e78a7ef634d9c52520d278dca0614f7967e02f48
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 struct shrink_control *sc);
60
61 /* some bookkeeping */
62 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
63 size_t size)
64 {
65 dev_priv->mm.object_count++;
66 dev_priv->mm.object_memory += size;
67 }
68
69 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
70 size_t size)
71 {
72 dev_priv->mm.object_count--;
73 dev_priv->mm.object_memory -= size;
74 }
75
76 static int
77 i915_gem_wait_for_error(struct drm_device *dev)
78 {
79 struct drm_i915_private *dev_priv = dev->dev_private;
80 struct completion *x = &dev_priv->error_completion;
81 unsigned long flags;
82 int ret;
83
84 if (!atomic_read(&dev_priv->mm.wedged))
85 return 0;
86
87 ret = wait_for_completion_interruptible(x);
88 if (ret)
89 return ret;
90
91 if (atomic_read(&dev_priv->mm.wedged)) {
92 /* GPU is hung, bump the completion count to account for
93 * the token we just consumed so that we never hit zero and
94 * end up waiting upon a subsequent completion event that
95 * will never happen.
96 */
97 spin_lock_irqsave(&x->wait.lock, flags);
98 x->done++;
99 spin_unlock_irqrestore(&x->wait.lock, flags);
100 }
101 return 0;
102 }
103
104 int i915_mutex_lock_interruptible(struct drm_device *dev)
105 {
106 int ret;
107
108 ret = i915_gem_wait_for_error(dev);
109 if (ret)
110 return ret;
111
112 ret = mutex_lock_interruptible(&dev->struct_mutex);
113 if (ret)
114 return ret;
115
116 WARN_ON(i915_verify_lists(dev));
117 return 0;
118 }
119
120 static inline bool
121 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
122 {
123 return obj->gtt_space && !obj->active && obj->pin_count == 0;
124 }
125
126 void i915_gem_do_init(struct drm_device *dev,
127 unsigned long start,
128 unsigned long mappable_end,
129 unsigned long end)
130 {
131 drm_i915_private_t *dev_priv = dev->dev_private;
132
133 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
134
135 dev_priv->mm.gtt_start = start;
136 dev_priv->mm.gtt_mappable_end = mappable_end;
137 dev_priv->mm.gtt_end = end;
138 dev_priv->mm.gtt_total = end - start;
139 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
140
141 /* Take over this portion of the GTT */
142 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
143 }
144
145 int
146 i915_gem_init_ioctl(struct drm_device *dev, void *data,
147 struct drm_file *file)
148 {
149 struct drm_i915_gem_init *args = data;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 mutex_lock(&dev->struct_mutex);
156 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
157 mutex_unlock(&dev->struct_mutex);
158
159 return 0;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_get_aperture *args = data;
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
170
171 if (!(dev->driver->driver_features & DRIVER_GEM))
172 return -ENODEV;
173
174 pinned = 0;
175 mutex_lock(&dev->struct_mutex);
176 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
177 pinned += obj->gtt_space->size;
178 mutex_unlock(&dev->struct_mutex);
179
180 args->aper_size = dev_priv->mm.gtt_total;
181 args->aper_available_size = args->aper_size -pinned;
182
183 return 0;
184 }
185
186 static int
187 i915_gem_create(struct drm_file *file,
188 struct drm_device *dev,
189 uint64_t size,
190 uint32_t *handle_p)
191 {
192 struct drm_i915_gem_object *obj;
193 int ret;
194 u32 handle;
195
196 size = roundup(size, PAGE_SIZE);
197
198 /* Allocate the new object */
199 obj = i915_gem_alloc_object(dev, size);
200 if (obj == NULL)
201 return -ENOMEM;
202
203 ret = drm_gem_handle_create(file, &obj->base, &handle);
204 if (ret) {
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207 kfree(obj);
208 return ret;
209 }
210
211 /* drop reference from allocate - handle holds it now */
212 drm_gem_object_unreference(&obj->base);
213 trace_i915_gem_object_create(obj);
214
215 *handle_p = handle;
216 return 0;
217 }
218
219 int
220 i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223 {
224 /* have to work out size/pitch and return them */
225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229 }
230
231 int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234 {
235 return drm_gem_handle_delete(file, handle);
236 }
237
238 /**
239 * Creates a new mm object and returns a handle to it.
240 */
241 int
242 i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244 {
245 struct drm_i915_gem_create *args = data;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248 }
249
250 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
251 {
252 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
253
254 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
255 obj->tiling_mode != I915_TILING_NONE;
256 }
257
258 static inline void
259 slow_shmem_copy(struct page *dst_page,
260 int dst_offset,
261 struct page *src_page,
262 int src_offset,
263 int length)
264 {
265 char *dst_vaddr, *src_vaddr;
266
267 dst_vaddr = kmap(dst_page);
268 src_vaddr = kmap(src_page);
269
270 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
271
272 kunmap(src_page);
273 kunmap(dst_page);
274 }
275
276 static inline void
277 slow_shmem_bit17_copy(struct page *gpu_page,
278 int gpu_offset,
279 struct page *cpu_page,
280 int cpu_offset,
281 int length,
282 int is_read)
283 {
284 char *gpu_vaddr, *cpu_vaddr;
285
286 /* Use the unswizzled path if this page isn't affected. */
287 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
288 if (is_read)
289 return slow_shmem_copy(cpu_page, cpu_offset,
290 gpu_page, gpu_offset, length);
291 else
292 return slow_shmem_copy(gpu_page, gpu_offset,
293 cpu_page, cpu_offset, length);
294 }
295
296 gpu_vaddr = kmap(gpu_page);
297 cpu_vaddr = kmap(cpu_page);
298
299 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
300 * XORing with the other bits (A9 for Y, A9 and A10 for X)
301 */
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 if (is_read) {
308 memcpy(cpu_vaddr + cpu_offset,
309 gpu_vaddr + swizzled_gpu_offset,
310 this_length);
311 } else {
312 memcpy(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 }
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
321 kunmap(cpu_page);
322 kunmap(gpu_page);
323 }
324
325 /**
326 * This is the fast shmem pread path, which attempts to copy_from_user directly
327 * from the backing pages of the object to the user's address space. On a
328 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
329 */
330 static int
331 i915_gem_shmem_pread_fast(struct drm_device *dev,
332 struct drm_i915_gem_object *obj,
333 struct drm_i915_gem_pread *args,
334 struct drm_file *file)
335 {
336 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
337 ssize_t remain;
338 loff_t offset;
339 char __user *user_data;
340 int page_offset, page_length;
341
342 user_data = (char __user *) (uintptr_t) args->data_ptr;
343 remain = args->size;
344
345 offset = args->offset;
346
347 while (remain > 0) {
348 struct page *page;
349 char *vaddr;
350 int ret;
351
352 /* Operation in this page
353 *
354 * page_offset = offset within page
355 * page_length = bytes to copy for this page
356 */
357 page_offset = offset_in_page(offset);
358 page_length = remain;
359 if ((page_offset + remain) > PAGE_SIZE)
360 page_length = PAGE_SIZE - page_offset;
361
362 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
363 GFP_HIGHUSER | __GFP_RECLAIMABLE);
364 if (IS_ERR(page))
365 return PTR_ERR(page);
366
367 vaddr = kmap_atomic(page);
368 ret = __copy_to_user_inatomic(user_data,
369 vaddr + page_offset,
370 page_length);
371 kunmap_atomic(vaddr);
372
373 mark_page_accessed(page);
374 page_cache_release(page);
375 if (ret)
376 return -EFAULT;
377
378 remain -= page_length;
379 user_data += page_length;
380 offset += page_length;
381 }
382
383 return 0;
384 }
385
386 /**
387 * This is the fallback shmem pread path, which allocates temporary storage
388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
389 * can copy out of the object's backing pages while holding the struct mutex
390 * and not take page faults.
391 */
392 static int
393 i915_gem_shmem_pread_slow(struct drm_device *dev,
394 struct drm_i915_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file)
397 {
398 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
399 struct mm_struct *mm = current->mm;
400 struct page **user_pages;
401 ssize_t remain;
402 loff_t offset, pinned_pages, i;
403 loff_t first_data_page, last_data_page, num_pages;
404 int shmem_page_offset;
405 int data_page_index, data_page_offset;
406 int page_length;
407 int ret;
408 uint64_t data_ptr = args->data_ptr;
409 int do_bit17_swizzling;
410
411 remain = args->size;
412
413 /* Pin the user pages containing the data. We can't fault while
414 * holding the struct mutex, yet we want to hold it while
415 * dereferencing the user data.
416 */
417 first_data_page = data_ptr / PAGE_SIZE;
418 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
419 num_pages = last_data_page - first_data_page + 1;
420
421 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
422 if (user_pages == NULL)
423 return -ENOMEM;
424
425 mutex_unlock(&dev->struct_mutex);
426 down_read(&mm->mmap_sem);
427 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
428 num_pages, 1, 0, user_pages, NULL);
429 up_read(&mm->mmap_sem);
430 mutex_lock(&dev->struct_mutex);
431 if (pinned_pages < num_pages) {
432 ret = -EFAULT;
433 goto out;
434 }
435
436 ret = i915_gem_object_set_cpu_read_domain_range(obj,
437 args->offset,
438 args->size);
439 if (ret)
440 goto out;
441
442 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
443
444 offset = args->offset;
445
446 while (remain > 0) {
447 struct page *page;
448
449 /* Operation in this page
450 *
451 * shmem_page_offset = offset within page in shmem file
452 * data_page_index = page number in get_user_pages return
453 * data_page_offset = offset with data_page_index page.
454 * page_length = bytes to copy for this page
455 */
456 shmem_page_offset = offset_in_page(offset);
457 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
458 data_page_offset = offset_in_page(data_ptr);
459
460 page_length = remain;
461 if ((shmem_page_offset + page_length) > PAGE_SIZE)
462 page_length = PAGE_SIZE - shmem_page_offset;
463 if ((data_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - data_page_offset;
465
466 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
467 GFP_HIGHUSER | __GFP_RECLAIMABLE);
468 if (IS_ERR(page))
469 return PTR_ERR(page);
470
471 if (do_bit17_swizzling) {
472 slow_shmem_bit17_copy(page,
473 shmem_page_offset,
474 user_pages[data_page_index],
475 data_page_offset,
476 page_length,
477 1);
478 } else {
479 slow_shmem_copy(user_pages[data_page_index],
480 data_page_offset,
481 page,
482 shmem_page_offset,
483 page_length);
484 }
485
486 mark_page_accessed(page);
487 page_cache_release(page);
488
489 remain -= page_length;
490 data_ptr += page_length;
491 offset += page_length;
492 }
493
494 out:
495 for (i = 0; i < pinned_pages; i++) {
496 SetPageDirty(user_pages[i]);
497 mark_page_accessed(user_pages[i]);
498 page_cache_release(user_pages[i]);
499 }
500 drm_free_large(user_pages);
501
502 return ret;
503 }
504
505 /**
506 * Reads data from the object referenced by handle.
507 *
508 * On error, the contents of *data are undefined.
509 */
510 int
511 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
512 struct drm_file *file)
513 {
514 struct drm_i915_gem_pread *args = data;
515 struct drm_i915_gem_object *obj;
516 int ret = 0;
517
518 if (args->size == 0)
519 return 0;
520
521 if (!access_ok(VERIFY_WRITE,
522 (char __user *)(uintptr_t)args->data_ptr,
523 args->size))
524 return -EFAULT;
525
526 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
527 args->size);
528 if (ret)
529 return -EFAULT;
530
531 ret = i915_mutex_lock_interruptible(dev);
532 if (ret)
533 return ret;
534
535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536 if (&obj->base == NULL) {
537 ret = -ENOENT;
538 goto unlock;
539 }
540
541 /* Bounds check source. */
542 if (args->offset > obj->base.size ||
543 args->size > obj->base.size - args->offset) {
544 ret = -EINVAL;
545 goto out;
546 }
547
548 trace_i915_gem_object_pread(obj, args->offset, args->size);
549
550 ret = i915_gem_object_set_cpu_read_domain_range(obj,
551 args->offset,
552 args->size);
553 if (ret)
554 goto out;
555
556 ret = -EFAULT;
557 if (!i915_gem_object_needs_bit17_swizzle(obj))
558 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
559 if (ret == -EFAULT)
560 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 char *vaddr_atomic;
580 unsigned long unwritten;
581
582 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
583 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
584 user_data, length);
585 io_mapping_unmap_atomic(vaddr_atomic);
586 return unwritten;
587 }
588
589 /* Here's the write path which can sleep for
590 * page faults
591 */
592
593 static inline void
594 slow_kernel_write(struct io_mapping *mapping,
595 loff_t gtt_base, int gtt_offset,
596 struct page *user_page, int user_offset,
597 int length)
598 {
599 char __iomem *dst_vaddr;
600 char *src_vaddr;
601
602 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
603 src_vaddr = kmap(user_page);
604
605 memcpy_toio(dst_vaddr + gtt_offset,
606 src_vaddr + user_offset,
607 length);
608
609 kunmap(user_page);
610 io_mapping_unmap(dst_vaddr);
611 }
612
613 /**
614 * This is the fast pwrite path, where we copy the data directly from the
615 * user into the GTT, uncached.
616 */
617 static int
618 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
619 struct drm_i915_gem_object *obj,
620 struct drm_i915_gem_pwrite *args,
621 struct drm_file *file)
622 {
623 drm_i915_private_t *dev_priv = dev->dev_private;
624 ssize_t remain;
625 loff_t offset, page_base;
626 char __user *user_data;
627 int page_offset, page_length;
628
629 user_data = (char __user *) (uintptr_t) args->data_ptr;
630 remain = args->size;
631
632 offset = obj->gtt_offset + args->offset;
633
634 while (remain > 0) {
635 /* Operation in this page
636 *
637 * page_base = page offset within aperture
638 * page_offset = offset within page
639 * page_length = bytes to copy for this page
640 */
641 page_base = offset & PAGE_MASK;
642 page_offset = offset_in_page(offset);
643 page_length = remain;
644 if ((page_offset + remain) > PAGE_SIZE)
645 page_length = PAGE_SIZE - page_offset;
646
647 /* If we get a fault while copying data, then (presumably) our
648 * source page isn't available. Return the error and we'll
649 * retry in the slow path.
650 */
651 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
652 page_offset, user_data, page_length))
653 return -EFAULT;
654
655 remain -= page_length;
656 user_data += page_length;
657 offset += page_length;
658 }
659
660 return 0;
661 }
662
663 /**
664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665 * the memory and maps it using kmap_atomic for copying.
