drm/i915: correctly restore fences with objects attached
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = obj->gtt_offset + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093 {
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116 {
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
1129 return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138 {
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
1142 unsigned reset_counter;
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 mutex_unlock(&dev->struct_mutex);
1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 mutex_lock(&dev->struct_mutex);
1165 if (ret)
1166 return ret;
1167
1168 return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
1174 */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file)
1178 {
1179 struct drm_i915_gem_set_domain *args = data;
1180 struct drm_i915_gem_object *obj;
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
1183 int ret;
1184
1185 /* Only handle setting domains to types used by the CPU. */
1186 if (write_domain & I915_GEM_GPU_DOMAINS)
1187 return -EINVAL;
1188
1189 if (read_domains & I915_GEM_GPU_DOMAINS)
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
1198 ret = i915_mutex_lock_interruptible(dev);
1199 if (ret)
1200 return ret;
1201
1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 if (&obj->base == NULL) {
1204 ret = -ENOENT;
1205 goto unlock;
1206 }
1207
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
1225 } else {
1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 }
1228
1229 unref:
1230 drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234 }
1235
1236 /**
1237 * Called when user space has done writes to this buffer
1238 */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_sw_finish *args = data;
1244 struct drm_i915_gem_object *obj;
1245 int ret = 0;
1246
1247 ret = i915_mutex_lock_interruptible(dev);
1248 if (ret)
1249 return ret;
1250
1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 if (&obj->base == NULL) {
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
1256
1257 /* Pinned buffers may be scanout, so flush the cache */
1258 if (obj->pin_count)
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261 drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265 }
1266
1267 /**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
1280 unsigned long addr;
1281
1282 obj = drm_gem_object_lookup(dev, file, args->handle);
1283 if (obj == NULL)
1284 return -ENOENT;
1285
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
1294 addr = vm_mmap(obj->filp, 0, args->size,
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
1297 drm_gem_object_unreference_unlocked(obj);
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304 }
1305
1306 /**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
1326 drm_i915_private_t *dev_priv = dev->dev_private;
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
1339
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
1348 /* Now bind it into the GTT if needed */
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
1352
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
1356
1357 ret = i915_gem_object_get_fence(obj);
1358 if (ret)
1359 goto unpin;
1360
1361 obj->fault_mappable = true;
1362
1363 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1364 page_offset;
1365
1366 /* Finally, remap it using the new GTT offset */
1367 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1368 unpin:
1369 i915_gem_object_unpin(obj);
1370 unlock:
1371 mutex_unlock(&dev->struct_mutex);
1372 out:
1373 switch (ret) {
1374 case -EIO:
1375 /* If this -EIO is due to a gpu hang, give the reset code a
1376 * chance to clean up the mess. Otherwise return the proper
1377 * SIGBUS. */
1378 if (i915_terminally_wedged(&dev_priv->gpu_error))
1379 return VM_FAULT_SIGBUS;
1380 case -EAGAIN:
1381 /* Give the error handler a chance to run and move the
1382 * objects off the GPU active list. Next time we service the
1383 * fault, we should be able to transition the page into the
1384 * GTT without touching the GPU (and so avoid further
1385 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1386 * with coherency, just lost writes.
1387 */
1388 set_need_resched();
1389 case 0:
1390 case -ERESTARTSYS:
1391 case -EINTR:
1392 case -EBUSY:
1393 /*
1394 * EBUSY is ok: this just means that another thread
1395 * already did the job.
1396 */
1397 return VM_FAULT_NOPAGE;
1398 case -ENOMEM:
1399 return VM_FAULT_OOM;
1400 case -ENOSPC:
1401 return VM_FAULT_SIGBUS;
1402 default:
1403 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1404 return VM_FAULT_SIGBUS;
1405 }
1406 }
1407
1408 /**
1409 * i915_gem_release_mmap - remove physical page mappings
1410 * @obj: obj in question
1411 *
1412 * Preserve the reservation of the mmapping with the DRM core code, but
1413 * relinquish ownership of the pages back to the system.
1414 *
1415 * It is vital that we remove the page mapping if we have mapped a tiled
1416 * object through the GTT and then lose the fence register due to
1417 * resource pressure. Similarly if the object has been moved out of the
1418 * aperture, than pages mapped into userspace must be revoked. Removing the
1419 * mapping will then trigger a page fault on the next user access, allowing
1420 * fixup by i915_gem_fault().
1421 */
1422 void
1423 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1424 {
1425 if (!obj->fault_mappable)
1426 return;
1427
1428 if (obj->base.dev->dev_mapping)
1429 unmap_mapping_range(obj->base.dev->dev_mapping,
1430 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1431 obj->base.size, 1);
1432
1433 obj->fault_mappable = false;
1434 }
1435
1436 uint32_t
1437 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1438 {
1439 uint32_t gtt_size;
1440
1441 if (INTEL_INFO(dev)->gen >= 4 ||
1442 tiling_mode == I915_TILING_NONE)
1443 return size;
1444
1445 /* Previous chips need a power-of-two fence region when tiling */
1446 if (INTEL_INFO(dev)->gen == 3)
1447 gtt_size = 1024*1024;
1448 else
1449 gtt_size = 512*1024;
1450
1451 while (gtt_size < size)
1452 gtt_size <<= 1;
1453
1454 return gtt_size;
1455 }
1456
1457 /**
1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459 * @obj: object to check
1460 *
1461 * Return the required GTT alignment for an object, taking into account
1462 * potential fence register mapping.
1463 */
1464 uint32_t
1465 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1466 int tiling_mode, bool fenced)
1467 {
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1473 tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1484 {
1485 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1486 int ret;
1487
1488 if (obj->base.map_list.map)
1489 return 0;
1490
1491 dev_priv->mm.shrinker_no_lock_stealing = true;
1492
1493 ret = drm_gem_create_mmap_offset(&obj->base);
1494 if (ret != -ENOSPC)
1495 goto out;
1496
1497 /* Badly fragmented mmap space? The only way we can recover
1498 * space is by destroying unwanted objects. We can't randomly release
1499 * mmap_offsets as userspace expects them to be persistent for the
1500 * lifetime of the objects. The closest we can is to release the
1501 * offsets on purgeable objects by truncating it and marking it purged,
1502 * which prevents userspace from ever using that object again.
1503 */
1504 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1505 ret = drm_gem_create_mmap_offset(&obj->base);
1506 if (ret != -ENOSPC)
1507 goto out;
1508
1509 i915_gem_shrink_all(dev_priv);
1510 ret = drm_gem_create_mmap_offset(&obj->base);
1511 out:
1512 dev_priv->mm.shrinker_no_lock_stealing = false;
1513
1514 return ret;
1515 }
1516
1517 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1518 {
1519 if (!obj->base.map_list.map)
1520 return;
1521
1522 drm_gem_free_mmap_offset(&obj->base);
1523 }
1524
1525 int
1526 i915_gem_mmap_gtt(struct drm_file *file,
1527 struct drm_device *dev,
1528 uint32_t handle,
1529 uint64_t *offset)
1530 {
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 struct drm_i915_gem_object *obj;
1533 int ret;
1534
1535 ret = i915_mutex_lock_interruptible(dev);
1536 if (ret)
1537 return ret;
1538
1539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1540 if (&obj->base == NULL) {
1541 ret = -ENOENT;
1542 goto unlock;
1543 }
1544
1545 if (obj->base.size > dev_priv->gtt.mappable_end) {
1546 ret = -E2BIG;
1547 goto out;
1548 }
1549
1550 if (obj->madv != I915_MADV_WILLNEED) {
1551 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1552 ret = -EINVAL;
1553 goto out;
1554 }
1555
1556 ret = i915_gem_object_create_mmap_offset(obj);
1557 if (ret)
1558 goto out;
1559
1560 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1561
1562 out:
1563 drm_gem_object_unreference(&obj->base);
1564 unlock:
1565 mutex_unlock(&dev->struct_mutex);
1566 return ret;
1567 }
1568
1569 /**
1570 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1571 * @dev: DRM device
1572 * @data: GTT mapping ioctl data
1573 * @file: GEM object info
1574 *
1575 * Simply returns the fake offset to userspace so it can mmap it.
1576 * The mmap call will end up in drm_gem_mmap(), which will set things
1577 * up so we can get faults in the handler above.
1578 *
1579 * The fault handler will take care of binding the object into the GTT
1580 * (since it may have been evicted to make room for something), allocating
1581 * a fence register, and mapping the appropriate aperture address into
1582 * userspace.
1583 */
1584 int
1585 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1586 struct drm_file *file)
1587 {
1588 struct drm_i915_gem_mmap_gtt *args = data;
1589
1590 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1591 }
1592
1593 /* Immediately discard the backing storage */
1594 static void
1595 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1596 {
1597 struct inode *inode;
1598
1599 i915_gem_object_free_mmap_offset(obj);
1600
1601 if (obj->base.filp == NULL)
1602 return;
1603
1604 /* Our goal here is to return as much of the memory as
1605 * is possible back to the system as we are called from OOM.
1606 * To do this we must instruct the shmfs to drop all of its
1607 * backing pages, *now*.
1608 */
1609 inode = file_inode(obj->base.filp);
1610 shmem_truncate_range(inode, 0, (loff_t)-1);
1611
1612 obj->madv = __I915_MADV_PURGED;
1613 }
1614
1615 static inline int
1616 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1617 {
1618 return obj->madv == I915_MADV_DONTNEED;
1619 }
1620
1621 static void
1622 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1623 {
1624 struct sg_page_iter sg_iter;
1625 int ret;
1626
1627 BUG_ON(obj->madv == __I915_MADV_PURGED);
1628
1629 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1630 if (ret) {
1631 /* In the event of a disaster, abandon all caches and
1632 * hope for the best.
