drm/i915: Removed duplicate members from submit_request
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 int
157 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158 struct drm_file *file)
159 {
160 struct drm_i915_private *dev_priv = dev->dev_private;
161 struct drm_i915_gem_get_aperture *args = data;
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
164
165 pinned = 0;
166 mutex_lock(&dev->struct_mutex);
167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
168 if (i915_gem_obj_is_pinned(obj))
169 pinned += i915_gem_obj_ggtt_size(obj);
170 mutex_unlock(&dev->struct_mutex);
171
172 args->aper_size = dev_priv->gtt.base.total;
173 args->aper_available_size = args->aper_size - pinned;
174
175 return 0;
176 }
177
178 static int
179 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180 {
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
186
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
221
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228 }
229
230 static void
231 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232 {
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
236
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251 char *vaddr = obj->phys_handle->vaddr;
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
269 mark_page_accessed(page);
270 page_cache_release(page);
271 vaddr += PAGE_SIZE;
272 }
273 obj->dirty = 0;
274 }
275
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280 }
281
282 static void
283 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284 {
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286 }
287
288 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292 };
293
294 static int
295 drop_pages(struct drm_i915_gem_object *obj)
296 {
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
309 }
310
311 int
312 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314 {
315 drm_dma_handle_t *phys;
316 int ret;
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
340 obj->phys_handle = phys;
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
344 }
345
346 static int
347 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350 {
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
354 int ret;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
362
363 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364 unsigned long unwritten;
365
366 /* The physical object once assigned is fixed for the lifetime
367 * of the obj, so we can safely drop the lock and continue
368 * to access vaddr.
369 */
370 mutex_unlock(&dev->struct_mutex);
371 unwritten = copy_from_user(vaddr, user_data, args->size);
372 mutex_lock(&dev->struct_mutex);
373 if (unwritten)
374 return -EFAULT;
375 }
376
377 drm_clflush_virt_range(vaddr, args->size);
378 i915_gem_chipset_flush(dev);
379 return 0;
380 }
381
382 void *i915_gem_object_alloc(struct drm_device *dev)
383 {
384 struct drm_i915_private *dev_priv = dev->dev_private;
385 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
386 }
387
388 void i915_gem_object_free(struct drm_i915_gem_object *obj)
389 {
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->slab, obj);
392 }
393
394 static int
395 i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
398 uint32_t *handle_p)
399 {
400 struct drm_i915_gem_object *obj;
401 int ret;
402 u32 handle;
403
404 size = roundup(size, PAGE_SIZE);
405 if (size == 0)
406 return -EINVAL;
407
408 /* Allocate the new object */
409 obj = i915_gem_alloc_object(dev, size);
410 if (obj == NULL)
411 return -ENOMEM;
412
413 ret = drm_gem_handle_create(file, &obj->base, &handle);
414 /* drop reference from allocate - handle holds it now */
415 drm_gem_object_unreference_unlocked(&obj->base);
416 if (ret)
417 return ret;
418
419 *handle_p = handle;
420 return 0;
421 }
422
423 int
424 i915_gem_dumb_create(struct drm_file *file,
425 struct drm_device *dev,
426 struct drm_mode_create_dumb *args)
427 {
428 /* have to work out size/pitch and return them */
429 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
430 args->size = args->pitch * args->height;
431 return i915_gem_create(file, dev,
432 args->size, &args->handle);
433 }
434
435 /**
436 * Creates a new mm object and returns a handle to it.
437 */
438 int
439 i915_gem_create_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file)
441 {
442 struct drm_i915_gem_create *args = data;
443
444 return i915_gem_create(file, dev,
445 args->size, &args->handle);
446 }
447
448 static inline int
449 __copy_to_user_swizzled(char __user *cpu_vaddr,
450 const char *gpu_vaddr, int gpu_offset,
451 int length)
452 {
453 int ret, cpu_offset = 0;
454
455 while (length > 0) {
456 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457 int this_length = min(cacheline_end - gpu_offset, length);
458 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461 gpu_vaddr + swizzled_gpu_offset,
462 this_length);
463 if (ret)
464 return ret + length;
465
466 cpu_offset += this_length;
467 gpu_offset += this_length;
468 length -= this_length;
469 }
470
471 return 0;
472 }
473
474 static inline int
475 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476 const char __user *cpu_vaddr,
477 int length)
478 {
479 int ret, cpu_offset = 0;
480
481 while (length > 0) {
482 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483 int this_length = min(cacheline_end - gpu_offset, length);
484 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487 cpu_vaddr + cpu_offset,
488 this_length);
489 if (ret)
490 return ret + length;
491
492 cpu_offset += this_length;
493 gpu_offset += this_length;
494 length -= this_length;
495 }
496
497 return 0;
498 }
499
500 /*
501 * Pins the specified object's pages and synchronizes the object with
502 * GPU accesses. Sets needs_clflush to non-zero if the caller should
503 * flush the object from the CPU cache.
504 */
505 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506 int *needs_clflush)
507 {
508 int ret;
509
510 *needs_clflush = 0;
511
512 if (!obj->base.filp)
513 return -EINVAL;
514
515 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516 /* If we're not in the cpu read domain, set ourself into the gtt
517 * read domain and manually flush cachelines (if required). This
518 * optimizes for the case when the gpu will dirty the data
519 * anyway again before the next pread happens. */
520 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521 obj->cache_level);
522 ret = i915_gem_object_wait_rendering(obj, true);
523 if (ret)
524 return ret;
525
526 i915_gem_object_retire(obj);
527 }
528
529 ret = i915_gem_object_get_pages(obj);
530 if (ret)
531 return ret;
532
533 i915_gem_object_pin_pages(obj);
534
535 return ret;
536 }
537
538 /* Per-page copy function for the shmem pread fastpath.
539 * Flushes invalid cachelines before reading the target if
540 * needs_clflush is set. */
541 static int
542 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543 char __user *user_data,
544 bool page_do_bit17_swizzling, bool needs_clflush)
545 {
546 char *vaddr;
547 int ret;
548
549 if (unlikely(page_do_bit17_swizzling))
550 return -EINVAL;
551
552 vaddr = kmap_atomic(page);
553 if (needs_clflush)
554 drm_clflush_virt_range(vaddr + shmem_page_offset,
555 page_length);
556 ret = __copy_to_user_inatomic(user_data,
557 vaddr + shmem_page_offset,
558 page_length);
559 kunmap_atomic(vaddr);
560
561 return ret ? -EFAULT : 0;
562 }
563
564 static void
565 shmem_clflush_swizzled_range(char *addr, unsigned long length,
566 bool swizzled)
567 {
568 if (unlikely(swizzled)) {
569 unsigned long start = (unsigned long) addr;
570 unsigned long end = (unsigned long) addr + length;
571
572 /* For swizzling simply ensure that we always flush both
573 * channels. Lame, but simple and it works. Swizzled
574 * pwrite/pread is far from a hotpath - current userspace
575 * doesn't use it at all. */
576 start = round_down(start, 128);
577 end = round_up(end, 128);
578
579 drm_clflush_virt_range((void *)start, end - start);
580 } else {
581 drm_clflush_virt_range(addr, length);
582 }
583
584 }
585
586 /* Only difference to the fast-path function is that this can handle bit17
587 * and uses non-atomic copy and kmap functions. */
588 static int
589 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590 char __user *user_data,
591 bool page_do_bit17_swizzling, bool needs_clflush)
592 {
593 char *vaddr;
594 int ret;
595
596 vaddr = kmap(page);
597 if (needs_clflush)
598 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599 page_length,
600 page_do_bit17_swizzling);
601
602 if (page_do_bit17_swizzling)
603 ret = __copy_to_user_swizzled(user_data,
604 vaddr, shmem_page_offset,
605 page_length);
606 else
607 ret = __copy_to_user(user_data,
608 vaddr + shmem_page_offset,
609 page_length);
610 kunmap(page);
611
612 return ret ? - EFAULT : 0;
613 }
614
615 static int
616 i915_gem_shmem_pread(struct drm_device *dev,
617 struct drm_i915_gem_object *obj,
618 struct drm_i915_gem_pread *args,
619 struct drm_file *file)
620 {
621 char __user *user_data;
622 ssize_t remain;
623 loff_t offset;
624 int shmem_page_offset, page_length, ret = 0;
625 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
626 int prefaulted = 0;
627 int needs_clflush = 0;
628 struct sg_page_iter sg_iter;
629
630 user_data = to_user_ptr(args->data_ptr);
631 remain = args->size;
632
633 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
634
635 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
636 if (ret)
637 return ret;
638
639 offset = args->offset;
640
641 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
642 offset >> PAGE_SHIFT) {
643 struct page *page = sg_page_iter_page(&sg_iter);
644
645 if (remain <= 0)
646 break;
647
648 /* Operation in this page
649 *
650 * shmem_page_offset = offset within page in shmem file
651 * page_length = bytes to copy for this page
652 */
653 shmem_page_offset = offset_in_page(offset);
654 page_length = remain;
655 if ((shmem_page_offset + page_length) > PAGE_SIZE)
656 page_length = PAGE_SIZE - shmem_page_offset;
657
658 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
659 (page_to_phys(page) & (1 << 17)) != 0;
660
661 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
662 user_data, page_do_bit17_swizzling,
663 needs_clflush);
664 if (ret == 0)
665 goto next_page;
666
667 mutex_unlock(&dev->struct_mutex);
668
669 if (likely(!i915.prefault_disable) && !prefaulted) {
670 ret = fault_in_multipages_writeable(user_data, remain);
671 /* Userspace is tricking us, but we've already clobbered
672 * its pages with the prefault and promised to write the
673 * data up to the first fault. Hence ignore any errors
674 * and just continue. */
675 (void)ret;
676 prefaulted = 1;
677 }
678
679 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
680 user_data, page_do_bit17_swizzling,
681 needs_clflush);
682
683 mutex_lock(&dev->struct_mutex);
684
685 if (ret)
686 goto out;
687
688 next_page:
689 remain -= page_length;
690 user_data += page_length;
691 offset += page_length;
692 }
693
694 out:
695 i915_gem_object_unpin_pages(obj);
696
697 return ret;
698 }
699
700 /**
701 * Reads data from the object referenced by handle.
702 *
703 * On error, the contents of *data are undefined.
704 */
705 int
706 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
707 struct drm_file *file)
708 {
709 struct drm_i915_gem_pread *args = data;
710 struct drm_i915_gem_object *obj;
711 int ret = 0;
712
713 if (args->size == 0)
714 return 0;
715
716 if (!access_ok(VERIFY_WRITE,
717 to_user_ptr(args->data_ptr),
718 args->size))
719 return -EFAULT;
720
721 ret = i915_mutex_lock_interruptible(dev);
722 if (ret)
723 return ret;
724
725 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
726 if (&obj->base == NULL) {
727 ret = -ENOENT;
728 goto unlock;
729 }
730
731 /* Bounds check source. */
732 if (args->offset > obj->base.size ||
733 args->size > obj->base.size - args->offset) {
734 ret = -EINVAL;
735 goto out;
736 }
737
738 /* prime objects have no backing filp to GEM pread/pwrite
739 * pages from.
740 */
741 if (!obj->base.filp) {
742 ret = -EINVAL;
743 goto out;
744 }
745
746 trace_i915_gem_object_pread(obj, args->offset, args->size);
747
748 ret = i915_gem_shmem_pread(dev, obj, args, file);
749
750 out:
751 drm_gem_object_unreference(&obj->base);
752 unlock:
753 mutex_unlock(&dev->struct_mutex);
754 return ret;
755 }
756
757 /* This is the fast write path which cannot handle
758 * page faults in the source data
759 */
760
761 static inline int
762 fast_user_write(struct io_mapping *mapping,
763 loff_t page_base, int page_offset,
764 char __user *user_data,
765 int length)
766 {
767 void __iomem *vaddr_atomic;
768 void *vaddr;
769 unsigned long unwritten;
770
771 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
772 /* We can use the cpu mem copy function because this is X86. */
773 vaddr = (void __force*)vaddr_atomic + page_offset;
774 unwritten = __copy_from_user_inatomic_nocache(vaddr,
775 user_data, length);
776 io_mapping_unmap_atomic(vaddr_atomic);
777 return unwritten;
778 }
779
780 /**
781 * This is the fast pwrite path, where we copy the data directly from the
782 * user into the GTT, uncached.
783 */
784 static int
785 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
786 struct drm_i915_gem_object *obj,
787 struct drm_i915_gem_pwrite *args,
788 struct drm_file *file)
789 {
790 struct drm_i915_private *dev_priv = dev->dev_private;
791 ssize_t remain;
792 loff_t offset, page_base;
793 char __user *user_data;
794 int page_offset, page_length, ret;
795
796 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
797 if (ret)
798 goto out;
799
800 ret = i915_gem_object_set_to_gtt_domain(obj, true);
801 if (ret)
802 goto out_unpin;
803
804 ret = i915_gem_object_put_fence(obj);
805 if (ret)
806 goto out_unpin;
807
808 user_data = to_user_ptr(args->data_ptr);
809 remain = args->size;
810
811 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
812
813 while (remain > 0) {
814 /* Operation in this page
815 *
816 * page_base = page offset within aperture
817 * page_offset = offset within page
818 * page_length = bytes to copy for this page
819 */
820 page_base = offset & PAGE_MASK;
821 page_offset = offset_in_page(offset);
822 page_length = remain;
823 if ((page_offset + remain) > PAGE_SIZE)
824 page_length = PAGE_SIZE - page_offset;
825
826 /* If we get a fault while copying data, then (presumably) our
827 * source page isn't available. Return the error and we'll
828 * retry in the slow path.
829 */
830 if (fast_user_write(dev_priv->gtt.mappable, page_base,
831 page_offset, user_data, page_length)) {
832 ret = -EFAULT;
833 goto out_unpin;
834 }
835
836 remain -= page_length;
837 user_data += page_length;
838 offset += page_length;
839 }
840
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 i915_gem_object_pin_pages(obj);
956
957 offset = args->offset;
958 obj->dirty = 1;
959
960 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
961 offset >> PAGE_SHIFT) {
962 struct page *page = sg_page_iter_page(&sg_iter);
963 int partial_cacheline_write;
964
965 if (remain <= 0)
966 break;
967
968 /* Operation in this page
969 *
970 * shmem_page_offset = offset within page in shmem file
971 * page_length = bytes to copy for this page
972 */
973 shmem_page_offset = offset_in_page(offset);
974
975 page_length = remain;
976 if ((shmem_page_offset + page_length) > PAGE_SIZE)
977 page_length = PAGE_SIZE - shmem_page_offset;
978
979 /* If we don't overwrite a cacheline completely we need to be
980 * careful to have up-to-date data by first clflushing. Don't
981 * overcomplicate things and flush the entire patch. */
982 partial_cacheline_write = needs_clflush_before &&
983 ((shmem_page_offset | page_length)
984 & (boot_cpu_data.x86_clflush_size - 1));
985
986 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
987 (page_to_phys(page) & (1 << 17)) != 0;
988
989 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
990 user_data, page_do_bit17_swizzling,
991 partial_cacheline_write,
992 needs_clflush_after);
993 if (ret == 0)
994 goto next_page;
995
996 hit_slowpath = 1;
997 mutex_unlock(&dev->struct_mutex);
998 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
999 user_data, page_do_bit17_swizzling,
1000 partial_cacheline_write,
1001 needs_clflush_after);
1002
1003 mutex_lock(&dev->struct_mutex);
1004
1005 if (ret)
1006 goto out;
1007
1008 next_page:
1009 remain -= page_length;
1010 user_data += page_length;
1011 offset += page_length;
1012 }
1013
1014 out:
1015 i915_gem_object_unpin_pages(obj);
1016
1017 if (hit_slowpath) {
1018 /*
1019 * Fixup: Flush cpu caches in case we didn't flush the dirty
1020 * cachelines in-line while writing and the object moved
1021 * out of the cpu write domain while we've dropped the lock.
1022 */
1023 if (!needs_clflush_after &&
1024 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1025 if (i915_gem_clflush_object(obj, obj->pin_display))
1026 i915_gem_chipset_flush(dev);
1027 }
1028 }
1029
1030 if (needs_clflush_after)
1031 i915_gem_chipset_flush(dev);
1032
1033 return ret;
1034 }
1035
1036 /**
1037 * Writes data to the object referenced by handle.
1038 *
1039 * On error, the contents of the buffer that were to be modified are undefined.
1040 */
1041 int
1042 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1043 struct drm_file *file)
1044 {
1045 struct drm_i915_private *dev_priv = dev->dev_private;
1046 struct drm_i915_gem_pwrite *args = data;
1047 struct drm_i915_gem_object *obj;
1048 int ret;
1049
1050 if (args->size == 0)
1051 return 0;
1052
1053 if (!access_ok(VERIFY_READ,
1054 to_user_ptr(args->data_ptr),
1055 args->size))
1056 return -EFAULT;
1057
1058 if (likely(!i915.prefault_disable)) {
1059 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060 args->size);
1061 if (ret)
1062 return -EFAULT;
1063 }
1064
1065 intel_runtime_pm_get(dev_priv);
1066
1067 ret = i915_mutex_lock_interruptible(dev);
1068 if (ret)
1069 goto put_rpm;
1070
1071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1072 if (&obj->base == NULL) {
1073 ret = -ENOENT;
1074 goto unlock;
1075 }
1076
1077 /* Bounds check destination. */
1078 if (args->offset > obj->base.size ||
1079 args->size > obj->base.size - args->offset) {
1080 ret = -EINVAL;
1081 goto out;
1082 }
1083
1084 /* prime objects have no backing filp to GEM pread/pwrite
1085 * pages from.