666 *
667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669 */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
672 struct drm_i915_gem_object *obj,
673 struct drm_i915_gem_pwrite *args,
674 struct drm_file *file)
675 {
676 drm_i915_private_t *dev_priv = dev->dev_private;
677 ssize_t remain;
678 loff_t gtt_page_base, offset;
679 loff_t first_data_page, last_data_page, num_pages;
680 loff_t pinned_pages, i;
681 struct page **user_pages;
682 struct mm_struct *mm = current->mm;
683 int gtt_page_offset, data_page_offset, data_page_index, page_length;
684 int ret;
685 uint64_t data_ptr = args->data_ptr;
686
687 remain = args->size;
688
689 /* Pin the user pages containing the data. We can't fault while
690 * holding the struct mutex, and all of the pwrite implementations
691 * want to hold it while dereferencing the user data.
692 */
693 first_data_page = data_ptr / PAGE_SIZE;
694 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695 num_pages = last_data_page - first_data_page + 1;
696
697 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
698 if (user_pages == NULL)
699 return -ENOMEM;
700
701 mutex_unlock(&dev->struct_mutex);
702 down_read(&mm->mmap_sem);
703 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
704 num_pages, 0, 0, user_pages, NULL);
705 up_read(&mm->mmap_sem);
706 mutex_lock(&dev->struct_mutex);
707 if (pinned_pages < num_pages) {
708 ret = -EFAULT;
709 goto out_unpin_pages;
710 }
711
712 ret = i915_gem_object_set_to_gtt_domain(obj, true);
713 if (ret)
714 goto out_unpin_pages;
715
716 ret = i915_gem_object_put_fence(obj);
717 if (ret)
718 goto out_unpin_pages;
719
720 offset = obj->gtt_offset + args->offset;
721
722 while (remain > 0) {
723 /* Operation in this page
724 *
725 * gtt_page_base = page offset within aperture
726 * gtt_page_offset = offset within page in aperture
727 * data_page_index = page number in get_user_pages return
728 * data_page_offset = offset with data_page_index page.
729 * page_length = bytes to copy for this page
730 */
731 gtt_page_base = offset & PAGE_MASK;
732 gtt_page_offset = offset_in_page(offset);
733 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734 data_page_offset = offset_in_page(data_ptr);
735
736 page_length = remain;
737 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738 page_length = PAGE_SIZE - gtt_page_offset;
739 if ((data_page_offset + page_length) > PAGE_SIZE)
740 page_length = PAGE_SIZE - data_page_offset;
741
742 slow_kernel_write(dev_priv->mm.gtt_mapping,
743 gtt_page_base, gtt_page_offset,
744 user_pages[data_page_index],
745 data_page_offset,
746 page_length);
747
748 remain -= page_length;
749 offset += page_length;
750 data_ptr += page_length;
751 }
752
753 out_unpin_pages:
754 for (i = 0; i < pinned_pages; i++)
755 page_cache_release(user_pages[i]);
756 drm_free_large(user_pages);
757
758 return ret;
759 }
760
761 /**
762 * This is the fast shmem pwrite path, which attempts to directly
763 * copy_from_user into the kmapped pages backing the object.
764 */
765 static int
766 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
767 struct drm_i915_gem_object *obj,
768 struct drm_i915_gem_pwrite *args,
769 struct drm_file *file)
770 {
771 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
772 ssize_t remain;
773 loff_t offset;
774 char __user *user_data;
775 int page_offset, page_length;
776
777 user_data = (char __user *) (uintptr_t) args->data_ptr;
778 remain = args->size;
779
780 offset = args->offset;
781 obj->dirty = 1;
782
783 while (remain > 0) {
784 struct page *page;
785 char *vaddr;
786 int ret;
787
788 /* Operation in this page
789 *
790 * page_offset = offset within page
791 * page_length = bytes to copy for this page
792 */
793 page_offset = offset_in_page(offset);
794 page_length = remain;
795 if ((page_offset + remain) > PAGE_SIZE)
796 page_length = PAGE_SIZE - page_offset;
797
798 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
799 GFP_HIGHUSER | __GFP_RECLAIMABLE);
800 if (IS_ERR(page))
801 return PTR_ERR(page);
802
803 vaddr = kmap_atomic(page, KM_USER0);
804 ret = __copy_from_user_inatomic(vaddr + page_offset,
805 user_data,
806 page_length);
807 kunmap_atomic(vaddr, KM_USER0);
808
809 set_page_dirty(page);
810 mark_page_accessed(page);
811 page_cache_release(page);
812
813 /* If we get a fault while copying data, then (presumably) our
814 * source page isn't available. Return the error and we'll
815 * retry in the slow path.
816 */
817 if (ret)
818 return -EFAULT;
819
820 remain -= page_length;
821 user_data += page_length;
822 offset += page_length;
823 }
824
825 return 0;
826 }
827
828 /**
829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
830 * the memory and maps it using kmap_atomic for copying.
831 *
832 * This avoids taking mmap_sem for faulting on the user's address while the
833 * struct_mutex is held.
834 */
835 static int
836 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
837 struct drm_i915_gem_object *obj,
838 struct drm_i915_gem_pwrite *args,
839 struct drm_file *file)
840 {
841 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
842 struct mm_struct *mm = current->mm;
843 struct page **user_pages;
844 ssize_t remain;
845 loff_t offset, pinned_pages, i;
846 loff_t first_data_page, last_data_page, num_pages;
847 int shmem_page_offset;
848 int data_page_index, data_page_offset;
849 int page_length;
850 int ret;
851 uint64_t data_ptr = args->data_ptr;
852 int do_bit17_swizzling;
853
854 remain = args->size;
855
856 /* Pin the user pages containing the data. We can't fault while
857 * holding the struct mutex, and all of the pwrite implementations
858 * want to hold it while dereferencing the user data.
859 */
860 first_data_page = data_ptr / PAGE_SIZE;
861 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
862 num_pages = last_data_page - first_data_page + 1;
863
864 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
865 if (user_pages == NULL)
866 return -ENOMEM;
867
868 mutex_unlock(&dev->struct_mutex);
869 down_read(&mm->mmap_sem);
870 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
871 num_pages, 0, 0, user_pages, NULL);
872 up_read(&mm->mmap_sem);
873 mutex_lock(&dev->struct_mutex);
874 if (pinned_pages < num_pages) {
875 ret = -EFAULT;
876 goto out;
877 }
878
879 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
880 if (ret)
881 goto out;
882
883 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884
885 offset = args->offset;
886 obj->dirty = 1;
887
888 while (remain > 0) {
889 struct page *page;
890
891 /* Operation in this page
892 *
893 * shmem_page_offset = offset within page in shmem file
894 * data_page_index = page number in get_user_pages return
895 * data_page_offset = offset with data_page_index page.
896 * page_length = bytes to copy for this page
897 */
898 shmem_page_offset = offset_in_page(offset);
899 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
900 data_page_offset = offset_in_page(data_ptr);
901
902 page_length = remain;
903 if ((shmem_page_offset + page_length) > PAGE_SIZE)
904 page_length = PAGE_SIZE - shmem_page_offset;
905 if ((data_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - data_page_offset;
907
908 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
909 GFP_HIGHUSER | __GFP_RECLAIMABLE);
910 if (IS_ERR(page)) {
911 ret = PTR_ERR(page);
912 goto out;
913 }
914
915 if (do_bit17_swizzling) {
916 slow_shmem_bit17_copy(page,
917 shmem_page_offset,
918 user_pages[data_page_index],
919 data_page_offset,
920 page_length,
921 0);
922 } else {
923 slow_shmem_copy(page,
924 shmem_page_offset,
925 user_pages[data_page_index],
926 data_page_offset,
927 page_length);
928 }
929
930 set_page_dirty(page);
931 mark_page_accessed(page);
932 page_cache_release(page);
933
934 remain -= page_length;
935 data_ptr += page_length;
936 offset += page_length;
937 }
938
939 out:
940 for (i = 0; i < pinned_pages; i++)
941 page_cache_release(user_pages[i]);
942 drm_free_large(user_pages);
943
944 return ret;
945 }
946
947 /**
948 * Writes data to the object referenced by handle.
949 *
950 * On error, the contents of the buffer that were to be modified are undefined.
951 */
952 int
953 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
954 struct drm_file *file)
955 {
956 struct drm_i915_gem_pwrite *args = data;
957 struct drm_i915_gem_object *obj;
958 int ret;
959
960 if (args->size == 0)
961 return 0;
962
963 if (!access_ok(VERIFY_READ,
964 (char __user *)(uintptr_t)args->data_ptr,
965 args->size))
966 return -EFAULT;
967
968 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
969 args->size);
970 if (ret)
971 return -EFAULT;
972
973 ret = i915_mutex_lock_interruptible(dev);
974 if (ret)
975 return ret;
976
977 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
978 if (&obj->base == NULL) {
979 ret = -ENOENT;
980 goto unlock;
981 }
982
983 /* Bounds check destination. */
984 if (args->offset > obj->base.size ||
985 args->size > obj->base.size - args->offset) {
986 ret = -EINVAL;
987 goto out;
988 }
989
990 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
991
992 /* We can only do the GTT pwrite on untiled buffers, as otherwise
993 * it would end up going through the fenced access, and we'll get
994 * different detiling behavior between reading and writing.
995 * pread/pwrite currently are reading and writing from the CPU
996 * perspective, requiring manual detiling by the client.
997 */
998 if (obj->phys_obj)
999 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1000 else if (obj->gtt_space &&
1001 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1002 ret = i915_gem_object_pin(obj, 0, true);
1003 if (ret)
1004 goto out;
1005
1006 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1007 if (ret)
1008 goto out_unpin;
1009
1010 ret = i915_gem_object_put_fence(obj);
1011 if (ret)
1012 goto out_unpin;
1013
1014 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1015 if (ret == -EFAULT)
1016 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1017
1018 out_unpin:
1019 i915_gem_object_unpin(obj);
1020 } else {
1021 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1022 if (ret)
1023 goto out;
1024
1025 ret = -EFAULT;
1026 if (!i915_gem_object_needs_bit17_swizzle(obj))
1027 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1028 if (ret == -EFAULT)
1029 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1030 }
1031
1032 out:
1033 drm_gem_object_unreference(&obj->base);
1034 unlock:
1035 mutex_unlock(&dev->struct_mutex);
1036 return ret;
1037 }
1038
1039 /**
1040 * Called when user space prepares to use an object with the CPU, either
1041 * through the mmap ioctl's mapping or a GTT mapping.
1042 */
1043 int
1044 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1045 struct drm_file *file)
1046 {
1047 struct drm_i915_gem_set_domain *args = data;
1048 struct drm_i915_gem_object *obj;
1049 uint32_t read_domains = args->read_domains;
1050 uint32_t write_domain = args->write_domain;
1051 int ret;
1052
1053 if (!(dev->driver->driver_features & DRIVER_GEM))
1054 return -ENODEV;
1055
1056 /* Only handle setting domains to types used by the CPU. */
1057 if (write_domain & I915_GEM_GPU_DOMAINS)
1058 return -EINVAL;
1059
1060 if (read_domains & I915_GEM_GPU_DOMAINS)
1061 return -EINVAL;
1062
1063 /* Having something in the write domain implies it's in the read
1064 * domain, and only that read domain. Enforce that in the request.
1065 */
1066 if (write_domain != 0 && read_domains != write_domain)
1067 return -EINVAL;
1068
1069 ret = i915_mutex_lock_interruptible(dev);
1070 if (ret)
1071 return ret;
1072
1073 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1074 if (&obj->base == NULL) {
1075 ret = -ENOENT;
1076 goto unlock;
1077 }
1078
1079 if (read_domains & I915_GEM_DOMAIN_GTT) {
1080 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1081
1082 /* Silently promote "you're not bound, there was nothing to do"
1083 * to success, since the client was just asking us to
1084 * make sure everything was done.
1085 */
1086 if (ret == -EINVAL)
1087 ret = 0;
1088 } else {
1089 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1090 }
1091
1092 drm_gem_object_unreference(&obj->base);
1093 unlock:
1094 mutex_unlock(&dev->struct_mutex);
1095 return ret;
1096 }
1097
1098 /**
1099 * Called when user space has done writes to this buffer
1100 */
1101 int
1102 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1103 struct drm_file *file)
1104 {
1105 struct drm_i915_gem_sw_finish *args = data;
1106 struct drm_i915_gem_object *obj;
1107 int ret = 0;
1108
1109 if (!(dev->driver->driver_features & DRIVER_GEM))
1110 return -ENODEV;
1111
1112 ret = i915_mutex_lock_interruptible(dev);
1113 if (ret)
1114 return ret;
1115
1116 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1117 if (&obj->base == NULL) {
1118 ret = -ENOENT;
1119 goto unlock;
1120 }
1121
1122 /* Pinned buffers may be scanout, so flush the cache */
1123 if (obj->pin_count)
1124 i915_gem_object_flush_cpu_write_domain(obj);
1125
1126 drm_gem_object_unreference(&obj->base);
1127 unlock:
1128 mutex_unlock(&dev->struct_mutex);
1129 return ret;
1130 }
1131
1132 /**
1133 * Maps the contents of an object, returning the address it is mapped
1134 * into.
1135 *
1136 * While the mapping holds a reference on the contents of the object, it doesn't
1137 * imply a ref on the object itself.
1138 */
1139 int
1140 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1141 struct drm_file *file)
1142 {
1143 struct drm_i915_private *dev_priv = dev->dev_private;
1144 struct drm_i915_gem_mmap *args = data;
1145 struct drm_gem_object *obj;
1146 unsigned long addr;
1147
1148 if (!(dev->driver->driver_features & DRIVER_GEM))
1149 return -ENODEV;
1150
1151 obj = drm_gem_object_lookup(dev, file, args->handle);
1152 if (obj == NULL)
1153 return -ENOENT;
1154
1155 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1156 drm_gem_object_unreference_unlocked(obj);
1157 return -E2BIG;
1158 }
1159
1160 down_write(&current->mm->mmap_sem);
1161 addr = do_mmap(obj->filp, 0, args->size,
1162 PROT_READ | PROT_WRITE, MAP_SHARED,
1163 args->offset);
1164 up_write(&current->mm->mmap_sem);
1165 drm_gem_object_unreference_unlocked(obj);
1166 if (IS_ERR((void *)addr))
1167 return addr;
1168
1169 args->addr_ptr = (uint64_t) addr;
1170
1171 return 0;
1172 }
1173
1174 /**
1175 * i915_gem_fault - fault a page into the GTT
1176 * vma: VMA in question
1177 * vmf: fault info
1178 *
1179 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1180 * from userspace. The fault handler takes care of binding the object to
1181 * the GTT (if needed), allocating and programming a fence register (again,
1182 * only if needed based on whether the old reg is still valid or the object
1183 * is tiled) and inserting a new PTE into the faulting process.
