d8364135c2e557771b269e0edd05a3220c16d8f0
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68 {
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
88 obj->fence_dirty = false;
89 obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 spin_lock(&dev_priv->mm.object_stat_lock);
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
108 spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114 int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
118 if (EXIT_COND)
119 return 0;
120
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
133 return ret;
134 }
135 #undef EXIT_COND
136
137 return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 int ret;
144
145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
153 WARN_ON(i915_verify_lists(dev));
154 return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160 return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_init *args = data;
169
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
176
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
181 mutex_lock(&dev->struct_mutex);
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
184 dev_priv->gtt.mappable_end = args->gtt_end;
185 mutex_unlock(&dev->struct_mutex);
186
187 return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_get_aperture *args = data;
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
198
199 pinned = 0;
200 mutex_lock(&dev->struct_mutex);
201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 if (i915_gem_obj_is_pinned(obj))
203 pinned += i915_gem_obj_ggtt_size(obj);
204 mutex_unlock(&dev->struct_mutex);
205
206 args->aper_size = dev_priv->gtt.base.total;
207 args->aper_available_size = args->aper_size - pinned;
208
209 return 0;
210 }
211
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213 {
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241 #ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246 }
247
248 int
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251 {
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305 }
306
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311 {
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332 }
333
334 void *i915_gem_object_alloc(struct drm_device *dev)
335 {
336 struct drm_i915_private *dev_priv = dev->dev_private;
337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 }
339
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
341 {
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344 }
345
346 static int
347 i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
351 {
352 struct drm_i915_gem_object *obj;
353 int ret;
354 u32 handle;
355
356 size = roundup(size, PAGE_SIZE);
357 if (size == 0)
358 return -EINVAL;
359
360 /* Allocate the new object */
361 obj = i915_gem_alloc_object(dev, size);
362 if (obj == NULL)
363 return -ENOMEM;
364
365 ret = drm_gem_handle_create(file, &obj->base, &handle);
366 /* drop reference from allocate - handle holds it now */
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
370
371 *handle_p = handle;
372 return 0;
373 }
374
375 int
376 i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379 {
380 /* have to work out size/pitch and return them */
381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385 }
386
387 /**
388 * Creates a new mm object and returns a handle to it.
389 */
390 int
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393 {
394 struct drm_i915_gem_create *args = data;
395
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398 }
399
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404 {
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424 }
425
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
429 int length)
430 {
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450 }
451
452 /*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459 {
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
477
478 i915_gem_object_retire(obj);
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488 }
489
490 /* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497 {
498 char *vaddr;
499 int ret;
500
501 if (unlikely(page_do_bit17_swizzling))
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
513 return ret ? -EFAULT : 0;
514 }
515
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519 {
520 if (unlikely(swizzled)) {
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536 }
537
538 /* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
564 return ret ? - EFAULT : 0;
565 }
566
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
572 {
573 char __user *user_data;
574 ssize_t remain;
575 loff_t offset;
576 int shmem_page_offset, page_length, ret = 0;
577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578 int prefaulted = 0;
579 int needs_clflush = 0;
580 struct sg_page_iter sg_iter;
581
582 user_data = to_user_ptr(args->data_ptr);
583 remain = args->size;
584
585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586
587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 if (ret)
589 return ret;
590
591 offset = args->offset;
592
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
595 struct page *page = sg_page_iter_page(&sg_iter);
596
597 if (remain <= 0)
598 break;
599
600 /* Operation in this page
601 *
602 * shmem_page_offset = offset within page in shmem file
603 * page_length = bytes to copy for this page
604 */
605 shmem_page_offset = offset_in_page(offset);
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
609
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
618
619 mutex_unlock(&dev->struct_mutex);
620
621 if (likely(!i915.prefault_disable) && !prefaulted) {
622 ret = fault_in_multipages_writeable(user_data, remain);
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
630
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
634
635 mutex_lock(&dev->struct_mutex);
636
637 if (ret)
638 goto out;
639
640 next_page:
641 remain -= page_length;
642 user_data += page_length;
643 offset += page_length;
644 }
645
646 out:
647 i915_gem_object_unpin_pages(obj);
648
649 return ret;
650 }
651
652 /**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657 int
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
660 {
661 struct drm_i915_gem_pread *args = data;
662 struct drm_i915_gem_object *obj;
663 int ret = 0;
664
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
669 to_user_ptr(args->data_ptr),
670 args->size))
671 return -EFAULT;
672
673 ret = i915_mutex_lock_interruptible(dev);
674 if (ret)
675 return ret;
676
677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 if (&obj->base == NULL) {
679 ret = -ENOENT;
680 goto unlock;
681 }
682
683 /* Bounds check source. */
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
686 ret = -EINVAL;
687 goto out;
688 }
689
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
700 ret = i915_gem_shmem_pread(dev, obj, args, file);
701
702 out:
703 drm_gem_object_unreference(&obj->base);
704 unlock:
705 mutex_unlock(&dev->struct_mutex);
706 return ret;
707 }
708
709 /* This is the fast write path which cannot handle
710 * page faults in the source data
711 */
712
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
718 {
719 void __iomem *vaddr_atomic;
720 void *vaddr;
721 unsigned long unwritten;
722
723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
727 user_data, length);
728 io_mapping_unmap_atomic(vaddr_atomic);
729 return unwritten;
730 }
731
732 /**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file)
741 {
742 struct drm_i915_private *dev_priv = dev->dev_private;
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length, ret;
747
748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
759
760 user_data = to_user_ptr(args->data_ptr);
761 remain = args->size;
762
763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
771 */
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
778 /* If we get a fault while copying data, then (presumably) our
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
781 */
782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
787
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
791 }
792
793 out_unpin:
794 i915_gem_object_ggtt_unpin(obj);
795 out:
796 return ret;
797 }
798
799 /* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
809 {
810 char *vaddr;
811 int ret;
812
813 if (unlikely(page_do_bit17_swizzling))
814 return -EINVAL;
815
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
826
827 return ret ? -EFAULT : 0;
828 }
829
830 /* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
838 {
839 char *vaddr;
840 int ret;
841
842 vaddr = kmap(page);
843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 user_data,
850 page_length);
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
859 kunmap(page);
860
861 return ret ? -EFAULT : 0;
862 }
863
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
869 {
870 ssize_t remain;
871 loff_t offset;
872 char __user *user_data;
873 int shmem_page_offset, page_length, ret = 0;
874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875 int hit_slowpath = 0;
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
878 struct sg_page_iter sg_iter;
879
880 user_data = to_user_ptr(args->data_ptr);
881 remain = args->size;
882
883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
890 needs_clflush_after = cpu_write_needs_clflush(obj);
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
894
895 i915_gem_object_retire(obj);
896 }
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
902
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
909 offset = args->offset;
910 obj->dirty = 1;
911
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
914 struct page *page = sg_page_iter_page(&sg_iter);
915 int partial_cacheline_write;
916
917 if (remain <= 0)
918 break;
919
920 /* Operation in this page
921 *
922 * shmem_page_offset = offset within page in shmem file
923 * page_length = bytes to copy for this page
924 */
925 shmem_page_offset = offset_in_page(offset);
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
930
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
947
948 hit_slowpath = 1;
949 mutex_unlock(&dev->struct_mutex);
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
954
955 mutex_lock(&dev->struct_mutex);
956
957 if (ret)
958 goto out;
959
960 next_page:
961 remain -= page_length;
962 user_data += page_length;
963 offset += page_length;
964 }
965
966 out:
967 i915_gem_object_unpin_pages(obj);
968
969 if (hit_slowpath) {
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
979 }
980 }
981
982 if (needs_clflush_after)
983 i915_gem_chipset_flush(dev);
984
985 return ret;
986 }
987
988 /**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993 int
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995 struct drm_file *file)
996 {
997 struct drm_i915_gem_pwrite *args = data;
998 struct drm_i915_gem_object *obj;
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
1005 to_user_ptr(args->data_ptr),
1006 args->size))
1007 return -EFAULT;
1008
1009 if (likely(!i915.prefault_disable)) {
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
1015
1016 ret = i915_mutex_lock_interruptible(dev);
1017 if (ret)
1018 return ret;
1019
1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021 if (&obj->base == NULL) {
1022 ret = -ENOENT;
1023 goto unlock;
1024 }
1025
1026 /* Bounds check destination. */
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
1029 ret = -EINVAL;
1030 goto out;
1031 }
1032
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
1043 ret = -EFAULT;
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
1052 goto out;
1053 }
1054
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
1062 }
1063
1064 if (ret == -EFAULT || ret == -ENOSPC)
1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066
1067 out:
1068 drm_gem_object_unreference(&obj->base);
1069 unlock:
1070 mutex_unlock(&dev->struct_mutex);
1071 return ret;
1072 }
1073
1074 int
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076 bool interruptible)
1077 {
1078 if (i915_reset_in_progress(error)) {
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
1098 int
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 {
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1106 if (seqno == ring->outstanding_lazy_seqno)
1107 ret = i915_add_request(ring, NULL);
1108
1109 return ret;
1110 }
1111
1112 static void fake_irq(unsigned long data)
1113 {
1114 wake_up_process((struct task_struct *)data);
1115 }
1116
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118 struct intel_engine_cs *ring)
1119 {
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121 }
1122
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124 {
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129 }
1130
1131 /**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
1135 * @reset_counter: reset sequence associated with the given seqno
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150 unsigned reset_counter,
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
1154 {
1155 struct drm_device *dev = ring->dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
1161 unsigned long timeout_expire;
1162 int ret;
1163
1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1165
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1170
1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 return -ENODEV;
1181
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
1184 getrawmonotonic(&before);
1185 for (;;) {
1186 struct timer_list timer;
1187
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
1201
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
1206
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
1219 unsigned long expire;
1220
1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 mod_timer(&timer, expire);
1224 }
1225
1226 io_schedule();
1227
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
1233 getrawmonotonic(&now);
1234 trace_i915_gem_request_wait_end(ring, seqno);
1235
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
1238
1239 finish_wait(&ring->irq_queue, &wait);
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
1246 }
1247
1248 return ret;
1249 }
1250
1251 /**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255 int
1256 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 {
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
1276 interruptible, NULL, NULL);
1277 }
1278
1279 static int
1280 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281 struct intel_engine_cs *ring)
1282 {
1283 if (!obj->active)
1284 return 0;
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
1294
1295 return 0;
1296 }
1297
1298 /**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302 static __must_check int
1303 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305 {
1306 struct intel_engine_cs *ring = obj->ring;
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
1318 return i915_gem_object_wait_rendering__tail(obj, ring);
1319 }
1320
1321 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324 static __must_check int
1325 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326 struct drm_i915_file_private *file_priv,
1327 bool readonly)
1328 {
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 struct intel_engine_cs *ring = obj->ring;
1332 unsigned reset_counter;
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 mutex_unlock(&dev->struct_mutex);
1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354 mutex_lock(&dev->struct_mutex);
1355 if (ret)
1356 return ret;
1357
1358 return i915_gem_object_wait_rendering__tail(obj, ring);
1359 }
1360
1361 /**
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
1364 */
1365 int
1366 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367 struct drm_file *file)
1368 {
1369 struct drm_i915_gem_set_domain *args = data;
1370 struct drm_i915_gem_object *obj;
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
1373 int ret;
1374
1375 /* Only handle setting domains to types used by the CPU. */
1376 if (write_domain & I915_GEM_GPU_DOMAINS)
1377 return -EINVAL;
1378
1379 if (read_domains & I915_GEM_GPU_DOMAINS)
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
1388 ret = i915_mutex_lock_interruptible(dev);
1389 if (ret)
1390 return ret;
1391
1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393 if (&obj->base == NULL) {
1394 ret = -ENOENT;
1395 goto unlock;
1396 }
1397
1398 intel_edp_psr_exit(dev, true);
1399
1400 /* Try to flush the object off the GPU without holding the lock.
1401 * We will repeat the flush holding the lock in the normal manner
1402 * to catch cases where we are gazumped.
1403 */
1404 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1405 file->driver_priv,
1406 !write_domain);
1407 if (ret)
1408 goto unref;
1409
1410 if (read_domains & I915_GEM_DOMAIN_GTT) {
1411 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1412
1413 /* Silently promote "you're not bound, there was nothing to do"
1414 * to success, since the client was just asking us to
1415 * make sure everything was done.
1416 */
1417 if (ret == -EINVAL)
1418 ret = 0;
1419 } else {
1420 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1421 }
1422
1423 unref:
1424 drm_gem_object_unreference(&obj->base);
1425 unlock:
1426 mutex_unlock(&dev->struct_mutex);
1427 return ret;
1428 }
1429
1430 /**
1431 * Called when user space has done writes to this buffer
1432 */
1433 int
1434 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1435 struct drm_file *file)
1436 {
1437 struct drm_i915_gem_sw_finish *args = data;
1438 struct drm_i915_gem_object *obj;
1439 int ret = 0;
1440
1441 ret = i915_mutex_lock_interruptible(dev);
1442 if (ret)
1443 return ret;
1444
1445 intel_edp_psr_exit(dev, true);
1446
1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448 if (&obj->base == NULL) {
1449 ret = -ENOENT;
1450 goto unlock;
1451 }
1452
1453 /* Pinned buffers may be scanout, so flush the cache */
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457 drm_gem_object_unreference(&obj->base);
1458 unlock:
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461 }
1462
1463 /**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 */
1470 int
1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472 struct drm_file *file)
1473 {
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
1476 unsigned long addr;
1477
1478 obj = drm_gem_object_lookup(dev, file, args->handle);
1479 if (obj == NULL)
1480 return -ENOENT;
1481
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1484 */
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1488 }
1489
1490 addr = vm_mmap(obj->filp, 0, args->size,
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
1493 drm_gem_object_unreference_unlocked(obj);
1494 if (IS_ERR((void *)addr))
1495 return addr;
1496
1497 args->addr_ptr = (uint64_t) addr;
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1506 *
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1512 *
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1517 */
1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1527
1528 intel_runtime_pm_get(dev_priv);
1529
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1533
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
1537
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1544 */
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1548
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551 ret = -EFAULT;
1552 goto unlock;
1553 }
1554
1555 /* Now bind it into the GTT if needed */
1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557 if (ret)
1558 goto unlock;
1559
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
1563
1564 ret = i915_gem_object_get_fence(obj);
1565 if (ret)
1566 goto unpin;
1567
1568 /* Finally, remap it using the new GTT offset */
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
1571
1572 if (!obj->fault_mappable) {
1573 unsigned long size = min_t(unsigned long,
1574 vma->vm_end - vma->vm_start,
1575 obj->base.size);
1576 int i;
1577
1578 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1579 ret = vm_insert_pfn(vma,
1580 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 pfn + i);
1582 if (ret)
1583 break;
1584 }
1585
1586 obj->fault_mappable = true;
1587 } else
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vmf->virtual_address,
1590 pfn + page_offset);
1591 unpin:
1592 i915_gem_object_ggtt_unpin(obj);
1593 unlock:
1594 mutex_unlock(&dev->struct_mutex);
1595 out:
1596 switch (ret) {
1597 case -EIO:
1598 /* If this -EIO is due to a gpu hang, give the reset code a
1599 * chance to clean up the mess. Otherwise return the proper
1600 * SIGBUS. */
1601 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1602 ret = VM_FAULT_SIGBUS;
1603 break;
1604 }
1605 case -EAGAIN:
1606 /*
1607 * EAGAIN means the gpu is hung and we'll wait for the error
1608 * handler to reset everything when re-faulting in
1609 * i915_mutex_lock_interruptible.