1086 */
1087 if (!obj->base.filp) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
1092 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
1094 ret = -EFAULT;
1095 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096 * it would end up going through the fenced access, and we'll get
1097 * different detiling behavior between reading and writing.
1098 * pread/pwrite currently are reading and writing from the CPU
1099 * perspective, requiring manual detiling by the client.
1100 */
1101 if (obj->tiling_mode == I915_TILING_NONE &&
1102 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103 cpu_write_needs_clflush(obj)) {
1104 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1105 /* Note that the gtt paths might fail with non-page-backed user
1106 * pointers (e.g. gtt mappings when moving data between
1107 * textures). Fallback to the shmem path in that case. */
1108 }
1109
1110 if (ret == -EFAULT || ret == -ENOSPC) {
1111 if (obj->phys_handle)
1112 ret = i915_gem_phys_pwrite(obj, args, file);
1113 else
1114 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115 }
1116
1117 out:
1118 drm_gem_object_unreference(&obj->base);
1119 unlock:
1120 mutex_unlock(&dev->struct_mutex);
1121 put_rpm:
1122 intel_runtime_pm_put(dev_priv);
1123
1124 return ret;
1125 }
1126
1127 int
1128 i915_gem_check_wedge(struct i915_gpu_error *error,
1129 bool interruptible)
1130 {
1131 if (i915_reset_in_progress(error)) {
1132 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133 * -EIO unconditionally for these. */
1134 if (!interruptible)
1135 return -EIO;
1136
1137 /* Recovery complete, but the reset failed ... */
1138 if (i915_terminally_wedged(error))
1139 return -EIO;
1140
1141 /*
1142 * Check if GPU Reset is in progress - we need intel_ring_begin
1143 * to work properly to reinit the hw state while the gpu is
1144 * still marked as reset-in-progress. Handle this with a flag.
1145 */
1146 if (!error->reload_in_reset)
1147 return -EAGAIN;
1148 }
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * Compare arbitrary request against outstanding lazy request. Emit on match.
1155 */
1156 int
1157 i915_gem_check_olr(struct drm_i915_gem_request *req)
1158 {
1159 int ret;
1160
1161 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1162
1163 ret = 0;
1164 if (req == req->ring->outstanding_lazy_request)
1165 ret = i915_add_request(req->ring);
1166
1167 return ret;
1168 }
1169
1170 static void fake_irq(unsigned long data)
1171 {
1172 wake_up_process((struct task_struct *)data);
1173 }
1174
1175 static bool missed_irq(struct drm_i915_private *dev_priv,
1176 struct intel_engine_cs *ring)
1177 {
1178 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1179 }
1180
1181 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1182 {
1183 if (file_priv == NULL)
1184 return true;
1185
1186 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1187 }
1188
1189 /**
1190 * __i915_wait_request - wait until execution of request has finished
1191 * @req: duh!
1192 * @reset_counter: reset sequence associated with the given request
1193 * @interruptible: do an interruptible wait (normally yes)
1194 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1195 *
1196 * Note: It is of utmost importance that the passed in seqno and reset_counter
1197 * values have been read by the caller in an smp safe manner. Where read-side
1198 * locks are involved, it is sufficient to read the reset_counter before
1199 * unlocking the lock that protects the seqno. For lockless tricks, the
1200 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1201 * inserted.
1202 *
1203 * Returns 0 if the request was found within the alloted time. Else returns the
1204 * errno with remaining time filled in timeout argument.
1205 */
1206 int __i915_wait_request(struct drm_i915_gem_request *req,
1207 unsigned reset_counter,
1208 bool interruptible,
1209 s64 *timeout,
1210 struct drm_i915_file_private *file_priv)
1211 {
1212 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1213 struct drm_device *dev = ring->dev;
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215 const bool irq_test_in_progress =
1216 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1217 DEFINE_WAIT(wait);
1218 unsigned long timeout_expire;
1219 s64 before, now;
1220 int ret;
1221
1222 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1223
1224 if (i915_gem_request_completed(req, true))
1225 return 0;
1226
1227 timeout_expire = timeout ?
1228 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1229
1230 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1231 gen6_rps_boost(dev_priv);
1232 if (file_priv)
1233 mod_delayed_work(dev_priv->wq,
1234 &file_priv->mm.idle_work,
1235 msecs_to_jiffies(100));
1236 }
1237
1238 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1239 return -ENODEV;
1240
1241 /* Record current time in case interrupted by signal, or wedged */
1242 trace_i915_gem_request_wait_begin(req);
1243 before = ktime_get_raw_ns();
1244 for (;;) {
1245 struct timer_list timer;
1246
1247 prepare_to_wait(&ring->irq_queue, &wait,
1248 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1249
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
1260
1261 if (i915_gem_request_completed(req, false)) {
1262 ret = 0;
1263 break;
1264 }
1265
1266 if (interruptible && signal_pending(current)) {
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
1278 unsigned long expire;
1279
1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282 mod_timer(&timer, expire);
1283 }
1284
1285 io_schedule();
1286
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
1292 now = ktime_get_raw_ns();
1293 trace_i915_gem_request_wait_end(req);
1294
1295 if (!irq_test_in_progress)
1296 ring->irq_put(ring);
1297
1298 finish_wait(&ring->irq_queue, &wait);
1299
1300 if (timeout) {
1301 s64 tres = *timeout - (now - before);
1302
1303 *timeout = tres < 0 ? 0 : tres;
1304
1305 /*
1306 * Apparently ktime isn't accurate enough and occasionally has a
1307 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1308 * things up to make the test happy. We allow up to 1 jiffy.
1309 *
1310 * This is a regrssion from the timespec->ktime conversion.
1311 */
1312 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1313 *timeout = 0;
1314 }
1315
1316 return ret;
1317 }
1318
1319 /**
1320 * Waits for a request to be signaled, and cleans up the
1321 * request and object lists appropriately for that event.
1322 */
1323 int
1324 i915_wait_request(struct drm_i915_gem_request *req)
1325 {
1326 struct drm_device *dev;
1327 struct drm_i915_private *dev_priv;
1328 bool interruptible;
1329 unsigned reset_counter;
1330 int ret;
1331
1332 BUG_ON(req == NULL);
1333
1334 dev = req->ring->dev;
1335 dev_priv = dev->dev_private;
1336 interruptible = dev_priv->mm.interruptible;
1337
1338 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1339
1340 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1341 if (ret)
1342 return ret;
1343
1344 ret = i915_gem_check_olr(req);
1345 if (ret)
1346 return ret;
1347
1348 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1349 i915_gem_request_reference(req);
1350 ret = __i915_wait_request(req, reset_counter,
1351 interruptible, NULL, NULL);
1352 i915_gem_request_unreference(req);
1353 return ret;
1354 }
1355
1356 static int
1357 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1358 {
1359 if (!obj->active)
1360 return 0;
1361
1362 /* Manually manage the write flush as we may have not yet
1363 * retired the buffer.
1364 *
1365 * Note that the last_write_req is always the earlier of
1366 * the two (read/write) requests, so if we haved successfully waited,
1367 * we know we have passed the last write.
1368 */
1369 i915_gem_request_assign(&obj->last_write_req, NULL);
1370
1371 return 0;
1372 }
1373
1374 /**
1375 * Ensures that all rendering to the object has completed and the object is
1376 * safe to unbind from the GTT or access from the CPU.
1377 */
1378 static __must_check int
1379 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1380 bool readonly)
1381 {
1382 struct drm_i915_gem_request *req;
1383 int ret;
1384
1385 req = readonly ? obj->last_write_req : obj->last_read_req;
1386 if (!req)
1387 return 0;
1388
1389 ret = i915_wait_request(req);
1390 if (ret)
1391 return ret;
1392
1393 return i915_gem_object_wait_rendering__tail(obj);
1394 }
1395
1396 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1397 * as the object state may change during this call.
1398 */
1399 static __must_check int
1400 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1401 struct drm_i915_file_private *file_priv,
1402 bool readonly)
1403 {
1404 struct drm_i915_gem_request *req;
1405 struct drm_device *dev = obj->base.dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
1407 unsigned reset_counter;
1408 int ret;
1409
1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411 BUG_ON(!dev_priv->mm.interruptible);
1412
1413 req = readonly ? obj->last_write_req : obj->last_read_req;
1414 if (!req)
1415 return 0;
1416
1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1418 if (ret)
1419 return ret;
1420
1421 ret = i915_gem_check_olr(req);
1422 if (ret)
1423 return ret;
1424
1425 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1426 i915_gem_request_reference(req);
1427 mutex_unlock(&dev->struct_mutex);
1428 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1429 mutex_lock(&dev->struct_mutex);
1430 i915_gem_request_unreference(req);
1431 if (ret)
1432 return ret;
1433
1434 return i915_gem_object_wait_rendering__tail(obj);
1435 }
1436
1437 /**
1438 * Called when user space prepares to use an object with the CPU, either
1439 * through the mmap ioctl's mapping or a GTT mapping.
1440 */
1441 int
1442 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1443 struct drm_file *file)
1444 {
1445 struct drm_i915_gem_set_domain *args = data;
1446 struct drm_i915_gem_object *obj;
1447 uint32_t read_domains = args->read_domains;
1448 uint32_t write_domain = args->write_domain;
1449 int ret;
1450
1451 /* Only handle setting domains to types used by the CPU. */
1452 if (write_domain & I915_GEM_GPU_DOMAINS)
1453 return -EINVAL;
1454
1455 if (read_domains & I915_GEM_GPU_DOMAINS)
1456 return -EINVAL;
1457
1458 /* Having something in the write domain implies it's in the read
1459 * domain, and only that read domain. Enforce that in the request.
1460 */
1461 if (write_domain != 0 && read_domains != write_domain)
1462 return -EINVAL;
1463
1464 ret = i915_mutex_lock_interruptible(dev);
1465 if (ret)
1466 return ret;
1467
1468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1469 if (&obj->base == NULL) {
1470 ret = -ENOENT;
1471 goto unlock;
1472 }
1473
1474 /* Try to flush the object off the GPU without holding the lock.
1475 * We will repeat the flush holding the lock in the normal manner
1476 * to catch cases where we are gazumped.
1477 */
1478 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479 file->driver_priv,
1480 !write_domain);
1481 if (ret)
1482 goto unref;
1483
1484 if (read_domains & I915_GEM_DOMAIN_GTT)
1485 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1486 else
1487 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1488
1489 unref:
1490 drm_gem_object_unreference(&obj->base);
1491 unlock:
1492 mutex_unlock(&dev->struct_mutex);
1493 return ret;
1494 }
1495
1496 /**
1497 * Called when user space has done writes to this buffer
1498 */
1499 int
1500 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1501 struct drm_file *file)
1502 {
1503 struct drm_i915_gem_sw_finish *args = data;
1504 struct drm_i915_gem_object *obj;
1505 int ret = 0;
1506
1507 ret = i915_mutex_lock_interruptible(dev);
1508 if (ret)
1509 return ret;
1510
1511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1512 if (&obj->base == NULL) {
1513 ret = -ENOENT;
1514 goto unlock;
1515 }
1516
1517 /* Pinned buffers may be scanout, so flush the cache */
1518 if (obj->pin_display)
1519 i915_gem_object_flush_cpu_write_domain(obj, true);
1520
1521 drm_gem_object_unreference(&obj->base);
1522 unlock:
1523 mutex_unlock(&dev->struct_mutex);
1524 return ret;
1525 }
1526
1527 /**
1528 * Maps the contents of an object, returning the address it is mapped
1529 * into.
1530 *
1531 * While the mapping holds a reference on the contents of the object, it doesn't
1532 * imply a ref on the object itself.
1533 *
1534 * IMPORTANT:
1535 *
1536 * DRM driver writers who look a this function as an example for how to do GEM
1537 * mmap support, please don't implement mmap support like here. The modern way
1538 * to implement DRM mmap support is with an mmap offset ioctl (like
1539 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1540 * That way debug tooling like valgrind will understand what's going on, hiding
1541 * the mmap call in a driver private ioctl will break that. The i915 driver only
1542 * does cpu mmaps this way because we didn't know better.
1543 */
1544 int
1545 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1546 struct drm_file *file)
1547 {
1548 struct drm_i915_gem_mmap *args = data;
1549 struct drm_gem_object *obj;
1550 unsigned long addr;
1551
1552 if (args->flags & ~(I915_MMAP_WC))
1553 return -EINVAL;
1554
1555 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1556 return -ENODEV;
1557
1558 obj = drm_gem_object_lookup(dev, file, args->handle);
1559 if (obj == NULL)
1560 return -ENOENT;
1561
1562 /* prime objects have no backing filp to GEM mmap
1563 * pages from.
1564 */
1565 if (!obj->filp) {
1566 drm_gem_object_unreference_unlocked(obj);
1567 return -EINVAL;
1568 }
1569
1570 addr = vm_mmap(obj->filp, 0, args->size,
1571 PROT_READ | PROT_WRITE, MAP_SHARED,
1572 args->offset);
1573 if (args->flags & I915_MMAP_WC) {
1574 struct mm_struct *mm = current->mm;
1575 struct vm_area_struct *vma;
1576
1577 down_write(&mm->mmap_sem);
1578 vma = find_vma(mm, addr);
1579 if (vma)
1580 vma->vm_page_prot =
1581 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1582 else
1583 addr = -ENOMEM;
1584 up_write(&mm->mmap_sem);
1585 }
1586 drm_gem_object_unreference_unlocked(obj);
1587 if (IS_ERR((void *)addr))
1588 return addr;
1589
1590 args->addr_ptr = (uint64_t) addr;
1591
1592 return 0;
1593 }
1594
1595 /**
1596 * i915_gem_fault - fault a page into the GTT
1597 * vma: VMA in question
1598 * vmf: fault info
1599 *
1600 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1601 * from userspace. The fault handler takes care of binding the object to
1602 * the GTT (if needed), allocating and programming a fence register (again,
1603 * only if needed based on whether the old reg is still valid or the object
1604 * is tiled) and inserting a new PTE into the faulting process.
1605 *
1606 * Note that the faulting process may involve evicting existing objects
1607 * from the GTT and/or fence registers to make room. So performance may
1608 * suffer if the GTT working set is large or there are few fence registers
1609 * left.
1610 */
1611 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1612 {
1613 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1614 struct drm_device *dev = obj->base.dev;
1615 struct drm_i915_private *dev_priv = dev->dev_private;
1616 pgoff_t page_offset;
1617 unsigned long pfn;
1618 int ret = 0;
1619 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1620
1621 intel_runtime_pm_get(dev_priv);
1622
1623 /* We don't use vmf->pgoff since that has the fake offset */
1624 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1625 PAGE_SHIFT;
1626
1627 ret = i915_mutex_lock_interruptible(dev);
1628 if (ret)
1629 goto out;
1630
1631 trace_i915_gem_object_fault(obj, page_offset, true, write);
1632
1633 /* Try to flush the object off the GPU first without holding the lock.
1634 * Upon reacquiring the lock, we will perform our sanity checks and then
1635 * repeat the flush holding the lock in the normal manner to catch cases
1636 * where we are gazumped.
1637 */
1638 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1639 if (ret)
1640 goto unlock;
1641
1642 /* Access to snoopable pages through the GTT is incoherent. */
1643 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1644 ret = -EFAULT;
1645 goto unlock;
1646 }
1647
1648 /* Now bind it into the GTT if needed */
1649 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1650 if (ret)
1651 goto unlock;
1652
1653 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1654 if (ret)
1655 goto unpin;
1656
1657 ret = i915_gem_object_get_fence(obj);
1658 if (ret)
1659 goto unpin;
1660
1661 /* Finally, remap it using the new GTT offset */
1662 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1663 pfn >>= PAGE_SHIFT;
1664
1665 if (!obj->fault_mappable) {
1666 unsigned long size = min_t(unsigned long,
1667 vma->vm_end - vma->vm_start,
1668 obj->base.size);
1669 int i;
1670
1671 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1672 ret = vm_insert_pfn(vma,
1673 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1674 pfn + i);
1675 if (ret)
1676 break;
1677 }
1678
1679 obj->fault_mappable = true;
1680 } else
1681 ret = vm_insert_pfn(vma,
1682 (unsigned long)vmf->virtual_address,
1683 pfn + page_offset);
1684 unpin:
1685 i915_gem_object_ggtt_unpin(obj);
1686 unlock:
1687 mutex_unlock(&dev->struct_mutex);
1688 out:
1689 switch (ret) {
1690 case -EIO:
1691 /*
1692 * We eat errors when the gpu is terminally wedged to avoid
1693 * userspace unduly crashing (gl has no provisions for mmaps to
1694 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1695 * and so needs to be reported.
1696 */
1697 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1698 ret = VM_FAULT_SIGBUS;
1699 break;
1700 }
1701 case -EAGAIN:
1702 /*
1703 * EAGAIN means the gpu is hung and we'll wait for the error
1704 * handler to reset everything when re-faulting in
1705 * i915_mutex_lock_interruptible.
1706 */
1707 case 0:
1708 case -ERESTARTSYS:
1709 case -EINTR:
1710 case -EBUSY:
1711 /*
1712 * EBUSY is ok: this just means that another thread
1713 * already did the job.
