drm/i915: Gracefully handle obj not bound to GGTT in is_pin_display
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50 struct drm_i915_gem_object *obj,
51 struct drm_i915_gem_pwrite *args,
52 struct drm_file *file);
53
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 struct drm_i915_fence_reg *fence,
58 bool enable);
59
60 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
61 struct shrink_control *sc);
62 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
63 struct shrink_control *sc);
64 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
65 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
66 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
67
68 static bool cpu_cache_is_coherent(struct drm_device *dev,
69 enum i915_cache_level level)
70 {
71 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72 }
73
74 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
75 {
76 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77 return true;
78
79 return obj->pin_display;
80 }
81
82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83 {
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
90 obj->fence_dirty = false;
91 obj->fence_reg = I915_FENCE_REG_NONE;
92 }
93
94 /* some bookkeeping */
95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97 {
98 spin_lock(&dev_priv->mm.object_stat_lock);
99 dev_priv->mm.object_count++;
100 dev_priv->mm.object_memory += size;
101 spin_unlock(&dev_priv->mm.object_stat_lock);
102 }
103
104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105 size_t size)
106 {
107 spin_lock(&dev_priv->mm.object_stat_lock);
108 dev_priv->mm.object_count--;
109 dev_priv->mm.object_memory -= size;
110 spin_unlock(&dev_priv->mm.object_stat_lock);
111 }
112
113 static int
114 i915_gem_wait_for_error(struct i915_gpu_error *error)
115 {
116 int ret;
117
118 #define EXIT_COND (!i915_reset_in_progress(error) || \
119 i915_terminally_wedged(error))
120 if (EXIT_COND)
121 return 0;
122
123 /*
124 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
125 * userspace. If it takes that long something really bad is going on and
126 * we should simply try to bail out and fail as gracefully as possible.
127 */
128 ret = wait_event_interruptible_timeout(error->reset_queue,
129 EXIT_COND,
130 10*HZ);
131 if (ret == 0) {
132 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
133 return -EIO;
134 } else if (ret < 0) {
135 return ret;
136 }
137 #undef EXIT_COND
138
139 return 0;
140 }
141
142 int i915_mutex_lock_interruptible(struct drm_device *dev)
143 {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 int ret;
146
147 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
148 if (ret)
149 return ret;
150
151 ret = mutex_lock_interruptible(&dev->struct_mutex);
152 if (ret)
153 return ret;
154
155 WARN_ON(i915_verify_lists(dev));
156 return 0;
157 }
158
159 static inline bool
160 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
161 {
162 return i915_gem_obj_bound_any(obj) && !obj->active;
163 }
164
165 int
166 i915_gem_init_ioctl(struct drm_device *dev, void *data,
167 struct drm_file *file)
168 {
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 struct drm_i915_gem_init *args = data;
171
172 if (drm_core_check_feature(dev, DRIVER_MODESET))
173 return -ENODEV;
174
175 if (args->gtt_start >= args->gtt_end ||
176 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177 return -EINVAL;
178
179 /* GEM with user mode setting was never supported on ilk and later. */
180 if (INTEL_INFO(dev)->gen >= 5)
181 return -ENODEV;
182
183 mutex_lock(&dev->struct_mutex);
184 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
185 args->gtt_end);
186 dev_priv->gtt.mappable_end = args->gtt_end;
187 mutex_unlock(&dev->struct_mutex);
188
189 return 0;
190 }
191
192 int
193 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
194 struct drm_file *file)
195 {
196 struct drm_i915_private *dev_priv = dev->dev_private;
197 struct drm_i915_gem_get_aperture *args = data;
198 struct drm_i915_gem_object *obj;
199 size_t pinned;
200
201 pinned = 0;
202 mutex_lock(&dev->struct_mutex);
203 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
204 if (i915_gem_obj_is_pinned(obj))
205 pinned += i915_gem_obj_ggtt_size(obj);
206 mutex_unlock(&dev->struct_mutex);
207
208 args->aper_size = dev_priv->gtt.base.total;
209 args->aper_available_size = args->aper_size - pinned;
210
211 return 0;
212 }
213
214 void *i915_gem_object_alloc(struct drm_device *dev)
215 {
216 struct drm_i915_private *dev_priv = dev->dev_private;
217 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
218 }
219
220 void i915_gem_object_free(struct drm_i915_gem_object *obj)
221 {
222 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
223 kmem_cache_free(dev_priv->slab, obj);
224 }
225
226 static int
227 i915_gem_create(struct drm_file *file,
228 struct drm_device *dev,
229 uint64_t size,
230 uint32_t *handle_p)
231 {
232 struct drm_i915_gem_object *obj;
233 int ret;
234 u32 handle;
235
236 size = roundup(size, PAGE_SIZE);
237 if (size == 0)
238 return -EINVAL;
239
240 /* Allocate the new object */
241 obj = i915_gem_alloc_object(dev, size);
242 if (obj == NULL)
243 return -ENOMEM;
244
245 ret = drm_gem_handle_create(file, &obj->base, &handle);
246 /* drop reference from allocate - handle holds it now */
247 drm_gem_object_unreference_unlocked(&obj->base);
248 if (ret)
249 return ret;
250
251 *handle_p = handle;
252 return 0;
253 }
254
255 int
256 i915_gem_dumb_create(struct drm_file *file,
257 struct drm_device *dev,
258 struct drm_mode_create_dumb *args)
259 {
260 /* have to work out size/pitch and return them */
261 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
262 args->size = args->pitch * args->height;
263 return i915_gem_create(file, dev,
264 args->size, &args->handle);
265 }
266
267 /**
268 * Creates a new mm object and returns a handle to it.
269 */
270 int
271 i915_gem_create_ioctl(struct drm_device *dev, void *data,
272 struct drm_file *file)
273 {
274 struct drm_i915_gem_create *args = data;
275
276 return i915_gem_create(file, dev,
277 args->size, &args->handle);
278 }
279
280 static inline int
281 __copy_to_user_swizzled(char __user *cpu_vaddr,
282 const char *gpu_vaddr, int gpu_offset,
283 int length)
284 {
285 int ret, cpu_offset = 0;
286
287 while (length > 0) {
288 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289 int this_length = min(cacheline_end - gpu_offset, length);
290 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292 ret = __copy_to_user(cpu_vaddr + cpu_offset,
293 gpu_vaddr + swizzled_gpu_offset,
294 this_length);
295 if (ret)
296 return ret + length;
297
298 cpu_offset += this_length;
299 gpu_offset += this_length;
300 length -= this_length;
301 }
302
303 return 0;
304 }
305
306 static inline int
307 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
308 const char __user *cpu_vaddr,
309 int length)
310 {
311 int ret, cpu_offset = 0;
312
313 while (length > 0) {
314 int cacheline_end = ALIGN(gpu_offset + 1, 64);
315 int this_length = min(cacheline_end - gpu_offset, length);
316 int swizzled_gpu_offset = gpu_offset ^ 64;
317
318 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
319 cpu_vaddr + cpu_offset,
320 this_length);
321 if (ret)
322 return ret + length;
323
324 cpu_offset += this_length;
325 gpu_offset += this_length;
326 length -= this_length;
327 }
328
329 return 0;
330 }
331
332 /*
333 * Pins the specified object's pages and synchronizes the object with
334 * GPU accesses. Sets needs_clflush to non-zero if the caller should
335 * flush the object from the CPU cache.