1633 */
1634 WARN_ON(ret != -EIO);
1635 i915_gem_clflush_object(obj);
1636 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1637 }
1638
1639 if (i915_gem_object_needs_bit17_swizzle(obj))
1640 i915_gem_object_save_bit_17_swizzle(obj);
1641
1642 if (obj->madv == I915_MADV_DONTNEED)
1643 obj->dirty = 0;
1644
1645 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1646 struct page *page = sg_page_iter_page(&sg_iter);
1647
1648 if (obj->dirty)
1649 set_page_dirty(page);
1650
1651 if (obj->madv == I915_MADV_WILLNEED)
1652 mark_page_accessed(page);
1653
1654 page_cache_release(page);
1655 }
1656 obj->dirty = 0;
1657
1658 sg_free_table(obj->pages);
1659 kfree(obj->pages);
1660 }
1661
1662 int
1663 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1664 {
1665 const struct drm_i915_gem_object_ops *ops = obj->ops;
1666
1667 if (obj->pages == NULL)
1668 return 0;
1669
1670 BUG_ON(obj->gtt_space);
1671
1672 if (obj->pages_pin_count)
1673 return -EBUSY;
1674
1675 /* ->put_pages might need to allocate memory for the bit17 swizzle
1676 * array, hence protect them from being reaped by removing them from gtt
1677 * lists early. */
1678 list_del(&obj->global_list);
1679
1680 ops->put_pages(obj);
1681 obj->pages = NULL;
1682
1683 if (i915_gem_object_is_purgeable(obj))
1684 i915_gem_object_truncate(obj);
1685
1686 return 0;
1687 }
1688
1689 static long
1690 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1691 bool purgeable_only)
1692 {
1693 struct drm_i915_gem_object *obj, *next;
1694 long count = 0;
1695
1696 list_for_each_entry_safe(obj, next,
1697 &dev_priv->mm.unbound_list,
1698 global_list) {
1699 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1700 i915_gem_object_put_pages(obj) == 0) {
1701 count += obj->base.size >> PAGE_SHIFT;
1702 if (count >= target)
1703 return count;
1704 }
1705 }
1706
1707 list_for_each_entry_safe(obj, next,
1708 &dev_priv->mm.inactive_list,
1709 mm_list) {
1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1711 i915_gem_object_unbind(obj) == 0 &&
1712 i915_gem_object_put_pages(obj) == 0) {
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 return count;
1720 }
1721
1722 static long
1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724 {
1725 return __i915_gem_shrink(dev_priv, target, true);
1726 }
1727
1728 static void
1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730 {
1731 struct drm_i915_gem_object *obj, *next;
1732
1733 i915_gem_evict_everything(dev_priv->dev);
1734
1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 global_list)
1737 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 int page_count, i;
1745 struct address_space *mapping;
1746 struct sg_table *st;
1747 struct scatterlist *sg;
1748 struct sg_page_iter sg_iter;
1749 struct page *page;
1750 unsigned long last_pfn = 0; /* suppress gcc warning */
1751 gfp_t gfp;
1752
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
1764 page_count = obj->base.size / PAGE_SIZE;
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
1768 return -ENOMEM;
1769 }
1770
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
1776 mapping = file_inode(obj->base.filp)->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1804 #ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811 #endif
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
1821 }
1822 #ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824 #endif
1825 sg_mark_end(sg);
1826 obj->pages = st;
1827
1828 if (i915_gem_object_needs_bit17_swizzle(obj))
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833 err_pages:
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 page_cache_release(sg_page_iter_page(&sg_iter));
1837 sg_free_table(st);
1838 kfree(st);
1839 return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
1856 if (obj->pages)
1857 return 0;
1858
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
1864 BUG_ON(obj->pages_pin_count);
1865
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1871 return 0;
1872 }
1873
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 struct intel_ring_buffer *ring)
1877 {
1878 struct drm_device *dev = obj->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 u32 seqno = intel_ring_get_seqno(ring);
1881
1882 BUG_ON(ring == NULL);
1883 if (obj->ring != ring && obj->last_write_seqno) {
1884 /* Keep the seqno relative to the current ring */
1885 obj->last_write_seqno = seqno;
1886 }
1887 obj->ring = ring;
1888
1889 /* Add a reference if we're newly entering the active list. */
1890 if (!obj->active) {
1891 drm_gem_object_reference(&obj->base);
1892 obj->active = 1;
1893 }
1894
1895 /* Move from whatever list we were on to the tail of execution. */
1896 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1897 list_move_tail(&obj->ring_list, &ring->active_list);
1898
1899 obj->last_read_seqno = seqno;
1900
1901 if (obj->fenced_gpu_access) {
1902 obj->last_fenced_seqno = seqno;
1903
1904 /* Bump MRU to take account of the delayed flush */
1905 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1906 struct drm_i915_fence_reg *reg;
1907
1908 reg = &dev_priv->fence_regs[obj->fence_reg];
1909 list_move_tail(&reg->lru_list,
1910 &dev_priv->mm.fence_list);
1911 }
1912 }
1913 }
1914
1915 static void
1916 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1917 {
1918 struct drm_device *dev = obj->base.dev;
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920
1921 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1922 BUG_ON(!obj->active);
1923
1924 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1925
1926 list_del_init(&obj->ring_list);
1927 obj->ring = NULL;
1928
1929 obj->last_read_seqno = 0;
1930 obj->last_write_seqno = 0;
1931 obj->base.write_domain = 0;
1932
1933 obj->last_fenced_seqno = 0;
1934 obj->fenced_gpu_access = false;
1935
1936 obj->active = 0;
1937 drm_gem_object_unreference(&obj->base);
1938
1939 WARN_ON(i915_verify_lists(dev));
1940 }
1941
1942 static int
1943 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1944 {
1945 struct drm_i915_private *dev_priv = dev->dev_private;
1946 struct intel_ring_buffer *ring;
1947 int ret, i, j;
1948
1949 /* Carefully retire all requests without writing to the rings */
1950 for_each_ring(ring, dev_priv, i) {
1951 ret = intel_ring_idle(ring);
1952 if (ret)
1953 return ret;
1954 }
1955 i915_gem_retire_requests(dev);
1956
1957 /* Finally reset hw state */
1958 for_each_ring(ring, dev_priv, i) {
1959 intel_ring_init_seqno(ring, seqno);
1960
1961 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1962 ring->sync_seqno[j] = 0;
1963 }
1964
1965 return 0;
1966 }
1967
1968 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1969 {
1970 struct drm_i915_private *dev_priv = dev->dev_private;
1971 int ret;
1972
1973 if (seqno == 0)
1974 return -EINVAL;
1975
1976 /* HWS page needs to be set less than what we
1977 * will inject to ring
1978 */
1979 ret = i915_gem_init_seqno(dev, seqno - 1);
1980 if (ret)
1981 return ret;
1982
1983 /* Carefully set the last_seqno value so that wrap
1984 * detection still works
1985 */
1986 dev_priv->next_seqno = seqno;
1987 dev_priv->last_seqno = seqno - 1;
1988 if (dev_priv->last_seqno == 0)
1989 dev_priv->last_seqno--;
1990
1991 return 0;
1992 }
1993
1994 int
1995 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1996 {
1997 struct drm_i915_private *dev_priv = dev->dev_private;
1998
1999 /* reserve 0 for non-seqno */
2000 if (dev_priv->next_seqno == 0) {
2001 int ret = i915_gem_init_seqno(dev, 0);
2002 if (ret)
2003 return ret;
2004
2005 dev_priv->next_seqno = 1;
2006 }
2007
2008 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2009 return 0;
2010 }
2011
2012 int __i915_add_request(struct intel_ring_buffer *ring,
2013 struct drm_file *file,
2014 struct drm_i915_gem_object *obj,
2015 u32 *out_seqno)
2016 {
2017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2018 struct drm_i915_gem_request *request;
2019 u32 request_ring_position, request_start;
2020 int was_empty;
2021 int ret;
2022
2023 request_start = intel_ring_get_tail(ring);
2024 /*
2025 * Emit any outstanding flushes - execbuf can fail to emit the flush
2026 * after having emitted the batchbuffer command. Hence we need to fix
2027 * things up similar to emitting the lazy request. The difference here
2028 * is that the flush _must_ happen before the next request, no matter
2029 * what.
2030 */
2031 ret = intel_ring_flush_all_caches(ring);
2032 if (ret)
2033 return ret;
2034
2035 request = kmalloc(sizeof(*request), GFP_KERNEL);
2036 if (request == NULL)
2037 return -ENOMEM;
2038
2039
2040 /* Record the position of the start of the request so that
2041 * should we detect the updated seqno part-way through the
2042 * GPU processing the request, we never over-estimate the
2043 * position of the head.
2044 */
2045 request_ring_position = intel_ring_get_tail(ring);
2046
2047 ret = ring->add_request(ring);
2048 if (ret) {
2049 kfree(request);
2050 return ret;
2051 }
2052
2053 request->seqno = intel_ring_get_seqno(ring);
2054 request->ring = ring;
2055 request->head = request_start;
2056 request->tail = request_ring_position;
2057 request->ctx = ring->last_context;
2058 request->batch_obj = obj;
2059
2060 /* Whilst this request exists, batch_obj will be on the
2061 * active_list, and so will hold the active reference. Only when this
2062 * request is retired will the the batch_obj be moved onto the
2063 * inactive_list and lose its active reference. Hence we do not need
2064 * to explicitly hold another reference here.
2065 */
2066
2067 if (request->ctx)
2068 i915_gem_context_reference(request->ctx);
2069
2070 request->emitted_jiffies = jiffies;
2071 was_empty = list_empty(&ring->request_list);
2072 list_add_tail(&request->list, &ring->request_list);
2073 request->file_priv = NULL;
2074
2075 if (file) {
2076 struct drm_i915_file_private *file_priv = file->driver_priv;
2077
2078 spin_lock(&file_priv->mm.lock);
2079 request->file_priv = file_priv;
2080 list_add_tail(&request->client_list,
2081 &file_priv->mm.request_list);
2082 spin_unlock(&file_priv->mm.lock);
2083 }
2084
2085 trace_i915_gem_request_add(ring, request->seqno);
2086 ring->outstanding_lazy_request = 0;
2087
2088 if (!dev_priv->mm.suspended) {
2089 if (i915_enable_hangcheck) {
2090 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2091 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2092 }
2093 if (was_empty) {
2094 queue_delayed_work(dev_priv->wq,
2095 &dev_priv->mm.retire_work,
2096 round_jiffies_up_relative(HZ));
2097 intel_mark_busy(dev_priv->dev);
2098 }
2099 }
2100
2101 if (out_seqno)
2102 *out_seqno = request->seqno;
2103 return 0;
2104 }
2105
2106 static inline void
2107 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2108 {
2109 struct drm_i915_file_private *file_priv = request->file_priv;
2110
2111 if (!file_priv)
2112 return;
2113
2114 spin_lock(&file_priv->mm.lock);
2115 if (request->file_priv) {
2116 list_del(&request->client_list);
2117 request->file_priv = NULL;
2118 }
2119 spin_unlock(&file_priv->mm.lock);
2120 }
2121
2122 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2123 {
2124 if (acthd >= obj->gtt_offset &&
2125 acthd < obj->gtt_offset + obj->base.size)
2126 return true;
2127
2128 return false;
2129 }
2130
2131 static bool i915_head_inside_request(const u32 acthd_unmasked,
2132 const u32 request_start,
2133 const u32 request_end)
2134 {
2135 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2136
2137 if (request_start < request_end) {
2138 if (acthd >= request_start && acthd < request_end)
2139 return true;
2140 } else if (request_start > request_end) {
2141 if (acthd >= request_start || acthd < request_end)
2142 return true;
2143 }
2144
2145 return false;
2146 }
2147
2148 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2149 const u32 acthd, bool *inside)
2150 {
2151 /* There is a possibility that unmasked head address
2152 * pointing inside the ring, matches the batch_obj address range.
2153 * However this is extremely unlikely.
2154 */
2155
2156 if (request->batch_obj) {
2157 if (i915_head_inside_object(acthd, request->batch_obj)) {
2158 *inside = true;
2159 return true;
2160 }
2161 }
2162
2163 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2164 *inside = false;
2165 return true;
2166 }
2167
2168 return false;
2169 }
2170
2171 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2172 struct drm_i915_gem_request *request,
2173 u32 acthd)
2174 {
2175 struct i915_ctx_hang_stats *hs = NULL;
2176 bool inside, guilty;
2177
2178 /* Innocent until proven guilty */
2179 guilty = false;
2180
2181 if (ring->hangcheck.action != wait &&
2182 i915_request_guilty(request, acthd, &inside)) {
2183 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2184 ring->name,
2185 inside ? "inside" : "flushing",
2186 request->batch_obj ?
