_interruptible = dev_priv->mm.interruptible;
3756 dev_priv->mm.interruptible = false;
3757
3758 WARN_ON(i915_gem_object_unbind(obj));
3759
3760 dev_priv->mm.interruptible = was_interruptible;
3761 }
3762
3763 obj->pages_pin_count = 0;
3764 i915_gem_object_put_pages(obj);
3765 i915_gem_object_free_mmap_offset(obj);
3766
3767 BUG_ON(obj->pages);
3768
3769 if (obj->base.import_attach)
3770 drm_prime_gem_destroy(&obj->base, NULL);
3771
3772 drm_gem_object_release(&obj->base);
3773 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3774
3775 kfree(obj->bit_17);
3776 kfree(obj);
3777 }
3778
3779 int
3780 i915_gem_idle(struct drm_device *dev)
3781 {
3782 drm_i915_private_t *dev_priv = dev->dev_private;
3783 int ret;
3784
3785 mutex_lock(&dev->struct_mutex);
3786
3787 if (dev_priv->mm.suspended) {
3788 mutex_unlock(&dev->struct_mutex);
3789 return 0;
3790 }
3791
3792 ret = i915_gpu_idle(dev);
3793 if (ret) {
3794 mutex_unlock(&dev->struct_mutex);
3795 return ret;
3796 }
3797 i915_gem_retire_requests(dev);
3798
3799 /* Under UMS, be paranoid and evict. */
3800 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3801 i915_gem_evict_everything(dev);
3802
3803 i915_gem_reset_fences(dev);
3804
3805 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3806 * We need to replace this with a semaphore, or something.
3807 * And not confound mm.suspended!
3808 */
3809 dev_priv->mm.suspended = 1;
3810 del_timer_sync(&dev_priv->hangcheck_timer);
3811
3812 i915_kernel_lost_context(dev);
3813 i915_gem_cleanup_ringbuffer(dev);
3814
3815 mutex_unlock(&dev->struct_mutex);
3816
3817 /* Cancel the retire work handler, which should be idle now. */
3818 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3819
3820 return 0;
3821 }
3822
3823 void i915_gem_l3_remap(struct drm_device *dev)
3824 {
3825 drm_i915_private_t *dev_priv = dev->dev_private;
3826 u32 misccpctl;
3827 int i;
3828
3829 if (!IS_IVYBRIDGE(dev))
3830 return;
3831
3832 if (!dev_priv->mm.l3_remap_info)
3833 return;
3834
3835 misccpctl = I915_READ(GEN7_MISCCPCTL);
3836 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3837 POSTING_READ(GEN7_MISCCPCTL);
3838
3839 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3840 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3841 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3842 DRM_DEBUG("0x%x was already programmed to %x\n",
3843 GEN7_L3LOG_BASE + i, remap);
3844 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3845 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3846 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3847 }
3848
3849 /* Make sure all the writes land before disabling dop clock gating */
3850 POSTING_READ(GEN7_L3LOG_BASE);
3851
3852 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3853 }
3854
3855 void i915_gem_init_swizzling(struct drm_device *dev)
3856 {
3857 drm_i915_private_t *dev_priv = dev->dev_private;
3858
3859 if (INTEL_INFO(dev)->gen < 5 ||
3860 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3861 return;
3862
3863 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3864 DISP_TILE_SURFACE_SWIZZLING);
3865
3866 if (IS_GEN5(dev))
3867 return;
3868
3869 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3870 if (IS_GEN6(dev))
3871 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3872 else
3873 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3874 }
3875
3876 void i915_gem_init_ppgtt(struct drm_device *dev)
3877 {
3878 drm_i915_private_t *dev_priv = dev->dev_private;
3879 uint32_t pd_offset;
3880 struct intel_ring_buffer *ring;
3881 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3882 uint32_t __iomem *pd_addr;
3883 uint32_t pd_entry;
3884 int i;
3885
3886 if (!dev_priv->mm.aliasing_ppgtt)
3887 return;
3888
3889
3890 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3891 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3892 dma_addr_t pt_addr;
3893
3894 if (dev_priv->mm.gtt->needs_dmar)
3895 pt_addr = ppgtt->pt_dma_addr[i];
3896 else