336 */
337 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
338 int *needs_clflush)
339 {
340 int ret;
341
342 *needs_clflush = 0;
343
344 if (!obj->base.filp)
345 return -EINVAL;
346
347 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
348 /* If we're not in the cpu read domain, set ourself into the gtt
349 * read domain and manually flush cachelines (if required). This
350 * optimizes for the case when the gpu will dirty the data
351 * anyway again before the next pread happens. */
352 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
353 obj->cache_level);
354 ret = i915_gem_object_wait_rendering(obj, true);
355 if (ret)
356 return ret;
357
358 i915_gem_object_retire(obj);
359 }
360
361 ret = i915_gem_object_get_pages(obj);
362 if (ret)
363 return ret;
364
365 i915_gem_object_pin_pages(obj);
366
367 return ret;
368 }
369
370 /* Per-page copy function for the shmem pread fastpath.
371 * Flushes invalid cachelines before reading the target if
372 * needs_clflush is set. */
373 static int
374 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378 char *vaddr;
379 int ret;
380
381 if (unlikely(page_do_bit17_swizzling))
382 return -EINVAL;
383
384 vaddr = kmap_atomic(page);
385 if (needs_clflush)
386 drm_clflush_virt_range(vaddr + shmem_page_offset,
387 page_length);
388 ret = __copy_to_user_inatomic(user_data,
389 vaddr + shmem_page_offset,
390 page_length);
391 kunmap_atomic(vaddr);
392
393 return ret ? -EFAULT : 0;
394 }
395
396 static void
397 shmem_clflush_swizzled_range(char *addr, unsigned long length,
398 bool swizzled)
399 {
400 if (unlikely(swizzled)) {
401 unsigned long start = (unsigned long) addr;
402 unsigned long end = (unsigned long) addr + length;
403
404 /* For swizzling simply ensure that we always flush both
405 * channels. Lame, but simple and it works. Swizzled
406 * pwrite/pread is far from a hotpath - current userspace
407 * doesn't use it at all. */
408 start = round_down(start, 128);
409 end = round_up(end, 128);
410
411 drm_clflush_virt_range((void *)start, end - start);
412 } else {
413 drm_clflush_virt_range(addr, length);
414 }
415
416 }
417
418 /* Only difference to the fast-path function is that this can handle bit17
419 * and uses non-atomic copy and kmap functions. */
420 static int
421 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
422 char __user *user_data,
423 bool page_do_bit17_swizzling, bool needs_clflush)
424 {
425 char *vaddr;
426 int ret;
427
428 vaddr = kmap(page);
429 if (needs_clflush)
430 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
431 page_length,
432 page_do_bit17_swizzling);
433
434 if (page_do_bit17_swizzling)
435 ret = __copy_to_user_swizzled(user_data,
436 vaddr, shmem_page_offset,
437 page_length);
438 else
439 ret = __copy_to_user(user_data,
440 vaddr + shmem_page_offset,
441 page_length);
442 kunmap(page);
443
444 return ret ? - EFAULT : 0;
445 }
446
447 static int
448 i915_gem_shmem_pread(struct drm_device *dev,
449 struct drm_i915_gem_object *obj,
450 struct drm_i915_gem_pread *args,
451 struct drm_file *file)
452 {
453 char __user *user_data;
454 ssize_t remain;
455 loff_t offset;
456 int shmem_page_offset, page_length, ret = 0;
457 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
458 int prefaulted = 0;
459 int needs_clflush = 0;
460 struct sg_page_iter sg_iter;
461
462 user_data = to_user_ptr(args->data_ptr);
463 remain = args->size;
464
465 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
466
467 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
468 if (ret)
469 return ret;
470
471 offset = args->offset;
472
473 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
474 offset >> PAGE_SHIFT) {
475 struct page *page = sg_page_iter_page(&sg_iter);
476
477 if (remain <= 0)
478 break;
479
480 /* Operation in this page
481 *
482 * shmem_page_offset = offset within page in shmem file
483 * page_length = bytes to copy for this page
484 */
485 shmem_page_offset = offset_in_page(offset);
486 page_length = remain;
487 if ((shmem_page_offset + page_length) > PAGE_SIZE)
488 page_length = PAGE_SIZE - shmem_page_offset;
489
490 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
491 (page_to_phys(page) & (1 << 17)) != 0;
492
493 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
494 user_data, page_do_bit17_swizzling,
495 needs_clflush);
496 if (ret == 0)
497 goto next_page;
498
499 mutex_unlock(&dev->struct_mutex);
500
501 if (likely(!i915.prefault_disable) && !prefaulted) {
502 ret = fault_in_multipages_writeable(user_data, remain);
503 /* Userspace is tricking us, but we've already clobbered
504 * its pages with the prefault and promised to write the
505 * data up to the first fault. Hence ignore any errors
506 * and just continue. */
507 (void)ret;
508 prefaulted = 1;
509 }
510
511 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
512 user_data, page_do_bit17_swizzling,
513 needs_clflush);
514
515 mutex_lock(&dev->struct_mutex);
516
517 if (ret)
518 goto out;
519
520 next_page:
521 remain -= page_length;
522 user_data += page_length;
523 offset += page_length;
524 }
525
526 out:
527 i915_gem_object_unpin_pages(obj);
528
529 return ret;
530 }
531
532 /**
533 * Reads data from the object referenced by handle.
534 *
535 * On error, the contents of *data are undefined.
536 */
537 int
538 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
539 struct drm_file *file)
540 {
541 struct drm_i915_gem_pread *args = data;
542 struct drm_i915_gem_object *obj;
543 int ret = 0;
544
545 if (args->size == 0)
546 return 0;
547
548 if (!access_ok(VERIFY_WRITE,
549 to_user_ptr(args->data_ptr),
550 args->size))
551 return -EFAULT;
552
553 ret = i915_mutex_lock_interruptible(dev);
554 if (ret)
555 return ret;
556
557 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
558 if (&obj->base == NULL) {
559 ret = -ENOENT;
560 goto unlock;
561 }
562
563 /* Bounds check source. */
564 if (args->offset > obj->base.size ||
565 args->size > obj->base.size - args->offset) {
566 ret = -EINVAL;
567 goto out;
568 }
569
570 /* prime objects have no backing filp to GEM pread/pwrite
571 * pages from.
