drm/i915: check that we are in an RPM atomic section in GGTT PTE updaters
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151 unsigned long timeout;
1152
1153 if (i915_gem_request_get_ring(req)->irq_refcount)
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
1158 if (i915_gem_request_completed(req, true))
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
1163
1164 cpu_relax_lowlatency();
1165 }
1166 if (i915_gem_request_completed(req, false))
1167 return 0;
1168
1169 return -EAGAIN;
1170 }
1171
1172 /**
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
1186 * Returns 0 if the request was found within the alloted time. Else returns the
1187 * errno with remaining time filled in timeout argument.
1188 */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190 unsigned reset_counter,
1191 bool interruptible,
1192 s64 *timeout,
1193 struct intel_rps_client *rps)
1194 {
1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196 struct drm_device *dev = ring->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200 DEFINE_WAIT(wait);
1201 unsigned long timeout_expire;
1202 s64 before, now;
1203 int ret;
1204
1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207 if (list_empty(&req->list))
1208 return 0;
1209
1210 if (i915_gem_request_completed(req, true))
1211 return 0;
1212
1213 timeout_expire = 0;
1214 if (timeout) {
1215 if (WARN_ON(*timeout < 0))
1216 return -EINVAL;
1217
1218 if (*timeout == 0)
1219 return -ETIME;
1220
1221 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1222 }
1223
1224 if (INTEL_INFO(dev_priv)->gen >= 6)
1225 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1226
1227 /* Record current time in case interrupted by signal, or wedged */
1228 trace_i915_gem_request_wait_begin(req);
1229 before = ktime_get_raw_ns();
1230
1231 /* Optimistic spin for the next jiffie before touching IRQs */
1232 ret = __i915_spin_request(req);
1233 if (ret == 0)
1234 goto out;
1235
1236 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1237 ret = -ENODEV;
1238 goto out;
1239 }
1240
1241 for (;;) {
1242 struct timer_list timer;
1243
1244 prepare_to_wait(&ring->irq_queue, &wait,
1245 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1246
1247 /* We need to check whether any gpu reset happened in between
1248 * the caller grabbing the seqno and now ... */
1249 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1250 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1251 * is truely gone. */
1252 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1253 if (ret == 0)
1254 ret = -EAGAIN;
1255 break;
1256 }
1257
1258 if (i915_gem_request_completed(req, false)) {
1259 ret = 0;
1260 break;
1261 }
1262
1263 if (interruptible && signal_pending(current)) {
1264 ret = -ERESTARTSYS;
1265 break;
1266 }
1267
1268 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1269 ret = -ETIME;
1270 break;
1271 }
1272
1273 timer.function = NULL;
1274 if (timeout || missed_irq(dev_priv, ring)) {
1275 unsigned long expire;
1276
1277 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1278 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1279 mod_timer(&timer, expire);
1280 }
1281
1282 io_schedule();
1283
1284 if (timer.function) {
1285 del_singleshot_timer_sync(&timer);
1286 destroy_timer_on_stack(&timer);
1287 }
1288 }
1289 if (!irq_test_in_progress)
1290 ring->irq_put(ring);
1291
1292 finish_wait(&ring->irq_queue, &wait);
1293
1294 out:
1295 now = ktime_get_raw_ns();
1296 trace_i915_gem_request_wait_end(req);
1297
1298 if (timeout) {
1299 s64 tres = *timeout - (now - before);
1300
1301 *timeout = tres < 0 ? 0 : tres;
1302
1303 /*
1304 * Apparently ktime isn't accurate enough and occasionally has a
1305 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1306 * things up to make the test happy. We allow up to 1 jiffy.
1307 *
1308 * This is a regrssion from the timespec->ktime conversion.
1309 */
1310 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1311 *timeout = 0;
1312 }
1313
1314 return ret;
1315 }
1316
1317 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1318 struct drm_file *file)
1319 {
1320 struct drm_i915_private *dev_private;
1321 struct drm_i915_file_private *file_priv;
1322
1323 WARN_ON(!req || !file || req->file_priv);
1324
1325 if (!req || !file)
1326 return -EINVAL;
1327
1328 if (req->file_priv)
1329 return -EINVAL;
1330
1331 dev_private = req->ring->dev->dev_private;
1332 file_priv = file->driver_priv;
1333
1334 spin_lock(&file_priv->mm.lock);
1335 req->file_priv = file_priv;
1336 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1337 spin_unlock(&file_priv->mm.lock);
1338
1339 req->pid = get_pid(task_pid(current));
1340
1341 return 0;
1342 }
1343
1344 static inline void
1345 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1346 {
1347 struct drm_i915_file_private *file_priv = request->file_priv;
1348
1349 if (!file_priv)
1350 return;
1351
1352 spin_lock(&file_priv->mm.lock);
1353 list_del(&request->client_list);
1354 request->file_priv = NULL;
1355 spin_unlock(&file_priv->mm.lock);
1356
1357 put_pid(request->pid);
1358 request->pid = NULL;
1359 }
1360
1361 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1362 {
1363 trace_i915_gem_request_retire(request);
1364
1365 /* We know the GPU must have read the request to have
1366 * sent us the seqno + interrupt, so use the position
1367 * of tail of the request to update the last known position
1368 * of the GPU head.
1369 *
1370 * Note this requires that we are always called in request
1371 * completion order.
1372 */
1373 request->ringbuf->last_retired_head = request->postfix;
1374
1375 list_del_init(&request->list);
1376 i915_gem_request_remove_from_client(request);
1377
1378 i915_gem_request_unreference(request);
1379 }
1380
1381 static void
1382 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1383 {
1384 struct intel_engine_cs *engine = req->ring;
1385 struct drm_i915_gem_request *tmp;
1386
1387 lockdep_assert_held(&engine->dev->struct_mutex);
1388
1389 if (list_empty(&req->list))
1390 return;
1391
1392 do {
1393 tmp = list_first_entry(&engine->request_list,
1394 typeof(*tmp), list);
1395
1396 i915_gem_request_retire(tmp);
1397 } while (tmp != req);
1398
1399 WARN_ON(i915_verify_lists(engine->dev));
1400 }
1401
1402 /**
1403 * Waits for a request to be signaled, and cleans up the
1404 * request and object lists appropriately for that event.
1405 */
1406 int
1407 i915_wait_request(struct drm_i915_gem_request *req)
1408 {
1409 struct drm_device *dev;
1410 struct drm_i915_private *dev_priv;
1411 bool interruptible;
1412 int ret;
1413
1414 BUG_ON(req == NULL);
1415
1416 dev = req->ring->dev;
1417 dev_priv = dev->dev_private;
1418 interruptible = dev_priv->mm.interruptible;
1419
1420 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1421
1422 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1423 if (ret)
1424 return ret;
1425
1426 ret = __i915_wait_request(req,
1427 atomic_read(&dev_priv->gpu_error.reset_counter),
1428 interruptible, NULL, NULL);
1429 if (ret)
1430 return ret;
1431
1432 __i915_gem_request_retire__upto(req);
1433 return 0;
1434 }
1435
1436 /**
1437 * Ensures that all rendering to the object has completed and the object is
1438 * safe to unbind from the GTT or access from the CPU.
1439 */
1440 int
1441 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1442 bool readonly)
1443 {
1444 int ret, i;
1445
1446 if (!obj->active)
1447 return 0;
1448
1449 if (readonly) {
1450 if (obj->last_write_req != NULL) {
1451 ret = i915_wait_request(obj->last_write_req);
1452 if (ret)
1453 return ret;
1454
1455 i = obj->last_write_req->ring->id;
1456 if (obj->last_read_req[i] == obj->last_write_req)
1457 i915_gem_object_retire__read(obj, i);
1458 else
1459 i915_gem_object_retire__write(obj);
1460 }
1461 } else {
1462 for (i = 0; i < I915_NUM_RINGS; i++) {
1463 if (obj->last_read_req[i] == NULL)
1464 continue;
1465
1466 ret = i915_wait_request(obj->last_read_req[i]);
1467 if (ret)
1468 return ret;
1469
1470 i915_gem_object_retire__read(obj, i);
1471 }
1472 RQ_BUG_ON(obj->active);
1473 }
1474
1475 return 0;
1476 }
1477
1478 static void
1479 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1480 struct drm_i915_gem_request *req)
1481 {
1482 int ring = req->ring->id;
1483
1484 if (obj->last_read_req[ring] == req)
1485 i915_gem_object_retire__read(obj, ring);
1486 else if (obj->last_write_req == req)
1487 i915_gem_object_retire__write(obj);
1488
1489 __i915_gem_request_retire__upto(req);
1490 }
1491
1492 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1493 * as the object state may change during this call.
1494 */
1495 static __must_check int
1496 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1497 struct intel_rps_client *rps,
1498 bool readonly)
1499 {
1500 struct drm_device *dev = obj->base.dev;
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1503 unsigned reset_counter;
1504 int ret, i, n = 0;
1505
1506 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1507 BUG_ON(!dev_priv->mm.interruptible);
1508
1509 if (!obj->active)
1510 return 0;
1511
1512 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1513 if (ret)
1514 return ret;
1515
1516 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1517
1518 if (readonly) {
1519 struct drm_i915_gem_request *req;
1520
1521 req = obj->last_write_req;
1522 if (req == NULL)
1523 return 0;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 requests[n++] = i915_gem_request_reference(req);
1535 }
1536 }
1537
1538 mutex_unlock(&dev->struct_mutex);
1539 for (i = 0; ret == 0 && i < n; i++)
1540 ret = __i915_wait_request(requests[i], reset_counter, true,
1541 NULL, rps);
1542 mutex_lock(&dev->struct_mutex);
1543
1544 for (i = 0; i < n; i++) {
1545 if (ret == 0)
1546 i915_gem_object_retire_request(obj, requests[i]);
1547 i915_gem_request_unreference(requests[i]);
1548 }
1549
1550 return ret;
1551 }
1552
1553 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1554 {
1555 struct drm_i915_file_private *fpriv = file->driver_priv;
1556 return &fpriv->rps;
1557 }
1558
1559 /**
1560 * Called when user space prepares to use an object with the CPU, either
1561 * through the mmap ioctl's mapping or a GTT mapping.
1562 */
1563 int
1564 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1565 struct drm_file *file)
1566 {
1567 struct drm_i915_gem_set_domain *args = data;
1568 struct drm_i915_gem_object *obj;
1569 uint32_t read_domains = args->read_domains;
1570 uint32_t write_domain = args->write_domain;
1571 int ret;
1572
1573 /* Only handle setting domains to types used by the CPU. */
1574 if (write_domain & I915_GEM_GPU_DOMAINS)
1575 return -EINVAL;
1576
1577 if (read_domains & I915_GEM_GPU_DOMAINS)
1578 return -EINVAL;
1579
1580 /* Having something in the write domain implies it's in the read
1581 * domain, and only that read domain. Enforce that in the request.
1582 */
1583 if (write_domain != 0 && read_domains != write_domain)
1584 return -EINVAL;
1585
1586 ret = i915_mutex_lock_interruptible(dev);
1587 if (ret)
1588 return ret;
1589
1590 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1591 if (&obj->base == NULL) {
1592 ret = -ENOENT;
1593 goto unlock;
1594 }
1595
1596 /* Try to flush the object off the GPU without holding the lock.
1597 * We will repeat the flush holding the lock in the normal manner
1598 * to catch cases where we are gazumped.
1599 */
1600 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1601 to_rps_client(file),
1602 !write_domain);
1603 if (ret)
1604 goto unref;
1605
1606 if (read_domains & I915_GEM_DOMAIN_GTT)
1607 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1608 else
1609 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1610
1611 if (write_domain != 0)
1612 intel_fb_obj_invalidate(obj,
1613 write_domain == I915_GEM_DOMAIN_GTT ?
1614 ORIGIN_GTT : ORIGIN_CPU);
1615
1616 unref:
1617 drm_gem_object_unreference(&obj->base);
1618 unlock:
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621 }
1622
1623 /**
1624 * Called when user space has done writes to this buffer
1625 */
1626 int
1627 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_sw_finish *args = data;
1631 struct drm_i915_gem_object *obj;
1632 int ret = 0;
1633
1634 ret = i915_mutex_lock_interruptible(dev);
1635 if (ret)
1636 return ret;
1637
1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639 if (&obj->base == NULL) {
1640 ret = -ENOENT;
1641 goto unlock;
1642 }
1643
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 if (obj->pin_display)
1646 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648 drm_gem_object_unreference(&obj->base);
1649 unlock:
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652 }
1653
1654 /**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1670 */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1674 {
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
1677 unsigned long addr;
1678
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
1685 obj = drm_gem_object_lookup(dev, file, args->handle);
1686 if (obj == NULL)
1687 return -ENOENT;
1688
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
1697 addr = vm_mmap(obj->filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
1713 drm_gem_object_unreference_unlocked(obj);
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720 }
1721
1722 /**
1723 * i915_gem_fault - fault a page into the GTT
1724 * @vma: VMA in question
1725 * @vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749 intel_runtime_pm_get(dev_priv);
1750
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
1758
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772 ret = -EFAULT;
1773 goto unlock;
1774 }
1775
1776 /* Use a partial view if the object is bigger than the aperture. */
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
1779 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793 if (ret)
1794 goto unlock;
1795
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
1799
1800 ret = i915_gem_object_get_fence(obj);
1801 if (ret)
1802 goto unpin;
1803
1804 /* Finally, remap it using the new GTT offset */
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
1807 pfn >>= PAGE_SHIFT;
1808
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
1818
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
1847 unpin:
1848 i915_gem_object_ggtt_unpin_view(obj, &view);
1849 unlock:
1850 mutex_unlock(&dev->struct_mutex);
1851 out:
1852 switch (ret) {
1853 case -EIO:
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
1864 case -EAGAIN:
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
1869 */
1870 case 0:
1871 case -ERESTARTSYS:
1872 case -EINTR:
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
1878 ret = VM_FAULT_NOPAGE;
1879 break;
1880 case -ENOMEM:
1881 ret = VM_FAULT_OOM;
1882 break;
1883 case -ENOSPC:
1884 case -EFAULT:
1885 ret = VM_FAULT_SIGBUS;
1886 break;
1887 default:
1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889 ret = VM_FAULT_SIGBUS;
1890 break;
1891 }
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
1895 }
1896
1897 /**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
1901 * Preserve the reservation of the mmapping with the DRM core code, but
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
1911 void
1912 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913 {
1914 if (!obj->fault_mappable)
1915 return;
1916
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
1919 obj->fault_mappable = false;
1920 }
1921
1922 void
1923 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924 {
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929 }
1930
1931 uint32_t
1932 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933 {
1934 uint32_t gtt_size;
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
1942 gtt_size = 1024*1024;
1943 else
1944 gtt_size = 512*1024;
1945
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
1948
1949 return gtt_size;
1950 }
1951
1952 /**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
1957 * potential fence register mapping.
