f4abf3abd572c3c8a8498ffc647a8692a105dbe2
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 struct i915_ggtt *ggtt = &dev_priv->ggtt;
135 struct drm_i915_gem_get_aperture *args = data;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = ggtt->base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 put_page(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 put_page(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = to_i915(dev);
769 struct i915_ggtt *ggtt = &dev_priv->ggtt;
770 ssize_t remain;
771 loff_t offset, page_base;
772 char __user *user_data;
773 int page_offset, page_length, ret;
774
775 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
776 if (ret)
777 goto out;
778
779 ret = i915_gem_object_set_to_gtt_domain(obj, true);
780 if (ret)
781 goto out_unpin;
782
783 ret = i915_gem_object_put_fence(obj);
784 if (ret)
785 goto out_unpin;
786
787 user_data = to_user_ptr(args->data_ptr);
788 remain = args->size;
789
790 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
791
792 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
793
794 while (remain > 0) {
795 /* Operation in this page
796 *
797 * page_base = page offset within aperture
798 * page_offset = offset within page
799 * page_length = bytes to copy for this page
800 */
801 page_base = offset & PAGE_MASK;
802 page_offset = offset_in_page(offset);
803 page_length = remain;
804 if ((page_offset + remain) > PAGE_SIZE)
805 page_length = PAGE_SIZE - page_offset;
806
807 /* If we get a fault while copying data, then (presumably) our
808 * source page isn't available. Return the error and we'll
809 * retry in the slow path.
810 */
811 if (fast_user_write(ggtt->mappable, page_base,
812 page_offset, user_data, page_length)) {
813 ret = -EFAULT;
814 goto out_flush;
815 }
816
817 remain -= page_length;
818 user_data += page_length;
819 offset += page_length;
820 }
821
822 out_flush:
823 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
824 out_unpin:
825 i915_gem_object_ggtt_unpin(obj);
826 out:
827 return ret;
828 }
829
830 /* Per-page copy function for the shmem pwrite fastpath.
831 * Flushes invalid cachelines before writing to the target if
832 * needs_clflush_before is set and flushes out any written cachelines after
833 * writing if needs_clflush is set. */
834 static int
835 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
836 char __user *user_data,
837 bool page_do_bit17_swizzling,
838 bool needs_clflush_before,
839 bool needs_clflush_after)
840 {
841 char *vaddr;
842 int ret;
843
844 if (unlikely(page_do_bit17_swizzling))
845 return -EINVAL;
846
847 vaddr = kmap_atomic(page);
848 if (needs_clflush_before)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
852 user_data, page_length);
853 if (needs_clflush_after)
854 drm_clflush_virt_range(vaddr + shmem_page_offset,
855 page_length);
856 kunmap_atomic(vaddr);
857
858 return ret ? -EFAULT : 0;
859 }
860
861 /* Only difference to the fast-path function is that this can handle bit17
862 * and uses non-atomic copy and kmap functions. */
863 static int
864 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
865 char __user *user_data,
866 bool page_do_bit17_swizzling,
867 bool needs_clflush_before,
868 bool needs_clflush_after)
869 {
870 char *vaddr;
871 int ret;
872
873 vaddr = kmap(page);
874 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
875 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
876 page_length,
877 page_do_bit17_swizzling);
878 if (page_do_bit17_swizzling)
879 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
880 user_data,
881 page_length);
882 else
883 ret = __copy_from_user(vaddr + shmem_page_offset,
884 user_data,
885 page_length);
886 if (needs_clflush_after)
887 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
888 page_length,
889 page_do_bit17_swizzling);
890 kunmap(page);
891
892 return ret ? -EFAULT : 0;
893 }
894
895 static int
896 i915_gem_shmem_pwrite(struct drm_device *dev,
897 struct drm_i915_gem_object *obj,
898 struct drm_i915_gem_pwrite *args,
899 struct drm_file *file)
900 {
901 ssize_t remain;
902 loff_t offset;
903 char __user *user_data;
904 int shmem_page_offset, page_length, ret = 0;
905 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
906 int hit_slowpath = 0;
907 int needs_clflush_after = 0;
908 int needs_clflush_before = 0;
909 struct sg_page_iter sg_iter;
910
911 user_data = to_user_ptr(args->data_ptr);
912 remain = args->size;
913
914 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
915
916 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
917 /* If we're not in the cpu write domain, set ourself into the gtt
918 * write domain and manually flush cachelines (if required). This
919 * optimizes for the case when the gpu will use the data
920 * right away and we therefore have to clflush anyway. */
921 needs_clflush_after = cpu_write_needs_clflush(obj);
922 ret = i915_gem_object_wait_rendering(obj, false);
923 if (ret)
924 return ret;
925 }
926 /* Same trick applies to invalidate partially written cachelines read
927 * before writing. */
928 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
929 needs_clflush_before =
930 !cpu_cache_is_coherent(dev, obj->cache_level);
931
932 ret = i915_gem_object_get_pages(obj);
933 if (ret)
934 return ret;
935
936 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
937
938 i915_gem_object_pin_pages(obj);
939
940 offset = args->offset;
941 obj->dirty = 1;
942
943 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
944 offset >> PAGE_SHIFT) {
945 struct page *page = sg_page_iter_page(&sg_iter);
946 int partial_cacheline_write;
947
948 if (remain <= 0)
949 break;
950
951 /* Operation in this page
952 *
953 * shmem_page_offset = offset within page in shmem file
954 * page_length = bytes to copy for this page
955 */
956 shmem_page_offset = offset_in_page(offset);
957
958 page_length = remain;
959 if ((shmem_page_offset + page_length) > PAGE_SIZE)
960 page_length = PAGE_SIZE - shmem_page_offset;
961
962 /* If we don't overwrite a cacheline completely we need to be
963 * careful to have up-to-date data by first clflushing. Don't
964 * overcomplicate things and flush the entire patch. */
965 partial_cacheline_write = needs_clflush_before &&
966 ((shmem_page_offset | page_length)
967 & (boot_cpu_data.x86_clflush_size - 1));
968
969 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
970 (page_to_phys(page) & (1 << 17)) != 0;
971
972 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
973 user_data, page_do_bit17_swizzling,
974 partial_cacheline_write,
975 needs_clflush_after);
976 if (ret == 0)
977 goto next_page;
978
979 hit_slowpath = 1;
980 mutex_unlock(&dev->struct_mutex);
981 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
982 user_data, page_do_bit17_swizzling,
983 partial_cacheline_write,
984 needs_clflush_after);
985
986 mutex_lock(&dev->struct_mutex);
987
988 if (ret)
989 goto out;
990
991 next_page:
992 remain -= page_length;
993 user_data += page_length;
994 offset += page_length;
995 }
996
997 out:
998 i915_gem_object_unpin_pages(obj);
999
1000 if (hit_slowpath) {
1001 /*
1002 * Fixup: Flush cpu caches in case we didn't flush the dirty
1003 * cachelines in-line while writing and the object moved
1004 * out of the cpu write domain while we've dropped the lock.
1005 */
1006 if (!needs_clflush_after &&
1007 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1008 if (i915_gem_clflush_object(obj, obj->pin_display))
1009 needs_clflush_after = true;
1010 }
1011 }
1012
1013 if (needs_clflush_after)
1014 i915_gem_chipset_flush(dev);
1015 else
1016 obj->cache_dirty = true;
1017
1018 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1019 return ret;
1020 }
1021
1022 /**
1023 * Writes data to the object referenced by handle.
1024 *
1025 * On error, the contents of the buffer that were to be modified are undefined.
1026 */
1027 int
1028 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1029 struct drm_file *file)
1030 {
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 struct drm_i915_gem_pwrite *args = data;
1033 struct drm_i915_gem_object *obj;
1034 int ret;
1035
1036 if (args->size == 0)
1037 return 0;
1038
1039 if (!access_ok(VERIFY_READ,
1040 to_user_ptr(args->data_ptr),
1041 args->size))
1042 return -EFAULT;
1043
1044 if (likely(!i915.prefault_disable)) {
1045 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1046 args->size);
1047 if (ret)
1048 return -EFAULT;
1049 }
1050
1051 intel_runtime_pm_get(dev_priv);
1052
1053 ret = i915_mutex_lock_interruptible(dev);
1054 if (ret)
1055 goto put_rpm;
1056
1057 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1058 if (&obj->base == NULL) {
1059 ret = -ENOENT;
1060 goto unlock;
1061 }
1062
1063 /* Bounds check destination. */
1064 if (args->offset > obj->base.size ||
1065 args->size > obj->base.size - args->offset) {
1066 ret = -EINVAL;
1067 goto out;
1068 }
1069
1070 /* prime objects have no backing filp to GEM pread/pwrite
1071 * pages from.
1072 */
1073 if (!obj->base.filp) {
1074 ret = -EINVAL;
1075 goto out;
1076 }
1077
1078 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1079
1080 ret = -EFAULT;
1081 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1082 * it would end up going through the fenced access, and we'll get
1083 * different detiling behavior between reading and writing.
1084 * pread/pwrite currently are reading and writing from the CPU
1085 * perspective, requiring manual detiling by the client.
1086 */
1087 if (obj->tiling_mode == I915_TILING_NONE &&
1088 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1089 cpu_write_needs_clflush(obj)) {
1090 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1091 /* Note that the gtt paths might fail with non-page-backed user
1092 * pointers (e.g. gtt mappings when moving data between
1093 * textures). Fallback to the shmem path in that case. */
1094 }
1095
1096 if (ret == -EFAULT || ret == -ENOSPC) {
1097 if (obj->phys_handle)
1098 ret = i915_gem_phys_pwrite(obj, args, file);
1099 else
1100 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1101 }
1102
1103 out:
1104 drm_gem_object_unreference(&obj->base);
1105 unlock:
1106 mutex_unlock(&dev->struct_mutex);
1107 put_rpm:
1108 intel_runtime_pm_put(dev_priv);
1109
1110 return ret;
1111 }
1112
1113 int
1114 i915_gem_check_wedge(struct i915_gpu_error *error,
1115 bool interruptible)
1116 {
1117 if (i915_reset_in_progress(error)) {
1118 /* Non-interruptible callers can't handle -EAGAIN, hence return
1119 * -EIO unconditionally for these. */
1120 if (!interruptible)
1121 return -EIO;
1122
1123 /* Recovery complete, but the reset failed ... */
1124 if (i915_terminally_wedged(error))
1125 return -EIO;
1126
1127 /*
1128 * Check if GPU Reset is in progress - we need intel_ring_begin
1129 * to work properly to reinit the hw state while the gpu is
1130 * still marked as reset-in-progress. Handle this with a flag.
1131 */
1132 if (!error->reload_in_reset)
1133 return -EAGAIN;
1134 }
1135
1136 return 0;
1137 }
1138
1139 static void fake_irq(unsigned long data)
1140 {
1141 wake_up_process((struct task_struct *)data);
1142 }
1143
1144 static bool missed_irq(struct drm_i915_private *dev_priv,
1145 struct intel_engine_cs *engine)
1146 {
1147 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1148 }
1149
1150 static unsigned long local_clock_us(unsigned *cpu)
1151 {
1152 unsigned long t;
1153
1154 /* Cheaply and approximately convert from nanoseconds to microseconds.
1155 * The result and subsequent calculations are also defined in the same
1156 * approximate microseconds units. The principal source of timing
1157 * error here is from the simple truncation.
1158 *
1159 * Note that local_clock() is only defined wrt to the current CPU;
1160 * the comparisons are no longer valid if we switch CPUs. Instead of
1161 * blocking preemption for the entire busywait, we can detect the CPU
1162 * switch and use that as indicator of system load and a reason to
1163 * stop busywaiting, see busywait_stop().
1164 */
1165 *cpu = get_cpu();
1166 t = local_clock() >> 10;
1167 put_cpu();
1168
1169 return t;
1170 }
1171
1172 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1173 {
1174 unsigned this_cpu;
1175
1176 if (time_after(local_clock_us(&this_cpu), timeout))
1177 return true;
1178
1179 return this_cpu != cpu;
1180 }
1181
1182 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1183 {
1184 unsigned long timeout;
1185 unsigned cpu;
1186
1187 /* When waiting for high frequency requests, e.g. during synchronous
1188 * rendering split between the CPU and GPU, the finite amount of time
1189 * required to set up the irq and wait upon it limits the response
1190 * rate. By busywaiting on the request completion for a short while we
1191 * can service the high frequency waits as quick as possible. However,
1192 * if it is a slow request, we want to sleep as quickly as possible.
1193 * The tradeoff between waiting and sleeping is roughly the time it
1194 * takes to sleep on a request, on the order of a microsecond.
1195 */
1196
1197 if (req->engine->irq_refcount)
1198 return -EBUSY;
1199
1200 /* Only spin if we know the GPU is processing this request */
1201 if (!i915_gem_request_started(req, true))
1202 return -EAGAIN;
1203
1204 timeout = local_clock_us(&cpu) + 5;
1205 while (!need_resched()) {
1206 if (i915_gem_request_completed(req, true))
1207 return 0;
1208
1209 if (signal_pending_state(state, current))
1210 break;
1211
1212 if (busywait_stop(timeout, cpu))
1213 break;
1214
1215 cpu_relax_lowlatency();
1216 }
1217
1218 if (i915_gem_request_completed(req, false))
1219 return 0;
1220
1221 return -EAGAIN;
1222 }
1223
1224 /**
1225 * __i915_wait_request - wait until execution of request has finished
1226 * @req: duh!
1227 * @reset_counter: reset sequence associated with the given request
1228 * @interruptible: do an interruptible wait (normally yes)
1229 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1230 *
1231 * Note: It is of utmost importance that the passed in seqno and reset_counter
1232 * values have been read by the caller in an smp safe manner. Where read-side
1233 * locks are involved, it is sufficient to read the reset_counter before
1234 * unlocking the lock that protects the seqno. For lockless tricks, the
1235 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1236 * inserted.
1237 *
1238 * Returns 0 if the request was found within the alloted time. Else returns the
1239 * errno with remaining time filled in timeout argument.
1240 */
1241 int __i915_wait_request(struct drm_i915_gem_request *req,
1242 unsigned reset_counter,
1243 bool interruptible,
1244 s64 *timeout,
1245 struct intel_rps_client *rps)
1246 {
1247 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1248 struct drm_device *dev = engine->dev;
1249 struct drm_i915_private *dev_priv = dev->dev_private;
1250 const bool irq_test_in_progress =
1251 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1252 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1253 DEFINE_WAIT(wait);
1254 unsigned long timeout_expire;
1255 s64 before = 0; /* Only to silence a compiler warning. */
1256 int ret;
1257
1258 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1259
1260 if (list_empty(&req->list))
1261 return 0;
1262
1263 if (i915_gem_request_completed(req, true))
1264 return 0;
1265
1266 timeout_expire = 0;
1267 if (timeout) {
1268 if (WARN_ON(*timeout < 0))
1269 return -EINVAL;
1270
1271 if (*timeout == 0)
1272 return -ETIME;
1273
1274 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1275
1276 /*
1277 * Record current time in case interrupted by signal, or wedged.
1278 */
1279 before = ktime_get_raw_ns();
1280 }
1281
1282 if (INTEL_INFO(dev_priv)->gen >= 6)
1283 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1284
1285 trace_i915_gem_request_wait_begin(req);
1286
1287 /* Optimistic spin for the next jiffie before touching IRQs */
1288 ret = __i915_spin_request(req, state);
1289 if (ret == 0)
1290 goto out;
1291
1292 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1293 ret = -ENODEV;
1294 goto out;
1295 }
1296
1297 for (;;) {
1298 struct timer_list timer;
1299
1300 prepare_to_wait(&engine->irq_queue, &wait, state);
1301
1302 /* We need to check whether any gpu reset happened in between
1303 * the caller grabbing the seqno and now ... */
1304 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1305 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1306 * is truely gone. */
1307 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1308 if (ret == 0)
1309 ret = -EAGAIN;
1310 break;
1311 }
1312
1313 if (i915_gem_request_completed(req, false)) {
1314 ret = 0;
1315 break;
1316 }
1317
1318 if (signal_pending_state(state, current)) {
1319 ret = -ERESTARTSYS;
1320 break;
1321 }
1322
1323 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1324 ret = -ETIME;
1325 break;
1326 }
1327
1328 timer.function = NULL;
1329 if (timeout || missed_irq(dev_priv, engine)) {
1330 unsigned long expire;
1331
1332 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1333 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1334 mod_timer(&timer, expire);
1335 }
1336
1337 io_schedule();
1338
1339 if (timer.function) {
1340 del_singleshot_timer_sync(&timer);
1341 destroy_timer_on_stack(&timer);
1342 }
1343 }
1344 if (!irq_test_in_progress)
1345 engine->irq_put(engine);
1346
1347 finish_wait(&engine->irq_queue, &wait);
1348
1349 out:
1350 trace_i915_gem_request_wait_end(req);
1351
1352 if (timeout) {
1353 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1354
1355 *timeout = tres < 0 ? 0 : tres;
1356
1357 /*
1358 * Apparently ktime isn't accurate enough and occasionally has a
1359 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1360 * things up to make the test happy. We allow up to 1 jiffy.