3897 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3898
3899 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3900 pd_entry |= GEN6_PDE_VALID;
3901
3902 writel(pd_entry, pd_addr + i);
3903 }
3904 readl(pd_addr);
3905
3906 pd_offset = ppgtt->pd_offset;
3907 pd_offset /= 64; /* in cachelines, */
3908 pd_offset <<= 16;
3909
3910 if (INTEL_INFO(dev)->gen == 6) {
3911 uint32_t ecochk, gab_ctl, ecobits;
3912
3913 ecobits = I915_READ(GAC_ECO_BITS);
3914 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3915
3916 gab_ctl = I915_READ(GAB_CTL);
3917 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3918
3919 ecochk = I915_READ(GAM_ECOCHK);
3920 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3921 ECOCHK_PPGTT_CACHE64B);
3922 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3923 } else if (INTEL_INFO(dev)->gen >= 7) {
3924 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3925 /* GFX_MODE is per-ring on gen7+ */
3926 }
3927
3928 for_each_ring(ring, dev_priv, i) {
3929 if (INTEL_INFO(dev)->gen >= 7)
3930 I915_WRITE(RING_MODE_GEN7(ring),
3931 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3932
3933 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3934 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3935 }
3936 }
3937
3938 static bool
3939 intel_enable_blt(struct drm_device *dev)
3940 {
3941 if (!HAS_BLT(dev))
3942 return false;
3943
3944 /* The blitter was dysfunctional on early prototypes */
3945 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3946 DRM_INFO("BLT not supported on this pre-production hardware;"
3947 " graphics performance will be degraded.\n");
3948 return false;
3949 }
3950
3951 return true;
3952 }
3953
3954 int
3955 i915_gem_init_hw(struct drm_device *dev)
3956 {
3957 drm_i915_private_t *dev_priv = dev->dev_private;
3958 int ret;
3959
3960 if (!intel_enable_gtt())
3961 return -EIO;
3962
3963 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3964 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3965
3966 i915_gem_l3_remap(dev);
3967
3968 i915_gem_init_swizzling(dev);
3969
3970 ret = intel_init_render_ring_buffer(dev);
3971 if (ret)
3972 return ret;
3973
3974 if (HAS_BSD(dev)) {
3975 ret = intel_init_bsd_ring_buffer(dev);
3976 if (ret)
3977 goto cleanup_render_ring;
3978 }
3979
3980 if (intel_enable_blt(dev)) {
3981 ret = intel_init_blt_ring_buffer(dev);
3982 if (ret)
3983 goto cleanup_bsd_ring;
3984 }
3985
3986 dev_priv->next_seqno = 1;
3987
3988 /*
3989 * XXX: There was some w/a described somewhere suggesting loading
3990 * contexts before PPGTT.
3991 */
3992 i915_gem_context_init(dev);
3993 i915_gem_init_ppgtt(dev);
3994
3995 return 0;
3996
3997 cleanup_bsd_ring:
3998 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3999 cleanup_render_ring:
4000 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4001 return ret;
4002 }
4003
4004 static bool
4005 intel_enable_ppgtt(struct drm_device *dev)
4006 {
4007 if (i915_enable_ppgtt >= 0)
4008 return i915_enable_ppgtt;
4009
4010 #ifdef CONFIG_INTEL_IOMMU
4011 /* Disable ppgtt on SNB if VT-d is on. */
4012 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4013 return false;
4014 #endif
4015
4016 return true;
4017 }
4018
4019 int i915_gem_init(struct drm_device *dev)
4020 {
4021 struct drm_i915_private *dev_priv = dev->dev_private;
4022 unsigned long gtt_size, mappable_size;
4023 int ret;
4024
4025 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4026 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4027
4028 mutex_lock(&dev->struct_mutex);
4029 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4030 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4031 * aperture accordingly when using aliasing ppgtt. */
4032 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4033
4034 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4035
4036 ret = i915_gem_init_aliasing_ppgtt(dev);
4037 if (ret) {
4038 mutex_unlock(&dev->struct_mutex);
4039 return ret;
4040 }
4041 } else {
4042 /* Let GEM Manage all of the aperture.