1958 */
1959 uint32_t
1960 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
1962 {
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968 tiling_mode == I915_TILING_NONE)
1969 return 4096;
1970
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 }
1977
1978 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979 {
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
1984 return 0;
1985
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
1990 goto out;
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
2006 goto out;
2007
2008 i915_gem_shrink_all(dev_priv);
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010 out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
2014 }
2015
2016 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017 {
2018 drm_gem_free_mmap_offset(&obj->base);
2019 }
2020
2021 int
2022 i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
2024 uint32_t handle,
2025 uint64_t *offset)
2026 {
2027 struct drm_i915_gem_object *obj;
2028 int ret;
2029
2030 ret = i915_mutex_lock_interruptible(dev);
2031 if (ret)
2032 return ret;
2033
2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035 if (&obj->base == NULL) {
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
2039
2040 if (obj->madv != I915_MADV_WILLNEED) {
2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042 ret = -EFAULT;
2043 goto out;
2044 }
2045
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
2049
2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052 out:
2053 drm_gem_object_unreference(&obj->base);
2054 unlock:
2055 mutex_unlock(&dev->struct_mutex);
2056 return ret;
2057 }
2058
2059 /**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074 int
2075 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077 {
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 }
2082
2083 /* Immediately discard the backing storage */
2084 static void
2085 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086 {
2087 i915_gem_object_free_mmap_offset(obj);
2088
2089 if (obj->base.filp == NULL)
2090 return;
2091
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098 obj->madv = __I915_MADV_PURGED;
2099 }
2100
2101 /* Try to discard unwanted pages */
2102 static void
2103 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104 {
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 }
2120
2121 static void
2122 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123 {
2124 struct sg_page_iter sg_iter;
2125 int ret;
2126
2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2135 i915_gem_clflush_object(obj, true);
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
2139 i915_gem_gtt_finish_object(obj);
2140
2141 if (i915_gem_object_needs_bit17_swizzle(obj))
2142 i915_gem_object_save_bit_17_swizzle(obj);
2143
2144 if (obj->madv == I915_MADV_DONTNEED)
2145 obj->dirty = 0;
2146
2147 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2148 struct page *page = sg_page_iter_page(&sg_iter);
2149
2150 if (obj->dirty)
2151 set_page_dirty(page);
2152
2153 if (obj->madv == I915_MADV_WILLNEED)
2154 mark_page_accessed(page);
2155
2156 page_cache_release(page);
2157 }
2158 obj->dirty = 0;
2159
2160 sg_free_table(obj->pages);
2161 kfree(obj->pages);
2162 }
2163
2164 int
2165 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2166 {
2167 const struct drm_i915_gem_object_ops *ops = obj->ops;
2168
2169 if (obj->pages == NULL)
2170 return 0;
2171
2172 if (obj->pages_pin_count)
2173 return -EBUSY;
2174
2175 BUG_ON(i915_gem_obj_bound_any(obj));
2176
2177 /* ->put_pages might need to allocate memory for the bit17 swizzle
2178 * array, hence protect them from being reaped by removing them from gtt
2179 * lists early. */
2180 list_del(&obj->global_list);
2181
2182 ops->put_pages(obj);
2183 obj->pages = NULL;
2184
2185 i915_gem_object_invalidate(obj);
2186
2187 return 0;
2188 }
2189
2190 static int
2191 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2192 {
2193 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2194 int page_count, i;
2195 struct address_space *mapping;
2196 struct sg_table *st;
2197 struct scatterlist *sg;
2198 struct sg_page_iter sg_iter;
2199 struct page *page;
2200 unsigned long last_pfn = 0; /* suppress gcc warning */
2201 int ret;
2202 gfp_t gfp;
2203
2204 /* Assert that the object is not currently in any GPU domain. As it
2205 * wasn't in the GTT, there shouldn't be any way it could have been in
2206 * a GPU cache
2207 */
2208 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
2211 st = kmalloc(sizeof(*st), GFP_KERNEL);
2212 if (st == NULL)
2213 return -ENOMEM;
2214
2215 page_count = obj->base.size / PAGE_SIZE;
2216 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2217 kfree(st);
2218 return -ENOMEM;
2219 }
2220
2221 /* Get the list of pages out of our struct file. They'll be pinned
2222 * at this point until we release them.
2223 *
2224 * Fail silently without starting the shrinker
2225 */
2226 mapping = file_inode(obj->base.filp)->i_mapping;
2227 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2228 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2229 sg = st->sgl;
2230 st->nents = 0;
2231 for (i = 0; i < page_count; i++) {
2232 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233 if (IS_ERR(page)) {
2234 i915_gem_shrink(dev_priv,
2235 page_count,
2236 I915_SHRINK_BOUND |
2237 I915_SHRINK_UNBOUND |
2238 I915_SHRINK_PURGEABLE);
2239 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2240 }
2241 if (IS_ERR(page)) {
2242 /* We've tried hard to allocate the memory by reaping
2243 * our own buffer, now let the real VM do its job and
2244 * go down in flames if truly OOM.
2245 */
2246 i915_gem_shrink_all(dev_priv);
2247 page = shmem_read_mapping_page(mapping, i);
2248 if (IS_ERR(page)) {
2249 ret = PTR_ERR(page);
2250 goto err_pages;
2251 }
2252 }
2253 #ifdef CONFIG_SWIOTLB
2254 if (swiotlb_nr_tbl()) {
2255 st->nents++;
2256 sg_set_page(sg, page, PAGE_SIZE, 0);
2257 sg = sg_next(sg);
2258 continue;
2259 }
2260 #endif
2261 if (!i || page_to_pfn(page) != last_pfn + 1) {
2262 if (i)
2263 sg = sg_next(sg);
2264 st->nents++;
2265 sg_set_page(sg, page, PAGE_SIZE, 0);
2266 } else {
2267 sg->length += PAGE_SIZE;
2268 }
2269 last_pfn = page_to_pfn(page);
2270
2271 /* Check that the i965g/gm workaround works. */
2272 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2273 }
2274 #ifdef CONFIG_SWIOTLB
2275 if (!swiotlb_nr_tbl())
2276 #endif
2277 sg_mark_end(sg);
2278 obj->pages = st;
2279
2280 ret = i915_gem_gtt_prepare_object(obj);
2281 if (ret)
2282 goto err_pages;
2283
2284 if (i915_gem_object_needs_bit17_swizzle(obj))
2285 i915_gem_object_do_bit_17_swizzle(obj);
2286
2287 if (obj->tiling_mode != I915_TILING_NONE &&
2288 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2289 i915_gem_object_pin_pages(obj);
2290
2291 return 0;
2292
2293 err_pages:
2294 sg_mark_end(sg);
2295 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2296 page_cache_release(sg_page_iter_page(&sg_iter));
2297 sg_free_table(st);
2298 kfree(st);
2299
2300 /* shmemfs first checks if there is enough memory to allocate the page
2301 * and reports ENOSPC should there be insufficient, along with the usual
2302 * ENOMEM for a genuine allocation failure.
2303 *
2304 * We use ENOSPC in our driver to mean that we have run out of aperture
2305 * space and so want to translate the error from shmemfs back to our
2306 * usual understanding of ENOMEM.
2307 */
2308 if (ret == -ENOSPC)
2309 ret = -ENOMEM;
2310
2311 return ret;
2312 }
2313
2314 /* Ensure that the associated pages are gathered from the backing storage
2315 * and pinned into our object. i915_gem_object_get_pages() may be called
2316 * multiple times before they are released by a single call to
2317 * i915_gem_object_put_pages() - once the pages are no longer referenced
2318 * either as a result of memory pressure (reaping pages under the shrinker)
2319 * or as the object is itself released.
2320 */
2321 int
2322 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2323 {
2324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325 const struct drm_i915_gem_object_ops *ops = obj->ops;
2326 int ret;
2327
2328 if (obj->pages)
2329 return 0;
2330
2331 if (obj->madv != I915_MADV_WILLNEED) {
2332 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2333 return -EFAULT;
2334 }
2335
2336 BUG_ON(obj->pages_pin_count);
2337
2338 ret = ops->get_pages(obj);
2339 if (ret)
2340 return ret;
2341
2342 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2343
2344 obj->get_page.sg = obj->pages->sgl;
2345 obj->get_page.last = 0;
2346
2347 return 0;
2348 }
2349
2350 void i915_vma_move_to_active(struct i915_vma *vma,
2351 struct drm_i915_gem_request *req)
2352 {
2353 struct drm_i915_gem_object *obj = vma->obj;
2354 struct intel_engine_cs *ring;
2355
2356 ring = i915_gem_request_get_ring(req);
2357
2358 /* Add a reference if we're newly entering the active list. */
2359 if (obj->active == 0)
2360 drm_gem_object_reference(&obj->base);
2361 obj->active |= intel_ring_flag(ring);
2362
2363 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2364 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2365
2366 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2367 }
2368
2369 static void
2370 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2371 {
2372 RQ_BUG_ON(obj->last_write_req == NULL);
2373 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2374
2375 i915_gem_request_assign(&obj->last_write_req, NULL);
2376 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2377 }
2378
2379 static void
2380 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2381 {
2382 struct i915_vma *vma;
2383
2384 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2385 RQ_BUG_ON(!(obj->active & (1 << ring)));
2386
2387 list_del_init(&obj->ring_list[ring]);
2388 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2389
2390 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2391 i915_gem_object_retire__write(obj);
2392
2393 obj->active &= ~(1 << ring);
2394 if (obj->active)
2395 return;
2396
2397 /* Bump our place on the bound list to keep it roughly in LRU order
2398 * so that we don't steal from recently used but inactive objects
2399 * (unless we are forced to ofc!)
2400 */
2401 list_move_tail(&obj->global_list,
2402 &to_i915(obj->base.dev)->mm.bound_list);
2403
2404 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2405 if (!list_empty(&vma->mm_list))
2406 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2407 }
2408
2409 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2410 drm_gem_object_unreference(&obj->base);
2411 }
2412
2413 static int
2414 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2415 {
2416 struct drm_i915_private *dev_priv = dev->dev_private;
2417 struct intel_engine_cs *ring;
2418 int ret, i, j;
2419
2420 /* Carefully retire all requests without writing to the rings */
2421 for_each_ring(ring, dev_priv, i) {
2422 ret = intel_ring_idle(ring);
2423 if (ret)
2424 return ret;
2425 }
2426 i915_gem_retire_requests(dev);
2427
2428 /* Finally reset hw state */
2429 for_each_ring(ring, dev_priv, i) {
2430 intel_ring_init_seqno(ring, seqno);
2431
2432 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2433 ring->semaphore.sync_seqno[j] = 0;
2434 }
2435
2436 return 0;
2437 }
2438
2439 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2440 {
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 int ret;
2443
2444 if (seqno == 0)
2445 return -EINVAL;
2446
2447 /* HWS page needs to be set less than what we
2448 * will inject to ring
2449 */
2450 ret = i915_gem_init_seqno(dev, seqno - 1);
2451 if (ret)
2452 return ret;
2453
2454 /* Carefully set the last_seqno value so that wrap
2455 * detection still works
2456 */
2457 dev_priv->next_seqno = seqno;
2458 dev_priv->last_seqno = seqno - 1;
2459 if (dev_priv->last_seqno == 0)
2460 dev_priv->last_seqno--;
2461
2462 return 0;
2463 }
2464
2465 int
2466 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2467 {
2468 struct drm_i915_private *dev_priv = dev->dev_private;
2469
2470 /* reserve 0 for non-seqno */
2471 if (dev_priv->next_seqno == 0) {
2472 int ret = i915_gem_init_seqno(dev, 0);
2473 if (ret)
2474 return ret;
2475
2476 dev_priv->next_seqno = 1;
2477 }
2478
2479 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2480 return 0;
2481 }
2482
2483 /*
2484 * NB: This function is not allowed to fail. Doing so would mean the the
2485 * request is not being tracked for completion but the work itself is
2486 * going to happen on the hardware. This would be a Bad Thing(tm).