1714 */
1715 ret = VM_FAULT_NOPAGE;
1716 break;
1717 case -ENOMEM:
1718 ret = VM_FAULT_OOM;
1719 break;
1720 case -ENOSPC:
1721 case -EFAULT:
1722 ret = VM_FAULT_SIGBUS;
1723 break;
1724 default:
1725 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1726 ret = VM_FAULT_SIGBUS;
1727 break;
1728 }
1729
1730 intel_runtime_pm_put(dev_priv);
1731 return ret;
1732 }
1733
1734 /**
1735 * i915_gem_release_mmap - remove physical page mappings
1736 * @obj: obj in question
1737 *
1738 * Preserve the reservation of the mmapping with the DRM core code, but
1739 * relinquish ownership of the pages back to the system.
1740 *
1741 * It is vital that we remove the page mapping if we have mapped a tiled
1742 * object through the GTT and then lose the fence register due to
1743 * resource pressure. Similarly if the object has been moved out of the
1744 * aperture, than pages mapped into userspace must be revoked. Removing the
1745 * mapping will then trigger a page fault on the next user access, allowing
1746 * fixup by i915_gem_fault().
1747 */
1748 void
1749 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1750 {
1751 if (!obj->fault_mappable)
1752 return;
1753
1754 drm_vma_node_unmap(&obj->base.vma_node,
1755 obj->base.dev->anon_inode->i_mapping);
1756 obj->fault_mappable = false;
1757 }
1758
1759 void
1760 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1761 {
1762 struct drm_i915_gem_object *obj;
1763
1764 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1765 i915_gem_release_mmap(obj);
1766 }
1767
1768 uint32_t
1769 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1770 {
1771 uint32_t gtt_size;
1772
1773 if (INTEL_INFO(dev)->gen >= 4 ||
1774 tiling_mode == I915_TILING_NONE)
1775 return size;
1776
1777 /* Previous chips need a power-of-two fence region when tiling */
1778 if (INTEL_INFO(dev)->gen == 3)
1779 gtt_size = 1024*1024;
1780 else
1781 gtt_size = 512*1024;
1782
1783 while (gtt_size < size)
1784 gtt_size <<= 1;
1785
1786 return gtt_size;
1787 }
1788
1789 /**
1790 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1791 * @obj: object to check
1792 *
1793 * Return the required GTT alignment for an object, taking into account
1794 * potential fence register mapping.
1795 */
1796 uint32_t
1797 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1798 int tiling_mode, bool fenced)
1799 {
1800 /*
1801 * Minimum alignment is 4k (GTT page size), but might be greater
1802 * if a fence register is needed for the object.
1803 */
1804 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1805 tiling_mode == I915_TILING_NONE)
1806 return 4096;
1807
1808 /*
1809 * Previous chips need to be aligned to the size of the smallest
1810 * fence register that can contain the object.
1811 */
1812 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1813 }
1814
1815 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1816 {
1817 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1818 int ret;
1819
1820 if (drm_vma_node_has_offset(&obj->base.vma_node))
1821 return 0;
1822
1823 dev_priv->mm.shrinker_no_lock_stealing = true;
1824
1825 ret = drm_gem_create_mmap_offset(&obj->base);
1826 if (ret != -ENOSPC)
1827 goto out;
1828
1829 /* Badly fragmented mmap space? The only way we can recover
1830 * space is by destroying unwanted objects. We can't randomly release
1831 * mmap_offsets as userspace expects them to be persistent for the
1832 * lifetime of the objects. The closest we can is to release the
1833 * offsets on purgeable objects by truncating it and marking it purged,
1834 * which prevents userspace from ever using that object again.
1835 */
1836 i915_gem_shrink(dev_priv,
1837 obj->base.size >> PAGE_SHIFT,
1838 I915_SHRINK_BOUND |
1839 I915_SHRINK_UNBOUND |
1840 I915_SHRINK_PURGEABLE);
1841 ret = drm_gem_create_mmap_offset(&obj->base);
1842 if (ret != -ENOSPC)
1843 goto out;
1844
1845 i915_gem_shrink_all(dev_priv);
1846 ret = drm_gem_create_mmap_offset(&obj->base);
1847 out:
1848 dev_priv->mm.shrinker_no_lock_stealing = false;
1849
1850 return ret;
1851 }
1852
1853 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1854 {
1855 drm_gem_free_mmap_offset(&obj->base);
1856 }
1857
1858 int
1859 i915_gem_mmap_gtt(struct drm_file *file,
1860 struct drm_device *dev,
1861 uint32_t handle,
1862 uint64_t *offset)
1863 {
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct drm_i915_gem_object *obj;
1866 int ret;
1867
1868 ret = i915_mutex_lock_interruptible(dev);
1869 if (ret)
1870 return ret;
1871
1872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1873 if (&obj->base == NULL) {
1874 ret = -ENOENT;
1875 goto unlock;
1876 }
1877
1878 if (obj->base.size > dev_priv->gtt.mappable_end) {
1879 ret = -E2BIG;
1880 goto out;
1881 }
1882
1883 if (obj->madv != I915_MADV_WILLNEED) {
1884 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1885 ret = -EFAULT;
1886 goto out;
1887 }
1888
1889 ret = i915_gem_object_create_mmap_offset(obj);
1890 if (ret)
1891 goto out;
1892
1893 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1894
1895 out:
1896 drm_gem_object_unreference(&obj->base);
1897 unlock:
1898 mutex_unlock(&dev->struct_mutex);
1899 return ret;
1900 }
1901
1902 /**
1903 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1904 * @dev: DRM device
1905 * @data: GTT mapping ioctl data
1906 * @file: GEM object info
1907 *
1908 * Simply returns the fake offset to userspace so it can mmap it.
1909 * The mmap call will end up in drm_gem_mmap(), which will set things
1910 * up so we can get faults in the handler above.
1911 *
1912 * The fault handler will take care of binding the object into the GTT
1913 * (since it may have been evicted to make room for something), allocating
1914 * a fence register, and mapping the appropriate aperture address into
1915 * userspace.
1916 */
1917 int
1918 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1919 struct drm_file *file)
1920 {
1921 struct drm_i915_gem_mmap_gtt *args = data;
1922
1923 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1924 }
1925
1926 static inline int
1927 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1928 {
1929 return obj->madv == I915_MADV_DONTNEED;
1930 }
1931
1932 /* Immediately discard the backing storage */
1933 static void
1934 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1935 {
1936 i915_gem_object_free_mmap_offset(obj);
1937
1938 if (obj->base.filp == NULL)
1939 return;
1940
1941 /* Our goal here is to return as much of the memory as
1942 * is possible back to the system as we are called from OOM.
1943 * To do this we must instruct the shmfs to drop all of its
1944 * backing pages, *now*.
1945 */
1946 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1947 obj->madv = __I915_MADV_PURGED;
1948 }
1949
1950 /* Try to discard unwanted pages */
1951 static void
1952 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1953 {
1954 struct address_space *mapping;
1955
1956 switch (obj->madv) {
1957 case I915_MADV_DONTNEED:
1958 i915_gem_object_truncate(obj);
1959 case __I915_MADV_PURGED:
1960 return;
1961 }
1962
1963 if (obj->base.filp == NULL)
1964 return;
1965
1966 mapping = file_inode(obj->base.filp)->i_mapping,
1967 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1968 }
1969
1970 static void
1971 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1972 {
1973 struct sg_page_iter sg_iter;
1974 int ret;
1975
1976 BUG_ON(obj->madv == __I915_MADV_PURGED);
1977
1978 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1979 if (ret) {
1980 /* In the event of a disaster, abandon all caches and
1981 * hope for the best.
1982 */
1983 WARN_ON(ret != -EIO);
1984 i915_gem_clflush_object(obj, true);
1985 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1986 }
1987
1988 if (i915_gem_object_needs_bit17_swizzle(obj))
1989 i915_gem_object_save_bit_17_swizzle(obj);
1990
1991 if (obj->madv == I915_MADV_DONTNEED)
1992 obj->dirty = 0;
1993
1994 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1995 struct page *page = sg_page_iter_page(&sg_iter);
1996
1997 if (obj->dirty)
1998 set_page_dirty(page);
1999
2000 if (obj->madv == I915_MADV_WILLNEED)
2001 mark_page_accessed(page);
2002
2003 page_cache_release(page);
2004 }
2005 obj->dirty = 0;
2006
2007 sg_free_table(obj->pages);
2008 kfree(obj->pages);
2009 }
2010
2011 int
2012 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2013 {
2014 const struct drm_i915_gem_object_ops *ops = obj->ops;
2015
2016 if (obj->pages == NULL)
2017 return 0;
2018
2019 if (obj->pages_pin_count)
2020 return -EBUSY;
2021
2022 BUG_ON(i915_gem_obj_bound_any(obj));
2023
2024 /* ->put_pages might need to allocate memory for the bit17 swizzle
2025 * array, hence protect them from being reaped by removing them from gtt
2026 * lists early. */
2027 list_del(&obj->global_list);
2028
2029 ops->put_pages(obj);
2030 obj->pages = NULL;
2031
2032 i915_gem_object_invalidate(obj);
2033
2034 return 0;
2035 }
2036
2037 unsigned long
2038 i915_gem_shrink(struct drm_i915_private *dev_priv,
2039 long target, unsigned flags)
2040 {
2041 const struct {
2042 struct list_head *list;
2043 unsigned int bit;
2044 } phases[] = {
2045 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2046 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2047 { NULL, 0 },
2048 }, *phase;
2049 unsigned long count = 0;
2050
2051 /*
2052 * As we may completely rewrite the (un)bound list whilst unbinding
2053 * (due to retiring requests) we have to strictly process only
2054 * one element of the list at the time, and recheck the list
2055 * on every iteration.
2056 *
2057 * In particular, we must hold a reference whilst removing the
2058 * object as we may end up waiting for and/or retiring the objects.
2059 * This might release the final reference (held by the active list)
2060 * and result in the object being freed from under us. This is
2061 * similar to the precautions the eviction code must take whilst
2062 * removing objects.
2063 *
2064 * Also note that although these lists do not hold a reference to
2065 * the object we can safely grab one here: The final object
2066 * unreferencing and the bound_list are both protected by the
2067 * dev->struct_mutex and so we won't ever be able to observe an
2068 * object on the bound_list with a reference count equals 0.
2069 */
2070 for (phase = phases; phase->list; phase++) {
2071 struct list_head still_in_list;
2072
2073 if ((flags & phase->bit) == 0)
2074 continue;
2075
2076 INIT_LIST_HEAD(&still_in_list);
2077 while (count < target && !list_empty(phase->list)) {
2078 struct drm_i915_gem_object *obj;
2079 struct i915_vma *vma, *v;
2080
2081 obj = list_first_entry(phase->list,
2082 typeof(*obj), global_list);
2083 list_move_tail(&obj->global_list, &still_in_list);
2084
2085 if (flags & I915_SHRINK_PURGEABLE &&
2086 !i915_gem_object_is_purgeable(obj))
2087 continue;
2088
2089 drm_gem_object_reference(&obj->base);
2090
2091 /* For the unbound phase, this should be a no-op! */
2092 list_for_each_entry_safe(vma, v,
2093 &obj->vma_list, vma_link)
2094 if (i915_vma_unbind(vma))
2095 break;
2096
2097 if (i915_gem_object_put_pages(obj) == 0)
2098 count += obj->base.size >> PAGE_SHIFT;
2099
2100 drm_gem_object_unreference(&obj->base);
2101 }
2102 list_splice(&still_in_list, phase->list);
2103 }
2104
2105 return count;
2106 }
2107
2108 static unsigned long
2109 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2110 {
2111 i915_gem_evict_everything(dev_priv->dev);
2112 return i915_gem_shrink(dev_priv, LONG_MAX,
2113 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2114 }
2115
2116 static int
2117 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2118 {
2119 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2120 int page_count, i;
2121 struct address_space *mapping;
2122 struct sg_table *st;
2123 struct scatterlist *sg;
2124 struct sg_page_iter sg_iter;
2125 struct page *page;
2126 unsigned long last_pfn = 0; /* suppress gcc warning */
2127 gfp_t gfp;
2128
2129 /* Assert that the object is not currently in any GPU domain. As it
2130 * wasn't in the GTT, there shouldn't be any way it could have been in
2131 * a GPU cache
2132 */
2133 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
2136 st = kmalloc(sizeof(*st), GFP_KERNEL);
2137 if (st == NULL)
2138 return -ENOMEM;
2139
2140 page_count = obj->base.size / PAGE_SIZE;
2141 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2142 kfree(st);
2143 return -ENOMEM;
2144 }
2145
2146 /* Get the list of pages out of our struct file. They'll be pinned
2147 * at this point until we release them.
2148 *
2149 * Fail silently without starting the shrinker
2150 */
2151 mapping = file_inode(obj->base.filp)->i_mapping;
2152 gfp = mapping_gfp_mask(mapping);
2153 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2154 gfp &= ~(__GFP_IO | __GFP_WAIT);
2155 sg = st->sgl;
2156 st->nents = 0;
2157 for (i = 0; i < page_count; i++) {
2158 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2159 if (IS_ERR(page)) {
2160 i915_gem_shrink(dev_priv,
2161 page_count,
2162 I915_SHRINK_BOUND |
2163 I915_SHRINK_UNBOUND |
2164 I915_SHRINK_PURGEABLE);
2165 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2166 }
2167 if (IS_ERR(page)) {
2168 /* We've tried hard to allocate the memory by reaping
2169 * our own buffer, now let the real VM do its job and
2170 * go down in flames if truly OOM.
2171 */
2172 i915_gem_shrink_all(dev_priv);
2173 page = shmem_read_mapping_page(mapping, i);
2174 if (IS_ERR(page))
2175 goto err_pages;
2176 }
2177 #ifdef CONFIG_SWIOTLB
2178 if (swiotlb_nr_tbl()) {
2179 st->nents++;
2180 sg_set_page(sg, page, PAGE_SIZE, 0);
2181 sg = sg_next(sg);
2182 continue;
2183 }
2184 #endif
2185 if (!i || page_to_pfn(page) != last_pfn + 1) {
2186 if (i)
2187 sg = sg_next(sg);
2188 st->nents++;
2189 sg_set_page(sg, page, PAGE_SIZE, 0);
2190 } else {
2191 sg->length += PAGE_SIZE;
2192 }
2193 last_pfn = page_to_pfn(page);
2194
2195 /* Check that the i965g/gm workaround works. */
2196 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2197 }
2198 #ifdef CONFIG_SWIOTLB
2199 if (!swiotlb_nr_tbl())
2200 #endif
2201 sg_mark_end(sg);
2202 obj->pages = st;
2203
2204 if (i915_gem_object_needs_bit17_swizzle(obj))
2205 i915_gem_object_do_bit_17_swizzle(obj);
2206
2207 if (obj->tiling_mode != I915_TILING_NONE &&
2208 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2209 i915_gem_object_pin_pages(obj);
2210
2211 return 0;
2212
2213 err_pages:
2214 sg_mark_end(sg);
2215 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2216 page_cache_release(sg_page_iter_page(&sg_iter));
2217 sg_free_table(st);
2218 kfree(st);
2219
2220 /* shmemfs first checks if there is enough memory to allocate the page
2221 * and reports ENOSPC should there be insufficient, along with the usual
2222 * ENOMEM for a genuine allocation failure.
2223 *
2224 * We use ENOSPC in our driver to mean that we have run out of aperture
2225 * space and so want to translate the error from shmemfs back to our
2226 * usual understanding of ENOMEM.
2227 */
2228 if (PTR_ERR(page) == -ENOSPC)
2229 return -ENOMEM;
2230 else
2231 return PTR_ERR(page);
2232 }
2233
2234 /* Ensure that the associated pages are gathered from the backing storage
2235 * and pinned into our object. i915_gem_object_get_pages() may be called
2236 * multiple times before they are released by a single call to
2237 * i915_gem_object_put_pages() - once the pages are no longer referenced
2238 * either as a result of memory pressure (reaping pages under the shrinker)
2239 * or as the object is itself released.