2187 request->batch_obj->gtt_offset : 0,
2188 request->ctx ? request->ctx->id : 0,
2189 acthd);
2190
2191 guilty = true;
2192 }
2193
2194 /* If contexts are disabled or this is the default context, use
2195 * file_priv->reset_state
2196 */
2197 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2198 hs = &request->ctx->hang_stats;
2199 else if (request->file_priv)
2200 hs = &request->file_priv->hang_stats;
2201
2202 if (hs) {
2203 if (guilty)
2204 hs->batch_active++;
2205 else
2206 hs->batch_pending++;
2207 }
2208 }
2209
2210 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2211 {
2212 list_del(&request->list);
2213 i915_gem_request_remove_from_client(request);
2214
2215 if (request->ctx)
2216 i915_gem_context_unreference(request->ctx);
2217
2218 kfree(request);
2219 }
2220
2221 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2222 struct intel_ring_buffer *ring)
2223 {
2224 u32 completed_seqno;
2225 u32 acthd;
2226
2227 acthd = intel_ring_get_active_head(ring);
2228 completed_seqno = ring->get_seqno(ring, false);
2229
2230 while (!list_empty(&ring->request_list)) {
2231 struct drm_i915_gem_request *request;
2232
2233 request = list_first_entry(&ring->request_list,
2234 struct drm_i915_gem_request,
2235 list);
2236
2237 if (request->seqno > completed_seqno)
2238 i915_set_reset_status(ring, request, acthd);
2239
2240 i915_gem_free_request(request);
2241 }
2242
2243 while (!list_empty(&ring->active_list)) {
2244 struct drm_i915_gem_object *obj;
2245
2246 obj = list_first_entry(&ring->active_list,
2247 struct drm_i915_gem_object,
2248 ring_list);
2249
2250 i915_gem_object_move_to_inactive(obj);
2251 }
2252 }
2253
2254 void i915_gem_restore_fences(struct drm_device *dev)
2255 {
2256 struct drm_i915_private *dev_priv = dev->dev_private;
2257 int i;
2258
2259 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2260 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2261
2262 /*
2263 * Commit delayed tiling changes if we have an object still
2264 * attached to the fence, otherwise just clear the fence.
2265 */
2266 if (reg->obj) {
2267 i915_gem_object_update_fence(reg->obj, reg,
2268 reg->obj->tiling_mode);
2269 } else {
2270 i915_gem_write_fence(dev, i, NULL);
2271 }
2272 }
2273 }
2274
2275 void i915_gem_reset(struct drm_device *dev)
2276 {
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 struct drm_i915_gem_object *obj;
2279 struct intel_ring_buffer *ring;
2280 int i;
2281
2282 for_each_ring(ring, dev_priv, i)
2283 i915_gem_reset_ring_lists(dev_priv, ring);
2284
2285 /* Move everything out of the GPU domains to ensure we do any
2286 * necessary invalidation upon reuse.
2287 */
2288 list_for_each_entry(obj,
2289 &dev_priv->mm.inactive_list,
2290 mm_list)
2291 {
2292 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2293 }
2294
2295 i915_gem_restore_fences(dev);
2296 }
2297
2298 /**
2299 * This function clears the request list as sequence numbers are passed.
2300 */
2301 void
2302 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2303 {
2304 uint32_t seqno;
2305
2306 if (list_empty(&ring->request_list))
2307 return;
2308
2309 WARN_ON(i915_verify_lists(ring->dev));
2310
2311 seqno = ring->get_seqno(ring, true);
2312
2313 while (!list_empty(&ring->request_list)) {
2314 struct drm_i915_gem_request *request;
2315
2316 request = list_first_entry(&ring->request_list,
2317 struct drm_i915_gem_request,
2318 list);
2319
2320 if (!i915_seqno_passed(seqno, request->seqno))
2321 break;
2322
2323 trace_i915_gem_request_retire(ring, request->seqno);
2324 /* We know the GPU must have read the request to have
2325 * sent us the seqno + interrupt, so use the position
2326 * of tail of the request to update the last known position
2327 * of the GPU head.
2328 */
2329 ring->last_retired_head = request->tail;
2330
2331 i915_gem_free_request(request);
2332 }
2333
2334 /* Move any buffers on the active list that are no longer referenced
2335 * by the ringbuffer to the flushing/inactive lists as appropriate.
2336 */
2337 while (!list_empty(&ring->active_list)) {
2338 struct drm_i915_gem_object *obj;
2339
2340 obj = list_first_entry(&ring->active_list,
2341 struct drm_i915_gem_object,
2342 ring_list);
2343
2344 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2345 break;
2346
2347 i915_gem_object_move_to_inactive(obj);
2348 }
2349
2350 if (unlikely(ring->trace_irq_seqno &&
2351 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2352 ring->irq_put(ring);
2353 ring->trace_irq_seqno = 0;
2354 }
2355
2356 WARN_ON(i915_verify_lists(ring->dev));
2357 }
2358
2359 void
2360 i915_gem_retire_requests(struct drm_device *dev)
2361 {
2362 drm_i915_private_t *dev_priv = dev->dev_private;
2363 struct intel_ring_buffer *ring;
2364 int i;
2365
2366 for_each_ring(ring, dev_priv, i)
2367 i915_gem_retire_requests_ring(ring);
2368 }
2369
2370 static void
2371 i915_gem_retire_work_handler(struct work_struct *work)
2372 {
2373 drm_i915_private_t *dev_priv;
2374 struct drm_device *dev;
2375 struct intel_ring_buffer *ring;
2376 bool idle;
2377 int i;
2378
2379 dev_priv = container_of(work, drm_i915_private_t,
2380 mm.retire_work.work);
2381 dev = dev_priv->dev;
2382
2383 /* Come back later if the device is busy... */
2384 if (!mutex_trylock(&dev->struct_mutex)) {
2385 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2386 round_jiffies_up_relative(HZ));
2387 return;
2388 }
2389
2390 i915_gem_retire_requests(dev);
2391
2392 /* Send a periodic flush down the ring so we don't hold onto GEM
2393 * objects indefinitely.
2394 */
2395 idle = true;
2396 for_each_ring(ring, dev_priv, i) {
2397 if (ring->gpu_caches_dirty)
2398 i915_add_request(ring, NULL);
2399
2400 idle &= list_empty(&ring->request_list);
2401 }
2402
2403 if (!dev_priv->mm.suspended && !idle)
2404 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2405 round_jiffies_up_relative(HZ));
2406 if (idle)
2407 intel_mark_idle(dev);
2408
2409 mutex_unlock(&dev->struct_mutex);
2410 }
2411
2412 /**
2413 * Ensures that an object will eventually get non-busy by flushing any required
2414 * write domains, emitting any outstanding lazy request and retiring and
2415 * completed requests.
2416 */
2417 static int
2418 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2419 {
2420 int ret;
2421
2422 if (obj->active) {
2423 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2424 if (ret)
2425 return ret;
2426
2427 i915_gem_retire_requests_ring(obj->ring);
2428 }
2429
2430 return 0;
2431 }
2432
2433 /**
2434 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2435 * @DRM_IOCTL_ARGS: standard ioctl arguments
2436 *
2437 * Returns 0 if successful, else an error is returned with the remaining time in
2438 * the timeout parameter.
2439 * -ETIME: object is still busy after timeout
2440 * -ERESTARTSYS: signal interrupted the wait
2441 * -ENONENT: object doesn't exist
2442 * Also possible, but rare:
2443 * -EAGAIN: GPU wedged
2444 * -ENOMEM: damn
2445 * -ENODEV: Internal IRQ fail
2446 * -E?: The add request failed
2447 *
2448 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2449 * non-zero timeout parameter the wait ioctl will wait for the given number of
2450 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2451 * without holding struct_mutex the object may become re-busied before this
2452 * function completes. A similar but shorter * race condition exists in the busy
2453 * ioctl
2454 */
2455 int
2456 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2457 {
2458 drm_i915_private_t *dev_priv = dev->dev_private;
2459 struct drm_i915_gem_wait *args = data;
2460 struct drm_i915_gem_object *obj;
2461 struct intel_ring_buffer *ring = NULL;
2462 struct timespec timeout_stack, *timeout = NULL;
2463 unsigned reset_counter;
2464 u32 seqno = 0;
2465 int ret = 0;
2466
2467 if (args->timeout_ns >= 0) {
2468 timeout_stack = ns_to_timespec(args->timeout_ns);
2469 timeout = &timeout_stack;
2470 }
2471
2472 ret = i915_mutex_lock_interruptible(dev);
2473 if (ret)
2474 return ret;
2475
2476 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2477 if (&obj->base == NULL) {
2478 mutex_unlock(&dev->struct_mutex);
2479 return -ENOENT;
2480 }
2481
2482 /* Need to make sure the object gets inactive eventually. */
2483 ret = i915_gem_object_flush_active(obj);
2484 if (ret)
2485 goto out;
2486
2487 if (obj->active) {
2488 seqno = obj->last_read_seqno;
2489 ring = obj->ring;
2490 }
2491
2492 if (seqno == 0)
2493 goto out;
2494
2495 /* Do this after OLR check to make sure we make forward progress polling
2496 * on this IOCTL with a 0 timeout (like busy ioctl)
2497 */
2498 if (!args->timeout_ns) {
2499 ret = -ETIME;
2500 goto out;
2501 }
2502
2503 drm_gem_object_unreference(&obj->base);
2504 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2505 mutex_unlock(&dev->struct_mutex);
2506
2507 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2508 if (timeout)
2509 args->timeout_ns = timespec_to_ns(timeout);
2510 return ret;
2511
2512 out:
2513 drm_gem_object_unreference(&obj->base);
2514 mutex_unlock(&dev->struct_mutex);
2515 return ret;
2516 }
2517
2518 /**
2519 * i915_gem_object_sync - sync an object to a ring.
2520 *
2521 * @obj: object which may be in use on another ring.
2522 * @to: ring we wish to use the object on. May be NULL.
2523 *
2524 * This code is meant to abstract object synchronization with the GPU.
2525 * Calling with NULL implies synchronizing the object with the CPU
2526 * rather than a particular GPU ring.
2527 *
2528 * Returns 0 if successful, else propagates up the lower layer error.
2529 */
2530 int
2531 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2532 struct intel_ring_buffer *to)
2533 {
2534 struct intel_ring_buffer *from = obj->ring;
2535 u32 seqno;
2536 int ret, idx;
2537
2538 if (from == NULL || to == from)
2539 return 0;
2540
2541 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2542 return i915_gem_object_wait_rendering(obj, false);
2543
2544 idx = intel_ring_sync_index(from, to);
2545
2546 seqno = obj->last_read_seqno;
2547 if (seqno <= from->sync_seqno[idx])
2548 return 0;
2549
2550 ret = i915_gem_check_olr(obj->ring, seqno);
2551 if (ret)
2552 return ret;
2553
2554 ret = to->sync_to(to, from, seqno);
2555 if (!ret)
2556 /* We use last_read_seqno because sync_to()
2557 * might have just caused seqno wrap under
2558 * the radar.
2559 */
2560 from->sync_seqno[idx] = obj->last_read_seqno;
2561
2562 return ret;
2563 }
2564
2565 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2566 {
2567 u32 old_write_domain, old_read_domains;
2568
2569 /* Force a pagefault for domain tracking on next user access */
2570 i915_gem_release_mmap(obj);
2571
2572 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2573 return;
2574
2575 /* Wait for any direct GTT access to complete */
2576 mb();
2577
2578 old_read_domains = obj->base.read_domains;
2579 old_write_domain = obj->base.write_domain;
2580
2581 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2582 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2583
2584 trace_i915_gem_object_change_domain(obj,
2585 old_read_domains,
2586 old_write_domain);
2587 }
2588
2589 /**
2590 * Unbinds an object from the GTT aperture.