1610 */
1611 case 0:
1612 case -ERESTARTSYS:
1613 case -EINTR:
1614 case -EBUSY:
1615 /*
1616 * EBUSY is ok: this just means that another thread
1617 * already did the job.
1618 */
1619 ret = VM_FAULT_NOPAGE;
1620 break;
1621 case -ENOMEM:
1622 ret = VM_FAULT_OOM;
1623 break;
1624 case -ENOSPC:
1625 case -EFAULT:
1626 ret = VM_FAULT_SIGBUS;
1627 break;
1628 default:
1629 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1630 ret = VM_FAULT_SIGBUS;
1631 break;
1632 }
1633
1634 intel_runtime_pm_put(dev_priv);
1635 return ret;
1636 }
1637
1638 /**
1639 * i915_gem_release_mmap - remove physical page mappings
1640 * @obj: obj in question
1641 *
1642 * Preserve the reservation of the mmapping with the DRM core code, but
1643 * relinquish ownership of the pages back to the system.
1644 *
1645 * It is vital that we remove the page mapping if we have mapped a tiled
1646 * object through the GTT and then lose the fence register due to
1647 * resource pressure. Similarly if the object has been moved out of the
1648 * aperture, than pages mapped into userspace must be revoked. Removing the
1649 * mapping will then trigger a page fault on the next user access, allowing
1650 * fixup by i915_gem_fault().
1651 */
1652 void
1653 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1654 {
1655 if (!obj->fault_mappable)
1656 return;
1657
1658 drm_vma_node_unmap(&obj->base.vma_node,
1659 obj->base.dev->anon_inode->i_mapping);
1660 obj->fault_mappable = false;
1661 }
1662
1663 void
1664 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1665 {
1666 struct drm_i915_gem_object *obj;
1667
1668 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1669 i915_gem_release_mmap(obj);
1670 }
1671
1672 uint32_t
1673 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1674 {
1675 uint32_t gtt_size;
1676
1677 if (INTEL_INFO(dev)->gen >= 4 ||
1678 tiling_mode == I915_TILING_NONE)
1679 return size;
1680
1681 /* Previous chips need a power-of-two fence region when tiling */
1682 if (INTEL_INFO(dev)->gen == 3)
1683 gtt_size = 1024*1024;
1684 else
1685 gtt_size = 512*1024;
1686
1687 while (gtt_size < size)
1688 gtt_size <<= 1;
1689
1690 return gtt_size;
1691 }
1692
1693 /**
1694 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1695 * @obj: object to check
1696 *
1697 * Return the required GTT alignment for an object, taking into account
1698 * potential fence register mapping.
1699 */
1700 uint32_t
1701 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1702 int tiling_mode, bool fenced)
1703 {
1704 /*
1705 * Minimum alignment is 4k (GTT page size), but might be greater
1706 * if a fence register is needed for the object.
1707 */
1708 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1709 tiling_mode == I915_TILING_NONE)
1710 return 4096;
1711
1712 /*
1713 * Previous chips need to be aligned to the size of the smallest
1714 * fence register that can contain the object.
1715 */
1716 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1717 }
1718
1719 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1720 {
1721 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1722 int ret;
1723
1724 if (drm_vma_node_has_offset(&obj->base.vma_node))
1725 return 0;
1726
1727 dev_priv->mm.shrinker_no_lock_stealing = true;
1728
1729 ret = drm_gem_create_mmap_offset(&obj->base);
1730 if (ret != -ENOSPC)
1731 goto out;
1732
1733 /* Badly fragmented mmap space? The only way we can recover
1734 * space is by destroying unwanted objects. We can't randomly release
1735 * mmap_offsets as userspace expects them to be persistent for the
1736 * lifetime of the objects. The closest we can is to release the
1737 * offsets on purgeable objects by truncating it and marking it purged,
1738 * which prevents userspace from ever using that object again.
1739 */
1740 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1741 ret = drm_gem_create_mmap_offset(&obj->base);
1742 if (ret != -ENOSPC)
1743 goto out;
1744
1745 i915_gem_shrink_all(dev_priv);
1746 ret = drm_gem_create_mmap_offset(&obj->base);
1747 out:
1748 dev_priv->mm.shrinker_no_lock_stealing = false;
1749
1750 return ret;
1751 }
1752
1753 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1754 {
1755 drm_gem_free_mmap_offset(&obj->base);
1756 }
1757
1758 int
1759 i915_gem_mmap_gtt(struct drm_file *file,
1760 struct drm_device *dev,
1761 uint32_t handle,
1762 uint64_t *offset)
1763 {
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 struct drm_i915_gem_object *obj;
1766 int ret;
1767
1768 ret = i915_mutex_lock_interruptible(dev);
1769 if (ret)
1770 return ret;
1771
1772 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1773 if (&obj->base == NULL) {
1774 ret = -ENOENT;
1775 goto unlock;
1776 }
1777
1778 if (obj->base.size > dev_priv->gtt.mappable_end) {
1779 ret = -E2BIG;
1780 goto out;
1781 }
1782
1783 if (obj->madv != I915_MADV_WILLNEED) {
1784 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1785 ret = -EFAULT;
1786 goto out;
1787 }
1788
1789 ret = i915_gem_object_create_mmap_offset(obj);
1790 if (ret)
1791 goto out;
1792
1793 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1794
1795 out:
1796 drm_gem_object_unreference(&obj->base);
1797 unlock:
1798 mutex_unlock(&dev->struct_mutex);
1799 return ret;
1800 }
1801
1802 /**
1803 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1804 * @dev: DRM device
1805 * @data: GTT mapping ioctl data
1806 * @file: GEM object info
1807 *
1808 * Simply returns the fake offset to userspace so it can mmap it.
1809 * The mmap call will end up in drm_gem_mmap(), which will set things
1810 * up so we can get faults in the handler above.
1811 *
1812 * The fault handler will take care of binding the object into the GTT
1813 * (since it may have been evicted to make room for something), allocating
1814 * a fence register, and mapping the appropriate aperture address into
1815 * userspace.
1816 */
1817 int
1818 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1819 struct drm_file *file)
1820 {
1821 struct drm_i915_gem_mmap_gtt *args = data;
1822
1823 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1824 }
1825
1826 static inline int
1827 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1828 {
1829 return obj->madv == I915_MADV_DONTNEED;
1830 }
1831
1832 /* Immediately discard the backing storage */
1833 static void
1834 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1835 {
1836 i915_gem_object_free_mmap_offset(obj);
1837
1838 if (obj->base.filp == NULL)
1839 return;
1840
1841 /* Our goal here is to return as much of the memory as
1842 * is possible back to the system as we are called from OOM.
1843 * To do this we must instruct the shmfs to drop all of its
1844 * backing pages, *now*.
1845 */
1846 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1847 obj->madv = __I915_MADV_PURGED;
1848 }
1849
1850 /* Try to discard unwanted pages */
1851 static void
1852 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1853 {
1854 struct address_space *mapping;
1855
1856 switch (obj->madv) {
1857 case I915_MADV_DONTNEED:
1858 i915_gem_object_truncate(obj);
1859 case __I915_MADV_PURGED:
1860 return;
1861 }
1862
1863 if (obj->base.filp == NULL)
1864 return;
1865
1866 mapping = file_inode(obj->base.filp)->i_mapping,
1867 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1868 }
1869
1870 static void
1871 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1872 {
1873 struct sg_page_iter sg_iter;
1874 int ret;
1875
1876 BUG_ON(obj->madv == __I915_MADV_PURGED);
1877
1878 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1879 if (ret) {
1880 /* In the event of a disaster, abandon all caches and
1881 * hope for the best.
1882 */
1883 WARN_ON(ret != -EIO);
1884 i915_gem_clflush_object(obj, true);
1885 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1886 }
1887
1888 if (i915_gem_object_needs_bit17_swizzle(obj))
1889 i915_gem_object_save_bit_17_swizzle(obj);
1890
1891 if (obj->madv == I915_MADV_DONTNEED)
1892 obj->dirty = 0;
1893
1894 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1895 struct page *page = sg_page_iter_page(&sg_iter);
1896
1897 if (obj->dirty)
1898 set_page_dirty(page);
1899
1900 if (obj->madv == I915_MADV_WILLNEED)
1901 mark_page_accessed(page);
1902
1903 page_cache_release(page);
1904 }
1905 obj->dirty = 0;
1906
1907 sg_free_table(obj->pages);
1908 kfree(obj->pages);
1909 }
1910
1911 int
1912 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1913 {
1914 const struct drm_i915_gem_object_ops *ops = obj->ops;
1915
1916 if (obj->pages == NULL)
1917 return 0;
1918
1919 if (obj->pages_pin_count)
1920 return -EBUSY;
1921
1922 BUG_ON(i915_gem_obj_bound_any(obj));
1923
1924 /* ->put_pages might need to allocate memory for the bit17 swizzle
1925 * array, hence protect them from being reaped by removing them from gtt
1926 * lists early. */
1927 list_del(&obj->global_list);
1928
1929 ops->put_pages(obj);
1930 obj->pages = NULL;
1931
1932 i915_gem_object_invalidate(obj);
1933
1934 return 0;
1935 }
1936
1937 static unsigned long
1938 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1939 bool purgeable_only)
1940 {
1941 struct list_head still_in_list;
1942 struct drm_i915_gem_object *obj;
1943 unsigned long count = 0;
1944
1945 /*
1946 * As we may completely rewrite the (un)bound list whilst unbinding
1947 * (due to retiring requests) we have to strictly process only
1948 * one element of the list at the time, and recheck the list
1949 * on every iteration.
1950 *
1951 * In particular, we must hold a reference whilst removing the
1952 * object as we may end up waiting for and/or retiring the objects.
1953 * This might release the final reference (held by the active list)
1954 * and result in the object being freed from under us. This is
1955 * similar to the precautions the eviction code must take whilst
1956 * removing objects.
1957 *
1958 * Also note that although these lists do not hold a reference to
1959 * the object we can safely grab one here: The final object
1960 * unreferencing and the bound_list are both protected by the
1961 * dev->struct_mutex and so we won't ever be able to observe an
1962 * object on the bound_list with a reference count equals 0.
1963 */
1964 INIT_LIST_HEAD(&still_in_list);
1965 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1966 obj = list_first_entry(&dev_priv->mm.unbound_list,
1967 typeof(*obj), global_list);
1968 list_move_tail(&obj->global_list, &still_in_list);
1969
1970 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1971 continue;
1972
1973 drm_gem_object_reference(&obj->base);
1974
1975 if (i915_gem_object_put_pages(obj) == 0)
1976 count += obj->base.size >> PAGE_SHIFT;
1977
1978 drm_gem_object_unreference(&obj->base);
1979 }
1980 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1981
1982 INIT_LIST_HEAD(&still_in_list);
1983 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1984 struct i915_vma *vma, *v;
1985
1986 obj = list_first_entry(&dev_priv->mm.bound_list,
1987 typeof(*obj), global_list);
1988 list_move_tail(&obj->global_list, &still_in_list);
1989
1990 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1991 continue;
1992
1993 drm_gem_object_reference(&obj->base);
1994
1995 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1996 if (i915_vma_unbind(vma))
1997 break;
1998
1999 if (i915_gem_object_put_pages(obj) == 0)
2000 count += obj->base.size >> PAGE_SHIFT;
2001
2002 drm_gem_object_unreference(&obj->base);
2003 }
2004 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2005
2006 return count;
2007 }
2008
2009 static unsigned long
2010 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2011 {
2012 return __i915_gem_shrink(dev_priv, target, true);
2013 }
2014
2015 static unsigned long
2016 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2017 {
2018 i915_gem_evict_everything(dev_priv->dev);
2019 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2020 }
2021
2022 static int
2023 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2024 {
2025 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2026 int page_count, i;
2027 struct address_space *mapping;
2028 struct sg_table *st;
2029 struct scatterlist *sg;
2030 struct sg_page_iter sg_iter;
2031 struct page *page;
2032 unsigned long last_pfn = 0; /* suppress gcc warning */
2033 gfp_t gfp;
2034
2035 /* Assert that the object is not currently in any GPU domain. As it
2036 * wasn't in the GTT, there shouldn't be any way it could have been in
2037 * a GPU cache
2038 */
2039 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2040 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2041
2042 st = kmalloc(sizeof(*st), GFP_KERNEL);
2043 if (st == NULL)
2044 return -ENOMEM;
2045
2046 page_count = obj->base.size / PAGE_SIZE;
2047 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2048 kfree(st);
2049 return -ENOMEM;
2050 }
2051
2052 /* Get the list of pages out of our struct file. They'll be pinned
2053 * at this point until we release them.
2054 *
2055 * Fail silently without starting the shrinker
2056 */
2057 mapping = file_inode(obj->base.filp)->i_mapping;
2058 gfp = mapping_gfp_mask(mapping);
2059 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2060 gfp &= ~(__GFP_IO | __GFP_WAIT);
2061 sg = st->sgl;
2062 st->nents = 0;
2063 for (i = 0; i < page_count; i++) {
2064 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2065 if (IS_ERR(page)) {
2066 i915_gem_purge(dev_priv, page_count);
2067 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2068 }
2069 if (IS_ERR(page)) {
2070 /* We've tried hard to allocate the memory by reaping
2071 * our own buffer, now let the real VM do its job and
2072 * go down in flames if truly OOM.