1361 *
1362 * This is a regrssion from the timespec->ktime conversion.
1363 */
1364 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1365 *timeout = 0;
1366 }
1367
1368 return ret;
1369 }
1370
1371 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1372 struct drm_file *file)
1373 {
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 file_priv = file->driver_priv;
1385
1386 spin_lock(&file_priv->mm.lock);
1387 req->file_priv = file_priv;
1388 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1389 spin_unlock(&file_priv->mm.lock);
1390
1391 req->pid = get_pid(task_pid(current));
1392
1393 return 0;
1394 }
1395
1396 static inline void
1397 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1398 {
1399 struct drm_i915_file_private *file_priv = request->file_priv;
1400
1401 if (!file_priv)
1402 return;
1403
1404 spin_lock(&file_priv->mm.lock);
1405 list_del(&request->client_list);
1406 request->file_priv = NULL;
1407 spin_unlock(&file_priv->mm.lock);
1408
1409 put_pid(request->pid);
1410 request->pid = NULL;
1411 }
1412
1413 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1414 {
1415 trace_i915_gem_request_retire(request);
1416
1417 /* We know the GPU must have read the request to have
1418 * sent us the seqno + interrupt, so use the position
1419 * of tail of the request to update the last known position
1420 * of the GPU head.
1421 *
1422 * Note this requires that we are always called in request
1423 * completion order.
1424 */
1425 request->ringbuf->last_retired_head = request->postfix;
1426
1427 list_del_init(&request->list);
1428 i915_gem_request_remove_from_client(request);
1429
1430 i915_gem_request_unreference(request);
1431 }
1432
1433 static void
1434 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1435 {
1436 struct intel_engine_cs *engine = req->engine;
1437 struct drm_i915_gem_request *tmp;
1438
1439 lockdep_assert_held(&engine->dev->struct_mutex);
1440
1441 if (list_empty(&req->list))
1442 return;
1443
1444 do {
1445 tmp = list_first_entry(&engine->request_list,
1446 typeof(*tmp), list);
1447
1448 i915_gem_request_retire(tmp);
1449 } while (tmp != req);
1450
1451 WARN_ON(i915_verify_lists(engine->dev));
1452 }
1453
1454 /**
1455 * Waits for a request to be signaled, and cleans up the
1456 * request and object lists appropriately for that event.
1457 */
1458 int
1459 i915_wait_request(struct drm_i915_gem_request *req)
1460 {
1461 struct drm_device *dev;
1462 struct drm_i915_private *dev_priv;
1463 bool interruptible;
1464 int ret;
1465
1466 BUG_ON(req == NULL);
1467
1468 dev = req->engine->dev;
1469 dev_priv = dev->dev_private;
1470 interruptible = dev_priv->mm.interruptible;
1471
1472 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1473
1474 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1475 if (ret)
1476 return ret;
1477
1478 ret = __i915_wait_request(req,
1479 atomic_read(&dev_priv->gpu_error.reset_counter),
1480 interruptible, NULL, NULL);
1481 if (ret)
1482 return ret;
1483
1484 __i915_gem_request_retire__upto(req);
1485 return 0;
1486 }
1487
1488 /**
1489 * Ensures that all rendering to the object has completed and the object is
1490 * safe to unbind from the GTT or access from the CPU.
1491 */
1492 int
1493 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1494 bool readonly)
1495 {
1496 int ret, i;
1497
1498 if (!obj->active)
1499 return 0;
1500
1501 if (readonly) {
1502 if (obj->last_write_req != NULL) {
1503 ret = i915_wait_request(obj->last_write_req);
1504 if (ret)
1505 return ret;
1506
1507 i = obj->last_write_req->engine->id;
1508 if (obj->last_read_req[i] == obj->last_write_req)
1509 i915_gem_object_retire__read(obj, i);
1510 else
1511 i915_gem_object_retire__write(obj);
1512 }
1513 } else {
1514 for (i = 0; i < I915_NUM_ENGINES; i++) {
1515 if (obj->last_read_req[i] == NULL)
1516 continue;
1517
1518 ret = i915_wait_request(obj->last_read_req[i]);
1519 if (ret)
1520 return ret;
1521
1522 i915_gem_object_retire__read(obj, i);
1523 }
1524 RQ_BUG_ON(obj->active);
1525 }
1526
1527 return 0;
1528 }
1529
1530 static void
1531 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1532 struct drm_i915_gem_request *req)
1533 {
1534 int ring = req->engine->id;
1535
1536 if (obj->last_read_req[ring] == req)
1537 i915_gem_object_retire__read(obj, ring);
1538 else if (obj->last_write_req == req)
1539 i915_gem_object_retire__write(obj);
1540
1541 __i915_gem_request_retire__upto(req);
1542 }
1543
1544 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1545 * as the object state may change during this call.
1546 */
1547 static __must_check int
1548 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1549 struct intel_rps_client *rps,
1550 bool readonly)
1551 {
1552 struct drm_device *dev = obj->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1555 unsigned reset_counter;
1556 int ret, i, n = 0;
1557
1558 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1559 BUG_ON(!dev_priv->mm.interruptible);
1560
1561 if (!obj->active)
1562 return 0;
1563
1564 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1565 if (ret)
1566 return ret;
1567
1568 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1569
1570 if (readonly) {
1571 struct drm_i915_gem_request *req;
1572
1573 req = obj->last_write_req;
1574 if (req == NULL)
1575 return 0;
1576
1577 requests[n++] = i915_gem_request_reference(req);
1578 } else {
1579 for (i = 0; i < I915_NUM_ENGINES; i++) {
1580 struct drm_i915_gem_request *req;
1581
1582 req = obj->last_read_req[i];
1583 if (req == NULL)
1584 continue;
1585
1586 requests[n++] = i915_gem_request_reference(req);
1587 }
1588 }
1589
1590 mutex_unlock(&dev->struct_mutex);
1591 for (i = 0; ret == 0 && i < n; i++)
1592 ret = __i915_wait_request(requests[i], reset_counter, true,
1593 NULL, rps);
1594 mutex_lock(&dev->struct_mutex);
1595
1596 for (i = 0; i < n; i++) {
1597 if (ret == 0)
1598 i915_gem_object_retire_request(obj, requests[i]);
1599 i915_gem_request_unreference(requests[i]);
1600 }
1601
1602 return ret;
1603 }
1604
1605 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1606 {
1607 struct drm_i915_file_private *fpriv = file->driver_priv;
1608 return &fpriv->rps;
1609 }
1610
1611 /**
1612 * Called when user space prepares to use an object with the CPU, either
1613 * through the mmap ioctl's mapping or a GTT mapping.
1614 */
1615 int
1616 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1617 struct drm_file *file)
1618 {
1619 struct drm_i915_gem_set_domain *args = data;
1620 struct drm_i915_gem_object *obj;
1621 uint32_t read_domains = args->read_domains;
1622 uint32_t write_domain = args->write_domain;
1623 int ret;
1624
1625 /* Only handle setting domains to types used by the CPU. */
1626 if (write_domain & I915_GEM_GPU_DOMAINS)
1627 return -EINVAL;
1628
1629 if (read_domains & I915_GEM_GPU_DOMAINS)
1630 return -EINVAL;
1631
1632 /* Having something in the write domain implies it's in the read
1633 * domain, and only that read domain. Enforce that in the request.
1634 */
1635 if (write_domain != 0 && read_domains != write_domain)
1636 return -EINVAL;
1637
1638 ret = i915_mutex_lock_interruptible(dev);
1639 if (ret)
1640 return ret;
1641
1642 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1643 if (&obj->base == NULL) {
1644 ret = -ENOENT;
1645 goto unlock;
1646 }
1647
1648 /* Try to flush the object off the GPU without holding the lock.
1649 * We will repeat the flush holding the lock in the normal manner
1650 * to catch cases where we are gazumped.
1651 */
1652 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1653 to_rps_client(file),
1654 !write_domain);
1655 if (ret)
1656 goto unref;
1657
1658 if (read_domains & I915_GEM_DOMAIN_GTT)
1659 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1660 else
1661 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1662
1663 if (write_domain != 0)
1664 intel_fb_obj_invalidate(obj,
1665 write_domain == I915_GEM_DOMAIN_GTT ?
1666 ORIGIN_GTT : ORIGIN_CPU);
1667
1668 unref:
1669 drm_gem_object_unreference(&obj->base);
1670 unlock:
1671 mutex_unlock(&dev->struct_mutex);
1672 return ret;
1673 }
1674
1675 /**
1676 * Called when user space has done writes to this buffer
1677 */
1678 int
1679 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1680 struct drm_file *file)
1681 {
1682 struct drm_i915_gem_sw_finish *args = data;
1683 struct drm_i915_gem_object *obj;
1684 int ret = 0;
1685
1686 ret = i915_mutex_lock_interruptible(dev);
1687 if (ret)
1688 return ret;
1689
1690 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1691 if (&obj->base == NULL) {
1692 ret = -ENOENT;
1693 goto unlock;
1694 }
1695
1696 /* Pinned buffers may be scanout, so flush the cache */
1697 if (obj->pin_display)
1698 i915_gem_object_flush_cpu_write_domain(obj);
1699
1700 drm_gem_object_unreference(&obj->base);
1701 unlock:
1702 mutex_unlock(&dev->struct_mutex);
1703 return ret;
1704 }
1705
1706 /**
1707 * Maps the contents of an object, returning the address it is mapped
1708 * into.
1709 *
1710 * While the mapping holds a reference on the contents of the object, it doesn't
1711 * imply a ref on the object itself.
1712 *
1713 * IMPORTANT:
1714 *
1715 * DRM driver writers who look a this function as an example for how to do GEM
1716 * mmap support, please don't implement mmap support like here. The modern way
1717 * to implement DRM mmap support is with an mmap offset ioctl (like
1718 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1719 * That way debug tooling like valgrind will understand what's going on, hiding
1720 * the mmap call in a driver private ioctl will break that. The i915 driver only
1721 * does cpu mmaps this way because we didn't know better.
1722 */
1723 int
1724 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1725 struct drm_file *file)
1726 {
1727 struct drm_i915_gem_mmap *args = data;
1728 struct drm_gem_object *obj;
1729 unsigned long addr;
1730
1731 if (args->flags & ~(I915_MMAP_WC))
1732 return -EINVAL;
1733
1734 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1735 return -ENODEV;
1736
1737 obj = drm_gem_object_lookup(dev, file, args->handle);
1738 if (obj == NULL)
1739 return -ENOENT;
1740
1741 /* prime objects have no backing filp to GEM mmap
1742 * pages from.
1743 */
1744 if (!obj->filp) {
1745 drm_gem_object_unreference_unlocked(obj);
1746 return -EINVAL;
1747 }
1748
1749 addr = vm_mmap(obj->filp, 0, args->size,
1750 PROT_READ | PROT_WRITE, MAP_SHARED,
1751 args->offset);
1752 if (args->flags & I915_MMAP_WC) {
1753 struct mm_struct *mm = current->mm;
1754 struct vm_area_struct *vma;
1755
1756 down_write(&mm->mmap_sem);
1757 vma = find_vma(mm, addr);
1758 if (vma)
1759 vma->vm_page_prot =
1760 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1761 else
1762 addr = -ENOMEM;
1763 up_write(&mm->mmap_sem);
1764 }
1765 drm_gem_object_unreference_unlocked(obj);
1766 if (IS_ERR((void *)addr))
1767 return addr;
1768
1769 args->addr_ptr = (uint64_t) addr;
1770
1771 return 0;
1772 }
1773
1774 /**
1775 * i915_gem_fault - fault a page into the GTT
1776 * @vma: VMA in question
1777 * @vmf: fault info
1778 *
1779 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1780 * from userspace. The fault handler takes care of binding the object to
1781 * the GTT (if needed), allocating and programming a fence register (again,
1782 * only if needed based on whether the old reg is still valid or the object
1783 * is tiled) and inserting a new PTE into the faulting process.
1784 *
1785 * Note that the faulting process may involve evicting existing objects
1786 * from the GTT and/or fence registers to make room. So performance may
1787 * suffer if the GTT working set is large or there are few fence registers
1788 * left.
1789 */
1790 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1791 {
1792 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1793 struct drm_device *dev = obj->base.dev;
1794 struct drm_i915_private *dev_priv = to_i915(dev);
1795 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802 intel_runtime_pm_get(dev_priv);
1803
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
1811
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 ret = -EFAULT;
1826 goto unlock;
1827 }
1828
1829 /* Use a partial view if the object is bigger than the aperture. */
1830 if (obj->base.size >= ggtt->mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
1832 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 /* Finally, remap it using the new GTT offset */
1858 pfn = ggtt->mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
1860 pfn >>= PAGE_SHIFT;
1861
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
1871
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
1900 unpin:
1901 i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903 mutex_unlock(&dev->struct_mutex);
1904 out:
1905 switch (ret) {
1906 case -EIO:
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
1917 case -EAGAIN:
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
1922 */
1923 case 0:
1924 case -ERESTARTSYS:
1925 case -EINTR:
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
1931 ret = VM_FAULT_NOPAGE;
1932 break;
1933 case -ENOMEM:
1934 ret = VM_FAULT_OOM;
1935 break;
1936 case -ENOSPC:
1937 case -EFAULT:
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 default:
1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 ret = VM_FAULT_SIGBUS;
1943 break;
1944 }
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
1948 }
1949
1950 /**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967 if (!obj->fault_mappable)
1968 return;
1969
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972 obj->fault_mappable = false;
1973 }
1974
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982 }
1983
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987 uint32_t gtt_size;
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
1995 gtt_size = 1024*1024;
1996 else
1997 gtt_size = 512*1024;
1998
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
2001
2002 return gtt_size;
2003 }
2004
2005 /**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
2015 {
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 tiling_mode == I915_TILING_NONE)
2022 return 4096;
2023
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
2036 dev_priv->mm.shrinker_no_lock_stealing = true;
2037
2038 ret = drm_gem_create_mmap_offset(&obj->base);
2039 if (ret != -ENOSPC)
2040 goto out;
2041
2042 /* Badly fragmented mmap space? The only way we can recover
2043 * space is by destroying unwanted objects. We can't randomly release
2044 * mmap_offsets as userspace expects them to be persistent for the
2045 * lifetime of the objects. The closest we can is to release the
2046 * offsets on purgeable objects by truncating it and marking it purged,
2047 * which prevents userspace from ever using that object again.
2048 */
2049 i915_gem_shrink(dev_priv,
2050 obj->base.size >> PAGE_SHIFT,
2051 I915_SHRINK_BOUND |
2052 I915_SHRINK_UNBOUND |
2053 I915_SHRINK_PURGEABLE);
2054 ret = drm_gem_create_mmap_offset(&obj->base);
2055 if (ret != -ENOSPC)
2056 goto out;
2057
2058 i915_gem_shrink_all(dev_priv);
2059 ret = drm_gem_create_mmap_offset(&obj->base);
2060 out:
2061 dev_priv->mm.shrinker_no_lock_stealing = false;
2062
2063 return ret;
2064 }
2065
2066 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2067 {
2068 drm_gem_free_mmap_offset(&obj->base);
2069 }
2070
2071 int
2072 i915_gem_mmap_gtt(struct drm_file *file,
2073 struct drm_device *dev,
2074 uint32_t handle,
2075 uint64_t *offset)
2076 {
2077 struct drm_i915_gem_object *obj;
2078 int ret;
2079
2080 ret = i915_mutex_lock_interruptible(dev);
2081 if (ret)
2082 return ret;
2083
2084 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2085 if (&obj->base == NULL) {
2086 ret = -ENOENT;
2087 goto unlock;
2088 }
2089
2090 if (obj->madv != I915_MADV_WILLNEED) {
2091 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2092 ret = -EFAULT;
2093 goto out;
2094 }
2095
2096 ret = i915_gem_object_create_mmap_offset(obj);
2097 if (ret)
2098 goto out;
2099
2100 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2101
2102 out:
2103 drm_gem_object_unreference(&obj->base);
2104 unlock:
2105 mutex_unlock(&dev->struct_mutex);
2106 return ret;
2107 }
2108
2109 /**
2110 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2111 * @dev: DRM device
2112 * @data: GTT mapping ioctl data
2113 * @file: GEM object info
2114 *
2115 * Simply returns the fake offset to userspace so it can mmap it.