2487 */
2488 void __i915_add_request(struct drm_i915_gem_request *request,
2489 struct drm_i915_gem_object *obj,
2490 bool flush_caches)
2491 {
2492 struct intel_engine_cs *ring;
2493 struct drm_i915_private *dev_priv;
2494 struct intel_ringbuffer *ringbuf;
2495 u32 request_start;
2496 int ret;
2497
2498 if (WARN_ON(request == NULL))
2499 return;
2500
2501 ring = request->ring;
2502 dev_priv = ring->dev->dev_private;
2503 ringbuf = request->ringbuf;
2504
2505 /*
2506 * To ensure that this call will not fail, space for its emissions
2507 * should already have been reserved in the ring buffer. Let the ring
2508 * know that it is time to use that space up.
2509 */
2510 intel_ring_reserved_space_use(ringbuf);
2511
2512 request_start = intel_ring_get_tail(ringbuf);
2513 /*
2514 * Emit any outstanding flushes - execbuf can fail to emit the flush
2515 * after having emitted the batchbuffer command. Hence we need to fix
2516 * things up similar to emitting the lazy request. The difference here
2517 * is that the flush _must_ happen before the next request, no matter
2518 * what.
2519 */
2520 if (flush_caches) {
2521 if (i915.enable_execlists)
2522 ret = logical_ring_flush_all_caches(request);
2523 else
2524 ret = intel_ring_flush_all_caches(request);
2525 /* Not allowed to fail! */
2526 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2527 }
2528
2529 /* Record the position of the start of the request so that
2530 * should we detect the updated seqno part-way through the
2531 * GPU processing the request, we never over-estimate the
2532 * position of the head.
2533 */
2534 request->postfix = intel_ring_get_tail(ringbuf);
2535
2536 if (i915.enable_execlists)
2537 ret = ring->emit_request(request);
2538 else {
2539 ret = ring->add_request(request);
2540
2541 request->tail = intel_ring_get_tail(ringbuf);
2542 }
2543 /* Not allowed to fail! */
2544 WARN(ret, "emit|add_request failed: %d!\n", ret);
2545
2546 request->head = request_start;
2547
2548 /* Whilst this request exists, batch_obj will be on the
2549 * active_list, and so will hold the active reference. Only when this
2550 * request is retired will the the batch_obj be moved onto the
2551 * inactive_list and lose its active reference. Hence we do not need
2552 * to explicitly hold another reference here.
2553 */
2554 request->batch_obj = obj;
2555
2556 request->emitted_jiffies = jiffies;
2557 ring->last_submitted_seqno = request->seqno;
2558 list_add_tail(&request->list, &ring->request_list);
2559
2560 trace_i915_gem_request_add(request);
2561
2562 i915_queue_hangcheck(ring->dev);
2563
2564 queue_delayed_work(dev_priv->wq,
2565 &dev_priv->mm.retire_work,
2566 round_jiffies_up_relative(HZ));
2567 intel_mark_busy(dev_priv->dev);
2568
2569 /* Sanity check that the reserved size was large enough. */
2570 intel_ring_reserved_space_end(ringbuf);
2571 }
2572
2573 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2574 const struct intel_context *ctx)
2575 {
2576 unsigned long elapsed;
2577
2578 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2579
2580 if (ctx->hang_stats.banned)
2581 return true;
2582
2583 if (ctx->hang_stats.ban_period_seconds &&
2584 elapsed <= ctx->hang_stats.ban_period_seconds) {
2585 if (!i915_gem_context_is_default(ctx)) {
2586 DRM_DEBUG("context hanging too fast, banning!\n");
2587 return true;
2588 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2589 if (i915_stop_ring_allow_warn(dev_priv))
2590 DRM_ERROR("gpu hanging too fast, banning!\n");
2591 return true;
2592 }
2593 }
2594
2595 return false;
2596 }
2597
2598 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2599 struct intel_context *ctx,
2600 const bool guilty)
2601 {
2602 struct i915_ctx_hang_stats *hs;
2603
2604 if (WARN_ON(!ctx))
2605 return;
2606
2607 hs = &ctx->hang_stats;
2608
2609 if (guilty) {
2610 hs->banned = i915_context_is_banned(dev_priv, ctx);
2611 hs->batch_active++;
2612 hs->guilty_ts = get_seconds();
2613 } else {
2614 hs->batch_pending++;
2615 }
2616 }
2617
2618 void i915_gem_request_free(struct kref *req_ref)
2619 {
2620 struct drm_i915_gem_request *req = container_of(req_ref,
2621 typeof(*req), ref);
2622 struct intel_context *ctx = req->ctx;
2623
2624 if (req->file_priv)
2625 i915_gem_request_remove_from_client(req);
2626
2627 if (ctx) {
2628 if (i915.enable_execlists) {
2629 if (ctx != req->ring->default_context)
2630 intel_lr_context_unpin(req);
2631 }
2632
2633 i915_gem_context_unreference(ctx);
2634 }
2635
2636 kmem_cache_free(req->i915->requests, req);
2637 }
2638
2639 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2640 struct intel_context *ctx,
2641 struct drm_i915_gem_request **req_out)
2642 {
2643 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2644 struct drm_i915_gem_request *req;
2645 int ret;
2646
2647 if (!req_out)
2648 return -EINVAL;
2649
2650 *req_out = NULL;
2651
2652 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2653 if (req == NULL)
2654 return -ENOMEM;
2655
2656 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2657 if (ret)
2658 goto err;
2659
2660 kref_init(&req->ref);
2661 req->i915 = dev_priv;
2662 req->ring = ring;
2663 req->ctx = ctx;
2664 i915_gem_context_reference(req->ctx);
2665
2666 if (i915.enable_execlists)
2667 ret = intel_logical_ring_alloc_request_extras(req);
2668 else
2669 ret = intel_ring_alloc_request_extras(req);
2670 if (ret) {
2671 i915_gem_context_unreference(req->ctx);
2672 goto err;
2673 }
2674
2675 /*
2676 * Reserve space in the ring buffer for all the commands required to
2677 * eventually emit this request. This is to guarantee that the
2678 * i915_add_request() call can't fail. Note that the reserve may need
2679 * to be redone if the request is not actually submitted straight
2680 * away, e.g. because a GPU scheduler has deferred it.
2681 */
2682 if (i915.enable_execlists)
2683 ret = intel_logical_ring_reserve_space(req);
2684 else
2685 ret = intel_ring_reserve_space(req);
2686 if (ret) {
2687 /*
2688 * At this point, the request is fully allocated even if not
2689 * fully prepared. Thus it can be cleaned up using the proper
2690 * free code.
2691 */
2692 i915_gem_request_cancel(req);
2693 return ret;
2694 }
2695
2696 *req_out = req;
2697 return 0;
2698
2699 err:
2700 kmem_cache_free(dev_priv->requests, req);
2701 return ret;
2702 }
2703
2704 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2705 {
2706 intel_ring_reserved_space_cancel(req->ringbuf);
2707
2708 i915_gem_request_unreference(req);
2709 }
2710
2711 struct drm_i915_gem_request *
2712 i915_gem_find_active_request(struct intel_engine_cs *ring)
2713 {
2714 struct drm_i915_gem_request *request;
2715
2716 list_for_each_entry(request, &ring->request_list, list) {
2717 if (i915_gem_request_completed(request, false))
2718 continue;
2719
2720 return request;
2721 }
2722
2723 return NULL;
2724 }
2725
2726 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2727 struct intel_engine_cs *ring)
2728 {
2729 struct drm_i915_gem_request *request;
2730 bool ring_hung;
2731
2732 request = i915_gem_find_active_request(ring);
2733
2734 if (request == NULL)
2735 return;
2736
2737 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2738
2739 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2740
2741 list_for_each_entry_continue(request, &ring->request_list, list)
2742 i915_set_reset_status(dev_priv, request->ctx, false);
2743 }
2744
2745 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2746 struct intel_engine_cs *ring)
2747 {
2748 struct intel_ringbuffer *buffer;
2749
2750 while (!list_empty(&ring->active_list)) {
2751 struct drm_i915_gem_object *obj;
2752
2753 obj = list_first_entry(&ring->active_list,
2754 struct drm_i915_gem_object,
2755 ring_list[ring->id]);
2756
2757 i915_gem_object_retire__read(obj, ring->id);
2758 }
2759
2760 /*
2761 * Clear the execlists queue up before freeing the requests, as those
2762 * are the ones that keep the context and ringbuffer backing objects
2763 * pinned in place.
2764 */
2765
2766 if (i915.enable_execlists) {
2767 spin_lock_irq(&ring->execlist_lock);
2768
2769 /* list_splice_tail_init checks for empty lists */
2770 list_splice_tail_init(&ring->execlist_queue,
2771 &ring->execlist_retired_req_list);
2772
2773 spin_unlock_irq(&ring->execlist_lock);
2774 intel_execlists_retire_requests(ring);
2775 }
2776
2777 /*
2778 * We must free the requests after all the corresponding objects have
2779 * been moved off active lists. Which is the same order as the normal
2780 * retire_requests function does. This is important if object hold
2781 * implicit references on things like e.g. ppgtt address spaces through
2782 * the request.
2783 */
2784 while (!list_empty(&ring->request_list)) {
2785 struct drm_i915_gem_request *request;
2786
2787 request = list_first_entry(&ring->request_list,
2788 struct drm_i915_gem_request,
2789 list);
2790
2791 i915_gem_request_retire(request);
2792 }
2793
2794 /* Having flushed all requests from all queues, we know that all
2795 * ringbuffers must now be empty. However, since we do not reclaim
2796 * all space when retiring the request (to prevent HEADs colliding
2797 * with rapid ringbuffer wraparound) the amount of available space
2798 * upon reset is less than when we start. Do one more pass over
2799 * all the ringbuffers to reset last_retired_head.
2800 */
2801 list_for_each_entry(buffer, &ring->buffers, link) {
2802 buffer->last_retired_head = buffer->tail;
2803 intel_ring_update_space(buffer);
2804 }
2805 }
2806
2807 void i915_gem_reset(struct drm_device *dev)
2808 {
2809 struct drm_i915_private *dev_priv = dev->dev_private;
2810 struct intel_engine_cs *ring;
2811 int i;
2812
2813 /*
2814 * Before we free the objects from the requests, we need to inspect
2815 * them for finding the guilty party. As the requests only borrow
2816 * their reference to the objects, the inspection must be done first.
2817 */
2818 for_each_ring(ring, dev_priv, i)
2819 i915_gem_reset_ring_status(dev_priv, ring);
2820
2821 for_each_ring(ring, dev_priv, i)
2822 i915_gem_reset_ring_cleanup(dev_priv, ring);
2823
2824 i915_gem_context_reset(dev);
2825
2826 i915_gem_restore_fences(dev);
2827
2828 WARN_ON(i915_verify_lists(dev));
2829 }
2830
2831 /**
2832 * This function clears the request list as sequence numbers are passed.
2833 */
2834 void
2835 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2836 {
2837 WARN_ON(i915_verify_lists(ring->dev));
2838
2839 /* Retire requests first as we use it above for the early return.
2840 * If we retire requests last, we may use a later seqno and so clear
2841 * the requests lists without clearing the active list, leading to
2842 * confusion.
2843 */
2844 while (!list_empty(&ring->request_list)) {
2845 struct drm_i915_gem_request *request;
2846
2847 request = list_first_entry(&ring->request_list,
2848 struct drm_i915_gem_request,
2849 list);
2850
2851 if (!i915_gem_request_completed(request, true))
2852 break;
2853
2854 i915_gem_request_retire(request);
2855 }
2856
2857 /* Move any buffers on the active list that are no longer referenced
2858 * by the ringbuffer to the flushing/inactive lists as appropriate,
2859 * before we free the context associated with the requests.
2860 */
2861 while (!list_empty(&ring->active_list)) {
2862 struct drm_i915_gem_object *obj;
2863
2864 obj = list_first_entry(&ring->active_list,
2865 struct drm_i915_gem_object,
2866 ring_list[ring->id]);
2867
2868 if (!list_empty(&obj->last_read_req[ring->id]->list))
2869 break;
2870
2871 i915_gem_object_retire__read(obj, ring->id);
2872 }
2873
2874 if (unlikely(ring->trace_irq_req &&
2875 i915_gem_request_completed(ring->trace_irq_req, true))) {
2876 ring->irq_put(ring);
2877 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2878 }
2879
2880 WARN_ON(i915_verify_lists(ring->dev));
2881 }
2882
2883 bool
2884 i915_gem_retire_requests(struct drm_device *dev)
2885 {
2886 struct drm_i915_private *dev_priv = dev->dev_private;
2887 struct intel_engine_cs *ring;
2888 bool idle = true;
2889 int i;
2890
2891 for_each_ring(ring, dev_priv, i) {
2892 i915_gem_retire_requests_ring(ring);
2893 idle &= list_empty(&ring->request_list);
2894 if (i915.enable_execlists) {
2895 unsigned long flags;
2896
2897 spin_lock_irqsave(&ring->execlist_lock, flags);
2898 idle &= list_empty(&ring->execlist_queue);
2899 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2900
2901 intel_execlists_retire_requests(ring);
2902 }
2903 }
2904
2905 if (idle)
2906 mod_delayed_work(dev_priv->wq,
2907 &dev_priv->mm.idle_work,
2908 msecs_to_jiffies(100));
2909
2910 return idle;
2911 }
2912
2913 static void
2914 i915_gem_retire_work_handler(struct work_struct *work)
2915 {
2916 struct drm_i915_private *dev_priv =
2917 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2918 struct drm_device *dev = dev_priv->dev;
2919 bool idle;
2920
2921 /* Come back later if the device is busy... */
2922 idle = false;
2923 if (mutex_trylock(&dev->struct_mutex)) {
2924 idle = i915_gem_retire_requests(dev);
2925 mutex_unlock(&dev->struct_mutex);
2926 }
2927 if (!idle)
2928 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2929 round_jiffies_up_relative(HZ));
2930 }
2931
2932 static void
2933 i915_gem_idle_work_handler(struct work_struct *work)
2934 {
2935 struct drm_i915_private *dev_priv =
2936 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2937 struct drm_device *dev = dev_priv->dev;
2938 struct intel_engine_cs *ring;
2939 int i;
2940
2941 for_each_ring(ring, dev_priv, i)
2942 if (!list_empty(&ring->request_list))
2943 return;
2944
2945 intel_mark_idle(dev);
2946
2947 if (mutex_trylock(&dev->struct_mutex)) {
2948 struct intel_engine_cs *ring;
2949 int i;
2950
2951 for_each_ring(ring, dev_priv, i)
2952 i915_gem_batch_pool_fini(&ring->batch_pool);
2953
2954 mutex_unlock(&dev->struct_mutex);
2955 }
2956 }
2957
2958 /**
2959 * Ensures that an object will eventually get non-busy by flushing any required
2960 * write domains, emitting any outstanding lazy request and retiring and
2961 * completed requests.