2073 */
2074 i915_gem_shrink_all(dev_priv);
2075 page = shmem_read_mapping_page(mapping, i);
2076 if (IS_ERR(page))
2077 goto err_pages;
2078 }
2079 #ifdef CONFIG_SWIOTLB
2080 if (swiotlb_nr_tbl()) {
2081 st->nents++;
2082 sg_set_page(sg, page, PAGE_SIZE, 0);
2083 sg = sg_next(sg);
2084 continue;
2085 }
2086 #endif
2087 if (!i || page_to_pfn(page) != last_pfn + 1) {
2088 if (i)
2089 sg = sg_next(sg);
2090 st->nents++;
2091 sg_set_page(sg, page, PAGE_SIZE, 0);
2092 } else {
2093 sg->length += PAGE_SIZE;
2094 }
2095 last_pfn = page_to_pfn(page);
2096
2097 /* Check that the i965g/gm workaround works. */
2098 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2099 }
2100 #ifdef CONFIG_SWIOTLB
2101 if (!swiotlb_nr_tbl())
2102 #endif
2103 sg_mark_end(sg);
2104 obj->pages = st;
2105
2106 if (i915_gem_object_needs_bit17_swizzle(obj))
2107 i915_gem_object_do_bit_17_swizzle(obj);
2108
2109 return 0;
2110
2111 err_pages:
2112 sg_mark_end(sg);
2113 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2114 page_cache_release(sg_page_iter_page(&sg_iter));
2115 sg_free_table(st);
2116 kfree(st);
2117
2118 /* shmemfs first checks if there is enough memory to allocate the page
2119 * and reports ENOSPC should there be insufficient, along with the usual
2120 * ENOMEM for a genuine allocation failure.
2121 *
2122 * We use ENOSPC in our driver to mean that we have run out of aperture
2123 * space and so want to translate the error from shmemfs back to our
2124 * usual understanding of ENOMEM.
2125 */
2126 if (PTR_ERR(page) == -ENOSPC)
2127 return -ENOMEM;
2128 else
2129 return PTR_ERR(page);
2130 }
2131
2132 /* Ensure that the associated pages are gathered from the backing storage
2133 * and pinned into our object. i915_gem_object_get_pages() may be called
2134 * multiple times before they are released by a single call to
2135 * i915_gem_object_put_pages() - once the pages are no longer referenced
2136 * either as a result of memory pressure (reaping pages under the shrinker)
2137 * or as the object is itself released.
2138 */
2139 int
2140 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2141 {
2142 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2143 const struct drm_i915_gem_object_ops *ops = obj->ops;
2144 int ret;
2145
2146 if (obj->pages)
2147 return 0;
2148
2149 if (obj->madv != I915_MADV_WILLNEED) {
2150 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2151 return -EFAULT;
2152 }
2153
2154 BUG_ON(obj->pages_pin_count);
2155
2156 ret = ops->get_pages(obj);
2157 if (ret)
2158 return ret;
2159
2160 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2161 return 0;
2162 }
2163
2164 static void
2165 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2166 struct intel_engine_cs *ring)
2167 {
2168 struct drm_device *dev = obj->base.dev;
2169 struct drm_i915_private *dev_priv = dev->dev_private;
2170 u32 seqno = intel_ring_get_seqno(ring);
2171
2172 BUG_ON(ring == NULL);
2173 if (obj->ring != ring && obj->last_write_seqno) {
2174 /* Keep the seqno relative to the current ring */
2175 obj->last_write_seqno = seqno;
2176 }
2177 obj->ring = ring;
2178
2179 /* Add a reference if we're newly entering the active list. */
2180 if (!obj->active) {
2181 drm_gem_object_reference(&obj->base);
2182 obj->active = 1;
2183 }
2184
2185 list_move_tail(&obj->ring_list, &ring->active_list);
2186
2187 obj->last_read_seqno = seqno;
2188
2189 if (obj->fenced_gpu_access) {
2190 obj->last_fenced_seqno = seqno;
2191
2192 /* Bump MRU to take account of the delayed flush */
2193 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2194 struct drm_i915_fence_reg *reg;
2195
2196 reg = &dev_priv->fence_regs[obj->fence_reg];
2197 list_move_tail(&reg->lru_list,
2198 &dev_priv->mm.fence_list);
2199 }
2200 }
2201 }
2202
2203 void i915_vma_move_to_active(struct i915_vma *vma,
2204 struct intel_engine_cs *ring)
2205 {
2206 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207 return i915_gem_object_move_to_active(vma->obj, ring);
2208 }
2209
2210 static void
2211 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212 {
2213 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2214 struct i915_address_space *vm;
2215 struct i915_vma *vma;
2216
2217 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2218 BUG_ON(!obj->active);
2219
2220 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2221 vma = i915_gem_obj_to_vma(obj, vm);
2222 if (vma && !list_empty(&vma->mm_list))
2223 list_move_tail(&vma->mm_list, &vm->inactive_list);
2224 }
2225
2226 list_del_init(&obj->ring_list);
2227 obj->ring = NULL;
2228
2229 obj->last_read_seqno = 0;
2230 obj->last_write_seqno = 0;
2231 obj->base.write_domain = 0;
2232
2233 obj->last_fenced_seqno = 0;
2234 obj->fenced_gpu_access = false;
2235
2236 obj->active = 0;
2237 drm_gem_object_unreference(&obj->base);
2238
2239 WARN_ON(i915_verify_lists(dev));
2240 }
2241
2242 static void
2243 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2244 {
2245 struct intel_engine_cs *ring = obj->ring;
2246
2247 if (ring == NULL)
2248 return;
2249
2250 if (i915_seqno_passed(ring->get_seqno(ring, true),
2251 obj->last_read_seqno))
2252 i915_gem_object_move_to_inactive(obj);
2253 }
2254
2255 static int
2256 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2257 {
2258 struct drm_i915_private *dev_priv = dev->dev_private;
2259 struct intel_engine_cs *ring;
2260 int ret, i, j;
2261
2262 /* Carefully retire all requests without writing to the rings */
2263 for_each_ring(ring, dev_priv, i) {
2264 ret = intel_ring_idle(ring);
2265 if (ret)
2266 return ret;
2267 }
2268 i915_gem_retire_requests(dev);
2269
2270 /* Finally reset hw state */
2271 for_each_ring(ring, dev_priv, i) {
2272 intel_ring_init_seqno(ring, seqno);
2273
2274 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2275 ring->semaphore.sync_seqno[j] = 0;
2276 }
2277
2278 return 0;
2279 }
2280
2281 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2282 {
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 int ret;
2285
2286 if (seqno == 0)
2287 return -EINVAL;
2288
2289 /* HWS page needs to be set less than what we
2290 * will inject to ring
2291 */
2292 ret = i915_gem_init_seqno(dev, seqno - 1);
2293 if (ret)
2294 return ret;
2295
2296 /* Carefully set the last_seqno value so that wrap
2297 * detection still works
2298 */
2299 dev_priv->next_seqno = seqno;
2300 dev_priv->last_seqno = seqno - 1;
2301 if (dev_priv->last_seqno == 0)
2302 dev_priv->last_seqno--;
2303
2304 return 0;
2305 }
2306
2307 int
2308 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2309 {
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311
2312 /* reserve 0 for non-seqno */
2313 if (dev_priv->next_seqno == 0) {
2314 int ret = i915_gem_init_seqno(dev, 0);
2315 if (ret)
2316 return ret;
2317
2318 dev_priv->next_seqno = 1;
2319 }
2320
2321 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2322 return 0;
2323 }
2324
2325 int __i915_add_request(struct intel_engine_cs *ring,
2326 struct drm_file *file,
2327 struct drm_i915_gem_object *obj,
2328 u32 *out_seqno)
2329 {
2330 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2331 struct drm_i915_gem_request *request;
2332 u32 request_ring_position, request_start;
2333 int ret;
2334
2335 request_start = intel_ring_get_tail(ring);
2336 /*
2337 * Emit any outstanding flushes - execbuf can fail to emit the flush
2338 * after having emitted the batchbuffer command. Hence we need to fix
2339 * things up similar to emitting the lazy request. The difference here
2340 * is that the flush _must_ happen before the next request, no matter
2341 * what.
2342 */
2343 ret = intel_ring_flush_all_caches(ring);
2344 if (ret)
2345 return ret;
2346
2347 request = ring->preallocated_lazy_request;
2348 if (WARN_ON(request == NULL))
2349 return -ENOMEM;
2350
2351 /* Record the position of the start of the request so that
2352 * should we detect the updated seqno part-way through the
2353 * GPU processing the request, we never over-estimate the
2354 * position of the head.
2355 */
2356 request_ring_position = intel_ring_get_tail(ring);
2357
2358 ret = ring->add_request(ring);
2359 if (ret)
2360 return ret;
2361
2362 request->seqno = intel_ring_get_seqno(ring);
2363 request->ring = ring;
2364 request->head = request_start;
2365 request->tail = request_ring_position;
2366
2367 /* Whilst this request exists, batch_obj will be on the
2368 * active_list, and so will hold the active reference. Only when this
2369 * request is retired will the the batch_obj be moved onto the
2370 * inactive_list and lose its active reference. Hence we do not need
2371 * to explicitly hold another reference here.
2372 */
2373 request->batch_obj = obj;
2374
2375 /* Hold a reference to the current context so that we can inspect
2376 * it later in case a hangcheck error event fires.
2377 */
2378 request->ctx = ring->last_context;
2379 if (request->ctx)
2380 i915_gem_context_reference(request->ctx);
2381
2382 request->emitted_jiffies = jiffies;
2383 list_add_tail(&request->list, &ring->request_list);
2384 request->file_priv = NULL;
2385
2386 if (file) {
2387 struct drm_i915_file_private *file_priv = file->driver_priv;
2388
2389 spin_lock(&file_priv->mm.lock);
2390 request->file_priv = file_priv;
2391 list_add_tail(&request->client_list,
2392 &file_priv->mm.request_list);
2393 spin_unlock(&file_priv->mm.lock);
2394 }
2395
2396 trace_i915_gem_request_add(ring, request->seqno);
2397 ring->outstanding_lazy_seqno = 0;
2398 ring->preallocated_lazy_request = NULL;
2399
2400 if (!dev_priv->ums.mm_suspended) {
2401 i915_queue_hangcheck(ring->dev);
2402
2403 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2404 queue_delayed_work(dev_priv->wq,
2405 &dev_priv->mm.retire_work,
2406 round_jiffies_up_relative(HZ));
2407 intel_mark_busy(dev_priv->dev);
2408 }
2409
2410 if (out_seqno)
2411 *out_seqno = request->seqno;
2412 return 0;
2413 }
2414
2415 static inline void
2416 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2417 {
2418 struct drm_i915_file_private *file_priv = request->file_priv;
2419
2420 if (!file_priv)
2421 return;
2422
2423 spin_lock(&file_priv->mm.lock);
2424 list_del(&request->client_list);
2425 request->file_priv = NULL;
2426 spin_unlock(&file_priv->mm.lock);
2427 }
2428
2429 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2430 const struct intel_context *ctx)
2431 {
2432 unsigned long elapsed;
2433
2434 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2435
2436 if (ctx->hang_stats.banned)
2437 return true;
2438
2439 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2440 if (!i915_gem_context_is_default(ctx)) {
2441 DRM_DEBUG("context hanging too fast, banning!\n");
2442 return true;
2443 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2444 if (i915_stop_ring_allow_warn(dev_priv))
2445 DRM_ERROR("gpu hanging too fast, banning!\n");
2446 return true;
2447 }
2448 }
2449
2450 return false;
2451 }
2452
2453 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2454 struct intel_context *ctx,
2455 const bool guilty)
2456 {
2457 struct i915_ctx_hang_stats *hs;
2458
2459 if (WARN_ON(!ctx))
2460 return;
2461
2462 hs = &ctx->hang_stats;
2463
2464 if (guilty) {
2465 hs->banned = i915_context_is_banned(dev_priv, ctx);
2466 hs->batch_active++;
2467 hs->guilty_ts = get_seconds();
2468 } else {
2469 hs->batch_pending++;
2470 }
2471 }
2472
2473 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2474 {
2475 list_del(&request->list);
2476 i915_gem_request_remove_from_client(request);
2477
2478 if (request->ctx)
2479 i915_gem_context_unreference(request->ctx);
2480
2481 kfree(request);
2482 }
2483
2484 struct drm_i915_gem_request *
2485 i915_gem_find_active_request(struct intel_engine_cs *ring)
2486 {
2487 struct drm_i915_gem_request *request;
2488 u32 completed_seqno;
2489
2490 completed_seqno = ring->get_seqno(ring, false);
2491
2492 list_for_each_entry(request, &ring->request_list, list) {
2493 if (i915_seqno_passed(completed_seqno, request->seqno))
2494 continue;
2495
2496 return request;
2497 }
2498
2499 return NULL;
2500 }
2501
2502 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2503 struct intel_engine_cs *ring)
2504 {
2505 struct drm_i915_gem_request *request;
2506 bool ring_hung;
2507
2508 request = i915_gem_find_active_request(ring);
2509
2510 if (request == NULL)
2511 return;
2512
2513 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2514
2515 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2516
2517 list_for_each_entry_continue(request, &ring->request_list, list)
2518 i915_set_reset_status(dev_priv, request->ctx, false);
2519 }
2520
2521 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2522 struct intel_engine_cs *ring)
2523 {
2524 while (!list_empty(&ring->active_list)) {
2525 struct drm_i915_gem_object *obj;
2526
2527 obj = list_first_entry(&ring->active_list,
2528 struct drm_i915_gem_object,
2529 ring_list);
2530
2531 i915_gem_object_move_to_inactive(obj);
2532 }
2533
2534 /*
2535 * We must free the requests after all the corresponding objects have
2536 * been moved off active lists. Which is the same order as the normal
2537 * retire_requests function does. This is important if object hold
2538 * implicit references on things like e.g. ppgtt address spaces through
2539 * the request.
2540 */
2541 while (!list_empty(&ring->request_list)) {
2542 struct drm_i915_gem_request *request;
2543
2544 request = list_first_entry(&ring->request_list,
2545 struct drm_i915_gem_request,
2546 list);
2547
2548 i915_gem_free_request(request);
2549 }
2550
2551 /* These may not have been flush before the reset, do so now */
2552 kfree(ring->preallocated_lazy_request);
2553 ring->preallocated_lazy_request = NULL;
2554 ring->outstanding_lazy_seqno = 0;
2555 }
2556
2557 void i915_gem_restore_fences(struct drm_device *dev)
2558 {
2559 struct drm_i915_private *dev_priv = dev->dev_private;
2560 int i;
2561
2562 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2563 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2564
2565 /*
2566 * Commit delayed tiling changes if we have an object still
2567 * attached to the fence, otherwise just clear the fence.
2568 */
2569 if (reg->obj) {
2570 i915_gem_object_update_fence(reg->obj, reg,
2571 reg->obj->tiling_mode);
2572 } else {
2573 i915_gem_write_fence(dev, i, NULL);
2574 }
2575 }
2576 }
2577
2578 void i915_gem_reset(struct drm_device *dev)
2579 {
2580 struct drm_i915_private *dev_priv = dev->dev_private;
2581 struct intel_engine_cs *ring;
2582 int i;
2583
2584 /*
2585 * Before we free the objects from the requests, we need to inspect
2586 * them for finding the guilty party. As the requests only borrow
2587 * their reference to the objects, the inspection must be done first.