2591 */
2592 int
2593 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2594 {
2595 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2596 int ret;
2597
2598 if (obj->gtt_space == NULL)
2599 return 0;
2600
2601 if (obj->pin_count)
2602 return -EBUSY;
2603
2604 BUG_ON(obj->pages == NULL);
2605
2606 ret = i915_gem_object_finish_gpu(obj);
2607 if (ret)
2608 return ret;
2609 /* Continue on if we fail due to EIO, the GPU is hung so we
2610 * should be safe and we need to cleanup or else we might
2611 * cause memory corruption through use-after-free.
2612 */
2613
2614 i915_gem_object_finish_gtt(obj);
2615
2616 /* release the fence reg _after_ flushing */
2617 ret = i915_gem_object_put_fence(obj);
2618 if (ret)
2619 return ret;
2620
2621 trace_i915_gem_object_unbind(obj);
2622
2623 if (obj->has_global_gtt_mapping)
2624 i915_gem_gtt_unbind_object(obj);
2625 if (obj->has_aliasing_ppgtt_mapping) {
2626 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2627 obj->has_aliasing_ppgtt_mapping = 0;
2628 }
2629 i915_gem_gtt_finish_object(obj);
2630 i915_gem_object_unpin_pages(obj);
2631
2632 list_del(&obj->mm_list);
2633 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2634 /* Avoid an unnecessary call to unbind on rebind. */
2635 obj->map_and_fenceable = true;
2636
2637 drm_mm_put_block(obj->gtt_space);
2638 obj->gtt_space = NULL;
2639 obj->gtt_offset = 0;
2640
2641 return 0;
2642 }
2643
2644 int i915_gpu_idle(struct drm_device *dev)
2645 {
2646 drm_i915_private_t *dev_priv = dev->dev_private;
2647 struct intel_ring_buffer *ring;
2648 int ret, i;
2649
2650 /* Flush everything onto the inactive list. */
2651 for_each_ring(ring, dev_priv, i) {
2652 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2653 if (ret)
2654 return ret;
2655
2656 ret = intel_ring_idle(ring);
2657 if (ret)
2658 return ret;
2659 }
2660
2661 return 0;
2662 }
2663
2664 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2665 struct drm_i915_gem_object *obj)
2666 {
2667 drm_i915_private_t *dev_priv = dev->dev_private;
2668 int fence_reg;
2669 int fence_pitch_shift;
2670
2671 if (INTEL_INFO(dev)->gen >= 6) {
2672 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2673 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2674 } else {
2675 fence_reg = FENCE_REG_965_0;
2676 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2677 }
2678
2679 fence_reg += reg * 8;
2680
2681 /* To w/a incoherency with non-atomic 64-bit register updates,
2682 * we split the 64-bit update into two 32-bit writes. In order
2683 * for a partial fence not to be evaluated between writes, we
2684 * precede the update with write to turn off the fence register,
2685 * and only enable the fence as the last step.
2686 *
2687 * For extra levels of paranoia, we make sure each step lands
2688 * before applying the next step.
2689 */
2690 I915_WRITE(fence_reg, 0);
2691 POSTING_READ(fence_reg);
2692
2693 if (obj) {
2694 u32 size = obj->gtt_space->size;
2695 uint64_t val;
2696
2697 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2698 0xfffff000) << 32;
2699 val |= obj->gtt_offset & 0xfffff000;
2700 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2701 if (obj->tiling_mode == I915_TILING_Y)
2702 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2703 val |= I965_FENCE_REG_VALID;
2704
2705 I915_WRITE(fence_reg + 4, val >> 32);
2706 POSTING_READ(fence_reg + 4);
2707
2708 I915_WRITE(fence_reg + 0, val);
2709 POSTING_READ(fence_reg);
2710 } else {
2711 I915_WRITE(fence_reg + 4, 0);
2712 POSTING_READ(fence_reg + 4);
2713 }
2714 }
2715
2716 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2717 struct drm_i915_gem_object *obj)
2718 {
2719 drm_i915_private_t *dev_priv = dev->dev_private;
2720 u32 val;
2721
2722 if (obj) {
2723 u32 size = obj->gtt_space->size;
2724 int pitch_val;
2725 int tile_width;
2726
2727 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2728 (size & -size) != size ||
2729 (obj->gtt_offset & (size - 1)),
2730 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2731 obj->gtt_offset, obj->map_and_fenceable, size);
2732
2733 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2734 tile_width = 128;
2735 else
2736 tile_width = 512;
2737
2738 /* Note: pitch better be a power of two tile widths */
2739 pitch_val = obj->stride / tile_width;
2740 pitch_val = ffs(pitch_val) - 1;
2741
2742 val = obj->gtt_offset;
2743 if (obj->tiling_mode == I915_TILING_Y)
2744 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2745 val |= I915_FENCE_SIZE_BITS(size);
2746 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2747 val |= I830_FENCE_REG_VALID;
2748 } else
2749 val = 0;
2750
2751 if (reg < 8)
2752 reg = FENCE_REG_830_0 + reg * 4;
2753 else
2754 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2755
2756 I915_WRITE(reg, val);
2757 POSTING_READ(reg);
2758 }
2759
2760 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2761 struct drm_i915_gem_object *obj)
2762 {
2763 drm_i915_private_t *dev_priv = dev->dev_private;
2764 uint32_t val;
2765
2766 if (obj) {
2767 u32 size = obj->gtt_space->size;
2768 uint32_t pitch_val;
2769
2770 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2771 (size & -size) != size ||
2772 (obj->gtt_offset & (size - 1)),
2773 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2774 obj->gtt_offset, size);
2775
2776 pitch_val = obj->stride / 128;
2777 pitch_val = ffs(pitch_val) - 1;
2778
2779 val = obj->gtt_offset;
2780 if (obj->tiling_mode == I915_TILING_Y)
2781 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2782 val |= I830_FENCE_SIZE_BITS(size);
2783 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2784 val |= I830_FENCE_REG_VALID;
2785 } else
2786 val = 0;
2787
2788 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2789 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2790 }
2791
2792 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2793 {
2794 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2795 }
2796
2797 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2798 struct drm_i915_gem_object *obj)
2799 {
2800 struct drm_i915_private *dev_priv = dev->dev_private;
2801
2802 /* Ensure that all CPU reads are completed before installing a fence
2803 * and all writes before removing the fence.
2804 */
2805 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2806 mb();
2807
2808 WARN(obj && (!obj->stride || !obj->tiling_mode),
2809 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2810 obj->stride, obj->tiling_mode);
2811
2812 switch (INTEL_INFO(dev)->gen) {
2813 case 7:
2814 case 6:
2815 case 5:
2816 case 4: i965_write_fence_reg(dev, reg, obj); break;
2817 case 3: i915_write_fence_reg(dev, reg, obj); break;
2818 case 2: i830_write_fence_reg(dev, reg, obj); break;
2819 default: BUG();
2820 }
2821
2822 /* And similarly be paranoid that no direct access to this region
2823 * is reordered to before the fence is installed.
2824 */
2825 if (i915_gem_object_needs_mb(obj))
2826 mb();
2827 }
2828
2829 static inline int fence_number(struct drm_i915_private *dev_priv,
2830 struct drm_i915_fence_reg *fence)
2831 {
2832 return fence - dev_priv->fence_regs;
2833 }
2834
2835 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2836 struct drm_i915_fence_reg *fence,
2837 bool enable)
2838 {
2839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2840 int reg = fence_number(dev_priv, fence);
2841
2842 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2843
2844 if (enable) {
2845 obj->fence_reg = reg;
2846 fence->obj = obj;
2847 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2848 } else {
2849 obj->fence_reg = I915_FENCE_REG_NONE;
2850 fence->obj = NULL;
2851 list_del_init(&fence->lru_list);
2852 }
2853 obj->fence_dirty = false;
2854 }
2855
2856 static int
2857 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2858 {
2859 if (obj->last_fenced_seqno) {
2860 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2861 if (ret)
2862 return ret;
2863
2864 obj->last_fenced_seqno = 0;
2865 }
2866
2867 obj->fenced_gpu_access = false;
2868 return 0;
2869 }
2870
2871 int
2872 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2873 {
2874 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2875 struct drm_i915_fence_reg *fence;
2876 int ret;
2877
2878 ret = i915_gem_object_wait_fence(obj);
2879 if (ret)
2880 return ret;
2881
2882 if (obj->fence_reg == I915_FENCE_REG_NONE)
2883 return 0;
2884
2885 fence = &dev_priv->fence_regs[obj->fence_reg];
2886
2887 i915_gem_object_fence_lost(obj);
2888 i915_gem_object_update_fence(obj, fence, false);
2889
2890 return 0;
2891 }
2892
2893 static struct drm_i915_fence_reg *
2894 i915_find_fence_reg(struct drm_device *dev)
2895 {
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 struct drm_i915_fence_reg *reg, *avail;
2898 int i;
2899
2900 /* First try to find a free reg */
2901 avail = NULL;
2902 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2903 reg = &dev_priv->fence_regs[i];
2904 if (!reg->obj)
2905 return reg;
2906
2907 if (!reg->pin_count)
2908 avail = reg;
2909 }
2910
2911 if (avail == NULL)
2912 return NULL;
2913
2914 /* None available, try to steal one or wait for a user to finish */
2915 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2916 if (reg->pin_count)
2917 continue;
2918
2919 return reg;
2920 }
2921
2922 return NULL;
2923 }
2924
2925 /**
2926 * i915_gem_object_get_fence - set up fencing for an object
2927 * @obj: object to map through a fence reg
2928 *
2929 * When mapping objects through the GTT, userspace wants to be able to write
2930 * to them without having to worry about swizzling if the object is tiled.
2931 * This function walks the fence regs looking for a free one for @obj,
2932 * stealing one if it can't find any.
2933 *
2934 * It then sets up the reg based on the object's properties: address, pitch
2935 * and tiling format.
2936 *
2937 * For an untiled surface, this removes any existing fence.
2938 */
2939 int
2940 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2941 {
2942 struct drm_device *dev = obj->base.dev;
2943 struct drm_i915_private *dev_priv = dev->dev_private;
2944 bool enable = obj->tiling_mode != I915_TILING_NONE;
2945 struct drm_i915_fence_reg *reg;
2946 int ret;
2947
2948 /* Have we updated the tiling parameters upon the object and so
2949 * will need to serialise the write to the associated fence register?
2950 */
2951 if (obj->fence_dirty) {
2952 ret = i915_gem_object_wait_fence(obj);
2953 if (ret)
2954 return ret;
2955 }
2956
2957 /* Just update our place in the LRU if our fence is getting reused. */
2958 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2959 reg = &dev_priv->fence_regs[obj->fence_reg];
2960 if (!obj->fence_dirty) {
2961 list_move_tail(&reg->lru_list,
2962 &dev_priv->mm.fence_list);
2963 return 0;
2964 }
2965 } else if (enable) {
2966 reg = i915_find_fence_reg(dev);
2967 if (reg == NULL)
2968 return -EDEADLK;
2969
2970 if (reg->obj) {
2971 struct drm_i915_gem_object *old = reg->obj;
2972
2973 ret = i915_gem_object_wait_fence(old);
2974 if (ret)
2975 return ret;
2976
2977 i915_gem_object_fence_lost(old);
2978 }
2979 } else
2980 return 0;
2981
2982 i915_gem_object_update_fence(obj, reg, enable);
2983
2984 return 0;
2985 }
2986
2987 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2988 struct drm_mm_node *gtt_space,
2989 unsigned long cache_level)
2990 {
2991 struct drm_mm_node *other;
2992
2993 /* On non-LLC machines we have to be careful when putting differing
2994 * types of snoopable memory together to avoid the prefetcher
2995 * crossing memory domains and dying.