1184 *
1185 * Note that the faulting process may involve evicting existing objects
1186 * from the GTT and/or fence registers to make room. So performance may
1187 * suffer if the GTT working set is large or there are few fence registers
1188 * left.
1189 */
1190 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1191 {
1192 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1193 struct drm_device *dev = obj->base.dev;
1194 drm_i915_private_t *dev_priv = dev->dev_private;
1195 pgoff_t page_offset;
1196 unsigned long pfn;
1197 int ret = 0;
1198 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1199
1200 /* We don't use vmf->pgoff since that has the fake offset */
1201 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1202 PAGE_SHIFT;
1203
1204 ret = i915_mutex_lock_interruptible(dev);
1205 if (ret)
1206 goto out;
1207
1208 trace_i915_gem_object_fault(obj, page_offset, true, write);
1209
1210 /* Now bind it into the GTT if needed */
1211 if (!obj->map_and_fenceable) {
1212 ret = i915_gem_object_unbind(obj);
1213 if (ret)
1214 goto unlock;
1215 }
1216 if (!obj->gtt_space) {
1217 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1218 if (ret)
1219 goto unlock;
1220 }
1221
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1223 if (ret)
1224 goto unlock;
1225
1226 if (obj->tiling_mode == I915_TILING_NONE)
1227 ret = i915_gem_object_put_fence(obj);
1228 else
1229 ret = i915_gem_object_get_fence(obj, NULL);
1230 if (ret)
1231 goto unlock;
1232
1233 if (i915_gem_object_is_inactive(obj))
1234 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1235
1236 obj->fault_mappable = true;
1237
1238 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1239 page_offset;
1240
1241 /* Finally, remap it using the new GTT offset */
1242 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1243 unlock:
1244 mutex_unlock(&dev->struct_mutex);
1245 out:
1246 switch (ret) {
1247 case -EIO:
1248 case -EAGAIN:
1249 /* Give the error handler a chance to run and move the
1250 * objects off the GPU active list. Next time we service the
1251 * fault, we should be able to transition the page into the
1252 * GTT without touching the GPU (and so avoid further
1253 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1254 * with coherency, just lost writes.
1255 */
1256 set_need_resched();
1257 case 0:
1258 case -ERESTARTSYS:
1259 case -EINTR:
1260 return VM_FAULT_NOPAGE;
1261 case -ENOMEM:
1262 return VM_FAULT_OOM;
1263 default:
1264 return VM_FAULT_SIGBUS;
1265 }
1266 }
1267
1268 /**
1269 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1270 * @obj: obj in question
1271 *
1272 * GEM memory mapping works by handing back to userspace a fake mmap offset
1273 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1274 * up the object based on the offset and sets up the various memory mapping
1275 * structures.
1276 *
1277 * This routine allocates and attaches a fake offset for @obj.
1278 */
1279 static int
1280 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1281 {
1282 struct drm_device *dev = obj->base.dev;
1283 struct drm_gem_mm *mm = dev->mm_private;
1284 struct drm_map_list *list;
1285 struct drm_local_map *map;
1286 int ret = 0;
1287
1288 /* Set the object up for mmap'ing */
1289 list = &obj->base.map_list;
1290 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1291 if (!list->map)
1292 return -ENOMEM;
1293
1294 map = list->map;
1295 map->type = _DRM_GEM;
1296 map->size = obj->base.size;
1297 map->handle = obj;
1298
1299 /* Get a DRM GEM mmap offset allocated... */
1300 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1301 obj->base.size / PAGE_SIZE,
1302 0, 0);
1303 if (!list->file_offset_node) {
1304 DRM_ERROR("failed to allocate offset for bo %d\n",
1305 obj->base.name);
1306 ret = -ENOSPC;
1307 goto out_free_list;
1308 }
1309
1310 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1311 obj->base.size / PAGE_SIZE,
1312 0);
1313 if (!list->file_offset_node) {
1314 ret = -ENOMEM;
1315 goto out_free_list;
1316 }
1317
1318 list->hash.key = list->file_offset_node->start;
1319 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1320 if (ret) {
1321 DRM_ERROR("failed to add to map hash\n");
1322 goto out_free_mm;
1323 }
1324
1325 return 0;
1326
1327 out_free_mm:
1328 drm_mm_put_block(list->file_offset_node);
1329 out_free_list:
1330 kfree(list->map);
1331 list->map = NULL;
1332
1333 return ret;
1334 }
1335
1336 /**
1337 * i915_gem_release_mmap - remove physical page mappings
1338 * @obj: obj in question
1339 *
1340 * Preserve the reservation of the mmapping with the DRM core code, but
1341 * relinquish ownership of the pages back to the system.
1342 *
1343 * It is vital that we remove the page mapping if we have mapped a tiled
1344 * object through the GTT and then lose the fence register due to
1345 * resource pressure. Similarly if the object has been moved out of the
1346 * aperture, than pages mapped into userspace must be revoked. Removing the
1347 * mapping will then trigger a page fault on the next user access, allowing
1348 * fixup by i915_gem_fault().
1349 */
1350 void
1351 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1352 {
1353 if (!obj->fault_mappable)
1354 return;
1355
1356 if (obj->base.dev->dev_mapping)
1357 unmap_mapping_range(obj->base.dev->dev_mapping,
1358 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1359 obj->base.size, 1);
1360
1361 obj->fault_mappable = false;
1362 }
1363
1364 static void
1365 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1366 {
1367 struct drm_device *dev = obj->base.dev;
1368 struct drm_gem_mm *mm = dev->mm_private;
1369 struct drm_map_list *list = &obj->base.map_list;
1370
1371 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1372 drm_mm_put_block(list->file_offset_node);
1373 kfree(list->map);
1374 list->map = NULL;
1375 }
1376
1377 static uint32_t
1378 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1379 {
1380 struct drm_device *dev = obj->base.dev;
1381 uint32_t size;
1382
1383 if (INTEL_INFO(dev)->gen >= 4 ||
1384 obj->tiling_mode == I915_TILING_NONE)
1385 return obj->base.size;
1386
1387 /* Previous chips need a power-of-two fence region when tiling */
1388 if (INTEL_INFO(dev)->gen == 3)
1389 size = 1024*1024;
1390 else
1391 size = 512*1024;
1392
1393 while (size < obj->base.size)
1394 size <<= 1;
1395
1396 return size;
1397 }
1398
1399 /**
1400 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1401 * @obj: object to check
1402 *
1403 * Return the required GTT alignment for an object, taking into account
1404 * potential fence register mapping.
1405 */
1406 static uint32_t
1407 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1408 {
1409 struct drm_device *dev = obj->base.dev;
1410
1411 /*
1412 * Minimum alignment is 4k (GTT page size), but might be greater
1413 * if a fence register is needed for the object.
1414 */
1415 if (INTEL_INFO(dev)->gen >= 4 ||
1416 obj->tiling_mode == I915_TILING_NONE)
1417 return 4096;
1418
1419 /*
1420 * Previous chips need to be aligned to the size of the smallest
1421 * fence register that can contain the object.
1422 */
1423 return i915_gem_get_gtt_size(obj);
1424 }
1425
1426 /**
1427 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1428 * unfenced object
1429 * @obj: object to check
1430 *
1431 * Return the required GTT alignment for an object, only taking into account
1432 * unfenced tiled surface requirements.
1433 */
1434 uint32_t
1435 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1436 {
1437 struct drm_device *dev = obj->base.dev;
1438 int tile_height;
1439
1440 /*
1441 * Minimum alignment is 4k (GTT page size) for sane hw.
1442 */
1443 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1444 obj->tiling_mode == I915_TILING_NONE)
1445 return 4096;
1446
1447 /*
1448 * Older chips need unfenced tiled buffers to be aligned to the left
1449 * edge of an even tile row (where tile rows are counted as if the bo is
1450 * placed in a fenced gtt region).
1451 */
1452 if (IS_GEN2(dev))
1453 tile_height = 16;
1454 else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
1455 tile_height = 32;
1456 else
1457 tile_height = 8;
1458
1459 return tile_height * obj->stride * 2;
1460 }
1461
1462 int
1463 i915_gem_mmap_gtt(struct drm_file *file,
1464 struct drm_device *dev,
1465 uint32_t handle,
1466 uint64_t *offset)
1467 {
1468 struct drm_i915_private *dev_priv = dev->dev_private;
1469 struct drm_i915_gem_object *obj;
1470 int ret;
1471
1472 if (!(dev->driver->driver_features & DRIVER_GEM))
1473 return -ENODEV;
1474
1475 ret = i915_mutex_lock_interruptible(dev);
1476 if (ret)
1477 return ret;
1478
1479 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1480 if (&obj->base == NULL) {
1481 ret = -ENOENT;
1482 goto unlock;
1483 }
1484
1485 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1486 ret = -E2BIG;
1487 goto unlock;
1488 }
1489
1490 if (obj->madv != I915_MADV_WILLNEED) {
1491 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1492 ret = -EINVAL;
1493 goto out;
1494 }
1495
1496 if (!obj->base.map_list.map) {
1497 ret = i915_gem_create_mmap_offset(obj);
1498 if (ret)
1499 goto out;
1500 }
1501
1502 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1503
1504 out:
1505 drm_gem_object_unreference(&obj->base);
1506 unlock:
1507 mutex_unlock(&dev->struct_mutex);
1508 return ret;
1509 }
1510
1511 /**
1512 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1513 * @dev: DRM device
1514 * @data: GTT mapping ioctl data
1515 * @file: GEM object info
1516 *
1517 * Simply returns the fake offset to userspace so it can mmap it.
1518 * The mmap call will end up in drm_gem_mmap(), which will set things
1519 * up so we can get faults in the handler above.
1520 *
1521 * The fault handler will take care of binding the object into the GTT
1522 * (since it may have been evicted to make room for something), allocating
1523 * a fence register, and mapping the appropriate aperture address into
1524 * userspace.
1525 */
1526 int
1527 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1528 struct drm_file *file)
1529 {
1530 struct drm_i915_gem_mmap_gtt *args = data;
1531
1532 if (!(dev->driver->driver_features & DRIVER_GEM))
1533 return -ENODEV;
1534
1535 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1536 }
1537
1538
1539 static int
1540 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1541 gfp_t gfpmask)
1542 {
1543 int page_count, i;
1544 struct address_space *mapping;
1545 struct inode *inode;
1546 struct page *page;
1547
1548 /* Get the list of pages out of our struct file. They'll be pinned
1549 * at this point until we release them.
1550 */
1551 page_count = obj->base.size / PAGE_SIZE;
1552 BUG_ON(obj->pages != NULL);
1553 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1554 if (obj->pages == NULL)
1555 return -ENOMEM;
1556
1557 inode = obj->base.filp->f_path.dentry->d_inode;
1558 mapping = inode->i_mapping;
1559 for (i = 0; i < page_count; i++) {
1560 page = read_cache_page_gfp(mapping, i,
1561 GFP_HIGHUSER |
1562 __GFP_COLD |
1563 __GFP_RECLAIMABLE |
1564 gfpmask);
1565 if (IS_ERR(page))
1566 goto err_pages;
1567
1568 obj->pages[i] = page;
1569 }
1570
1571 if (obj->tiling_mode != I915_TILING_NONE)
1572 i915_gem_object_do_bit_17_swizzle(obj);
1573
1574 return 0;
1575
1576 err_pages:
1577 while (i--)
1578 page_cache_release(obj->pages[i]);
1579
1580 drm_free_large(obj->pages);
1581 obj->pages = NULL;
1582 return PTR_ERR(page);
1583 }
1584
1585 static void
1586 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1587 {
1588 int page_count = obj->base.size / PAGE_SIZE;
1589 int i;
1590
1591 BUG_ON(obj->madv == __I915_MADV_PURGED);
1592
1593 if (obj->tiling_mode != I915_TILING_NONE)
1594 i915_gem_object_save_bit_17_swizzle(obj);
1595
1596 if (obj->madv == I915_MADV_DONTNEED)
1597 obj->dirty = 0;
1598
1599 for (i = 0; i < page_count; i++) {
1600 if (obj->dirty)
1601 set_page_dirty(obj->pages[i]);
1602
1603 if (obj->madv == I915_MADV_WILLNEED)
1604 mark_page_accessed(obj->pages[i]);
1605
1606 page_cache_release(obj->pages[i]);
1607 }
1608 obj->dirty = 0;
1609
1610 drm_free_large(obj->pages);
1611 obj->pages = NULL;
1612 }
1613
1614 void
1615 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1616 struct intel_ring_buffer *ring,
1617 u32 seqno)
1618 {
1619 struct drm_device *dev = obj->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621
1622 BUG_ON(ring == NULL);
1623 obj->ring = ring;
1624
1625 /* Add a reference if we're newly entering the active list. */
1626 if (!obj->active) {
1627 drm_gem_object_reference(&obj->base);
1628 obj->active = 1;
1629 }
1630
1631 /* Move from whatever list we were on to the tail of execution. */
1632 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1633 list_move_tail(&obj->ring_list, &ring->active_list);
1634
1635 obj->last_rendering_seqno = seqno;
1636 if (obj->fenced_gpu_access) {
1637 struct drm_i915_fence_reg *reg;
1638
1639 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1640
1641 obj->last_fenced_seqno = seqno;
1642 obj->last_fenced_ring = ring;
1643
1644 reg = &dev_priv->fence_regs[obj->fence_reg];
1645 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1646 }
1647 }
1648
1649 static void
1650 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1651 {
1652 list_del_init(&obj->ring_list);
1653 obj->last_rendering_seqno = 0;
1654 }
1655
1656 static void
1657 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1658 {
1659 struct drm_device *dev = obj->base.dev;
1660 drm_i915_private_t *dev_priv = dev->dev_private;
1661
1662 BUG_ON(!obj->active);
1663 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1664
1665 i915_gem_object_move_off_active(obj);
1666 }
1667
1668 static void
1669 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1670 {
1671 struct drm_device *dev = obj->base.dev;
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673
1674 if (obj->pin_count != 0)
1675 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1676 else
1677 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1678
1679 BUG_ON(!list_empty(&obj->gpu_write_list));
1680 BUG_ON(!obj->active);
1681 obj->ring = NULL;
1682
1683 i915_gem_object_move_off_active(obj);
1684 obj->fenced_gpu_access = false;
1685
1686 obj->active = 0;
1687 obj->pending_gpu_write = false;
1688 drm_gem_object_unreference(&obj->base);
1689
1690 WARN_ON(i915_verify_lists(dev));
1691 }
1692
1693 /* Immediately discard the backing storage */
1694 static void
1695 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1696 {
1697 struct inode *inode;
1698
1699 /* Our goal here is to return as much of the memory as
1700 * is possible back to the system as we are called from OOM.