4043 *
4044 * However, leave one page at the end still bound to the scratch
4045 * page. There are a number of places where the hardware
4046 * apparently prefetches past the end of the object, and we've
4047 * seen multiple hangs with the GPU head pointer stuck in a
4048 * batchbuffer bound at the last page of the aperture. One page
4049 * should be enough to keep any prefetching inside of the
4050 * aperture.
4051 */
4052 i915_gem_init_global_gtt(dev, 0, mappable_size,
4053 gtt_size);
4054 }
4055
4056 ret = i915_gem_init_hw(dev);
4057 mutex_unlock(&dev->struct_mutex);
4058 if (ret) {
4059 i915_gem_cleanup_aliasing_ppgtt(dev);
4060 return ret;
4061 }
4062
4063 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4064 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4065 dev_priv->dri1.allow_batchbuffer = 1;
4066 return 0;
4067 }
4068
4069 void
4070 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4071 {
4072 drm_i915_private_t *dev_priv = dev->dev_private;
4073 struct intel_ring_buffer *ring;
4074 int i;
4075
4076 for_each_ring(ring, dev_priv, i)
4077 intel_cleanup_ring_buffer(ring);
4078 }
4079
4080 int
4081 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4082 struct drm_file *file_priv)
4083 {
4084 drm_i915_private_t *dev_priv = dev->dev_private;
4085 int ret;
4086
4087 if (drm_core_check_feature(dev, DRIVER_MODESET))
4088 return 0;
4089
4090 if (atomic_read(&dev_priv->mm.wedged)) {
4091 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4092 atomic_set(&dev_priv->mm.wedged, 0);
4093 }
4094
4095 mutex_lock(&dev->struct_mutex);
4096 dev_priv->mm.suspended = 0;
4097
4098 ret = i915_gem_init_hw(dev);
4099 if (ret != 0) {
4100 mutex_unlock(&dev->struct_mutex);
4101 return ret;
4102 }
4103
4104 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4105 mutex_unlock(&dev->struct_mutex);
4106
4107 ret = drm_irq_install(dev);
4108 if (ret)
4109 goto cleanup_ringbuffer;
4110
4111 return 0;
4112
4113 cleanup_ringbuffer:
4114 mutex_lock(&dev->struct_mutex);
4115 i915_gem_cleanup_ringbuffer(dev);
4116 dev_priv->mm.suspended = 1;
4117 mutex_unlock(&dev->struct_mutex);
4118
4119 return ret;
4120 }
4121
4122 int
4123 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4124 struct drm_file *file_priv)
4125 {
4126 if (drm_core_check_feature(dev, DRIVER_MODESET))
4127 return 0;
4128
4129 drm_irq_uninstall(dev);
4130 return i915_gem_idle(dev);
4131 }
4132
4133 void
4134 i915_gem_lastclose(struct drm_device *dev)
4135 {
4136 int ret;
4137
4138 if (drm_core_check_feature(dev, DRIVER_MODESET))
4139 return;
4140
4141 ret = i915_gem_idle(dev);
4142 if (ret)
4143 DRM_ERROR("failed to idle hardware: %d\n", ret);
4144 }
4145
4146 static void
4147 init_ring_lists(struct intel_ring_buffer *ring)
4148 {
4149 INIT_LIST_HEAD(&ring->active_list);
4150 INIT_LIST_HEAD(&ring->request_list);
4151 }
4152
4153 void
4154 i915_gem_load(struct drm_device *dev)
4155 {
4156 int i;
4157 drm_i915_private_t *dev_priv = dev->dev_private;
4158
4159 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4160 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4161 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4162 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4163 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4164 for (i = 0; i < I915_NUM_RINGS; i++)
4165 init_ring_lists(&dev_priv->ring[i]);
4166 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4167 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4168 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4169 i915_gem_retire_work_handler);
4170 init_completion(&dev_priv->error_completion);
4171
4172 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4173 if (IS_GEN3(dev)) {