2996 */
2997 if (HAS_LLC(dev))
2998 return true;
2999
3000 if (gtt_space == NULL)
3001 return true;
3002
3003 if (list_empty(&gtt_space->node_list))
3004 return true;
3005
3006 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3007 if (other->allocated && !other->hole_follows && other->color != cache_level)
3008 return false;
3009
3010 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3011 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3012 return false;
3013
3014 return true;
3015 }
3016
3017 static void i915_gem_verify_gtt(struct drm_device *dev)
3018 {
3019 #if WATCH_GTT
3020 struct drm_i915_private *dev_priv = dev->dev_private;
3021 struct drm_i915_gem_object *obj;
3022 int err = 0;
3023
3024 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3025 if (obj->gtt_space == NULL) {
3026 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3027 err++;
3028 continue;
3029 }
3030
3031 if (obj->cache_level != obj->gtt_space->color) {
3032 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3033 obj->gtt_space->start,
3034 obj->gtt_space->start + obj->gtt_space->size,
3035 obj->cache_level,
3036 obj->gtt_space->color);
3037 err++;
3038 continue;
3039 }
3040
3041 if (!i915_gem_valid_gtt_space(dev,
3042 obj->gtt_space,
3043 obj->cache_level)) {
3044 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3045 obj->gtt_space->start,
3046 obj->gtt_space->start + obj->gtt_space->size,
3047 obj->cache_level);
3048 err++;
3049 continue;
3050 }
3051 }
3052
3053 WARN_ON(err);
3054 #endif
3055 }
3056
3057 /**
3058 * Finds free space in the GTT aperture and binds the object there.
3059 */
3060 static int
3061 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3062 unsigned alignment,
3063 bool map_and_fenceable,
3064 bool nonblocking)
3065 {
3066 struct drm_device *dev = obj->base.dev;
3067 drm_i915_private_t *dev_priv = dev->dev_private;
3068 struct drm_mm_node *node;
3069 u32 size, fence_size, fence_alignment, unfenced_alignment;
3070 bool mappable, fenceable;
3071 size_t gtt_max = map_and_fenceable ?
3072 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3073 int ret;
3074
3075 fence_size = i915_gem_get_gtt_size(dev,
3076 obj->base.size,
3077 obj->tiling_mode);
3078 fence_alignment = i915_gem_get_gtt_alignment(dev,
3079 obj->base.size,
3080 obj->tiling_mode, true);
3081 unfenced_alignment =
3082 i915_gem_get_gtt_alignment(dev,
3083 obj->base.size,
3084 obj->tiling_mode, false);
3085
3086 if (alignment == 0)
3087 alignment = map_and_fenceable ? fence_alignment :
3088 unfenced_alignment;
3089 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3090 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3091 return -EINVAL;
3092 }
3093
3094 size = map_and_fenceable ? fence_size : obj->base.size;
3095
3096 /* If the object is bigger than the entire aperture, reject it early
3097 * before evicting everything in a vain attempt to find space.
3098 */
3099 if (obj->base.size > gtt_max) {
3100 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3101 obj->base.size,
3102 map_and_fenceable ? "mappable" : "total",
3103 gtt_max);
3104 return -E2BIG;
3105 }
3106
3107 ret = i915_gem_object_get_pages(obj);
3108 if (ret)
3109 return ret;
3110
3111 i915_gem_object_pin_pages(obj);
3112
3113 node = kzalloc(sizeof(*node), GFP_KERNEL);
3114 if (node == NULL) {
3115 i915_gem_object_unpin_pages(obj);
3116 return -ENOMEM;
3117 }
3118
3119 search_free:
3120 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3121 size, alignment,
3122 obj->cache_level, 0, gtt_max);
3123 if (ret) {
3124 ret = i915_gem_evict_something(dev, size, alignment,
3125 obj->cache_level,
3126 map_and_fenceable,
3127 nonblocking);
3128 if (ret == 0)
3129 goto search_free;
3130
3131 i915_gem_object_unpin_pages(obj);
3132 kfree(node);
3133 return ret;
3134 }
3135 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3136 i915_gem_object_unpin_pages(obj);
3137 drm_mm_put_block(node);
3138 return -EINVAL;
3139 }
3140
3141 ret = i915_gem_gtt_prepare_object(obj);
3142 if (ret) {
3143 i915_gem_object_unpin_pages(obj);
3144 drm_mm_put_block(node);
3145 return ret;
3146 }
3147
3148 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3149 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3150
3151 obj->gtt_space = node;
3152 obj->gtt_offset = node->start;
3153
3154 fenceable =
3155 node->size == fence_size &&
3156 (node->start & (fence_alignment - 1)) == 0;
3157
3158 mappable =
3159 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3160
3161 obj->map_and_fenceable = mappable && fenceable;
3162
3163 trace_i915_gem_object_bind(obj, map_and_fenceable);
3164 i915_gem_verify_gtt(dev);
3165 return 0;
3166 }
3167
3168 void
3169 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3170 {
3171 /* If we don't have a page list set up, then we're not pinned
3172 * to GPU, and we can ignore the cache flush because it'll happen
3173 * again at bind time.
3174 */
3175 if (obj->pages == NULL)
3176 return;
3177
3178 /*
3179 * Stolen memory is always coherent with the GPU as it is explicitly
3180 * marked as wc by the system, or the system is cache-coherent.
3181 */
3182 if (obj->stolen)
3183 return;
3184
3185 /* If the GPU is snooping the contents of the CPU cache,
3186 * we do not need to manually clear the CPU cache lines. However,
3187 * the caches are only snooped when the render cache is
3188 * flushed/invalidated. As we always have to emit invalidations
3189 * and flushes when moving into and out of the RENDER domain, correct
3190 * snooping behaviour occurs naturally as the result of our domain
3191 * tracking.
3192 */
3193 if (obj->cache_level != I915_CACHE_NONE)
3194 return;
3195
3196 trace_i915_gem_object_clflush(obj);
3197
3198 drm_clflush_sg(obj->pages);
3199 }
3200
3201 /** Flushes the GTT write domain for the object if it's dirty. */
3202 static void
3203 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3204 {
3205 uint32_t old_write_domain;
3206
3207 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3208 return;
3209
3210 /* No actual flushing is required for the GTT write domain. Writes
3211 * to it immediately go to main memory as far as we know, so there's
3212 * no chipset flush. It also doesn't land in render cache.
3213 *
3214 * However, we do have to enforce the order so that all writes through
3215 * the GTT land before any writes to the device, such as updates to
3216 * the GATT itself.
3217 */
3218 wmb();
3219
3220 old_write_domain = obj->base.write_domain;
3221 obj->base.write_domain = 0;
3222
3223 trace_i915_gem_object_change_domain(obj,
3224 obj->base.read_domains,
3225 old_write_domain);
3226 }
3227
3228 /** Flushes the CPU write domain for the object if it's dirty. */
3229 static void
3230 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3231 {
3232 uint32_t old_write_domain;
3233
3234 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3235 return;
3236
3237 i915_gem_clflush_object(obj);
3238 i915_gem_chipset_flush(obj->base.dev);
3239 old_write_domain = obj->base.write_domain;
3240 obj->base.write_domain = 0;
3241
3242 trace_i915_gem_object_change_domain(obj,
3243 obj->base.read_domains,
3244 old_write_domain);
3245 }
3246
3247 /**
3248 * Moves a single object to the GTT read, and possibly write domain.
3249 *
3250 * This function returns when the move is complete, including waiting on
3251 * flushes to occur.
3252 */
3253 int
3254 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3255 {
3256 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3257 uint32_t old_write_domain, old_read_domains;
3258 int ret;
3259
3260 /* Not valid to be called on unbound objects. */
3261 if (obj->gtt_space == NULL)
3262 return -EINVAL;
3263
3264 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3265 return 0;
3266
3267 ret = i915_gem_object_wait_rendering(obj, !write);
3268 if (ret)
3269 return ret;
3270
3271 i915_gem_object_flush_cpu_write_domain(obj);
3272
3273 /* Serialise direct access to this object with the barriers for
3274 * coherent writes from the GPU, by effectively invalidating the
3275 * GTT domain upon first access.
3276 */
3277 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3278 mb();
3279
3280 old_write_domain = obj->base.write_domain;
3281 old_read_domains = obj->base.read_domains;
3282
3283 /* It should now be out of any other write domains, and we can update
3284 * the domain values for our changes.
3285 */
3286 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3287 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3288 if (write) {
3289 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3290 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3291 obj->dirty = 1;
3292 }
3293
3294 trace_i915_gem_object_change_domain(obj,
3295 old_read_domains,
3296 old_write_domain);
3297
3298 /* And bump the LRU for this access */
3299 if (i915_gem_object_is_inactive(obj))
3300 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3301
3302 return 0;
3303 }
3304
3305 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3306 enum i915_cache_level cache_level)
3307 {
3308 struct drm_device *dev = obj->base.dev;
3309 drm_i915_private_t *dev_priv = dev->dev_private;
3310 int ret;
3311
3312 if (obj->cache_level == cache_level)
3313 return 0;
3314
3315 if (obj->pin_count) {
3316 DRM_DEBUG("can not change the cache level of pinned objects\n");
3317 return -EBUSY;
3318 }
3319
3320 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3321 ret = i915_gem_object_unbind(obj);
3322 if (ret)
3323 return ret;
3324 }
3325
3326 if (obj->gtt_space) {
3327 ret = i915_gem_object_finish_gpu(obj);
3328 if (ret)
3329 return ret;
3330
3331 i915_gem_object_finish_gtt(obj);
3332
3333 /* Before SandyBridge, you could not use tiling or fence
3334 * registers with snooped memory, so relinquish any fences
3335 * currently pointing to our region in the aperture.
3336 */
3337 if (INTEL_INFO(dev)->gen < 6) {
3338 ret = i915_gem_object_put_fence(obj);
3339 if (ret)
3340 return ret;
3341 }
3342
3343 if (obj->has_global_gtt_mapping)
3344 i915_gem_gtt_bind_object(obj, cache_level);
3345 if (obj->has_aliasing_ppgtt_mapping)
3346 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3347 obj, cache_level);
3348
3349 obj->gtt_space->color = cache_level;
3350 }
3351
3352 if (cache_level == I915_CACHE_NONE) {
3353 u32 old_read_domains, old_write_domain;
3354
3355 /* If we're coming from LLC cached, then we haven't
3356 * actually been tracking whether the data is in the
3357 * CPU cache or not, since we only allow one bit set
3358 * in obj->write_domain and have been skipping the clflushes.
3359 * Just set it to the CPU cache for now.