2588 */
2589 for_each_ring(ring, dev_priv, i)
2590 i915_gem_reset_ring_status(dev_priv, ring);
2591
2592 for_each_ring(ring, dev_priv, i)
2593 i915_gem_reset_ring_cleanup(dev_priv, ring);
2594
2595 i915_gem_context_reset(dev);
2596
2597 i915_gem_restore_fences(dev);
2598 }
2599
2600 /**
2601 * This function clears the request list as sequence numbers are passed.
2602 */
2603 void
2604 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2605 {
2606 uint32_t seqno;
2607
2608 if (list_empty(&ring->request_list))
2609 return;
2610
2611 WARN_ON(i915_verify_lists(ring->dev));
2612
2613 seqno = ring->get_seqno(ring, true);
2614
2615 /* Move any buffers on the active list that are no longer referenced
2616 * by the ringbuffer to the flushing/inactive lists as appropriate,
2617 * before we free the context associated with the requests.
2618 */
2619 while (!list_empty(&ring->active_list)) {
2620 struct drm_i915_gem_object *obj;
2621
2622 obj = list_first_entry(&ring->active_list,
2623 struct drm_i915_gem_object,
2624 ring_list);
2625
2626 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2627 break;
2628
2629 i915_gem_object_move_to_inactive(obj);
2630 }
2631
2632
2633 while (!list_empty(&ring->request_list)) {
2634 struct drm_i915_gem_request *request;
2635
2636 request = list_first_entry(&ring->request_list,
2637 struct drm_i915_gem_request,
2638 list);
2639
2640 if (!i915_seqno_passed(seqno, request->seqno))
2641 break;
2642
2643 trace_i915_gem_request_retire(ring, request->seqno);
2644 /* We know the GPU must have read the request to have
2645 * sent us the seqno + interrupt, so use the position
2646 * of tail of the request to update the last known position
2647 * of the GPU head.
2648 */
2649 ring->buffer->last_retired_head = request->tail;
2650
2651 i915_gem_free_request(request);
2652 }
2653
2654 if (unlikely(ring->trace_irq_seqno &&
2655 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2656 ring->irq_put(ring);
2657 ring->trace_irq_seqno = 0;
2658 }
2659
2660 WARN_ON(i915_verify_lists(ring->dev));
2661 }
2662
2663 bool
2664 i915_gem_retire_requests(struct drm_device *dev)
2665 {
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 struct intel_engine_cs *ring;
2668 bool idle = true;
2669 int i;
2670
2671 for_each_ring(ring, dev_priv, i) {
2672 i915_gem_retire_requests_ring(ring);
2673 idle &= list_empty(&ring->request_list);
2674 }
2675
2676 if (idle)
2677 mod_delayed_work(dev_priv->wq,
2678 &dev_priv->mm.idle_work,
2679 msecs_to_jiffies(100));
2680
2681 return idle;
2682 }
2683
2684 static void
2685 i915_gem_retire_work_handler(struct work_struct *work)
2686 {
2687 struct drm_i915_private *dev_priv =
2688 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2689 struct drm_device *dev = dev_priv->dev;
2690 bool idle;
2691
2692 /* Come back later if the device is busy... */
2693 idle = false;
2694 if (mutex_trylock(&dev->struct_mutex)) {
2695 idle = i915_gem_retire_requests(dev);
2696 mutex_unlock(&dev->struct_mutex);
2697 }
2698 if (!idle)
2699 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2700 round_jiffies_up_relative(HZ));
2701 }
2702
2703 static void
2704 i915_gem_idle_work_handler(struct work_struct *work)
2705 {
2706 struct drm_i915_private *dev_priv =
2707 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2708
2709 intel_mark_idle(dev_priv->dev);
2710 }
2711
2712 /**
2713 * Ensures that an object will eventually get non-busy by flushing any required
2714 * write domains, emitting any outstanding lazy request and retiring and
2715 * completed requests.
2716 */
2717 static int
2718 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2719 {
2720 int ret;
2721
2722 if (obj->active) {
2723 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2724 if (ret)
2725 return ret;
2726
2727 i915_gem_retire_requests_ring(obj->ring);
2728 }
2729
2730 return 0;
2731 }
2732
2733 /**
2734 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2735 * @DRM_IOCTL_ARGS: standard ioctl arguments
2736 *
2737 * Returns 0 if successful, else an error is returned with the remaining time in
2738 * the timeout parameter.
2739 * -ETIME: object is still busy after timeout
2740 * -ERESTARTSYS: signal interrupted the wait
2741 * -ENONENT: object doesn't exist
2742 * Also possible, but rare:
2743 * -EAGAIN: GPU wedged
2744 * -ENOMEM: damn
2745 * -ENODEV: Internal IRQ fail
2746 * -E?: The add request failed
2747 *
2748 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2749 * non-zero timeout parameter the wait ioctl will wait for the given number of
2750 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2751 * without holding struct_mutex the object may become re-busied before this
2752 * function completes. A similar but shorter * race condition exists in the busy
2753 * ioctl
2754 */
2755 int
2756 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 struct drm_i915_gem_wait *args = data;
2760 struct drm_i915_gem_object *obj;
2761 struct intel_engine_cs *ring = NULL;
2762 struct timespec timeout_stack, *timeout = NULL;
2763 unsigned reset_counter;
2764 u32 seqno = 0;
2765 int ret = 0;
2766
2767 if (args->timeout_ns >= 0) {
2768 timeout_stack = ns_to_timespec(args->timeout_ns);
2769 timeout = &timeout_stack;
2770 }
2771
2772 ret = i915_mutex_lock_interruptible(dev);
2773 if (ret)
2774 return ret;
2775
2776 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2777 if (&obj->base == NULL) {
2778 mutex_unlock(&dev->struct_mutex);
2779 return -ENOENT;
2780 }
2781
2782 /* Need to make sure the object gets inactive eventually. */
2783 ret = i915_gem_object_flush_active(obj);
2784 if (ret)
2785 goto out;
2786
2787 if (obj->active) {
2788 seqno = obj->last_read_seqno;
2789 ring = obj->ring;
2790 }
2791
2792 if (seqno == 0)
2793 goto out;
2794
2795 /* Do this after OLR check to make sure we make forward progress polling
2796 * on this IOCTL with a 0 timeout (like busy ioctl)
2797 */
2798 if (!args->timeout_ns) {
2799 ret = -ETIME;
2800 goto out;
2801 }
2802
2803 drm_gem_object_unreference(&obj->base);
2804 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2805 mutex_unlock(&dev->struct_mutex);
2806
2807 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2808 if (timeout)
2809 args->timeout_ns = timespec_to_ns(timeout);
2810 return ret;
2811
2812 out:
2813 drm_gem_object_unreference(&obj->base);
2814 mutex_unlock(&dev->struct_mutex);
2815 return ret;
2816 }
2817
2818 /**
2819 * i915_gem_object_sync - sync an object to a ring.
2820 *
2821 * @obj: object which may be in use on another ring.
2822 * @to: ring we wish to use the object on. May be NULL.
2823 *
2824 * This code is meant to abstract object synchronization with the GPU.
2825 * Calling with NULL implies synchronizing the object with the CPU
2826 * rather than a particular GPU ring.
2827 *
2828 * Returns 0 if successful, else propagates up the lower layer error.
2829 */
2830 int
2831 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2832 struct intel_engine_cs *to)
2833 {
2834 struct intel_engine_cs *from = obj->ring;
2835 u32 seqno;
2836 int ret, idx;
2837
2838 if (from == NULL || to == from)
2839 return 0;
2840
2841 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2842 return i915_gem_object_wait_rendering(obj, false);
2843
2844 idx = intel_ring_sync_index(from, to);
2845
2846 seqno = obj->last_read_seqno;
2847 if (seqno <= from->semaphore.sync_seqno[idx])
2848 return 0;
2849
2850 ret = i915_gem_check_olr(obj->ring, seqno);
2851 if (ret)
2852 return ret;
2853
2854 trace_i915_gem_ring_sync_to(from, to, seqno);
2855 ret = to->semaphore.sync_to(to, from, seqno);
2856 if (!ret)
2857 /* We use last_read_seqno because sync_to()
2858 * might have just caused seqno wrap under
2859 * the radar.
2860 */
2861 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2862
2863 return ret;
2864 }
2865
2866 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2867 {
2868 u32 old_write_domain, old_read_domains;
2869
2870 /* Force a pagefault for domain tracking on next user access */
2871 i915_gem_release_mmap(obj);
2872
2873 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2874 return;
2875
2876 /* Wait for any direct GTT access to complete */
2877 mb();
2878
2879 old_read_domains = obj->base.read_domains;
2880 old_write_domain = obj->base.write_domain;
2881
2882 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2883 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2884
2885 trace_i915_gem_object_change_domain(obj,
2886 old_read_domains,
2887 old_write_domain);
2888 }
2889
2890 int i915_vma_unbind(struct i915_vma *vma)
2891 {
2892 struct drm_i915_gem_object *obj = vma->obj;
2893 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2894 int ret;
2895
2896 if (list_empty(&vma->vma_link))
2897 return 0;
2898
2899 if (!drm_mm_node_allocated(&vma->node)) {
2900 i915_gem_vma_destroy(vma);
2901 return 0;
2902 }
2903
2904 if (vma->pin_count)
2905 return -EBUSY;
2906
2907 BUG_ON(obj->pages == NULL);
2908
2909 ret = i915_gem_object_finish_gpu(obj);
2910 if (ret)
2911 return ret;
2912 /* Continue on if we fail due to EIO, the GPU is hung so we
2913 * should be safe and we need to cleanup or else we might
2914 * cause memory corruption through use-after-free.
2915 */
2916
2917 if (i915_is_ggtt(vma->vm)) {
2918 i915_gem_object_finish_gtt(obj);
2919
2920 /* release the fence reg _after_ flushing */
2921 ret = i915_gem_object_put_fence(obj);
2922 if (ret)
2923 return ret;
2924 }
2925
2926 trace_i915_vma_unbind(vma);
2927
2928 vma->unbind_vma(vma);
2929
2930 i915_gem_gtt_finish_object(obj);
2931
2932 list_del_init(&vma->mm_list);
2933 /* Avoid an unnecessary call to unbind on rebind. */
2934 if (i915_is_ggtt(vma->vm))
2935 obj->map_and_fenceable = true;
2936
2937 drm_mm_remove_node(&vma->node);
2938 i915_gem_vma_destroy(vma);
2939
2940 /* Since the unbound list is global, only move to that list if
2941 * no more VMAs exist. */
2942 if (list_empty(&obj->vma_list))
2943 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2944
2945 /* And finally now the object is completely decoupled from this vma,
2946 * we can drop its hold on the backing storage and allow it to be
2947 * reaped by the shrinker.
2948 */
2949 i915_gem_object_unpin_pages(obj);
2950
2951 return 0;
2952 }
2953
2954 int i915_gpu_idle(struct drm_device *dev)
2955 {
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 struct intel_engine_cs *ring;
2958 int ret, i;
2959
2960 /* Flush everything onto the inactive list. */
2961 for_each_ring(ring, dev_priv, i) {
2962 ret = i915_switch_context(ring, ring->default_context);
2963 if (ret)
2964 return ret;
2965
2966 ret = intel_ring_idle(ring);
2967 if (ret)
2968 return ret;
2969 }
2970
2971 return 0;
2972 }
2973
2974 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2975 struct drm_i915_gem_object *obj)
2976 {
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 int fence_reg;
2979 int fence_pitch_shift;
2980
2981 if (INTEL_INFO(dev)->gen >= 6) {
2982 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2983 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2984 } else {
2985 fence_reg = FENCE_REG_965_0;
2986 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2987 }
2988
2989 fence_reg += reg * 8;
2990
2991 /* To w/a incoherency with non-atomic 64-bit register updates,
2992 * we split the 64-bit update into two 32-bit writes. In order
2993 * for a partial fence not to be evaluated between writes, we
2994 * precede the update with write to turn off the fence register,
2995 * and only enable the fence as the last step.
2996 *
2997 * For extra levels of paranoia, we make sure each step lands
2998 * before applying the next step.
2999 */
3000 I915_WRITE(fence_reg, 0);
3001 POSTING_READ(fence_reg);
3002
3003 if (obj) {
3004 u32 size = i915_gem_obj_ggtt_size(obj);
3005 uint64_t val;
3006
3007 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3008 0xfffff000) << 32;
3009 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3010 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3011 if (obj->tiling_mode == I915_TILING_Y)
3012 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3013 val |= I965_FENCE_REG_VALID;
3014
3015 I915_WRITE(fence_reg + 4, val >> 32);
3016 POSTING_READ(fence_reg + 4);
3017
3018 I915_WRITE(fence_reg + 0, val);
3019 POSTING_READ(fence_reg);
3020 } else {
3021 I915_WRITE(fence_reg + 4, 0);
3022 POSTING_READ(fence_reg + 4);
3023 }
3024 }
3025
3026 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3027 struct drm_i915_gem_object *obj)
3028 {
3029 struct drm_i915_private *dev_priv = dev->dev_private;
3030 u32 val;
3031
3032 if (obj) {
3033 u32 size = i915_gem_obj_ggtt_size(obj);
3034 int pitch_val;
3035 int tile_width;
3036
3037 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3038 (size & -size) != size ||
3039 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3040 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3041 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3042
3043 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3044 tile_width = 128;
3045 else
3046 tile_width = 512;
3047
3048 /* Note: pitch better be a power of two tile widths */
3049 pitch_val = obj->stride / tile_width;
3050 pitch_val = ffs(pitch_val) - 1;
3051
3052 val = i915_gem_obj_ggtt_offset(obj);
3053 if (obj->tiling_mode == I915_TILING_Y)
3054 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3055 val |= I915_FENCE_SIZE_BITS(size);
3056 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3057 val |= I830_FENCE_REG_VALID;
3058 } else
3059 val = 0;
3060
3061 if (reg < 8)
3062 reg = FENCE_REG_830_0 + reg * 4;
3063 else
3064 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3065
3066 I915_WRITE(reg, val);
3067 POSTING_READ(reg);
3068 }
3069
3070 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3071 struct drm_i915_gem_object *obj)
3072 {
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 uint32_t val;
3075
3076 if (obj) {
3077 u32 size = i915_gem_obj_ggtt_size(obj);
3078 uint32_t pitch_val;
3079
3080 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3081 (size & -size) != size ||
3082 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3083 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3084 i915_gem_obj_ggtt_offset(obj), size);
3085
3086 pitch_val = obj->stride / 128;
3087 pitch_val = ffs(pitch_val) - 1;
3088
3089 val = i915_gem_obj_ggtt_offset(obj);
3090 if (obj->tiling_mode == I915_TILING_Y)
3091 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3092 val |= I830_FENCE_SIZE_BITS(size);
3093 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3094 val |= I830_FENCE_REG_VALID;
3095 } else
3096 val = 0;
3097
3098 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3099 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3100 }
3101
3102 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3103 {
3104 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3105 }
3106
3107 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3108 struct drm_i915_gem_object *obj)
3109 {
3110 struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112 /* Ensure that all CPU reads are completed before installing a fence
3113 * and all writes before removing the fence.