2962 */
2963 static int
2964 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2965 {
2966 int i;
2967
2968 if (!obj->active)
2969 return 0;
2970
2971 for (i = 0; i < I915_NUM_RINGS; i++) {
2972 struct drm_i915_gem_request *req;
2973
2974 req = obj->last_read_req[i];
2975 if (req == NULL)
2976 continue;
2977
2978 if (list_empty(&req->list))
2979 goto retire;
2980
2981 if (i915_gem_request_completed(req, true)) {
2982 __i915_gem_request_retire__upto(req);
2983 retire:
2984 i915_gem_object_retire__read(obj, i);
2985 }
2986 }
2987
2988 return 0;
2989 }
2990
2991 /**
2992 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2993 * @DRM_IOCTL_ARGS: standard ioctl arguments
2994 *
2995 * Returns 0 if successful, else an error is returned with the remaining time in
2996 * the timeout parameter.
2997 * -ETIME: object is still busy after timeout
2998 * -ERESTARTSYS: signal interrupted the wait
2999 * -ENONENT: object doesn't exist
3000 * Also possible, but rare:
3001 * -EAGAIN: GPU wedged
3002 * -ENOMEM: damn
3003 * -ENODEV: Internal IRQ fail
3004 * -E?: The add request failed
3005 *
3006 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3007 * non-zero timeout parameter the wait ioctl will wait for the given number of
3008 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3009 * without holding struct_mutex the object may become re-busied before this
3010 * function completes. A similar but shorter * race condition exists in the busy
3011 * ioctl
3012 */
3013 int
3014 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3015 {
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 struct drm_i915_gem_wait *args = data;
3018 struct drm_i915_gem_object *obj;
3019 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3020 unsigned reset_counter;
3021 int i, n = 0;
3022 int ret;
3023
3024 if (args->flags != 0)
3025 return -EINVAL;
3026
3027 ret = i915_mutex_lock_interruptible(dev);
3028 if (ret)
3029 return ret;
3030
3031 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3032 if (&obj->base == NULL) {
3033 mutex_unlock(&dev->struct_mutex);
3034 return -ENOENT;
3035 }
3036
3037 /* Need to make sure the object gets inactive eventually. */
3038 ret = i915_gem_object_flush_active(obj);
3039 if (ret)
3040 goto out;
3041
3042 if (!obj->active)
3043 goto out;
3044
3045 /* Do this after OLR check to make sure we make forward progress polling
3046 * on this IOCTL with a timeout == 0 (like busy ioctl)
3047 */
3048 if (args->timeout_ns == 0) {
3049 ret = -ETIME;
3050 goto out;
3051 }
3052
3053 drm_gem_object_unreference(&obj->base);
3054 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3055
3056 for (i = 0; i < I915_NUM_RINGS; i++) {
3057 if (obj->last_read_req[i] == NULL)
3058 continue;
3059
3060 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3061 }
3062
3063 mutex_unlock(&dev->struct_mutex);
3064
3065 for (i = 0; i < n; i++) {
3066 if (ret == 0)
3067 ret = __i915_wait_request(req[i], reset_counter, true,
3068 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3069 to_rps_client(file));
3070 i915_gem_request_unreference__unlocked(req[i]);
3071 }
3072 return ret;
3073
3074 out:
3075 drm_gem_object_unreference(&obj->base);
3076 mutex_unlock(&dev->struct_mutex);
3077 return ret;
3078 }
3079
3080 static int
3081 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3082 struct intel_engine_cs *to,
3083 struct drm_i915_gem_request *from_req,
3084 struct drm_i915_gem_request **to_req)
3085 {
3086 struct intel_engine_cs *from;
3087 int ret;
3088
3089 from = i915_gem_request_get_ring(from_req);
3090 if (to == from)
3091 return 0;
3092
3093 if (i915_gem_request_completed(from_req, true))
3094 return 0;
3095
3096 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3097 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3098 ret = __i915_wait_request(from_req,
3099 atomic_read(&i915->gpu_error.reset_counter),
3100 i915->mm.interruptible,
3101 NULL,
3102 &i915->rps.semaphores);
3103 if (ret)
3104 return ret;
3105
3106 i915_gem_object_retire_request(obj, from_req);
3107 } else {
3108 int idx = intel_ring_sync_index(from, to);
3109 u32 seqno = i915_gem_request_get_seqno(from_req);
3110
3111 WARN_ON(!to_req);
3112
3113 if (seqno <= from->semaphore.sync_seqno[idx])
3114 return 0;
3115
3116 if (*to_req == NULL) {
3117 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3118 if (ret)
3119 return ret;
3120 }
3121
3122 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3123 ret = to->semaphore.sync_to(*to_req, from, seqno);
3124 if (ret)
3125 return ret;
3126
3127 /* We use last_read_req because sync_to()
3128 * might have just caused seqno wrap under
3129 * the radar.
3130 */
3131 from->semaphore.sync_seqno[idx] =
3132 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3133 }
3134
3135 return 0;
3136 }
3137
3138 /**
3139 * i915_gem_object_sync - sync an object to a ring.
3140 *
3141 * @obj: object which may be in use on another ring.
3142 * @to: ring we wish to use the object on. May be NULL.
3143 * @to_req: request we wish to use the object for. See below.
3144 * This will be allocated and returned if a request is
3145 * required but not passed in.
3146 *
3147 * This code is meant to abstract object synchronization with the GPU.
3148 * Calling with NULL implies synchronizing the object with the CPU
3149 * rather than a particular GPU ring. Conceptually we serialise writes
3150 * between engines inside the GPU. We only allow one engine to write
3151 * into a buffer at any time, but multiple readers. To ensure each has
3152 * a coherent view of memory, we must:
3153 *
3154 * - If there is an outstanding write request to the object, the new
3155 * request must wait for it to complete (either CPU or in hw, requests
3156 * on the same ring will be naturally ordered).
3157 *
3158 * - If we are a write request (pending_write_domain is set), the new
3159 * request must wait for outstanding read requests to complete.
3160 *
3161 * For CPU synchronisation (NULL to) no request is required. For syncing with
3162 * rings to_req must be non-NULL. However, a request does not have to be
3163 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3164 * request will be allocated automatically and returned through *to_req. Note
3165 * that it is not guaranteed that commands will be emitted (because the system
3166 * might already be idle). Hence there is no need to create a request that
3167 * might never have any work submitted. Note further that if a request is
3168 * returned in *to_req, it is the responsibility of the caller to submit
3169 * that request (after potentially adding more work to it).
3170 *
3171 * Returns 0 if successful, else propagates up the lower layer error.
3172 */
3173 int
3174 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3175 struct intel_engine_cs *to,
3176 struct drm_i915_gem_request **to_req)
3177 {
3178 const bool readonly = obj->base.pending_write_domain == 0;
3179 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3180 int ret, i, n;
3181
3182 if (!obj->active)
3183 return 0;
3184
3185 if (to == NULL)
3186 return i915_gem_object_wait_rendering(obj, readonly);
3187
3188 n = 0;
3189 if (readonly) {
3190 if (obj->last_write_req)
3191 req[n++] = obj->last_write_req;
3192 } else {
3193 for (i = 0; i < I915_NUM_RINGS; i++)
3194 if (obj->last_read_req[i])
3195 req[n++] = obj->last_read_req[i];
3196 }
3197 for (i = 0; i < n; i++) {
3198 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3199 if (ret)
3200 return ret;
3201 }
3202
3203 return 0;
3204 }
3205
3206 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3207 {
3208 u32 old_write_domain, old_read_domains;
3209
3210 /* Force a pagefault for domain tracking on next user access */
3211 i915_gem_release_mmap(obj);
3212
3213 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3214 return;
3215
3216 /* Wait for any direct GTT access to complete */
3217 mb();
3218
3219 old_read_domains = obj->base.read_domains;
3220 old_write_domain = obj->base.write_domain;
3221
3222 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3223 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3224
3225 trace_i915_gem_object_change_domain(obj,
3226 old_read_domains,
3227 old_write_domain);
3228 }
3229
3230 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3231 {
3232 struct drm_i915_gem_object *obj = vma->obj;
3233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3234 int ret;
3235
3236 if (list_empty(&vma->vma_link))
3237 return 0;
3238
3239 if (!drm_mm_node_allocated(&vma->node)) {
3240 i915_gem_vma_destroy(vma);
3241 return 0;
3242 }
3243
3244 if (vma->pin_count)
3245 return -EBUSY;
3246
3247 BUG_ON(obj->pages == NULL);
3248
3249 if (wait) {
3250 ret = i915_gem_object_wait_rendering(obj, false);
3251 if (ret)
3252 return ret;
3253 }
3254
3255 if (i915_is_ggtt(vma->vm) &&
3256 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3257 i915_gem_object_finish_gtt(obj);
3258
3259 /* release the fence reg _after_ flushing */
3260 ret = i915_gem_object_put_fence(obj);
3261 if (ret)
3262 return ret;
3263 }
3264
3265 trace_i915_vma_unbind(vma);
3266
3267 vma->vm->unbind_vma(vma);
3268 vma->bound = 0;
3269
3270 list_del_init(&vma->mm_list);
3271 if (i915_is_ggtt(vma->vm)) {
3272 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3273 obj->map_and_fenceable = false;
3274 } else if (vma->ggtt_view.pages) {
3275 sg_free_table(vma->ggtt_view.pages);
3276 kfree(vma->ggtt_view.pages);
3277 }
3278 vma->ggtt_view.pages = NULL;
3279 }
3280
3281 drm_mm_remove_node(&vma->node);
3282 i915_gem_vma_destroy(vma);
3283
3284 /* Since the unbound list is global, only move to that list if
3285 * no more VMAs exist. */
3286 if (list_empty(&obj->vma_list))
3287 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3288
3289 /* And finally now the object is completely decoupled from this vma,
3290 * we can drop its hold on the backing storage and allow it to be
3291 * reaped by the shrinker.
3292 */
3293 i915_gem_object_unpin_pages(obj);
3294
3295 return 0;
3296 }
3297
3298 int i915_vma_unbind(struct i915_vma *vma)
3299 {
3300 return __i915_vma_unbind(vma, true);
3301 }
3302
3303 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3304 {
3305 return __i915_vma_unbind(vma, false);
3306 }
3307
3308 int i915_gpu_idle(struct drm_device *dev)
3309 {
3310 struct drm_i915_private *dev_priv = dev->dev_private;
3311 struct intel_engine_cs *ring;
3312 int ret, i;
3313
3314 /* Flush everything onto the inactive list. */
3315 for_each_ring(ring, dev_priv, i) {
3316 if (!i915.enable_execlists) {
3317 struct drm_i915_gem_request *req;
3318
3319 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3320 if (ret)
3321 return ret;
3322
3323 ret = i915_switch_context(req);
3324 if (ret) {
3325 i915_gem_request_cancel(req);
3326 return ret;
3327 }
3328
3329 i915_add_request_no_flush(req);
3330 }
3331
3332 ret = intel_ring_idle(ring);
3333 if (ret)
3334 return ret;
3335 }
3336
3337 WARN_ON(i915_verify_lists(dev));
3338 return 0;
3339 }
3340
3341 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3342 unsigned long cache_level)
3343 {
3344 struct drm_mm_node *gtt_space = &vma->node;
3345 struct drm_mm_node *other;
3346
3347 /*
3348 * On some machines we have to be careful when putting differing types
3349 * of snoopable memory together to avoid the prefetcher crossing memory
3350 * domains and dying. During vm initialisation, we decide whether or not
3351 * these constraints apply and set the drm_mm.color_adjust
3352 * appropriately.
3353 */
3354 if (vma->vm->mm.color_adjust == NULL)
3355 return true;
3356
3357 if (!drm_mm_node_allocated(gtt_space))
3358 return true;
3359
3360 if (list_empty(&gtt_space->node_list))
3361 return true;
3362
3363 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3364 if (other->allocated && !other->hole_follows && other->color != cache_level)
3365 return false;
3366
3367 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3368 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3369 return false;
3370
3371 return true;
3372 }
3373
3374 /**
3375 * Finds free space in the GTT aperture and binds the object or a view of it
3376 * there.