2116 * The mmap call will end up in drm_gem_mmap(), which will set things
2117 * up so we can get faults in the handler above.
2118 *
2119 * The fault handler will take care of binding the object into the GTT
2120 * (since it may have been evicted to make room for something), allocating
2121 * a fence register, and mapping the appropriate aperture address into
2122 * userspace.
2123 */
2124 int
2125 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2126 struct drm_file *file)
2127 {
2128 struct drm_i915_gem_mmap_gtt *args = data;
2129
2130 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2131 }
2132
2133 /* Immediately discard the backing storage */
2134 static void
2135 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2136 {
2137 i915_gem_object_free_mmap_offset(obj);
2138
2139 if (obj->base.filp == NULL)
2140 return;
2141
2142 /* Our goal here is to return as much of the memory as
2143 * is possible back to the system as we are called from OOM.
2144 * To do this we must instruct the shmfs to drop all of its
2145 * backing pages, *now*.
2146 */
2147 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2148 obj->madv = __I915_MADV_PURGED;
2149 }
2150
2151 /* Try to discard unwanted pages */
2152 static void
2153 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2154 {
2155 struct address_space *mapping;
2156
2157 switch (obj->madv) {
2158 case I915_MADV_DONTNEED:
2159 i915_gem_object_truncate(obj);
2160 case __I915_MADV_PURGED:
2161 return;
2162 }
2163
2164 if (obj->base.filp == NULL)
2165 return;
2166
2167 mapping = file_inode(obj->base.filp)->i_mapping,
2168 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2169 }
2170
2171 static void
2172 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2173 {
2174 struct sg_page_iter sg_iter;
2175 int ret;
2176
2177 BUG_ON(obj->madv == __I915_MADV_PURGED);
2178
2179 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2180 if (ret) {
2181 /* In the event of a disaster, abandon all caches and
2182 * hope for the best.
2183 */
2184 WARN_ON(ret != -EIO);
2185 i915_gem_clflush_object(obj, true);
2186 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2187 }
2188
2189 i915_gem_gtt_finish_object(obj);
2190
2191 if (i915_gem_object_needs_bit17_swizzle(obj))
2192 i915_gem_object_save_bit_17_swizzle(obj);
2193
2194 if (obj->madv == I915_MADV_DONTNEED)
2195 obj->dirty = 0;
2196
2197 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2198 struct page *page = sg_page_iter_page(&sg_iter);
2199
2200 if (obj->dirty)
2201 set_page_dirty(page);
2202
2203 if (obj->madv == I915_MADV_WILLNEED)
2204 mark_page_accessed(page);
2205
2206 put_page(page);
2207 }
2208 obj->dirty = 0;
2209
2210 sg_free_table(obj->pages);
2211 kfree(obj->pages);
2212 }
2213
2214 int
2215 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2216 {
2217 const struct drm_i915_gem_object_ops *ops = obj->ops;
2218
2219 if (obj->pages == NULL)
2220 return 0;
2221
2222 if (obj->pages_pin_count)
2223 return -EBUSY;
2224
2225 BUG_ON(i915_gem_obj_bound_any(obj));
2226
2227 /* ->put_pages might need to allocate memory for the bit17 swizzle
2228 * array, hence protect them from being reaped by removing them from gtt
2229 * lists early. */
2230 list_del(&obj->global_list);
2231
2232 if (obj->mapping) {
2233 if (is_vmalloc_addr(obj->mapping))
2234 vunmap(obj->mapping);
2235 else
2236 kunmap(kmap_to_page(obj->mapping));
2237 obj->mapping = NULL;
2238 }
2239
2240 ops->put_pages(obj);
2241 obj->pages = NULL;
2242
2243 i915_gem_object_invalidate(obj);
2244
2245 return 0;
2246 }
2247
2248 static int
2249 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2250 {
2251 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2252 int page_count, i;
2253 struct address_space *mapping;
2254 struct sg_table *st;
2255 struct scatterlist *sg;
2256 struct sg_page_iter sg_iter;
2257 struct page *page;
2258 unsigned long last_pfn = 0; /* suppress gcc warning */
2259 int ret;
2260 gfp_t gfp;
2261
2262 /* Assert that the object is not currently in any GPU domain. As it
2263 * wasn't in the GTT, there shouldn't be any way it could have been in
2264 * a GPU cache
2265 */
2266 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2267 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2268
2269 st = kmalloc(sizeof(*st), GFP_KERNEL);
2270 if (st == NULL)
2271 return -ENOMEM;
2272
2273 page_count = obj->base.size / PAGE_SIZE;
2274 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2275 kfree(st);
2276 return -ENOMEM;
2277 }
2278
2279 /* Get the list of pages out of our struct file. They'll be pinned
2280 * at this point until we release them.
2281 *
2282 * Fail silently without starting the shrinker
2283 */
2284 mapping = file_inode(obj->base.filp)->i_mapping;
2285 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2286 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2287 sg = st->sgl;
2288 st->nents = 0;
2289 for (i = 0; i < page_count; i++) {
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 if (IS_ERR(page)) {
2292 i915_gem_shrink(dev_priv,
2293 page_count,
2294 I915_SHRINK_BOUND |
2295 I915_SHRINK_UNBOUND |
2296 I915_SHRINK_PURGEABLE);
2297 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2298 }
2299 if (IS_ERR(page)) {
2300 /* We've tried hard to allocate the memory by reaping
2301 * our own buffer, now let the real VM do its job and
2302 * go down in flames if truly OOM.
2303 */
2304 i915_gem_shrink_all(dev_priv);
2305 page = shmem_read_mapping_page(mapping, i);
2306 if (IS_ERR(page)) {
2307 ret = PTR_ERR(page);
2308 goto err_pages;
2309 }
2310 }
2311 #ifdef CONFIG_SWIOTLB
2312 if (swiotlb_nr_tbl()) {
2313 st->nents++;
2314 sg_set_page(sg, page, PAGE_SIZE, 0);
2315 sg = sg_next(sg);
2316 continue;
2317 }
2318 #endif
2319 if (!i || page_to_pfn(page) != last_pfn + 1) {
2320 if (i)
2321 sg = sg_next(sg);
2322 st->nents++;
2323 sg_set_page(sg, page, PAGE_SIZE, 0);
2324 } else {
2325 sg->length += PAGE_SIZE;
2326 }
2327 last_pfn = page_to_pfn(page);
2328
2329 /* Check that the i965g/gm workaround works. */
2330 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2331 }
2332 #ifdef CONFIG_SWIOTLB
2333 if (!swiotlb_nr_tbl())
2334 #endif
2335 sg_mark_end(sg);
2336 obj->pages = st;
2337
2338 ret = i915_gem_gtt_prepare_object(obj);
2339 if (ret)
2340 goto err_pages;
2341
2342 if (i915_gem_object_needs_bit17_swizzle(obj))
2343 i915_gem_object_do_bit_17_swizzle(obj);
2344
2345 if (obj->tiling_mode != I915_TILING_NONE &&
2346 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2347 i915_gem_object_pin_pages(obj);
2348
2349 return 0;
2350
2351 err_pages:
2352 sg_mark_end(sg);
2353 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2354 put_page(sg_page_iter_page(&sg_iter));
2355 sg_free_table(st);
2356 kfree(st);
2357
2358 /* shmemfs first checks if there is enough memory to allocate the page
2359 * and reports ENOSPC should there be insufficient, along with the usual
2360 * ENOMEM for a genuine allocation failure.
2361 *
2362 * We use ENOSPC in our driver to mean that we have run out of aperture
2363 * space and so want to translate the error from shmemfs back to our
2364 * usual understanding of ENOMEM.
2365 */
2366 if (ret == -ENOSPC)
2367 ret = -ENOMEM;
2368
2369 return ret;
2370 }
2371
2372 /* Ensure that the associated pages are gathered from the backing storage
2373 * and pinned into our object. i915_gem_object_get_pages() may be called
2374 * multiple times before they are released by a single call to
2375 * i915_gem_object_put_pages() - once the pages are no longer referenced
2376 * either as a result of memory pressure (reaping pages under the shrinker)
2377 * or as the object is itself released.
2378 */
2379 int
2380 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2381 {
2382 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2383 const struct drm_i915_gem_object_ops *ops = obj->ops;
2384 int ret;
2385
2386 if (obj->pages)
2387 return 0;
2388
2389 if (obj->madv != I915_MADV_WILLNEED) {
2390 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2391 return -EFAULT;
2392 }
2393
2394 BUG_ON(obj->pages_pin_count);
2395
2396 ret = ops->get_pages(obj);
2397 if (ret)
2398 return ret;
2399
2400 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2401
2402 obj->get_page.sg = obj->pages->sgl;
2403 obj->get_page.last = 0;
2404
2405 return 0;
2406 }
2407
2408 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2409 {
2410 int ret;
2411
2412 lockdep_assert_held(&obj->base.dev->struct_mutex);
2413
2414 ret = i915_gem_object_get_pages(obj);
2415 if (ret)
2416 return ERR_PTR(ret);
2417
2418 i915_gem_object_pin_pages(obj);
2419
2420 if (obj->mapping == NULL) {
2421 struct page **pages;
2422
2423 pages = NULL;
2424 if (obj->base.size == PAGE_SIZE)
2425 obj->mapping = kmap(sg_page(obj->pages->sgl));
2426 else
2427 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2428 sizeof(*pages),
2429 GFP_TEMPORARY);
2430 if (pages != NULL) {
2431 struct sg_page_iter sg_iter;
2432 int n;
2433
2434 n = 0;
2435 for_each_sg_page(obj->pages->sgl, &sg_iter,
2436 obj->pages->nents, 0)
2437 pages[n++] = sg_page_iter_page(&sg_iter);
2438
2439 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2440 drm_free_large(pages);
2441 }
2442 if (obj->mapping == NULL) {
2443 i915_gem_object_unpin_pages(obj);
2444 return ERR_PTR(-ENOMEM);
2445 }
2446 }
2447
2448 return obj->mapping;
2449 }
2450
2451 void i915_vma_move_to_active(struct i915_vma *vma,
2452 struct drm_i915_gem_request *req)
2453 {
2454 struct drm_i915_gem_object *obj = vma->obj;
2455 struct intel_engine_cs *engine;
2456
2457 engine = i915_gem_request_get_engine(req);
2458
2459 /* Add a reference if we're newly entering the active list. */
2460 if (obj->active == 0)
2461 drm_gem_object_reference(&obj->base);
2462 obj->active |= intel_engine_flag(engine);
2463
2464 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2465 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2466
2467 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2468 }
2469
2470 static void
2471 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2472 {
2473 RQ_BUG_ON(obj->last_write_req == NULL);
2474 RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2475
2476 i915_gem_request_assign(&obj->last_write_req, NULL);
2477 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2478 }
2479
2480 static void
2481 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2482 {
2483 struct i915_vma *vma;
2484
2485 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2486 RQ_BUG_ON(!(obj->active & (1 << ring)));
2487
2488 list_del_init(&obj->engine_list[ring]);
2489 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2490
2491 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2492 i915_gem_object_retire__write(obj);
2493
2494 obj->active &= ~(1 << ring);
2495 if (obj->active)
2496 return;
2497
2498 /* Bump our place on the bound list to keep it roughly in LRU order
2499 * so that we don't steal from recently used but inactive objects
2500 * (unless we are forced to ofc!)
2501 */
2502 list_move_tail(&obj->global_list,
2503 &to_i915(obj->base.dev)->mm.bound_list);
2504
2505 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2506 if (!list_empty(&vma->vm_link))
2507 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2508 }
2509
2510 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2511 drm_gem_object_unreference(&obj->base);
2512 }
2513
2514 static int
2515 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2516 {
2517 struct drm_i915_private *dev_priv = dev->dev_private;
2518 struct intel_engine_cs *engine;
2519 int ret;
2520
2521 /* Carefully retire all requests without writing to the rings */
2522 for_each_engine(engine, dev_priv) {
2523 ret = intel_engine_idle(engine);
2524 if (ret)
2525 return ret;
2526 }
2527 i915_gem_retire_requests(dev);
2528
2529 /* Finally reset hw state */
2530 for_each_engine(engine, dev_priv)
2531 intel_ring_init_seqno(engine, seqno);
2532
2533 return 0;
2534 }
2535
2536 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2537 {
2538 struct drm_i915_private *dev_priv = dev->dev_private;
2539 int ret;
2540
2541 if (seqno == 0)
2542 return -EINVAL;
2543
2544 /* HWS page needs to be set less than what we
2545 * will inject to ring
2546 */
2547 ret = i915_gem_init_seqno(dev, seqno - 1);
2548 if (ret)
2549 return ret;
2550
2551 /* Carefully set the last_seqno value so that wrap
2552 * detection still works
2553 */
2554 dev_priv->next_seqno = seqno;
2555 dev_priv->last_seqno = seqno - 1;
2556 if (dev_priv->last_seqno == 0)
2557 dev_priv->last_seqno--;
2558
2559 return 0;
2560 }
2561
2562 int
2563 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2564 {
2565 struct drm_i915_private *dev_priv = dev->dev_private;
2566
2567 /* reserve 0 for non-seqno */
2568 if (dev_priv->next_seqno == 0) {
2569 int ret = i915_gem_init_seqno(dev, 0);
2570 if (ret)
2571 return ret;
2572
2573 dev_priv->next_seqno = 1;
2574 }
2575
2576 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2577 return 0;
2578 }
2579
2580 /*
2581 * NB: This function is not allowed to fail. Doing so would mean the the
2582 * request is not being tracked for completion but the work itself is
2583 * going to happen on the hardware. This would be a Bad Thing(tm).
2584 */
2585 void __i915_add_request(struct drm_i915_gem_request *request,
2586 struct drm_i915_gem_object *obj,
2587 bool flush_caches)
2588 {
2589 struct intel_engine_cs *engine;
2590 struct drm_i915_private *dev_priv;
2591 struct intel_ringbuffer *ringbuf;
2592 u32 request_start;
2593 int ret;
2594
2595 if (WARN_ON(request == NULL))
2596 return;
2597
2598 engine = request->engine;
2599 dev_priv = request->i915;
2600 ringbuf = request->ringbuf;
2601
2602 /*
2603 * To ensure that this call will not fail, space for its emissions
2604 * should already have been reserved in the ring buffer. Let the ring
2605 * know that it is time to use that space up.
2606 */
2607 intel_ring_reserved_space_use(ringbuf);
2608
2609 request_start = intel_ring_get_tail(ringbuf);
2610 /*
2611 * Emit any outstanding flushes - execbuf can fail to emit the flush
2612 * after having emitted the batchbuffer command. Hence we need to fix
2613 * things up similar to emitting the lazy request. The difference here
2614 * is that the flush _must_ happen before the next request, no matter
2615 * what.
2616 */
2617 if (flush_caches) {
2618 if (i915.enable_execlists)
2619 ret = logical_ring_flush_all_caches(request);
2620 else
2621 ret = intel_ring_flush_all_caches(request);
2622 /* Not allowed to fail! */
2623 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2624 }
2625
2626 trace_i915_gem_request_add(request);
2627
2628 request->head = request_start;
2629
2630 /* Whilst this request exists, batch_obj will be on the
2631 * active_list, and so will hold the active reference. Only when this
2632 * request is retired will the the batch_obj be moved onto the
2633 * inactive_list and lose its active reference. Hence we do not need
2634 * to explicitly hold another reference here.
2635 */
2636 request->batch_obj = obj;
2637
2638 /* Seal the request and mark it as pending execution. Note that
2639 * we may inspect this state, without holding any locks, during
2640 * hangcheck. Hence we apply the barrier to ensure that we do not
2641 * see a more recent value in the hws than we are tracking.