3114 */
3115 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3116 mb();
3117
3118 WARN(obj && (!obj->stride || !obj->tiling_mode),
3119 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3120 obj->stride, obj->tiling_mode);
3121
3122 switch (INTEL_INFO(dev)->gen) {
3123 case 8:
3124 case 7:
3125 case 6:
3126 case 5:
3127 case 4: i965_write_fence_reg(dev, reg, obj); break;
3128 case 3: i915_write_fence_reg(dev, reg, obj); break;
3129 case 2: i830_write_fence_reg(dev, reg, obj); break;
3130 default: BUG();
3131 }
3132
3133 /* And similarly be paranoid that no direct access to this region
3134 * is reordered to before the fence is installed.
3135 */
3136 if (i915_gem_object_needs_mb(obj))
3137 mb();
3138 }
3139
3140 static inline int fence_number(struct drm_i915_private *dev_priv,
3141 struct drm_i915_fence_reg *fence)
3142 {
3143 return fence - dev_priv->fence_regs;
3144 }
3145
3146 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3147 struct drm_i915_fence_reg *fence,
3148 bool enable)
3149 {
3150 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3151 int reg = fence_number(dev_priv, fence);
3152
3153 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3154
3155 if (enable) {
3156 obj->fence_reg = reg;
3157 fence->obj = obj;
3158 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3159 } else {
3160 obj->fence_reg = I915_FENCE_REG_NONE;
3161 fence->obj = NULL;
3162 list_del_init(&fence->lru_list);
3163 }
3164 obj->fence_dirty = false;
3165 }
3166
3167 static int
3168 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3169 {
3170 if (obj->last_fenced_seqno) {
3171 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3172 if (ret)
3173 return ret;
3174
3175 obj->last_fenced_seqno = 0;
3176 }
3177
3178 obj->fenced_gpu_access = false;
3179 return 0;
3180 }
3181
3182 int
3183 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3184 {
3185 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3186 struct drm_i915_fence_reg *fence;
3187 int ret;
3188
3189 ret = i915_gem_object_wait_fence(obj);
3190 if (ret)
3191 return ret;
3192
3193 if (obj->fence_reg == I915_FENCE_REG_NONE)
3194 return 0;
3195
3196 fence = &dev_priv->fence_regs[obj->fence_reg];
3197
3198 if (WARN_ON(fence->pin_count))
3199 return -EBUSY;
3200
3201 i915_gem_object_fence_lost(obj);
3202 i915_gem_object_update_fence(obj, fence, false);
3203
3204 return 0;
3205 }
3206
3207 static struct drm_i915_fence_reg *
3208 i915_find_fence_reg(struct drm_device *dev)
3209 {
3210 struct drm_i915_private *dev_priv = dev->dev_private;
3211 struct drm_i915_fence_reg *reg, *avail;
3212 int i;
3213
3214 /* First try to find a free reg */
3215 avail = NULL;
3216 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3217 reg = &dev_priv->fence_regs[i];
3218 if (!reg->obj)
3219 return reg;
3220
3221 if (!reg->pin_count)
3222 avail = reg;
3223 }
3224
3225 if (avail == NULL)
3226 goto deadlock;
3227
3228 /* None available, try to steal one or wait for a user to finish */
3229 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3230 if (reg->pin_count)
3231 continue;
3232
3233 return reg;
3234 }
3235
3236 deadlock:
3237 /* Wait for completion of pending flips which consume fences */
3238 if (intel_has_pending_fb_unpin(dev))
3239 return ERR_PTR(-EAGAIN);
3240
3241 return ERR_PTR(-EDEADLK);
3242 }
3243
3244 /**
3245 * i915_gem_object_get_fence - set up fencing for an object
3246 * @obj: object to map through a fence reg
3247 *
3248 * When mapping objects through the GTT, userspace wants to be able to write
3249 * to them without having to worry about swizzling if the object is tiled.
3250 * This function walks the fence regs looking for a free one for @obj,
3251 * stealing one if it can't find any.
3252 *
3253 * It then sets up the reg based on the object's properties: address, pitch
3254 * and tiling format.
3255 *
3256 * For an untiled surface, this removes any existing fence.
3257 */
3258 int
3259 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3260 {
3261 struct drm_device *dev = obj->base.dev;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 bool enable = obj->tiling_mode != I915_TILING_NONE;
3264 struct drm_i915_fence_reg *reg;
3265 int ret;
3266
3267 /* Have we updated the tiling parameters upon the object and so
3268 * will need to serialise the write to the associated fence register?
3269 */
3270 if (obj->fence_dirty) {
3271 ret = i915_gem_object_wait_fence(obj);
3272 if (ret)
3273 return ret;
3274 }
3275
3276 /* Just update our place in the LRU if our fence is getting reused. */
3277 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3278 reg = &dev_priv->fence_regs[obj->fence_reg];
3279 if (!obj->fence_dirty) {
3280 list_move_tail(&reg->lru_list,
3281 &dev_priv->mm.fence_list);
3282 return 0;
3283 }
3284 } else if (enable) {
3285 reg = i915_find_fence_reg(dev);
3286 if (IS_ERR(reg))
3287 return PTR_ERR(reg);
3288
3289 if (reg->obj) {
3290 struct drm_i915_gem_object *old = reg->obj;
3291
3292 ret = i915_gem_object_wait_fence(old);
3293 if (ret)
3294 return ret;
3295
3296 i915_gem_object_fence_lost(old);
3297 }
3298 } else
3299 return 0;
3300
3301 i915_gem_object_update_fence(obj, reg, enable);
3302
3303 return 0;
3304 }
3305
3306 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3307 struct drm_mm_node *gtt_space,
3308 unsigned long cache_level)
3309 {
3310 struct drm_mm_node *other;
3311
3312 /* On non-LLC machines we have to be careful when putting differing
3313 * types of snoopable memory together to avoid the prefetcher
3314 * crossing memory domains and dying.
3315 */
3316 if (HAS_LLC(dev))
3317 return true;
3318
3319 if (!drm_mm_node_allocated(gtt_space))
3320 return true;
3321
3322 if (list_empty(&gtt_space->node_list))
3323 return true;
3324
3325 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3326 if (other->allocated && !other->hole_follows && other->color != cache_level)
3327 return false;
3328
3329 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3330 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3331 return false;
3332
3333 return true;
3334 }
3335
3336 static void i915_gem_verify_gtt(struct drm_device *dev)
3337 {
3338 #if WATCH_GTT
3339 struct drm_i915_private *dev_priv = dev->dev_private;
3340 struct drm_i915_gem_object *obj;
3341 int err = 0;
3342
3343 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3344 if (obj->gtt_space == NULL) {
3345 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3346 err++;
3347 continue;
3348 }
3349
3350 if (obj->cache_level != obj->gtt_space->color) {
3351 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3352 i915_gem_obj_ggtt_offset(obj),
3353 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3354 obj->cache_level,
3355 obj->gtt_space->color);
3356 err++;
3357 continue;
3358 }
3359
3360 if (!i915_gem_valid_gtt_space(dev,
3361 obj->gtt_space,
3362 obj->cache_level)) {
3363 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3364 i915_gem_obj_ggtt_offset(obj),
3365 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3366 obj->cache_level);
3367 err++;
3368 continue;
3369 }
3370 }
3371
3372 WARN_ON(err);
3373 #endif
3374 }
3375
3376 /**
3377 * Finds free space in the GTT aperture and binds the object there.
3378 */
3379 static struct i915_vma *
3380 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3381 struct i915_address_space *vm,
3382 unsigned alignment,
3383 uint64_t flags)
3384 {
3385 struct drm_device *dev = obj->base.dev;
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 u32 size, fence_size, fence_alignment, unfenced_alignment;
3388 unsigned long start =
3389 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3390 unsigned long end =
3391 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3392 struct i915_vma *vma;
3393 int ret;
3394
3395 fence_size = i915_gem_get_gtt_size(dev,
3396 obj->base.size,
3397 obj->tiling_mode);
3398 fence_alignment = i915_gem_get_gtt_alignment(dev,
3399 obj->base.size,
3400 obj->tiling_mode, true);
3401 unfenced_alignment =
3402 i915_gem_get_gtt_alignment(dev,
3403 obj->base.size,
3404 obj->tiling_mode, false);
3405
3406 if (alignment == 0)
3407 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3408 unfenced_alignment;
3409 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3410 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3411 return ERR_PTR(-EINVAL);
3412 }
3413
3414 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3415
3416 /* If the object is bigger than the entire aperture, reject it early
3417 * before evicting everything in a vain attempt to find space.
3418 */
3419 if (obj->base.size > end) {
3420 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3421 obj->base.size,
3422 flags & PIN_MAPPABLE ? "mappable" : "total",
3423 end);
3424 return ERR_PTR(-E2BIG);
3425 }
3426
3427 ret = i915_gem_object_get_pages(obj);
3428 if (ret)
3429 return ERR_PTR(ret);
3430
3431 i915_gem_object_pin_pages(obj);
3432
3433 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3434 if (IS_ERR(vma))
3435 goto err_unpin;
3436
3437 search_free:
3438 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3439 size, alignment,
3440 obj->cache_level,
3441 start, end,
3442 DRM_MM_SEARCH_DEFAULT,
3443 DRM_MM_CREATE_DEFAULT);
3444 if (ret) {
3445 ret = i915_gem_evict_something(dev, vm, size, alignment,
3446 obj->cache_level,
3447 start, end,
3448 flags);
3449 if (ret == 0)
3450 goto search_free;
3451
3452 goto err_free_vma;
3453 }
3454 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3455 obj->cache_level))) {
3456 ret = -EINVAL;
3457 goto err_remove_node;
3458 }
3459
3460 ret = i915_gem_gtt_prepare_object(obj);
3461 if (ret)
3462 goto err_remove_node;
3463
3464 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3465 list_add_tail(&vma->mm_list, &vm->inactive_list);
3466
3467 if (i915_is_ggtt(vm)) {
3468 bool mappable, fenceable;
3469
3470 fenceable = (vma->node.size == fence_size &&
3471 (vma->node.start & (fence_alignment - 1)) == 0);
3472
3473 mappable = (vma->node.start + obj->base.size <=
3474 dev_priv->gtt.mappable_end);
3475
3476 obj->map_and_fenceable = mappable && fenceable;
3477 }
3478
3479 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3480
3481 trace_i915_vma_bind(vma, flags);
3482 vma->bind_vma(vma, obj->cache_level,
3483 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3484
3485 i915_gem_verify_gtt(dev);
3486 return vma;
3487
3488 err_remove_node:
3489 drm_mm_remove_node(&vma->node);
3490 err_free_vma:
3491 i915_gem_vma_destroy(vma);
3492 vma = ERR_PTR(ret);
3493 err_unpin:
3494 i915_gem_object_unpin_pages(obj);
3495 return vma;
3496 }
3497
3498 bool
3499 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3500 bool force)
3501 {
3502 /* If we don't have a page list set up, then we're not pinned
3503 * to GPU, and we can ignore the cache flush because it'll happen
3504 * again at bind time.
3505 */
3506 if (obj->pages == NULL)
3507 return false;
3508
3509 /*
3510 * Stolen memory is always coherent with the GPU as it is explicitly
3511 * marked as wc by the system, or the system is cache-coherent.
3512 */
3513 if (obj->stolen)
3514 return false;
3515
3516 /* If the GPU is snooping the contents of the CPU cache,
3517 * we do not need to manually clear the CPU cache lines. However,
3518 * the caches are only snooped when the render cache is
3519 * flushed/invalidated. As we always have to emit invalidations
3520 * and flushes when moving into and out of the RENDER domain, correct
3521 * snooping behaviour occurs naturally as the result of our domain
3522 * tracking.
3523 */
3524 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3525 return false;
3526
3527 trace_i915_gem_object_clflush(obj);
3528 drm_clflush_sg(obj->pages);
3529
3530 return true;
3531 }
3532
3533 /** Flushes the GTT write domain for the object if it's dirty. */
3534 static void
3535 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3536 {
3537 uint32_t old_write_domain;
3538
3539 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3540 return;
3541
3542 /* No actual flushing is required for the GTT write domain. Writes
3543 * to it immediately go to main memory as far as we know, so there's
3544 * no chipset flush. It also doesn't land in render cache.
3545 *
3546 * However, we do have to enforce the order so that all writes through
3547 * the GTT land before any writes to the device, such as updates to
3548 * the GATT itself.
3549 */
3550 wmb();
3551
3552 old_write_domain = obj->base.write_domain;
3553 obj->base.write_domain = 0;
3554
3555 trace_i915_gem_object_change_domain(obj,
3556 obj->base.read_domains,
3557 old_write_domain);
3558 }
3559
3560 /** Flushes the CPU write domain for the object if it's dirty. */
3561 static void
3562 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3563 bool force)
3564 {
3565 uint32_t old_write_domain;
3566
3567 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3568 return;
3569
3570 if (i915_gem_clflush_object(obj, force))
3571 i915_gem_chipset_flush(obj->base.dev);
3572
3573 old_write_domain = obj->base.write_domain;
3574 obj->base.write_domain = 0;
3575
3576 trace_i915_gem_object_change_domain(obj,
3577 obj->base.read_domains,
3578 old_write_domain);
3579 }
3580
3581 /**
3582 * Moves a single object to the GTT read, and possibly write domain.
3583 *
3584 * This function returns when the move is complete, including waiting on
3585 * flushes to occur.
3586 */
3587 int
3588 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3589 {
3590 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3591 uint32_t old_write_domain, old_read_domains;
3592 int ret;
3593
3594 /* Not valid to be called on unbound objects. */
3595 if (!i915_gem_obj_bound_any(obj))
3596 return -EINVAL;
3597
3598 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3599 return 0;
3600
3601 ret = i915_gem_object_wait_rendering(obj, !write);
3602 if (ret)
3603 return ret;
3604
3605 i915_gem_object_retire(obj);
3606 i915_gem_object_flush_cpu_write_domain(obj, false);
3607
3608 /* Serialise direct access to this object with the barriers for
3609 * coherent writes from the GPU, by effectively invalidating the
3610 * GTT domain upon first access.
3611 */
3612 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3613 mb();
3614
3615 old_write_domain = obj->base.write_domain;
3616 old_read_domains = obj->base.read_domains;
3617
3618 /* It should now be out of any other write domains, and we can update
3619 * the domain values for our changes.