3377 */
3378 static struct i915_vma *
3379 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3380 struct i915_address_space *vm,
3381 const struct i915_ggtt_view *ggtt_view,
3382 unsigned alignment,
3383 uint64_t flags)
3384 {
3385 struct drm_device *dev = obj->base.dev;
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 u32 fence_alignment, unfenced_alignment;
3388 u32 search_flag, alloc_flag;
3389 u64 start, end;
3390 u64 size, fence_size;
3391 struct i915_vma *vma;
3392 int ret;
3393
3394 if (i915_is_ggtt(vm)) {
3395 u32 view_size;
3396
3397 if (WARN_ON(!ggtt_view))
3398 return ERR_PTR(-EINVAL);
3399
3400 view_size = i915_ggtt_view_size(obj, ggtt_view);
3401
3402 fence_size = i915_gem_get_gtt_size(dev,
3403 view_size,
3404 obj->tiling_mode);
3405 fence_alignment = i915_gem_get_gtt_alignment(dev,
3406 view_size,
3407 obj->tiling_mode,
3408 true);
3409 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3410 view_size,
3411 obj->tiling_mode,
3412 false);
3413 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3414 } else {
3415 fence_size = i915_gem_get_gtt_size(dev,
3416 obj->base.size,
3417 obj->tiling_mode);
3418 fence_alignment = i915_gem_get_gtt_alignment(dev,
3419 obj->base.size,
3420 obj->tiling_mode,
3421 true);
3422 unfenced_alignment =
3423 i915_gem_get_gtt_alignment(dev,
3424 obj->base.size,
3425 obj->tiling_mode,
3426 false);
3427 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3428 }
3429
3430 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3431 end = vm->total;
3432 if (flags & PIN_MAPPABLE)
3433 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3434 if (flags & PIN_ZONE_4G)
3435 end = min_t(u64, end, (1ULL << 32));
3436
3437 if (alignment == 0)
3438 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3439 unfenced_alignment;
3440 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3441 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3442 ggtt_view ? ggtt_view->type : 0,
3443 alignment);
3444 return ERR_PTR(-EINVAL);
3445 }
3446
3447 /* If binding the object/GGTT view requires more space than the entire
3448 * aperture has, reject it early before evicting everything in a vain
3449 * attempt to find space.
3450 */
3451 if (size > end) {
3452 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3453 ggtt_view ? ggtt_view->type : 0,
3454 size,
3455 flags & PIN_MAPPABLE ? "mappable" : "total",
3456 end);
3457 return ERR_PTR(-E2BIG);
3458 }
3459
3460 ret = i915_gem_object_get_pages(obj);
3461 if (ret)
3462 return ERR_PTR(ret);
3463
3464 i915_gem_object_pin_pages(obj);
3465
3466 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3467 i915_gem_obj_lookup_or_create_vma(obj, vm);
3468
3469 if (IS_ERR(vma))
3470 goto err_unpin;
3471
3472 if (flags & PIN_OFFSET_FIXED) {
3473 uint64_t offset = flags & PIN_OFFSET_MASK;
3474
3475 if (offset & (alignment - 1) || offset + size > end) {
3476 ret = -EINVAL;
3477 goto err_free_vma;
3478 }
3479 vma->node.start = offset;
3480 vma->node.size = size;
3481 vma->node.color = obj->cache_level;
3482 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3483 if (ret) {
3484 ret = i915_gem_evict_for_vma(vma);
3485 if (ret == 0)
3486 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3487 }
3488 if (ret)
3489 goto err_free_vma;
3490 } else {
3491 if (flags & PIN_HIGH) {
3492 search_flag = DRM_MM_SEARCH_BELOW;
3493 alloc_flag = DRM_MM_CREATE_TOP;
3494 } else {
3495 search_flag = DRM_MM_SEARCH_DEFAULT;
3496 alloc_flag = DRM_MM_CREATE_DEFAULT;
3497 }
3498
3499 search_free:
3500 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3501 size, alignment,
3502 obj->cache_level,
3503 start, end,
3504 search_flag,
3505 alloc_flag);
3506 if (ret) {
3507 ret = i915_gem_evict_something(dev, vm, size, alignment,
3508 obj->cache_level,
3509 start, end,
3510 flags);
3511 if (ret == 0)
3512 goto search_free;
3513
3514 goto err_free_vma;
3515 }
3516 }
3517 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3518 ret = -EINVAL;
3519 goto err_remove_node;
3520 }
3521
3522 trace_i915_vma_bind(vma, flags);
3523 ret = i915_vma_bind(vma, obj->cache_level, flags);
3524 if (ret)
3525 goto err_remove_node;
3526
3527 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3528 list_add_tail(&vma->mm_list, &vm->inactive_list);
3529
3530 return vma;
3531
3532 err_remove_node:
3533 drm_mm_remove_node(&vma->node);
3534 err_free_vma:
3535 i915_gem_vma_destroy(vma);
3536 vma = ERR_PTR(ret);
3537 err_unpin:
3538 i915_gem_object_unpin_pages(obj);
3539 return vma;
3540 }
3541
3542 bool
3543 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3544 bool force)
3545 {
3546 /* If we don't have a page list set up, then we're not pinned
3547 * to GPU, and we can ignore the cache flush because it'll happen
3548 * again at bind time.
3549 */
3550 if (obj->pages == NULL)
3551 return false;
3552
3553 /*
3554 * Stolen memory is always coherent with the GPU as it is explicitly
3555 * marked as wc by the system, or the system is cache-coherent.
3556 */
3557 if (obj->stolen || obj->phys_handle)
3558 return false;
3559
3560 /* If the GPU is snooping the contents of the CPU cache,
3561 * we do not need to manually clear the CPU cache lines. However,
3562 * the caches are only snooped when the render cache is
3563 * flushed/invalidated. As we always have to emit invalidations
3564 * and flushes when moving into and out of the RENDER domain, correct
3565 * snooping behaviour occurs naturally as the result of our domain
3566 * tracking.
3567 */
3568 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3569 obj->cache_dirty = true;
3570 return false;
3571 }
3572
3573 trace_i915_gem_object_clflush(obj);
3574 drm_clflush_sg(obj->pages);
3575 obj->cache_dirty = false;
3576
3577 return true;
3578 }
3579
3580 /** Flushes the GTT write domain for the object if it's dirty. */
3581 static void
3582 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3583 {
3584 uint32_t old_write_domain;
3585
3586 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3587 return;
3588
3589 /* No actual flushing is required for the GTT write domain. Writes
3590 * to it immediately go to main memory as far as we know, so there's
3591 * no chipset flush. It also doesn't land in render cache.
3592 *
3593 * However, we do have to enforce the order so that all writes through
3594 * the GTT land before any writes to the device, such as updates to
3595 * the GATT itself.
3596 */
3597 wmb();
3598
3599 old_write_domain = obj->base.write_domain;
3600 obj->base.write_domain = 0;
3601
3602 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3603
3604 trace_i915_gem_object_change_domain(obj,
3605 obj->base.read_domains,
3606 old_write_domain);
3607 }
3608
3609 /** Flushes the CPU write domain for the object if it's dirty. */
3610 static void
3611 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3612 {
3613 uint32_t old_write_domain;
3614
3615 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3616 return;
3617
3618 if (i915_gem_clflush_object(obj, obj->pin_display))
3619 i915_gem_chipset_flush(obj->base.dev);
3620
3621 old_write_domain = obj->base.write_domain;
3622 obj->base.write_domain = 0;
3623
3624 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3625
3626 trace_i915_gem_object_change_domain(obj,
3627 obj->base.read_domains,
3628 old_write_domain);
3629 }
3630
3631 /**
3632 * Moves a single object to the GTT read, and possibly write domain.
3633 *
3634 * This function returns when the move is complete, including waiting on
3635 * flushes to occur.
3636 */
3637 int
3638 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3639 {
3640 uint32_t old_write_domain, old_read_domains;
3641 struct i915_vma *vma;
3642 int ret;
3643
3644 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3645 return 0;
3646
3647 ret = i915_gem_object_wait_rendering(obj, !write);
3648 if (ret)
3649 return ret;
3650
3651 /* Flush and acquire obj->pages so that we are coherent through
3652 * direct access in memory with previous cached writes through
3653 * shmemfs and that our cache domain tracking remains valid.
3654 * For example, if the obj->filp was moved to swap without us
3655 * being notified and releasing the pages, we would mistakenly
3656 * continue to assume that the obj remained out of the CPU cached
3657 * domain.
3658 */
3659 ret = i915_gem_object_get_pages(obj);
3660 if (ret)
3661 return ret;
3662
3663 i915_gem_object_flush_cpu_write_domain(obj);
3664
3665 /* Serialise direct access to this object with the barriers for
3666 * coherent writes from the GPU, by effectively invalidating the
3667 * GTT domain upon first access.
3668 */
3669 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3670 mb();
3671
3672 old_write_domain = obj->base.write_domain;
3673 old_read_domains = obj->base.read_domains;
3674
3675 /* It should now be out of any other write domains, and we can update
3676 * the domain values for our changes.
3677 */
3678 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3679 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3680 if (write) {
3681 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3682 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3683 obj->dirty = 1;
3684 }
3685
3686 trace_i915_gem_object_change_domain(obj,
3687 old_read_domains,
3688 old_write_domain);
3689
3690 /* And bump the LRU for this access */
3691 vma = i915_gem_obj_to_ggtt(obj);
3692 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3693 list_move_tail(&vma->mm_list,
3694 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3695
3696 return 0;
3697 }
3698
3699 /**
3700 * Changes the cache-level of an object across all VMA.
3701 *
3702 * After this function returns, the object will be in the new cache-level
3703 * across all GTT and the contents of the backing storage will be coherent,
3704 * with respect to the new cache-level. In order to keep the backing storage
3705 * coherent for all users, we only allow a single cache level to be set
3706 * globally on the object and prevent it from being changed whilst the
3707 * hardware is reading from the object. That is if the object is currently
3708 * on the scanout it will be set to uncached (or equivalent display
3709 * cache coherency) and all non-MOCS GPU access will also be uncached so
3710 * that all direct access to the scanout remains coherent.
3711 */
3712 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3713 enum i915_cache_level cache_level)
3714 {
3715 struct drm_device *dev = obj->base.dev;
3716 struct i915_vma *vma, *next;
3717 bool bound = false;
3718 int ret = 0;
3719
3720 if (obj->cache_level == cache_level)
3721 goto out;
3722
3723 /* Inspect the list of currently bound VMA and unbind any that would
3724 * be invalid given the new cache-level. This is principally to
3725 * catch the issue of the CS prefetch crossing page boundaries and
3726 * reading an invalid PTE on older architectures.
3727 */
3728 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3729 if (!drm_mm_node_allocated(&vma->node))
3730 continue;
3731
3732 if (vma->pin_count) {
3733 DRM_DEBUG("can not change the cache level of pinned objects\n");
3734 return -EBUSY;
3735 }
3736
3737 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3738 ret = i915_vma_unbind(vma);
3739 if (ret)
3740 return ret;
3741 } else
3742 bound = true;
3743 }
3744
3745 /* We can reuse the existing drm_mm nodes but need to change the
3746 * cache-level on the PTE. We could simply unbind them all and
3747 * rebind with the correct cache-level on next use. However since
3748 * we already have a valid slot, dma mapping, pages etc, we may as
3749 * rewrite the PTE in the belief that doing so tramples upon less
3750 * state and so involves less work.
3751 */
3752 if (bound) {
3753 /* Before we change the PTE, the GPU must not be accessing it.
3754 * If we wait upon the object, we know that all the bound
3755 * VMA are no longer active.
3756 */
3757 ret = i915_gem_object_wait_rendering(obj, false);
3758 if (ret)
3759 return ret;
3760
3761 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3762 /* Access to snoopable pages through the GTT is
3763 * incoherent and on some machines causes a hard
3764 * lockup. Relinquish the CPU mmaping to force
3765 * userspace to refault in the pages and we can
3766 * then double check if the GTT mapping is still
3767 * valid for that pointer access.
3768 */
3769 i915_gem_release_mmap(obj);
3770
3771 /* As we no longer need a fence for GTT access,
3772 * we can relinquish it now (and so prevent having
3773 * to steal a fence from someone else on the next
3774 * fence request). Note GPU activity would have
3775 * dropped the fence as all snoopable access is
3776 * supposed to be linear.
3777 */
3778 ret = i915_gem_object_put_fence(obj);
3779 if (ret)
3780 return ret;
3781 } else {
3782 /* We either have incoherent backing store and
3783 * so no GTT access or the architecture is fully
3784 * coherent. In such cases, existing GTT mmaps
3785 * ignore the cache bit in the PTE and we can
3786 * rewrite it without confusing the GPU or having
3787 * to force userspace to fault back in its mmaps.
3788 */
3789 }
3790
3791 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3792 if (!drm_mm_node_allocated(&vma->node))
3793 continue;
3794
3795 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3796 if (ret)
3797 return ret;
3798 }
3799 }
3800
3801 list_for_each_entry(vma, &obj->vma_list, vma_link)
3802 vma->node.color = cache_level;
3803 obj->cache_level = cache_level;
3804
3805 out:
3806 /* Flush the dirty CPU caches to the backing storage so that the
3807 * object is now coherent at its new cache level (with respect
3808 * to the access domain).