2240 */
2241 int
2242 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2243 {
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 const struct drm_i915_gem_object_ops *ops = obj->ops;
2246 int ret;
2247
2248 if (obj->pages)
2249 return 0;
2250
2251 if (obj->madv != I915_MADV_WILLNEED) {
2252 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2253 return -EFAULT;
2254 }
2255
2256 BUG_ON(obj->pages_pin_count);
2257
2258 ret = ops->get_pages(obj);
2259 if (ret)
2260 return ret;
2261
2262 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2263 return 0;
2264 }
2265
2266 static void
2267 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2268 struct intel_engine_cs *ring)
2269 {
2270 struct drm_i915_gem_request *req;
2271 struct intel_engine_cs *old_ring;
2272
2273 BUG_ON(ring == NULL);
2274
2275 req = intel_ring_get_request(ring);
2276 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2277
2278 if (old_ring != ring && obj->last_write_req) {
2279 /* Keep the request relative to the current ring */
2280 i915_gem_request_assign(&obj->last_write_req, req);
2281 }
2282
2283 /* Add a reference if we're newly entering the active list. */
2284 if (!obj->active) {
2285 drm_gem_object_reference(&obj->base);
2286 obj->active = 1;
2287 }
2288
2289 list_move_tail(&obj->ring_list, &ring->active_list);
2290
2291 i915_gem_request_assign(&obj->last_read_req, req);
2292 }
2293
2294 void i915_vma_move_to_active(struct i915_vma *vma,
2295 struct intel_engine_cs *ring)
2296 {
2297 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2298 return i915_gem_object_move_to_active(vma->obj, ring);
2299 }
2300
2301 static void
2302 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2303 {
2304 struct i915_vma *vma;
2305
2306 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2307 BUG_ON(!obj->active);
2308
2309 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2310 if (!list_empty(&vma->mm_list))
2311 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2312 }
2313
2314 intel_fb_obj_flush(obj, true);
2315
2316 list_del_init(&obj->ring_list);
2317
2318 i915_gem_request_assign(&obj->last_read_req, NULL);
2319 i915_gem_request_assign(&obj->last_write_req, NULL);
2320 obj->base.write_domain = 0;
2321
2322 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2323
2324 obj->active = 0;
2325 drm_gem_object_unreference(&obj->base);
2326
2327 WARN_ON(i915_verify_lists(dev));
2328 }
2329
2330 static void
2331 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2332 {
2333 if (obj->last_read_req == NULL)
2334 return;
2335
2336 if (i915_gem_request_completed(obj->last_read_req, true))
2337 i915_gem_object_move_to_inactive(obj);
2338 }
2339
2340 static int
2341 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2342 {
2343 struct drm_i915_private *dev_priv = dev->dev_private;
2344 struct intel_engine_cs *ring;
2345 int ret, i, j;
2346
2347 /* Carefully retire all requests without writing to the rings */
2348 for_each_ring(ring, dev_priv, i) {
2349 ret = intel_ring_idle(ring);
2350 if (ret)
2351 return ret;
2352 }
2353 i915_gem_retire_requests(dev);
2354
2355 /* Finally reset hw state */
2356 for_each_ring(ring, dev_priv, i) {
2357 intel_ring_init_seqno(ring, seqno);
2358
2359 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2360 ring->semaphore.sync_seqno[j] = 0;
2361 }
2362
2363 return 0;
2364 }
2365
2366 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2367 {
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 int ret;
2370
2371 if (seqno == 0)
2372 return -EINVAL;
2373
2374 /* HWS page needs to be set less than what we
2375 * will inject to ring
2376 */
2377 ret = i915_gem_init_seqno(dev, seqno - 1);
2378 if (ret)
2379 return ret;
2380
2381 /* Carefully set the last_seqno value so that wrap
2382 * detection still works
2383 */
2384 dev_priv->next_seqno = seqno;
2385 dev_priv->last_seqno = seqno - 1;
2386 if (dev_priv->last_seqno == 0)
2387 dev_priv->last_seqno--;
2388
2389 return 0;
2390 }
2391
2392 int
2393 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2394 {
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397 /* reserve 0 for non-seqno */
2398 if (dev_priv->next_seqno == 0) {
2399 int ret = i915_gem_init_seqno(dev, 0);
2400 if (ret)
2401 return ret;
2402
2403 dev_priv->next_seqno = 1;
2404 }
2405
2406 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2407 return 0;
2408 }
2409
2410 int __i915_add_request(struct intel_engine_cs *ring,
2411 struct drm_file *file,
2412 struct drm_i915_gem_object *obj)
2413 {
2414 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2415 struct drm_i915_gem_request *request;
2416 struct intel_ringbuffer *ringbuf;
2417 u32 request_ring_position, request_start;
2418 int ret;
2419
2420 request = ring->outstanding_lazy_request;
2421 if (WARN_ON(request == NULL))
2422 return -ENOMEM;
2423
2424 if (i915.enable_execlists) {
2425 struct intel_context *ctx = request->ctx;
2426 ringbuf = ctx->engine[ring->id].ringbuf;
2427 } else
2428 ringbuf = ring->buffer;
2429
2430 request_start = intel_ring_get_tail(ringbuf);
2431 /*
2432 * Emit any outstanding flushes - execbuf can fail to emit the flush
2433 * after having emitted the batchbuffer command. Hence we need to fix
2434 * things up similar to emitting the lazy request. The difference here
2435 * is that the flush _must_ happen before the next request, no matter
2436 * what.
2437 */
2438 if (i915.enable_execlists) {
2439 ret = logical_ring_flush_all_caches(ringbuf);
2440 if (ret)
2441 return ret;
2442 } else {
2443 ret = intel_ring_flush_all_caches(ring);
2444 if (ret)
2445 return ret;
2446 }
2447
2448 /* Record the position of the start of the request so that
2449 * should we detect the updated seqno part-way through the
2450 * GPU processing the request, we never over-estimate the
2451 * position of the head.
2452 */
2453 request_ring_position = intel_ring_get_tail(ringbuf);
2454
2455 if (i915.enable_execlists) {
2456 ret = ring->emit_request(ringbuf, request);
2457 if (ret)
2458 return ret;
2459 } else {
2460 ret = ring->add_request(ring);
2461 if (ret)
2462 return ret;
2463 }
2464
2465 request->head = request_start;
2466 request->postfix = request_ring_position;
2467
2468 /* Whilst this request exists, batch_obj will be on the
2469 * active_list, and so will hold the active reference. Only when this
2470 * request is retired will the the batch_obj be moved onto the
2471 * inactive_list and lose its active reference. Hence we do not need
2472 * to explicitly hold another reference here.
2473 */
2474 request->batch_obj = obj;
2475
2476 if (!i915.enable_execlists) {
2477 /* Hold a reference to the current context so that we can inspect
2478 * it later in case a hangcheck error event fires.
2479 */
2480 request->ctx = ring->last_context;
2481 if (request->ctx)
2482 i915_gem_context_reference(request->ctx);
2483 }
2484
2485 request->emitted_jiffies = jiffies;
2486 list_add_tail(&request->list, &ring->request_list);
2487 request->file_priv = NULL;
2488
2489 if (file) {
2490 struct drm_i915_file_private *file_priv = file->driver_priv;
2491
2492 spin_lock(&file_priv->mm.lock);
2493 request->file_priv = file_priv;
2494 list_add_tail(&request->client_list,
2495 &file_priv->mm.request_list);
2496 spin_unlock(&file_priv->mm.lock);
2497 }
2498
2499 trace_i915_gem_request_add(request);
2500 ring->outstanding_lazy_request = NULL;
2501
2502 i915_queue_hangcheck(ring->dev);
2503
2504 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2505 queue_delayed_work(dev_priv->wq,
2506 &dev_priv->mm.retire_work,
2507 round_jiffies_up_relative(HZ));
2508 intel_mark_busy(dev_priv->dev);
2509
2510 return 0;
2511 }
2512
2513 static inline void
2514 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2515 {
2516 struct drm_i915_file_private *file_priv = request->file_priv;
2517
2518 if (!file_priv)
2519 return;
2520
2521 spin_lock(&file_priv->mm.lock);
2522 list_del(&request->client_list);
2523 request->file_priv = NULL;
2524 spin_unlock(&file_priv->mm.lock);
2525 }
2526
2527 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2528 const struct intel_context *ctx)
2529 {
2530 unsigned long elapsed;
2531
2532 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2533
2534 if (ctx->hang_stats.banned)
2535 return true;
2536
2537 if (ctx->hang_stats.ban_period_seconds &&
2538 elapsed <= ctx->hang_stats.ban_period_seconds) {
2539 if (!i915_gem_context_is_default(ctx)) {
2540 DRM_DEBUG("context hanging too fast, banning!\n");
2541 return true;
2542 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2543 if (i915_stop_ring_allow_warn(dev_priv))
2544 DRM_ERROR("gpu hanging too fast, banning!\n");
2545 return true;
2546 }
2547 }
2548
2549 return false;
2550 }
2551
2552 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2553 struct intel_context *ctx,
2554 const bool guilty)
2555 {
2556 struct i915_ctx_hang_stats *hs;
2557
2558 if (WARN_ON(!ctx))
2559 return;
2560
2561 hs = &ctx->hang_stats;
2562
2563 if (guilty) {
2564 hs->banned = i915_context_is_banned(dev_priv, ctx);
2565 hs->batch_active++;
2566 hs->guilty_ts = get_seconds();
2567 } else {
2568 hs->batch_pending++;
2569 }
2570 }
2571
2572 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2573 {
2574 list_del(&request->list);
2575 i915_gem_request_remove_from_client(request);
2576
2577 i915_gem_request_unreference(request);
2578 }
2579
2580 void i915_gem_request_free(struct kref *req_ref)
2581 {
2582 struct drm_i915_gem_request *req = container_of(req_ref,
2583 typeof(*req), ref);
2584 struct intel_context *ctx = req->ctx;
2585
2586 if (ctx) {
2587 if (i915.enable_execlists) {
2588 struct intel_engine_cs *ring = req->ring;
2589
2590 if (ctx != ring->default_context)
2591 intel_lr_context_unpin(ring, ctx);
2592 }
2593
2594 i915_gem_context_unreference(ctx);
2595 }
2596
2597 kfree(req);
2598 }
2599
2600 struct drm_i915_gem_request *
2601 i915_gem_find_active_request(struct intel_engine_cs *ring)
2602 {
2603 struct drm_i915_gem_request *request;
2604
2605 list_for_each_entry(request, &ring->request_list, list) {
2606 if (i915_gem_request_completed(request, false))
2607 continue;
2608
2609 return request;
2610 }
2611
2612 return NULL;
2613 }
2614
2615 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2616 struct intel_engine_cs *ring)
2617 {
2618 struct drm_i915_gem_request *request;
2619 bool ring_hung;
2620
2621 request = i915_gem_find_active_request(ring);
2622
2623 if (request == NULL)
2624 return;
2625
2626 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2627
2628 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2629
2630 list_for_each_entry_continue(request, &ring->request_list, list)
2631 i915_set_reset_status(dev_priv, request->ctx, false);
2632 }
2633
2634 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2635 struct intel_engine_cs *ring)
2636 {
2637 while (!list_empty(&ring->active_list)) {
2638 struct drm_i915_gem_object *obj;
2639
2640 obj = list_first_entry(&ring->active_list,
2641 struct drm_i915_gem_object,
2642 ring_list);
2643
2644 i915_gem_object_move_to_inactive(obj);
2645 }
2646
2647 /*
2648 * Clear the execlists queue up before freeing the requests, as those
2649 * are the ones that keep the context and ringbuffer backing objects
2650 * pinned in place.
2651 */
2652 while (!list_empty(&ring->execlist_queue)) {
2653 struct intel_ctx_submit_request *submit_req;
2654
2655 submit_req = list_first_entry(&ring->execlist_queue,
2656 struct intel_ctx_submit_request,
2657 execlist_link);
2658 list_del(&submit_req->execlist_link);
2659 intel_runtime_pm_put(dev_priv);
2660 i915_gem_context_unreference(submit_req->request->ctx);
2661 kfree(submit_req);
2662 }
2663
2664 /*
2665 * We must free the requests after all the corresponding objects have
2666 * been moved off active lists. Which is the same order as the normal
2667 * retire_requests function does. This is important if object hold
2668 * implicit references on things like e.g. ppgtt address spaces through
2669 * the request.
2670 */
2671 while (!list_empty(&ring->request_list)) {
2672 struct drm_i915_gem_request *request;
2673
2674 request = list_first_entry(&ring->request_list,
2675 struct drm_i915_gem_request,
2676 list);
2677
2678 i915_gem_free_request(request);
2679 }
2680
2681 /* This may not have been flushed before the reset, so clean it now */
2682 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2683 }
2684
2685 void i915_gem_restore_fences(struct drm_device *dev)
2686 {
2687 struct drm_i915_private *dev_priv = dev->dev_private;
2688 int i;
2689
2690 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2691 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2692
2693 /*
2694 * Commit delayed tiling changes if we have an object still
2695 * attached to the fence, otherwise just clear the fence.
2696 */
2697 if (reg->obj) {
2698 i915_gem_object_update_fence(reg->obj, reg,
2699 reg->obj->tiling_mode);
2700 } else {
2701 i915_gem_write_fence(dev, i, NULL);
2702 }
2703 }
2704 }
2705
2706 void i915_gem_reset(struct drm_device *dev)
2707 {
2708 struct drm_i915_private *dev_priv = dev->dev_private;
2709 struct intel_engine_cs *ring;
2710 int i;
2711
2712 /*
2713 * Before we free the objects from the requests, we need to inspect
2714 * them for finding the guilty party. As the requests only borrow
2715 * their reference to the objects, the inspection must be done first.
2716 */
2717 for_each_ring(ring, dev_priv, i)
2718 i915_gem_reset_ring_status(dev_priv, ring);
2719
2720 for_each_ring(ring, dev_priv, i)
2721 i915_gem_reset_ring_cleanup(dev_priv, ring);
2722
2723 i915_gem_context_reset(dev);
2724
2725 i915_gem_restore_fences(dev);
2726 }
2727
2728 /**
2729 * This function clears the request list as sequence numbers are passed.
2730 */
2731 void
2732 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2733 {
2734 if (list_empty(&ring->request_list))
2735 return;
2736
2737 WARN_ON(i915_verify_lists(ring->dev));
2738
2739 /* Move any buffers on the active list that are no longer referenced
2740 * by the ringbuffer to the flushing/inactive lists as appropriate,
2741 * before we free the context associated with the requests.
2742 */
2743 while (!list_empty(&ring->active_list)) {
2744 struct drm_i915_gem_object *obj;
2745
2746 obj = list_first_entry(&ring->active_list,
2747 struct drm_i915_gem_object,
2748 ring_list);
2749
2750 if (!i915_gem_request_completed(obj->last_read_req, true))
2751 break;
2752
2753 i915_gem_object_move_to_inactive(obj);
2754 }
2755
2756
2757 while (!list_empty(&ring->request_list)) {
2758 struct drm_i915_gem_request *request;
2759 struct intel_ringbuffer *ringbuf;
2760
2761 request = list_first_entry(&ring->request_list,
2762 struct drm_i915_gem_request,
2763 list);
2764
2765 if (!i915_gem_request_completed(request, true))
2766 break;
2767
2768 trace_i915_gem_request_retire(request);
2769
2770 /* This is one of the few common intersection points
2771 * between legacy ringbuffer submission and execlists:
2772 * we need to tell them apart in order to find the correct
2773 * ringbuffer to which the request belongs to.
2774 */
2775 if (i915.enable_execlists) {
2776 struct intel_context *ctx = request->ctx;
2777 ringbuf = ctx->engine[ring->id].ringbuf;
2778 } else
2779 ringbuf = ring->buffer;
2780
2781 /* We know the GPU must have read the request to have
2782 * sent us the seqno + interrupt, so use the position
2783 * of tail of the request to update the last known position
2784 * of the GPU head.
2785 */
2786 ringbuf->last_retired_head = request->postfix;
2787
2788 i915_gem_free_request(request);
2789 }
2790
2791 if (unlikely(ring->trace_irq_req &&
2792 i915_gem_request_completed(ring->trace_irq_req, true))) {
2793 ring->irq_put(ring);
2794 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2795 }
2796
2797 WARN_ON(i915_verify_lists(ring->dev));
2798 }
2799
2800 bool
2801 i915_gem_retire_requests(struct drm_device *dev)
2802 {
2803 struct drm_i915_private *dev_priv = dev->dev_private;
2804 struct intel_engine_cs *ring;
2805 bool idle = true;
2806 int i;
2807
2808 for_each_ring(ring, dev_priv, i) {
2809 i915_gem_retire_requests_ring(ring);
2810 idle &= list_empty(&ring->request_list);
2811 if (i915.enable_execlists) {
2812 unsigned long flags;
2813
2814 spin_lock_irqsave(&ring->execlist_lock, flags);
2815 idle &= list_empty(&ring->execlist_queue);
2816 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2817
2818 intel_execlists_retire_requests(ring);
2819 }
2820 }
2821
2822 if (idle)
2823 mod_delayed_work(dev_priv->wq,
2824 &dev_priv->mm.idle_work,
2825 msecs_to_jiffies(100));
2826
2827 return idle;
2828 }
2829
2830 static void
2831 i915_gem_retire_work_handler(struct work_struct *work)
2832 {
2833 struct drm_i915_private *dev_priv =
2834 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2835 struct drm_device *dev = dev_priv->dev;
2836 bool idle;
2837
2838 /* Come back later if the device is busy... */
2839 idle = false;
2840 if (mutex_trylock(&dev->struct_mutex)) {
2841 idle = i915_gem_retire_requests(dev);
2842 mutex_unlock(&dev->struct_mutex);
2843 }
2844 if (!idle)
2845 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2846 round_jiffies_up_relative(HZ));
2847 }
2848
2849 static void
2850 i915_gem_idle_work_handler(struct work_struct *work)
2851 {
2852 struct drm_i915_private *dev_priv =
2853 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2854
2855 intel_mark_idle(dev_priv->dev);
2856 }
2857
2858 /**
2859 * Ensures that an object will eventually get non-busy by flushing any required
2860 * write domains, emitting any outstanding lazy request and retiring and
2861 * completed requests.
2862 */
2863 static int
2864 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2865 {
2866 struct intel_engine_cs *ring;
2867 int ret;
2868
2869 if (obj->active) {
2870 ring = i915_gem_request_get_ring(obj->last_read_req);
2871
2872 ret = i915_gem_check_olr(obj->last_read_req);
2873 if (ret)
2874 return ret;
2875
2876 i915_gem_retire_requests_ring(ring);
2877 }
2878
2879 return 0;
2880 }
2881
2882 /**
2883 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2884 * @DRM_IOCTL_ARGS: standard ioctl arguments
2885 *
2886 * Returns 0 if successful, else an error is returned with the remaining time in
2887 * the timeout parameter.