3620 */
3621 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3622 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3623 if (write) {
3624 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3625 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3626 obj->dirty = 1;
3627 }
3628
3629 trace_i915_gem_object_change_domain(obj,
3630 old_read_domains,
3631 old_write_domain);
3632
3633 /* And bump the LRU for this access */
3634 if (i915_gem_object_is_inactive(obj)) {
3635 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3636 if (vma)
3637 list_move_tail(&vma->mm_list,
3638 &dev_priv->gtt.base.inactive_list);
3639
3640 }
3641
3642 return 0;
3643 }
3644
3645 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3646 enum i915_cache_level cache_level)
3647 {
3648 struct drm_device *dev = obj->base.dev;
3649 struct i915_vma *vma, *next;
3650 int ret;
3651
3652 if (obj->cache_level == cache_level)
3653 return 0;
3654
3655 if (i915_gem_obj_is_pinned(obj)) {
3656 DRM_DEBUG("can not change the cache level of pinned objects\n");
3657 return -EBUSY;
3658 }
3659
3660 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3661 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3662 ret = i915_vma_unbind(vma);
3663 if (ret)
3664 return ret;
3665 }
3666 }
3667
3668 if (i915_gem_obj_bound_any(obj)) {
3669 ret = i915_gem_object_finish_gpu(obj);
3670 if (ret)
3671 return ret;
3672
3673 i915_gem_object_finish_gtt(obj);
3674
3675 /* Before SandyBridge, you could not use tiling or fence
3676 * registers with snooped memory, so relinquish any fences
3677 * currently pointing to our region in the aperture.
3678 */
3679 if (INTEL_INFO(dev)->gen < 6) {
3680 ret = i915_gem_object_put_fence(obj);
3681 if (ret)
3682 return ret;
3683 }
3684
3685 list_for_each_entry(vma, &obj->vma_list, vma_link)
3686 if (drm_mm_node_allocated(&vma->node))
3687 vma->bind_vma(vma, cache_level,
3688 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3689 }
3690
3691 list_for_each_entry(vma, &obj->vma_list, vma_link)
3692 vma->node.color = cache_level;
3693 obj->cache_level = cache_level;
3694
3695 if (cpu_write_needs_clflush(obj)) {
3696 u32 old_read_domains, old_write_domain;
3697
3698 /* If we're coming from LLC cached, then we haven't
3699 * actually been tracking whether the data is in the
3700 * CPU cache or not, since we only allow one bit set
3701 * in obj->write_domain and have been skipping the clflushes.
3702 * Just set it to the CPU cache for now.
3703 */
3704 i915_gem_object_retire(obj);
3705 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3706
3707 old_read_domains = obj->base.read_domains;
3708 old_write_domain = obj->base.write_domain;
3709
3710 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3711 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3712
3713 trace_i915_gem_object_change_domain(obj,
3714 old_read_domains,
3715 old_write_domain);
3716 }
3717
3718 i915_gem_verify_gtt(dev);
3719 return 0;
3720 }
3721
3722 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3723 struct drm_file *file)
3724 {
3725 struct drm_i915_gem_caching *args = data;
3726 struct drm_i915_gem_object *obj;
3727 int ret;
3728
3729 ret = i915_mutex_lock_interruptible(dev);
3730 if (ret)
3731 return ret;
3732
3733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3734 if (&obj->base == NULL) {
3735 ret = -ENOENT;
3736 goto unlock;
3737 }
3738
3739 switch (obj->cache_level) {
3740 case I915_CACHE_LLC:
3741 case I915_CACHE_L3_LLC:
3742 args->caching = I915_CACHING_CACHED;
3743 break;
3744
3745 case I915_CACHE_WT:
3746 args->caching = I915_CACHING_DISPLAY;
3747 break;
3748
3749 default:
3750 args->caching = I915_CACHING_NONE;
3751 break;
3752 }
3753
3754 drm_gem_object_unreference(&obj->base);
3755 unlock:
3756 mutex_unlock(&dev->struct_mutex);
3757 return ret;
3758 }
3759
3760 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3761 struct drm_file *file)
3762 {
3763 struct drm_i915_gem_caching *args = data;
3764 struct drm_i915_gem_object *obj;
3765 enum i915_cache_level level;
3766 int ret;
3767
3768 switch (args->caching) {
3769 case I915_CACHING_NONE:
3770 level = I915_CACHE_NONE;
3771 break;
3772 case I915_CACHING_CACHED:
3773 level = I915_CACHE_LLC;
3774 break;
3775 case I915_CACHING_DISPLAY:
3776 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3777 break;
3778 default:
3779 return -EINVAL;
3780 }
3781
3782 ret = i915_mutex_lock_interruptible(dev);
3783 if (ret)
3784 return ret;
3785
3786 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3787 if (&obj->base == NULL) {
3788 ret = -ENOENT;
3789 goto unlock;
3790 }
3791
3792 ret = i915_gem_object_set_cache_level(obj, level);
3793
3794 drm_gem_object_unreference(&obj->base);
3795 unlock:
3796 mutex_unlock(&dev->struct_mutex);
3797 return ret;
3798 }
3799
3800 static bool is_pin_display(struct drm_i915_gem_object *obj)
3801 {
3802 struct i915_vma *vma;
3803
3804 if (list_empty(&obj->vma_list))
3805 return false;
3806
3807 vma = i915_gem_obj_to_ggtt(obj);
3808 if (!vma)
3809 return false;
3810
3811 /* There are 3 sources that pin objects:
3812 * 1. The display engine (scanouts, sprites, cursors);
3813 * 2. Reservations for execbuffer;
3814 * 3. The user.
3815 *
3816 * We can ignore reservations as we hold the struct_mutex and
3817 * are only called outside of the reservation path. The user
3818 * can only increment pin_count once, and so if after
3819 * subtracting the potential reference by the user, any pin_count
3820 * remains, it must be due to another use by the display engine.
3821 */
3822 return vma->pin_count - !!obj->user_pin_count;
3823 }
3824
3825 /*
3826 * Prepare buffer for display plane (scanout, cursors, etc).
3827 * Can be called from an uninterruptible phase (modesetting) and allows
3828 * any flushes to be pipelined (for pageflips).
3829 */
3830 int
3831 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3832 u32 alignment,
3833 struct intel_engine_cs *pipelined)
3834 {
3835 u32 old_read_domains, old_write_domain;
3836 bool was_pin_display;
3837 int ret;
3838
3839 if (pipelined != obj->ring) {
3840 ret = i915_gem_object_sync(obj, pipelined);
3841 if (ret)
3842 return ret;
3843 }
3844
3845 /* Mark the pin_display early so that we account for the
3846 * display coherency whilst setting up the cache domains.
3847 */
3848 was_pin_display = obj->pin_display;
3849 obj->pin_display = true;
3850
3851 /* The display engine is not coherent with the LLC cache on gen6. As
3852 * a result, we make sure that the pinning that is about to occur is
3853 * done with uncached PTEs. This is lowest common denominator for all
3854 * chipsets.
3855 *
3856 * However for gen6+, we could do better by using the GFDT bit instead
3857 * of uncaching, which would allow us to flush all the LLC-cached data
3858 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3859 */
3860 ret = i915_gem_object_set_cache_level(obj,
3861 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3862 if (ret)
3863 goto err_unpin_display;
3864
3865 /* As the user may map the buffer once pinned in the display plane
3866 * (e.g. libkms for the bootup splash), we have to ensure that we
3867 * always use map_and_fenceable for all scanout buffers.
3868 */
3869 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3870 if (ret)
3871 goto err_unpin_display;
3872
3873 i915_gem_object_flush_cpu_write_domain(obj, true);
3874
3875 old_write_domain = obj->base.write_domain;
3876 old_read_domains = obj->base.read_domains;
3877
3878 /* It should now be out of any other write domains, and we can update
3879 * the domain values for our changes.
3880 */
3881 obj->base.write_domain = 0;
3882 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3883
3884 trace_i915_gem_object_change_domain(obj,
3885 old_read_domains,
3886 old_write_domain);
3887
3888 return 0;
3889
3890 err_unpin_display:
3891 WARN_ON(was_pin_display != is_pin_display(obj));
3892 obj->pin_display = was_pin_display;
3893 return ret;
3894 }
3895
3896 void
3897 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3898 {
3899 i915_gem_object_ggtt_unpin(obj);
3900 obj->pin_display = is_pin_display(obj);
3901 }
3902
3903 int
3904 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3905 {
3906 int ret;
3907
3908 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3909 return 0;
3910
3911 ret = i915_gem_object_wait_rendering(obj, false);
3912 if (ret)
3913 return ret;
3914
3915 /* Ensure that we invalidate the GPU's caches and TLBs. */
3916 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3917 return 0;
3918 }
3919
3920 /**
3921 * Moves a single object to the CPU read, and possibly write domain.
3922 *
3923 * This function returns when the move is complete, including waiting on
3924 * flushes to occur.
3925 */
3926 int
3927 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3928 {
3929 uint32_t old_write_domain, old_read_domains;
3930 int ret;
3931
3932 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3933 return 0;
3934
3935 ret = i915_gem_object_wait_rendering(obj, !write);
3936 if (ret)
3937 return ret;
3938
3939 i915_gem_object_retire(obj);
3940 i915_gem_object_flush_gtt_write_domain(obj);
3941
3942 old_write_domain = obj->base.write_domain;
3943 old_read_domains = obj->base.read_domains;
3944
3945 /* Flush the CPU cache if it's still invalid. */
3946 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3947 i915_gem_clflush_object(obj, false);
3948
3949 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3950 }
3951
3952 /* It should now be out of any other write domains, and we can update
3953 * the domain values for our changes.
3954 */
3955 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3956
3957 /* If we're writing through the CPU, then the GPU read domains will
3958 * need to be invalidated at next use.
3959 */
3960 if (write) {
3961 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3962 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3963 }
3964
3965 trace_i915_gem_object_change_domain(obj,
3966 old_read_domains,
3967 old_write_domain);
3968
3969 return 0;
3970 }
3971
3972 /* Throttle our rendering by waiting until the ring has completed our requests
3973 * emitted over 20 msec ago.
3974 *
3975 * Note that if we were to use the current jiffies each time around the loop,
3976 * we wouldn't escape the function with any frames outstanding if the time to
3977 * render a frame was over 20ms.
3978 *
3979 * This should get us reasonable parallelism between CPU and GPU but also
3980 * relatively low latency when blocking on a particular request to finish.
3981 */
3982 static int
3983 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3984 {
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986 struct drm_i915_file_private *file_priv = file->driver_priv;
3987 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3988 struct drm_i915_gem_request *request;
3989 struct intel_engine_cs *ring = NULL;
3990 unsigned reset_counter;
3991 u32 seqno = 0;
3992 int ret;
3993
3994 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3995 if (ret)
3996 return ret;
3997
3998 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3999 if (ret)
4000 return ret;
4001
4002 spin_lock(&file_priv->mm.lock);
4003 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4004 if (time_after_eq(request->emitted_jiffies, recent_enough))
4005 break;
4006
4007 ring = request->ring;
4008 seqno = request->seqno;
4009 }
4010 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4011 spin_unlock(&file_priv->mm.lock);
4012
4013 if (seqno == 0)
4014 return 0;
4015
4016 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4017 if (ret == 0)
4018 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4019
4020 return ret;
4021 }
4022
4023 static bool
4024 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4025 {
4026 struct drm_i915_gem_object *obj = vma->obj;
4027
4028 if (alignment &&
4029 vma->node.start & (alignment - 1))
4030 return true;
4031
4032 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4033 return true;
4034
4035 if (flags & PIN_OFFSET_BIAS &&
4036 vma->node.start < (flags & PIN_OFFSET_MASK))
4037 return true;
4038
4039 return false;
4040 }
4041
4042 int
4043 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4044 struct i915_address_space *vm,
4045 uint32_t alignment,
4046 uint64_t flags)
4047 {
4048 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4049 struct i915_vma *vma;
4050 int ret;
4051
4052 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4053 return -ENODEV;
4054
4055 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4056 return -EINVAL;
4057
4058 vma = i915_gem_obj_to_vma(obj, vm);
4059 if (vma) {
4060 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4061 return -EBUSY;
4062
4063 if (i915_vma_misplaced(vma, alignment, flags)) {
4064 WARN(vma->pin_count,
4065 "bo is already pinned with incorrect alignment:"
4066 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4067 " obj->map_and_fenceable=%d\n",
4068 i915_gem_obj_offset(obj, vm), alignment,
4069 !!(flags & PIN_MAPPABLE),
4070 obj->map_and_fenceable);
4071 ret = i915_vma_unbind(vma);
4072 if (ret)
4073 return ret;
4074
4075 vma = NULL;
4076 }
4077 }
4078
4079 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4080 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4081 if (IS_ERR(vma))
4082 return PTR_ERR(vma);
4083 }
4084
4085 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4086 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4087
4088 vma->pin_count++;
4089 if (flags & PIN_MAPPABLE)
4090 obj->pin_mappable |= true;
4091
4092 return 0;
4093 }
4094
4095 void
4096 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4097 {
4098 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4099
4100 BUG_ON(!vma);
4101 BUG_ON(vma->pin_count == 0);
4102 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4103
4104 if (--vma->pin_count == 0)
4105 obj->pin_mappable = false;
4106 }
4107
4108 bool
4109 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4110 {
4111 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4112 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4113 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4114
4115 WARN_ON(!ggtt_vma ||
4116 dev_priv->fence_regs[obj->fence_reg].pin_count >
4117 ggtt_vma->pin_count);
4118 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4119 return true;
4120 } else
4121 return false;
4122 }
4123
4124 void
4125 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4126 {
4127 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4129 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4130 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4131 }
4132 }
4133
4134 int
4135 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4136 struct drm_file *file)
4137 {
4138 struct drm_i915_gem_pin *args = data;
4139 struct drm_i915_gem_object *obj;
4140 int ret;
4141
4142 if (INTEL_INFO(dev)->gen >= 6)
4143 return -ENODEV;
4144
4145 ret = i915_mutex_lock_interruptible(dev);
4146 if (ret)
4147 return ret;
4148
4149 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4150 if (&obj->base == NULL) {
4151 ret = -ENOENT;
4152 goto unlock;
4153 }
4154
4155 if (obj->madv != I915_MADV_WILLNEED) {
4156 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4157 ret = -EFAULT;
4158 goto out;
4159 }
4160
4161 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4162 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4163 args->handle);
4164 ret = -EINVAL;
4165 goto out;
4166 }
4167
4168 if (obj->user_pin_count == ULONG_MAX) {
4169 ret = -EBUSY;
4170 goto out;
4171 }
4172
4173 if (obj->user_pin_count == 0) {
4174 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4175 if (ret)
4176 goto out;
4177 }
4178
4179 obj->user_pin_count++;
4180 obj->pin_filp = file;
4181
4182 args->offset = i915_gem_obj_ggtt_offset(obj);
4183 out:
4184 drm_gem_object_unreference(&obj->base);
4185 unlock:
4186 mutex_unlock(&dev->struct_mutex);
4187 return ret;
4188 }
4189
4190 int
4191 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4192 struct drm_file *file)
4193 {
4194 struct drm_i915_gem_pin *args = data;
4195 struct drm_i915_gem_object *obj;
4196 int ret;
4197
4198 ret = i915_mutex_lock_interruptible(dev);
4199 if (ret)
4200 return ret;
4201
4202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4203 if (&obj->base == NULL) {
4204 ret = -ENOENT;
4205 goto unlock;
4206 }
4207
4208 if (obj->pin_filp != file) {
4209 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4210 args->handle);
4211 ret = -EINVAL;
4212 goto out;
4213 }
4214 obj->user_pin_count--;
4215 if (obj->user_pin_count == 0) {
4216 obj->pin_filp = NULL;
4217 i915_gem_object_ggtt_unpin(obj);
4218 }
4219
4220 out:
4221 drm_gem_object_unreference(&obj->base);
4222 unlock:
4223 mutex_unlock(&dev->struct_mutex);
4224 return ret;
4225 }
4226
4227 int
4228 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4229 struct drm_file *file)
4230 {
4231 struct drm_i915_gem_busy *args = data;
4232 struct drm_i915_gem_object *obj;
4233 int ret;
4234
4235 ret = i915_mutex_lock_interruptible(dev);
4236 if (ret)
4237 return ret;
4238
4239 intel_edp_psr_exit(dev, true);
4240
4241 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4242 if (&obj->base == NULL) {
4243 ret = -ENOENT;
4244 goto unlock;
4245 }
4246
4247 /* Count all active objects as busy, even if they are currently not used
4248 * by the gpu. Users of this interface expect objects to eventually
4249 * become non-busy without any further actions, therefore emit any
4250 * necessary flushes here.