572 */
573 if (!obj->base.filp) {
574 ret = -EINVAL;
575 goto out;
576 }
577
578 trace_i915_gem_object_pread(obj, args->offset, args->size);
579
580 ret = i915_gem_shmem_pread(dev, obj, args, file);
581
582 out:
583 drm_gem_object_unreference(&obj->base);
584 unlock:
585 mutex_unlock(&dev->struct_mutex);
586 return ret;
587 }
588
589 /* This is the fast write path which cannot handle
590 * page faults in the source data
591 */
592
593 static inline int
594 fast_user_write(struct io_mapping *mapping,
595 loff_t page_base, int page_offset,
596 char __user *user_data,
597 int length)
598 {
599 void __iomem *vaddr_atomic;
600 void *vaddr;
601 unsigned long unwritten;
602
603 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
604 /* We can use the cpu mem copy function because this is X86. */
605 vaddr = (void __force*)vaddr_atomic + page_offset;
606 unwritten = __copy_from_user_inatomic_nocache(vaddr,
607 user_data, length);
608 io_mapping_unmap_atomic(vaddr_atomic);
609 return unwritten;
610 }
611
612 /**
613 * This is the fast pwrite path, where we copy the data directly from the
614 * user into the GTT, uncached.
615 */
616 static int
617 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
618 struct drm_i915_gem_object *obj,
619 struct drm_i915_gem_pwrite *args,
620 struct drm_file *file)
621 {
622 struct drm_i915_private *dev_priv = dev->dev_private;
623 ssize_t remain;
624 loff_t offset, page_base;
625 char __user *user_data;
626 int page_offset, page_length, ret;
627
628 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
629 if (ret)
630 goto out;
631
632 ret = i915_gem_object_set_to_gtt_domain(obj, true);
633 if (ret)
634 goto out_unpin;
635
636 ret = i915_gem_object_put_fence(obj);
637 if (ret)
638 goto out_unpin;
639
640 user_data = to_user_ptr(args->data_ptr);
641 remain = args->size;
642
643 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
644
645 while (remain > 0) {
646 /* Operation in this page
647 *
648 * page_base = page offset within aperture
649 * page_offset = offset within page
650 * page_length = bytes to copy for this page
651 */
652 page_base = offset & PAGE_MASK;
653 page_offset = offset_in_page(offset);
654 page_length = remain;
655 if ((page_offset + remain) > PAGE_SIZE)
656 page_length = PAGE_SIZE - page_offset;
657
658 /* If we get a fault while copying data, then (presumably) our
659 * source page isn't available. Return the error and we'll
660 * retry in the slow path.
661 */
662 if (fast_user_write(dev_priv->gtt.mappable, page_base,
663 page_offset, user_data, page_length)) {
664 ret = -EFAULT;
665 goto out_unpin;
666 }
667
668 remain -= page_length;
669 user_data += page_length;
670 offset += page_length;
671 }
672
673 out_unpin:
674 i915_gem_object_ggtt_unpin(obj);
675 out:
676 return ret;
677 }
678
679 /* Per-page copy function for the shmem pwrite fastpath.
680 * Flushes invalid cachelines before writing to the target if
681 * needs_clflush_before is set and flushes out any written cachelines after
682 * writing if needs_clflush is set. */
683 static int
684 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
685 char __user *user_data,
686 bool page_do_bit17_swizzling,
687 bool needs_clflush_before,
688 bool needs_clflush_after)
689 {
690 char *vaddr;
691 int ret;
692
693 if (unlikely(page_do_bit17_swizzling))
694 return -EINVAL;
695
696 vaddr = kmap_atomic(page);
697 if (needs_clflush_before)
698 drm_clflush_virt_range(vaddr + shmem_page_offset,
699 page_length);
700 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
701 user_data, page_length);
702 if (needs_clflush_after)
703 drm_clflush_virt_range(vaddr + shmem_page_offset,
704 page_length);
705 kunmap_atomic(vaddr);
706
707 return ret ? -EFAULT : 0;
708 }
709
710 /* Only difference to the fast-path function is that this can handle bit17
711 * and uses non-atomic copy and kmap functions. */
712 static int
713 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
714 char __user *user_data,
715 bool page_do_bit17_swizzling,
716 bool needs_clflush_before,
717 bool needs_clflush_after)
718 {
719 char *vaddr;
720 int ret;
721
722 vaddr = kmap(page);
723 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
724 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
725 page_length,
726 page_do_bit17_swizzling);
727 if (page_do_bit17_swizzling)
728 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
729 user_data,
730 page_length);
731 else
732 ret = __copy_from_user(vaddr + shmem_page_offset,
733 user_data,
734 page_length);
735 if (needs_clflush_after)
736 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
737 page_length,
738 page_do_bit17_swizzling);
739 kunmap(page);
740
741 return ret ? -EFAULT : 0;
742 }
743
744 static int
745 i915_gem_shmem_pwrite(struct drm_device *dev,
746 struct drm_i915_gem_object *obj,
747 struct drm_i915_gem_pwrite *args,
748 struct drm_file *file)
749 {
750 ssize_t remain;
751 loff_t offset;
752 char __user *user_data;
753 int shmem_page_offset, page_length, ret = 0;
754 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
755 int hit_slowpath = 0;
756 int needs_clflush_after = 0;
757 int needs_clflush_before = 0;
758 struct sg_page_iter sg_iter;
759
760 user_data = to_user_ptr(args->data_ptr);
761 remain = args->size;
762
763 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
764
765 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
766 /* If we're not in the cpu write domain, set ourself into the gtt
767 * write domain and manually flush cachelines (if required). This
768 * optimizes for the case when the gpu will use the data
769 * right away and we therefore have to clflush anyway. */
770 needs_clflush_after = cpu_write_needs_clflush(obj);
771 ret = i915_gem_object_wait_rendering(obj, false);
772 if (ret)
773 return ret;
774
775 i915_gem_object_retire(obj);
776 }
777 /* Same trick applies to invalidate partially written cachelines read
778 * before writing. */
779 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
780 needs_clflush_before =
781 !cpu_cache_is_coherent(dev, obj->cache_level);
782
783 ret = i915_gem_object_get_pages(obj);
784 if (ret)
785 return ret;
786
787 i915_gem_object_pin_pages(obj);
788
789 offset = args->offset;
790 obj->dirty = 1;
791
792 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
793 offset >> PAGE_SHIFT) {
794 struct page *page = sg_page_iter_page(&sg_iter);
795 int partial_cacheline_write;
796
797 if (remain <= 0)
798 break;
799
800 /* Operation in this page
801 *
802 * shmem_page_offset = offset within page in shmem file
803 * page_length = bytes to copy for this page
804 */
805 shmem_page_offset = offset_in_page(offset);
806
807 page_length = remain;
808 if ((shmem_page_offset + page_length) > PAGE_SIZE)
809 page_length = PAGE_SIZE - shmem_page_offset;
810
811 /* If we don't overwrite a cacheline completely we need to be
812 * careful to have up-to-date data by first clflushing. Don't
813 * overcomplicate things and flush the entire patch. */
814 partial_cacheline_write = needs_clflush_before &&
815 ((shmem_page_offset | page_length)
816 & (boot_cpu_data.x86_clflush_size - 1));
817
818 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
819 (page_to_phys(page) & (1 << 17)) != 0;
820
821 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
822 user_data, page_do_bit17_swizzling,
823 partial_cacheline_write,
824 needs_clflush_after);
825 if (ret == 0)
826 goto next_page;
827
828 hit_slowpath = 1;
829 mutex_unlock(&dev->struct_mutex);
830 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
831 user_data, page_do_bit17_swizzling,
832 partial_cacheline_write,
833 needs_clflush_after);
834
835 mutex_lock(&dev->struct_mutex);
836
837 if (ret)
838 goto out;
839
840 next_page:
841 remain -= page_length;
842 user_data += page_length;
843 offset += page_length;
844 }
845
846 out:
847 i915_gem_object_unpin_pages(obj);
848
849 if (hit_slowpath) {
850 /*
851 * Fixup: Flush cpu caches in case we didn't flush the dirty
852 * cachelines in-line while writing and the object moved
853 * out of the cpu write domain while we've dropped the lock.