1701 * To do this we must instruct the shmfs to drop all of its
1702 * backing pages, *now*. Here we mirror the actions taken
1703 * when by shmem_delete_inode() to release the backing store.
1704 */
1705 inode = obj->base.filp->f_path.dentry->d_inode;
1706 truncate_inode_pages(inode->i_mapping, 0);
1707 if (inode->i_op->truncate_range)
1708 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1709
1710 obj->madv = __I915_MADV_PURGED;
1711 }
1712
1713 static inline int
1714 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1715 {
1716 return obj->madv == I915_MADV_DONTNEED;
1717 }
1718
1719 static void
1720 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1721 uint32_t flush_domains)
1722 {
1723 struct drm_i915_gem_object *obj, *next;
1724
1725 list_for_each_entry_safe(obj, next,
1726 &ring->gpu_write_list,
1727 gpu_write_list) {
1728 if (obj->base.write_domain & flush_domains) {
1729 uint32_t old_write_domain = obj->base.write_domain;
1730
1731 obj->base.write_domain = 0;
1732 list_del_init(&obj->gpu_write_list);
1733 i915_gem_object_move_to_active(obj, ring,
1734 i915_gem_next_request_seqno(ring));
1735
1736 trace_i915_gem_object_change_domain(obj,
1737 obj->base.read_domains,
1738 old_write_domain);
1739 }
1740 }
1741 }
1742
1743 int
1744 i915_add_request(struct intel_ring_buffer *ring,
1745 struct drm_file *file,
1746 struct drm_i915_gem_request *request)
1747 {
1748 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1749 uint32_t seqno;
1750 int was_empty;
1751 int ret;
1752
1753 BUG_ON(request == NULL);
1754
1755 ret = ring->add_request(ring, &seqno);
1756 if (ret)
1757 return ret;
1758
1759 trace_i915_gem_request_add(ring, seqno);
1760
1761 request->seqno = seqno;
1762 request->ring = ring;
1763 request->emitted_jiffies = jiffies;
1764 was_empty = list_empty(&ring->request_list);
1765 list_add_tail(&request->list, &ring->request_list);
1766
1767 if (file) {
1768 struct drm_i915_file_private *file_priv = file->driver_priv;
1769
1770 spin_lock(&file_priv->mm.lock);
1771 request->file_priv = file_priv;
1772 list_add_tail(&request->client_list,
1773 &file_priv->mm.request_list);
1774 spin_unlock(&file_priv->mm.lock);
1775 }
1776
1777 ring->outstanding_lazy_request = false;
1778
1779 if (!dev_priv->mm.suspended) {
1780 mod_timer(&dev_priv->hangcheck_timer,
1781 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1782 if (was_empty)
1783 queue_delayed_work(dev_priv->wq,
1784 &dev_priv->mm.retire_work, HZ);
1785 }
1786 return 0;
1787 }
1788
1789 static inline void
1790 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1791 {
1792 struct drm_i915_file_private *file_priv = request->file_priv;
1793
1794 if (!file_priv)
1795 return;
1796
1797 spin_lock(&file_priv->mm.lock);
1798 if (request->file_priv) {
1799 list_del(&request->client_list);
1800 request->file_priv = NULL;
1801 }
1802 spin_unlock(&file_priv->mm.lock);
1803 }
1804
1805 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1806 struct intel_ring_buffer *ring)
1807 {
1808 while (!list_empty(&ring->request_list)) {
1809 struct drm_i915_gem_request *request;
1810
1811 request = list_first_entry(&ring->request_list,
1812 struct drm_i915_gem_request,
1813 list);
1814
1815 list_del(&request->list);
1816 i915_gem_request_remove_from_client(request);
1817 kfree(request);
1818 }
1819
1820 while (!list_empty(&ring->active_list)) {
1821 struct drm_i915_gem_object *obj;
1822
1823 obj = list_first_entry(&ring->active_list,
1824 struct drm_i915_gem_object,
1825 ring_list);
1826
1827 obj->base.write_domain = 0;
1828 list_del_init(&obj->gpu_write_list);
1829 i915_gem_object_move_to_inactive(obj);
1830 }
1831 }
1832
1833 static void i915_gem_reset_fences(struct drm_device *dev)
1834 {
1835 struct drm_i915_private *dev_priv = dev->dev_private;
1836 int i;
1837
1838 for (i = 0; i < 16; i++) {
1839 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1840 struct drm_i915_gem_object *obj = reg->obj;
1841
1842 if (!obj)
1843 continue;
1844
1845 if (obj->tiling_mode)
1846 i915_gem_release_mmap(obj);
1847
1848 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1849 reg->obj->fenced_gpu_access = false;
1850 reg->obj->last_fenced_seqno = 0;
1851 reg->obj->last_fenced_ring = NULL;
1852 i915_gem_clear_fence_reg(dev, reg);
1853 }
1854 }
1855
1856 void i915_gem_reset(struct drm_device *dev)
1857 {
1858 struct drm_i915_private *dev_priv = dev->dev_private;
1859 struct drm_i915_gem_object *obj;
1860 int i;
1861
1862 for (i = 0; i < I915_NUM_RINGS; i++)
1863 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1864
1865 /* Remove anything from the flushing lists. The GPU cache is likely
1866 * to be lost on reset along with the data, so simply move the
1867 * lost bo to the inactive list.
1868 */
1869 while (!list_empty(&dev_priv->mm.flushing_list)) {
1870 obj= list_first_entry(&dev_priv->mm.flushing_list,
1871 struct drm_i915_gem_object,
1872 mm_list);
1873
1874 obj->base.write_domain = 0;
1875 list_del_init(&obj->gpu_write_list);
1876 i915_gem_object_move_to_inactive(obj);
1877 }
1878
1879 /* Move everything out of the GPU domains to ensure we do any
1880 * necessary invalidation upon reuse.
1881 */
1882 list_for_each_entry(obj,
1883 &dev_priv->mm.inactive_list,
1884 mm_list)
1885 {
1886 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1887 }
1888
1889 /* The fence registers are invalidated so clear them out */
1890 i915_gem_reset_fences(dev);
1891 }
1892
1893 /**
1894 * This function clears the request list as sequence numbers are passed.
1895 */
1896 static void
1897 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1898 {
1899 uint32_t seqno;
1900 int i;
1901
1902 if (list_empty(&ring->request_list))
1903 return;
1904
1905 WARN_ON(i915_verify_lists(ring->dev));
1906
1907 seqno = ring->get_seqno(ring);
1908
1909 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1910 if (seqno >= ring->sync_seqno[i])
1911 ring->sync_seqno[i] = 0;
1912
1913 while (!list_empty(&ring->request_list)) {
1914 struct drm_i915_gem_request *request;
1915
1916 request = list_first_entry(&ring->request_list,
1917 struct drm_i915_gem_request,
1918 list);
1919
1920 if (!i915_seqno_passed(seqno, request->seqno))
1921 break;
1922
1923 trace_i915_gem_request_retire(ring, request->seqno);
1924
1925 list_del(&request->list);
1926 i915_gem_request_remove_from_client(request);
1927 kfree(request);
1928 }
1929
1930 /* Move any buffers on the active list that are no longer referenced
1931 * by the ringbuffer to the flushing/inactive lists as appropriate.
1932 */
1933 while (!list_empty(&ring->active_list)) {
1934 struct drm_i915_gem_object *obj;
1935
1936 obj= list_first_entry(&ring->active_list,
1937 struct drm_i915_gem_object,
1938 ring_list);
1939
1940 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1941 break;
1942
1943 if (obj->base.write_domain != 0)
1944 i915_gem_object_move_to_flushing(obj);
1945 else
1946 i915_gem_object_move_to_inactive(obj);
1947 }
1948
1949 if (unlikely(ring->trace_irq_seqno &&
1950 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1951 ring->irq_put(ring);
1952 ring->trace_irq_seqno = 0;
1953 }
1954
1955 WARN_ON(i915_verify_lists(ring->dev));
1956 }
1957
1958 void
1959 i915_gem_retire_requests(struct drm_device *dev)
1960 {
1961 drm_i915_private_t *dev_priv = dev->dev_private;
1962 int i;
1963
1964 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1965 struct drm_i915_gem_object *obj, *next;
1966
1967 /* We must be careful that during unbind() we do not
1968 * accidentally infinitely recurse into retire requests.
1969 * Currently:
1970 * retire -> free -> unbind -> wait -> retire_ring
1971 */
1972 list_for_each_entry_safe(obj, next,
1973 &dev_priv->mm.deferred_free_list,
1974 mm_list)
1975 i915_gem_free_object_tail(obj);
1976 }
1977
1978 for (i = 0; i < I915_NUM_RINGS; i++)
1979 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1980 }
1981
1982 static void
1983 i915_gem_retire_work_handler(struct work_struct *work)
1984 {
1985 drm_i915_private_t *dev_priv;
1986 struct drm_device *dev;
1987 bool idle;
1988 int i;
1989
1990 dev_priv = container_of(work, drm_i915_private_t,
1991 mm.retire_work.work);
1992 dev = dev_priv->dev;
1993
1994 /* Come back later if the device is busy... */
1995 if (!mutex_trylock(&dev->struct_mutex)) {
1996 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1997 return;
1998 }
1999
2000 i915_gem_retire_requests(dev);
2001
2002 /* Send a periodic flush down the ring so we don't hold onto GEM
2003 * objects indefinitely.
2004 */
2005 idle = true;
2006 for (i = 0; i < I915_NUM_RINGS; i++) {
2007 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2008
2009 if (!list_empty(&ring->gpu_write_list)) {
2010 struct drm_i915_gem_request *request;
2011 int ret;
2012
2013 ret = i915_gem_flush_ring(ring,
2014 0, I915_GEM_GPU_DOMAINS);
2015 request = kzalloc(sizeof(*request), GFP_KERNEL);
2016 if (ret || request == NULL ||
2017 i915_add_request(ring, NULL, request))
2018 kfree(request);
2019 }
2020
2021 idle &= list_empty(&ring->request_list);
2022 }
2023
2024 if (!dev_priv->mm.suspended && !idle)
2025 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2026
2027 mutex_unlock(&dev->struct_mutex);
2028 }
2029
2030 /**
2031 * Waits for a sequence number to be signaled, and cleans up the
2032 * request and object lists appropriately for that event.
2033 */
2034 int
2035 i915_wait_request(struct intel_ring_buffer *ring,
2036 uint32_t seqno)
2037 {
2038 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2039 u32 ier;
2040 int ret = 0;
2041
2042 BUG_ON(seqno == 0);
2043
2044 if (atomic_read(&dev_priv->mm.wedged)) {
2045 struct completion *x = &dev_priv->error_completion;
2046 bool recovery_complete;
2047 unsigned long flags;
2048
2049 /* Give the error handler a chance to run. */
2050 spin_lock_irqsave(&x->wait.lock, flags);
2051 recovery_complete = x->done > 0;
2052 spin_unlock_irqrestore(&x->wait.lock, flags);
2053
2054 return recovery_complete ? -EIO : -EAGAIN;
2055 }
2056
2057 if (seqno == ring->outstanding_lazy_request) {
2058 struct drm_i915_gem_request *request;
2059
2060 request = kzalloc(sizeof(*request), GFP_KERNEL);
2061 if (request == NULL)
2062 return -ENOMEM;
2063
2064 ret = i915_add_request(ring, NULL, request);
2065 if (ret) {
2066 kfree(request);
2067 return ret;
2068 }
2069
2070 seqno = request->seqno;
2071 }
2072
2073 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2074 if (HAS_PCH_SPLIT(ring->dev))
2075 ier = I915_READ(DEIER) | I915_READ(GTIER);
2076 else
2077 ier = I915_READ(IER);
2078 if (!ier) {
2079 DRM_ERROR("something (likely vbetool) disabled "
2080 "interrupts, re-enabling\n");
2081 i915_driver_irq_preinstall(ring->dev);
2082 i915_driver_irq_postinstall(ring->dev);
2083 }
2084
2085 trace_i915_gem_request_wait_begin(ring, seqno);
2086
2087 ring->waiting_seqno = seqno;
2088 if (ring->irq_get(ring)) {
2089 if (dev_priv->mm.interruptible)
2090 ret = wait_event_interruptible(ring->irq_queue,
2091 i915_seqno_passed(ring->get_seqno(ring), seqno)
2092 || atomic_read(&dev_priv->mm.wedged));
2093 else
2094 wait_event(ring->irq_queue,
2095 i915_seqno_passed(ring->get_seqno(ring), seqno)
2096 || atomic_read(&dev_priv->mm.wedged));
2097
2098 ring->irq_put(ring);
2099 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2100 seqno) ||
2101 atomic_read(&dev_priv->mm.wedged), 3000))
2102 ret = -EBUSY;
2103 ring->waiting_seqno = 0;
2104
2105 trace_i915_gem_request_wait_end(ring, seqno);
2106 }
2107 if (atomic_read(&dev_priv->mm.wedged))
2108 ret = -EAGAIN;
2109
2110 if (ret && ret != -ERESTARTSYS)
2111 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2112 __func__, ret, seqno, ring->get_seqno(ring),
2113 dev_priv->next_seqno);
2114
2115 /* Directly dispatch request retiring. While we have the work queue
2116 * to handle this, the waiter on a request often wants an associated
2117 * buffer to have made it to the inactive list, and we would need
2118 * a separate wait queue to handle that.
2119 */
2120 if (ret == 0)
2121 i915_gem_retire_requests_ring(ring);
2122
2123 return ret;
2124 }
2125
2126 /**
2127 * Ensures that all rendering to the object has completed and the object is
2128 * safe to unbind from the GTT or access from the CPU.
2129 */
2130 int
2131 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2132 {
2133 int ret;
2134
2135 /* This function only exists to support waiting for existing rendering,
2136 * not for emitting required flushes.
2137 */
2138 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2139
2140 /* If there is rendering queued on the buffer being evicted, wait for
2141 * it.