3360 */
3361 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3362 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3363
3364 old_read_domains = obj->base.read_domains;
3365 old_write_domain = obj->base.write_domain;
3366
3367 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3368 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3369
3370 trace_i915_gem_object_change_domain(obj,
3371 old_read_domains,
3372 old_write_domain);
3373 }
3374
3375 obj->cache_level = cache_level;
3376 i915_gem_verify_gtt(dev);
3377 return 0;
3378 }
3379
3380 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3381 struct drm_file *file)
3382 {
3383 struct drm_i915_gem_caching *args = data;
3384 struct drm_i915_gem_object *obj;
3385 int ret;
3386
3387 ret = i915_mutex_lock_interruptible(dev);
3388 if (ret)
3389 return ret;
3390
3391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3392 if (&obj->base == NULL) {
3393 ret = -ENOENT;
3394 goto unlock;
3395 }
3396
3397 args->caching = obj->cache_level != I915_CACHE_NONE;
3398
3399 drm_gem_object_unreference(&obj->base);
3400 unlock:
3401 mutex_unlock(&dev->struct_mutex);
3402 return ret;
3403 }
3404
3405 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file)
3407 {
3408 struct drm_i915_gem_caching *args = data;
3409 struct drm_i915_gem_object *obj;
3410 enum i915_cache_level level;
3411 int ret;
3412
3413 switch (args->caching) {
3414 case I915_CACHING_NONE:
3415 level = I915_CACHE_NONE;
3416 break;
3417 case I915_CACHING_CACHED:
3418 level = I915_CACHE_LLC;
3419 break;
3420 default:
3421 return -EINVAL;
3422 }
3423
3424 ret = i915_mutex_lock_interruptible(dev);
3425 if (ret)
3426 return ret;
3427
3428 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3429 if (&obj->base == NULL) {
3430 ret = -ENOENT;
3431 goto unlock;
3432 }
3433
3434 ret = i915_gem_object_set_cache_level(obj, level);
3435
3436 drm_gem_object_unreference(&obj->base);
3437 unlock:
3438 mutex_unlock(&dev->struct_mutex);
3439 return ret;
3440 }
3441
3442 /*
3443 * Prepare buffer for display plane (scanout, cursors, etc).
3444 * Can be called from an uninterruptible phase (modesetting) and allows
3445 * any flushes to be pipelined (for pageflips).
3446 */
3447 int
3448 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3449 u32 alignment,
3450 struct intel_ring_buffer *pipelined)
3451 {
3452 u32 old_read_domains, old_write_domain;
3453 int ret;
3454
3455 if (pipelined != obj->ring) {
3456 ret = i915_gem_object_sync(obj, pipelined);
3457 if (ret)
3458 return ret;
3459 }
3460
3461 /* The display engine is not coherent with the LLC cache on gen6. As
3462 * a result, we make sure that the pinning that is about to occur is
3463 * done with uncached PTEs. This is lowest common denominator for all
3464 * chipsets.
3465 *
3466 * However for gen6+, we could do better by using the GFDT bit instead
3467 * of uncaching, which would allow us to flush all the LLC-cached data
3468 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3469 */
3470 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3471 if (ret)
3472 return ret;
3473
3474 /* As the user may map the buffer once pinned in the display plane
3475 * (e.g. libkms for the bootup splash), we have to ensure that we
3476 * always use map_and_fenceable for all scanout buffers.
3477 */
3478 ret = i915_gem_object_pin(obj, alignment, true, false);
3479 if (ret)
3480 return ret;
3481
3482 i915_gem_object_flush_cpu_write_domain(obj);
3483
3484 old_write_domain = obj->base.write_domain;
3485 old_read_domains = obj->base.read_domains;
3486
3487 /* It should now be out of any other write domains, and we can update
3488 * the domain values for our changes.
3489 */
3490 obj->base.write_domain = 0;
3491 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3492
3493 trace_i915_gem_object_change_domain(obj,
3494 old_read_domains,
3495 old_write_domain);
3496
3497 return 0;
3498 }
3499
3500 int
3501 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3502 {
3503 int ret;
3504
3505 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3506 return 0;
3507
3508 ret = i915_gem_object_wait_rendering(obj, false);
3509 if (ret)
3510 return ret;
3511
3512 /* Ensure that we invalidate the GPU's caches and TLBs. */
3513 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3514 return 0;
3515 }
3516
3517 /**
3518 * Moves a single object to the CPU read, and possibly write domain.
3519 *
3520 * This function returns when the move is complete, including waiting on
3521 * flushes to occur.
3522 */
3523 int
3524 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3525 {
3526 uint32_t old_write_domain, old_read_domains;
3527 int ret;
3528
3529 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3530 return 0;
3531
3532 ret = i915_gem_object_wait_rendering(obj, !write);
3533 if (ret)
3534 return ret;
3535
3536 i915_gem_object_flush_gtt_write_domain(obj);
3537
3538 old_write_domain = obj->base.write_domain;
3539 old_read_domains = obj->base.read_domains;
3540
3541 /* Flush the CPU cache if it's still invalid. */
3542 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3543 i915_gem_clflush_object(obj);
3544
3545 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3546 }
3547
3548 /* It should now be out of any other write domains, and we can update
3549 * the domain values for our changes.
3550 */
3551 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3552
3553 /* If we're writing through the CPU, then the GPU read domains will
3554 * need to be invalidated at next use.
3555 */
3556 if (write) {
3557 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3558 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3559 }
3560
3561 trace_i915_gem_object_change_domain(obj,
3562 old_read_domains,
3563 old_write_domain);
3564
3565 return 0;
3566 }
3567
3568 /* Throttle our rendering by waiting until the ring has completed our requests
3569 * emitted over 20 msec ago.
3570 *
3571 * Note that if we were to use the current jiffies each time around the loop,
3572 * we wouldn't escape the function with any frames outstanding if the time to
3573 * render a frame was over 20ms.
3574 *
3575 * This should get us reasonable parallelism between CPU and GPU but also
3576 * relatively low latency when blocking on a particular request to finish.
3577 */
3578 static int
3579 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3580 {
3581 struct drm_i915_private *dev_priv = dev->dev_private;
3582 struct drm_i915_file_private *file_priv = file->driver_priv;
3583 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3584 struct drm_i915_gem_request *request;
3585 struct intel_ring_buffer *ring = NULL;
3586 unsigned reset_counter;
3587 u32 seqno = 0;
3588 int ret;
3589
3590 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3591 if (ret)
3592 return ret;
3593
3594 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3595 if (ret)
3596 return ret;
3597
3598 spin_lock(&file_priv->mm.lock);
3599 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3600 if (time_after_eq(request->emitted_jiffies, recent_enough))
3601 break;
3602
3603 ring = request->ring;
3604 seqno = request->seqno;
3605 }
3606 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3607 spin_unlock(&file_priv->mm.lock);
3608
3609 if (seqno == 0)
3610 return 0;
3611
3612 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3613 if (ret == 0)
3614 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3615
3616 return ret;
3617 }
3618
3619 int
3620 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3621 uint32_t alignment,
3622 bool map_and_fenceable,
3623 bool nonblocking)
3624 {
3625 int ret;
3626
3627 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3628 return -EBUSY;
3629
3630 if (obj->gtt_space != NULL) {
3631 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3632 (map_and_fenceable && !obj->map_and_fenceable)) {
3633 WARN(obj->pin_count,
3634 "bo is already pinned with incorrect alignment:"
3635 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3636 " obj->map_and_fenceable=%d\n",
3637 obj->gtt_offset, alignment,
3638 map_and_fenceable,
3639 obj->map_and_fenceable);
3640 ret = i915_gem_object_unbind(obj);
3641 if (ret)
3642 return ret;
3643 }
3644 }
3645
3646 if (obj->gtt_space == NULL) {
3647 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3648
3649 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3650 map_and_fenceable,
3651 nonblocking);
3652 if (ret)
3653 return ret;
3654
3655 if (!dev_priv->mm.aliasing_ppgtt)
3656 i915_gem_gtt_bind_object(obj, obj->cache_level);
3657 }
3658
3659 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3660 i915_gem_gtt_bind_object(obj, obj->cache_level);
3661
3662 obj->pin_count++;
3663 obj->pin_mappable |= map_and_fenceable;
3664
3665 return 0;
3666 }
3667
3668 void
3669 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3670 {
3671 BUG_ON(obj->pin_count == 0);
3672 BUG_ON(obj->gtt_space == NULL);
3673
3674 if (--obj->pin_count == 0)
3675 obj->pin_mappable = false;
3676 }
3677
3678 int
3679 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3680 struct drm_file *file)
3681 {
3682 struct drm_i915_gem_pin *args = data;
3683 struct drm_i915_gem_object *obj;
3684 int ret;
3685
3686 ret = i915_mutex_lock_interruptible(dev);
3687 if (ret)
3688 return ret;
3689
3690 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3691 if (&obj->base == NULL) {
3692 ret = -ENOENT;
3693 goto unlock;
3694 }
3695
3696 if (obj->madv != I915_MADV_WILLNEED) {
3697 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3698 ret = -EINVAL;
3699 goto out;
3700 }
3701
3702 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3703 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3704 args->handle);
3705 ret = -EINVAL;
3706 goto out;
3707 }
3708
3709 if (obj->user_pin_count == 0) {
3710 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3711 if (ret)
3712 goto out;
3713 }
3714
3715 obj->user_pin_count++;
3716 obj->pin_filp = file;
3717
3718 /* XXX - flush the CPU caches for pinned objects
3719 * as the X server doesn't manage domains yet
3720 */
3721 i915_gem_object_flush_cpu_write_domain(obj);
3722 args->offset = obj->gtt_offset;
3723 out:
3724 drm_gem_object_unreference(&obj->base);
3725 unlock:
3726 mutex_unlock(&dev->struct_mutex);
3727 return ret;
3728 }
3729
3730 int
3731 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3732 struct drm_file *file)
3733 {
3734 struct drm_i915_gem_pin *args = data;
3735 struct drm_i915_gem_object *obj;
3736 int ret;
3737
3738 ret = i915_mutex_lock_interruptible(dev);
3739 if (ret)
3740 return ret;
3741
3742 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3743 if (&obj->base == NULL) {
3744 ret = -ENOENT;
3745 goto unlock;
3746 }
3747
3748 if (obj->pin_filp != file) {
3749 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3750 args->handle);
3751 ret = -EINVAL;
3752 goto out;
3753 }
3754 obj->user_pin_count--;
3755 if (obj->user_pin_count == 0) {
3756 obj->pin_filp = NULL;
3757 i915_gem_object_unpin(obj);
3758 }
3759
3760 out:
3761 drm_gem_object_unreference(&obj->base);
3762 unlock:
3763 mutex_unlock(&dev->struct_mutex);
3764 return ret;
3765 }
3766
3767 int
3768 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3769 struct drm_file *file)
3770 {
3771 struct drm_i915_gem_busy *args = data;
3772 struct drm_i915_gem_object *obj;
3773 int ret;
3774
3775 ret = i915_mutex_lock_interruptible(dev);
3776 if (ret)
3777 return ret;
3778
3779 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3780 if (&obj->base == NULL) {
3781 ret = -ENOENT;
3782 goto unlock;
3783 }
3784
3785 /* Count all active objects as busy, even if they are currently not used
3786 * by the gpu. Users of this interface expect objects to eventually
3787 * become non-busy without any further actions, therefore emit any
3788 * necessary flushes here.