854 */
855 if (!needs_clflush_after &&
856 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
857 if (i915_gem_clflush_object(obj, obj->pin_display))
858 i915_gem_chipset_flush(dev);
859 }
860 }
861
862 if (needs_clflush_after)
863 i915_gem_chipset_flush(dev);
864
865 return ret;
866 }
867
868 /**
869 * Writes data to the object referenced by handle.
870 *
871 * On error, the contents of the buffer that were to be modified are undefined.
872 */
873 int
874 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
875 struct drm_file *file)
876 {
877 struct drm_i915_gem_pwrite *args = data;
878 struct drm_i915_gem_object *obj;
879 int ret;
880
881 if (args->size == 0)
882 return 0;
883
884 if (!access_ok(VERIFY_READ,
885 to_user_ptr(args->data_ptr),
886 args->size))
887 return -EFAULT;
888
889 if (likely(!i915.prefault_disable)) {
890 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
891 args->size);
892 if (ret)
893 return -EFAULT;
894 }
895
896 ret = i915_mutex_lock_interruptible(dev);
897 if (ret)
898 return ret;
899
900 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
901 if (&obj->base == NULL) {
902 ret = -ENOENT;
903 goto unlock;
904 }
905
906 /* Bounds check destination. */
907 if (args->offset > obj->base.size ||
908 args->size > obj->base.size - args->offset) {
909 ret = -EINVAL;
910 goto out;
911 }
912
913 /* prime objects have no backing filp to GEM pread/pwrite
914 * pages from.
915 */
916 if (!obj->base.filp) {
917 ret = -EINVAL;
918 goto out;
919 }
920
921 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
922
923 ret = -EFAULT;
924 /* We can only do the GTT pwrite on untiled buffers, as otherwise
925 * it would end up going through the fenced access, and we'll get
926 * different detiling behavior between reading and writing.
927 * pread/pwrite currently are reading and writing from the CPU
928 * perspective, requiring manual detiling by the client.
929 */
930 if (obj->phys_obj) {
931 ret = i915_gem_phys_pwrite(dev, obj, args, file);
932 goto out;
933 }
934
935 if (obj->tiling_mode == I915_TILING_NONE &&
936 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
937 cpu_write_needs_clflush(obj)) {
938 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
939 /* Note that the gtt paths might fail with non-page-backed user
940 * pointers (e.g. gtt mappings when moving data between
941 * textures). Fallback to the shmem path in that case. */
942 }
943
944 if (ret == -EFAULT || ret == -ENOSPC)
945 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
946
947 out:
948 drm_gem_object_unreference(&obj->base);
949 unlock:
950 mutex_unlock(&dev->struct_mutex);
951 return ret;
952 }
953
954 int
955 i915_gem_check_wedge(struct i915_gpu_error *error,
956 bool interruptible)
957 {
958 if (i915_reset_in_progress(error)) {
959 /* Non-interruptible callers can't handle -EAGAIN, hence return
960 * -EIO unconditionally for these. */
961 if (!interruptible)
962 return -EIO;
963
964 /* Recovery complete, but the reset failed ... */
965 if (i915_terminally_wedged(error))
966 return -EIO;
967
968 return -EAGAIN;
969 }
970
971 return 0;
972 }
973
974 /*
975 * Compare seqno against outstanding lazy request. Emit a request if they are
976 * equal.
977 */
978 static int
979 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
980 {
981 int ret;
982
983 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
984
985 ret = 0;
986 if (seqno == ring->outstanding_lazy_seqno)
987 ret = i915_add_request(ring, NULL);
988
989 return ret;
990 }
991
992 static void fake_irq(unsigned long data)
993 {
994 wake_up_process((struct task_struct *)data);
995 }
996
997 static bool missed_irq(struct drm_i915_private *dev_priv,
998 struct intel_ring_buffer *ring)
999 {
1000 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1001 }
1002
1003 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1004 {
1005 if (file_priv == NULL)
1006 return true;
1007
1008 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1009 }
1010
1011 /**
1012 * __wait_seqno - wait until execution of seqno has finished
1013 * @ring: the ring expected to report seqno
1014 * @seqno: duh!
1015 * @reset_counter: reset sequence associated with the given seqno
1016 * @interruptible: do an interruptible wait (normally yes)
1017 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1018 *
1019 * Note: It is of utmost importance that the passed in seqno and reset_counter
1020 * values have been read by the caller in an smp safe manner. Where read-side
1021 * locks are involved, it is sufficient to read the reset_counter before
1022 * unlocking the lock that protects the seqno. For lockless tricks, the
1023 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1024 * inserted.
1025 *
1026 * Returns 0 if the seqno was found within the alloted time. Else returns the
1027 * errno with remaining time filled in timeout argument.
1028 */
1029 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1030 unsigned reset_counter,
1031 bool interruptible,
1032 struct timespec *timeout,
1033 struct drm_i915_file_private *file_priv)
1034 {
1035 struct drm_device *dev = ring->dev;
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1037 const bool irq_test_in_progress =
1038 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1039 struct timespec before, now;
1040 DEFINE_WAIT(wait);
1041 unsigned long timeout_expire;
1042 int ret;
1043
1044 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1045
1046 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1047 return 0;
1048
1049 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1050
1051 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1052 gen6_rps_boost(dev_priv);
1053 if (file_priv)
1054 mod_delayed_work(dev_priv->wq,
1055 &file_priv->mm.idle_work,
1056 msecs_to_jiffies(100));
1057 }
1058
1059 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1060 return -ENODEV;
1061
1062 /* Record current time in case interrupted by signal, or wedged */
1063 trace_i915_gem_request_wait_begin(ring, seqno);
1064 getrawmonotonic(&before);
1065 for (;;) {
1066 struct timer_list timer;
1067
1068 prepare_to_wait(&ring->irq_queue, &wait,
1069 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1070
1071 /* We need to check whether any gpu reset happened in between
1072 * the caller grabbing the seqno and now ... */
1073 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1074 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1075 * is truely gone. */
1076 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1077 if (ret == 0)
1078 ret = -EAGAIN;
1079 break;
1080 }
1081
1082 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1083 ret = 0;
1084 break;
1085 }
1086
1087 if (interruptible && signal_pending(current)) {
1088 ret = -ERESTARTSYS;
1089 break;
1090 }
1091
1092 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1093 ret = -ETIME;
1094 break;
1095 }
1096
1097 timer.function = NULL;
1098 if (timeout || missed_irq(dev_priv, ring)) {
1099 unsigned long expire;
1100
1101 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1102 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1103 mod_timer(&timer, expire);
1104 }
1105
1106 io_schedule();
1107
1108 if (timer.function) {
1109 del_singleshot_timer_sync(&timer);
1110 destroy_timer_on_stack(&timer);
1111 }
1112 }
1113 getrawmonotonic(&now);
1114 trace_i915_gem_request_wait_end(ring, seqno);
1115
1116 if (!irq_test_in_progress)
1117 ring->irq_put(ring);
1118
1119 finish_wait(&ring->irq_queue, &wait);
1120
1121 if (timeout) {
1122 struct timespec sleep_time = timespec_sub(now, before);
1123 *timeout = timespec_sub(*timeout, sleep_time);
1124 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1125 set_normalized_timespec(timeout, 0, 0);
1126 }
1127
1128 return ret;
1129 }
1130
1131 /**
1132 * Waits for a sequence number to be signaled, and cleans up the
1133 * request and object lists appropriately for that event.