2642 */
2643 request->emitted_jiffies = jiffies;
2644 request->previous_seqno = engine->last_submitted_seqno;
2645 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2646 list_add_tail(&request->list, &engine->request_list);
2647
2648 /* Record the position of the start of the request so that
2649 * should we detect the updated seqno part-way through the
2650 * GPU processing the request, we never over-estimate the
2651 * position of the head.
2652 */
2653 request->postfix = intel_ring_get_tail(ringbuf);
2654
2655 if (i915.enable_execlists)
2656 ret = engine->emit_request(request);
2657 else {
2658 ret = engine->add_request(request);
2659
2660 request->tail = intel_ring_get_tail(ringbuf);
2661 }
2662 /* Not allowed to fail! */
2663 WARN(ret, "emit|add_request failed: %d!\n", ret);
2664
2665 i915_queue_hangcheck(engine->dev);
2666
2667 queue_delayed_work(dev_priv->wq,
2668 &dev_priv->mm.retire_work,
2669 round_jiffies_up_relative(HZ));
2670 intel_mark_busy(dev_priv->dev);
2671
2672 /* Sanity check that the reserved size was large enough. */
2673 intel_ring_reserved_space_end(ringbuf);
2674 }
2675
2676 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2677 const struct intel_context *ctx)
2678 {
2679 unsigned long elapsed;
2680
2681 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2682
2683 if (ctx->hang_stats.banned)
2684 return true;
2685
2686 if (ctx->hang_stats.ban_period_seconds &&
2687 elapsed <= ctx->hang_stats.ban_period_seconds) {
2688 if (!i915_gem_context_is_default(ctx)) {
2689 DRM_DEBUG("context hanging too fast, banning!\n");
2690 return true;
2691 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2692 if (i915_stop_ring_allow_warn(dev_priv))
2693 DRM_ERROR("gpu hanging too fast, banning!\n");
2694 return true;
2695 }
2696 }
2697
2698 return false;
2699 }
2700
2701 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2702 struct intel_context *ctx,
2703 const bool guilty)
2704 {
2705 struct i915_ctx_hang_stats *hs;
2706
2707 if (WARN_ON(!ctx))
2708 return;
2709
2710 hs = &ctx->hang_stats;
2711
2712 if (guilty) {
2713 hs->banned = i915_context_is_banned(dev_priv, ctx);
2714 hs->batch_active++;
2715 hs->guilty_ts = get_seconds();
2716 } else {
2717 hs->batch_pending++;
2718 }
2719 }
2720
2721 void i915_gem_request_free(struct kref *req_ref)
2722 {
2723 struct drm_i915_gem_request *req = container_of(req_ref,
2724 typeof(*req), ref);
2725 struct intel_context *ctx = req->ctx;
2726
2727 if (req->file_priv)
2728 i915_gem_request_remove_from_client(req);
2729
2730 if (ctx) {
2731 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2732 intel_lr_context_unpin(ctx, req->engine);
2733
2734 i915_gem_context_unreference(ctx);
2735 }
2736
2737 kmem_cache_free(req->i915->requests, req);
2738 }
2739
2740 static inline int
2741 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2742 struct intel_context *ctx,
2743 struct drm_i915_gem_request **req_out)
2744 {
2745 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2746 struct drm_i915_gem_request *req;
2747 int ret;
2748
2749 if (!req_out)
2750 return -EINVAL;
2751
2752 *req_out = NULL;
2753
2754 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2755 if (req == NULL)
2756 return -ENOMEM;
2757
2758 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2759 if (ret)
2760 goto err;
2761
2762 kref_init(&req->ref);
2763 req->i915 = dev_priv;
2764 req->engine = engine;
2765 req->ctx = ctx;
2766 i915_gem_context_reference(req->ctx);
2767
2768 if (i915.enable_execlists)
2769 ret = intel_logical_ring_alloc_request_extras(req);
2770 else
2771 ret = intel_ring_alloc_request_extras(req);
2772 if (ret) {
2773 i915_gem_context_unreference(req->ctx);
2774 goto err;
2775 }
2776
2777 /*
2778 * Reserve space in the ring buffer for all the commands required to
2779 * eventually emit this request. This is to guarantee that the
2780 * i915_add_request() call can't fail. Note that the reserve may need
2781 * to be redone if the request is not actually submitted straight
2782 * away, e.g. because a GPU scheduler has deferred it.
2783 */
2784 if (i915.enable_execlists)
2785 ret = intel_logical_ring_reserve_space(req);
2786 else
2787 ret = intel_ring_reserve_space(req);
2788 if (ret) {
2789 /*
2790 * At this point, the request is fully allocated even if not
2791 * fully prepared. Thus it can be cleaned up using the proper
2792 * free code.
2793 */
2794 i915_gem_request_cancel(req);
2795 return ret;
2796 }
2797
2798 *req_out = req;
2799 return 0;
2800
2801 err:
2802 kmem_cache_free(dev_priv->requests, req);
2803 return ret;
2804 }
2805
2806 /**
2807 * i915_gem_request_alloc - allocate a request structure
2808 *
2809 * @engine: engine that we wish to issue the request on.
2810 * @ctx: context that the request will be associated with.
2811 * This can be NULL if the request is not directly related to
2812 * any specific user context, in which case this function will
2813 * choose an appropriate context to use.
2814 *
2815 * Returns a pointer to the allocated request if successful,
2816 * or an error code if not.
2817 */
2818 struct drm_i915_gem_request *
2819 i915_gem_request_alloc(struct intel_engine_cs *engine,
2820 struct intel_context *ctx)
2821 {
2822 struct drm_i915_gem_request *req;
2823 int err;
2824
2825 if (ctx == NULL)
2826 ctx = to_i915(engine->dev)->kernel_context;
2827 err = __i915_gem_request_alloc(engine, ctx, &req);
2828 return err ? ERR_PTR(err) : req;
2829 }
2830
2831 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2832 {
2833 intel_ring_reserved_space_cancel(req->ringbuf);
2834
2835 i915_gem_request_unreference(req);
2836 }
2837
2838 struct drm_i915_gem_request *
2839 i915_gem_find_active_request(struct intel_engine_cs *engine)
2840 {
2841 struct drm_i915_gem_request *request;
2842
2843 list_for_each_entry(request, &engine->request_list, list) {
2844 if (i915_gem_request_completed(request, false))
2845 continue;
2846
2847 return request;
2848 }
2849
2850 return NULL;
2851 }
2852
2853 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2854 struct intel_engine_cs *engine)
2855 {
2856 struct drm_i915_gem_request *request;
2857 bool ring_hung;
2858
2859 request = i915_gem_find_active_request(engine);
2860
2861 if (request == NULL)
2862 return;
2863
2864 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2865
2866 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2867
2868 list_for_each_entry_continue(request, &engine->request_list, list)
2869 i915_set_reset_status(dev_priv, request->ctx, false);
2870 }
2871
2872 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2873 struct intel_engine_cs *engine)
2874 {
2875 struct intel_ringbuffer *buffer;
2876
2877 while (!list_empty(&engine->active_list)) {
2878 struct drm_i915_gem_object *obj;
2879
2880 obj = list_first_entry(&engine->active_list,
2881 struct drm_i915_gem_object,
2882 engine_list[engine->id]);
2883
2884 i915_gem_object_retire__read(obj, engine->id);
2885 }
2886
2887 /*
2888 * Clear the execlists queue up before freeing the requests, as those
2889 * are the ones that keep the context and ringbuffer backing objects
2890 * pinned in place.
2891 */
2892
2893 if (i915.enable_execlists) {
2894 /* Ensure irq handler finishes or is cancelled. */
2895 tasklet_kill(&engine->irq_tasklet);
2896
2897 spin_lock_bh(&engine->execlist_lock);
2898 /* list_splice_tail_init checks for empty lists */
2899 list_splice_tail_init(&engine->execlist_queue,
2900 &engine->execlist_retired_req_list);
2901 spin_unlock_bh(&engine->execlist_lock);
2902
2903 intel_execlists_retire_requests(engine);
2904 }
2905
2906 /*
2907 * We must free the requests after all the corresponding objects have
2908 * been moved off active lists. Which is the same order as the normal
2909 * retire_requests function does. This is important if object hold
2910 * implicit references on things like e.g. ppgtt address spaces through
2911 * the request.
2912 */
2913 while (!list_empty(&engine->request_list)) {
2914 struct drm_i915_gem_request *request;
2915
2916 request = list_first_entry(&engine->request_list,
2917 struct drm_i915_gem_request,
2918 list);
2919
2920 i915_gem_request_retire(request);
2921 }
2922
2923 /* Having flushed all requests from all queues, we know that all
2924 * ringbuffers must now be empty. However, since we do not reclaim
2925 * all space when retiring the request (to prevent HEADs colliding
2926 * with rapid ringbuffer wraparound) the amount of available space
2927 * upon reset is less than when we start. Do one more pass over
2928 * all the ringbuffers to reset last_retired_head.
2929 */
2930 list_for_each_entry(buffer, &engine->buffers, link) {
2931 buffer->last_retired_head = buffer->tail;
2932 intel_ring_update_space(buffer);
2933 }
2934
2935 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2936 }
2937
2938 void i915_gem_reset(struct drm_device *dev)
2939 {
2940 struct drm_i915_private *dev_priv = dev->dev_private;
2941 struct intel_engine_cs *engine;
2942
2943 /*
2944 * Before we free the objects from the requests, we need to inspect
2945 * them for finding the guilty party. As the requests only borrow
2946 * their reference to the objects, the inspection must be done first.
2947 */
2948 for_each_engine(engine, dev_priv)
2949 i915_gem_reset_engine_status(dev_priv, engine);
2950
2951 for_each_engine(engine, dev_priv)
2952 i915_gem_reset_engine_cleanup(dev_priv, engine);
2953
2954 i915_gem_context_reset(dev);
2955
2956 i915_gem_restore_fences(dev);
2957
2958 WARN_ON(i915_verify_lists(dev));
2959 }
2960
2961 /**
2962 * This function clears the request list as sequence numbers are passed.
2963 */
2964 void
2965 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2966 {
2967 WARN_ON(i915_verify_lists(engine->dev));
2968
2969 /* Retire requests first as we use it above for the early return.
2970 * If we retire requests last, we may use a later seqno and so clear
2971 * the requests lists without clearing the active list, leading to
2972 * confusion.
2973 */
2974 while (!list_empty(&engine->request_list)) {
2975 struct drm_i915_gem_request *request;
2976
2977 request = list_first_entry(&engine->request_list,
2978 struct drm_i915_gem_request,
2979 list);
2980
2981 if (!i915_gem_request_completed(request, true))
2982 break;
2983
2984 i915_gem_request_retire(request);
2985 }
2986
2987 /* Move any buffers on the active list that are no longer referenced
2988 * by the ringbuffer to the flushing/inactive lists as appropriate,
2989 * before we free the context associated with the requests.
2990 */
2991 while (!list_empty(&engine->active_list)) {
2992 struct drm_i915_gem_object *obj;
2993
2994 obj = list_first_entry(&engine->active_list,
2995 struct drm_i915_gem_object,
2996 engine_list[engine->id]);
2997
2998 if (!list_empty(&obj->last_read_req[engine->id]->list))
2999 break;
3000
3001 i915_gem_object_retire__read(obj, engine->id);
3002 }
3003
3004 if (unlikely(engine->trace_irq_req &&
3005 i915_gem_request_completed(engine->trace_irq_req, true))) {
3006 engine->irq_put(engine);
3007 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3008 }
3009
3010 WARN_ON(i915_verify_lists(engine->dev));
3011 }
3012
3013 bool
3014 i915_gem_retire_requests(struct drm_device *dev)
3015 {
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 struct intel_engine_cs *engine;
3018 bool idle = true;
3019
3020 for_each_engine(engine, dev_priv) {
3021 i915_gem_retire_requests_ring(engine);
3022 idle &= list_empty(&engine->request_list);
3023 if (i915.enable_execlists) {
3024 spin_lock_bh(&engine->execlist_lock);
3025 idle &= list_empty(&engine->execlist_queue);
3026 spin_unlock_bh(&engine->execlist_lock);
3027
3028 intel_execlists_retire_requests(engine);
3029 }
3030 }
3031
3032 if (idle)
3033 mod_delayed_work(dev_priv->wq,
3034 &dev_priv->mm.idle_work,
3035 msecs_to_jiffies(100));
3036
3037 return idle;
3038 }
3039
3040 static void
3041 i915_gem_retire_work_handler(struct work_struct *work)
3042 {
3043 struct drm_i915_private *dev_priv =
3044 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3045 struct drm_device *dev = dev_priv->dev;
3046 bool idle;
3047
3048 /* Come back later if the device is busy... */
3049 idle = false;
3050 if (mutex_trylock(&dev->struct_mutex)) {
3051 idle = i915_gem_retire_requests(dev);
3052 mutex_unlock(&dev->struct_mutex);
3053 }
3054 if (!idle)
3055 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3056 round_jiffies_up_relative(HZ));
3057 }
3058
3059 static void
3060 i915_gem_idle_work_handler(struct work_struct *work)
3061 {
3062 struct drm_i915_private *dev_priv =
3063 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3064 struct drm_device *dev = dev_priv->dev;
3065 struct intel_engine_cs *engine;
3066
3067 for_each_engine(engine, dev_priv)
3068 if (!list_empty(&engine->request_list))
3069 return;
3070
3071 /* we probably should sync with hangcheck here, using cancel_work_sync.
3072 * Also locking seems to be fubar here, engine->request_list is protected
3073 * by dev->struct_mutex. */
3074
3075 intel_mark_idle(dev);
3076
3077 if (mutex_trylock(&dev->struct_mutex)) {
3078 for_each_engine(engine, dev_priv)
3079 i915_gem_batch_pool_fini(&engine->batch_pool);
3080
3081 mutex_unlock(&dev->struct_mutex);
3082 }
3083 }
3084
3085 /**
3086 * Ensures that an object will eventually get non-busy by flushing any required
3087 * write domains, emitting any outstanding lazy request and retiring and
3088 * completed requests.
3089 */
3090 static int
3091 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3092 {
3093 int i;
3094
3095 if (!obj->active)
3096 return 0;
3097
3098 for (i = 0; i < I915_NUM_ENGINES; i++) {
3099 struct drm_i915_gem_request *req;
3100
3101 req = obj->last_read_req[i];
3102 if (req == NULL)
3103 continue;
3104
3105 if (list_empty(&req->list))
3106 goto retire;
3107
3108 if (i915_gem_request_completed(req, true)) {
3109 __i915_gem_request_retire__upto(req);
3110 retire:
3111 i915_gem_object_retire__read(obj, i);
3112 }
3113 }
3114
3115 return 0;
3116 }
3117
3118 /**
3119 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3120 * @DRM_IOCTL_ARGS: standard ioctl arguments
3121 *
3122 * Returns 0 if successful, else an error is returned with the remaining time in
3123 * the timeout parameter.