3789 */
3790 ret = i915_gem_object_flush_active(obj);
3791
3792 args->busy = obj->active;
3793 if (obj->ring) {
3794 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3795 args->busy |= intel_ring_flag(obj->ring) << 16;
3796 }
3797
3798 drm_gem_object_unreference(&obj->base);
3799 unlock:
3800 mutex_unlock(&dev->struct_mutex);
3801 return ret;
3802 }
3803
3804 int
3805 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3806 struct drm_file *file_priv)
3807 {
3808 return i915_gem_ring_throttle(dev, file_priv);
3809 }
3810
3811 int
3812 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3813 struct drm_file *file_priv)
3814 {
3815 struct drm_i915_gem_madvise *args = data;
3816 struct drm_i915_gem_object *obj;
3817 int ret;
3818
3819 switch (args->madv) {
3820 case I915_MADV_DONTNEED:
3821 case I915_MADV_WILLNEED:
3822 break;
3823 default:
3824 return -EINVAL;
3825 }
3826
3827 ret = i915_mutex_lock_interruptible(dev);
3828 if (ret)
3829 return ret;
3830
3831 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3832 if (&obj->base == NULL) {
3833 ret = -ENOENT;
3834 goto unlock;
3835 }
3836
3837 if (obj->pin_count) {
3838 ret = -EINVAL;
3839 goto out;
3840 }
3841
3842 if (obj->madv != __I915_MADV_PURGED)
3843 obj->madv = args->madv;
3844
3845 /* if the object is no longer attached, discard its backing storage */
3846 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3847 i915_gem_object_truncate(obj);
3848
3849 args->retained = obj->madv != __I915_MADV_PURGED;
3850
3851 out:
3852 drm_gem_object_unreference(&obj->base);
3853 unlock:
3854 mutex_unlock(&dev->struct_mutex);
3855 return ret;
3856 }
3857
3858 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3859 const struct drm_i915_gem_object_ops *ops)
3860 {
3861 INIT_LIST_HEAD(&obj->mm_list);
3862 INIT_LIST_HEAD(&obj->global_list);
3863 INIT_LIST_HEAD(&obj->ring_list);
3864 INIT_LIST_HEAD(&obj->exec_list);
3865
3866 obj->ops = ops;
3867
3868 obj->fence_reg = I915_FENCE_REG_NONE;
3869 obj->madv = I915_MADV_WILLNEED;
3870 /* Avoid an unnecessary call to unbind on the first bind. */
3871 obj->map_and_fenceable = true;
3872
3873 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3874 }
3875
3876 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3877 .get_pages = i915_gem_object_get_pages_gtt,
3878 .put_pages = i915_gem_object_put_pages_gtt,
3879 };
3880
3881 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3882 size_t size)
3883 {
3884 struct drm_i915_gem_object *obj;
3885 struct address_space *mapping;
3886 gfp_t mask;
3887
3888 obj = i915_gem_object_alloc(dev);
3889 if (obj == NULL)
3890 return NULL;
3891
3892 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3893 i915_gem_object_free(obj);
3894 return NULL;
3895 }
3896
3897 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3898 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3899 /* 965gm cannot relocate objects above 4GiB. */
3900 mask &= ~__GFP_HIGHMEM;
3901 mask |= __GFP_DMA32;
3902 }
3903
3904 mapping = file_inode(obj->base.filp)->i_mapping;
3905 mapping_set_gfp_mask(mapping, mask);
3906
3907 i915_gem_object_init(obj, &i915_gem_object_ops);
3908
3909 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3910 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3911
3912 if (HAS_LLC(dev)) {
3913 /* On some devices, we can have the GPU use the LLC (the CPU
3914 * cache) for about a 10% performance improvement
3915 * compared to uncached. Graphics requests other than
3916 * display scanout are coherent with the CPU in
3917 * accessing this cache. This means in this mode we
3918 * don't need to clflush on the CPU side, and on the
3919 * GPU side we only need to flush internal caches to
3920 * get data visible to the CPU.
3921 *
3922 * However, we maintain the display planes as UC, and so
3923 * need to rebind when first used as such.
3924 */
3925 obj->cache_level = I915_CACHE_LLC;
3926 } else
3927 obj->cache_level = I915_CACHE_NONE;
3928
3929 return obj;
3930 }
3931
3932 int i915_gem_init_object(struct drm_gem_object *obj)
3933 {
3934 BUG();
3935
3936 return 0;
3937 }
3938
3939 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3940 {
3941 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3942 struct drm_device *dev = obj->base.dev;
3943 drm_i915_private_t *dev_priv = dev->dev_private;
3944
3945 trace_i915_gem_object_destroy(obj);
3946
3947 if (obj->phys_obj)
3948 i915_gem_detach_phys_object(dev, obj);
3949
3950 obj->pin_count = 0;
3951 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3952 bool was_interruptible;
3953
3954 was_interruptible = dev_priv->mm.interruptible;
3955 dev_priv->mm.interruptible = false;
3956
3957 WARN_ON(i915_gem_object_unbind(obj));
3958
3959 dev_priv->mm.interruptible = was_interruptible;
3960 }
3961
3962 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3963 * before progressing. */
3964 if (obj->stolen)
3965 i915_gem_object_unpin_pages(obj);
3966
3967 if (WARN_ON(obj->pages_pin_count))
3968 obj->pages_pin_count = 0;
3969 i915_gem_object_put_pages(obj);
3970 i915_gem_object_free_mmap_offset(obj);
3971 i915_gem_object_release_stolen(obj);
3972
3973 BUG_ON(obj->pages);
3974
3975 if (obj->base.import_attach)
3976 drm_prime_gem_destroy(&obj->base, NULL);
3977
3978 drm_gem_object_release(&obj->base);
3979 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3980
3981 kfree(obj->bit_17);
3982 i915_gem_object_free(obj);
3983 }
3984
3985 int
3986 i915_gem_idle(struct drm_device *dev)
3987 {
3988 drm_i915_private_t *dev_priv = dev->dev_private;
3989 int ret;
3990
3991 mutex_lock(&dev->struct_mutex);
3992
3993 if (dev_priv->mm.suspended) {
3994 mutex_unlock(&dev->struct_mutex);
3995 return 0;
3996 }
3997
3998 ret = i915_gpu_idle(dev);
3999 if (ret) {
4000 mutex_unlock(&dev->struct_mutex);
4001 return ret;
4002 }
4003 i915_gem_retire_requests(dev);
4004
4005 /* Under UMS, be paranoid and evict. */
4006 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4007 i915_gem_evict_everything(dev);
4008
4009 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4010 * We need to replace this with a semaphore, or something.
4011 * And not confound mm.suspended!
4012 */
4013 dev_priv->mm.suspended = 1;
4014 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4015
4016 i915_kernel_lost_context(dev);
4017 i915_gem_cleanup_ringbuffer(dev);
4018
4019 mutex_unlock(&dev->struct_mutex);
4020
4021 /* Cancel the retire work handler, which should be idle now. */
4022 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4023
4024 return 0;
4025 }
4026
4027 void i915_gem_l3_remap(struct drm_device *dev)
4028 {
4029 drm_i915_private_t *dev_priv = dev->dev_private;
4030 u32 misccpctl;
4031 int i;
4032
4033 if (!HAS_L3_GPU_CACHE(dev))
4034 return;
4035
4036 if (!dev_priv->l3_parity.remap_info)
4037 return;
4038
4039 misccpctl = I915_READ(GEN7_MISCCPCTL);
4040 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4041 POSTING_READ(GEN7_MISCCPCTL);
4042
4043 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4044 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4045 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4046 DRM_DEBUG("0x%x was already programmed to %x\n",
4047 GEN7_L3LOG_BASE + i, remap);
4048 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4049 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4050 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4051 }
4052
4053 /* Make sure all the writes land before disabling dop clock gating */
4054 POSTING_READ(GEN7_L3LOG_BASE);
4055
4056 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4057 }
4058
4059 void i915_gem_init_swizzling(struct drm_device *dev)
4060 {
4061 drm_i915_private_t *dev_priv = dev->dev_private;
4062
4063 if (INTEL_INFO(dev)->gen < 5 ||
4064 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4065 return;
4066
4067 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4068 DISP_TILE_SURFACE_SWIZZLING);
4069
4070 if (IS_GEN5(dev))
4071 return;
4072
4073 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4074 if (IS_GEN6(dev))
4075 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4076 else if (IS_GEN7(dev))
4077 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4078 else
4079 BUG();
4080 }
4081
4082 static bool
4083 intel_enable_blt(struct drm_device *dev)
4084 {
4085 if (!HAS_BLT(dev))
4086 return false;
4087
4088 /* The blitter was dysfunctional on early prototypes */
4089 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4090 DRM_INFO("BLT not supported on this pre-production hardware;"
4091 " graphics performance will be degraded.\n");
4092 return false;
4093 }
4094
4095 return true;
4096 }
4097
4098 static int i915_gem_init_rings(struct drm_device *dev)
4099 {
4100 struct drm_i915_private *dev_priv = dev->dev_private;
4101 int ret;
4102
4103 ret = intel_init_render_ring_buffer(dev);
4104 if (ret)
4105 return ret;
4106
4107 if (HAS_BSD(dev)) {
4108 ret = intel_init_bsd_ring_buffer(dev);
4109 if (ret)
4110 goto cleanup_render_ring;
4111 }
4112
4113 if (intel_enable_blt(dev)) {
4114 ret = intel_init_blt_ring_buffer(dev);
4115 if (ret)
4116 goto cleanup_bsd_ring;
4117 }
4118
4119 if (HAS_VEBOX(dev)) {
4120 ret = intel_init_vebox_ring_buffer(dev);
4121 if (ret)
4122 goto cleanup_blt_ring;
4123 }
4124
4125
4126 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4127 if (ret)
4128 goto cleanup_vebox_ring;
4129
4130 return 0;
4131
4132 cleanup_vebox_ring:
4133 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4134 cleanup_blt_ring:
4135 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4136 cleanup_bsd_ring:
4137 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4138 cleanup_render_ring:
4139 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4140
4141 return ret;
4142 }
4143
4144 int
4145 i915_gem_init_hw(struct drm_device *dev)
4146 {
4147 drm_i915_private_t *dev_priv = dev->dev_private;
4148 int ret;
4149
4150 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4151 return -EIO;
4152
4153 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4154 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4155
4156 if (HAS_PCH_NOP(dev)) {
4157 u32 temp = I915_READ(GEN7_MSG_CTL);
4158 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4159 I915_WRITE(GEN7_MSG_CTL, temp);
4160 }
4161
4162 i915_gem_l3_remap(dev);
4163
4164 i915_gem_init_swizzling(dev);
4165
4166 ret = i915_gem_init_rings(dev);
4167 if (ret)
4168 return ret;
4169
4170 /*
4171 * XXX: There was some w/a described somewhere suggesting loading
4172 * contexts before PPGTT.