1134 */
1135 int
1136 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1137 {
1138 struct drm_device *dev = ring->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 bool interruptible = dev_priv->mm.interruptible;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(seqno == 0);
1145
1146 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1147 if (ret)
1148 return ret;
1149
1150 ret = i915_gem_check_olr(ring, seqno);
1151 if (ret)
1152 return ret;
1153
1154 return __wait_seqno(ring, seqno,
1155 atomic_read(&dev_priv->gpu_error.reset_counter),
1156 interruptible, NULL, NULL);
1157 }
1158
1159 static int
1160 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1161 struct intel_ring_buffer *ring)
1162 {
1163 if (!obj->active)
1164 return 0;
1165
1166 /* Manually manage the write flush as we may have not yet
1167 * retired the buffer.
1168 *
1169 * Note that the last_write_seqno is always the earlier of
1170 * the two (read/write) seqno, so if we haved successfully waited,
1171 * we know we have passed the last write.
1172 */
1173 obj->last_write_seqno = 0;
1174
1175 return 0;
1176 }
1177
1178 /**
1179 * Ensures that all rendering to the object has completed and the object is
1180 * safe to unbind from the GTT or access from the CPU.
1181 */
1182 static __must_check int
1183 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1184 bool readonly)
1185 {
1186 struct intel_ring_buffer *ring = obj->ring;
1187 u32 seqno;
1188 int ret;
1189
1190 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1191 if (seqno == 0)
1192 return 0;
1193
1194 ret = i915_wait_seqno(ring, seqno);
1195 if (ret)
1196 return ret;
1197
1198 return i915_gem_object_wait_rendering__tail(obj, ring);
1199 }
1200
1201 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1202 * as the object state may change during this call.
1203 */
1204 static __must_check int
1205 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1206 struct drm_i915_file_private *file_priv,
1207 bool readonly)
1208 {
1209 struct drm_device *dev = obj->base.dev;
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211 struct intel_ring_buffer *ring = obj->ring;
1212 unsigned reset_counter;
1213 u32 seqno;
1214 int ret;
1215
1216 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1217 BUG_ON(!dev_priv->mm.interruptible);
1218
1219 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1220 if (seqno == 0)
1221 return 0;
1222
1223 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1224 if (ret)
1225 return ret;
1226
1227 ret = i915_gem_check_olr(ring, seqno);
1228 if (ret)
1229 return ret;
1230
1231 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1232 mutex_unlock(&dev->struct_mutex);
1233 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1234 mutex_lock(&dev->struct_mutex);
1235 if (ret)
1236 return ret;
1237
1238 return i915_gem_object_wait_rendering__tail(obj, ring);
1239 }
1240
1241 /**
1242 * Called when user space prepares to use an object with the CPU, either
1243 * through the mmap ioctl's mapping or a GTT mapping.
1244 */
1245 int
1246 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1247 struct drm_file *file)
1248 {
1249 struct drm_i915_gem_set_domain *args = data;
1250 struct drm_i915_gem_object *obj;
1251 uint32_t read_domains = args->read_domains;
1252 uint32_t write_domain = args->write_domain;
1253 int ret;
1254
1255 /* Only handle setting domains to types used by the CPU. */
1256 if (write_domain & I915_GEM_GPU_DOMAINS)
1257 return -EINVAL;
1258
1259 if (read_domains & I915_GEM_GPU_DOMAINS)
1260 return -EINVAL;
1261
1262 /* Having something in the write domain implies it's in the read
1263 * domain, and only that read domain. Enforce that in the request.
1264 */
1265 if (write_domain != 0 && read_domains != write_domain)
1266 return -EINVAL;
1267
1268 ret = i915_mutex_lock_interruptible(dev);
1269 if (ret)
1270 return ret;
1271
1272 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1273 if (&obj->base == NULL) {
1274 ret = -ENOENT;
1275 goto unlock;
1276 }
1277
1278 /* Try to flush the object off the GPU without holding the lock.
1279 * We will repeat the flush holding the lock in the normal manner
1280 * to catch cases where we are gazumped.
1281 */
1282 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1283 file->driver_priv,
1284 !write_domain);
1285 if (ret)
1286 goto unref;
1287
1288 if (read_domains & I915_GEM_DOMAIN_GTT) {
1289 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1290
1291 /* Silently promote "you're not bound, there was nothing to do"
1292 * to success, since the client was just asking us to
1293 * make sure everything was done.
1294 */
1295 if (ret == -EINVAL)
1296 ret = 0;
1297 } else {
1298 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1299 }
1300
1301 unref:
1302 drm_gem_object_unreference(&obj->base);
1303 unlock:
1304 mutex_unlock(&dev->struct_mutex);
1305 return ret;
1306 }
1307
1308 /**
1309 * Called when user space has done writes to this buffer
1310 */
1311 int
1312 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1313 struct drm_file *file)
1314 {
1315 struct drm_i915_gem_sw_finish *args = data;
1316 struct drm_i915_gem_object *obj;
1317 int ret = 0;
1318
1319 ret = i915_mutex_lock_interruptible(dev);
1320 if (ret)
1321 return ret;
1322
1323 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1324 if (&obj->base == NULL) {
1325 ret = -ENOENT;
1326 goto unlock;
1327 }
1328
1329 /* Pinned buffers may be scanout, so flush the cache */
1330 if (obj->pin_display)
1331 i915_gem_object_flush_cpu_write_domain(obj, true);
1332
1333 drm_gem_object_unreference(&obj->base);
1334 unlock:
1335 mutex_unlock(&dev->struct_mutex);
1336 return ret;
1337 }
1338
1339 /**
1340 * Maps the contents of an object, returning the address it is mapped
1341 * into.
1342 *
1343 * While the mapping holds a reference on the contents of the object, it doesn't
1344 * imply a ref on the object itself.
1345 */
1346 int
1347 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1348 struct drm_file *file)
1349 {
1350 struct drm_i915_gem_mmap *args = data;
1351 struct drm_gem_object *obj;
1352 unsigned long addr;
1353
1354 obj = drm_gem_object_lookup(dev, file, args->handle);
1355 if (obj == NULL)
1356 return -ENOENT;
1357
1358 /* prime objects have no backing filp to GEM mmap
1359 * pages from.