3809 */
3810 if (obj->cache_dirty &&
3811 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3812 cpu_write_needs_clflush(obj)) {
3813 if (i915_gem_clflush_object(obj, true))
3814 i915_gem_chipset_flush(obj->base.dev);
3815 }
3816
3817 return 0;
3818 }
3819
3820 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3821 struct drm_file *file)
3822 {
3823 struct drm_i915_gem_caching *args = data;
3824 struct drm_i915_gem_object *obj;
3825
3826 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3827 if (&obj->base == NULL)
3828 return -ENOENT;
3829
3830 switch (obj->cache_level) {
3831 case I915_CACHE_LLC:
3832 case I915_CACHE_L3_LLC:
3833 args->caching = I915_CACHING_CACHED;
3834 break;
3835
3836 case I915_CACHE_WT:
3837 args->caching = I915_CACHING_DISPLAY;
3838 break;
3839
3840 default:
3841 args->caching = I915_CACHING_NONE;
3842 break;
3843 }
3844
3845 drm_gem_object_unreference_unlocked(&obj->base);
3846 return 0;
3847 }
3848
3849 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3850 struct drm_file *file)
3851 {
3852 struct drm_i915_private *dev_priv = dev->dev_private;
3853 struct drm_i915_gem_caching *args = data;
3854 struct drm_i915_gem_object *obj;
3855 enum i915_cache_level level;
3856 int ret;
3857
3858 switch (args->caching) {
3859 case I915_CACHING_NONE:
3860 level = I915_CACHE_NONE;
3861 break;
3862 case I915_CACHING_CACHED:
3863 /*
3864 * Due to a HW issue on BXT A stepping, GPU stores via a
3865 * snooped mapping may leave stale data in a corresponding CPU
3866 * cacheline, whereas normally such cachelines would get
3867 * invalidated.
3868 */
3869 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3870 return -ENODEV;
3871
3872 level = I915_CACHE_LLC;
3873 break;
3874 case I915_CACHING_DISPLAY:
3875 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3876 break;
3877 default:
3878 return -EINVAL;
3879 }
3880
3881 intel_runtime_pm_get(dev_priv);
3882
3883 ret = i915_mutex_lock_interruptible(dev);
3884 if (ret)
3885 goto rpm_put;
3886
3887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3888 if (&obj->base == NULL) {
3889 ret = -ENOENT;
3890 goto unlock;
3891 }
3892
3893 ret = i915_gem_object_set_cache_level(obj, level);
3894
3895 drm_gem_object_unreference(&obj->base);
3896 unlock:
3897 mutex_unlock(&dev->struct_mutex);
3898 rpm_put:
3899 intel_runtime_pm_put(dev_priv);
3900
3901 return ret;
3902 }
3903
3904 /*
3905 * Prepare buffer for display plane (scanout, cursors, etc).
3906 * Can be called from an uninterruptible phase (modesetting) and allows
3907 * any flushes to be pipelined (for pageflips).
3908 */
3909 int
3910 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3911 u32 alignment,
3912 const struct i915_ggtt_view *view)
3913 {
3914 u32 old_read_domains, old_write_domain;
3915 int ret;
3916
3917 /* Mark the pin_display early so that we account for the
3918 * display coherency whilst setting up the cache domains.
3919 */
3920 obj->pin_display++;
3921
3922 /* The display engine is not coherent with the LLC cache on gen6. As
3923 * a result, we make sure that the pinning that is about to occur is
3924 * done with uncached PTEs. This is lowest common denominator for all
3925 * chipsets.
3926 *
3927 * However for gen6+, we could do better by using the GFDT bit instead
3928 * of uncaching, which would allow us to flush all the LLC-cached data
3929 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3930 */
3931 ret = i915_gem_object_set_cache_level(obj,
3932 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3933 if (ret)
3934 goto err_unpin_display;
3935
3936 /* As the user may map the buffer once pinned in the display plane
3937 * (e.g. libkms for the bootup splash), we have to ensure that we
3938 * always use map_and_fenceable for all scanout buffers.
3939 */
3940 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3941 view->type == I915_GGTT_VIEW_NORMAL ?
3942 PIN_MAPPABLE : 0);
3943 if (ret)
3944 goto err_unpin_display;
3945
3946 i915_gem_object_flush_cpu_write_domain(obj);
3947
3948 old_write_domain = obj->base.write_domain;
3949 old_read_domains = obj->base.read_domains;
3950
3951 /* It should now be out of any other write domains, and we can update
3952 * the domain values for our changes.
3953 */
3954 obj->base.write_domain = 0;
3955 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3956
3957 trace_i915_gem_object_change_domain(obj,
3958 old_read_domains,
3959 old_write_domain);
3960
3961 return 0;
3962
3963 err_unpin_display:
3964 obj->pin_display--;
3965 return ret;
3966 }
3967
3968 void
3969 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3970 const struct i915_ggtt_view *view)
3971 {
3972 if (WARN_ON(obj->pin_display == 0))
3973 return;
3974
3975 i915_gem_object_ggtt_unpin_view(obj, view);
3976
3977 obj->pin_display--;
3978 }
3979
3980 /**
3981 * Moves a single object to the CPU read, and possibly write domain.
3982 *
3983 * This function returns when the move is complete, including waiting on
3984 * flushes to occur.
3985 */
3986 int
3987 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3988 {
3989 uint32_t old_write_domain, old_read_domains;
3990 int ret;
3991
3992 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3993 return 0;
3994
3995 ret = i915_gem_object_wait_rendering(obj, !write);
3996 if (ret)
3997 return ret;
3998
3999 i915_gem_object_flush_gtt_write_domain(obj);
4000
4001 old_write_domain = obj->base.write_domain;
4002 old_read_domains = obj->base.read_domains;
4003
4004 /* Flush the CPU cache if it's still invalid. */
4005 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4006 i915_gem_clflush_object(obj, false);
4007
4008 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4009 }
4010
4011 /* It should now be out of any other write domains, and we can update
4012 * the domain values for our changes.
4013 */
4014 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4015
4016 /* If we're writing through the CPU, then the GPU read domains will
4017 * need to be invalidated at next use.
4018 */
4019 if (write) {
4020 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4021 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4022 }
4023
4024 trace_i915_gem_object_change_domain(obj,
4025 old_read_domains,
4026 old_write_domain);
4027
4028 return 0;
4029 }
4030
4031 /* Throttle our rendering by waiting until the ring has completed our requests
4032 * emitted over 20 msec ago.
4033 *
4034 * Note that if we were to use the current jiffies each time around the loop,
4035 * we wouldn't escape the function with any frames outstanding if the time to
4036 * render a frame was over 20ms.
4037 *
4038 * This should get us reasonable parallelism between CPU and GPU but also
4039 * relatively low latency when blocking on a particular request to finish.
4040 */
4041 static int
4042 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4043 {
4044 struct drm_i915_private *dev_priv = dev->dev_private;
4045 struct drm_i915_file_private *file_priv = file->driver_priv;
4046 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4047 struct drm_i915_gem_request *request, *target = NULL;
4048 unsigned reset_counter;
4049 int ret;
4050
4051 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4052 if (ret)
4053 return ret;
4054
4055 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4056 if (ret)
4057 return ret;
4058
4059 spin_lock(&file_priv->mm.lock);
4060 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4061 if (time_after_eq(request->emitted_jiffies, recent_enough))
4062 break;
4063
4064 /*
4065 * Note that the request might not have been submitted yet.
4066 * In which case emitted_jiffies will be zero.
4067 */
4068 if (!request->emitted_jiffies)
4069 continue;
4070
4071 target = request;
4072 }
4073 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4074 if (target)
4075 i915_gem_request_reference(target);
4076 spin_unlock(&file_priv->mm.lock);
4077
4078 if (target == NULL)
4079 return 0;
4080
4081 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4082 if (ret == 0)
4083 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4084
4085 i915_gem_request_unreference__unlocked(target);
4086
4087 return ret;
4088 }
4089
4090 static bool
4091 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4092 {
4093 struct drm_i915_gem_object *obj = vma->obj;
4094
4095 if (alignment &&
4096 vma->node.start & (alignment - 1))
4097 return true;
4098
4099 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4100 return true;
4101
4102 if (flags & PIN_OFFSET_BIAS &&
4103 vma->node.start < (flags & PIN_OFFSET_MASK))
4104 return true;
4105
4106 if (flags & PIN_OFFSET_FIXED &&
4107 vma->node.start != (flags & PIN_OFFSET_MASK))
4108 return true;
4109
4110 return false;
4111 }
4112
4113 static int
4114 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4115 struct i915_address_space *vm,
4116 const struct i915_ggtt_view *ggtt_view,
4117 uint32_t alignment,
4118 uint64_t flags)
4119 {
4120 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4121 struct i915_vma *vma;
4122 unsigned bound;
4123 int ret;
4124
4125 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4126 return -ENODEV;
4127
4128 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4129 return -EINVAL;
4130
4131 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4132 return -EINVAL;
4133
4134 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4135 return -EINVAL;
4136
4137 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4138 i915_gem_obj_to_vma(obj, vm);
4139
4140 if (IS_ERR(vma))
4141 return PTR_ERR(vma);
4142
4143 if (vma) {
4144 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4145 return -EBUSY;
4146
4147 if (i915_vma_misplaced(vma, alignment, flags)) {
4148 WARN(vma->pin_count,
4149 "bo is already pinned in %s with incorrect alignment:"
4150 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4151 " obj->map_and_fenceable=%d\n",
4152 ggtt_view ? "ggtt" : "ppgtt",
4153 upper_32_bits(vma->node.start),
4154 lower_32_bits(vma->node.start),
4155 alignment,
4156 !!(flags & PIN_MAPPABLE),
4157 obj->map_and_fenceable);
4158 ret = i915_vma_unbind(vma);
4159 if (ret)
4160 return ret;
4161
4162 vma = NULL;
4163 }
4164 }
4165
4166 bound = vma ? vma->bound : 0;
4167 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4168 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4169 flags);
4170 if (IS_ERR(vma))
4171 return PTR_ERR(vma);
4172 } else {
4173 ret = i915_vma_bind(vma, obj->cache_level, flags);
4174 if (ret)
4175 return ret;
4176 }
4177
4178 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4179 (bound ^ vma->bound) & GLOBAL_BIND) {
4180 bool mappable, fenceable;
4181 u32 fence_size, fence_alignment;
4182
4183 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4184 obj->base.size,
4185 obj->tiling_mode);
4186 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4187 obj->base.size,
4188 obj->tiling_mode,
4189 true);
4190
4191 fenceable = (vma->node.size == fence_size &&
4192 (vma->node.start & (fence_alignment - 1)) == 0);
4193
4194 mappable = (vma->node.start + fence_size <=
4195 dev_priv->gtt.mappable_end);
4196
4197 obj->map_and_fenceable = mappable && fenceable;
4198
4199 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4200 }
4201
4202 vma->pin_count++;
4203 return 0;
4204 }
4205
4206 int
4207 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4208 struct i915_address_space *vm,
4209 uint32_t alignment,
4210 uint64_t flags)
4211 {
4212 return i915_gem_object_do_pin(obj, vm,
4213 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4214 alignment, flags);
4215 }
4216
4217 int
4218 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4219 const struct i915_ggtt_view *view,
4220 uint32_t alignment,
4221 uint64_t flags)
4222 {
4223 if (WARN_ONCE(!view, "no view specified"))
4224 return -EINVAL;
4225
4226 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4227 alignment, flags | PIN_GLOBAL);
4228 }
4229
4230 void
4231 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4232 const struct i915_ggtt_view *view)
4233 {
4234 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4235
4236 BUG_ON(!vma);
4237 WARN_ON(vma->pin_count == 0);
4238 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4239
4240 --vma->pin_count;
4241 }
4242
4243 int
4244 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4245 struct drm_file *file)
4246 {
4247 struct drm_i915_gem_busy *args = data;
4248 struct drm_i915_gem_object *obj;
4249 int ret;
4250
4251 ret = i915_mutex_lock_interruptible(dev);
4252 if (ret)
4253 return ret;
4254
4255 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4256 if (&obj->base == NULL) {
4257 ret = -ENOENT;
4258 goto unlock;
4259 }
4260
4261 /* Count all active objects as busy, even if they are currently not used
4262 * by the gpu. Users of this interface expect objects to eventually
4263 * become non-busy without any further actions, therefore emit any
4264 * necessary flushes here.