3124 * -ETIME: object is still busy after timeout
3125 * -ERESTARTSYS: signal interrupted the wait
3126 * -ENONENT: object doesn't exist
3127 * Also possible, but rare:
3128 * -EAGAIN: GPU wedged
3129 * -ENOMEM: damn
3130 * -ENODEV: Internal IRQ fail
3131 * -E?: The add request failed
3132 *
3133 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3134 * non-zero timeout parameter the wait ioctl will wait for the given number of
3135 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3136 * without holding struct_mutex the object may become re-busied before this
3137 * function completes. A similar but shorter * race condition exists in the busy
3138 * ioctl
3139 */
3140 int
3141 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3142 {
3143 struct drm_i915_private *dev_priv = dev->dev_private;
3144 struct drm_i915_gem_wait *args = data;
3145 struct drm_i915_gem_object *obj;
3146 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3147 unsigned reset_counter;
3148 int i, n = 0;
3149 int ret;
3150
3151 if (args->flags != 0)
3152 return -EINVAL;
3153
3154 ret = i915_mutex_lock_interruptible(dev);
3155 if (ret)
3156 return ret;
3157
3158 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3159 if (&obj->base == NULL) {
3160 mutex_unlock(&dev->struct_mutex);
3161 return -ENOENT;
3162 }
3163
3164 /* Need to make sure the object gets inactive eventually. */
3165 ret = i915_gem_object_flush_active(obj);
3166 if (ret)
3167 goto out;
3168
3169 if (!obj->active)
3170 goto out;
3171
3172 /* Do this after OLR check to make sure we make forward progress polling
3173 * on this IOCTL with a timeout == 0 (like busy ioctl)
3174 */
3175 if (args->timeout_ns == 0) {
3176 ret = -ETIME;
3177 goto out;
3178 }
3179
3180 drm_gem_object_unreference(&obj->base);
3181 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3182
3183 for (i = 0; i < I915_NUM_ENGINES; i++) {
3184 if (obj->last_read_req[i] == NULL)
3185 continue;
3186
3187 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3188 }
3189
3190 mutex_unlock(&dev->struct_mutex);
3191
3192 for (i = 0; i < n; i++) {
3193 if (ret == 0)
3194 ret = __i915_wait_request(req[i], reset_counter, true,
3195 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3196 to_rps_client(file));
3197 i915_gem_request_unreference__unlocked(req[i]);
3198 }
3199 return ret;
3200
3201 out:
3202 drm_gem_object_unreference(&obj->base);
3203 mutex_unlock(&dev->struct_mutex);
3204 return ret;
3205 }
3206
3207 static int
3208 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3209 struct intel_engine_cs *to,
3210 struct drm_i915_gem_request *from_req,
3211 struct drm_i915_gem_request **to_req)
3212 {
3213 struct intel_engine_cs *from;
3214 int ret;
3215
3216 from = i915_gem_request_get_engine(from_req);
3217 if (to == from)
3218 return 0;
3219
3220 if (i915_gem_request_completed(from_req, true))
3221 return 0;
3222
3223 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3224 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3225 ret = __i915_wait_request(from_req,
3226 atomic_read(&i915->gpu_error.reset_counter),
3227 i915->mm.interruptible,
3228 NULL,
3229 &i915->rps.semaphores);
3230 if (ret)
3231 return ret;
3232
3233 i915_gem_object_retire_request(obj, from_req);
3234 } else {
3235 int idx = intel_ring_sync_index(from, to);
3236 u32 seqno = i915_gem_request_get_seqno(from_req);
3237
3238 WARN_ON(!to_req);
3239
3240 if (seqno <= from->semaphore.sync_seqno[idx])
3241 return 0;
3242
3243 if (*to_req == NULL) {
3244 struct drm_i915_gem_request *req;
3245
3246 req = i915_gem_request_alloc(to, NULL);
3247 if (IS_ERR(req))
3248 return PTR_ERR(req);
3249
3250 *to_req = req;
3251 }
3252
3253 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3254 ret = to->semaphore.sync_to(*to_req, from, seqno);
3255 if (ret)
3256 return ret;
3257
3258 /* We use last_read_req because sync_to()
3259 * might have just caused seqno wrap under
3260 * the radar.
3261 */
3262 from->semaphore.sync_seqno[idx] =
3263 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3264 }
3265
3266 return 0;
3267 }
3268
3269 /**
3270 * i915_gem_object_sync - sync an object to a ring.
3271 *
3272 * @obj: object which may be in use on another ring.
3273 * @to: ring we wish to use the object on. May be NULL.
3274 * @to_req: request we wish to use the object for. See below.
3275 * This will be allocated and returned if a request is
3276 * required but not passed in.
3277 *
3278 * This code is meant to abstract object synchronization with the GPU.
3279 * Calling with NULL implies synchronizing the object with the CPU
3280 * rather than a particular GPU ring. Conceptually we serialise writes
3281 * between engines inside the GPU. We only allow one engine to write
3282 * into a buffer at any time, but multiple readers. To ensure each has
3283 * a coherent view of memory, we must:
3284 *
3285 * - If there is an outstanding write request to the object, the new
3286 * request must wait for it to complete (either CPU or in hw, requests
3287 * on the same ring will be naturally ordered).
3288 *
3289 * - If we are a write request (pending_write_domain is set), the new
3290 * request must wait for outstanding read requests to complete.
3291 *
3292 * For CPU synchronisation (NULL to) no request is required. For syncing with
3293 * rings to_req must be non-NULL. However, a request does not have to be
3294 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3295 * request will be allocated automatically and returned through *to_req. Note
3296 * that it is not guaranteed that commands will be emitted (because the system
3297 * might already be idle). Hence there is no need to create a request that
3298 * might never have any work submitted. Note further that if a request is
3299 * returned in *to_req, it is the responsibility of the caller to submit
3300 * that request (after potentially adding more work to it).
3301 *
3302 * Returns 0 if successful, else propagates up the lower layer error.
3303 */
3304 int
3305 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3306 struct intel_engine_cs *to,
3307 struct drm_i915_gem_request **to_req)
3308 {
3309 const bool readonly = obj->base.pending_write_domain == 0;
3310 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3311 int ret, i, n;
3312
3313 if (!obj->active)
3314 return 0;
3315
3316 if (to == NULL)
3317 return i915_gem_object_wait_rendering(obj, readonly);
3318
3319 n = 0;
3320 if (readonly) {
3321 if (obj->last_write_req)
3322 req[n++] = obj->last_write_req;
3323 } else {
3324 for (i = 0; i < I915_NUM_ENGINES; i++)
3325 if (obj->last_read_req[i])
3326 req[n++] = obj->last_read_req[i];
3327 }
3328 for (i = 0; i < n; i++) {
3329 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3330 if (ret)
3331 return ret;
3332 }
3333
3334 return 0;
3335 }
3336
3337 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3338 {
3339 u32 old_write_domain, old_read_domains;
3340
3341 /* Force a pagefault for domain tracking on next user access */
3342 i915_gem_release_mmap(obj);
3343
3344 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3345 return;
3346
3347 /* Wait for any direct GTT access to complete */
3348 mb();
3349
3350 old_read_domains = obj->base.read_domains;
3351 old_write_domain = obj->base.write_domain;
3352
3353 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3354 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3355
3356 trace_i915_gem_object_change_domain(obj,
3357 old_read_domains,
3358 old_write_domain);
3359 }
3360
3361 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3362 {
3363 struct drm_i915_gem_object *obj = vma->obj;
3364 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3365 int ret;
3366
3367 if (list_empty(&vma->obj_link))
3368 return 0;
3369
3370 if (!drm_mm_node_allocated(&vma->node)) {
3371 i915_gem_vma_destroy(vma);
3372 return 0;
3373 }
3374
3375 if (vma->pin_count)
3376 return -EBUSY;
3377
3378 BUG_ON(obj->pages == NULL);
3379
3380 if (wait) {
3381 ret = i915_gem_object_wait_rendering(obj, false);
3382 if (ret)
3383 return ret;
3384 }
3385
3386 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3387 i915_gem_object_finish_gtt(obj);
3388
3389 /* release the fence reg _after_ flushing */
3390 ret = i915_gem_object_put_fence(obj);
3391 if (ret)
3392 return ret;
3393 }
3394
3395 trace_i915_vma_unbind(vma);
3396
3397 vma->vm->unbind_vma(vma);
3398 vma->bound = 0;
3399
3400 list_del_init(&vma->vm_link);
3401 if (vma->is_ggtt) {
3402 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3403 obj->map_and_fenceable = false;
3404 } else if (vma->ggtt_view.pages) {
3405 sg_free_table(vma->ggtt_view.pages);
3406 kfree(vma->ggtt_view.pages);
3407 }
3408 vma->ggtt_view.pages = NULL;
3409 }
3410
3411 drm_mm_remove_node(&vma->node);
3412 i915_gem_vma_destroy(vma);
3413
3414 /* Since the unbound list is global, only move to that list if
3415 * no more VMAs exist. */
3416 if (list_empty(&obj->vma_list))
3417 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3418
3419 /* And finally now the object is completely decoupled from this vma,
3420 * we can drop its hold on the backing storage and allow it to be
3421 * reaped by the shrinker.
3422 */
3423 i915_gem_object_unpin_pages(obj);
3424
3425 return 0;
3426 }
3427
3428 int i915_vma_unbind(struct i915_vma *vma)
3429 {
3430 return __i915_vma_unbind(vma, true);
3431 }
3432
3433 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3434 {
3435 return __i915_vma_unbind(vma, false);
3436 }
3437
3438 int i915_gpu_idle(struct drm_device *dev)
3439 {
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 struct intel_engine_cs *engine;
3442 int ret;
3443
3444 /* Flush everything onto the inactive list. */
3445 for_each_engine(engine, dev_priv) {
3446 if (!i915.enable_execlists) {
3447 struct drm_i915_gem_request *req;
3448
3449 req = i915_gem_request_alloc(engine, NULL);
3450 if (IS_ERR(req))
3451 return PTR_ERR(req);
3452
3453 ret = i915_switch_context(req);
3454 if (ret) {
3455 i915_gem_request_cancel(req);
3456 return ret;
3457 }
3458
3459 i915_add_request_no_flush(req);
3460 }
3461
3462 ret = intel_engine_idle(engine);
3463 if (ret)
3464 return ret;
3465 }
3466
3467 WARN_ON(i915_verify_lists(dev));
3468 return 0;
3469 }
3470
3471 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3472 unsigned long cache_level)
3473 {
3474 struct drm_mm_node *gtt_space = &vma->node;
3475 struct drm_mm_node *other;
3476
3477 /*
3478 * On some machines we have to be careful when putting differing types
3479 * of snoopable memory together to avoid the prefetcher crossing memory
3480 * domains and dying. During vm initialisation, we decide whether or not
3481 * these constraints apply and set the drm_mm.color_adjust
3482 * appropriately.
3483 */
3484 if (vma->vm->mm.color_adjust == NULL)
3485 return true;
3486
3487 if (!drm_mm_node_allocated(gtt_space))
3488 return true;
3489
3490 if (list_empty(&gtt_space->node_list))
3491 return true;
3492
3493 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3494 if (other->allocated && !other->hole_follows && other->color != cache_level)
3495 return false;
3496
3497 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3498 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3499 return false;
3500
3501 return true;
3502 }
3503
3504 /**
3505 * Finds free space in the GTT aperture and binds the object or a view of it
3506 * there.
3507 */
3508 static struct i915_vma *
3509 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3510 struct i915_address_space *vm,
3511 const struct i915_ggtt_view *ggtt_view,
3512 unsigned alignment,
3513 uint64_t flags)
3514 {
3515 struct drm_device *dev = obj->base.dev;
3516 struct drm_i915_private *dev_priv = to_i915(dev);
3517 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3518 u32 fence_alignment, unfenced_alignment;
3519 u32 search_flag, alloc_flag;
3520 u64 start, end;
3521 u64 size, fence_size;
3522 struct i915_vma *vma;
3523 int ret;
3524
3525 if (i915_is_ggtt(vm)) {
3526 u32 view_size;
3527
3528 if (WARN_ON(!ggtt_view))
3529 return ERR_PTR(-EINVAL);
3530
3531 view_size = i915_ggtt_view_size(obj, ggtt_view);
3532
3533 fence_size = i915_gem_get_gtt_size(dev,
3534 view_size,
3535 obj->tiling_mode);
3536 fence_alignment = i915_gem_get_gtt_alignment(dev,
3537 view_size,
3538 obj->tiling_mode,
3539 true);
3540 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3541 view_size,
3542 obj->tiling_mode,
3543 false);
3544 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3545 } else {
3546 fence_size = i915_gem_get_gtt_size(dev,
3547 obj->base.size,
3548 obj->tiling_mode);
3549 fence_alignment = i915_gem_get_gtt_alignment(dev,
3550 obj->base.size,
3551 obj->tiling_mode,
3552 true);
3553 unfenced_alignment =
3554 i915_gem_get_gtt_alignment(dev,
3555 obj->base.size,
3556 obj->tiling_mode,
3557 false);
3558 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3559 }
3560
3561 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3562 end = vm->total;
3563 if (flags & PIN_MAPPABLE)
3564 end = min_t(u64, end, ggtt->mappable_end);
3565 if (flags & PIN_ZONE_4G)
3566 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3567
3568 if (alignment == 0)
3569 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3570 unfenced_alignment;
3571 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3572 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3573 ggtt_view ? ggtt_view->type : 0,
3574 alignment);
3575 return ERR_PTR(-EINVAL);
3576 }
3577
3578 /* If binding the object/GGTT view requires more space than the entire
3579 * aperture has, reject it early before evicting everything in a vain
3580 * attempt to find space.
3581 */
3582 if (size > end) {
3583 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3584 ggtt_view ? ggtt_view->type : 0,
3585 size,
3586 flags & PIN_MAPPABLE ? "mappable" : "total",
3587 end);
3588 return ERR_PTR(-E2BIG);
3589 }
3590
3591 ret = i915_gem_object_get_pages(obj);
3592 if (ret)
3593 return ERR_PTR(ret);
3594
3595 i915_gem_object_pin_pages(obj);
3596
3597 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3598 i915_gem_obj_lookup_or_create_vma(obj, vm);
3599
3600 if (IS_ERR(vma))
3601 goto err_unpin;
3602
3603 if (flags & PIN_OFFSET_FIXED) {
3604 uint64_t offset = flags & PIN_OFFSET_MASK;
3605
3606 if (offset & (alignment - 1) || offset + size > end) {
3607 ret = -EINVAL;
3608 goto err_free_vma;
3609 }
3610 vma->node.start = offset;
3611 vma->node.size = size;
3612 vma->node.color = obj->cache_level;
3613 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3614 if (ret) {
3615 ret = i915_gem_evict_for_vma(vma);
3616 if (ret == 0)
3617 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3618 }
3619 if (ret)
3620 goto err_free_vma;
3621 } else {
3622 if (flags & PIN_HIGH) {
3623 search_flag = DRM_MM_SEARCH_BELOW;
3624 alloc_flag = DRM_MM_CREATE_TOP;
3625 } else {
3626 search_flag = DRM_MM_SEARCH_DEFAULT;
3627 alloc_flag = DRM_MM_CREATE_DEFAULT;
3628 }
3629
3630 search_free:
3631 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3632 size, alignment,
3633 obj->cache_level,
3634 start, end,
3635 search_flag,
3636 alloc_flag);
3637 if (ret) {
3638 ret = i915_gem_evict_something(dev, vm, size, alignment,
3639 obj->cache_level,
3640 start, end,
3641 flags);
3642 if (ret == 0)
3643 goto search_free;
3644
3645 goto err_free_vma;
3646 }
3647 }
3648 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3649 ret = -EINVAL;
3650 goto err_remove_node;
3651 }
3652
3653 trace_i915_vma_bind(vma, flags);
3654 ret = i915_vma_bind(vma, obj->cache_level, flags);
3655 if (ret)
3656 goto err_remove_node;
3657
3658 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3659 list_add_tail(&vma->vm_link, &vm->inactive_list);
3660
3661 return vma;
3662
3663 err_remove_node:
3664 drm_mm_remove_node(&vma->node);
3665 err_free_vma:
3666 i915_gem_vma_destroy(vma);
3667 vma = ERR_PTR(ret);
3668 err_unpin:
3669 i915_gem_object_unpin_pages(obj);
3670 return vma;
3671 }
3672
3673 bool
3674 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3675 bool force)
3676 {
3677 /* If we don't have a page list set up, then we're not pinned
3678 * to GPU, and we can ignore the cache flush because it'll happen
3679 * again at bind time.
3680 */
3681 if (obj->pages == NULL)
3682 return false;
3683
3684 /*
3685 * Stolen memory is always coherent with the GPU as it is explicitly
3686 * marked as wc by the system, or the system is cache-coherent.
3687 */
3688 if (obj->stolen || obj->phys_handle)
3689 return false;
3690
3691 /* If the GPU is snooping the contents of the CPU cache,
3692 * we do not need to manually clear the CPU cache lines. However,
3693 * the caches are only snooped when the render cache is
3694 * flushed/invalidated. As we always have to emit invalidations
3695 * and flushes when moving into and out of the RENDER domain, correct
3696 * snooping behaviour occurs naturally as the result of our domain
3697 * tracking.
3698 */
3699 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3700 obj->cache_dirty = true;
3701 return false;
3702 }
3703
3704 trace_i915_gem_object_clflush(obj);
3705 drm_clflush_sg(obj->pages);
3706 obj->cache_dirty = false;
3707
3708 return true;
3709 }
3710
3711 /** Flushes the GTT write domain for the object if it's dirty. */
3712 static void
3713 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3714 {
3715 uint32_t old_write_domain;
3716
3717 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3718 return;
3719
3720 /* No actual flushing is required for the GTT write domain. Writes
3721 * to it immediately go to main memory as far as we know, so there's
3722 * no chipset flush. It also doesn't land in render cache.