2888 * -ETIME: object is still busy after timeout
2889 * -ERESTARTSYS: signal interrupted the wait
2890 * -ENONENT: object doesn't exist
2891 * Also possible, but rare:
2892 * -EAGAIN: GPU wedged
2893 * -ENOMEM: damn
2894 * -ENODEV: Internal IRQ fail
2895 * -E?: The add request failed
2896 *
2897 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2898 * non-zero timeout parameter the wait ioctl will wait for the given number of
2899 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2900 * without holding struct_mutex the object may become re-busied before this
2901 * function completes. A similar but shorter * race condition exists in the busy
2902 * ioctl
2903 */
2904 int
2905 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2906 {
2907 struct drm_i915_private *dev_priv = dev->dev_private;
2908 struct drm_i915_gem_wait *args = data;
2909 struct drm_i915_gem_object *obj;
2910 struct drm_i915_gem_request *req;
2911 unsigned reset_counter;
2912 int ret = 0;
2913
2914 if (args->flags != 0)
2915 return -EINVAL;
2916
2917 ret = i915_mutex_lock_interruptible(dev);
2918 if (ret)
2919 return ret;
2920
2921 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2922 if (&obj->base == NULL) {
2923 mutex_unlock(&dev->struct_mutex);
2924 return -ENOENT;
2925 }
2926
2927 /* Need to make sure the object gets inactive eventually. */
2928 ret = i915_gem_object_flush_active(obj);
2929 if (ret)
2930 goto out;
2931
2932 if (!obj->active || !obj->last_read_req)
2933 goto out;
2934
2935 req = obj->last_read_req;
2936
2937 /* Do this after OLR check to make sure we make forward progress polling
2938 * on this IOCTL with a timeout <=0 (like busy ioctl)
2939 */
2940 if (args->timeout_ns <= 0) {
2941 ret = -ETIME;
2942 goto out;
2943 }
2944
2945 drm_gem_object_unreference(&obj->base);
2946 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2947 i915_gem_request_reference(req);
2948 mutex_unlock(&dev->struct_mutex);
2949
2950 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2951 file->driver_priv);
2952 mutex_lock(&dev->struct_mutex);
2953 i915_gem_request_unreference(req);
2954 mutex_unlock(&dev->struct_mutex);
2955 return ret;
2956
2957 out:
2958 drm_gem_object_unreference(&obj->base);
2959 mutex_unlock(&dev->struct_mutex);
2960 return ret;
2961 }
2962
2963 /**
2964 * i915_gem_object_sync - sync an object to a ring.
2965 *
2966 * @obj: object which may be in use on another ring.
2967 * @to: ring we wish to use the object on. May be NULL.
2968 *
2969 * This code is meant to abstract object synchronization with the GPU.
2970 * Calling with NULL implies synchronizing the object with the CPU
2971 * rather than a particular GPU ring.
2972 *
2973 * Returns 0 if successful, else propagates up the lower layer error.
2974 */
2975 int
2976 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2977 struct intel_engine_cs *to)
2978 {
2979 struct intel_engine_cs *from;
2980 u32 seqno;
2981 int ret, idx;
2982
2983 from = i915_gem_request_get_ring(obj->last_read_req);
2984
2985 if (from == NULL || to == from)
2986 return 0;
2987
2988 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2989 return i915_gem_object_wait_rendering(obj, false);
2990
2991 idx = intel_ring_sync_index(from, to);
2992
2993 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2994 /* Optimization: Avoid semaphore sync when we are sure we already
2995 * waited for an object with higher seqno */
2996 if (seqno <= from->semaphore.sync_seqno[idx])
2997 return 0;
2998
2999 ret = i915_gem_check_olr(obj->last_read_req);
3000 if (ret)
3001 return ret;
3002
3003 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3004 ret = to->semaphore.sync_to(to, from, seqno);
3005 if (!ret)
3006 /* We use last_read_req because sync_to()
3007 * might have just caused seqno wrap under
3008 * the radar.
3009 */
3010 from->semaphore.sync_seqno[idx] =
3011 i915_gem_request_get_seqno(obj->last_read_req);
3012
3013 return ret;
3014 }
3015
3016 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3017 {
3018 u32 old_write_domain, old_read_domains;
3019
3020 /* Force a pagefault for domain tracking on next user access */
3021 i915_gem_release_mmap(obj);
3022
3023 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3024 return;
3025
3026 /* Wait for any direct GTT access to complete */
3027 mb();
3028
3029 old_read_domains = obj->base.read_domains;
3030 old_write_domain = obj->base.write_domain;
3031
3032 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3033 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3034
3035 trace_i915_gem_object_change_domain(obj,
3036 old_read_domains,
3037 old_write_domain);
3038 }
3039
3040 int i915_vma_unbind(struct i915_vma *vma)
3041 {
3042 struct drm_i915_gem_object *obj = vma->obj;
3043 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3044 int ret;
3045
3046 if (list_empty(&vma->vma_link))
3047 return 0;
3048
3049 if (!drm_mm_node_allocated(&vma->node)) {
3050 i915_gem_vma_destroy(vma);
3051 return 0;
3052 }
3053
3054 if (vma->pin_count)
3055 return -EBUSY;
3056
3057 BUG_ON(obj->pages == NULL);
3058
3059 ret = i915_gem_object_finish_gpu(obj);
3060 if (ret)
3061 return ret;
3062 /* Continue on if we fail due to EIO, the GPU is hung so we
3063 * should be safe and we need to cleanup or else we might
3064 * cause memory corruption through use-after-free.
3065 */
3066
3067 if (i915_is_ggtt(vma->vm) &&
3068 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3069 i915_gem_object_finish_gtt(obj);
3070
3071 /* release the fence reg _after_ flushing */
3072 ret = i915_gem_object_put_fence(obj);
3073 if (ret)
3074 return ret;
3075 }
3076
3077 trace_i915_vma_unbind(vma);
3078
3079 vma->unbind_vma(vma);
3080
3081 list_del_init(&vma->mm_list);
3082 if (i915_is_ggtt(vma->vm)) {
3083 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3084 obj->map_and_fenceable = false;
3085 } else if (vma->ggtt_view.pages) {
3086 sg_free_table(vma->ggtt_view.pages);
3087 kfree(vma->ggtt_view.pages);
3088 vma->ggtt_view.pages = NULL;
3089 }
3090 }
3091
3092 drm_mm_remove_node(&vma->node);
3093 i915_gem_vma_destroy(vma);
3094
3095 /* Since the unbound list is global, only move to that list if
3096 * no more VMAs exist. */
3097 if (list_empty(&obj->vma_list)) {
3098 /* Throw away the active reference before
3099 * moving to the unbound list. */
3100 i915_gem_object_retire(obj);
3101
3102 i915_gem_gtt_finish_object(obj);
3103 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3104 }
3105
3106 /* And finally now the object is completely decoupled from this vma,
3107 * we can drop its hold on the backing storage and allow it to be
3108 * reaped by the shrinker.
3109 */
3110 i915_gem_object_unpin_pages(obj);
3111
3112 return 0;
3113 }
3114
3115 int i915_gpu_idle(struct drm_device *dev)
3116 {
3117 struct drm_i915_private *dev_priv = dev->dev_private;
3118 struct intel_engine_cs *ring;
3119 int ret, i;
3120
3121 /* Flush everything onto the inactive list. */
3122 for_each_ring(ring, dev_priv, i) {
3123 if (!i915.enable_execlists) {
3124 ret = i915_switch_context(ring, ring->default_context);
3125 if (ret)
3126 return ret;
3127 }
3128
3129 ret = intel_ring_idle(ring);
3130 if (ret)
3131 return ret;
3132 }
3133
3134 return 0;
3135 }
3136
3137 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3138 struct drm_i915_gem_object *obj)
3139 {
3140 struct drm_i915_private *dev_priv = dev->dev_private;
3141 int fence_reg;
3142 int fence_pitch_shift;
3143
3144 if (INTEL_INFO(dev)->gen >= 6) {
3145 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3146 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3147 } else {
3148 fence_reg = FENCE_REG_965_0;
3149 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3150 }
3151
3152 fence_reg += reg * 8;
3153
3154 /* To w/a incoherency with non-atomic 64-bit register updates,
3155 * we split the 64-bit update into two 32-bit writes. In order
3156 * for a partial fence not to be evaluated between writes, we
3157 * precede the update with write to turn off the fence register,
3158 * and only enable the fence as the last step.
3159 *
3160 * For extra levels of paranoia, we make sure each step lands
3161 * before applying the next step.
3162 */
3163 I915_WRITE(fence_reg, 0);
3164 POSTING_READ(fence_reg);
3165
3166 if (obj) {
3167 u32 size = i915_gem_obj_ggtt_size(obj);
3168 uint64_t val;
3169
3170 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3171 0xfffff000) << 32;
3172 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3173 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3174 if (obj->tiling_mode == I915_TILING_Y)
3175 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3176 val |= I965_FENCE_REG_VALID;
3177
3178 I915_WRITE(fence_reg + 4, val >> 32);
3179 POSTING_READ(fence_reg + 4);
3180
3181 I915_WRITE(fence_reg + 0, val);
3182 POSTING_READ(fence_reg);
3183 } else {
3184 I915_WRITE(fence_reg + 4, 0);
3185 POSTING_READ(fence_reg + 4);
3186 }
3187 }
3188
3189 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3190 struct drm_i915_gem_object *obj)
3191 {
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 u32 val;
3194
3195 if (obj) {
3196 u32 size = i915_gem_obj_ggtt_size(obj);
3197 int pitch_val;
3198 int tile_width;
3199
3200 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3201 (size & -size) != size ||
3202 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3203 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3204 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3205
3206 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3207 tile_width = 128;
3208 else
3209 tile_width = 512;
3210
3211 /* Note: pitch better be a power of two tile widths */
3212 pitch_val = obj->stride / tile_width;
3213 pitch_val = ffs(pitch_val) - 1;
3214
3215 val = i915_gem_obj_ggtt_offset(obj);
3216 if (obj->tiling_mode == I915_TILING_Y)
3217 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3218 val |= I915_FENCE_SIZE_BITS(size);
3219 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3220 val |= I830_FENCE_REG_VALID;
3221 } else
3222 val = 0;
3223
3224 if (reg < 8)
3225 reg = FENCE_REG_830_0 + reg * 4;
3226 else
3227 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3228
3229 I915_WRITE(reg, val);
3230 POSTING_READ(reg);
3231 }
3232
3233 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3234 struct drm_i915_gem_object *obj)
3235 {
3236 struct drm_i915_private *dev_priv = dev->dev_private;
3237 uint32_t val;
3238
3239 if (obj) {
3240 u32 size = i915_gem_obj_ggtt_size(obj);
3241 uint32_t pitch_val;
3242
3243 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3244 (size & -size) != size ||
3245 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3246 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3247 i915_gem_obj_ggtt_offset(obj), size);
3248
3249 pitch_val = obj->stride / 128;
3250 pitch_val = ffs(pitch_val) - 1;
3251
3252 val = i915_gem_obj_ggtt_offset(obj);
3253 if (obj->tiling_mode == I915_TILING_Y)
3254 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3255 val |= I830_FENCE_SIZE_BITS(size);
3256 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3257 val |= I830_FENCE_REG_VALID;
3258 } else
3259 val = 0;
3260
3261 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3262 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3263 }
3264
3265 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3266 {
3267 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3268 }
3269
3270 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3271 struct drm_i915_gem_object *obj)
3272 {
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274
3275 /* Ensure that all CPU reads are completed before installing a fence
3276 * and all writes before removing the fence.
3277 */
3278 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3279 mb();
3280
3281 WARN(obj && (!obj->stride || !obj->tiling_mode),
3282 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3283 obj->stride, obj->tiling_mode);
3284
3285 if (IS_GEN2(dev))
3286 i830_write_fence_reg(dev, reg, obj);
3287 else if (IS_GEN3(dev))
3288 i915_write_fence_reg(dev, reg, obj);
3289 else if (INTEL_INFO(dev)->gen >= 4)
3290 i965_write_fence_reg(dev, reg, obj);
3291
3292 /* And similarly be paranoid that no direct access to this region
3293 * is reordered to before the fence is installed.
3294 */
3295 if (i915_gem_object_needs_mb(obj))
3296 mb();
3297 }
3298
3299 static inline int fence_number(struct drm_i915_private *dev_priv,
3300 struct drm_i915_fence_reg *fence)
3301 {
3302 return fence - dev_priv->fence_regs;
3303 }
3304
3305 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3306 struct drm_i915_fence_reg *fence,
3307 bool enable)
3308 {
3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310 int reg = fence_number(dev_priv, fence);
3311
3312 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3313
3314 if (enable) {
3315 obj->fence_reg = reg;
3316 fence->obj = obj;
3317 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3318 } else {
3319 obj->fence_reg = I915_FENCE_REG_NONE;
3320 fence->obj = NULL;
3321 list_del_init(&fence->lru_list);
3322 }
3323 obj->fence_dirty = false;
3324 }
3325
3326 static int
3327 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3328 {
3329 if (obj->last_fenced_req) {
3330 int ret = i915_wait_request(obj->last_fenced_req);
3331 if (ret)
3332 return ret;
3333
3334 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3335 }
3336
3337 return 0;
3338 }
3339
3340 int
3341 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3342 {
3343 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3344 struct drm_i915_fence_reg *fence;
3345 int ret;
3346
3347 ret = i915_gem_object_wait_fence(obj);
3348 if (ret)
3349 return ret;
3350
3351 if (obj->fence_reg == I915_FENCE_REG_NONE)
3352 return 0;
3353
3354 fence = &dev_priv->fence_regs[obj->fence_reg];
3355
3356 if (WARN_ON(fence->pin_count))
3357 return -EBUSY;
3358
3359 i915_gem_object_fence_lost(obj);
3360 i915_gem_object_update_fence(obj, fence, false);
3361
3362 return 0;
3363 }
3364
3365 static struct drm_i915_fence_reg *
3366 i915_find_fence_reg(struct drm_device *dev)
3367 {
3368 struct drm_i915_private *dev_priv = dev->dev_private;
3369 struct drm_i915_fence_reg *reg, *avail;
3370 int i;
3371
3372 /* First try to find a free reg */
3373 avail = NULL;
3374 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3375 reg = &dev_priv->fence_regs[i];
3376 if (!reg->obj)
3377 return reg;
3378
3379 if (!reg->pin_count)
3380 avail = reg;
3381 }
3382
3383 if (avail == NULL)
3384 goto deadlock;
3385
3386 /* None available, try to steal one or wait for a user to finish */
3387 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3388 if (reg->pin_count)
3389 continue;
3390
3391 return reg;
3392 }
3393
3394 deadlock:
3395 /* Wait for completion of pending flips which consume fences */
3396 if (intel_has_pending_fb_unpin(dev))
3397 return ERR_PTR(-EAGAIN);
3398
3399 return ERR_PTR(-EDEADLK);
3400 }
3401
3402 /**
3403 * i915_gem_object_get_fence - set up fencing for an object
3404 * @obj: object to map through a fence reg
3405 *
3406 * When mapping objects through the GTT, userspace wants to be able to write
3407 * to them without having to worry about swizzling if the object is tiled.
3408 * This function walks the fence regs looking for a free one for @obj,
3409 * stealing one if it can't find any.
3410 *
3411 * It then sets up the reg based on the object's properties: address, pitch
3412 * and tiling format.
3413 *
3414 * For an untiled surface, this removes any existing fence.
3415 */
3416 int
3417 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3418 {
3419 struct drm_device *dev = obj->base.dev;
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 bool enable = obj->tiling_mode != I915_TILING_NONE;
3422 struct drm_i915_fence_reg *reg;
3423 int ret;
3424
3425 /* Have we updated the tiling parameters upon the object and so
3426 * will need to serialise the write to the associated fence register?
3427 */
3428 if (obj->fence_dirty) {
3429 ret = i915_gem_object_wait_fence(obj);
3430 if (ret)
3431 return ret;
3432 }
3433
3434 /* Just update our place in the LRU if our fence is getting reused. */
3435 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3436 reg = &dev_priv->fence_regs[obj->fence_reg];
3437 if (!obj->fence_dirty) {
3438 list_move_tail(&reg->lru_list,
3439 &dev_priv->mm.fence_list);
3440 return 0;
3441 }
3442 } else if (enable) {
3443 if (WARN_ON(!obj->map_and_fenceable))
3444 return -EINVAL;
3445
3446 reg = i915_find_fence_reg(dev);
3447 if (IS_ERR(reg))
3448 return PTR_ERR(reg);
3449
3450 if (reg->obj) {
3451 struct drm_i915_gem_object *old = reg->obj;
3452
3453 ret = i915_gem_object_wait_fence(old);
3454 if (ret)
3455 return ret;
3456
3457 i915_gem_object_fence_lost(old);
3458 }
3459 } else
3460 return 0;
3461
3462 i915_gem_object_update_fence(obj, reg, enable);
3463
3464 return 0;
3465 }
3466
3467 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3468 unsigned long cache_level)
3469 {
3470 struct drm_mm_node *gtt_space = &vma->node;
3471 struct drm_mm_node *other;
3472
3473 /*
3474 * On some machines we have to be careful when putting differing types
3475 * of snoopable memory together to avoid the prefetcher crossing memory
3476 * domains and dying. During vm initialisation, we decide whether or not
3477 * these constraints apply and set the drm_mm.color_adjust
3478 * appropriately.
3479 */
3480 if (vma->vm->mm.color_adjust == NULL)
3481 return true;
3482
3483 if (!drm_mm_node_allocated(gtt_space))
3484 return true;
3485
3486 if (list_empty(&gtt_space->node_list))
3487 return true;
3488
3489 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3490 if (other->allocated && !other->hole_follows && other->color != cache_level)
3491 return false;
3492
3493 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3494 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3495 return false;
3496
3497 return true;
3498 }
3499
3500 /**
3501 * Finds free space in the GTT aperture and binds the object there.