4265 */
4266 ret = i915_gem_object_flush_active(obj);
4267 if (ret)
4268 goto unref;
4269
4270 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4271 args->busy = obj->active << 16;
4272 if (obj->last_write_req)
4273 args->busy |= obj->last_write_req->ring->id;
4274
4275 unref:
4276 drm_gem_object_unreference(&obj->base);
4277 unlock:
4278 mutex_unlock(&dev->struct_mutex);
4279 return ret;
4280 }
4281
4282 int
4283 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4284 struct drm_file *file_priv)
4285 {
4286 return i915_gem_ring_throttle(dev, file_priv);
4287 }
4288
4289 int
4290 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4291 struct drm_file *file_priv)
4292 {
4293 struct drm_i915_private *dev_priv = dev->dev_private;
4294 struct drm_i915_gem_madvise *args = data;
4295 struct drm_i915_gem_object *obj;
4296 int ret;
4297
4298 switch (args->madv) {
4299 case I915_MADV_DONTNEED:
4300 case I915_MADV_WILLNEED:
4301 break;
4302 default:
4303 return -EINVAL;
4304 }
4305
4306 ret = i915_mutex_lock_interruptible(dev);
4307 if (ret)
4308 return ret;
4309
4310 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4311 if (&obj->base == NULL) {
4312 ret = -ENOENT;
4313 goto unlock;
4314 }
4315
4316 if (i915_gem_obj_is_pinned(obj)) {
4317 ret = -EINVAL;
4318 goto out;
4319 }
4320
4321 if (obj->pages &&
4322 obj->tiling_mode != I915_TILING_NONE &&
4323 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4324 if (obj->madv == I915_MADV_WILLNEED)
4325 i915_gem_object_unpin_pages(obj);
4326 if (args->madv == I915_MADV_WILLNEED)
4327 i915_gem_object_pin_pages(obj);
4328 }
4329
4330 if (obj->madv != __I915_MADV_PURGED)
4331 obj->madv = args->madv;
4332
4333 /* if the object is no longer attached, discard its backing storage */
4334 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4335 i915_gem_object_truncate(obj);
4336
4337 args->retained = obj->madv != __I915_MADV_PURGED;
4338
4339 out:
4340 drm_gem_object_unreference(&obj->base);
4341 unlock:
4342 mutex_unlock(&dev->struct_mutex);
4343 return ret;
4344 }
4345
4346 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4347 const struct drm_i915_gem_object_ops *ops)
4348 {
4349 int i;
4350
4351 INIT_LIST_HEAD(&obj->global_list);
4352 for (i = 0; i < I915_NUM_RINGS; i++)
4353 INIT_LIST_HEAD(&obj->ring_list[i]);
4354 INIT_LIST_HEAD(&obj->obj_exec_link);
4355 INIT_LIST_HEAD(&obj->vma_list);
4356 INIT_LIST_HEAD(&obj->batch_pool_link);
4357
4358 obj->ops = ops;
4359
4360 obj->fence_reg = I915_FENCE_REG_NONE;
4361 obj->madv = I915_MADV_WILLNEED;
4362
4363 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4364 }
4365
4366 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4367 .get_pages = i915_gem_object_get_pages_gtt,
4368 .put_pages = i915_gem_object_put_pages_gtt,
4369 };
4370
4371 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4372 size_t size)
4373 {
4374 struct drm_i915_gem_object *obj;
4375 struct address_space *mapping;
4376 gfp_t mask;
4377
4378 obj = i915_gem_object_alloc(dev);
4379 if (obj == NULL)
4380 return NULL;
4381
4382 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4383 i915_gem_object_free(obj);
4384 return NULL;
4385 }
4386
4387 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4388 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4389 /* 965gm cannot relocate objects above 4GiB. */
4390 mask &= ~__GFP_HIGHMEM;
4391 mask |= __GFP_DMA32;
4392 }
4393
4394 mapping = file_inode(obj->base.filp)->i_mapping;
4395 mapping_set_gfp_mask(mapping, mask);
4396
4397 i915_gem_object_init(obj, &i915_gem_object_ops);
4398
4399 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4400 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4401
4402 if (HAS_LLC(dev)) {
4403 /* On some devices, we can have the GPU use the LLC (the CPU
4404 * cache) for about a 10% performance improvement
4405 * compared to uncached. Graphics requests other than
4406 * display scanout are coherent with the CPU in
4407 * accessing this cache. This means in this mode we
4408 * don't need to clflush on the CPU side, and on the
4409 * GPU side we only need to flush internal caches to
4410 * get data visible to the CPU.
4411 *
4412 * However, we maintain the display planes as UC, and so
4413 * need to rebind when first used as such.
4414 */
4415 obj->cache_level = I915_CACHE_LLC;
4416 } else
4417 obj->cache_level = I915_CACHE_NONE;
4418
4419 trace_i915_gem_object_create(obj);
4420
4421 return obj;
4422 }
4423
4424 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4425 {
4426 /* If we are the last user of the backing storage (be it shmemfs
4427 * pages or stolen etc), we know that the pages are going to be
4428 * immediately released. In this case, we can then skip copying
4429 * back the contents from the GPU.
4430 */
4431
4432 if (obj->madv != I915_MADV_WILLNEED)
4433 return false;
4434
4435 if (obj->base.filp == NULL)
4436 return true;
4437
4438 /* At first glance, this looks racy, but then again so would be
4439 * userspace racing mmap against close. However, the first external
4440 * reference to the filp can only be obtained through the
4441 * i915_gem_mmap_ioctl() which safeguards us against the user
4442 * acquiring such a reference whilst we are in the middle of
4443 * freeing the object.
4444 */
4445 return atomic_long_read(&obj->base.filp->f_count) == 1;
4446 }
4447
4448 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4449 {
4450 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4451 struct drm_device *dev = obj->base.dev;
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453 struct i915_vma *vma, *next;
4454
4455 intel_runtime_pm_get(dev_priv);
4456
4457 trace_i915_gem_object_destroy(obj);
4458
4459 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4460 int ret;
4461
4462 vma->pin_count = 0;
4463 ret = i915_vma_unbind(vma);
4464 if (WARN_ON(ret == -ERESTARTSYS)) {
4465 bool was_interruptible;
4466
4467 was_interruptible = dev_priv->mm.interruptible;
4468 dev_priv->mm.interruptible = false;
4469
4470 WARN_ON(i915_vma_unbind(vma));
4471
4472 dev_priv->mm.interruptible = was_interruptible;
4473 }
4474 }
4475
4476 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4477 * before progressing. */
4478 if (obj->stolen)
4479 i915_gem_object_unpin_pages(obj);
4480
4481 WARN_ON(obj->frontbuffer_bits);
4482
4483 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4484 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4485 obj->tiling_mode != I915_TILING_NONE)
4486 i915_gem_object_unpin_pages(obj);
4487
4488 if (WARN_ON(obj->pages_pin_count))
4489 obj->pages_pin_count = 0;
4490 if (discard_backing_storage(obj))
4491 obj->madv = I915_MADV_DONTNEED;
4492 i915_gem_object_put_pages(obj);
4493 i915_gem_object_free_mmap_offset(obj);
4494
4495 BUG_ON(obj->pages);
4496
4497 if (obj->base.import_attach)
4498 drm_prime_gem_destroy(&obj->base, NULL);
4499
4500 if (obj->ops->release)
4501 obj->ops->release(obj);
4502
4503 drm_gem_object_release(&obj->base);
4504 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4505
4506 kfree(obj->bit_17);
4507 i915_gem_object_free(obj);
4508
4509 intel_runtime_pm_put(dev_priv);
4510 }
4511
4512 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4513 struct i915_address_space *vm)
4514 {
4515 struct i915_vma *vma;
4516 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4517 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4518 vma->vm == vm)
4519 return vma;
4520 }
4521 return NULL;
4522 }
4523
4524 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4525 const struct i915_ggtt_view *view)
4526 {
4527 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4528 struct i915_vma *vma;
4529
4530 if (WARN_ONCE(!view, "no view specified"))
4531 return ERR_PTR(-EINVAL);
4532
4533 list_for_each_entry(vma, &obj->vma_list, vma_link)
4534 if (vma->vm == ggtt &&
4535 i915_ggtt_view_equal(&vma->ggtt_view, view))
4536 return vma;
4537 return NULL;
4538 }
4539
4540 void i915_gem_vma_destroy(struct i915_vma *vma)
4541 {
4542 struct i915_address_space *vm = NULL;
4543 WARN_ON(vma->node.allocated);
4544
4545 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4546 if (!list_empty(&vma->exec_list))
4547 return;
4548
4549 vm = vma->vm;
4550
4551 if (!i915_is_ggtt(vm))
4552 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4553
4554 list_del(&vma->vma_link);
4555
4556 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4557 }
4558
4559 static void
4560 i915_gem_stop_ringbuffers(struct drm_device *dev)
4561 {
4562 struct drm_i915_private *dev_priv = dev->dev_private;
4563 struct intel_engine_cs *ring;
4564 int i;
4565
4566 for_each_ring(ring, dev_priv, i)
4567 dev_priv->gt.stop_ring(ring);
4568 }
4569
4570 int
4571 i915_gem_suspend(struct drm_device *dev)
4572 {
4573 struct drm_i915_private *dev_priv = dev->dev_private;
4574 int ret = 0;
4575
4576 mutex_lock(&dev->struct_mutex);
4577 ret = i915_gpu_idle(dev);
4578 if (ret)
4579 goto err;
4580
4581 i915_gem_retire_requests(dev);
4582
4583 i915_gem_stop_ringbuffers(dev);
4584 mutex_unlock(&dev->struct_mutex);
4585
4586 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4587 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4588 flush_delayed_work(&dev_priv->mm.idle_work);
4589
4590 /* Assert that we sucessfully flushed all the work and
4591 * reset the GPU back to its idle, low power state.
4592 */
4593 WARN_ON(dev_priv->mm.busy);
4594
4595 return 0;
4596
4597 err:
4598 mutex_unlock(&dev->struct_mutex);
4599 return ret;
4600 }
4601
4602 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4603 {
4604 struct intel_engine_cs *ring = req->ring;
4605 struct drm_device *dev = ring->dev;
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4608 int i, ret;
4609
4610 if (!HAS_L3_DPF(dev) || !remap_info)
4611 return 0;
4612
4613 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4614 if (ret)
4615 return ret;
4616
4617 /*
4618 * Note: We do not worry about the concurrent register cacheline hang
4619 * here because no other code should access these registers other than
4620 * at initialization time.
4621 */
4622 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4623 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4624 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4625 intel_ring_emit(ring, remap_info[i]);
4626 }
4627
4628 intel_ring_advance(ring);
4629
4630 return ret;
4631 }
4632
4633 void i915_gem_init_swizzling(struct drm_device *dev)
4634 {
4635 struct drm_i915_private *dev_priv = dev->dev_private;
4636
4637 if (INTEL_INFO(dev)->gen < 5 ||
4638 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4639 return;
4640
4641 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4642 DISP_TILE_SURFACE_SWIZZLING);
4643
4644 if (IS_GEN5(dev))
4645 return;
4646
4647 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4648 if (IS_GEN6(dev))
4649 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4650 else if (IS_GEN7(dev))
4651 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4652 else if (IS_GEN8(dev))
4653 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4654 else
4655 BUG();
4656 }
4657
4658 static void init_unused_ring(struct drm_device *dev, u32 base)
4659 {
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661
4662 I915_WRITE(RING_CTL(base), 0);
4663 I915_WRITE(RING_HEAD(base), 0);
4664 I915_WRITE(RING_TAIL(base), 0);
4665 I915_WRITE(RING_START(base), 0);
4666 }
4667
4668 static void init_unused_rings(struct drm_device *dev)
4669 {
4670 if (IS_I830(dev)) {
4671 init_unused_ring(dev, PRB1_BASE);
4672 init_unused_ring(dev, SRB0_BASE);
4673 init_unused_ring(dev, SRB1_BASE);
4674 init_unused_ring(dev, SRB2_BASE);
4675 init_unused_ring(dev, SRB3_BASE);
4676 } else if (IS_GEN2(dev)) {
4677 init_unused_ring(dev, SRB0_BASE);
4678 init_unused_ring(dev, SRB1_BASE);
4679 } else if (IS_GEN3(dev)) {
4680 init_unused_ring(dev, PRB1_BASE);
4681 init_unused_ring(dev, PRB2_BASE);
4682 }
4683 }
4684
4685 int i915_gem_init_rings(struct drm_device *dev)
4686 {
4687 struct drm_i915_private *dev_priv = dev->dev_private;
4688 int ret;
4689
4690 ret = intel_init_render_ring_buffer(dev);
4691 if (ret)
4692 return ret;
4693
4694 if (HAS_BSD(dev)) {
4695 ret = intel_init_bsd_ring_buffer(dev);
4696 if (ret)
4697 goto cleanup_render_ring;
4698 }
4699
4700 if (HAS_BLT(dev)) {
4701 ret = intel_init_blt_ring_buffer(dev);
4702 if (ret)
4703 goto cleanup_bsd_ring;
4704 }
4705
4706 if (HAS_VEBOX(dev)) {
4707 ret = intel_init_vebox_ring_buffer(dev);
4708 if (ret)
4709 goto cleanup_blt_ring;
4710 }
4711
4712 if (HAS_BSD2(dev)) {
4713 ret = intel_init_bsd2_ring_buffer(dev);
4714 if (ret)
4715 goto cleanup_vebox_ring;
4716 }
4717
4718 return 0;
4719
4720 cleanup_vebox_ring:
4721 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4722 cleanup_blt_ring:
4723 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4724 cleanup_bsd_ring:
4725 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4726 cleanup_render_ring:
4727 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4728
4729 return ret;
4730 }
4731
4732 int
4733 i915_gem_init_hw(struct drm_device *dev)
4734 {
4735 struct drm_i915_private *dev_priv = dev->dev_private;
4736 struct intel_engine_cs *ring;
4737 int ret, i, j;
4738
4739 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4740 return -EIO;
4741
4742 /* Double layer security blanket, see i915_gem_init() */
4743 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4744
4745 if (dev_priv->ellc_size)
4746 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4747
4748 if (IS_HASWELL(dev))
4749 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4750 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4751
4752 if (HAS_PCH_NOP(dev)) {
4753 if (IS_IVYBRIDGE(dev)) {
4754 u32 temp = I915_READ(GEN7_MSG_CTL);
4755 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4756 I915_WRITE(GEN7_MSG_CTL, temp);
4757 } else if (INTEL_INFO(dev)->gen >= 7) {
4758 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4759 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4760 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4761 }
4762 }
4763
4764 i915_gem_init_swizzling(dev);
4765
4766 /*
4767 * At least 830 can leave some of the unused rings
4768 * "active" (ie. head != tail) after resume which
4769 * will prevent c3 entry. Makes sure all unused rings
4770 * are totally idle.