3723 *
3724 * However, we do have to enforce the order so that all writes through
3725 * the GTT land before any writes to the device, such as updates to
3726 * the GATT itself.
3727 */
3728 wmb();
3729
3730 old_write_domain = obj->base.write_domain;
3731 obj->base.write_domain = 0;
3732
3733 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3734
3735 trace_i915_gem_object_change_domain(obj,
3736 obj->base.read_domains,
3737 old_write_domain);
3738 }
3739
3740 /** Flushes the CPU write domain for the object if it's dirty. */
3741 static void
3742 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3743 {
3744 uint32_t old_write_domain;
3745
3746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3747 return;
3748
3749 if (i915_gem_clflush_object(obj, obj->pin_display))
3750 i915_gem_chipset_flush(obj->base.dev);
3751
3752 old_write_domain = obj->base.write_domain;
3753 obj->base.write_domain = 0;
3754
3755 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3756
3757 trace_i915_gem_object_change_domain(obj,
3758 obj->base.read_domains,
3759 old_write_domain);
3760 }
3761
3762 /**
3763 * Moves a single object to the GTT read, and possibly write domain.
3764 *
3765 * This function returns when the move is complete, including waiting on
3766 * flushes to occur.
3767 */
3768 int
3769 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3770 {
3771 struct drm_device *dev = obj->base.dev;
3772 struct drm_i915_private *dev_priv = to_i915(dev);
3773 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3774 uint32_t old_write_domain, old_read_domains;
3775 struct i915_vma *vma;
3776 int ret;
3777
3778 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3779 return 0;
3780
3781 ret = i915_gem_object_wait_rendering(obj, !write);
3782 if (ret)
3783 return ret;
3784
3785 /* Flush and acquire obj->pages so that we are coherent through
3786 * direct access in memory with previous cached writes through
3787 * shmemfs and that our cache domain tracking remains valid.
3788 * For example, if the obj->filp was moved to swap without us
3789 * being notified and releasing the pages, we would mistakenly
3790 * continue to assume that the obj remained out of the CPU cached
3791 * domain.
3792 */
3793 ret = i915_gem_object_get_pages(obj);
3794 if (ret)
3795 return ret;
3796
3797 i915_gem_object_flush_cpu_write_domain(obj);
3798
3799 /* Serialise direct access to this object with the barriers for
3800 * coherent writes from the GPU, by effectively invalidating the
3801 * GTT domain upon first access.
3802 */
3803 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3804 mb();
3805
3806 old_write_domain = obj->base.write_domain;
3807 old_read_domains = obj->base.read_domains;
3808
3809 /* It should now be out of any other write domains, and we can update
3810 * the domain values for our changes.
3811 */
3812 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3813 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3814 if (write) {
3815 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3816 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3817 obj->dirty = 1;
3818 }
3819
3820 trace_i915_gem_object_change_domain(obj,
3821 old_read_domains,
3822 old_write_domain);
3823
3824 /* And bump the LRU for this access */
3825 vma = i915_gem_obj_to_ggtt(obj);
3826 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3827 list_move_tail(&vma->vm_link,
3828 &ggtt->base.inactive_list);
3829
3830 return 0;
3831 }
3832
3833 /**
3834 * Changes the cache-level of an object across all VMA.
3835 *
3836 * After this function returns, the object will be in the new cache-level
3837 * across all GTT and the contents of the backing storage will be coherent,
3838 * with respect to the new cache-level. In order to keep the backing storage
3839 * coherent for all users, we only allow a single cache level to be set
3840 * globally on the object and prevent it from being changed whilst the
3841 * hardware is reading from the object. That is if the object is currently
3842 * on the scanout it will be set to uncached (or equivalent display
3843 * cache coherency) and all non-MOCS GPU access will also be uncached so
3844 * that all direct access to the scanout remains coherent.
3845 */
3846 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3847 enum i915_cache_level cache_level)
3848 {
3849 struct drm_device *dev = obj->base.dev;
3850 struct i915_vma *vma, *next;
3851 bool bound = false;
3852 int ret = 0;
3853
3854 if (obj->cache_level == cache_level)
3855 goto out;
3856
3857 /* Inspect the list of currently bound VMA and unbind any that would
3858 * be invalid given the new cache-level. This is principally to
3859 * catch the issue of the CS prefetch crossing page boundaries and
3860 * reading an invalid PTE on older architectures.
3861 */
3862 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3863 if (!drm_mm_node_allocated(&vma->node))
3864 continue;
3865
3866 if (vma->pin_count) {
3867 DRM_DEBUG("can not change the cache level of pinned objects\n");
3868 return -EBUSY;
3869 }
3870
3871 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3872 ret = i915_vma_unbind(vma);
3873 if (ret)
3874 return ret;
3875 } else
3876 bound = true;
3877 }
3878
3879 /* We can reuse the existing drm_mm nodes but need to change the
3880 * cache-level on the PTE. We could simply unbind them all and
3881 * rebind with the correct cache-level on next use. However since
3882 * we already have a valid slot, dma mapping, pages etc, we may as
3883 * rewrite the PTE in the belief that doing so tramples upon less
3884 * state and so involves less work.
3885 */
3886 if (bound) {
3887 /* Before we change the PTE, the GPU must not be accessing it.
3888 * If we wait upon the object, we know that all the bound
3889 * VMA are no longer active.
3890 */
3891 ret = i915_gem_object_wait_rendering(obj, false);
3892 if (ret)
3893 return ret;
3894
3895 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3896 /* Access to snoopable pages through the GTT is
3897 * incoherent and on some machines causes a hard
3898 * lockup. Relinquish the CPU mmaping to force
3899 * userspace to refault in the pages and we can
3900 * then double check if the GTT mapping is still
3901 * valid for that pointer access.
3902 */
3903 i915_gem_release_mmap(obj);
3904
3905 /* As we no longer need a fence for GTT access,
3906 * we can relinquish it now (and so prevent having
3907 * to steal a fence from someone else on the next
3908 * fence request). Note GPU activity would have
3909 * dropped the fence as all snoopable access is
3910 * supposed to be linear.
3911 */
3912 ret = i915_gem_object_put_fence(obj);
3913 if (ret)
3914 return ret;
3915 } else {
3916 /* We either have incoherent backing store and
3917 * so no GTT access or the architecture is fully
3918 * coherent. In such cases, existing GTT mmaps
3919 * ignore the cache bit in the PTE and we can
3920 * rewrite it without confusing the GPU or having
3921 * to force userspace to fault back in its mmaps.
3922 */
3923 }
3924
3925 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3926 if (!drm_mm_node_allocated(&vma->node))
3927 continue;
3928
3929 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3930 if (ret)
3931 return ret;
3932 }
3933 }
3934
3935 list_for_each_entry(vma, &obj->vma_list, obj_link)
3936 vma->node.color = cache_level;
3937 obj->cache_level = cache_level;
3938
3939 out:
3940 /* Flush the dirty CPU caches to the backing storage so that the
3941 * object is now coherent at its new cache level (with respect
3942 * to the access domain).
3943 */
3944 if (obj->cache_dirty &&
3945 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3946 cpu_write_needs_clflush(obj)) {
3947 if (i915_gem_clflush_object(obj, true))
3948 i915_gem_chipset_flush(obj->base.dev);
3949 }
3950
3951 return 0;
3952 }
3953
3954 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3955 struct drm_file *file)
3956 {
3957 struct drm_i915_gem_caching *args = data;
3958 struct drm_i915_gem_object *obj;
3959
3960 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3961 if (&obj->base == NULL)
3962 return -ENOENT;
3963
3964 switch (obj->cache_level) {
3965 case I915_CACHE_LLC:
3966 case I915_CACHE_L3_LLC:
3967 args->caching = I915_CACHING_CACHED;
3968 break;
3969
3970 case I915_CACHE_WT:
3971 args->caching = I915_CACHING_DISPLAY;
3972 break;
3973
3974 default:
3975 args->caching = I915_CACHING_NONE;
3976 break;
3977 }
3978
3979 drm_gem_object_unreference_unlocked(&obj->base);
3980 return 0;
3981 }
3982
3983 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3984 struct drm_file *file)
3985 {
3986 struct drm_i915_private *dev_priv = dev->dev_private;
3987 struct drm_i915_gem_caching *args = data;
3988 struct drm_i915_gem_object *obj;
3989 enum i915_cache_level level;
3990 int ret;
3991
3992 switch (args->caching) {
3993 case I915_CACHING_NONE:
3994 level = I915_CACHE_NONE;
3995 break;
3996 case I915_CACHING_CACHED:
3997 /*
3998 * Due to a HW issue on BXT A stepping, GPU stores via a
3999 * snooped mapping may leave stale data in a corresponding CPU
4000 * cacheline, whereas normally such cachelines would get
4001 * invalidated.
4002 */
4003 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4004 return -ENODEV;
4005
4006 level = I915_CACHE_LLC;
4007 break;
4008 case I915_CACHING_DISPLAY:
4009 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4010 break;
4011 default:
4012 return -EINVAL;
4013 }
4014
4015 intel_runtime_pm_get(dev_priv);
4016
4017 ret = i915_mutex_lock_interruptible(dev);
4018 if (ret)
4019 goto rpm_put;
4020
4021 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4022 if (&obj->base == NULL) {
4023 ret = -ENOENT;
4024 goto unlock;
4025 }
4026
4027 ret = i915_gem_object_set_cache_level(obj, level);
4028
4029 drm_gem_object_unreference(&obj->base);
4030 unlock:
4031 mutex_unlock(&dev->struct_mutex);
4032 rpm_put:
4033 intel_runtime_pm_put(dev_priv);
4034
4035 return ret;
4036 }
4037
4038 /*
4039 * Prepare buffer for display plane (scanout, cursors, etc).
4040 * Can be called from an uninterruptible phase (modesetting) and allows
4041 * any flushes to be pipelined (for pageflips).
4042 */
4043 int
4044 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4045 u32 alignment,
4046 const struct i915_ggtt_view *view)
4047 {
4048 u32 old_read_domains, old_write_domain;
4049 int ret;
4050
4051 /* Mark the pin_display early so that we account for the
4052 * display coherency whilst setting up the cache domains.
4053 */
4054 obj->pin_display++;
4055
4056 /* The display engine is not coherent with the LLC cache on gen6. As
4057 * a result, we make sure that the pinning that is about to occur is
4058 * done with uncached PTEs. This is lowest common denominator for all
4059 * chipsets.
4060 *
4061 * However for gen6+, we could do better by using the GFDT bit instead
4062 * of uncaching, which would allow us to flush all the LLC-cached data
4063 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4064 */
4065 ret = i915_gem_object_set_cache_level(obj,
4066 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4067 if (ret)
4068 goto err_unpin_display;
4069
4070 /* As the user may map the buffer once pinned in the display plane
4071 * (e.g. libkms for the bootup splash), we have to ensure that we
4072 * always use map_and_fenceable for all scanout buffers.
4073 */
4074 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4075 view->type == I915_GGTT_VIEW_NORMAL ?
4076 PIN_MAPPABLE : 0);
4077 if (ret)
4078 goto err_unpin_display;
4079
4080 i915_gem_object_flush_cpu_write_domain(obj);
4081
4082 old_write_domain = obj->base.write_domain;
4083 old_read_domains = obj->base.read_domains;
4084
4085 /* It should now be out of any other write domains, and we can update
4086 * the domain values for our changes.
4087 */
4088 obj->base.write_domain = 0;
4089 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4090
4091 trace_i915_gem_object_change_domain(obj,
4092 old_read_domains,
4093 old_write_domain);
4094
4095 return 0;
4096
4097 err_unpin_display:
4098 obj->pin_display--;
4099 return ret;
4100 }
4101
4102 void
4103 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4104 const struct i915_ggtt_view *view)
4105 {
4106 if (WARN_ON(obj->pin_display == 0))
4107 return;
4108
4109 i915_gem_object_ggtt_unpin_view(obj, view);
4110
4111 obj->pin_display--;
4112 }
4113
4114 /**
4115 * Moves a single object to the CPU read, and possibly write domain.
4116 *
4117 * This function returns when the move is complete, including waiting on
4118 * flushes to occur.
4119 */
4120 int
4121 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4122 {
4123 uint32_t old_write_domain, old_read_domains;
4124 int ret;
4125
4126 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4127 return 0;
4128
4129 ret = i915_gem_object_wait_rendering(obj, !write);
4130 if (ret)
4131 return ret;
4132
4133 i915_gem_object_flush_gtt_write_domain(obj);
4134
4135 old_write_domain = obj->base.write_domain;
4136 old_read_domains = obj->base.read_domains;
4137
4138 /* Flush the CPU cache if it's still invalid. */
4139 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4140 i915_gem_clflush_object(obj, false);
4141
4142 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4143 }
4144
4145 /* It should now be out of any other write domains, and we can update
4146 * the domain values for our changes.
4147 */
4148 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4149
4150 /* If we're writing through the CPU, then the GPU read domains will
4151 * need to be invalidated at next use.
4152 */
4153 if (write) {
4154 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4155 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4156 }
4157
4158 trace_i915_gem_object_change_domain(obj,
4159 old_read_domains,
4160 old_write_domain);
4161
4162 return 0;
4163 }
4164
4165 /* Throttle our rendering by waiting until the ring has completed our requests
4166 * emitted over 20 msec ago.
4167 *
4168 * Note that if we were to use the current jiffies each time around the loop,
4169 * we wouldn't escape the function with any frames outstanding if the time to
4170 * render a frame was over 20ms.
4171 *
4172 * This should get us reasonable parallelism between CPU and GPU but also
4173 * relatively low latency when blocking on a particular request to finish.
4174 */
4175 static int
4176 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4177 {
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179 struct drm_i915_file_private *file_priv = file->driver_priv;
4180 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4181 struct drm_i915_gem_request *request, *target = NULL;
4182 unsigned reset_counter;
4183 int ret;
4184
4185 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4186 if (ret)
4187 return ret;
4188
4189 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4190 if (ret)
4191 return ret;
4192
4193 spin_lock(&file_priv->mm.lock);
4194 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4195 if (time_after_eq(request->emitted_jiffies, recent_enough))
4196 break;
4197
4198 /*
4199 * Note that the request might not have been submitted yet.
4200 * In which case emitted_jiffies will be zero.