3502 */
3503 static struct i915_vma *
3504 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3505 struct i915_address_space *vm,
3506 unsigned alignment,
3507 uint64_t flags,
3508 const struct i915_ggtt_view *view)
3509 {
3510 struct drm_device *dev = obj->base.dev;
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512 u32 size, fence_size, fence_alignment, unfenced_alignment;
3513 unsigned long start =
3514 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3515 unsigned long end =
3516 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3517 struct i915_vma *vma;
3518 int ret;
3519
3520 fence_size = i915_gem_get_gtt_size(dev,
3521 obj->base.size,
3522 obj->tiling_mode);
3523 fence_alignment = i915_gem_get_gtt_alignment(dev,
3524 obj->base.size,
3525 obj->tiling_mode, true);
3526 unfenced_alignment =
3527 i915_gem_get_gtt_alignment(dev,
3528 obj->base.size,
3529 obj->tiling_mode, false);
3530
3531 if (alignment == 0)
3532 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3533 unfenced_alignment;
3534 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3535 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3536 return ERR_PTR(-EINVAL);
3537 }
3538
3539 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3540
3541 /* If the object is bigger than the entire aperture, reject it early
3542 * before evicting everything in a vain attempt to find space.
3543 */
3544 if (obj->base.size > end) {
3545 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3546 obj->base.size,
3547 flags & PIN_MAPPABLE ? "mappable" : "total",
3548 end);
3549 return ERR_PTR(-E2BIG);
3550 }
3551
3552 ret = i915_gem_object_get_pages(obj);
3553 if (ret)
3554 return ERR_PTR(ret);
3555
3556 i915_gem_object_pin_pages(obj);
3557
3558 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3559 if (IS_ERR(vma))
3560 goto err_unpin;
3561
3562 search_free:
3563 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3564 size, alignment,
3565 obj->cache_level,
3566 start, end,
3567 DRM_MM_SEARCH_DEFAULT,
3568 DRM_MM_CREATE_DEFAULT);
3569 if (ret) {
3570 ret = i915_gem_evict_something(dev, vm, size, alignment,
3571 obj->cache_level,
3572 start, end,
3573 flags);
3574 if (ret == 0)
3575 goto search_free;
3576
3577 goto err_free_vma;
3578 }
3579 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3580 ret = -EINVAL;
3581 goto err_remove_node;
3582 }
3583
3584 ret = i915_gem_gtt_prepare_object(obj);
3585 if (ret)
3586 goto err_remove_node;
3587
3588 trace_i915_vma_bind(vma, flags);
3589 ret = i915_vma_bind(vma, obj->cache_level,
3590 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591 if (ret)
3592 goto err_finish_gtt;
3593
3594 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3595 list_add_tail(&vma->mm_list, &vm->inactive_list);
3596
3597 return vma;
3598
3599 err_finish_gtt:
3600 i915_gem_gtt_finish_object(obj);
3601 err_remove_node:
3602 drm_mm_remove_node(&vma->node);
3603 err_free_vma:
3604 i915_gem_vma_destroy(vma);
3605 vma = ERR_PTR(ret);
3606 err_unpin:
3607 i915_gem_object_unpin_pages(obj);
3608 return vma;
3609 }
3610
3611 bool
3612 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3613 bool force)
3614 {
3615 /* If we don't have a page list set up, then we're not pinned
3616 * to GPU, and we can ignore the cache flush because it'll happen
3617 * again at bind time.
3618 */
3619 if (obj->pages == NULL)
3620 return false;
3621
3622 /*
3623 * Stolen memory is always coherent with the GPU as it is explicitly
3624 * marked as wc by the system, or the system is cache-coherent.
3625 */
3626 if (obj->stolen || obj->phys_handle)
3627 return false;
3628
3629 /* If the GPU is snooping the contents of the CPU cache,
3630 * we do not need to manually clear the CPU cache lines. However,
3631 * the caches are only snooped when the render cache is
3632 * flushed/invalidated. As we always have to emit invalidations
3633 * and flushes when moving into and out of the RENDER domain, correct
3634 * snooping behaviour occurs naturally as the result of our domain
3635 * tracking.
3636 */
3637 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3638 return false;
3639
3640 trace_i915_gem_object_clflush(obj);
3641 drm_clflush_sg(obj->pages);
3642
3643 return true;
3644 }
3645
3646 /** Flushes the GTT write domain for the object if it's dirty. */
3647 static void
3648 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3649 {
3650 uint32_t old_write_domain;
3651
3652 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3653 return;
3654
3655 /* No actual flushing is required for the GTT write domain. Writes
3656 * to it immediately go to main memory as far as we know, so there's
3657 * no chipset flush. It also doesn't land in render cache.
3658 *
3659 * However, we do have to enforce the order so that all writes through
3660 * the GTT land before any writes to the device, such as updates to
3661 * the GATT itself.
3662 */
3663 wmb();
3664
3665 old_write_domain = obj->base.write_domain;
3666 obj->base.write_domain = 0;
3667
3668 intel_fb_obj_flush(obj, false);
3669
3670 trace_i915_gem_object_change_domain(obj,
3671 obj->base.read_domains,
3672 old_write_domain);
3673 }
3674
3675 /** Flushes the CPU write domain for the object if it's dirty. */
3676 static void
3677 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3678 bool force)
3679 {
3680 uint32_t old_write_domain;
3681
3682 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3683 return;
3684
3685 if (i915_gem_clflush_object(obj, force))
3686 i915_gem_chipset_flush(obj->base.dev);
3687
3688 old_write_domain = obj->base.write_domain;
3689 obj->base.write_domain = 0;
3690
3691 intel_fb_obj_flush(obj, false);
3692
3693 trace_i915_gem_object_change_domain(obj,
3694 obj->base.read_domains,
3695 old_write_domain);
3696 }
3697
3698 /**
3699 * Moves a single object to the GTT read, and possibly write domain.
3700 *
3701 * This function returns when the move is complete, including waiting on
3702 * flushes to occur.
3703 */
3704 int
3705 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3706 {
3707 uint32_t old_write_domain, old_read_domains;
3708 struct i915_vma *vma;
3709 int ret;
3710
3711 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3712 return 0;
3713
3714 ret = i915_gem_object_wait_rendering(obj, !write);
3715 if (ret)
3716 return ret;
3717
3718 i915_gem_object_retire(obj);
3719
3720 /* Flush and acquire obj->pages so that we are coherent through
3721 * direct access in memory with previous cached writes through
3722 * shmemfs and that our cache domain tracking remains valid.
3723 * For example, if the obj->filp was moved to swap without us
3724 * being notified and releasing the pages, we would mistakenly
3725 * continue to assume that the obj remained out of the CPU cached
3726 * domain.
3727 */
3728 ret = i915_gem_object_get_pages(obj);
3729 if (ret)
3730 return ret;
3731
3732 i915_gem_object_flush_cpu_write_domain(obj, false);
3733
3734 /* Serialise direct access to this object with the barriers for
3735 * coherent writes from the GPU, by effectively invalidating the
3736 * GTT domain upon first access.
3737 */
3738 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3739 mb();
3740
3741 old_write_domain = obj->base.write_domain;
3742 old_read_domains = obj->base.read_domains;
3743
3744 /* It should now be out of any other write domains, and we can update
3745 * the domain values for our changes.
3746 */
3747 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3748 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3749 if (write) {
3750 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3751 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3752 obj->dirty = 1;
3753 }
3754
3755 if (write)
3756 intel_fb_obj_invalidate(obj, NULL);
3757
3758 trace_i915_gem_object_change_domain(obj,
3759 old_read_domains,
3760 old_write_domain);
3761
3762 /* And bump the LRU for this access */
3763 vma = i915_gem_obj_to_ggtt(obj);
3764 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3765 list_move_tail(&vma->mm_list,
3766 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3767
3768 return 0;
3769 }
3770
3771 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3772 enum i915_cache_level cache_level)
3773 {
3774 struct drm_device *dev = obj->base.dev;
3775 struct i915_vma *vma, *next;
3776 int ret;
3777
3778 if (obj->cache_level == cache_level)
3779 return 0;
3780
3781 if (i915_gem_obj_is_pinned(obj)) {
3782 DRM_DEBUG("can not change the cache level of pinned objects\n");
3783 return -EBUSY;
3784 }
3785
3786 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3787 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3788 ret = i915_vma_unbind(vma);
3789 if (ret)
3790 return ret;
3791 }
3792 }
3793
3794 if (i915_gem_obj_bound_any(obj)) {
3795 ret = i915_gem_object_finish_gpu(obj);
3796 if (ret)
3797 return ret;
3798
3799 i915_gem_object_finish_gtt(obj);
3800
3801 /* Before SandyBridge, you could not use tiling or fence
3802 * registers with snooped memory, so relinquish any fences
3803 * currently pointing to our region in the aperture.
3804 */
3805 if (INTEL_INFO(dev)->gen < 6) {
3806 ret = i915_gem_object_put_fence(obj);
3807 if (ret)
3808 return ret;
3809 }
3810
3811 list_for_each_entry(vma, &obj->vma_list, vma_link)
3812 if (drm_mm_node_allocated(&vma->node)) {
3813 ret = i915_vma_bind(vma, cache_level,
3814 vma->bound & GLOBAL_BIND);
3815 if (ret)
3816 return ret;
3817 }
3818 }
3819
3820 list_for_each_entry(vma, &obj->vma_list, vma_link)
3821 vma->node.color = cache_level;
3822 obj->cache_level = cache_level;
3823
3824 if (cpu_write_needs_clflush(obj)) {
3825 u32 old_read_domains, old_write_domain;
3826
3827 /* If we're coming from LLC cached, then we haven't
3828 * actually been tracking whether the data is in the
3829 * CPU cache or not, since we only allow one bit set
3830 * in obj->write_domain and have been skipping the clflushes.
3831 * Just set it to the CPU cache for now.
3832 */
3833 i915_gem_object_retire(obj);
3834 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3835
3836 old_read_domains = obj->base.read_domains;
3837 old_write_domain = obj->base.write_domain;
3838
3839 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3840 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3841
3842 trace_i915_gem_object_change_domain(obj,
3843 old_read_domains,
3844 old_write_domain);
3845 }
3846
3847 return 0;
3848 }
3849
3850 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3851 struct drm_file *file)
3852 {
3853 struct drm_i915_gem_caching *args = data;
3854 struct drm_i915_gem_object *obj;
3855 int ret;
3856
3857 ret = i915_mutex_lock_interruptible(dev);
3858 if (ret)
3859 return ret;
3860
3861 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3862 if (&obj->base == NULL) {
3863 ret = -ENOENT;
3864 goto unlock;
3865 }
3866
3867 switch (obj->cache_level) {
3868 case I915_CACHE_LLC:
3869 case I915_CACHE_L3_LLC:
3870 args->caching = I915_CACHING_CACHED;
3871 break;
3872
3873 case I915_CACHE_WT:
3874 args->caching = I915_CACHING_DISPLAY;
3875 break;
3876
3877 default:
3878 args->caching = I915_CACHING_NONE;
3879 break;
3880 }
3881
3882 drm_gem_object_unreference(&obj->base);
3883 unlock:
3884 mutex_unlock(&dev->struct_mutex);
3885 return ret;
3886 }
3887
3888 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3889 struct drm_file *file)
3890 {
3891 struct drm_i915_gem_caching *args = data;
3892 struct drm_i915_gem_object *obj;
3893 enum i915_cache_level level;
3894 int ret;
3895
3896 switch (args->caching) {
3897 case I915_CACHING_NONE:
3898 level = I915_CACHE_NONE;
3899 break;
3900 case I915_CACHING_CACHED:
3901 level = I915_CACHE_LLC;
3902 break;
3903 case I915_CACHING_DISPLAY:
3904 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3905 break;
3906 default:
3907 return -EINVAL;
3908 }
3909
3910 ret = i915_mutex_lock_interruptible(dev);
3911 if (ret)
3912 return ret;
3913
3914 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3915 if (&obj->base == NULL) {
3916 ret = -ENOENT;
3917 goto unlock;
3918 }
3919
3920 ret = i915_gem_object_set_cache_level(obj, level);
3921
3922 drm_gem_object_unreference(&obj->base);
3923 unlock:
3924 mutex_unlock(&dev->struct_mutex);
3925 return ret;
3926 }
3927
3928 static bool is_pin_display(struct drm_i915_gem_object *obj)
3929 {
3930 struct i915_vma *vma;
3931
3932 vma = i915_gem_obj_to_ggtt(obj);
3933 if (!vma)
3934 return false;
3935
3936 /* There are 2 sources that pin objects:
3937 * 1. The display engine (scanouts, sprites, cursors);
3938 * 2. Reservations for execbuffer;
3939 *
3940 * We can ignore reservations as we hold the struct_mutex and
3941 * are only called outside of the reservation path.
3942 */
3943 return vma->pin_count;
3944 }
3945
3946 /*
3947 * Prepare buffer for display plane (scanout, cursors, etc).
3948 * Can be called from an uninterruptible phase (modesetting) and allows
3949 * any flushes to be pipelined (for pageflips).
3950 */
3951 int
3952 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3953 u32 alignment,
3954 struct intel_engine_cs *pipelined)
3955 {
3956 u32 old_read_domains, old_write_domain;
3957 bool was_pin_display;
3958 int ret;
3959
3960 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3961 ret = i915_gem_object_sync(obj, pipelined);
3962 if (ret)
3963 return ret;
3964 }
3965
3966 /* Mark the pin_display early so that we account for the
3967 * display coherency whilst setting up the cache domains.
3968 */
3969 was_pin_display = obj->pin_display;
3970 obj->pin_display = true;
3971
3972 /* The display engine is not coherent with the LLC cache on gen6. As
3973 * a result, we make sure that the pinning that is about to occur is
3974 * done with uncached PTEs. This is lowest common denominator for all
3975 * chipsets.
3976 *
3977 * However for gen6+, we could do better by using the GFDT bit instead
3978 * of uncaching, which would allow us to flush all the LLC-cached data
3979 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3980 */
3981 ret = i915_gem_object_set_cache_level(obj,
3982 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3983 if (ret)
3984 goto err_unpin_display;
3985
3986 /* As the user may map the buffer once pinned in the display plane
3987 * (e.g. libkms for the bootup splash), we have to ensure that we
3988 * always use map_and_fenceable for all scanout buffers.
3989 */
3990 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3991 if (ret)
3992 goto err_unpin_display;
3993
3994 i915_gem_object_flush_cpu_write_domain(obj, true);
3995
3996 old_write_domain = obj->base.write_domain;
3997 old_read_domains = obj->base.read_domains;
3998
3999 /* It should now be out of any other write domains, and we can update
4000 * the domain values for our changes.
4001 */
4002 obj->base.write_domain = 0;
4003 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4004
4005 trace_i915_gem_object_change_domain(obj,
4006 old_read_domains,
4007 old_write_domain);
4008
4009 return 0;
4010
4011 err_unpin_display:
4012 WARN_ON(was_pin_display != is_pin_display(obj));
4013 obj->pin_display = was_pin_display;
4014 return ret;
4015 }
4016
4017 void
4018 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4019 {
4020 i915_gem_object_ggtt_unpin(obj);
4021 obj->pin_display = is_pin_display(obj);
4022 }
4023
4024 int
4025 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4026 {
4027 int ret;
4028
4029 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4030 return 0;
4031
4032 ret = i915_gem_object_wait_rendering(obj, false);
4033 if (ret)
4034 return ret;
4035
4036 /* Ensure that we invalidate the GPU's caches and TLBs. */
4037 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4038 return 0;
4039 }
4040
4041 /**
4042 * Moves a single object to the CPU read, and possibly write domain.
4043 *
4044 * This function returns when the move is complete, including waiting on
4045 * flushes to occur.
4046 */
4047 int
4048 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4049 {
4050 uint32_t old_write_domain, old_read_domains;
4051 int ret;
4052
4053 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4054 return 0;
4055
4056 ret = i915_gem_object_wait_rendering(obj, !write);
4057 if (ret)
4058 return ret;
4059
4060 i915_gem_object_retire(obj);
4061 i915_gem_object_flush_gtt_write_domain(obj);
4062
4063 old_write_domain = obj->base.write_domain;
4064 old_read_domains = obj->base.read_domains;
4065
4066 /* Flush the CPU cache if it's still invalid. */
4067 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4068 i915_gem_clflush_object(obj, false);
4069
4070 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4071 }
4072
4073 /* It should now be out of any other write domains, and we can update
4074 * the domain values for our changes.
4075 */
4076 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4077
4078 /* If we're writing through the CPU, then the GPU read domains will
4079 * need to be invalidated at next use.
4080 */
4081 if (write) {
4082 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4083 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4084 }
4085
4086 if (write)
4087 intel_fb_obj_invalidate(obj, NULL);
4088
4089 trace_i915_gem_object_change_domain(obj,
4090 old_read_domains,
4091 old_write_domain);
4092
4093 return 0;
4094 }
4095
4096 /* Throttle our rendering by waiting until the ring has completed our requests
4097 * emitted over 20 msec ago.
4098 *
4099 * Note that if we were to use the current jiffies each time around the loop,
4100 * we wouldn't escape the function with any frames outstanding if the time to
4101 * render a frame was over 20ms.
4102 *
4103 * This should get us reasonable parallelism between CPU and GPU but also
4104 * relatively low latency when blocking on a particular request to finish.