4771 */
4772 init_unused_rings(dev);
4773
4774 BUG_ON(!dev_priv->ring[RCS].default_context);
4775
4776 ret = i915_ppgtt_init_hw(dev);
4777 if (ret) {
4778 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4779 goto out;
4780 }
4781
4782 /* Need to do basic initialisation of all rings first: */
4783 for_each_ring(ring, dev_priv, i) {
4784 ret = ring->init_hw(ring);
4785 if (ret)
4786 goto out;
4787 }
4788
4789 /* We can't enable contexts until all firmware is loaded */
4790 if (HAS_GUC_UCODE(dev)) {
4791 ret = intel_guc_ucode_load(dev);
4792 if (ret) {
4793 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4794 ret = -EIO;
4795 goto out;
4796 }
4797 }
4798
4799 /*
4800 * Increment the next seqno by 0x100 so we have a visible break
4801 * on re-initialisation
4802 */
4803 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4804 if (ret)
4805 goto out;
4806
4807 /* Now it is safe to go back round and do everything else: */
4808 for_each_ring(ring, dev_priv, i) {
4809 struct drm_i915_gem_request *req;
4810
4811 WARN_ON(!ring->default_context);
4812
4813 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4814 if (ret) {
4815 i915_gem_cleanup_ringbuffer(dev);
4816 goto out;
4817 }
4818
4819 if (ring->id == RCS) {
4820 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4821 i915_gem_l3_remap(req, j);
4822 }
4823
4824 ret = i915_ppgtt_init_ring(req);
4825 if (ret && ret != -EIO) {
4826 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4827 i915_gem_request_cancel(req);
4828 i915_gem_cleanup_ringbuffer(dev);
4829 goto out;
4830 }
4831
4832 ret = i915_gem_context_enable(req);
4833 if (ret && ret != -EIO) {
4834 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4835 i915_gem_request_cancel(req);
4836 i915_gem_cleanup_ringbuffer(dev);
4837 goto out;
4838 }
4839
4840 i915_add_request_no_flush(req);
4841 }
4842
4843 out:
4844 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4845 return ret;
4846 }
4847
4848 int i915_gem_init(struct drm_device *dev)
4849 {
4850 struct drm_i915_private *dev_priv = dev->dev_private;
4851 int ret;
4852
4853 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4854 i915.enable_execlists);
4855
4856 mutex_lock(&dev->struct_mutex);
4857
4858 if (!i915.enable_execlists) {
4859 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4860 dev_priv->gt.init_rings = i915_gem_init_rings;
4861 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4862 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4863 } else {
4864 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4865 dev_priv->gt.init_rings = intel_logical_rings_init;
4866 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4867 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4868 }
4869
4870 /* This is just a security blanket to placate dragons.
4871 * On some systems, we very sporadically observe that the first TLBs
4872 * used by the CS may be stale, despite us poking the TLB reset. If
4873 * we hold the forcewake during initialisation these problems
4874 * just magically go away.
4875 */
4876 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4877
4878 ret = i915_gem_init_userptr(dev);
4879 if (ret)
4880 goto out_unlock;
4881
4882 i915_gem_init_global_gtt(dev);
4883
4884 ret = i915_gem_context_init(dev);
4885 if (ret)
4886 goto out_unlock;
4887
4888 ret = dev_priv->gt.init_rings(dev);
4889 if (ret)
4890 goto out_unlock;
4891
4892 ret = i915_gem_init_hw(dev);
4893 if (ret == -EIO) {
4894 /* Allow ring initialisation to fail by marking the GPU as
4895 * wedged. But we only want to do this where the GPU is angry,
4896 * for all other failure, such as an allocation failure, bail.
4897 */
4898 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4899 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4900 ret = 0;
4901 }
4902
4903 out_unlock:
4904 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4905 mutex_unlock(&dev->struct_mutex);
4906
4907 return ret;
4908 }
4909
4910 void
4911 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4912 {
4913 struct drm_i915_private *dev_priv = dev->dev_private;
4914 struct intel_engine_cs *ring;
4915 int i;
4916
4917 for_each_ring(ring, dev_priv, i)
4918 dev_priv->gt.cleanup_ring(ring);
4919
4920 if (i915.enable_execlists)
4921 /*
4922 * Neither the BIOS, ourselves or any other kernel
4923 * expects the system to be in execlists mode on startup,
4924 * so we need to reset the GPU back to legacy mode.
4925 */
4926 intel_gpu_reset(dev);
4927 }
4928
4929 static void
4930 init_ring_lists(struct intel_engine_cs *ring)
4931 {
4932 INIT_LIST_HEAD(&ring->active_list);
4933 INIT_LIST_HEAD(&ring->request_list);
4934 }
4935
4936 void
4937 i915_gem_load(struct drm_device *dev)
4938 {
4939 struct drm_i915_private *dev_priv = dev->dev_private;
4940 int i;
4941
4942 dev_priv->objects =
4943 kmem_cache_create("i915_gem_object",
4944 sizeof(struct drm_i915_gem_object), 0,
4945 SLAB_HWCACHE_ALIGN,
4946 NULL);
4947 dev_priv->vmas =
4948 kmem_cache_create("i915_gem_vma",
4949 sizeof(struct i915_vma), 0,
4950 SLAB_HWCACHE_ALIGN,
4951 NULL);
4952 dev_priv->requests =
4953 kmem_cache_create("i915_gem_request",
4954 sizeof(struct drm_i915_gem_request), 0,
4955 SLAB_HWCACHE_ALIGN,
4956 NULL);
4957
4958 INIT_LIST_HEAD(&dev_priv->vm_list);
4959 INIT_LIST_HEAD(&dev_priv->context_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4961 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4962 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4963 for (i = 0; i < I915_NUM_RINGS; i++)
4964 init_ring_lists(&dev_priv->ring[i]);
4965 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4966 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4967 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4968 i915_gem_retire_work_handler);
4969 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4970 i915_gem_idle_work_handler);
4971 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4972
4973 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4974
4975 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4976 dev_priv->num_fence_regs = 32;
4977 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4978 dev_priv->num_fence_regs = 16;
4979 else
4980 dev_priv->num_fence_regs = 8;
4981
4982 if (intel_vgpu_active(dev))
4983 dev_priv->num_fence_regs =
4984 I915_READ(vgtif_reg(avail_rs.fence_num));
4985
4986 /*
4987 * Set initial sequence number for requests.
4988 * Using this number allows the wraparound to happen early,
4989 * catching any obvious problems.
4990 */
4991 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4992 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4993
4994 /* Initialize fence registers to zero */
4995 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4996 i915_gem_restore_fences(dev);
4997
4998 i915_gem_detect_bit_6_swizzle(dev);
4999 init_waitqueue_head(&dev_priv->pending_flip_queue);
5000
5001 dev_priv->mm.interruptible = true;
5002
5003 i915_gem_shrinker_init(dev_priv);
5004
5005 mutex_init(&dev_priv->fb_tracking.lock);
5006 }
5007
5008 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5009 {
5010 struct drm_i915_file_private *file_priv = file->driver_priv;
5011
5012 /* Clean up our request list when the client is going away, so that
5013 * later retire_requests won't dereference our soon-to-be-gone
5014 * file_priv.
5015 */
5016 spin_lock(&file_priv->mm.lock);
5017 while (!list_empty(&file_priv->mm.request_list)) {
5018 struct drm_i915_gem_request *request;
5019
5020 request = list_first_entry(&file_priv->mm.request_list,
5021 struct drm_i915_gem_request,
5022 client_list);
5023 list_del(&request->client_list);
5024 request->file_priv = NULL;
5025 }
5026 spin_unlock(&file_priv->mm.lock);
5027
5028 if (!list_empty(&file_priv->rps.link)) {
5029 spin_lock(&to_i915(dev)->rps.client_lock);
5030 list_del(&file_priv->rps.link);
5031 spin_unlock(&to_i915(dev)->rps.client_lock);
5032 }
5033 }
5034
5035 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5036 {
5037 struct drm_i915_file_private *file_priv;
5038 int ret;
5039
5040 DRM_DEBUG_DRIVER("\n");
5041
5042 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5043 if (!file_priv)
5044 return -ENOMEM;
5045
5046 file->driver_priv = file_priv;
5047 file_priv->dev_priv = dev->dev_private;
5048 file_priv->file = file;
5049 INIT_LIST_HEAD(&file_priv->rps.link);
5050
5051 spin_lock_init(&file_priv->mm.lock);
5052 INIT_LIST_HEAD(&file_priv->mm.request_list);
5053
5054 ret = i915_gem_context_open(dev, file);
5055 if (ret)
5056 kfree(file_priv);
5057
5058 return ret;
5059 }
5060
5061 /**
5062 * i915_gem_track_fb - update frontbuffer tracking
5063 * @old: current GEM buffer for the frontbuffer slots
5064 * @new: new GEM buffer for the frontbuffer slots
5065 * @frontbuffer_bits: bitmask of frontbuffer slots
5066 *
5067 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5068 * from @old and setting them in @new. Both @old and @new can be NULL.
5069 */
5070 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5071 struct drm_i915_gem_object *new,
5072 unsigned frontbuffer_bits)
5073 {
5074 if (old) {
5075 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5076 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5077 old->frontbuffer_bits &= ~frontbuffer_bits;
5078 }
5079
5080 if (new) {
5081 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5082 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5083 new->frontbuffer_bits |= frontbuffer_bits;
5084 }
5085 }
5086
5087 /* All the new VM stuff */
5088 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5089 struct i915_address_space *vm)
5090 {
5091 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5092 struct i915_vma *vma;
5093
5094 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5095
5096 list_for_each_entry(vma, &o->vma_list, vma_link) {
5097 if (i915_is_ggtt(vma->vm) &&
5098 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5099 continue;
5100 if (vma->vm == vm)
5101 return vma->node.start;
5102 }
5103
5104 WARN(1, "%s vma for this object not found.\n",
5105 i915_is_ggtt(vm) ? "global" : "ppgtt");
5106 return -1;
5107 }
5108
5109 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5110 const struct i915_ggtt_view *view)
5111 {
5112 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5113 struct i915_vma *vma;
5114
5115 list_for_each_entry(vma, &o->vma_list, vma_link)
5116 if (vma->vm == ggtt &&
5117 i915_ggtt_view_equal(&vma->ggtt_view, view))
5118 return vma->node.start;
5119
5120 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5121 return -1;
5122 }
5123
5124 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5125 struct i915_address_space *vm)
5126 {
5127 struct i915_vma *vma;
5128
5129 list_for_each_entry(vma, &o->vma_list, vma_link) {
5130 if (i915_is_ggtt(vma->vm) &&
5131 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5132 continue;
5133 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5134 return true;
5135 }
5136
5137 return false;
5138 }
5139
5140 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5141 const struct i915_ggtt_view *view)
5142 {
5143 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5144 struct i915_vma *vma;
5145
5146 list_for_each_entry(vma, &o->vma_list, vma_link)
5147 if (vma->vm == ggtt &&
5148 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5149 drm_mm_node_allocated(&vma->node))
5150 return true;
5151
5152 return false;
5153 }
5154
5155 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5156 {
5157 struct i915_vma *vma;
5158
5159 list_for_each_entry(vma, &o->vma_list, vma_link)
5160 if (drm_mm_node_allocated(&vma->node))
5161 return true;
5162
5163 return false;
5164 }
5165
5166 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5167 struct i915_address_space *vm)
5168 {
5169 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5170 struct i915_vma *vma;
5171
5172 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5173
5174 BUG_ON(list_empty(&o->vma_list));
5175
5176 list_for_each_entry(vma, &o->vma_list, vma_link) {
5177 if (i915_is_ggtt(vma->vm) &&
5178 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5179 continue;
5180 if (vma->vm == vm)
5181 return vma->node.size;
5182 }
5183 return 0;
5184 }
5185
5186 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5187 {
5188 struct i915_vma *vma;
5189 list_for_each_entry(vma, &obj->vma_list, vma_link)
5190 if (vma->pin_count > 0)
5191 return true;
5192
5193 return false;
5194 }
5195
5196 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5197 struct page *
5198 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5199 {
5200 struct page *page;
5201
5202 /* Only default objects have per-page dirty tracking */
5203 if (WARN_ON(obj->ops != &i915_gem_object_ops))
5204 return NULL;
5205
5206 page = i915_gem_object_get_page(obj, n);
5207 set_page_dirty(page);
5208 return page;
5209 }
5210
5211 /* Allocate a new GEM object and fill it with the supplied data */
5212 struct drm_i915_gem_object *
5213 i915_gem_object_create_from_data(struct drm_device *dev,
5214 const void *data, size_t size)
5215 {
5216 struct drm_i915_gem_object *obj;
5217 struct sg_table *sg;
5218 size_t bytes;
5219 int ret;
5220
5221 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5222 if (IS_ERR_OR_NULL(obj))
5223 return obj;
5224
5225 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5226 if (ret)
5227 goto fail;
5228
5229 ret = i915_gem_object_get_pages(obj);
5230 if (ret)
5231 goto fail;
5232
5233 i915_gem_object_pin_pages(obj);
5234 sg = obj->pages;
5235 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5236 obj->dirty = 1; /* Backing store is now out of date */
5237 i915_gem_object_unpin_pages(obj);
5238
5239 if (WARN_ON(bytes != size)) {
5240 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5241 ret = -EFAULT;
5242 goto fail;
5243 }
5244
5245 return obj;
5246
5247 fail:
5248 drm_gem_object_unreference(&obj->base);
5249 return ERR_PTR(ret);
5250 }
This page took 0.183281 seconds and 5 git commands to generate.