2142 */
2143 if (obj->active) {
2144 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2145 if (ret)
2146 return ret;
2147 }
2148
2149 return 0;
2150 }
2151
2152 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2153 {
2154 u32 old_write_domain, old_read_domains;
2155
2156 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2157 return;
2158
2159 /* Act a barrier for all accesses through the GTT */
2160 mb();
2161
2162 /* Force a pagefault for domain tracking on next user access */
2163 i915_gem_release_mmap(obj);
2164
2165 old_read_domains = obj->base.read_domains;
2166 old_write_domain = obj->base.write_domain;
2167
2168 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2169 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2170
2171 trace_i915_gem_object_change_domain(obj,
2172 old_read_domains,
2173 old_write_domain);
2174 }
2175
2176 /**
2177 * Unbinds an object from the GTT aperture.
2178 */
2179 int
2180 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2181 {
2182 int ret = 0;
2183
2184 if (obj->gtt_space == NULL)
2185 return 0;
2186
2187 if (obj->pin_count != 0) {
2188 DRM_ERROR("Attempting to unbind pinned buffer\n");
2189 return -EINVAL;
2190 }
2191
2192 ret = i915_gem_object_finish_gpu(obj);
2193 if (ret == -ERESTARTSYS)
2194 return ret;
2195 /* Continue on if we fail due to EIO, the GPU is hung so we
2196 * should be safe and we need to cleanup or else we might
2197 * cause memory corruption through use-after-free.
2198 */
2199
2200 i915_gem_object_finish_gtt(obj);
2201
2202 /* Move the object to the CPU domain to ensure that
2203 * any possible CPU writes while it's not in the GTT
2204 * are flushed when we go to remap it.
2205 */
2206 if (ret == 0)
2207 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2208 if (ret == -ERESTARTSYS)
2209 return ret;
2210 if (ret) {
2211 /* In the event of a disaster, abandon all caches and
2212 * hope for the best.
2213 */
2214 i915_gem_clflush_object(obj);
2215 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2216 }
2217
2218 /* release the fence reg _after_ flushing */
2219 ret = i915_gem_object_put_fence(obj);
2220 if (ret == -ERESTARTSYS)
2221 return ret;
2222
2223 trace_i915_gem_object_unbind(obj);
2224
2225 i915_gem_gtt_unbind_object(obj);
2226 i915_gem_object_put_pages_gtt(obj);
2227
2228 list_del_init(&obj->gtt_list);
2229 list_del_init(&obj->mm_list);
2230 /* Avoid an unnecessary call to unbind on rebind. */
2231 obj->map_and_fenceable = true;
2232
2233 drm_mm_put_block(obj->gtt_space);
2234 obj->gtt_space = NULL;
2235 obj->gtt_offset = 0;
2236
2237 if (i915_gem_object_is_purgeable(obj))
2238 i915_gem_object_truncate(obj);
2239
2240 return ret;
2241 }
2242
2243 int
2244 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2245 uint32_t invalidate_domains,
2246 uint32_t flush_domains)
2247 {
2248 int ret;
2249
2250 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2251 return 0;
2252
2253 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2254
2255 ret = ring->flush(ring, invalidate_domains, flush_domains);
2256 if (ret)
2257 return ret;
2258
2259 if (flush_domains & I915_GEM_GPU_DOMAINS)
2260 i915_gem_process_flushing_list(ring, flush_domains);
2261
2262 return 0;
2263 }
2264
2265 static int i915_ring_idle(struct intel_ring_buffer *ring)
2266 {
2267 int ret;
2268
2269 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2270 return 0;
2271
2272 if (!list_empty(&ring->gpu_write_list)) {
2273 ret = i915_gem_flush_ring(ring,
2274 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2275 if (ret)
2276 return ret;
2277 }
2278
2279 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2280 }
2281
2282 int
2283 i915_gpu_idle(struct drm_device *dev)
2284 {
2285 drm_i915_private_t *dev_priv = dev->dev_private;
2286 bool lists_empty;
2287 int ret, i;
2288
2289 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2290 list_empty(&dev_priv->mm.active_list));
2291 if (lists_empty)
2292 return 0;
2293
2294 /* Flush everything onto the inactive list. */
2295 for (i = 0; i < I915_NUM_RINGS; i++) {
2296 ret = i915_ring_idle(&dev_priv->ring[i]);
2297 if (ret)
2298 return ret;
2299 }
2300
2301 return 0;
2302 }
2303
2304 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2305 struct intel_ring_buffer *pipelined)
2306 {
2307 struct drm_device *dev = obj->base.dev;
2308 drm_i915_private_t *dev_priv = dev->dev_private;
2309 u32 size = obj->gtt_space->size;
2310 int regnum = obj->fence_reg;
2311 uint64_t val;
2312
2313 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2314 0xfffff000) << 32;
2315 val |= obj->gtt_offset & 0xfffff000;
2316 val |= (uint64_t)((obj->stride / 128) - 1) <<
2317 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2318
2319 if (obj->tiling_mode == I915_TILING_Y)
2320 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321 val |= I965_FENCE_REG_VALID;
2322
2323 if (pipelined) {
2324 int ret = intel_ring_begin(pipelined, 6);
2325 if (ret)
2326 return ret;
2327
2328 intel_ring_emit(pipelined, MI_NOOP);
2329 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2330 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2331 intel_ring_emit(pipelined, (u32)val);
2332 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2333 intel_ring_emit(pipelined, (u32)(val >> 32));
2334 intel_ring_advance(pipelined);
2335 } else
2336 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2337
2338 return 0;
2339 }
2340
2341 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2342 struct intel_ring_buffer *pipelined)
2343 {
2344 struct drm_device *dev = obj->base.dev;
2345 drm_i915_private_t *dev_priv = dev->dev_private;
2346 u32 size = obj->gtt_space->size;
2347 int regnum = obj->fence_reg;
2348 uint64_t val;
2349
2350 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2351 0xfffff000) << 32;
2352 val |= obj->gtt_offset & 0xfffff000;
2353 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2354 if (obj->tiling_mode == I915_TILING_Y)
2355 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2356 val |= I965_FENCE_REG_VALID;
2357
2358 if (pipelined) {
2359 int ret = intel_ring_begin(pipelined, 6);
2360 if (ret)
2361 return ret;
2362
2363 intel_ring_emit(pipelined, MI_NOOP);
2364 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2365 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2366 intel_ring_emit(pipelined, (u32)val);
2367 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2368 intel_ring_emit(pipelined, (u32)(val >> 32));
2369 intel_ring_advance(pipelined);
2370 } else
2371 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2372
2373 return 0;
2374 }
2375
2376 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2377 struct intel_ring_buffer *pipelined)
2378 {
2379 struct drm_device *dev = obj->base.dev;
2380 drm_i915_private_t *dev_priv = dev->dev_private;
2381 u32 size = obj->gtt_space->size;
2382 u32 fence_reg, val, pitch_val;
2383 int tile_width;
2384
2385 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2386 (size & -size) != size ||
2387 (obj->gtt_offset & (size - 1)),
2388 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2389 obj->gtt_offset, obj->map_and_fenceable, size))
2390 return -EINVAL;
2391
2392 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2393 tile_width = 128;
2394 else
2395 tile_width = 512;
2396
2397 /* Note: pitch better be a power of two tile widths */
2398 pitch_val = obj->stride / tile_width;
2399 pitch_val = ffs(pitch_val) - 1;
2400
2401 val = obj->gtt_offset;
2402 if (obj->tiling_mode == I915_TILING_Y)
2403 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2404 val |= I915_FENCE_SIZE_BITS(size);
2405 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2406 val |= I830_FENCE_REG_VALID;
2407
2408 fence_reg = obj->fence_reg;
2409 if (fence_reg < 8)
2410 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2411 else
2412 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2413
2414 if (pipelined) {
2415 int ret = intel_ring_begin(pipelined, 4);
2416 if (ret)
2417 return ret;
2418
2419 intel_ring_emit(pipelined, MI_NOOP);
2420 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2421 intel_ring_emit(pipelined, fence_reg);
2422 intel_ring_emit(pipelined, val);
2423 intel_ring_advance(pipelined);
2424 } else
2425 I915_WRITE(fence_reg, val);
2426
2427 return 0;
2428 }
2429
2430 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2431 struct intel_ring_buffer *pipelined)
2432 {
2433 struct drm_device *dev = obj->base.dev;
2434 drm_i915_private_t *dev_priv = dev->dev_private;
2435 u32 size = obj->gtt_space->size;
2436 int regnum = obj->fence_reg;
2437 uint32_t val;
2438 uint32_t pitch_val;
2439
2440 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2441 (size & -size) != size ||
2442 (obj->gtt_offset & (size - 1)),
2443 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2444 obj->gtt_offset, size))
2445 return -EINVAL;
2446
2447 pitch_val = obj->stride / 128;
2448 pitch_val = ffs(pitch_val) - 1;
2449
2450 val = obj->gtt_offset;
2451 if (obj->tiling_mode == I915_TILING_Y)
2452 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2453 val |= I830_FENCE_SIZE_BITS(size);
2454 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2455 val |= I830_FENCE_REG_VALID;
2456
2457 if (pipelined) {
2458 int ret = intel_ring_begin(pipelined, 4);
2459 if (ret)
2460 return ret;
2461
2462 intel_ring_emit(pipelined, MI_NOOP);
2463 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2464 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2465 intel_ring_emit(pipelined, val);
2466 intel_ring_advance(pipelined);
2467 } else
2468 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2469
2470 return 0;
2471 }
2472
2473 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2474 {
2475 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2476 }
2477
2478 static int
2479 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2480 struct intel_ring_buffer *pipelined)
2481 {
2482 int ret;
2483
2484 if (obj->fenced_gpu_access) {
2485 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2486 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2487 0, obj->base.write_domain);
2488 if (ret)
2489 return ret;
2490 }
2491
2492 obj->fenced_gpu_access = false;
2493 }
2494
2495 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2496 if (!ring_passed_seqno(obj->last_fenced_ring,
2497 obj->last_fenced_seqno)) {
2498 ret = i915_wait_request(obj->last_fenced_ring,
2499 obj->last_fenced_seqno);
2500 if (ret)
2501 return ret;
2502 }
2503
2504 obj->last_fenced_seqno = 0;
2505 obj->last_fenced_ring = NULL;
2506 }
2507
2508 /* Ensure that all CPU reads are completed before installing a fence
2509 * and all writes before removing the fence.
2510 */
2511 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2512 mb();
2513
2514 return 0;
2515 }
2516
2517 int
2518 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2519 {
2520 int ret;
2521
2522 if (obj->tiling_mode)
2523 i915_gem_release_mmap(obj);
2524
2525 ret = i915_gem_object_flush_fence(obj, NULL);
2526 if (ret)
2527 return ret;
2528
2529 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2531 i915_gem_clear_fence_reg(obj->base.dev,
2532 &dev_priv->fence_regs[obj->fence_reg]);
2533
2534 obj->fence_reg = I915_FENCE_REG_NONE;
2535 }
2536
2537 return 0;
2538 }
2539
2540 static struct drm_i915_fence_reg *
2541 i915_find_fence_reg(struct drm_device *dev,
2542 struct intel_ring_buffer *pipelined)
2543 {
2544 struct drm_i915_private *dev_priv = dev->dev_private;
2545 struct drm_i915_fence_reg *reg, *first, *avail;
2546 int i;
2547
2548 /* First try to find a free reg */
2549 avail = NULL;
2550 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2551 reg = &dev_priv->fence_regs[i];
2552 if (!reg->obj)
2553 return reg;
2554
2555 if (!reg->obj->pin_count)
2556 avail = reg;
2557 }
2558
2559 if (avail == NULL)
2560 return NULL;
2561
2562 /* None available, try to steal one or wait for a user to finish */
2563 avail = first = NULL;
2564 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2565 if (reg->obj->pin_count)
2566 continue;
2567
2568 if (first == NULL)
2569 first = reg;
2570
2571 if (!pipelined ||
2572 !reg->obj->last_fenced_ring ||
2573 reg->obj->last_fenced_ring == pipelined) {
2574 avail = reg;
2575 break;
2576 }
2577 }
2578
2579 if (avail == NULL)
2580 avail = first;
2581
2582 return avail;
2583 }
2584
2585 /**
2586 * i915_gem_object_get_fence - set up a fence reg for an object
2587 * @obj: object to map through a fence reg
2588 * @pipelined: ring on which to queue the change, or NULL for CPU access
2589 * @interruptible: must we wait uninterruptibly for the register to retire?
2590 *
2591 * When mapping objects through the GTT, userspace wants to be able to write
2592 * to them without having to worry about swizzling if the object is tiled.
2593 *
2594 * This function walks the fence regs looking for a free one for @obj,
2595 * stealing one if it can't find any.
2596 *
2597 * It then sets up the reg based on the object's properties: address, pitch
2598 * and tiling format.