1360 */
1361 if (!obj->filp) {
1362 drm_gem_object_unreference_unlocked(obj);
1363 return -EINVAL;
1364 }
1365
1366 addr = vm_mmap(obj->filp, 0, args->size,
1367 PROT_READ | PROT_WRITE, MAP_SHARED,
1368 args->offset);
1369 drm_gem_object_unreference_unlocked(obj);
1370 if (IS_ERR((void *)addr))
1371 return addr;
1372
1373 args->addr_ptr = (uint64_t) addr;
1374
1375 return 0;
1376 }
1377
1378 /**
1379 * i915_gem_fault - fault a page into the GTT
1380 * vma: VMA in question
1381 * vmf: fault info
1382 *
1383 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1384 * from userspace. The fault handler takes care of binding the object to
1385 * the GTT (if needed), allocating and programming a fence register (again,
1386 * only if needed based on whether the old reg is still valid or the object
1387 * is tiled) and inserting a new PTE into the faulting process.
1388 *
1389 * Note that the faulting process may involve evicting existing objects
1390 * from the GTT and/or fence registers to make room. So performance may
1391 * suffer if the GTT working set is large or there are few fence registers
1392 * left.
1393 */
1394 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 {
1396 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1397 struct drm_device *dev = obj->base.dev;
1398 struct drm_i915_private *dev_priv = dev->dev_private;
1399 pgoff_t page_offset;
1400 unsigned long pfn;
1401 int ret = 0;
1402 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1403
1404 intel_runtime_pm_get(dev_priv);
1405
1406 /* We don't use vmf->pgoff since that has the fake offset */
1407 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1408 PAGE_SHIFT;
1409
1410 ret = i915_mutex_lock_interruptible(dev);
1411 if (ret)
1412 goto out;
1413
1414 trace_i915_gem_object_fault(obj, page_offset, true, write);
1415
1416 /* Try to flush the object off the GPU first without holding the lock.
1417 * Upon reacquiring the lock, we will perform our sanity checks and then
1418 * repeat the flush holding the lock in the normal manner to catch cases
1419 * where we are gazumped.
1420 */
1421 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1422 if (ret)
1423 goto unlock;
1424
1425 /* Access to snoopable pages through the GTT is incoherent. */
1426 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1427 ret = -EINVAL;
1428 goto unlock;
1429 }
1430
1431 /* Now bind it into the GTT if needed */
1432 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1433 if (ret)
1434 goto unlock;
1435
1436 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1437 if (ret)
1438 goto unpin;
1439
1440 ret = i915_gem_object_get_fence(obj);
1441 if (ret)
1442 goto unpin;
1443
1444 obj->fault_mappable = true;
1445
1446 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1447 pfn >>= PAGE_SHIFT;
1448 pfn += page_offset;
1449
1450 /* Finally, remap it using the new GTT offset */
1451 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1452 unpin:
1453 i915_gem_object_ggtt_unpin(obj);
1454 unlock:
1455 mutex_unlock(&dev->struct_mutex);
1456 out:
1457 switch (ret) {
1458 case -EIO:
1459 /* If this -EIO is due to a gpu hang, give the reset code a
1460 * chance to clean up the mess. Otherwise return the proper
1461 * SIGBUS. */
1462 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1463 ret = VM_FAULT_SIGBUS;
1464 break;
1465 }
1466 case -EAGAIN:
1467 /*
1468 * EAGAIN means the gpu is hung and we'll wait for the error
1469 * handler to reset everything when re-faulting in
1470 * i915_mutex_lock_interruptible.
1471 */
1472 case 0:
1473 case -ERESTARTSYS:
1474 case -EINTR:
1475 case -EBUSY:
1476 /*
1477 * EBUSY is ok: this just means that another thread
1478 * already did the job.
1479 */
1480 ret = VM_FAULT_NOPAGE;
1481 break;
1482 case -ENOMEM:
1483 ret = VM_FAULT_OOM;
1484 break;
1485 case -ENOSPC:
1486 case -EFAULT:
1487 ret = VM_FAULT_SIGBUS;
1488 break;
1489 default:
1490 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1491 ret = VM_FAULT_SIGBUS;
1492 break;
1493 }
1494
1495 intel_runtime_pm_put(dev_priv);
1496 return ret;
1497 }
1498
1499 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1500 {
1501 struct i915_vma *vma;
1502
1503 /*
1504 * Only the global gtt is relevant for gtt memory mappings, so restrict
1505 * list traversal to objects bound into the global address space. Note
1506 * that the active list should be empty, but better safe than sorry.
1507 */
1508 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1509 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1510 i915_gem_release_mmap(vma->obj);
1511 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1512 i915_gem_release_mmap(vma->obj);
1513 }
1514
1515 /**
1516 * i915_gem_release_mmap - remove physical page mappings
1517 * @obj: obj in question
1518 *
1519 * Preserve the reservation of the mmapping with the DRM core code, but
1520 * relinquish ownership of the pages back to the system.
1521 *
1522 * It is vital that we remove the page mapping if we have mapped a tiled
1523 * object through the GTT and then lose the fence register due to
1524 * resource pressure. Similarly if the object has been moved out of the
1525 * aperture, than pages mapped into userspace must be revoked. Removing the
1526 * mapping will then trigger a page fault on the next user access, allowing
1527 * fixup by i915_gem_fault().
1528 */
1529 void
1530 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1531 {
1532 if (!obj->fault_mappable)
1533 return;
1534
1535 drm_vma_node_unmap(&obj->base.vma_node,
1536 obj->base.dev->anon_inode->i_mapping);
1537 obj->fault_mappable = false;
1538 }
1539
1540 uint32_t
1541 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1542 {
1543 uint32_t gtt_size;
1544
1545 if (INTEL_INFO(dev)->gen >= 4 ||
1546 tiling_mode == I915_TILING_NONE)
1547 return size;
1548
1549 /* Previous chips need a power-of-two fence region when tiling */
1550 if (INTEL_INFO(dev)->gen == 3)
1551 gtt_size = 1024*1024;
1552 else
1553 gtt_size = 512*1024;
1554
1555 while (gtt_size < size)
1556 gtt_size <<= 1;
1557
1558 return gtt_size;
1559 }
1560
1561 /**
1562 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1563 * @obj: object to check
1564 *
1565 * Return the required GTT alignment for an object, taking into account
1566 * potential fence register mapping.
1567 */
1568 uint32_t
1569 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1570 int tiling_mode, bool fenced)
1571 {
1572 /*
1573 * Minimum alignment is 4k (GTT page size), but might be greater
1574 * if a fence register is needed for the object.
1575 */
1576 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1577 tiling_mode == I915_TILING_NONE)
1578 return 4096;
1579
1580 /*
1581 * Previous chips need to be aligned to the size of the smallest
1582 * fence register that can contain the object.
1583 */
1584 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1585 }
1586
1587 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1588 {
1589 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1590 int ret;
1591
1592 if (drm_vma_node_has_offset(&obj->base.vma_node))
1593 return 0;
1594
1595 dev_priv->mm.shrinker_no_lock_stealing = true;
1596
1597 ret = drm_gem_create_mmap_offset(&obj->base);
1598 if (ret != -ENOSPC)
1599 goto out;
1600
1601 /* Badly fragmented mmap space? The only way we can recover
1602 * space is by destroying unwanted objects. We can't randomly release
1603 * mmap_offsets as userspace expects them to be persistent for the
1604 * lifetime of the objects. The closest we can is to release the
1605 * offsets on purgeable objects by truncating it and marking it purged,
1606 * which prevents userspace from ever using that object again.