4105 */
4106 static int
4107 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4108 {
4109 struct drm_i915_private *dev_priv = dev->dev_private;
4110 struct drm_i915_file_private *file_priv = file->driver_priv;
4111 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4112 struct drm_i915_gem_request *request, *target = NULL;
4113 unsigned reset_counter;
4114 int ret;
4115
4116 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4117 if (ret)
4118 return ret;
4119
4120 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4121 if (ret)
4122 return ret;
4123
4124 spin_lock(&file_priv->mm.lock);
4125 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4126 if (time_after_eq(request->emitted_jiffies, recent_enough))
4127 break;
4128
4129 target = request;
4130 }
4131 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4132 if (target)
4133 i915_gem_request_reference(target);
4134 spin_unlock(&file_priv->mm.lock);
4135
4136 if (target == NULL)
4137 return 0;
4138
4139 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4140 if (ret == 0)
4141 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4142
4143 mutex_lock(&dev->struct_mutex);
4144 i915_gem_request_unreference(target);
4145 mutex_unlock(&dev->struct_mutex);
4146
4147 return ret;
4148 }
4149
4150 static bool
4151 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4152 {
4153 struct drm_i915_gem_object *obj = vma->obj;
4154
4155 if (alignment &&
4156 vma->node.start & (alignment - 1))
4157 return true;
4158
4159 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4160 return true;
4161
4162 if (flags & PIN_OFFSET_BIAS &&
4163 vma->node.start < (flags & PIN_OFFSET_MASK))
4164 return true;
4165
4166 return false;
4167 }
4168
4169 int
4170 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4171 struct i915_address_space *vm,
4172 uint32_t alignment,
4173 uint64_t flags,
4174 const struct i915_ggtt_view *view)
4175 {
4176 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4177 struct i915_vma *vma;
4178 unsigned bound;
4179 int ret;
4180
4181 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4182 return -ENODEV;
4183
4184 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4185 return -EINVAL;
4186
4187 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4188 return -EINVAL;
4189
4190 vma = i915_gem_obj_to_vma_view(obj, vm, view);
4191 if (vma) {
4192 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4193 return -EBUSY;
4194
4195 if (i915_vma_misplaced(vma, alignment, flags)) {
4196 WARN(vma->pin_count,
4197 "bo is already pinned with incorrect alignment:"
4198 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4199 " obj->map_and_fenceable=%d\n",
4200 i915_gem_obj_offset_view(obj, vm, view->type),
4201 alignment,
4202 !!(flags & PIN_MAPPABLE),
4203 obj->map_and_fenceable);
4204 ret = i915_vma_unbind(vma);
4205 if (ret)
4206 return ret;
4207
4208 vma = NULL;
4209 }
4210 }
4211
4212 bound = vma ? vma->bound : 0;
4213 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4214 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4215 flags, view);
4216 if (IS_ERR(vma))
4217 return PTR_ERR(vma);
4218 }
4219
4220 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4221 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4222 if (ret)
4223 return ret;
4224 }
4225
4226 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4227 bool mappable, fenceable;
4228 u32 fence_size, fence_alignment;
4229
4230 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4231 obj->base.size,
4232 obj->tiling_mode);
4233 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4234 obj->base.size,
4235 obj->tiling_mode,
4236 true);
4237
4238 fenceable = (vma->node.size == fence_size &&
4239 (vma->node.start & (fence_alignment - 1)) == 0);
4240
4241 mappable = (vma->node.start + obj->base.size <=
4242 dev_priv->gtt.mappable_end);
4243
4244 obj->map_and_fenceable = mappable && fenceable;
4245 }
4246
4247 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4248
4249 vma->pin_count++;
4250 if (flags & PIN_MAPPABLE)
4251 obj->pin_mappable |= true;
4252
4253 return 0;
4254 }
4255
4256 void
4257 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4258 {
4259 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4260
4261 BUG_ON(!vma);
4262 BUG_ON(vma->pin_count == 0);
4263 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4264
4265 if (--vma->pin_count == 0)
4266 obj->pin_mappable = false;
4267 }
4268
4269 bool
4270 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4271 {
4272 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4273 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4274 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4275
4276 WARN_ON(!ggtt_vma ||
4277 dev_priv->fence_regs[obj->fence_reg].pin_count >
4278 ggtt_vma->pin_count);
4279 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4280 return true;
4281 } else
4282 return false;
4283 }
4284
4285 void
4286 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4287 {
4288 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4290 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4291 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4292 }
4293 }
4294
4295 int
4296 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4297 struct drm_file *file)
4298 {
4299 struct drm_i915_gem_busy *args = data;
4300 struct drm_i915_gem_object *obj;
4301 int ret;
4302
4303 ret = i915_mutex_lock_interruptible(dev);
4304 if (ret)
4305 return ret;
4306
4307 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4308 if (&obj->base == NULL) {
4309 ret = -ENOENT;
4310 goto unlock;
4311 }
4312
4313 /* Count all active objects as busy, even if they are currently not used
4314 * by the gpu. Users of this interface expect objects to eventually
4315 * become non-busy without any further actions, therefore emit any
4316 * necessary flushes here.
4317 */
4318 ret = i915_gem_object_flush_active(obj);
4319
4320 args->busy = obj->active;
4321 if (obj->last_read_req) {
4322 struct intel_engine_cs *ring;
4323 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4324 ring = i915_gem_request_get_ring(obj->last_read_req);
4325 args->busy |= intel_ring_flag(ring) << 16;
4326 }
4327
4328 drm_gem_object_unreference(&obj->base);
4329 unlock:
4330 mutex_unlock(&dev->struct_mutex);
4331 return ret;
4332 }
4333
4334 int
4335 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4336 struct drm_file *file_priv)
4337 {
4338 return i915_gem_ring_throttle(dev, file_priv);
4339 }
4340
4341 int
4342 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4343 struct drm_file *file_priv)
4344 {
4345 struct drm_i915_private *dev_priv = dev->dev_private;
4346 struct drm_i915_gem_madvise *args = data;
4347 struct drm_i915_gem_object *obj;
4348 int ret;
4349
4350 switch (args->madv) {
4351 case I915_MADV_DONTNEED:
4352 case I915_MADV_WILLNEED:
4353 break;
4354 default:
4355 return -EINVAL;
4356 }
4357
4358 ret = i915_mutex_lock_interruptible(dev);
4359 if (ret)
4360 return ret;
4361
4362 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4363 if (&obj->base == NULL) {
4364 ret = -ENOENT;
4365 goto unlock;
4366 }
4367
4368 if (i915_gem_obj_is_pinned(obj)) {
4369 ret = -EINVAL;
4370 goto out;
4371 }
4372
4373 if (obj->pages &&
4374 obj->tiling_mode != I915_TILING_NONE &&
4375 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4376 if (obj->madv == I915_MADV_WILLNEED)
4377 i915_gem_object_unpin_pages(obj);
4378 if (args->madv == I915_MADV_WILLNEED)
4379 i915_gem_object_pin_pages(obj);
4380 }
4381
4382 if (obj->madv != __I915_MADV_PURGED)
4383 obj->madv = args->madv;
4384
4385 /* if the object is no longer attached, discard its backing storage */
4386 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4387 i915_gem_object_truncate(obj);
4388
4389 args->retained = obj->madv != __I915_MADV_PURGED;
4390
4391 out:
4392 drm_gem_object_unreference(&obj->base);
4393 unlock:
4394 mutex_unlock(&dev->struct_mutex);
4395 return ret;
4396 }
4397
4398 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4399 const struct drm_i915_gem_object_ops *ops)
4400 {
4401 INIT_LIST_HEAD(&obj->global_list);
4402 INIT_LIST_HEAD(&obj->ring_list);
4403 INIT_LIST_HEAD(&obj->obj_exec_link);
4404 INIT_LIST_HEAD(&obj->vma_list);
4405 INIT_LIST_HEAD(&obj->batch_pool_list);
4406
4407 obj->ops = ops;
4408
4409 obj->fence_reg = I915_FENCE_REG_NONE;
4410 obj->madv = I915_MADV_WILLNEED;
4411
4412 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4413 }
4414
4415 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4416 .get_pages = i915_gem_object_get_pages_gtt,
4417 .put_pages = i915_gem_object_put_pages_gtt,
4418 };
4419
4420 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4421 size_t size)
4422 {
4423 struct drm_i915_gem_object *obj;
4424 struct address_space *mapping;
4425 gfp_t mask;
4426
4427 obj = i915_gem_object_alloc(dev);
4428 if (obj == NULL)
4429 return NULL;
4430
4431 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4432 i915_gem_object_free(obj);
4433 return NULL;
4434 }
4435
4436 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4437 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4438 /* 965gm cannot relocate objects above 4GiB. */
4439 mask &= ~__GFP_HIGHMEM;
4440 mask |= __GFP_DMA32;
4441 }
4442
4443 mapping = file_inode(obj->base.filp)->i_mapping;
4444 mapping_set_gfp_mask(mapping, mask);
4445
4446 i915_gem_object_init(obj, &i915_gem_object_ops);
4447
4448 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4449 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4450
4451 if (HAS_LLC(dev)) {
4452 /* On some devices, we can have the GPU use the LLC (the CPU
4453 * cache) for about a 10% performance improvement
4454 * compared to uncached. Graphics requests other than
4455 * display scanout are coherent with the CPU in
4456 * accessing this cache. This means in this mode we
4457 * don't need to clflush on the CPU side, and on the
4458 * GPU side we only need to flush internal caches to
4459 * get data visible to the CPU.
4460 *
4461 * However, we maintain the display planes as UC, and so
4462 * need to rebind when first used as such.
4463 */
4464 obj->cache_level = I915_CACHE_LLC;
4465 } else
4466 obj->cache_level = I915_CACHE_NONE;
4467
4468 trace_i915_gem_object_create(obj);
4469
4470 return obj;
4471 }
4472
4473 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4474 {
4475 /* If we are the last user of the backing storage (be it shmemfs
4476 * pages or stolen etc), we know that the pages are going to be
4477 * immediately released. In this case, we can then skip copying
4478 * back the contents from the GPU.
4479 */
4480
4481 if (obj->madv != I915_MADV_WILLNEED)
4482 return false;
4483
4484 if (obj->base.filp == NULL)
4485 return true;
4486
4487 /* At first glance, this looks racy, but then again so would be
4488 * userspace racing mmap against close. However, the first external
4489 * reference to the filp can only be obtained through the
4490 * i915_gem_mmap_ioctl() which safeguards us against the user
4491 * acquiring such a reference whilst we are in the middle of
4492 * freeing the object.
4493 */
4494 return atomic_long_read(&obj->base.filp->f_count) == 1;
4495 }
4496
4497 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4498 {
4499 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4500 struct drm_device *dev = obj->base.dev;
4501 struct drm_i915_private *dev_priv = dev->dev_private;
4502 struct i915_vma *vma, *next;
4503
4504 intel_runtime_pm_get(dev_priv);
4505
4506 trace_i915_gem_object_destroy(obj);
4507
4508 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4509 int ret;
4510
4511 vma->pin_count = 0;
4512 ret = i915_vma_unbind(vma);
4513 if (WARN_ON(ret == -ERESTARTSYS)) {
4514 bool was_interruptible;
4515
4516 was_interruptible = dev_priv->mm.interruptible;
4517 dev_priv->mm.interruptible = false;
4518
4519 WARN_ON(i915_vma_unbind(vma));
4520
4521 dev_priv->mm.interruptible = was_interruptible;
4522 }
4523 }
4524
4525 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4526 * before progressing. */
4527 if (obj->stolen)
4528 i915_gem_object_unpin_pages(obj);
4529
4530 WARN_ON(obj->frontbuffer_bits);
4531
4532 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4533 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4534 obj->tiling_mode != I915_TILING_NONE)
4535 i915_gem_object_unpin_pages(obj);
4536
4537 if (WARN_ON(obj->pages_pin_count))
4538 obj->pages_pin_count = 0;
4539 if (discard_backing_storage(obj))
4540 obj->madv = I915_MADV_DONTNEED;
4541 i915_gem_object_put_pages(obj);
4542 i915_gem_object_free_mmap_offset(obj);
4543
4544 BUG_ON(obj->pages);
4545
4546 if (obj->base.import_attach)
4547 drm_prime_gem_destroy(&obj->base, NULL);
4548
4549 if (obj->ops->release)
4550 obj->ops->release(obj);
4551
4552 drm_gem_object_release(&obj->base);
4553 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4554
4555 kfree(obj->bit_17);
4556 i915_gem_object_free(obj);
4557
4558 intel_runtime_pm_put(dev_priv);
4559 }
4560
4561 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4562 struct i915_address_space *vm,
4563 const struct i915_ggtt_view *view)
4564 {
4565 struct i915_vma *vma;
4566 list_for_each_entry(vma, &obj->vma_list, vma_link)
4567 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4568 return vma;
4569
4570 return NULL;
4571 }
4572
4573 void i915_gem_vma_destroy(struct i915_vma *vma)
4574 {
4575 struct i915_address_space *vm = NULL;
4576 WARN_ON(vma->node.allocated);
4577
4578 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4579 if (!list_empty(&vma->exec_list))
4580 return;
4581
4582 vm = vma->vm;
4583
4584 if (!i915_is_ggtt(vm))
4585 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4586
4587 list_del(&vma->vma_link);
4588
4589 kfree(vma);
4590 }
4591
4592 static void
4593 i915_gem_stop_ringbuffers(struct drm_device *dev)
4594 {
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596 struct intel_engine_cs *ring;
4597 int i;
4598
4599 for_each_ring(ring, dev_priv, i)
4600 dev_priv->gt.stop_ring(ring);
4601 }
4602
4603 int
4604 i915_gem_suspend(struct drm_device *dev)
4605 {
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607 int ret = 0;
4608
4609 mutex_lock(&dev->struct_mutex);
4610 ret = i915_gpu_idle(dev);
4611 if (ret)
4612 goto err;
4613
4614 i915_gem_retire_requests(dev);
4615
4616 /* Under UMS, be paranoid and evict. */
4617 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4618 i915_gem_evict_everything(dev);
4619
4620 i915_gem_stop_ringbuffers(dev);
4621 mutex_unlock(&dev->struct_mutex);
4622
4623 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4624 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4625 flush_delayed_work(&dev_priv->mm.idle_work);
4626
4627 /* Assert that we sucessfully flushed all the work and
4628 * reset the GPU back to its idle, low power state.
4629 */
4630 WARN_ON(dev_priv->mm.busy);
4631
4632 return 0;
4633
4634 err:
4635 mutex_unlock(&dev->struct_mutex);
4636 return ret;
4637 }
4638
4639 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4640 {
4641 struct drm_device *dev = ring->dev;
4642 struct drm_i915_private *dev_priv = dev->dev_private;
4643 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4644 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4645 int i, ret;
4646
4647 if (!HAS_L3_DPF(dev) || !remap_info)
4648 return 0;
4649
4650 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4651 if (ret)
4652 return ret;
4653
4654 /*
4655 * Note: We do not worry about the concurrent register cacheline hang
4656 * here because no other code should access these registers other than
4657 * at initialization time.