4174 I915_WRITE(MI_ARB_STATE,
4175 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4176 }
4177
4178 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4179
4180 /* Old X drivers will take 0-2 for front, back, depth buffers */
4181 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4182 dev_priv->fence_reg_start = 3;
4183
4184 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4185 dev_priv->num_fence_regs = 16;
4186 else
4187 dev_priv->num_fence_regs = 8;
4188
4189 /* Initialize fence registers to zero */
4190 i915_gem_reset_fences(dev);
4191
4192 i915_gem_detect_bit_6_swizzle(dev);
4193 init_waitqueue_head(&dev_priv->pending_flip_queue);
4194
4195 dev_priv->mm.interruptible = true;
4196
4197 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4198 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4199 register_shrinker(&dev_priv->mm.inactive_shrinker);
4200 }
4201
4202 /*
4203 * Create a physically contiguous memory object for this object
4204 * e.g. for cursor + overlay regs
4205 */
4206 static int i915_gem_init_phys_object(struct drm_device *dev,
4207 int id, int size, int align)
4208 {
4209 drm_i915_private_t *dev_priv = dev->dev_private;
4210 struct drm_i915_gem_phys_object *phys_obj;
4211 int ret;
4212
4213 if (dev_priv->mm.phys_objs[id - 1] || !size)
4214 return 0;
4215
4216 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4217 if (!phys_obj)
4218 return -ENOMEM;
4219
4220 phys_obj->id = id;
4221
4222 phys_obj->handle = drm_pci_alloc(dev, size, align);
4223 if (!phys_obj->handle) {
4224 ret = -ENOMEM;
4225 goto kfree_obj;
4226 }
4227 #ifdef CONFIG_X86
4228 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4229 #endif
4230
4231 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4232
4233 return 0;
4234 kfree_obj:
4235 kfree(phys_obj);
4236 return ret;
4237 }
4238
4239 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4240 {
4241 drm_i915_private_t *dev_priv = dev->dev_private;
4242 struct drm_i915_gem_phys_object *phys_obj;
4243
4244 if (!dev_priv->mm.phys_objs[id - 1])
4245 return;
4246
4247 phys_obj = dev_priv->mm.phys_objs[id - 1];
4248 if (phys_obj->cur_obj) {
4249 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4250 }
4251
4252 #ifdef CONFIG_X86
4253 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4254 #endif
4255 drm_pci_free(dev, phys_obj->handle);
4256 kfree(phys_obj);
4257 dev_priv->mm.phys_objs[id - 1] = NULL;
4258 }
4259
4260 void i915_gem_free_all_phys_object(struct drm_device *dev)
4261 {
4262 int i;
4263
4264 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4265 i915_gem_free_phys_object(dev, i);
4266 }
4267
4268 void i915_gem_detach_phys_object(struct drm_device *dev,
4269 struct drm_i915_gem_object *obj)
4270 {
4271 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4272 char *vaddr;
4273 int i;
4274 int page_count;
4275
4276 if (!obj->phys_obj)
4277 return;
4278 vaddr = obj->phys_obj->handle->vaddr;
4279
4280 page_count = obj->base.size / PAGE_SIZE;
4281 for (i = 0; i < page_count; i++) {
4282 struct page *page = shmem_read_mapping_page(mapping, i);
4283 if (!IS_ERR(page)) {
4284 char *dst = kmap_atomic(page);
4285 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4286 kunmap_atomic(dst);
4287
4288 drm_clflush_pages(&page, 1);
4289
4290 set_page_dirty(page);
4291 mark_page_accessed(page);
4292 page_cache_release(page);
4293 }
4294 }
4295 intel_gtt_chipset_flush();
4296
4297 obj->phys_obj->cur_obj = NULL;
4298 obj->phys_obj = NULL;
4299 }
4300
4301 int
4302 i915_gem_attach_phys_object(struct drm_device *dev,
4303 struct drm_i915_gem_object *obj,
4304 int id,
4305 int align)
4306 {
4307 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4308 drm_i915_private_t *dev_priv = dev->dev_private;