2599 */
2600 int
2601 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2602 struct intel_ring_buffer *pipelined)
2603 {
2604 struct drm_device *dev = obj->base.dev;
2605 struct drm_i915_private *dev_priv = dev->dev_private;
2606 struct drm_i915_fence_reg *reg;
2607 int ret;
2608
2609 /* XXX disable pipelining. There are bugs. Shocking. */
2610 pipelined = NULL;
2611
2612 /* Just update our place in the LRU if our fence is getting reused. */
2613 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2614 reg = &dev_priv->fence_regs[obj->fence_reg];
2615 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2616
2617 if (obj->tiling_changed) {
2618 ret = i915_gem_object_flush_fence(obj, pipelined);
2619 if (ret)
2620 return ret;
2621
2622 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2623 pipelined = NULL;
2624
2625 if (pipelined) {
2626 reg->setup_seqno =
2627 i915_gem_next_request_seqno(pipelined);
2628 obj->last_fenced_seqno = reg->setup_seqno;
2629 obj->last_fenced_ring = pipelined;
2630 }
2631
2632 goto update;
2633 }
2634
2635 if (!pipelined) {
2636 if (reg->setup_seqno) {
2637 if (!ring_passed_seqno(obj->last_fenced_ring,
2638 reg->setup_seqno)) {
2639 ret = i915_wait_request(obj->last_fenced_ring,
2640 reg->setup_seqno);
2641 if (ret)
2642 return ret;
2643 }
2644
2645 reg->setup_seqno = 0;
2646 }
2647 } else if (obj->last_fenced_ring &&
2648 obj->last_fenced_ring != pipelined) {
2649 ret = i915_gem_object_flush_fence(obj, pipelined);
2650 if (ret)
2651 return ret;
2652 }
2653
2654 return 0;
2655 }
2656
2657 reg = i915_find_fence_reg(dev, pipelined);
2658 if (reg == NULL)
2659 return -ENOSPC;
2660
2661 ret = i915_gem_object_flush_fence(obj, pipelined);
2662 if (ret)
2663 return ret;
2664
2665 if (reg->obj) {
2666 struct drm_i915_gem_object *old = reg->obj;
2667
2668 drm_gem_object_reference(&old->base);
2669
2670 if (old->tiling_mode)
2671 i915_gem_release_mmap(old);
2672
2673 ret = i915_gem_object_flush_fence(old, pipelined);
2674 if (ret) {
2675 drm_gem_object_unreference(&old->base);
2676 return ret;
2677 }
2678
2679 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2680 pipelined = NULL;
2681
2682 old->fence_reg = I915_FENCE_REG_NONE;
2683 old->last_fenced_ring = pipelined;
2684 old->last_fenced_seqno =
2685 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2686
2687 drm_gem_object_unreference(&old->base);
2688 } else if (obj->last_fenced_seqno == 0)
2689 pipelined = NULL;
2690
2691 reg->obj = obj;
2692 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2693 obj->fence_reg = reg - dev_priv->fence_regs;
2694 obj->last_fenced_ring = pipelined;
2695
2696 reg->setup_seqno =
2697 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2698 obj->last_fenced_seqno = reg->setup_seqno;
2699
2700 update:
2701 obj->tiling_changed = false;
2702 switch (INTEL_INFO(dev)->gen) {
2703 case 7:
2704 case 6:
2705 ret = sandybridge_write_fence_reg(obj, pipelined);
2706 break;
2707 case 5:
2708 case 4:
2709 ret = i965_write_fence_reg(obj, pipelined);
2710 break;
2711 case 3:
2712 ret = i915_write_fence_reg(obj, pipelined);
2713 break;
2714 case 2:
2715 ret = i830_write_fence_reg(obj, pipelined);
2716 break;
2717 }
2718
2719 return ret;
2720 }
2721
2722 /**
2723 * i915_gem_clear_fence_reg - clear out fence register info
2724 * @obj: object to clear
2725 *
2726 * Zeroes out the fence register itself and clears out the associated
2727 * data structures in dev_priv and obj.
2728 */
2729 static void
2730 i915_gem_clear_fence_reg(struct drm_device *dev,
2731 struct drm_i915_fence_reg *reg)
2732 {
2733 drm_i915_private_t *dev_priv = dev->dev_private;
2734 uint32_t fence_reg = reg - dev_priv->fence_regs;
2735
2736 switch (INTEL_INFO(dev)->gen) {
2737 case 7:
2738 case 6:
2739 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2740 break;
2741 case 5:
2742 case 4:
2743 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2744 break;
2745 case 3:
2746 if (fence_reg >= 8)
2747 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2748 else
2749 case 2:
2750 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2751
2752 I915_WRITE(fence_reg, 0);
2753 break;
2754 }
2755
2756 list_del_init(&reg->lru_list);
2757 reg->obj = NULL;
2758 reg->setup_seqno = 0;
2759 }
2760
2761 /**
2762 * Finds free space in the GTT aperture and binds the object there.
2763 */
2764 static int
2765 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2766 unsigned alignment,
2767 bool map_and_fenceable)
2768 {
2769 struct drm_device *dev = obj->base.dev;
2770 drm_i915_private_t *dev_priv = dev->dev_private;
2771 struct drm_mm_node *free_space;
2772 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2773 u32 size, fence_size, fence_alignment, unfenced_alignment;
2774 bool mappable, fenceable;
2775 int ret;
2776
2777 if (obj->madv != I915_MADV_WILLNEED) {
2778 DRM_ERROR("Attempting to bind a purgeable object\n");
2779 return -EINVAL;
2780 }
2781
2782 fence_size = i915_gem_get_gtt_size(obj);
2783 fence_alignment = i915_gem_get_gtt_alignment(obj);
2784 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2785
2786 if (alignment == 0)
2787 alignment = map_and_fenceable ? fence_alignment :
2788 unfenced_alignment;
2789 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2790 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2791 return -EINVAL;
2792 }
2793
2794 size = map_and_fenceable ? fence_size : obj->base.size;
2795
2796 /* If the object is bigger than the entire aperture, reject it early
2797 * before evicting everything in a vain attempt to find space.
2798 */
2799 if (obj->base.size >
2800 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2801 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2802 return -E2BIG;
2803 }
2804
2805 search_free:
2806 if (map_and_fenceable)
2807 free_space =
2808 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2809 size, alignment, 0,
2810 dev_priv->mm.gtt_mappable_end,
2811 0);
2812 else
2813 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2814 size, alignment, 0);
2815
2816 if (free_space != NULL) {
2817 if (map_and_fenceable)
2818 obj->gtt_space =
2819 drm_mm_get_block_range_generic(free_space,
2820 size, alignment, 0,
2821 dev_priv->mm.gtt_mappable_end,
2822 0);
2823 else
2824 obj->gtt_space =
2825 drm_mm_get_block(free_space, size, alignment);
2826 }
2827 if (obj->gtt_space == NULL) {
2828 /* If the gtt is empty and we're still having trouble
2829 * fitting our object in, we're out of memory.
2830 */
2831 ret = i915_gem_evict_something(dev, size, alignment,
2832 map_and_fenceable);
2833 if (ret)
2834 return ret;
2835
2836 goto search_free;
2837 }
2838
2839 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2840 if (ret) {
2841 drm_mm_put_block(obj->gtt_space);
2842 obj->gtt_space = NULL;
2843
2844 if (ret == -ENOMEM) {
2845 /* first try to reclaim some memory by clearing the GTT */
2846 ret = i915_gem_evict_everything(dev, false);
2847 if (ret) {
2848 /* now try to shrink everyone else */
2849 if (gfpmask) {
2850 gfpmask = 0;
2851 goto search_free;
2852 }
2853
2854 return -ENOMEM;
2855 }
2856
2857 goto search_free;
2858 }
2859
2860 return ret;
2861 }
2862
2863 ret = i915_gem_gtt_bind_object(obj);
2864 if (ret) {
2865 i915_gem_object_put_pages_gtt(obj);
2866 drm_mm_put_block(obj->gtt_space);
2867 obj->gtt_space = NULL;
2868
2869 if (i915_gem_evict_everything(dev, false))
2870 return ret;
2871
2872 goto search_free;
2873 }
2874
2875 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2876 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2877
2878 /* Assert that the object is not currently in any GPU domain. As it
2879 * wasn't in the GTT, there shouldn't be any way it could have been in
2880 * a GPU cache
2881 */
2882 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2883 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2884
2885 obj->gtt_offset = obj->gtt_space->start;
2886
2887 fenceable =
2888 obj->gtt_space->size == fence_size &&
2889 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2890
2891 mappable =
2892 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2893
2894 obj->map_and_fenceable = mappable && fenceable;
2895
2896 trace_i915_gem_object_bind(obj, map_and_fenceable);
2897 return 0;
2898 }
2899
2900 void
2901 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2902 {
2903 /* If we don't have a page list set up, then we're not pinned
2904 * to GPU, and we can ignore the cache flush because it'll happen
2905 * again at bind time.
2906 */
2907 if (obj->pages == NULL)
2908 return;
2909
2910 /* If the GPU is snooping the contents of the CPU cache,
2911 * we do not need to manually clear the CPU cache lines. However,
2912 * the caches are only snooped when the render cache is
2913 * flushed/invalidated. As we always have to emit invalidations
2914 * and flushes when moving into and out of the RENDER domain, correct
2915 * snooping behaviour occurs naturally as the result of our domain
2916 * tracking.
2917 */
2918 if (obj->cache_level != I915_CACHE_NONE)
2919 return;
2920
2921 trace_i915_gem_object_clflush(obj);
2922
2923 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2924 }
2925
2926 /** Flushes any GPU write domain for the object if it's dirty. */
2927 static int
2928 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2929 {
2930 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2931 return 0;
2932
2933 /* Queue the GPU write cache flushing we need. */
2934 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2935 }
2936
2937 /** Flushes the GTT write domain for the object if it's dirty. */
2938 static void
2939 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2940 {
2941 uint32_t old_write_domain;
2942
2943 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2944 return;
2945
2946 /* No actual flushing is required for the GTT write domain. Writes
2947 * to it immediately go to main memory as far as we know, so there's
2948 * no chipset flush. It also doesn't land in render cache.
2949 *
2950 * However, we do have to enforce the order so that all writes through
2951 * the GTT land before any writes to the device, such as updates to
2952 * the GATT itself.
2953 */
2954 wmb();
2955
2956 i915_gem_release_mmap(obj);
2957
2958 old_write_domain = obj->base.write_domain;
2959 obj->base.write_domain = 0;
2960
2961 trace_i915_gem_object_change_domain(obj,
2962 obj->base.read_domains,
2963 old_write_domain);
2964 }
2965
2966 /** Flushes the CPU write domain for the object if it's dirty. */
2967 static void
2968 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2969 {
2970 uint32_t old_write_domain;
2971
2972 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2973 return;
2974
2975 i915_gem_clflush_object(obj);
2976 intel_gtt_chipset_flush();
2977 old_write_domain = obj->base.write_domain;
2978 obj->base.write_domain = 0;
2979
2980 trace_i915_gem_object_change_domain(obj,
2981 obj->base.read_domains,
2982 old_write_domain);
2983 }
2984
2985 /**
2986 * Moves a single object to the GTT read, and possibly write domain.
2987 *
2988 * This function returns when the move is complete, including waiting on
2989 * flushes to occur.
2990 */
2991 int
2992 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2993 {
2994 uint32_t old_write_domain, old_read_domains;
2995 int ret;
2996
2997 /* Not valid to be called on unbound objects. */
2998 if (obj->gtt_space == NULL)
2999 return -EINVAL;
3000
3001 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3002 return 0;
3003
3004 ret = i915_gem_object_flush_gpu_write_domain(obj);
3005 if (ret)
3006 return ret;
3007
3008 if (obj->pending_gpu_write || write) {
3009 ret = i915_gem_object_wait_rendering(obj);
3010 if (ret)
3011 return ret;
3012 }
3013
3014 i915_gem_object_flush_cpu_write_domain(obj);
3015
3016 old_write_domain = obj->base.write_domain;
3017 old_read_domains = obj->base.read_domains;
3018
3019 /* It should now be out of any other write domains, and we can update
3020 * the domain values for our changes.
3021 */
3022 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3023 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3024 if (write) {
3025 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3026 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3027 obj->dirty = 1;
3028 }
3029
3030 trace_i915_gem_object_change_domain(obj,
3031 old_read_domains,
3032 old_write_domain);
3033
3034 return 0;
3035 }
3036
3037 /*
3038 * Prepare buffer for display plane. Use uninterruptible for possible flush
3039 * wait, as in modesetting process we're not supposed to be interrupted.
3040 */
3041 int
3042 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3043 struct intel_ring_buffer *pipelined)
3044 {
3045 uint32_t old_read_domains;
3046 int ret;
3047
3048 /* Not valid to be called on unbound objects. */
3049 if (obj->gtt_space == NULL)
3050 return -EINVAL;
3051
3052 ret = i915_gem_object_flush_gpu_write_domain(obj);
3053 if (ret)
3054 return ret;
3055
3056
3057 /* Currently, we are always called from an non-interruptible context. */
3058 if (pipelined != obj->ring) {
3059 ret = i915_gem_object_wait_rendering(obj);
3060 if (ret)
3061 return ret;
3062 }
3063
3064 i915_gem_object_flush_cpu_write_domain(obj);
3065
3066 old_read_domains = obj->base.read_domains;
3067 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3068
3069 trace_i915_gem_object_change_domain(obj,
3070 old_read_domains,
3071 obj->base.write_domain);
3072
3073 return 0;
3074 }
3075
3076 int
3077 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3078 {
3079 int ret;
3080
3081 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3082 return 0;
3083
3084 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3085 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3086 if (ret)
3087 return ret;
3088 }
3089
3090 /* Ensure that we invalidate the GPU's caches and TLBs. */
3091 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3092
3093 return i915_gem_object_wait_rendering(obj);
3094 }
3095
3096 /**
3097 * Moves a single object to the CPU read, and possibly write domain.
3098 *
3099 * This function returns when the move is complete, including waiting on
3100 * flushes to occur.
3101 */
3102 static int
3103 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3104 {
3105 uint32_t old_write_domain, old_read_domains;
3106 int ret;
3107
3108 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3109 return 0;
3110
3111 ret = i915_gem_object_flush_gpu_write_domain(obj);
3112 if (ret)
3113 return ret;
3114
3115 ret = i915_gem_object_wait_rendering(obj);
3116 if (ret)
3117 return ret;
3118
3119 i915_gem_object_flush_gtt_write_domain(obj);
3120
3121 /* If we have a partially-valid cache of the object in the CPU,
3122 * finish invalidating it and free the per-page flags.
3123 */
3124 i915_gem_object_set_to_full_cpu_read_domain(obj);
3125
3126 old_write_domain = obj->base.write_domain;
3127 old_read_domains = obj->base.read_domains;
3128
3129 /* Flush the CPU cache if it's still invalid. */
3130 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3131 i915_gem_clflush_object(obj);
3132
3133 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3134 }
3135
3136 /* It should now be out of any other write domains, and we can update
3137 * the domain values for our changes.
3138 */
3139 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3140
3141 /* If we're writing through the CPU, then the GPU read domains will
3142 * need to be invalidated at next use.
3143 */
3144 if (write) {
3145 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3146 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3147 }
3148
3149 trace_i915_gem_object_change_domain(obj,
3150 old_read_domains,
3151 old_write_domain);
3152
3153 return 0;
3154 }
3155
3156 /**
3157 * Moves the object from a partially CPU read to a full one.
3158 *
3159 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3160 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3161 */
3162 static void
3163 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3164 {
3165 if (!obj->page_cpu_valid)
3166 return;
3167
3168 /* If we're partially in the CPU read domain, finish moving it in.
3169 */
3170 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3171 int i;
3172
3173 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3174 if (obj->page_cpu_valid[i])
3175 continue;
3176 drm_clflush_pages(obj->pages + i, 1);
3177 }
3178 }
3179
3180 /* Free the page_cpu_valid mappings which are now stale, whether
3181 * or not we've got I915_GEM_DOMAIN_CPU.
3182 */
3183 kfree(obj->page_cpu_valid);
3184 obj->page_cpu_valid = NULL;
3185 }
3186
3187 /**
3188 * Set the CPU read domain on a range of the object.
3189 *
3190 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3191 * not entirely valid. The page_cpu_valid member of the object flags which
3192 * pages have been flushed, and will be respected by
3193 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3194 * of the whole object.