4251 */
4252 ret = i915_gem_object_flush_active(obj);
4253
4254 args->busy = obj->active;
4255 if (obj->ring) {
4256 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4257 args->busy |= intel_ring_flag(obj->ring) << 16;
4258 }
4259
4260 drm_gem_object_unreference(&obj->base);
4261 unlock:
4262 mutex_unlock(&dev->struct_mutex);
4263 return ret;
4264 }
4265
4266 int
4267 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269 {
4270 return i915_gem_ring_throttle(dev, file_priv);
4271 }
4272
4273 int
4274 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4275 struct drm_file *file_priv)
4276 {
4277 struct drm_i915_gem_madvise *args = data;
4278 struct drm_i915_gem_object *obj;
4279 int ret;
4280
4281 switch (args->madv) {
4282 case I915_MADV_DONTNEED:
4283 case I915_MADV_WILLNEED:
4284 break;
4285 default:
4286 return -EINVAL;
4287 }
4288
4289 ret = i915_mutex_lock_interruptible(dev);
4290 if (ret)
4291 return ret;
4292
4293 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4294 if (&obj->base == NULL) {
4295 ret = -ENOENT;
4296 goto unlock;
4297 }
4298
4299 if (i915_gem_obj_is_pinned(obj)) {
4300 ret = -EINVAL;
4301 goto out;
4302 }
4303
4304 if (obj->madv != __I915_MADV_PURGED)
4305 obj->madv = args->madv;
4306
4307 /* if the object is no longer attached, discard its backing storage */
4308 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4309 i915_gem_object_truncate(obj);
4310
4311 args->retained = obj->madv != __I915_MADV_PURGED;
4312
4313 out:
4314 drm_gem_object_unreference(&obj->base);
4315 unlock:
4316 mutex_unlock(&dev->struct_mutex);
4317 return ret;
4318 }
4319
4320 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4321 const struct drm_i915_gem_object_ops *ops)
4322 {
4323 INIT_LIST_HEAD(&obj->global_list);
4324 INIT_LIST_HEAD(&obj->ring_list);
4325 INIT_LIST_HEAD(&obj->obj_exec_link);
4326 INIT_LIST_HEAD(&obj->vma_list);
4327
4328 obj->ops = ops;
4329
4330 obj->fence_reg = I915_FENCE_REG_NONE;
4331 obj->madv = I915_MADV_WILLNEED;
4332 /* Avoid an unnecessary call to unbind on the first bind. */
4333 obj->map_and_fenceable = true;
4334
4335 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4336 }
4337
4338 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4339 .get_pages = i915_gem_object_get_pages_gtt,
4340 .put_pages = i915_gem_object_put_pages_gtt,
4341 };
4342
4343 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4344 size_t size)
4345 {
4346 struct drm_i915_gem_object *obj;
4347 struct address_space *mapping;
4348 gfp_t mask;
4349
4350 obj = i915_gem_object_alloc(dev);
4351 if (obj == NULL)
4352 return NULL;
4353
4354 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4355 i915_gem_object_free(obj);
4356 return NULL;
4357 }
4358
4359 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4360 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4361 /* 965gm cannot relocate objects above 4GiB. */
4362 mask &= ~__GFP_HIGHMEM;
4363 mask |= __GFP_DMA32;
4364 }
4365
4366 mapping = file_inode(obj->base.filp)->i_mapping;
4367 mapping_set_gfp_mask(mapping, mask);
4368
4369 i915_gem_object_init(obj, &i915_gem_object_ops);
4370
4371 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4372 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4373
4374 if (HAS_LLC(dev)) {
4375 /* On some devices, we can have the GPU use the LLC (the CPU
4376 * cache) for about a 10% performance improvement
4377 * compared to uncached. Graphics requests other than
4378 * display scanout are coherent with the CPU in
4379 * accessing this cache. This means in this mode we
4380 * don't need to clflush on the CPU side, and on the
4381 * GPU side we only need to flush internal caches to
4382 * get data visible to the CPU.
4383 *
4384 * However, we maintain the display planes as UC, and so
4385 * need to rebind when first used as such.
4386 */
4387 obj->cache_level = I915_CACHE_LLC;
4388 } else
4389 obj->cache_level = I915_CACHE_NONE;
4390
4391 trace_i915_gem_object_create(obj);
4392
4393 return obj;
4394 }
4395
4396 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4397 {
4398 /* If we are the last user of the backing storage (be it shmemfs
4399 * pages or stolen etc), we know that the pages are going to be
4400 * immediately released. In this case, we can then skip copying
4401 * back the contents from the GPU.
4402 */
4403
4404 if (obj->madv != I915_MADV_WILLNEED)
4405 return false;
4406
4407 if (obj->base.filp == NULL)
4408 return true;
4409
4410 /* At first glance, this looks racy, but then again so would be
4411 * userspace racing mmap against close. However, the first external
4412 * reference to the filp can only be obtained through the
4413 * i915_gem_mmap_ioctl() which safeguards us against the user
4414 * acquiring such a reference whilst we are in the middle of
4415 * freeing the object.
4416 */
4417 return atomic_long_read(&obj->base.filp->f_count) == 1;
4418 }
4419
4420 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4421 {
4422 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4423 struct drm_device *dev = obj->base.dev;
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425 struct i915_vma *vma, *next;
4426
4427 intel_runtime_pm_get(dev_priv);
4428
4429 trace_i915_gem_object_destroy(obj);
4430
4431 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4432 int ret;
4433
4434 vma->pin_count = 0;
4435 ret = i915_vma_unbind(vma);
4436 if (WARN_ON(ret == -ERESTARTSYS)) {
4437 bool was_interruptible;
4438
4439 was_interruptible = dev_priv->mm.interruptible;
4440 dev_priv->mm.interruptible = false;
4441
4442 WARN_ON(i915_vma_unbind(vma));
4443
4444 dev_priv->mm.interruptible = was_interruptible;
4445 }
4446 }
4447
4448 i915_gem_object_detach_phys(obj);
4449
4450 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4451 * before progressing. */
4452 if (obj->stolen)
4453 i915_gem_object_unpin_pages(obj);
4454
4455 if (WARN_ON(obj->pages_pin_count))
4456 obj->pages_pin_count = 0;
4457 if (discard_backing_storage(obj))
4458 obj->madv = I915_MADV_DONTNEED;
4459 i915_gem_object_put_pages(obj);
4460 i915_gem_object_free_mmap_offset(obj);
4461
4462 BUG_ON(obj->pages);
4463
4464 if (obj->base.import_attach)
4465 drm_prime_gem_destroy(&obj->base, NULL);
4466
4467 if (obj->ops->release)
4468 obj->ops->release(obj);
4469
4470 drm_gem_object_release(&obj->base);
4471 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4472
4473 kfree(obj->bit_17);
4474 i915_gem_object_free(obj);
4475
4476 intel_runtime_pm_put(dev_priv);
4477 }
4478
4479 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4480 struct i915_address_space *vm)
4481 {
4482 struct i915_vma *vma;
4483 list_for_each_entry(vma, &obj->vma_list, vma_link)
4484 if (vma->vm == vm)
4485 return vma;
4486
4487 return NULL;
4488 }
4489
4490 void i915_gem_vma_destroy(struct i915_vma *vma)
4491 {
4492 WARN_ON(vma->node.allocated);
4493
4494 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4495 if (!list_empty(&vma->exec_list))
4496 return;
4497
4498 list_del(&vma->vma_link);
4499
4500 kfree(vma);
4501 }
4502
4503 static void
4504 i915_gem_stop_ringbuffers(struct drm_device *dev)
4505 {
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 struct intel_engine_cs *ring;
4508 int i;
4509
4510 for_each_ring(ring, dev_priv, i)
4511 intel_stop_ring_buffer(ring);
4512 }
4513
4514 int
4515 i915_gem_suspend(struct drm_device *dev)
4516 {
4517 struct drm_i915_private *dev_priv = dev->dev_private;
4518 int ret = 0;
4519
4520 mutex_lock(&dev->struct_mutex);
4521 if (dev_priv->ums.mm_suspended)
4522 goto err;
4523
4524 ret = i915_gpu_idle(dev);
4525 if (ret)
4526 goto err;
4527
4528 i915_gem_retire_requests(dev);
4529
4530 /* Under UMS, be paranoid and evict. */
4531 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4532 i915_gem_evict_everything(dev);
4533
4534 i915_kernel_lost_context(dev);
4535 i915_gem_stop_ringbuffers(dev);
4536
4537 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4538 * We need to replace this with a semaphore, or something.
4539 * And not confound ums.mm_suspended!
4540 */
4541 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4542 DRIVER_MODESET);
4543 mutex_unlock(&dev->struct_mutex);
4544
4545 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4546 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4547 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4548
4549 return 0;
4550
4551 err:
4552 mutex_unlock(&dev->struct_mutex);
4553 return ret;
4554 }
4555
4556 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4557 {
4558 struct drm_device *dev = ring->dev;
4559 struct drm_i915_private *dev_priv = dev->dev_private;
4560 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4561 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4562 int i, ret;
4563
4564 if (!HAS_L3_DPF(dev) || !remap_info)
4565 return 0;
4566
4567 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4568 if (ret)
4569 return ret;
4570
4571 /*
4572 * Note: We do not worry about the concurrent register cacheline hang
4573 * here because no other code should access these registers other than
4574 * at initialization time.
4575 */
4576 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4577 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4578 intel_ring_emit(ring, reg_base + i);
4579 intel_ring_emit(ring, remap_info[i/4]);
4580 }
4581
4582 intel_ring_advance(ring);
4583
4584 return ret;
4585 }
4586
4587 void i915_gem_init_swizzling(struct drm_device *dev)
4588 {
4589 struct drm_i915_private *dev_priv = dev->dev_private;
4590
4591 if (INTEL_INFO(dev)->gen < 5 ||
4592 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4593 return;
4594
4595 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4596 DISP_TILE_SURFACE_SWIZZLING);
4597
4598 if (IS_GEN5(dev))
4599 return;
4600
4601 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4602 if (IS_GEN6(dev))
4603 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4604 else if (IS_GEN7(dev))
4605 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4606 else if (IS_GEN8(dev))
4607 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4608 else
4609 BUG();
4610 }
4611
4612 static bool
4613 intel_enable_blt(struct drm_device *dev)
4614 {
4615 if (!HAS_BLT(dev))
4616 return false;
4617
4618 /* The blitter was dysfunctional on early prototypes */
4619 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4620 DRM_INFO("BLT not supported on this pre-production hardware;"
4621 " graphics performance will be degraded.\n");
4622 return false;
4623 }
4624
4625 return true;
4626 }
4627
4628 static int i915_gem_init_rings(struct drm_device *dev)
4629 {
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 int ret;
4632
4633 ret = intel_init_render_ring_buffer(dev);
4634 if (ret)
4635 return ret;
4636
4637 if (HAS_BSD(dev)) {
4638 ret = intel_init_bsd_ring_buffer(dev);
4639 if (ret)
4640 goto cleanup_render_ring;
4641 }
4642
4643 if (intel_enable_blt(dev)) {
4644 ret = intel_init_blt_ring_buffer(dev);
4645 if (ret)
4646 goto cleanup_bsd_ring;
4647 }
4648
4649 if (HAS_VEBOX(dev)) {
4650 ret = intel_init_vebox_ring_buffer(dev);
4651 if (ret)
4652 goto cleanup_blt_ring;
4653 }
4654
4655 if (HAS_BSD2(dev)) {
4656 ret = intel_init_bsd2_ring_buffer(dev);
4657 if (ret)
4658 goto cleanup_vebox_ring;
4659 }
4660
4661 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4662 if (ret)
4663 goto cleanup_bsd2_ring;
4664
4665 return 0;
4666
4667 cleanup_bsd2_ring:
4668 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4669 cleanup_vebox_ring:
4670 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4671 cleanup_blt_ring:
4672 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4673 cleanup_bsd_ring:
4674 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4675 cleanup_render_ring:
4676 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4677
4678 return ret;
4679 }
4680
4681 int
4682 i915_gem_init_hw(struct drm_device *dev)
4683 {
4684 struct drm_i915_private *dev_priv = dev->dev_private;
4685 int ret, i;
4686
4687 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4688 return -EIO;
4689
4690 if (dev_priv->ellc_size)
4691 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4692
4693 if (IS_HASWELL(dev))
4694 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4695 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4696
4697 if (HAS_PCH_NOP(dev)) {
4698 if (IS_IVYBRIDGE(dev)) {
4699 u32 temp = I915_READ(GEN7_MSG_CTL);
4700 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4701 I915_WRITE(GEN7_MSG_CTL, temp);
4702 } else if (INTEL_INFO(dev)->gen >= 7) {
4703 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4704 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4705 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4706 }
4707 }
4708
4709 i915_gem_init_swizzling(dev);
4710
4711 ret = i915_gem_init_rings(dev);
4712 if (ret)
4713 return ret;
4714
4715 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4716 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4717
4718 /*
4719 * XXX: Contexts should only be initialized once. Doing a switch to the
4720 * default context switch however is something we'd like to do after
4721 * reset or thaw (the latter may not actually be necessary for HW, but
4722 * goes with our code better). Context switching requires rings (for
4723 * the do_switch), but before enabling PPGTT. So don't move this.