4658 */
4659 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4660 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4661 intel_ring_emit(ring, reg_base + i);
4662 intel_ring_emit(ring, remap_info[i/4]);
4663 }
4664
4665 intel_ring_advance(ring);
4666
4667 return ret;
4668 }
4669
4670 void i915_gem_init_swizzling(struct drm_device *dev)
4671 {
4672 struct drm_i915_private *dev_priv = dev->dev_private;
4673
4674 if (INTEL_INFO(dev)->gen < 5 ||
4675 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4676 return;
4677
4678 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4679 DISP_TILE_SURFACE_SWIZZLING);
4680
4681 if (IS_GEN5(dev))
4682 return;
4683
4684 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4685 if (IS_GEN6(dev))
4686 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4687 else if (IS_GEN7(dev))
4688 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4689 else if (IS_GEN8(dev))
4690 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4691 else
4692 BUG();
4693 }
4694
4695 static bool
4696 intel_enable_blt(struct drm_device *dev)
4697 {
4698 if (!HAS_BLT(dev))
4699 return false;
4700
4701 /* The blitter was dysfunctional on early prototypes */
4702 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4703 DRM_INFO("BLT not supported on this pre-production hardware;"
4704 " graphics performance will be degraded.\n");
4705 return false;
4706 }
4707
4708 return true;
4709 }
4710
4711 static void init_unused_ring(struct drm_device *dev, u32 base)
4712 {
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715 I915_WRITE(RING_CTL(base), 0);
4716 I915_WRITE(RING_HEAD(base), 0);
4717 I915_WRITE(RING_TAIL(base), 0);
4718 I915_WRITE(RING_START(base), 0);
4719 }
4720
4721 static void init_unused_rings(struct drm_device *dev)
4722 {
4723 if (IS_I830(dev)) {
4724 init_unused_ring(dev, PRB1_BASE);
4725 init_unused_ring(dev, SRB0_BASE);
4726 init_unused_ring(dev, SRB1_BASE);
4727 init_unused_ring(dev, SRB2_BASE);
4728 init_unused_ring(dev, SRB3_BASE);
4729 } else if (IS_GEN2(dev)) {
4730 init_unused_ring(dev, SRB0_BASE);
4731 init_unused_ring(dev, SRB1_BASE);
4732 } else if (IS_GEN3(dev)) {
4733 init_unused_ring(dev, PRB1_BASE);
4734 init_unused_ring(dev, PRB2_BASE);
4735 }
4736 }
4737
4738 int i915_gem_init_rings(struct drm_device *dev)
4739 {
4740 struct drm_i915_private *dev_priv = dev->dev_private;
4741 int ret;
4742
4743 ret = intel_init_render_ring_buffer(dev);
4744 if (ret)
4745 return ret;
4746
4747 if (HAS_BSD(dev)) {
4748 ret = intel_init_bsd_ring_buffer(dev);
4749 if (ret)
4750 goto cleanup_render_ring;
4751 }
4752
4753 if (intel_enable_blt(dev)) {
4754 ret = intel_init_blt_ring_buffer(dev);
4755 if (ret)
4756 goto cleanup_bsd_ring;
4757 }
4758
4759 if (HAS_VEBOX(dev)) {
4760 ret = intel_init_vebox_ring_buffer(dev);
4761 if (ret)
4762 goto cleanup_blt_ring;
4763 }
4764
4765 if (HAS_BSD2(dev)) {
4766 ret = intel_init_bsd2_ring_buffer(dev);
4767 if (ret)
4768 goto cleanup_vebox_ring;
4769 }
4770
4771 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4772 if (ret)
4773 goto cleanup_bsd2_ring;
4774
4775 return 0;
4776
4777 cleanup_bsd2_ring:
4778 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4779 cleanup_vebox_ring:
4780 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4781 cleanup_blt_ring:
4782 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4783 cleanup_bsd_ring:
4784 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4785 cleanup_render_ring:
4786 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4787
4788 return ret;
4789 }
4790
4791 int
4792 i915_gem_init_hw(struct drm_device *dev)
4793 {
4794 struct drm_i915_private *dev_priv = dev->dev_private;
4795 struct intel_engine_cs *ring;
4796 int ret, i;
4797
4798 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4799 return -EIO;
4800
4801 if (dev_priv->ellc_size)
4802 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4803
4804 if (IS_HASWELL(dev))
4805 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4806 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4807
4808 if (HAS_PCH_NOP(dev)) {
4809 if (IS_IVYBRIDGE(dev)) {
4810 u32 temp = I915_READ(GEN7_MSG_CTL);
4811 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4812 I915_WRITE(GEN7_MSG_CTL, temp);
4813 } else if (INTEL_INFO(dev)->gen >= 7) {
4814 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4815 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4816 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4817 }
4818 }
4819
4820 i915_gem_init_swizzling(dev);
4821
4822 /*
4823 * At least 830 can leave some of the unused rings
4824 * "active" (ie. head != tail) after resume which
4825 * will prevent c3 entry. Makes sure all unused rings
4826 * are totally idle.
4827 */
4828 init_unused_rings(dev);
4829
4830 for_each_ring(ring, dev_priv, i) {
4831 ret = ring->init_hw(ring);
4832 if (ret)
4833 return ret;
4834 }
4835
4836 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4837 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4838
4839 /*
4840 * XXX: Contexts should only be initialized once. Doing a switch to the
4841 * default context switch however is something we'd like to do after
4842 * reset or thaw (the latter may not actually be necessary for HW, but
4843 * goes with our code better). Context switching requires rings (for
4844 * the do_switch), but before enabling PPGTT. So don't move this.
4845 */
4846 ret = i915_gem_context_enable(dev_priv);
4847 if (ret && ret != -EIO) {
4848 DRM_ERROR("Context enable failed %d\n", ret);
4849 i915_gem_cleanup_ringbuffer(dev);
4850
4851 return ret;
4852 }
4853
4854 ret = i915_ppgtt_init_hw(dev);
4855 if (ret && ret != -EIO) {
4856 DRM_ERROR("PPGTT enable failed %d\n", ret);
4857 i915_gem_cleanup_ringbuffer(dev);
4858 }
4859
4860 return ret;
4861 }
4862
4863 int i915_gem_init(struct drm_device *dev)
4864 {
4865 struct drm_i915_private *dev_priv = dev->dev_private;
4866 int ret;
4867
4868 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4869 i915.enable_execlists);
4870
4871 mutex_lock(&dev->struct_mutex);
4872
4873 if (IS_VALLEYVIEW(dev)) {
4874 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4875 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4876 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4877 VLV_GTLC_ALLOWWAKEACK), 10))
4878 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4879 }
4880
4881 if (!i915.enable_execlists) {
4882 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4883 dev_priv->gt.init_rings = i915_gem_init_rings;
4884 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4885 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4886 } else {
4887 dev_priv->gt.do_execbuf = intel_execlists_submission;
4888 dev_priv->gt.init_rings = intel_logical_rings_init;
4889 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4890 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4891 }
4892
4893 ret = i915_gem_init_userptr(dev);
4894 if (ret)
4895 goto out_unlock;
4896
4897 i915_gem_init_global_gtt(dev);
4898
4899 ret = i915_gem_context_init(dev);
4900 if (ret)
4901 goto out_unlock;
4902
4903 ret = dev_priv->gt.init_rings(dev);
4904 if (ret)
4905 goto out_unlock;
4906
4907 ret = i915_gem_init_hw(dev);
4908 if (ret == -EIO) {
4909 /* Allow ring initialisation to fail by marking the GPU as
4910 * wedged. But we only want to do this where the GPU is angry,
4911 * for all other failure, such as an allocation failure, bail.
4912 */
4913 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4914 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4915 ret = 0;
4916 }
4917
4918 out_unlock:
4919 mutex_unlock(&dev->struct_mutex);
4920
4921 return ret;
4922 }
4923
4924 void
4925 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4926 {
4927 struct drm_i915_private *dev_priv = dev->dev_private;
4928 struct intel_engine_cs *ring;
4929 int i;
4930
4931 for_each_ring(ring, dev_priv, i)
4932 dev_priv->gt.cleanup_ring(ring);
4933 }
4934
4935 static void
4936 init_ring_lists(struct intel_engine_cs *ring)
4937 {
4938 INIT_LIST_HEAD(&ring->active_list);
4939 INIT_LIST_HEAD(&ring->request_list);
4940 }
4941
4942 void i915_init_vm(struct drm_i915_private *dev_priv,
4943 struct i915_address_space *vm)
4944 {
4945 if (!i915_is_ggtt(vm))
4946 drm_mm_init(&vm->mm, vm->start, vm->total);
4947 vm->dev = dev_priv->dev;
4948 INIT_LIST_HEAD(&vm->active_list);
4949 INIT_LIST_HEAD(&vm->inactive_list);
4950 INIT_LIST_HEAD(&vm->global_link);
4951 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4952 }
4953
4954 void
4955 i915_gem_load(struct drm_device *dev)
4956 {
4957 struct drm_i915_private *dev_priv = dev->dev_private;
4958 int i;
4959
4960 dev_priv->slab =
4961 kmem_cache_create("i915_gem_object",
4962 sizeof(struct drm_i915_gem_object), 0,
4963 SLAB_HWCACHE_ALIGN,
4964 NULL);
4965
4966 INIT_LIST_HEAD(&dev_priv->vm_list);
4967 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4968
4969 INIT_LIST_HEAD(&dev_priv->context_list);
4970 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4971 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4972 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4973 for (i = 0; i < I915_NUM_RINGS; i++)
4974 init_ring_lists(&dev_priv->ring[i]);
4975 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4976 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4977 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4978 i915_gem_retire_work_handler);
4979 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4980 i915_gem_idle_work_handler);
4981 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4982
4983 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4984 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4985 I915_WRITE(MI_ARB_STATE,
4986 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4987 }
4988
4989 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4990
4991 /* Old X drivers will take 0-2 for front, back, depth buffers */
4992 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4993 dev_priv->fence_reg_start = 3;
4994
4995 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4996 dev_priv->num_fence_regs = 32;
4997 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4998 dev_priv->num_fence_regs = 16;
4999 else
5000 dev_priv->num_fence_regs = 8;
5001
5002 /* Initialize fence registers to zero */
5003 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5004 i915_gem_restore_fences(dev);
5005
5006 i915_gem_detect_bit_6_swizzle(dev);
5007 init_waitqueue_head(&dev_priv->pending_flip_queue);
5008
5009 dev_priv->mm.interruptible = true;
5010
5011 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5012 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5013 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5014 register_shrinker(&dev_priv->mm.shrinker);
5015
5016 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5017 register_oom_notifier(&dev_priv->mm.oom_notifier);
5018
5019 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5020
5021 mutex_init(&dev_priv->fb_tracking.lock);
5022 }
5023
5024 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5025 {
5026 struct drm_i915_file_private *file_priv = file->driver_priv;
5027
5028 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5029
5030 /* Clean up our request list when the client is going away, so that
5031 * later retire_requests won't dereference our soon-to-be-gone
5032 * file_priv.
5033 */
5034 spin_lock(&file_priv->mm.lock);
5035 while (!list_empty(&file_priv->mm.request_list)) {
5036 struct drm_i915_gem_request *request;
5037
5038 request = list_first_entry(&file_priv->mm.request_list,
5039 struct drm_i915_gem_request,
5040 client_list);
5041 list_del(&request->client_list);
5042 request->file_priv = NULL;
5043 }
5044 spin_unlock(&file_priv->mm.lock);
5045 }
5046
5047 static void
5048 i915_gem_file_idle_work_handler(struct work_struct *work)
5049 {
5050 struct drm_i915_file_private *file_priv =
5051 container_of(work, typeof(*file_priv), mm.idle_work.work);
5052
5053 atomic_set(&file_priv->rps_wait_boost, false);
5054 }
5055
5056 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5057 {
5058 struct drm_i915_file_private *file_priv;
5059 int ret;
5060
5061 DRM_DEBUG_DRIVER("\n");
5062
5063 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064 if (!file_priv)
5065 return -ENOMEM;
5066
5067 file->driver_priv = file_priv;
5068 file_priv->dev_priv = dev->dev_private;
5069 file_priv->file = file;
5070
5071 spin_lock_init(&file_priv->mm.lock);
5072 INIT_LIST_HEAD(&file_priv->mm.request_list);
5073 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5074 i915_gem_file_idle_work_handler);
5075
5076 ret = i915_gem_context_open(dev, file);
5077 if (ret)
5078 kfree(file_priv);
5079
5080 return ret;
5081 }
5082
5083 /**
5084 * i915_gem_track_fb - update frontbuffer tracking
5085 * old: current GEM buffer for the frontbuffer slots
5086 * new: new GEM buffer for the frontbuffer slots
5087 * frontbuffer_bits: bitmask of frontbuffer slots
5088 *
5089 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090 * from @old and setting them in @new. Both @old and @new can be NULL.
5091 */
5092 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093 struct drm_i915_gem_object *new,
5094 unsigned frontbuffer_bits)
5095 {
5096 if (old) {
5097 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5098 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5099 old->frontbuffer_bits &= ~frontbuffer_bits;
5100 }
5101
5102 if (new) {
5103 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5104 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5105 new->frontbuffer_bits |= frontbuffer_bits;
5106 }
5107 }
5108
5109 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5110 {
5111 if (!mutex_is_locked(mutex))
5112 return false;
5113
5114 #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5115 return mutex->owner == task;
5116 #else
5117 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5118 return false;
5119 #endif
5120 }
5121
5122 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5123 {
5124 if (!mutex_trylock(&dev->struct_mutex)) {
5125 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5126 return false;
5127
5128 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5129 return false;
5130
5131 *unlock = false;
5132 } else
5133 *unlock = true;
5134
5135 return true;
5136 }
5137
5138 static int num_vma_bound(struct drm_i915_gem_object *obj)
5139 {
5140 struct i915_vma *vma;
5141 int count = 0;
5142
5143 list_for_each_entry(vma, &obj->vma_list, vma_link)
5144 if (drm_mm_node_allocated(&vma->node))
5145 count++;
5146
5147 return count;
5148 }
5149
5150 static unsigned long
5151 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5152 {
5153 struct drm_i915_private *dev_priv =
5154 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5155 struct drm_device *dev = dev_priv->dev;
5156 struct drm_i915_gem_object *obj;
5157 unsigned long count;
5158 bool unlock;
5159
5160 if (!i915_gem_shrinker_lock(dev, &unlock))
5161 return 0;
5162
5163 count = 0;
5164 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5165 if (obj->pages_pin_count == 0)
5166 count += obj->base.size >> PAGE_SHIFT;
5167
5168 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5169 if (!i915_gem_obj_is_pinned(obj) &&
5170 obj->pages_pin_count == num_vma_bound(obj))
5171 count += obj->base.size >> PAGE_SHIFT;
5172 }
5173
5174 if (unlock)
5175 mutex_unlock(&dev->struct_mutex);
5176
5177 return count;
5178 }
5179
5180 /* All the new VM stuff */
5181 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5182 struct i915_address_space *vm,
5183 enum i915_ggtt_view_type view)
5184 {
5185 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5186 struct i915_vma *vma;
5187
5188 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5189
5190 list_for_each_entry(vma, &o->vma_list, vma_link) {
5191 if (vma->vm == vm && vma->ggtt_view.type == view)
5192 return vma->node.start;
5193
5194 }
5195 WARN(1, "%s vma for this object not found.\n",
5196 i915_is_ggtt(vm) ? "global" : "ppgtt");
5197 return -1;
5198 }
5199
5200 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5201 struct i915_address_space *vm,
5202 enum i915_ggtt_view_type view)
5203 {
5204 struct i915_vma *vma;
5205
5206 list_for_each_entry(vma, &o->vma_list, vma_link)
5207 if (vma->vm == vm &&
5208 vma->ggtt_view.type == view &&
5209 drm_mm_node_allocated(&vma->node))
5210 return true;
5211
5212 return false;
5213 }
5214
5215 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5216 {
5217 struct i915_vma *vma;
5218
5219 list_for_each_entry(vma, &o->vma_list, vma_link)
5220 if (drm_mm_node_allocated(&vma->node))
5221 return true;
5222
5223 return false;
5224 }
5225
5226 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5227 struct i915_address_space *vm)
5228 {
5229 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5230 struct i915_vma *vma;
5231
5232 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5233
5234 BUG_ON(list_empty(&o->vma_list));
5235
5236 list_for_each_entry(vma, &o->vma_list, vma_link)
5237 if (vma->vm == vm)
5238 return vma->node.size;
5239
5240 return 0;
5241 }
5242
5243 static unsigned long
5244 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5245 {
5246 struct drm_i915_private *dev_priv =
5247 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5248 struct drm_device *dev = dev_priv->dev;
5249 unsigned long freed;
5250 bool unlock;
5251
5252 if (!i915_gem_shrinker_lock(dev, &unlock))
5253 return SHRINK_STOP;
5254
5255 freed = i915_gem_shrink(dev_priv,
5256 sc->nr_to_scan,
5257 I915_SHRINK_BOUND |
5258 I915_SHRINK_UNBOUND |
5259 I915_SHRINK_PURGEABLE);
5260 if (freed < sc->nr_to_scan)
5261 freed += i915_gem_shrink(dev_priv,
5262 sc->nr_to_scan - freed,
5263 I915_SHRINK_BOUND |
5264 I915_SHRINK_UNBOUND);
5265 if (unlock)
5266 mutex_unlock(&dev->struct_mutex);
5267
5268 return freed;
5269 }
5270
5271 static int
5272 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5273 {
5274 struct drm_i915_private *dev_priv =
5275 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5276 struct drm_device *dev = dev_priv->dev;
5277 struct drm_i915_gem_object *obj;
5278 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5279 unsigned long pinned, bound, unbound, freed_pages;
5280 bool was_interruptible;
5281 bool unlock;
5282
5283 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5284 schedule_timeout_killable(1);
5285 if (fatal_signal_pending(current))
5286 return NOTIFY_DONE;
5287 }
5288 if (timeout == 0) {
5289 pr_err("Unable to purge GPU memory due lock contention.\n");
5290 return NOTIFY_DONE;
5291 }
5292
5293 was_interruptible = dev_priv->mm.interruptible;
5294 dev_priv->mm.interruptible = false;
5295
5296 freed_pages = i915_gem_shrink_all(dev_priv);
5297
5298 dev_priv->mm.interruptible = was_interruptible;
5299
5300 /* Because we may be allocating inside our own driver, we cannot
5301 * assert that there are no objects with pinned pages that are not
5302 * being pointed to by hardware.
5303 */
5304 unbound = bound = pinned = 0;
5305 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5306 if (!obj->base.filp) /* not backed by a freeable object */
5307 continue;
5308
5309 if (obj->pages_pin_count)
5310 pinned += obj->base.size;
5311 else
5312 unbound += obj->base.size;
5313 }
5314 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5315 if (!obj->base.filp)
5316 continue;
5317
5318 if (obj->pages_pin_count)
5319 pinned += obj->base.size;
5320 else
5321 bound += obj->base.size;
5322 }
5323
5324 if (unlock)
5325 mutex_unlock(&dev->struct_mutex);
5326
5327 if (freed_pages || unbound || bound)
5328 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5329 freed_pages << PAGE_SHIFT, pinned);
5330 if (unbound || bound)
5331 pr_err("%lu and %lu bytes still available in the "
5332 "bound and unbound GPU page lists.\n",
5333 bound, unbound);
5334
5335 *(unsigned long *)ptr += freed_pages;
5336 return NOTIFY_DONE;
5337 }
5338
5339 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5340 {
5341 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5342 struct i915_vma *vma;
5343
5344 list_for_each_entry(vma, &obj->vma_list, vma_link)
5345 if (vma->vm == ggtt &&
5346 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5347 return vma;
5348
5349 return NULL;
5350 }
This page took 0.170413 seconds and 5 git commands to generate.