1607 */
1608 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1609 ret = drm_gem_create_mmap_offset(&obj->base);
1610 if (ret != -ENOSPC)
1611 goto out;
1612
1613 i915_gem_shrink_all(dev_priv);
1614 ret = drm_gem_create_mmap_offset(&obj->base);
1615 out:
1616 dev_priv->mm.shrinker_no_lock_stealing = false;
1617
1618 return ret;
1619 }
1620
1621 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1622 {
1623 drm_gem_free_mmap_offset(&obj->base);
1624 }
1625
1626 int
1627 i915_gem_mmap_gtt(struct drm_file *file,
1628 struct drm_device *dev,
1629 uint32_t handle,
1630 uint64_t *offset)
1631 {
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633 struct drm_i915_gem_object *obj;
1634 int ret;
1635
1636 ret = i915_mutex_lock_interruptible(dev);
1637 if (ret)
1638 return ret;
1639
1640 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1641 if (&obj->base == NULL) {
1642 ret = -ENOENT;
1643 goto unlock;
1644 }
1645
1646 if (obj->base.size > dev_priv->gtt.mappable_end) {
1647 ret = -E2BIG;
1648 goto out;
1649 }
1650
1651 if (obj->madv != I915_MADV_WILLNEED) {
1652 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1653 ret = -EFAULT;
1654 goto out;
1655 }
1656
1657 ret = i915_gem_object_create_mmap_offset(obj);
1658 if (ret)
1659 goto out;
1660
1661 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1662
1663 out:
1664 drm_gem_object_unreference(&obj->base);
1665 unlock:
1666 mutex_unlock(&dev->struct_mutex);
1667 return ret;
1668 }
1669
1670 /**
1671 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1672 * @dev: DRM device
1673 * @data: GTT mapping ioctl data
1674 * @file: GEM object info
1675 *
1676 * Simply returns the fake offset to userspace so it can mmap it.
1677 * The mmap call will end up in drm_gem_mmap(), which will set things
1678 * up so we can get faults in the handler above.
1679 *
1680 * The fault handler will take care of binding the object into the GTT
1681 * (since it may have been evicted to make room for something), allocating
1682 * a fence register, and mapping the appropriate aperture address into
1683 * userspace.
1684 */
1685 int
1686 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1687 struct drm_file *file)
1688 {
1689 struct drm_i915_gem_mmap_gtt *args = data;
1690
1691 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1692 }
1693
1694 /* Immediately discard the backing storage */
1695 static void
1696 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1697 {
1698 struct inode *inode;
1699
1700 i915_gem_object_free_mmap_offset(obj);
1701
1702 if (obj->base.filp == NULL)
1703 return;
1704
1705 /* Our goal here is to return as much of the memory as
1706 * is possible back to the system as we are called from OOM.
1707 * To do this we must instruct the shmfs to drop all of its
1708 * backing pages, *now*.
1709 */
1710 inode = file_inode(obj->base.filp);
1711 shmem_truncate_range(inode, 0, (loff_t)-1);
1712
1713 obj->madv = __I915_MADV_PURGED;
1714 }
1715
1716 static inline int
1717 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1718 {
1719 return obj->madv == I915_MADV_DONTNEED;
1720 }
1721
1722 static void
1723 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1724 {
1725 struct sg_page_iter sg_iter;
1726 int ret;
1727
1728 BUG_ON(obj->madv == __I915_MADV_PURGED);
1729
1730 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1731 if (ret) {
1732 /* In the event of a disaster, abandon all caches and
1733 * hope for the best.
1734 */
1735 WARN_ON(ret != -EIO);
1736 i915_gem_clflush_object(obj, true);
1737 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1738 }
1739
1740 if (i915_gem_object_needs_bit17_swizzle(obj))
1741 i915_gem_object_save_bit_17_swizzle(obj);
1742
1743 if (obj->madv == I915_MADV_DONTNEED)
1744 obj->dirty = 0;
1745
1746 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1747 struct page *page = sg_page_iter_page(&sg_iter);
1748
1749 if (obj->dirty)
1750 set_page_dirty(page);
1751
1752 if (obj->madv == I915_MADV_WILLNEED)
1753 mark_page_accessed(page);
1754
1755 page_cache_release(page);
1756 }
1757 obj->dirty = 0;
1758
1759 sg_free_table(obj->pages);
1760 kfree(obj->pages);
1761 }
1762
1763 int
1764 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1765 {
1766 const struct drm_i915_gem_object_ops *ops = obj->ops;
1767
1768 if (obj->pages == NULL)
1769 return 0;
1770
1771 if (obj->pages_pin_count)
1772 return -EBUSY;
1773
1774 BUG_ON(i915_gem_obj_bound_any(obj));
1775
1776 /* ->put_pages might need to allocate memory for the bit17 swizzle
1777 * array, hence protect them from being reaped by removing them from gtt
1778 * lists early. */
1779 list_del(&obj->global_list);
1780
1781 ops->put_pages(obj);
1782 obj->pages = NULL;
1783
1784 if (i915_gem_object_is_purgeable(obj))
1785 i915_gem_object_truncate(obj);
1786
1787 return 0;
1788 }
1789
1790 static unsigned long
1791 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1792 bool purgeable_only)
1793 {
1794 struct list_head still_in_list;
1795 struct drm_i915_gem_object *obj;
1796 unsigned long count = 0;
1797
1798 /*
1799 * As we may completely rewrite the (un)bound list whilst unbinding
1800 * (due to retiring requests) we have to strictly process only
1801 * one element of the list at the time, and recheck the list
1802 * on every iteration.
1803 *
1804 * In particular, we must hold a reference whilst removing the
1805 * object as we may end up waiting for and/or retiring the objects.
1806 * This might release the final reference (held by the active list)
1807 * and result in the object being freed from under us. This is
1808 * similar to the precautions the eviction code must take whilst
1809 * removing objects.
1810 *
1811 * Also note that although these lists do not hold a reference to
1812 * the object we can safely grab one here: The final object
1813 * unreferencing and the bound_list are both protected by the
1814 * dev->struct_mutex and so we won't ever be able to observe an
1815 * object on the bound_list with a reference count equals 0.