3195 *
3196 * This function returns when the move is complete, including waiting on
3197 * flushes to occur.
3198 */
3199 static int
3200 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3201 uint64_t offset, uint64_t size)
3202 {
3203 uint32_t old_read_domains;
3204 int i, ret;
3205
3206 if (offset == 0 && size == obj->base.size)
3207 return i915_gem_object_set_to_cpu_domain(obj, 0);
3208
3209 ret = i915_gem_object_flush_gpu_write_domain(obj);
3210 if (ret)
3211 return ret;
3212
3213 ret = i915_gem_object_wait_rendering(obj);
3214 if (ret)
3215 return ret;
3216
3217 i915_gem_object_flush_gtt_write_domain(obj);
3218
3219 /* If we're already fully in the CPU read domain, we're done. */
3220 if (obj->page_cpu_valid == NULL &&
3221 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3222 return 0;
3223
3224 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3225 * newly adding I915_GEM_DOMAIN_CPU
3226 */
3227 if (obj->page_cpu_valid == NULL) {
3228 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3229 GFP_KERNEL);
3230 if (obj->page_cpu_valid == NULL)
3231 return -ENOMEM;
3232 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3233 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3234
3235 /* Flush the cache on any pages that are still invalid from the CPU's
3236 * perspective.
3237 */
3238 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3239 i++) {
3240 if (obj->page_cpu_valid[i])
3241 continue;
3242
3243 drm_clflush_pages(obj->pages + i, 1);
3244
3245 obj->page_cpu_valid[i] = 1;
3246 }
3247
3248 /* It should now be out of any other write domains, and we can update
3249 * the domain values for our changes.
3250 */
3251 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3252
3253 old_read_domains = obj->base.read_domains;
3254 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3255
3256 trace_i915_gem_object_change_domain(obj,
3257 old_read_domains,
3258 obj->base.write_domain);
3259
3260 return 0;
3261 }
3262
3263 /* Throttle our rendering by waiting until the ring has completed our requests
3264 * emitted over 20 msec ago.
3265 *
3266 * Note that if we were to use the current jiffies each time around the loop,
3267 * we wouldn't escape the function with any frames outstanding if the time to
3268 * render a frame was over 20ms.
3269 *
3270 * This should get us reasonable parallelism between CPU and GPU but also
3271 * relatively low latency when blocking on a particular request to finish.
3272 */
3273 static int
3274 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3275 {
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277 struct drm_i915_file_private *file_priv = file->driver_priv;
3278 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3279 struct drm_i915_gem_request *request;
3280 struct intel_ring_buffer *ring = NULL;
3281 u32 seqno = 0;
3282 int ret;
3283
3284 if (atomic_read(&dev_priv->mm.wedged))
3285 return -EIO;
3286
3287 spin_lock(&file_priv->mm.lock);
3288 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3289 if (time_after_eq(request->emitted_jiffies, recent_enough))
3290 break;
3291
3292 ring = request->ring;
3293 seqno = request->seqno;
3294 }
3295 spin_unlock(&file_priv->mm.lock);
3296
3297 if (seqno == 0)
3298 return 0;
3299
3300 ret = 0;
3301 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3302 /* And wait for the seqno passing without holding any locks and
3303 * causing extra latency for others. This is safe as the irq
3304 * generation is designed to be run atomically and so is
3305 * lockless.
3306 */
3307 if (ring->irq_get(ring)) {
3308 ret = wait_event_interruptible(ring->irq_queue,
3309 i915_seqno_passed(ring->get_seqno(ring), seqno)
3310 || atomic_read(&dev_priv->mm.wedged));
3311 ring->irq_put(ring);
3312
3313 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3314 ret = -EIO;
3315 }
3316 }
3317
3318 if (ret == 0)
3319 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3320
3321 return ret;
3322 }
3323
3324 int
3325 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3326 uint32_t alignment,
3327 bool map_and_fenceable)
3328 {
3329 struct drm_device *dev = obj->base.dev;
3330 struct drm_i915_private *dev_priv = dev->dev_private;
3331 int ret;
3332
3333 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3334 WARN_ON(i915_verify_lists(dev));
3335
3336 if (obj->gtt_space != NULL) {
3337 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3338 (map_and_fenceable && !obj->map_and_fenceable)) {
3339 WARN(obj->pin_count,
3340 "bo is already pinned with incorrect alignment:"
3341 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3342 " obj->map_and_fenceable=%d\n",
3343 obj->gtt_offset, alignment,
3344 map_and_fenceable,
3345 obj->map_and_fenceable);
3346 ret = i915_gem_object_unbind(obj);
3347 if (ret)
3348 return ret;
3349 }
3350 }
3351
3352 if (obj->gtt_space == NULL) {
3353 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3354 map_and_fenceable);
3355 if (ret)
3356 return ret;
3357 }
3358
3359 if (obj->pin_count++ == 0) {
3360 if (!obj->active)
3361 list_move_tail(&obj->mm_list,
3362 &dev_priv->mm.pinned_list);
3363 }
3364 obj->pin_mappable |= map_and_fenceable;
3365
3366 WARN_ON(i915_verify_lists(dev));
3367 return 0;
3368 }
3369
3370 void
3371 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3372 {
3373 struct drm_device *dev = obj->base.dev;
3374 drm_i915_private_t *dev_priv = dev->dev_private;
3375
3376 WARN_ON(i915_verify_lists(dev));
3377 BUG_ON(obj->pin_count == 0);
3378 BUG_ON(obj->gtt_space == NULL);
3379
3380 if (--obj->pin_count == 0) {
3381 if (!obj->active)
3382 list_move_tail(&obj->mm_list,
3383 &dev_priv->mm.inactive_list);
3384 obj->pin_mappable = false;
3385 }
3386 WARN_ON(i915_verify_lists(dev));
3387 }
3388
3389 int
3390 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3391 struct drm_file *file)
3392 {
3393 struct drm_i915_gem_pin *args = data;
3394 struct drm_i915_gem_object *obj;
3395 int ret;
3396
3397 ret = i915_mutex_lock_interruptible(dev);
3398 if (ret)
3399 return ret;
3400
3401 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3402 if (&obj->base == NULL) {
3403 ret = -ENOENT;
3404 goto unlock;
3405 }
3406
3407 if (obj->madv != I915_MADV_WILLNEED) {
3408 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3409 ret = -EINVAL;
3410 goto out;
3411 }
3412
3413 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3414 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3415 args->handle);
3416 ret = -EINVAL;
3417 goto out;
3418 }
3419
3420 obj->user_pin_count++;
3421 obj->pin_filp = file;
3422 if (obj->user_pin_count == 1) {
3423 ret = i915_gem_object_pin(obj, args->alignment, true);
3424 if (ret)
3425 goto out;
3426 }
3427
3428 /* XXX - flush the CPU caches for pinned objects
3429 * as the X server doesn't manage domains yet
3430 */
3431 i915_gem_object_flush_cpu_write_domain(obj);
3432 args->offset = obj->gtt_offset;
3433 out:
3434 drm_gem_object_unreference(&obj->base);
3435 unlock:
3436 mutex_unlock(&dev->struct_mutex);
3437 return ret;
3438 }
3439
3440 int
3441 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3442 struct drm_file *file)
3443 {
3444 struct drm_i915_gem_pin *args = data;
3445 struct drm_i915_gem_object *obj;
3446 int ret;
3447
3448 ret = i915_mutex_lock_interruptible(dev);
3449 if (ret)
3450 return ret;
3451
3452 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3453 if (&obj->base == NULL) {
3454 ret = -ENOENT;
3455 goto unlock;
3456 }
3457
3458 if (obj->pin_filp != file) {
3459 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3460 args->handle);
3461 ret = -EINVAL;
3462 goto out;
3463 }
3464 obj->user_pin_count--;
3465 if (obj->user_pin_count == 0) {
3466 obj->pin_filp = NULL;
3467 i915_gem_object_unpin(obj);
3468 }
3469
3470 out:
3471 drm_gem_object_unreference(&obj->base);
3472 unlock:
3473 mutex_unlock(&dev->struct_mutex);
3474 return ret;
3475 }
3476
3477 int
3478 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3479 struct drm_file *file)
3480 {
3481 struct drm_i915_gem_busy *args = data;
3482 struct drm_i915_gem_object *obj;
3483 int ret;
3484
3485 ret = i915_mutex_lock_interruptible(dev);
3486 if (ret)
3487 return ret;
3488
3489 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3490 if (&obj->base == NULL) {
3491 ret = -ENOENT;
3492 goto unlock;
3493 }
3494
3495 /* Count all active objects as busy, even if they are currently not used
3496 * by the gpu. Users of this interface expect objects to eventually
3497 * become non-busy without any further actions, therefore emit any
3498 * necessary flushes here.
3499 */
3500 args->busy = obj->active;
3501 if (args->busy) {
3502 /* Unconditionally flush objects, even when the gpu still uses this
3503 * object. Userspace calling this function indicates that it wants to
3504 * use this buffer rather sooner than later, so issuing the required
3505 * flush earlier is beneficial.
3506 */
3507 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3508 ret = i915_gem_flush_ring(obj->ring,
3509 0, obj->base.write_domain);
3510 } else if (obj->ring->outstanding_lazy_request ==
3511 obj->last_rendering_seqno) {
3512 struct drm_i915_gem_request *request;
3513
3514 /* This ring is not being cleared by active usage,
3515 * so emit a request to do so.
3516 */
3517 request = kzalloc(sizeof(*request), GFP_KERNEL);
3518 if (request)
3519 ret = i915_add_request(obj->ring, NULL,request);
3520 else
3521 ret = -ENOMEM;
3522 }
3523
3524 /* Update the active list for the hardware's current position.
3525 * Otherwise this only updates on a delayed timer or when irqs
3526 * are actually unmasked, and our working set ends up being
3527 * larger than required.
3528 */
3529 i915_gem_retire_requests_ring(obj->ring);
3530
3531 args->busy = obj->active;
3532 }
3533
3534 drm_gem_object_unreference(&obj->base);
3535 unlock:
3536 mutex_unlock(&dev->struct_mutex);
3537 return ret;
3538 }
3539
3540 int
3541 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3542 struct drm_file *file_priv)
3543 {
3544 return i915_gem_ring_throttle(dev, file_priv);
3545 }
3546
3547 int
3548 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3549 struct drm_file *file_priv)
3550 {
3551 struct drm_i915_gem_madvise *args = data;
3552 struct drm_i915_gem_object *obj;
3553 int ret;
3554
3555 switch (args->madv) {
3556 case I915_MADV_DONTNEED:
3557 case I915_MADV_WILLNEED:
3558 break;
3559 default:
3560 return -EINVAL;
3561 }
3562
3563 ret = i915_mutex_lock_interruptible(dev);
3564 if (ret)
3565 return ret;
3566
3567 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3568 if (&obj->base == NULL) {
3569 ret = -ENOENT;
3570 goto unlock;
3571 }
3572
3573 if (obj->pin_count) {
3574 ret = -EINVAL;
3575 goto out;
3576 }
3577
3578 if (obj->madv != __I915_MADV_PURGED)
3579 obj->madv = args->madv;
3580
3581 /* if the object is no longer bound, discard its backing storage */
3582 if (i915_gem_object_is_purgeable(obj) &&
3583 obj->gtt_space == NULL)
3584 i915_gem_object_truncate(obj);
3585
3586 args->retained = obj->madv != __I915_MADV_PURGED;
3587
3588 out:
3589 drm_gem_object_unreference(&obj->base);
3590 unlock:
3591 mutex_unlock(&dev->struct_mutex);
3592 return ret;
3593 }
3594
3595 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3596 size_t size)
3597 {
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 struct drm_i915_gem_object *obj;
3600
3601 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3602 if (obj == NULL)
3603 return NULL;
3604
3605 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3606 kfree(obj);
3607 return NULL;
3608 }
3609
3610 i915_gem_info_add_obj(dev_priv, size);
3611
3612 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3613 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3614
3615 obj->cache_level = I915_CACHE_NONE;
3616 obj->base.driver_private = NULL;
3617 obj->fence_reg = I915_FENCE_REG_NONE;
3618 INIT_LIST_HEAD(&obj->mm_list);
3619 INIT_LIST_HEAD(&obj->gtt_list);
3620 INIT_LIST_HEAD(&obj->ring_list);
3621 INIT_LIST_HEAD(&obj->exec_list);
3622 INIT_LIST_HEAD(&obj->gpu_write_list);
3623 obj->madv = I915_MADV_WILLNEED;
3624 /* Avoid an unnecessary call to unbind on the first bind. */
3625 obj->map_and_fenceable = true;
3626
3627 return obj;
3628 }
3629
3630 int i915_gem_init_object(struct drm_gem_object *obj)
3631 {
3632 BUG();
3633
3634 return 0;
3635 }
3636
3637 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3638 {
3639 struct drm_device *dev = obj->base.dev;
3640 drm_i915_private_t *dev_priv = dev->dev_private;
3641 int ret;
3642
3643 ret = i915_gem_object_unbind(obj);
3644 if (ret == -ERESTARTSYS) {
3645 list_move(&obj->mm_list,
3646 &dev_priv->mm.deferred_free_list);
3647 return;
3648 }
3649
3650 trace_i915_gem_object_destroy(obj);
3651
3652 if (obj->base.map_list.map)
3653 i915_gem_free_mmap_offset(obj);
3654
3655 drm_gem_object_release(&obj->base);
3656 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3657
3658 kfree(obj->page_cpu_valid);
3659 kfree(obj->bit_17);
3660 kfree(obj);
3661 }
3662
3663 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3664 {
3665 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3666 struct drm_device *dev = obj->base.dev;
3667
3668 while (obj->pin_count > 0)
3669 i915_gem_object_unpin(obj);
3670
3671 if (obj->phys_obj)
3672 i915_gem_detach_phys_object(dev, obj);
3673
3674 i915_gem_free_object_tail(obj);
3675 }
3676
3677 int
3678 i915_gem_idle(struct drm_device *dev)
3679 {
3680 drm_i915_private_t *dev_priv = dev->dev_private;
3681 int ret;
3682
3683 mutex_lock(&dev->struct_mutex);
3684
3685 if (dev_priv->mm.suspended) {
3686 mutex_unlock(&dev->struct_mutex);
3687 return 0;
3688 }
3689
3690 ret = i915_gpu_idle(dev);
3691 if (ret) {
3692 mutex_unlock(&dev->struct_mutex);
3693 return ret;
3694 }
3695
3696 /* Under UMS, be paranoid and evict. */
3697 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3698 ret = i915_gem_evict_inactive(dev, false);
3699 if (ret) {
3700 mutex_unlock(&dev->struct_mutex);
3701 return ret;
3702 }
3703 }
3704
3705 i915_gem_reset_fences(dev);
3706
3707 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3708 * We need to replace this with a semaphore, or something.