4724 */
4725 ret = i915_gem_context_enable(dev_priv);
4726 if (ret && ret != -EIO) {
4727 DRM_ERROR("Context enable failed %d\n", ret);
4728 i915_gem_cleanup_ringbuffer(dev);
4729 }
4730
4731 return ret;
4732 }
4733
4734 int i915_gem_init(struct drm_device *dev)
4735 {
4736 struct drm_i915_private *dev_priv = dev->dev_private;
4737 int ret;
4738
4739 mutex_lock(&dev->struct_mutex);
4740
4741 if (IS_VALLEYVIEW(dev)) {
4742 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4743 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4744 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4745 VLV_GTLC_ALLOWWAKEACK), 10))
4746 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4747 }
4748
4749 i915_gem_init_userptr(dev);
4750 i915_gem_init_global_gtt(dev);
4751
4752 ret = i915_gem_context_init(dev);
4753 if (ret) {
4754 mutex_unlock(&dev->struct_mutex);
4755 return ret;
4756 }
4757
4758 ret = i915_gem_init_hw(dev);
4759 if (ret == -EIO) {
4760 /* Allow ring initialisation to fail by marking the GPU as
4761 * wedged. But we only want to do this where the GPU is angry,
4762 * for all other failure, such as an allocation failure, bail.
4763 */
4764 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4765 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4766 ret = 0;
4767 }
4768 mutex_unlock(&dev->struct_mutex);
4769
4770 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4771 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4772 dev_priv->dri1.allow_batchbuffer = 1;
4773 return ret;
4774 }
4775
4776 void
4777 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4778 {
4779 struct drm_i915_private *dev_priv = dev->dev_private;
4780 struct intel_engine_cs *ring;
4781 int i;
4782
4783 for_each_ring(ring, dev_priv, i)
4784 intel_cleanup_ring_buffer(ring);
4785 }
4786
4787 int
4788 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4789 struct drm_file *file_priv)
4790 {
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 int ret;
4793
4794 if (drm_core_check_feature(dev, DRIVER_MODESET))
4795 return 0;
4796
4797 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4798 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4799 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4800 }
4801
4802 mutex_lock(&dev->struct_mutex);
4803 dev_priv->ums.mm_suspended = 0;
4804
4805 ret = i915_gem_init_hw(dev);
4806 if (ret != 0) {
4807 mutex_unlock(&dev->struct_mutex);
4808 return ret;
4809 }
4810
4811 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4812
4813 ret = drm_irq_install(dev, dev->pdev->irq);
4814 if (ret)
4815 goto cleanup_ringbuffer;
4816 mutex_unlock(&dev->struct_mutex);
4817
4818 return 0;
4819
4820 cleanup_ringbuffer:
4821 i915_gem_cleanup_ringbuffer(dev);
4822 dev_priv->ums.mm_suspended = 1;
4823 mutex_unlock(&dev->struct_mutex);
4824
4825 return ret;
4826 }
4827
4828 int
4829 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4830 struct drm_file *file_priv)
4831 {
4832 if (drm_core_check_feature(dev, DRIVER_MODESET))
4833 return 0;
4834
4835 mutex_lock(&dev->struct_mutex);
4836 drm_irq_uninstall(dev);
4837 mutex_unlock(&dev->struct_mutex);
4838
4839 return i915_gem_suspend(dev);
4840 }
4841
4842 void
4843 i915_gem_lastclose(struct drm_device *dev)
4844 {
4845 int ret;
4846
4847 if (drm_core_check_feature(dev, DRIVER_MODESET))
4848 return;
4849
4850 ret = i915_gem_suspend(dev);
4851 if (ret)
4852 DRM_ERROR("failed to idle hardware: %d\n", ret);
4853 }
4854
4855 static void
4856 init_ring_lists(struct intel_engine_cs *ring)
4857 {
4858 INIT_LIST_HEAD(&ring->active_list);
4859 INIT_LIST_HEAD(&ring->request_list);
4860 }
4861
4862 void i915_init_vm(struct drm_i915_private *dev_priv,
4863 struct i915_address_space *vm)
4864 {
4865 if (!i915_is_ggtt(vm))
4866 drm_mm_init(&vm->mm, vm->start, vm->total);
4867 vm->dev = dev_priv->dev;
4868 INIT_LIST_HEAD(&vm->active_list);
4869 INIT_LIST_HEAD(&vm->inactive_list);
4870 INIT_LIST_HEAD(&vm->global_link);
4871 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4872 }
4873
4874 void
4875 i915_gem_load(struct drm_device *dev)
4876 {
4877 struct drm_i915_private *dev_priv = dev->dev_private;
4878 int i;
4879
4880 dev_priv->slab =
4881 kmem_cache_create("i915_gem_object",
4882 sizeof(struct drm_i915_gem_object), 0,
4883 SLAB_HWCACHE_ALIGN,
4884 NULL);
4885
4886 INIT_LIST_HEAD(&dev_priv->vm_list);
4887 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4888
4889 INIT_LIST_HEAD(&dev_priv->context_list);
4890 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4891 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4892 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4893 for (i = 0; i < I915_NUM_RINGS; i++)
4894 init_ring_lists(&dev_priv->ring[i]);
4895 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4896 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4897 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4898 i915_gem_retire_work_handler);
4899 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4900 i915_gem_idle_work_handler);
4901 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4902
4903 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4904 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4905 I915_WRITE(MI_ARB_STATE,
4906 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4907 }
4908
4909 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4910
4911 /* Old X drivers will take 0-2 for front, back, depth buffers */
4912 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4913 dev_priv->fence_reg_start = 3;
4914
4915 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4916 dev_priv->num_fence_regs = 32;
4917 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4918 dev_priv->num_fence_regs = 16;
4919 else
4920 dev_priv->num_fence_regs = 8;
4921
4922 /* Initialize fence registers to zero */
4923 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4924 i915_gem_restore_fences(dev);
4925
4926 i915_gem_detect_bit_6_swizzle(dev);
4927 init_waitqueue_head(&dev_priv->pending_flip_queue);
4928
4929 dev_priv->mm.interruptible = true;
4930
4931 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4932 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4933 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4934 register_shrinker(&dev_priv->mm.shrinker);
4935
4936 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4937 register_oom_notifier(&dev_priv->mm.oom_notifier);
4938 }
4939
4940 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4941 {
4942 struct drm_i915_file_private *file_priv = file->driver_priv;
4943
4944 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4945
4946 /* Clean up our request list when the client is going away, so that
4947 * later retire_requests won't dereference our soon-to-be-gone
4948 * file_priv.
4949 */
4950 spin_lock(&file_priv->mm.lock);
4951 while (!list_empty(&file_priv->mm.request_list)) {
4952 struct drm_i915_gem_request *request;
4953
4954 request = list_first_entry(&file_priv->mm.request_list,
4955 struct drm_i915_gem_request,
4956 client_list);
4957 list_del(&request->client_list);
4958 request->file_priv = NULL;
4959 }
4960 spin_unlock(&file_priv->mm.lock);
4961 }
4962
4963 static void
4964 i915_gem_file_idle_work_handler(struct work_struct *work)
4965 {
4966 struct drm_i915_file_private *file_priv =
4967 container_of(work, typeof(*file_priv), mm.idle_work.work);
4968
4969 atomic_set(&file_priv->rps_wait_boost, false);
4970 }
4971
4972 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4973 {
4974 struct drm_i915_file_private *file_priv;
4975 int ret;
4976
4977 DRM_DEBUG_DRIVER("\n");
4978
4979 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4980 if (!file_priv)
4981 return -ENOMEM;
4982
4983 file->driver_priv = file_priv;
4984 file_priv->dev_priv = dev->dev_private;
4985 file_priv->file = file;
4986
4987 spin_lock_init(&file_priv->mm.lock);
4988 INIT_LIST_HEAD(&file_priv->mm.request_list);
4989 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4990 i915_gem_file_idle_work_handler);
4991
4992 ret = i915_gem_context_open(dev, file);
4993 if (ret)
4994 kfree(file_priv);
4995
4996 return ret;
4997 }
4998
4999 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5000 {
5001 if (!mutex_is_locked(mutex))
5002 return false;
5003
5004 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5005 return mutex->owner == task;
5006 #else
5007 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5008 return false;
5009 #endif
5010 }
5011
5012 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5013 {
5014 if (!mutex_trylock(&dev->struct_mutex)) {
5015 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5016 return false;
5017
5018 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5019 return false;
5020
5021 *unlock = false;
5022 } else
5023 *unlock = true;
5024
5025 return true;
5026 }
5027
5028 static int num_vma_bound(struct drm_i915_gem_object *obj)
5029 {
5030 struct i915_vma *vma;
5031 int count = 0;
5032
5033 list_for_each_entry(vma, &obj->vma_list, vma_link)
5034 if (drm_mm_node_allocated(&vma->node))
5035 count++;
5036
5037 return count;
5038 }
5039
5040 static unsigned long
5041 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5042 {
5043 struct drm_i915_private *dev_priv =
5044 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5045 struct drm_device *dev = dev_priv->dev;
5046 struct drm_i915_gem_object *obj;
5047 unsigned long count;
5048 bool unlock;
5049
5050 if (!i915_gem_shrinker_lock(dev, &unlock))
5051 return 0;
5052
5053 count = 0;
5054 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5055 if (obj->pages_pin_count == 0)
5056 count += obj->base.size >> PAGE_SHIFT;
5057
5058 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5059 if (!i915_gem_obj_is_pinned(obj) &&
5060 obj->pages_pin_count == num_vma_bound(obj))
5061 count += obj->base.size >> PAGE_SHIFT;
5062 }
5063
5064 if (unlock)
5065 mutex_unlock(&dev->struct_mutex);
5066
5067 return count;
5068 }
5069
5070 /* All the new VM stuff */
5071 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5072 struct i915_address_space *vm)
5073 {
5074 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5075 struct i915_vma *vma;
5076
5077 if (!dev_priv->mm.aliasing_ppgtt ||
5078 vm == &dev_priv->mm.aliasing_ppgtt->base)
5079 vm = &dev_priv->gtt.base;
5080
5081 BUG_ON(list_empty(&o->vma_list));
5082 list_for_each_entry(vma, &o->vma_list, vma_link) {
5083 if (vma->vm == vm)
5084 return vma->node.start;
5085
5086 }
5087 return -1;
5088 }
5089
5090 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5091 struct i915_address_space *vm)
5092 {
5093 struct i915_vma *vma;
5094
5095 list_for_each_entry(vma, &o->vma_list, vma_link)
5096 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5097 return true;
5098
5099 return false;
5100 }
5101
5102 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5103 {
5104 struct i915_vma *vma;
5105
5106 list_for_each_entry(vma, &o->vma_list, vma_link)
5107 if (drm_mm_node_allocated(&vma->node))
5108 return true;
5109
5110 return false;
5111 }
5112
5113 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5114 struct i915_address_space *vm)
5115 {
5116 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5117 struct i915_vma *vma;
5118
5119 if (!dev_priv->mm.aliasing_ppgtt ||
5120 vm == &dev_priv->mm.aliasing_ppgtt->base)
5121 vm = &dev_priv->gtt.base;
5122
5123 BUG_ON(list_empty(&o->vma_list));
5124
5125 list_for_each_entry(vma, &o->vma_list, vma_link)
5126 if (vma->vm == vm)
5127 return vma->node.size;
5128
5129 return 0;
5130 }
5131
5132 static unsigned long
5133 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5134 {
5135 struct drm_i915_private *dev_priv =
5136 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5137 struct drm_device *dev = dev_priv->dev;
5138 unsigned long freed;
5139 bool unlock;
5140
5141 if (!i915_gem_shrinker_lock(dev, &unlock))
5142 return SHRINK_STOP;
5143
5144 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5145 if (freed < sc->nr_to_scan)
5146 freed += __i915_gem_shrink(dev_priv,
5147 sc->nr_to_scan - freed,
5148 false);
5149 if (unlock)
5150 mutex_unlock(&dev->struct_mutex);
5151
5152 return freed;
5153 }
5154
5155 static int
5156 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5157 {
5158 struct drm_i915_private *dev_priv =
5159 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5160 struct drm_device *dev = dev_priv->dev;
5161 struct drm_i915_gem_object *obj;
5162 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5163 unsigned long pinned, bound, unbound, freed;
5164 bool was_interruptible;
5165 bool unlock;
5166
5167 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5168 schedule_timeout_killable(1);
5169 if (timeout == 0) {
5170 pr_err("Unable to purge GPU memory due lock contention.\n");
5171 return NOTIFY_DONE;
5172 }
5173
5174 was_interruptible = dev_priv->mm.interruptible;
5175 dev_priv->mm.interruptible = false;
5176
5177 freed = i915_gem_shrink_all(dev_priv);
5178
5179 dev_priv->mm.interruptible = was_interruptible;
5180
5181 /* Because we may be allocating inside our own driver, we cannot
5182 * assert that there are no objects with pinned pages that are not
5183 * being pointed to by hardware.
5184 */
5185 unbound = bound = pinned = 0;
5186 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5187 if (!obj->base.filp) /* not backed by a freeable object */
5188 continue;
5189
5190 if (obj->pages_pin_count)
5191 pinned += obj->base.size;
5192 else
5193 unbound += obj->base.size;
5194 }
5195 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5196 if (!obj->base.filp)
5197 continue;
5198
5199 if (obj->pages_pin_count)
5200 pinned += obj->base.size;
5201 else
5202 bound += obj->base.size;
5203 }
5204
5205 if (unlock)
5206 mutex_unlock(&dev->struct_mutex);
5207
5208 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5209 freed, pinned);
5210 if (unbound || bound)
5211 pr_err("%lu and %lu bytes still available in the "
5212 "bound and unbound GPU page lists.\n",
5213 bound, unbound);
5214
5215 *(unsigned long *)ptr += freed;
5216 return NOTIFY_DONE;
5217 }
5218
5219 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5220 {
5221 struct i915_vma *vma;
5222
5223 /* This WARN has probably outlived its usefulness (callers already
5224 * WARN if they don't find the GGTT vma they expect). When removing,
5225 * remember to remove the pre-check in is_pin_display() as well */
5226 if (WARN_ON(list_empty(&obj->vma_list)))
5227 return NULL;
5228
5229 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5230 if (vma->vm != obj_to_ggtt(obj))
5231 return NULL;
5232
5233 return vma;
5234 }
This page took 0.140441 seconds and 4 git commands to generate.