4309 int ret = 0;
4310 int page_count;
4311 int i;
4312
4313 if (id > I915_MAX_PHYS_OBJECT)
4314 return -EINVAL;
4315
4316 if (obj->phys_obj) {
4317 if (obj->phys_obj->id == id)
4318 return 0;
4319 i915_gem_detach_phys_object(dev, obj);
4320 }
4321
4322 /* create a new object */
4323 if (!dev_priv->mm.phys_objs[id - 1]) {
4324 ret = i915_gem_init_phys_object(dev, id,
4325 obj->base.size, align);
4326 if (ret) {
4327 DRM_ERROR("failed to init phys object %d size: %zu\n",
4328 id, obj->base.size);
4329 return ret;
4330 }
4331 }
4332
4333 /* bind to the object */
4334 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4335 obj->phys_obj->cur_obj = obj;
4336
4337 page_count = obj->base.size / PAGE_SIZE;
4338
4339 for (i = 0; i < page_count; i++) {
4340 struct page *page;
4341 char *dst, *src;
4342
4343 page = shmem_read_mapping_page(mapping, i);
4344 if (IS_ERR(page))
4345 return PTR_ERR(page);
4346
4347 src = kmap_atomic(page);
4348 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4349 memcpy(dst, src, PAGE_SIZE);
4350 kunmap_atomic(src);
4351
4352 mark_page_accessed(page);
4353 page_cache_release(page);
4354 }
4355
4356 return 0;
4357 }
4358
4359 static int
4360 i915_gem_phys_pwrite(struct drm_device *dev,
4361 struct drm_i915_gem_object *obj,
4362 struct drm_i915_gem_pwrite *args,
4363 struct drm_file *file_priv)
4364 {
4365 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4366 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4367
4368 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4369 unsigned long unwritten;
4370
4371 /* The physical object once assigned is fixed for the lifetime
4372 * of the obj, so we can safely drop the lock and continue
4373 * to access vaddr.
4374 */
4375 mutex_unlock(&dev->struct_mutex);
4376 unwritten = copy_from_user(vaddr, user_data, args->size);
4377 mutex_lock(&dev->struct_mutex);
4378 if (unwritten)
4379 return -EFAULT;
4380 }
4381
4382 intel_gtt_chipset_flush();
4383 return 0;
4384 }
4385
4386 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4387 {
4388 struct drm_i915_file_private *file_priv = file->driver_priv;
4389
4390 /* Clean up our request list when the client is going away, so that
4391 * later retire_requests won't dereference our soon-to-be-gone
4392 * file_priv.
4393 */
4394 spin_lock(&file_priv->mm.lock);
4395 while (!list_empty(&file_priv->mm.request_list)) {
4396 struct drm_i915_gem_request *request;
4397
4398 request = list_first_entry(&file_priv->mm.request_list,
4399 struct drm_i915_gem_request,
4400 client_list);
4401 list_del(&request->client_list);
4402 request->file_priv = NULL;
4403 }
4404 spin_unlock(&file_priv->mm.lock);
4405 }
4406
4407 static int
4408 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4409 {
4410 struct drm_i915_private *dev_priv =
4411 container_of(shrinker,
4412 struct drm_i915_private,
4413 mm.inactive_shrinker);
4414 struct drm_device *dev = dev_priv->dev;
4415 struct drm_i915_gem_object *obj;
4416 int nr_to_scan = sc->nr_to_scan;
4417 int cnt;
4418
4419 if (!mutex_trylock(&dev->struct_mutex))
4420 return 0;
4421
4422 if (nr_to_scan) {
4423 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4424 if (nr_to_scan > 0)
4425 i915_gem_shrink_all(dev_priv);
4426 }
4427
4428 cnt = 0;
4429 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4430 if (obj->pages_pin_count == 0)
4431 cnt += obj->base.size >> PAGE_SHIFT;
4432 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4433 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4434 cnt += obj->base.size >> PAGE_SHIFT;
4435
4436 mutex_unlock(&dev->struct_mutex);
4437 return cnt;
4438 }
This page took 0.19028 seconds and 5 git commands to generate.