3709 * And not confound mm.suspended!
3710 */
3711 dev_priv->mm.suspended = 1;
3712 del_timer_sync(&dev_priv->hangcheck_timer);
3713
3714 i915_kernel_lost_context(dev);
3715 i915_gem_cleanup_ringbuffer(dev);
3716
3717 mutex_unlock(&dev->struct_mutex);
3718
3719 /* Cancel the retire work handler, which should be idle now. */
3720 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3721
3722 return 0;
3723 }
3724
3725 int
3726 i915_gem_init_ringbuffer(struct drm_device *dev)
3727 {
3728 drm_i915_private_t *dev_priv = dev->dev_private;
3729 int ret;
3730
3731 ret = intel_init_render_ring_buffer(dev);
3732 if (ret)
3733 return ret;
3734
3735 if (HAS_BSD(dev)) {
3736 ret = intel_init_bsd_ring_buffer(dev);
3737 if (ret)
3738 goto cleanup_render_ring;
3739 }
3740
3741 if (HAS_BLT(dev)) {
3742 ret = intel_init_blt_ring_buffer(dev);
3743 if (ret)
3744 goto cleanup_bsd_ring;
3745 }
3746
3747 dev_priv->next_seqno = 1;
3748
3749 return 0;
3750
3751 cleanup_bsd_ring:
3752 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3753 cleanup_render_ring:
3754 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3755 return ret;
3756 }
3757
3758 void
3759 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3760 {
3761 drm_i915_private_t *dev_priv = dev->dev_private;
3762 int i;
3763
3764 for (i = 0; i < I915_NUM_RINGS; i++)
3765 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3766 }
3767
3768 int
3769 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3770 struct drm_file *file_priv)
3771 {
3772 drm_i915_private_t *dev_priv = dev->dev_private;
3773 int ret, i;
3774
3775 if (drm_core_check_feature(dev, DRIVER_MODESET))
3776 return 0;
3777
3778 if (atomic_read(&dev_priv->mm.wedged)) {
3779 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3780 atomic_set(&dev_priv->mm.wedged, 0);
3781 }
3782
3783 mutex_lock(&dev->struct_mutex);
3784 dev_priv->mm.suspended = 0;
3785
3786 ret = i915_gem_init_ringbuffer(dev);
3787 if (ret != 0) {
3788 mutex_unlock(&dev->struct_mutex);
3789 return ret;
3790 }
3791
3792 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3793 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3794 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3795 for (i = 0; i < I915_NUM_RINGS; i++) {
3796 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3797 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3798 }
3799 mutex_unlock(&dev->struct_mutex);
3800
3801 ret = drm_irq_install(dev);
3802 if (ret)
3803 goto cleanup_ringbuffer;
3804
3805 return 0;
3806
3807 cleanup_ringbuffer:
3808 mutex_lock(&dev->struct_mutex);
3809 i915_gem_cleanup_ringbuffer(dev);
3810 dev_priv->mm.suspended = 1;
3811 mutex_unlock(&dev->struct_mutex);
3812
3813 return ret;
3814 }
3815
3816 int
3817 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3818 struct drm_file *file_priv)
3819 {
3820 if (drm_core_check_feature(dev, DRIVER_MODESET))
3821 return 0;
3822
3823 drm_irq_uninstall(dev);
3824 return i915_gem_idle(dev);
3825 }
3826
3827 void
3828 i915_gem_lastclose(struct drm_device *dev)
3829 {
3830 int ret;
3831
3832 if (drm_core_check_feature(dev, DRIVER_MODESET))
3833 return;
3834
3835 ret = i915_gem_idle(dev);
3836 if (ret)
3837 DRM_ERROR("failed to idle hardware: %d\n", ret);
3838 }
3839
3840 static void
3841 init_ring_lists(struct intel_ring_buffer *ring)
3842 {
3843 INIT_LIST_HEAD(&ring->active_list);
3844 INIT_LIST_HEAD(&ring->request_list);
3845 INIT_LIST_HEAD(&ring->gpu_write_list);
3846 }
3847
3848 void
3849 i915_gem_load(struct drm_device *dev)
3850 {
3851 int i;
3852 drm_i915_private_t *dev_priv = dev->dev_private;
3853
3854 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3855 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3856 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3857 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3858 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3859 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3860 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3861 for (i = 0; i < I915_NUM_RINGS; i++)
3862 init_ring_lists(&dev_priv->ring[i]);
3863 for (i = 0; i < 16; i++)
3864 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3865 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3866 i915_gem_retire_work_handler);
3867 init_completion(&dev_priv->error_completion);
3868
3869 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3870 if (IS_GEN3(dev)) {
3871 u32 tmp = I915_READ(MI_ARB_STATE);
3872 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3873 /* arb state is a masked write, so set bit + bit in mask */
3874 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3875 I915_WRITE(MI_ARB_STATE, tmp);
3876 }
3877 }
3878
3879 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3880
3881 /* Old X drivers will take 0-2 for front, back, depth buffers */
3882 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3883 dev_priv->fence_reg_start = 3;
3884
3885 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3886 dev_priv->num_fence_regs = 16;
3887 else
3888 dev_priv->num_fence_regs = 8;
3889
3890 /* Initialize fence registers to zero */
3891 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3892 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3893 }
3894
3895 i915_gem_detect_bit_6_swizzle(dev);
3896 init_waitqueue_head(&dev_priv->pending_flip_queue);
3897
3898 dev_priv->mm.interruptible = true;
3899
3900 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3901 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3902 register_shrinker(&dev_priv->mm.inactive_shrinker);
3903 }
3904
3905 /*
3906 * Create a physically contiguous memory object for this object
3907 * e.g. for cursor + overlay regs
3908 */
3909 static int i915_gem_init_phys_object(struct drm_device *dev,
3910 int id, int size, int align)
3911 {
3912 drm_i915_private_t *dev_priv = dev->dev_private;
3913 struct drm_i915_gem_phys_object *phys_obj;
3914 int ret;
3915
3916 if (dev_priv->mm.phys_objs[id - 1] || !size)
3917 return 0;
3918
3919 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3920 if (!phys_obj)
3921 return -ENOMEM;
3922
3923 phys_obj->id = id;
3924
3925 phys_obj->handle = drm_pci_alloc(dev, size, align);
3926 if (!phys_obj->handle) {
3927 ret = -ENOMEM;
3928 goto kfree_obj;
3929 }
3930 #ifdef CONFIG_X86
3931 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3932 #endif
3933
3934 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3935
3936 return 0;
3937 kfree_obj:
3938 kfree(phys_obj);
3939 return ret;
3940 }
3941
3942 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3943 {
3944 drm_i915_private_t *dev_priv = dev->dev_private;
3945 struct drm_i915_gem_phys_object *phys_obj;
3946
3947 if (!dev_priv->mm.phys_objs[id - 1])
3948 return;
3949
3950 phys_obj = dev_priv->mm.phys_objs[id - 1];
3951 if (phys_obj->cur_obj) {
3952 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3953 }
3954
3955 #ifdef CONFIG_X86
3956 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3957 #endif
3958 drm_pci_free(dev, phys_obj->handle);
3959 kfree(phys_obj);
3960 dev_priv->mm.phys_objs[id - 1] = NULL;
3961 }
3962
3963 void i915_gem_free_all_phys_object(struct drm_device *dev)
3964 {
3965 int i;
3966
3967 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3968 i915_gem_free_phys_object(dev, i);
3969 }
3970
3971 void i915_gem_detach_phys_object(struct drm_device *dev,
3972 struct drm_i915_gem_object *obj)
3973 {
3974 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3975 char *vaddr;
3976 int i;
3977 int page_count;
3978
3979 if (!obj->phys_obj)
3980 return;
3981 vaddr = obj->phys_obj->handle->vaddr;
3982
3983 page_count = obj->base.size / PAGE_SIZE;
3984 for (i = 0; i < page_count; i++) {
3985 struct page *page = read_cache_page_gfp(mapping, i,
3986 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3987 if (!IS_ERR(page)) {
3988 char *dst = kmap_atomic(page);
3989 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3990 kunmap_atomic(dst);
3991
3992 drm_clflush_pages(&page, 1);
3993
3994 set_page_dirty(page);
3995 mark_page_accessed(page);
3996 page_cache_release(page);
3997 }
3998 }
3999 intel_gtt_chipset_flush();
4000
4001 obj->phys_obj->cur_obj = NULL;
4002 obj->phys_obj = NULL;
4003 }
4004
4005 int
4006 i915_gem_attach_phys_object(struct drm_device *dev,
4007 struct drm_i915_gem_object *obj,
4008 int id,
4009 int align)
4010 {
4011 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4012 drm_i915_private_t *dev_priv = dev->dev_private;
4013 int ret = 0;
4014 int page_count;
4015 int i;
4016
4017 if (id > I915_MAX_PHYS_OBJECT)
4018 return -EINVAL;
4019
4020 if (obj->phys_obj) {
4021 if (obj->phys_obj->id == id)
4022 return 0;
4023 i915_gem_detach_phys_object(dev, obj);
4024 }
4025
4026 /* create a new object */
4027 if (!dev_priv->mm.phys_objs[id - 1]) {
4028 ret = i915_gem_init_phys_object(dev, id,
4029 obj->base.size, align);
4030 if (ret) {
4031 DRM_ERROR("failed to init phys object %d size: %zu\n",
4032 id, obj->base.size);
4033 return ret;
4034 }
4035 }
4036
4037 /* bind to the object */
4038 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4039 obj->phys_obj->cur_obj = obj;
4040
4041 page_count = obj->base.size / PAGE_SIZE;
4042
4043 for (i = 0; i < page_count; i++) {
4044 struct page *page;
4045 char *dst, *src;
4046
4047 page = read_cache_page_gfp(mapping, i,
4048 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4049 if (IS_ERR(page))
4050 return PTR_ERR(page);
4051
4052 src = kmap_atomic(page);
4053 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4054 memcpy(dst, src, PAGE_SIZE);
4055 kunmap_atomic(src);
4056
4057 mark_page_accessed(page);
4058 page_cache_release(page);
4059 }
4060
4061 return 0;
4062 }
4063
4064 static int
4065 i915_gem_phys_pwrite(struct drm_device *dev,
4066 struct drm_i915_gem_object *obj,
4067 struct drm_i915_gem_pwrite *args,
4068 struct drm_file *file_priv)
4069 {
4070 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4071 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4072
4073 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4074 unsigned long unwritten;
4075
4076 /* The physical object once assigned is fixed for the lifetime
4077 * of the obj, so we can safely drop the lock and continue
4078 * to access vaddr.
4079 */
4080 mutex_unlock(&dev->struct_mutex);
4081 unwritten = copy_from_user(vaddr, user_data, args->size);
4082 mutex_lock(&dev->struct_mutex);
4083 if (unwritten)
4084 return -EFAULT;
4085 }
4086
4087 intel_gtt_chipset_flush();
4088 return 0;
4089 }
4090
4091 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4092 {
4093 struct drm_i915_file_private *file_priv = file->driver_priv;
4094
4095 /* Clean up our request list when the client is going away, so that
4096 * later retire_requests won't dereference our soon-to-be-gone
4097 * file_priv.
4098 */
4099 spin_lock(&file_priv->mm.lock);
4100 while (!list_empty(&file_priv->mm.request_list)) {
4101 struct drm_i915_gem_request *request;
4102
4103 request = list_first_entry(&file_priv->mm.request_list,
4104 struct drm_i915_gem_request,
4105 client_list);
4106 list_del(&request->client_list);
4107 request->file_priv = NULL;
4108 }
4109 spin_unlock(&file_priv->mm.lock);
4110 }
4111
4112 static int
4113 i915_gpu_is_active(struct drm_device *dev)
4114 {
4115 drm_i915_private_t *dev_priv = dev->dev_private;
4116 int lists_empty;
4117
4118 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4119 list_empty(&dev_priv->mm.active_list);
4120
4121 return !lists_empty;
4122 }
4123
4124 static int
4125 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4126 {
4127 struct drm_i915_private *dev_priv =
4128 container_of(shrinker,
4129 struct drm_i915_private,
4130 mm.inactive_shrinker);
4131 struct drm_device *dev = dev_priv->dev;
4132 struct drm_i915_gem_object *obj, *next;
4133 int nr_to_scan = sc->nr_to_scan;
4134 int cnt;
4135
4136 if (!mutex_trylock(&dev->struct_mutex))
4137 return 0;
4138
4139 /* "fast-path" to count number of available objects */
4140 if (nr_to_scan == 0) {
4141 cnt = 0;
4142 list_for_each_entry(obj,
4143 &dev_priv->mm.inactive_list,
4144 mm_list)
4145 cnt++;
4146 mutex_unlock(&dev->struct_mutex);
4147 return cnt / 100 * sysctl_vfs_cache_pressure;
4148 }
4149
4150 rescan:
4151 /* first scan for clean buffers */
4152 i915_gem_retire_requests(dev);
4153
4154 list_for_each_entry_safe(obj, next,
4155 &dev_priv->mm.inactive_list,
4156 mm_list) {
4157 if (i915_gem_object_is_purgeable(obj)) {
4158 if (i915_gem_object_unbind(obj) == 0 &&
4159 --nr_to_scan == 0)
4160 break;
4161 }
4162 }
4163
4164 /* second pass, evict/count anything still on the inactive list */
4165 cnt = 0;
4166 list_for_each_entry_safe(obj, next,
4167 &dev_priv->mm.inactive_list,
4168 mm_list) {
4169 if (nr_to_scan &&
4170 i915_gem_object_unbind(obj) == 0)
4171 nr_to_scan--;
4172 else
4173 cnt++;
4174 }
4175
4176 if (nr_to_scan && i915_gpu_is_active(dev)) {
4177 /*
4178 * We are desperate for pages, so as a last resort, wait
4179 * for the GPU to finish and discard whatever we can.
4180 * This has a dramatic impact to reduce the number of
4181 * OOM-killer events whilst running the GPU aggressively.
4182 */
4183 if (i915_gpu_idle(dev) == 0)
4184 goto rescan;
4185 }
4186 mutex_unlock(&dev->struct_mutex);
4187 return cnt / 100 * sysctl_vfs_cache_pressure;
4188 }
This page took 0.24256 seconds and 4 git commands to generate.