4201 */
4202 if (!request->emitted_jiffies)
4203 continue;
4204
4205 target = request;
4206 }
4207 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4208 if (target)
4209 i915_gem_request_reference(target);
4210 spin_unlock(&file_priv->mm.lock);
4211
4212 if (target == NULL)
4213 return 0;
4214
4215 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4216 if (ret == 0)
4217 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4218
4219 i915_gem_request_unreference__unlocked(target);
4220
4221 return ret;
4222 }
4223
4224 static bool
4225 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4226 {
4227 struct drm_i915_gem_object *obj = vma->obj;
4228
4229 if (alignment &&
4230 vma->node.start & (alignment - 1))
4231 return true;
4232
4233 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4234 return true;
4235
4236 if (flags & PIN_OFFSET_BIAS &&
4237 vma->node.start < (flags & PIN_OFFSET_MASK))
4238 return true;
4239
4240 if (flags & PIN_OFFSET_FIXED &&
4241 vma->node.start != (flags & PIN_OFFSET_MASK))
4242 return true;
4243
4244 return false;
4245 }
4246
4247 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4248 {
4249 struct drm_i915_gem_object *obj = vma->obj;
4250 bool mappable, fenceable;
4251 u32 fence_size, fence_alignment;
4252
4253 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4254 obj->base.size,
4255 obj->tiling_mode);
4256 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4257 obj->base.size,
4258 obj->tiling_mode,
4259 true);
4260
4261 fenceable = (vma->node.size == fence_size &&
4262 (vma->node.start & (fence_alignment - 1)) == 0);
4263
4264 mappable = (vma->node.start + fence_size <=
4265 to_i915(obj->base.dev)->ggtt.mappable_end);
4266
4267 obj->map_and_fenceable = mappable && fenceable;
4268 }
4269
4270 static int
4271 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4272 struct i915_address_space *vm,
4273 const struct i915_ggtt_view *ggtt_view,
4274 uint32_t alignment,
4275 uint64_t flags)
4276 {
4277 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4278 struct i915_vma *vma;
4279 unsigned bound;
4280 int ret;
4281
4282 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4283 return -ENODEV;
4284
4285 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4286 return -EINVAL;
4287
4288 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4289 return -EINVAL;
4290
4291 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4292 return -EINVAL;
4293
4294 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4295 i915_gem_obj_to_vma(obj, vm);
4296
4297 if (vma) {
4298 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4299 return -EBUSY;
4300
4301 if (i915_vma_misplaced(vma, alignment, flags)) {
4302 WARN(vma->pin_count,
4303 "bo is already pinned in %s with incorrect alignment:"
4304 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4305 " obj->map_and_fenceable=%d\n",
4306 ggtt_view ? "ggtt" : "ppgtt",
4307 upper_32_bits(vma->node.start),
4308 lower_32_bits(vma->node.start),
4309 alignment,
4310 !!(flags & PIN_MAPPABLE),
4311 obj->map_and_fenceable);
4312 ret = i915_vma_unbind(vma);
4313 if (ret)
4314 return ret;
4315
4316 vma = NULL;
4317 }
4318 }
4319
4320 bound = vma ? vma->bound : 0;
4321 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4322 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4323 flags);
4324 if (IS_ERR(vma))
4325 return PTR_ERR(vma);
4326 } else {
4327 ret = i915_vma_bind(vma, obj->cache_level, flags);
4328 if (ret)
4329 return ret;
4330 }
4331
4332 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4333 (bound ^ vma->bound) & GLOBAL_BIND) {
4334 __i915_vma_set_map_and_fenceable(vma);
4335 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4336 }
4337
4338 vma->pin_count++;
4339 return 0;
4340 }
4341
4342 int
4343 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4344 struct i915_address_space *vm,
4345 uint32_t alignment,
4346 uint64_t flags)
4347 {
4348 return i915_gem_object_do_pin(obj, vm,
4349 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4350 alignment, flags);
4351 }
4352
4353 int
4354 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4355 const struct i915_ggtt_view *view,
4356 uint32_t alignment,
4357 uint64_t flags)
4358 {
4359 struct drm_device *dev = obj->base.dev;
4360 struct drm_i915_private *dev_priv = to_i915(dev);
4361 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4362
4363 BUG_ON(!view);
4364
4365 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4366 alignment, flags | PIN_GLOBAL);
4367 }
4368
4369 void
4370 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4371 const struct i915_ggtt_view *view)
4372 {
4373 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4374
4375 BUG_ON(!vma);
4376 WARN_ON(vma->pin_count == 0);
4377 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4378
4379 --vma->pin_count;
4380 }
4381
4382 int
4383 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4384 struct drm_file *file)
4385 {
4386 struct drm_i915_gem_busy *args = data;
4387 struct drm_i915_gem_object *obj;
4388 int ret;
4389
4390 ret = i915_mutex_lock_interruptible(dev);
4391 if (ret)
4392 return ret;
4393
4394 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4395 if (&obj->base == NULL) {
4396 ret = -ENOENT;
4397 goto unlock;
4398 }
4399
4400 /* Count all active objects as busy, even if they are currently not used
4401 * by the gpu. Users of this interface expect objects to eventually
4402 * become non-busy without any further actions, therefore emit any
4403 * necessary flushes here.
4404 */
4405 ret = i915_gem_object_flush_active(obj);
4406 if (ret)
4407 goto unref;
4408
4409 args->busy = 0;
4410 if (obj->active) {
4411 int i;
4412
4413 for (i = 0; i < I915_NUM_ENGINES; i++) {
4414 struct drm_i915_gem_request *req;
4415
4416 req = obj->last_read_req[i];
4417 if (req)
4418 args->busy |= 1 << (16 + req->engine->exec_id);
4419 }
4420 if (obj->last_write_req)
4421 args->busy |= obj->last_write_req->engine->exec_id;
4422 }
4423
4424 unref:
4425 drm_gem_object_unreference(&obj->base);
4426 unlock:
4427 mutex_unlock(&dev->struct_mutex);
4428 return ret;
4429 }
4430
4431 int
4432 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4433 struct drm_file *file_priv)
4434 {
4435 return i915_gem_ring_throttle(dev, file_priv);
4436 }
4437
4438 int
4439 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4440 struct drm_file *file_priv)
4441 {
4442 struct drm_i915_private *dev_priv = dev->dev_private;
4443 struct drm_i915_gem_madvise *args = data;
4444 struct drm_i915_gem_object *obj;
4445 int ret;
4446
4447 switch (args->madv) {
4448 case I915_MADV_DONTNEED:
4449 case I915_MADV_WILLNEED:
4450 break;
4451 default:
4452 return -EINVAL;
4453 }
4454
4455 ret = i915_mutex_lock_interruptible(dev);
4456 if (ret)
4457 return ret;
4458
4459 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4460 if (&obj->base == NULL) {
4461 ret = -ENOENT;
4462 goto unlock;
4463 }
4464
4465 if (i915_gem_obj_is_pinned(obj)) {
4466 ret = -EINVAL;
4467 goto out;
4468 }
4469
4470 if (obj->pages &&
4471 obj->tiling_mode != I915_TILING_NONE &&
4472 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4473 if (obj->madv == I915_MADV_WILLNEED)
4474 i915_gem_object_unpin_pages(obj);
4475 if (args->madv == I915_MADV_WILLNEED)
4476 i915_gem_object_pin_pages(obj);
4477 }
4478
4479 if (obj->madv != __I915_MADV_PURGED)
4480 obj->madv = args->madv;
4481
4482 /* if the object is no longer attached, discard its backing storage */
4483 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4484 i915_gem_object_truncate(obj);
4485
4486 args->retained = obj->madv != __I915_MADV_PURGED;
4487
4488 out:
4489 drm_gem_object_unreference(&obj->base);
4490 unlock:
4491 mutex_unlock(&dev->struct_mutex);
4492 return ret;
4493 }
4494
4495 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4496 const struct drm_i915_gem_object_ops *ops)
4497 {
4498 int i;
4499
4500 INIT_LIST_HEAD(&obj->global_list);
4501 for (i = 0; i < I915_NUM_ENGINES; i++)
4502 INIT_LIST_HEAD(&obj->engine_list[i]);
4503 INIT_LIST_HEAD(&obj->obj_exec_link);
4504 INIT_LIST_HEAD(&obj->vma_list);
4505 INIT_LIST_HEAD(&obj->batch_pool_link);
4506
4507 obj->ops = ops;
4508
4509 obj->fence_reg = I915_FENCE_REG_NONE;
4510 obj->madv = I915_MADV_WILLNEED;
4511
4512 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4513 }
4514
4515 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4516 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4517 .get_pages = i915_gem_object_get_pages_gtt,
4518 .put_pages = i915_gem_object_put_pages_gtt,
4519 };
4520
4521 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4522 size_t size)
4523 {
4524 struct drm_i915_gem_object *obj;
4525 struct address_space *mapping;
4526 gfp_t mask;
4527
4528 obj = i915_gem_object_alloc(dev);
4529 if (obj == NULL)
4530 return NULL;
4531
4532 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4533 i915_gem_object_free(obj);
4534 return NULL;
4535 }
4536
4537 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4538 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4539 /* 965gm cannot relocate objects above 4GiB. */
4540 mask &= ~__GFP_HIGHMEM;
4541 mask |= __GFP_DMA32;
4542 }
4543
4544 mapping = file_inode(obj->base.filp)->i_mapping;
4545 mapping_set_gfp_mask(mapping, mask);
4546
4547 i915_gem_object_init(obj, &i915_gem_object_ops);
4548
4549 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4550 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4551
4552 if (HAS_LLC(dev)) {
4553 /* On some devices, we can have the GPU use the LLC (the CPU
4554 * cache) for about a 10% performance improvement
4555 * compared to uncached. Graphics requests other than
4556 * display scanout are coherent with the CPU in
4557 * accessing this cache. This means in this mode we
4558 * don't need to clflush on the CPU side, and on the
4559 * GPU side we only need to flush internal caches to
4560 * get data visible to the CPU.
4561 *
4562 * However, we maintain the display planes as UC, and so
4563 * need to rebind when first used as such.
4564 */
4565 obj->cache_level = I915_CACHE_LLC;
4566 } else
4567 obj->cache_level = I915_CACHE_NONE;
4568
4569 trace_i915_gem_object_create(obj);
4570
4571 return obj;
4572 }
4573
4574 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4575 {
4576 /* If we are the last user of the backing storage (be it shmemfs
4577 * pages or stolen etc), we know that the pages are going to be
4578 * immediately released. In this case, we can then skip copying
4579 * back the contents from the GPU.
4580 */
4581
4582 if (obj->madv != I915_MADV_WILLNEED)
4583 return false;
4584
4585 if (obj->base.filp == NULL)
4586 return true;
4587
4588 /* At first glance, this looks racy, but then again so would be
4589 * userspace racing mmap against close. However, the first external
4590 * reference to the filp can only be obtained through the
4591 * i915_gem_mmap_ioctl() which safeguards us against the user
4592 * acquiring such a reference whilst we are in the middle of
4593 * freeing the object.
4594 */
4595 return atomic_long_read(&obj->base.filp->f_count) == 1;
4596 }
4597
4598 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4599 {
4600 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4601 struct drm_device *dev = obj->base.dev;
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 struct i915_vma *vma, *next;
4604
4605 intel_runtime_pm_get(dev_priv);
4606
4607 trace_i915_gem_object_destroy(obj);
4608
4609 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4610 int ret;
4611
4612 vma->pin_count = 0;
4613 ret = i915_vma_unbind(vma);
4614 if (WARN_ON(ret == -ERESTARTSYS)) {
4615 bool was_interruptible;
4616
4617 was_interruptible = dev_priv->mm.interruptible;
4618 dev_priv->mm.interruptible = false;
4619
4620 WARN_ON(i915_vma_unbind(vma));
4621
4622 dev_priv->mm.interruptible = was_interruptible;
4623 }
4624 }
4625
4626 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4627 * before progressing. */
4628 if (obj->stolen)
4629 i915_gem_object_unpin_pages(obj);
4630
4631 WARN_ON(obj->frontbuffer_bits);
4632
4633 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4634 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4635 obj->tiling_mode != I915_TILING_NONE)
4636 i915_gem_object_unpin_pages(obj);
4637
4638 if (WARN_ON(obj->pages_pin_count))
4639 obj->pages_pin_count = 0;
4640 if (discard_backing_storage(obj))
4641 obj->madv = I915_MADV_DONTNEED;
4642 i915_gem_object_put_pages(obj);
4643 i915_gem_object_free_mmap_offset(obj);
4644
4645 BUG_ON(obj->pages);
4646
4647 if (obj->base.import_attach)
4648 drm_prime_gem_destroy(&obj->base, NULL);
4649
4650 if (obj->ops->release)
4651 obj->ops->release(obj);
4652
4653 drm_gem_object_release(&obj->base);
4654 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4655
4656 kfree(obj->bit_17);
4657 i915_gem_object_free(obj);
4658
4659 intel_runtime_pm_put(dev_priv);
4660 }
4661
4662 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4663 struct i915_address_space *vm)
4664 {
4665 struct i915_vma *vma;
4666 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4667 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4668 vma->vm == vm)
4669 return vma;
4670 }
4671 return NULL;
4672 }
4673
4674 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4675 const struct i915_ggtt_view *view)
4676 {
4677 struct drm_device *dev = obj->base.dev;
4678 struct drm_i915_private *dev_priv = to_i915(dev);
4679 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4680 struct i915_vma *vma;
4681
4682 BUG_ON(!view);
4683
4684 list_for_each_entry(vma, &obj->vma_list, obj_link)
4685 if (vma->vm == &ggtt->base &&
4686 i915_ggtt_view_equal(&vma->ggtt_view, view))
4687 return vma;
4688 return NULL;
4689 }
4690
4691 void i915_gem_vma_destroy(struct i915_vma *vma)
4692 {
4693 WARN_ON(vma->node.allocated);
4694
4695 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4696 if (!list_empty(&vma->exec_list))
4697 return;
4698
4699 if (!vma->is_ggtt)
4700 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4701
4702 list_del(&vma->obj_link);
4703
4704 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4705 }
4706
4707 static void
4708 i915_gem_stop_engines(struct drm_device *dev)
4709 {
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711 struct intel_engine_cs *engine;
4712
4713 for_each_engine(engine, dev_priv)
4714 dev_priv->gt.stop_engine(engine);
4715 }
4716
4717 int
4718 i915_gem_suspend(struct drm_device *dev)
4719 {
4720 struct drm_i915_private *dev_priv = dev->dev_private;
4721 int ret = 0;
4722
4723 mutex_lock(&dev->struct_mutex);
4724 ret = i915_gpu_idle(dev);
4725 if (ret)
4726 goto err;
4727
4728 i915_gem_retire_requests(dev);
4729
4730 i915_gem_stop_engines(dev);
4731 mutex_unlock(&dev->struct_mutex);
4732
4733 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4734 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4735 flush_delayed_work(&dev_priv->mm.idle_work);
4736
4737 /* Assert that we sucessfully flushed all the work and
4738 * reset the GPU back to its idle, low power state.
4739 */
4740 WARN_ON(dev_priv->mm.busy);
4741
4742 return 0;
4743
4744 err:
4745 mutex_unlock(&dev->struct_mutex);
4746 return ret;
4747 }
4748
4749 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4750 {
4751 struct intel_engine_cs *engine = req->engine;
4752 struct drm_device *dev = engine->dev;
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4755 int i, ret;
4756
4757 if (!HAS_L3_DPF(dev) || !remap_info)
4758 return 0;
4759
4760 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4761 if (ret)
4762 return ret;
4763
4764 /*
4765 * Note: We do not worry about the concurrent register cacheline hang
4766 * here because no other code should access these registers other than
4767 * at initialization time.
4768 */
4769 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4770 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4771 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4772 intel_ring_emit(engine, remap_info[i]);
4773 }
4774
4775 intel_ring_advance(engine);
4776
4777 return ret;
4778 }
4779
4780 void i915_gem_init_swizzling(struct drm_device *dev)
4781 {
4782 struct drm_i915_private *dev_priv = dev->dev_private;
4783
4784 if (INTEL_INFO(dev)->gen < 5 ||
4785 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4786 return;
4787
4788 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4789 DISP_TILE_SURFACE_SWIZZLING);
4790
4791 if (IS_GEN5(dev))
4792 return;
4793
4794 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4795 if (IS_GEN6(dev))
4796 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4797 else if (IS_GEN7(dev))
4798 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4799 else if (IS_GEN8(dev))
4800 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4801 else
4802 BUG();
4803 }
4804
4805 static void init_unused_ring(struct drm_device *dev, u32 base)
4806 {
4807 struct drm_i915_private *dev_priv = dev->dev_private;
4808
4809 I915_WRITE(RING_CTL(base), 0);
4810 I915_WRITE(RING_HEAD(base), 0);
4811 I915_WRITE(RING_TAIL(base), 0);
4812 I915_WRITE(RING_START(base), 0);
4813 }
4814
4815 static void init_unused_rings(struct drm_device *dev)
4816 {
4817 if (IS_I830(dev)) {
4818 init_unused_ring(dev, PRB1_BASE);
4819 init_unused_ring(dev, SRB0_BASE);
4820 init_unused_ring(dev, SRB1_BASE);
4821 init_unused_ring(dev, SRB2_BASE);
4822 init_unused_ring(dev, SRB3_BASE);
4823 } else if (IS_GEN2(dev)) {
4824 init_unused_ring(dev, SRB0_BASE);
4825 init_unused_ring(dev, SRB1_BASE);
4826 } else if (IS_GEN3(dev)) {
4827 init_unused_ring(dev, PRB1_BASE);
4828 init_unused_ring(dev, PRB2_BASE);
4829 }
4830 }
4831
4832 int i915_gem_init_engines(struct drm_device *dev)
4833 {
4834 struct drm_i915_private *dev_priv = dev->dev_private;
4835 int ret;
4836
4837 ret = intel_init_render_ring_buffer(dev);
4838 if (ret)
4839 return ret;
4840
4841 if (HAS_BSD(dev)) {
4842 ret = intel_init_bsd_ring_buffer(dev);
4843 if (ret)
4844 goto cleanup_render_ring;
4845 }
4846
4847 if (HAS_BLT(dev)) {
4848 ret = intel_init_blt_ring_buffer(dev);
4849 if (ret)
4850 goto cleanup_bsd_ring;
4851 }
4852
4853 if (HAS_VEBOX(dev)) {
4854 ret = intel_init_vebox_ring_buffer(dev);
4855 if (ret)
4856 goto cleanup_blt_ring;
4857 }
4858
4859 if (HAS_BSD2(dev)) {
4860 ret = intel_init_bsd2_ring_buffer(dev);
4861 if (ret)
4862 goto cleanup_vebox_ring;
4863 }
4864
4865 return 0;
4866
4867 cleanup_vebox_ring:
4868 intel_cleanup_engine(&dev_priv->engine[VECS]);
4869 cleanup_blt_ring:
4870 intel_cleanup_engine(&dev_priv->engine[BCS]);
4871 cleanup_bsd_ring:
4872 intel_cleanup_engine(&dev_priv->engine[VCS]);
4873 cleanup_render_ring:
4874 intel_cleanup_engine(&dev_priv->engine[RCS]);
4875
4876 return ret;
4877 }
4878
4879 int
4880 i915_gem_init_hw(struct drm_device *dev)
4881 {
4882 struct drm_i915_private *dev_priv = dev->dev_private;
4883 struct intel_engine_cs *engine;
4884 int ret, j;
4885
4886 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4887 return -EIO;
4888
4889 /* Double layer security blanket, see i915_gem_init() */
4890 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4891
4892 if (dev_priv->ellc_size)
4893 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4894
4895 if (IS_HASWELL(dev))
4896 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4897 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4898
4899 if (HAS_PCH_NOP(dev)) {
4900 if (IS_IVYBRIDGE(dev)) {
4901 u32 temp = I915_READ(GEN7_MSG_CTL);
4902 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4903 I915_WRITE(GEN7_MSG_CTL, temp);
4904 } else if (INTEL_INFO(dev)->gen >= 7) {
4905 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4906 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4907 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4908 }
4909 }
4910
4911 i915_gem_init_swizzling(dev);
4912
4913 /*
4914 * At least 830 can leave some of the unused rings
4915 * "active" (ie. head != tail) after resume which
4916 * will prevent c3 entry. Makes sure all unused rings
4917 * are totally idle.