4173 */
4174 i915_gem_context_init(dev);
4175 if (dev_priv->mm.aliasing_ppgtt) {
4176 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4177 if (ret) {
4178 i915_gem_cleanup_aliasing_ppgtt(dev);
4179 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4180 }
4181 }
4182
4183 return 0;
4184 }
4185
4186 int i915_gem_init(struct drm_device *dev)
4187 {
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 int ret;
4190
4191 mutex_lock(&dev->struct_mutex);
4192
4193 if (IS_VALLEYVIEW(dev)) {
4194 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4195 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4196 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4197 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4198 }
4199
4200 i915_gem_init_global_gtt(dev);
4201
4202 ret = i915_gem_init_hw(dev);
4203 mutex_unlock(&dev->struct_mutex);
4204 if (ret) {
4205 i915_gem_cleanup_aliasing_ppgtt(dev);
4206 return ret;
4207 }
4208
4209 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4210 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4211 dev_priv->dri1.allow_batchbuffer = 1;
4212 return 0;
4213 }
4214
4215 void
4216 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4217 {
4218 drm_i915_private_t *dev_priv = dev->dev_private;
4219 struct intel_ring_buffer *ring;
4220 int i;
4221
4222 for_each_ring(ring, dev_priv, i)
4223 intel_cleanup_ring_buffer(ring);
4224 }
4225
4226 int
4227 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4228 struct drm_file *file_priv)
4229 {
4230 drm_i915_private_t *dev_priv = dev->dev_private;
4231 int ret;
4232
4233 if (drm_core_check_feature(dev, DRIVER_MODESET))
4234 return 0;
4235
4236 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4237 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4238 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4239 }
4240
4241 mutex_lock(&dev->struct_mutex);
4242 dev_priv->mm.suspended = 0;
4243
4244 ret = i915_gem_init_hw(dev);
4245 if (ret != 0) {
4246 mutex_unlock(&dev->struct_mutex);
4247 return ret;
4248 }
4249
4250 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4251 mutex_unlock(&dev->struct_mutex);
4252
4253 ret = drm_irq_install(dev);
4254 if (ret)
4255 goto cleanup_ringbuffer;
4256
4257 return 0;
4258
4259 cleanup_ringbuffer:
4260 mutex_lock(&dev->struct_mutex);
4261 i915_gem_cleanup_ringbuffer(dev);
4262 dev_priv->mm.suspended = 1;
4263 mutex_unlock(&dev->struct_mutex);
4264
4265 return ret;
4266 }
4267
4268 int
4269 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4270 struct drm_file *file_priv)
4271 {
4272 if (drm_core_check_feature(dev, DRIVER_MODESET))
4273 return 0;
4274
4275 drm_irq_uninstall(dev);
4276 return i915_gem_idle(dev);
4277 }
4278
4279 void
4280 i915_gem_lastclose(struct drm_device *dev)
4281 {
4282 int ret;
4283
4284 if (drm_core_check_feature(dev, DRIVER_MODESET))
4285 return;
4286
4287 ret = i915_gem_idle(dev);
4288 if (ret)
4289 DRM_ERROR("failed to idle hardware: %d\n", ret);
4290 }
4291
4292 static void
4293 init_ring_lists(struct intel_ring_buffer *ring)
4294 {
4295 INIT_LIST_HEAD(&ring->active_list);
4296 INIT_LIST_HEAD(&ring->request_list);
4297 }
4298
4299 void
4300 i915_gem_load(struct drm_device *dev)
4301 {
4302 drm_i915_private_t *dev_priv = dev->dev_private;
4303 int i;
4304
4305 dev_priv->slab =
4306 kmem_cache_create("i915_gem_object",
4307 sizeof(struct drm_i915_gem_object), 0,
4308 SLAB_HWCACHE_ALIGN,
4309 NULL);
4310
4311 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4312 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4313 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4314 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4315 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4316 for (i = 0; i < I915_NUM_RINGS; i++)
4317 init_ring_lists(&dev_priv->ring[i]);
4318 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4319 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4320 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4321 i915_gem_retire_work_handler);
4322 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4323
4324 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4325 if (IS_GEN3(dev)) {
4326 I915_WRITE(MI_ARB_STATE,
4327 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4328 }
4329
4330 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4331
4332 /* Old X drivers will take 0-2 for front, back, depth buffers */
4333 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4334 dev_priv->fence_reg_start = 3;
4335
4336 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4337 dev_priv->num_fence_regs = 32;
4338 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4339 dev_priv->num_fence_regs = 16;
4340 else
4341 dev_priv->num_fence_regs = 8;
4342
4343 /* Initialize fence registers to zero */
4344 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4345 i915_gem_restore_fences(dev);
4346
4347 i915_gem_detect_bit_6_swizzle(dev);
4348 init_waitqueue_head(&dev_priv->pending_flip_queue);
4349
4350 dev_priv->mm.interruptible = true;
4351
4352 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4353 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4354 register_shrinker(&dev_priv->mm.inactive_shrinker);
4355 }
4356
4357 /*
4358 * Create a physically contiguous memory object for this object
4359 * e.g. for cursor + overlay regs
4360 */
4361 static int i915_gem_init_phys_object(struct drm_device *dev,
4362 int id, int size, int align)
4363 {
4364 drm_i915_private_t *dev_priv = dev->dev_private;
4365 struct drm_i915_gem_phys_object *phys_obj;
4366 int ret;
4367
4368 if (dev_priv->mm.phys_objs[id - 1] || !size)
4369 return 0;
4370
4371 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4372 if (!phys_obj)
4373 return -ENOMEM;
4374
4375 phys_obj->id = id;
4376
4377 phys_obj->handle = drm_pci_alloc(dev, size, align);
4378 if (!phys_obj->handle) {
4379 ret = -ENOMEM;
4380 goto kfree_obj;
4381 }
4382 #ifdef CONFIG_X86
4383 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4384 #endif
4385
4386 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4387
4388 return 0;
4389 kfree_obj:
4390 kfree(phys_obj);
4391 return ret;
4392 }
4393
4394 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4395 {
4396 drm_i915_private_t *dev_priv = dev->dev_private;
4397 struct drm_i915_gem_phys_object *phys_obj;
4398
4399 if (!dev_priv->mm.phys_objs[id - 1])
4400 return;
4401
4402 phys_obj = dev_priv->mm.phys_objs[id - 1];
4403 if (phys_obj->cur_obj) {
4404 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4405 }
4406
4407 #ifdef CONFIG_X86
4408 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4409 #endif
4410 drm_pci_free(dev, phys_obj->handle);
4411 kfree(phys_obj);
4412 dev_priv->mm.phys_objs[id - 1] = NULL;
4413 }
4414
4415 void i915_gem_free_all_phys_object(struct drm_device *dev)
4416 {
4417 int i;
4418
4419 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4420 i915_gem_free_phys_object(dev, i);
4421 }
4422
4423 void i915_gem_detach_phys_object(struct drm_device *dev,
4424 struct drm_i915_gem_object *obj)
4425 {
4426 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4427 char *vaddr;
4428 int i;
4429 int page_count;
4430
4431 if (!obj->phys_obj)
4432 return;
4433 vaddr = obj->phys_obj->handle->vaddr;
4434
4435 page_count = obj->base.size / PAGE_SIZE;
4436 for (i = 0; i < page_count; i++) {
4437 struct page *page = shmem_read_mapping_page(mapping, i);
4438 if (!IS_ERR(page)) {
4439 char *dst = kmap_atomic(page);
4440 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4441 kunmap_atomic(dst);
4442
4443 drm_clflush_pages(&page, 1);
4444
4445 set_page_dirty(page);
4446 mark_page_accessed(page);
4447 page_cache_release(page);
4448 }
4449 }
4450 i915_gem_chipset_flush(dev);
4451
4452 obj->phys_obj->cur_obj = NULL;
4453 obj->phys_obj = NULL;
4454 }
4455
4456 int
4457 i915_gem_attach_phys_object(struct drm_device *dev,
4458 struct drm_i915_gem_object *obj,
4459 int id,
4460 int align)
4461 {
4462 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4463 drm_i915_private_t *dev_priv = dev->dev_private;
4464 int ret = 0;
4465 int page_count;
4466 int i;
4467
4468 if (id > I915_MAX_PHYS_OBJECT)
4469 return -EINVAL;
4470
4471 if (obj->phys_obj) {
4472 if (obj->phys_obj->id == id)
4473 return 0;
4474 i915_gem_detach_phys_object(dev, obj);
4475 }
4476
4477 /* create a new object */
4478 if (!dev_priv->mm.phys_objs[id - 1]) {
4479 ret = i915_gem_init_phys_object(dev, id,
4480 obj->base.size, align);
4481 if (ret) {
4482 DRM_ERROR("failed to init phys object %d size: %zu\n",
4483 id, obj->base.size);
4484 return ret;
4485 }
4486 }
4487
4488 /* bind to the object */
4489 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4490 obj->phys_obj->cur_obj = obj;
4491
4492 page_count = obj->base.size / PAGE_SIZE;
4493
4494 for (i = 0; i < page_count; i++) {
4495 struct page *page;
4496 char *dst, *src;
4497
4498 page = shmem_read_mapping_page(mapping, i);
4499 if (IS_ERR(page))
4500 return PTR_ERR(page);
4501
4502 src = kmap_atomic(page);
4503 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4504 memcpy(dst, src, PAGE_SIZE);
4505 kunmap_atomic(src);
4506
4507 mark_page_accessed(page);
4508 page_cache_release(page);
4509 }
4510
4511 return 0;
4512 }
4513
4514 static int
4515 i915_gem_phys_pwrite(struct drm_device *dev,
4516 struct drm_i915_gem_object *obj,
4517 struct drm_i915_gem_pwrite *args,
4518 struct drm_file *file_priv)
4519 {
4520 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4521 char __user *user_data = to_user_ptr(args->data_ptr);
4522
4523 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4524 unsigned long unwritten;
4525
4526 /* The physical object once assigned is fixed for the lifetime
4527 * of the obj, so we can safely drop the lock and continue
4528 * to access vaddr.
4529 */
4530 mutex_unlock(&dev->struct_mutex);
4531 unwritten = copy_from_user(vaddr, user_data, args->size);
4532 mutex_lock(&dev->struct_mutex);
4533 if (unwritten)
4534 return -EFAULT;
4535 }
4536
4537 i915_gem_chipset_flush(dev);
4538 return 0;
4539 }
4540
4541 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4542 {
4543 struct drm_i915_file_private *file_priv = file->driver_priv;
4544
4545 /* Clean up our request list when the client is going away, so that
4546 * later retire_requests won't dereference our soon-to-be-gone
4547 * file_priv.
4548 */
4549 spin_lock(&file_priv->mm.lock);
4550 while (!list_empty(&file_priv->mm.request_list)) {
4551 struct drm_i915_gem_request *request;
4552
4553 request = list_first_entry(&file_priv->mm.request_list,
4554 struct drm_i915_gem_request,
4555 client_list);
4556 list_del(&request->client_list);
4557 request->file_priv = NULL;
4558 }
4559 spin_unlock(&file_priv->mm.lock);
4560 }
4561
4562 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4563 {
4564 if (!mutex_is_locked(mutex))
4565 return false;
4566
4567 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4568 return mutex->owner == task;
4569 #else
4570 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4571 return false;
4572 #endif
4573 }
4574
4575 static int
4576 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4577 {
4578 struct drm_i915_private *dev_priv =
4579 container_of(shrinker,
4580 struct drm_i915_private,
4581 mm.inactive_shrinker);
4582 struct drm_device *dev = dev_priv->dev;
4583 struct drm_i915_gem_object *obj;
4584 int nr_to_scan = sc->nr_to_scan;
4585 bool unlock = true;
4586 int cnt;
4587
4588 if (!mutex_trylock(&dev->struct_mutex)) {
4589 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4590 return 0;
4591
4592 if (dev_priv->mm.shrinker_no_lock_stealing)
4593 return 0;
4594
4595 unlock = false;
4596 }
4597
4598 if (nr_to_scan) {
4599 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4600 if (nr_to_scan > 0)
4601 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4602 false);
4603 if (nr_to_scan > 0)
4604 i915_gem_shrink_all(dev_priv);
4605 }
4606
4607 cnt = 0;
4608 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4609 if (obj->pages_pin_count == 0)
4610 cnt += obj->base.size >> PAGE_SHIFT;
4611 list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list)
4612 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4613 cnt += obj->base.size >> PAGE_SHIFT;
4614
4615 if (unlock)
4616 mutex_unlock(&dev->struct_mutex);
4617 return cnt;
4618 }
This page took 0.129205 seconds and 5 git commands to generate.