4918 */
4919 init_unused_rings(dev);
4920
4921 BUG_ON(!dev_priv->kernel_context);
4922
4923 ret = i915_ppgtt_init_hw(dev);
4924 if (ret) {
4925 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4926 goto out;
4927 }
4928
4929 /* Need to do basic initialisation of all rings first: */
4930 for_each_engine(engine, dev_priv) {
4931 ret = engine->init_hw(engine);
4932 if (ret)
4933 goto out;
4934 }
4935
4936 /* We can't enable contexts until all firmware is loaded */
4937 if (HAS_GUC_UCODE(dev)) {
4938 ret = intel_guc_ucode_load(dev);
4939 if (ret) {
4940 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4941 ret = -EIO;
4942 goto out;
4943 }
4944 }
4945
4946 /*
4947 * Increment the next seqno by 0x100 so we have a visible break
4948 * on re-initialisation
4949 */
4950 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4951 if (ret)
4952 goto out;
4953
4954 /* Now it is safe to go back round and do everything else: */
4955 for_each_engine(engine, dev_priv) {
4956 struct drm_i915_gem_request *req;
4957
4958 req = i915_gem_request_alloc(engine, NULL);
4959 if (IS_ERR(req)) {
4960 ret = PTR_ERR(req);
4961 i915_gem_cleanup_engines(dev);
4962 goto out;
4963 }
4964
4965 if (engine->id == RCS) {
4966 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4967 i915_gem_l3_remap(req, j);
4968 }
4969
4970 ret = i915_ppgtt_init_ring(req);
4971 if (ret && ret != -EIO) {
4972 DRM_ERROR("PPGTT enable %s failed %d\n",
4973 engine->name, ret);
4974 i915_gem_request_cancel(req);
4975 i915_gem_cleanup_engines(dev);
4976 goto out;
4977 }
4978
4979 ret = i915_gem_context_enable(req);
4980 if (ret && ret != -EIO) {
4981 DRM_ERROR("Context enable %s failed %d\n",
4982 engine->name, ret);
4983 i915_gem_request_cancel(req);
4984 i915_gem_cleanup_engines(dev);
4985 goto out;
4986 }
4987
4988 i915_add_request_no_flush(req);
4989 }
4990
4991 out:
4992 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4993 return ret;
4994 }
4995
4996 int i915_gem_init(struct drm_device *dev)
4997 {
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999 int ret;
5000
5001 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5002 i915.enable_execlists);
5003
5004 mutex_lock(&dev->struct_mutex);
5005
5006 if (!i915.enable_execlists) {
5007 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5008 dev_priv->gt.init_engines = i915_gem_init_engines;
5009 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5010 dev_priv->gt.stop_engine = intel_stop_engine;
5011 } else {
5012 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5013 dev_priv->gt.init_engines = intel_logical_rings_init;
5014 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5015 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5016 }
5017
5018 /* This is just a security blanket to placate dragons.
5019 * On some systems, we very sporadically observe that the first TLBs
5020 * used by the CS may be stale, despite us poking the TLB reset. If
5021 * we hold the forcewake during initialisation these problems
5022 * just magically go away.
5023 */
5024 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5025
5026 ret = i915_gem_init_userptr(dev);
5027 if (ret)
5028 goto out_unlock;
5029
5030 i915_gem_init_ggtt(dev);
5031
5032 ret = i915_gem_context_init(dev);
5033 if (ret)
5034 goto out_unlock;
5035
5036 ret = dev_priv->gt.init_engines(dev);
5037 if (ret)
5038 goto out_unlock;
5039
5040 ret = i915_gem_init_hw(dev);
5041 if (ret == -EIO) {
5042 /* Allow ring initialisation to fail by marking the GPU as
5043 * wedged. But we only want to do this where the GPU is angry,
5044 * for all other failure, such as an allocation failure, bail.
5045 */
5046 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5047 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5048 ret = 0;
5049 }
5050
5051 out_unlock:
5052 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5053 mutex_unlock(&dev->struct_mutex);
5054
5055 return ret;
5056 }
5057
5058 void
5059 i915_gem_cleanup_engines(struct drm_device *dev)
5060 {
5061 struct drm_i915_private *dev_priv = dev->dev_private;
5062 struct intel_engine_cs *engine;
5063
5064 for_each_engine(engine, dev_priv)
5065 dev_priv->gt.cleanup_engine(engine);
5066
5067 if (i915.enable_execlists)
5068 /*
5069 * Neither the BIOS, ourselves or any other kernel
5070 * expects the system to be in execlists mode on startup,
5071 * so we need to reset the GPU back to legacy mode.
5072 */
5073 intel_gpu_reset(dev, ALL_ENGINES);
5074 }
5075
5076 static void
5077 init_engine_lists(struct intel_engine_cs *engine)
5078 {
5079 INIT_LIST_HEAD(&engine->active_list);
5080 INIT_LIST_HEAD(&engine->request_list);
5081 }
5082
5083 void
5084 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5085 {
5086 struct drm_device *dev = dev_priv->dev;
5087
5088 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5089 !IS_CHERRYVIEW(dev_priv))
5090 dev_priv->num_fence_regs = 32;
5091 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5092 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5093 dev_priv->num_fence_regs = 16;
5094 else
5095 dev_priv->num_fence_regs = 8;
5096
5097 if (intel_vgpu_active(dev))
5098 dev_priv->num_fence_regs =
5099 I915_READ(vgtif_reg(avail_rs.fence_num));
5100
5101 /* Initialize fence registers to zero */
5102 i915_gem_restore_fences(dev);
5103
5104 i915_gem_detect_bit_6_swizzle(dev);
5105 }
5106
5107 void
5108 i915_gem_load_init(struct drm_device *dev)
5109 {
5110 struct drm_i915_private *dev_priv = dev->dev_private;
5111 int i;
5112
5113 dev_priv->objects =
5114 kmem_cache_create("i915_gem_object",
5115 sizeof(struct drm_i915_gem_object), 0,
5116 SLAB_HWCACHE_ALIGN,
5117 NULL);
5118 dev_priv->vmas =
5119 kmem_cache_create("i915_gem_vma",
5120 sizeof(struct i915_vma), 0,
5121 SLAB_HWCACHE_ALIGN,
5122 NULL);
5123 dev_priv->requests =
5124 kmem_cache_create("i915_gem_request",
5125 sizeof(struct drm_i915_gem_request), 0,
5126 SLAB_HWCACHE_ALIGN,
5127 NULL);
5128
5129 INIT_LIST_HEAD(&dev_priv->vm_list);
5130 INIT_LIST_HEAD(&dev_priv->context_list);
5131 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5132 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5133 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5134 for (i = 0; i < I915_NUM_ENGINES; i++)
5135 init_engine_lists(&dev_priv->engine[i]);
5136 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5137 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5138 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5139 i915_gem_retire_work_handler);
5140 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5141 i915_gem_idle_work_handler);
5142 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5143
5144 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5145
5146 /*
5147 * Set initial sequence number for requests.
5148 * Using this number allows the wraparound to happen early,
5149 * catching any obvious problems.
5150 */
5151 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5152 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5153
5154 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5155
5156 init_waitqueue_head(&dev_priv->pending_flip_queue);
5157
5158 dev_priv->mm.interruptible = true;
5159
5160 mutex_init(&dev_priv->fb_tracking.lock);
5161 }
5162
5163 void i915_gem_load_cleanup(struct drm_device *dev)
5164 {
5165 struct drm_i915_private *dev_priv = to_i915(dev);
5166
5167 kmem_cache_destroy(dev_priv->requests);
5168 kmem_cache_destroy(dev_priv->vmas);
5169 kmem_cache_destroy(dev_priv->objects);
5170 }
5171
5172 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5173 {
5174 struct drm_i915_file_private *file_priv = file->driver_priv;
5175
5176 /* Clean up our request list when the client is going away, so that
5177 * later retire_requests won't dereference our soon-to-be-gone
5178 * file_priv.
5179 */
5180 spin_lock(&file_priv->mm.lock);
5181 while (!list_empty(&file_priv->mm.request_list)) {
5182 struct drm_i915_gem_request *request;
5183
5184 request = list_first_entry(&file_priv->mm.request_list,
5185 struct drm_i915_gem_request,
5186 client_list);
5187 list_del(&request->client_list);
5188 request->file_priv = NULL;
5189 }
5190 spin_unlock(&file_priv->mm.lock);
5191
5192 if (!list_empty(&file_priv->rps.link)) {
5193 spin_lock(&to_i915(dev)->rps.client_lock);
5194 list_del(&file_priv->rps.link);
5195 spin_unlock(&to_i915(dev)->rps.client_lock);
5196 }
5197 }
5198
5199 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5200 {
5201 struct drm_i915_file_private *file_priv;
5202 int ret;
5203
5204 DRM_DEBUG_DRIVER("\n");
5205
5206 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5207 if (!file_priv)
5208 return -ENOMEM;
5209
5210 file->driver_priv = file_priv;
5211 file_priv->dev_priv = dev->dev_private;
5212 file_priv->file = file;
5213 INIT_LIST_HEAD(&file_priv->rps.link);
5214
5215 spin_lock_init(&file_priv->mm.lock);
5216 INIT_LIST_HEAD(&file_priv->mm.request_list);
5217
5218 file_priv->bsd_ring = -1;
5219
5220 ret = i915_gem_context_open(dev, file);
5221 if (ret)
5222 kfree(file_priv);
5223
5224 return ret;
5225 }
5226
5227 /**
5228 * i915_gem_track_fb - update frontbuffer tracking
5229 * @old: current GEM buffer for the frontbuffer slots
5230 * @new: new GEM buffer for the frontbuffer slots
5231 * @frontbuffer_bits: bitmask of frontbuffer slots
5232 *
5233 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5234 * from @old and setting them in @new. Both @old and @new can be NULL.
5235 */
5236 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5237 struct drm_i915_gem_object *new,
5238 unsigned frontbuffer_bits)
5239 {
5240 if (old) {
5241 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5242 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5243 old->frontbuffer_bits &= ~frontbuffer_bits;
5244 }
5245
5246 if (new) {
5247 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5248 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5249 new->frontbuffer_bits |= frontbuffer_bits;
5250 }
5251 }
5252
5253 /* All the new VM stuff */
5254 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5255 struct i915_address_space *vm)
5256 {
5257 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5258 struct i915_vma *vma;
5259
5260 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5261
5262 list_for_each_entry(vma, &o->vma_list, obj_link) {
5263 if (vma->is_ggtt &&
5264 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5265 continue;
5266 if (vma->vm == vm)
5267 return vma->node.start;
5268 }
5269
5270 WARN(1, "%s vma for this object not found.\n",
5271 i915_is_ggtt(vm) ? "global" : "ppgtt");
5272 return -1;
5273 }
5274
5275 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5276 const struct i915_ggtt_view *view)
5277 {
5278 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5279 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5280 struct i915_vma *vma;
5281
5282 list_for_each_entry(vma, &o->vma_list, obj_link)
5283 if (vma->vm == &ggtt->base &&
5284 i915_ggtt_view_equal(&vma->ggtt_view, view))
5285 return vma->node.start;
5286
5287 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5288 return -1;
5289 }
5290
5291 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5292 struct i915_address_space *vm)
5293 {
5294 struct i915_vma *vma;
5295
5296 list_for_each_entry(vma, &o->vma_list, obj_link) {
5297 if (vma->is_ggtt &&
5298 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5299 continue;
5300 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5301 return true;
5302 }
5303
5304 return false;
5305 }
5306
5307 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5308 const struct i915_ggtt_view *view)
5309 {
5310 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5311 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5312 struct i915_vma *vma;
5313
5314 list_for_each_entry(vma, &o->vma_list, obj_link)
5315 if (vma->vm == &ggtt->base &&
5316 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5317 drm_mm_node_allocated(&vma->node))
5318 return true;
5319
5320 return false;
5321 }
5322
5323 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5324 {
5325 struct i915_vma *vma;
5326
5327 list_for_each_entry(vma, &o->vma_list, obj_link)
5328 if (drm_mm_node_allocated(&vma->node))
5329 return true;
5330
5331 return false;
5332 }
5333
5334 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5335 struct i915_address_space *vm)
5336 {
5337 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5338 struct i915_vma *vma;
5339
5340 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5341
5342 BUG_ON(list_empty(&o->vma_list));
5343
5344 list_for_each_entry(vma, &o->vma_list, obj_link) {
5345 if (vma->is_ggtt &&
5346 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5347 continue;
5348 if (vma->vm == vm)
5349 return vma->node.size;
5350 }
5351 return 0;
5352 }
5353
5354 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5355 {
5356 struct i915_vma *vma;
5357 list_for_each_entry(vma, &obj->vma_list, obj_link)
5358 if (vma->pin_count > 0)
5359 return true;
5360
5361 return false;
5362 }
5363
5364 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5365 struct page *
5366 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5367 {
5368 struct page *page;
5369
5370 /* Only default objects have per-page dirty tracking */
5371 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5372 return NULL;
5373
5374 page = i915_gem_object_get_page(obj, n);
5375 set_page_dirty(page);
5376 return page;
5377 }
5378
5379 /* Allocate a new GEM object and fill it with the supplied data */
5380 struct drm_i915_gem_object *
5381 i915_gem_object_create_from_data(struct drm_device *dev,
5382 const void *data, size_t size)
5383 {
5384 struct drm_i915_gem_object *obj;
5385 struct sg_table *sg;
5386 size_t bytes;
5387 int ret;
5388
5389 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5390 if (IS_ERR_OR_NULL(obj))
5391 return obj;
5392
5393 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5394 if (ret)
5395 goto fail;
5396
5397 ret = i915_gem_object_get_pages(obj);
5398 if (ret)
5399 goto fail;
5400
5401 i915_gem_object_pin_pages(obj);
5402 sg = obj->pages;
5403 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5404 obj->dirty = 1; /* Backing store is now out of date */
5405 i915_gem_object_unpin_pages(obj);
5406
5407 if (WARN_ON(bytes != size)) {
5408 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5409 ret = -EFAULT;
5410 goto fail;
5411 }
5412
5413 return obj;
5414
5415 fail:
5416 drm_gem_object_unreference(&obj->base);
5417 return ERR_PTR(ret);
5418 }
This page took 0.14527 seconds and 5 git commands to generate.