1816 */
1817 INIT_LIST_HEAD(&still_in_list);
1818 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1819 obj = list_first_entry(&dev_priv->mm.unbound_list,
1820 typeof(*obj), global_list);
1821 list_move_tail(&obj->global_list, &still_in_list);
1822
1823 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1824 continue;
1825
1826 drm_gem_object_reference(&obj->base);
1827
1828 if (i915_gem_object_put_pages(obj) == 0)
1829 count += obj->base.size >> PAGE_SHIFT;
1830
1831 drm_gem_object_unreference(&obj->base);
1832 }
1833 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1834
1835 INIT_LIST_HEAD(&still_in_list);
1836 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1837 struct i915_vma *vma, *v;
1838
1839 obj = list_first_entry(&dev_priv->mm.bound_list,
1840 typeof(*obj), global_list);
1841 list_move_tail(&obj->global_list, &still_in_list);
1842
1843 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1844 continue;
1845
1846 drm_gem_object_reference(&obj->base);
1847
1848 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1849 if (i915_vma_unbind(vma))
1850 break;
1851
1852 if (i915_gem_object_put_pages(obj) == 0)
1853 count += obj->base.size >> PAGE_SHIFT;
1854
1855 drm_gem_object_unreference(&obj->base);
1856 }
1857 list_splice(&still_in_list, &dev_priv->mm.bound_list);
1858
1859 return count;
1860 }
1861
1862 static unsigned long
1863 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1864 {
1865 return __i915_gem_shrink(dev_priv, target, true);
1866 }
1867
1868 static unsigned long
1869 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1870 {
1871 i915_gem_evict_everything(dev_priv->dev);
1872 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
1873 }
1874
1875 static int
1876 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1877 {
1878 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1879 int page_count, i;
1880 struct address_space *mapping;
1881 struct sg_table *st;
1882 struct scatterlist *sg;
1883 struct sg_page_iter sg_iter;
1884 struct page *page;
1885 unsigned long last_pfn = 0; /* suppress gcc warning */
1886 gfp_t gfp;
1887
1888 /* Assert that the object is not currently in any GPU domain. As it
1889 * wasn't in the GTT, there shouldn't be any way it could have been in
1890 * a GPU cache
1891 */
1892 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1893 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1894
1895 st = kmalloc(sizeof(*st), GFP_KERNEL);
1896 if (st == NULL)
1897 return -ENOMEM;
1898
1899 page_count = obj->base.size / PAGE_SIZE;
1900 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1901 kfree(st);
1902 return -ENOMEM;
1903 }
1904
1905 /* Get the list of pages out of our struct file. They'll be pinned
1906 * at this point until we release them.
1907 *
1908 * Fail silently without starting the shrinker
1909 */
1910 mapping = file_inode(obj->base.filp)->i_mapping;
1911 gfp = mapping_gfp_mask(mapping);
1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
1914 sg = st->sgl;
1915 st->nents = 0;
1916 for (i = 0; i < page_count; i++) {
1917 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1918 if (IS_ERR(page)) {
1919 i915_gem_purge(dev_priv, page_count);
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 }
1922 if (IS_ERR(page)) {
1923 /* We've tried hard to allocate the memory by reaping
1924 * our own buffer, now let the real VM do its job and
1925 * go down in flames if truly OOM.
1926 */
1927 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1928 gfp |= __GFP_IO | __GFP_WAIT;
1929
1930 i915_gem_shrink_all(dev_priv);
1931 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1932 if (IS_ERR(page))
1933 goto err_pages;
1934
1935 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1936 gfp &= ~(__GFP_IO | __GFP_WAIT);
1937 }
1938 #ifdef CONFIG_SWIOTLB
1939 if (swiotlb_nr_tbl()) {
1940 st->nents++;
1941 sg_set_page(sg, page, PAGE_SIZE, 0);
1942 sg = sg_next(sg);
1943 continue;
1944 }
1945 #endif
1946 if (!i || page_to_pfn(page) != last_pfn + 1) {
1947 if (i)
1948 sg = sg_next(sg);
1949 st->nents++;
1950 sg_set_page(sg, page, PAGE_SIZE, 0);
1951 } else {
1952 sg->length += PAGE_SIZE;
1953 }
1954 last_pfn = page_to_pfn(page);
1955
1956 /* Check that the i965g/gm workaround works. */
1957 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1958 }
1959 #ifdef CONFIG_SWIOTLB
1960 if (!swiotlb_nr_tbl())
1961 #endif
1962 sg_mark_end(sg);
1963 obj->pages = st;
1964
1965 if (i915_gem_object_needs_bit17_swizzle(obj))
1966 i915_gem_object_do_bit_17_swizzle(obj);
1967
1968 return 0;
1969
1970 err_pages:
1971 sg_mark_end(sg);
1972 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1973 page_cache_release(sg_page_iter_page(&sg_iter));
1974 sg_free_table(st);
1975 kfree(st);
1976 return PTR_ERR(page);
1977 }
1978
1979 /* Ensure that the associated pages are gathered from the backing storage
1980 * and pinned into our object. i915_gem_object_get_pages() may be called
1981 * multiple times before they are released by a single call to
1982 * i915_gem_object_put_pages() - once the pages are no longer referenced
1983 * either as a result of memory pressure (reaping pages under the shrinker)
1984 * or as the object is itself released.
1985 */
1986 int
1987 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1988 {
1989 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1990 const struct drm_i915_gem_object_ops *ops = obj->ops;
1991 int ret;
1992
1993 if (obj->pages)
1994 return 0;
1995
1996 if (obj->madv != I915_MADV_WILLNEED) {
1997 DRM_DEBUG("Attempting to obtain a purgeable object\n");
1998 return -EFAULT;
1999 }
2000
2001 BUG_ON(obj->pages_pin_count);
2002
2003 ret = ops->get_pages(obj);
2004 if (ret)
2005 return ret;
2006
2007 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2008 return 0;
2009 }
2010
2011 static void
2012 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2013 struct intel_ring_buffer *ring)
2014 {
2015 struct drm_device *dev = obj->base.dev;
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 u32 seqno = intel_ring_get_seqno(ring);
2018
2019 BUG_ON(ring == NULL);
2020 if (obj->ring != ring && obj->last_write_seqno) {
2021 /* Keep the seqno relative to the current ring */
2022 obj->last_write_seqno = seqno;
2023 }
2024 obj->ring = ring;
2025
2026 /* Add a reference if we're newly entering the active list. */
2027 if (!obj->active) {
2028 drm_gem_object_reference(&obj->base);
2029 obj->active = 1;
2030 }
2031
2032 list_move_tail(&obj->ring_list, &ring->active_list);
2033
2034 obj->last_read_seqno = seqno;
2035
2036 if (obj->fenced_gpu_access) {
2037 obj->last_fenced_seqno = seqno;
2038
2039 /* Bump MRU to take account of the delayed flush */
2040 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2041 struct drm_i915_fence_reg *reg;
2042
2043 reg = &dev_priv->fence_regs[obj->fence_reg];
2044 list_move_tail(&reg->lru_list,
2045 &dev_priv->mm.fence_list);
2046 }
2047 }
2048 }
2049
2050 void i915_vma_move_to_active(struct i915_vma *vma,
2051 struct intel_ring_buffer *ring)
2052 {
2053 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2054 return i915_gem_object_move_to_active(vma->obj, ring);
2055 }
2056
2057 static void
2058 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2059 {
2060 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2061 struct i915_address_space *vm;
2062 struct i915_vma *vma;
2063
2064 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2065 BUG_ON(!obj->active);
2066
2067 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2068 vma = i915_gem_obj_to_vma(obj, vm);
2069 if (vma && !list_empty(&vma->mm_list))
2070 list_move_tail(&vma->mm_list, &vm->inactive_list);
2071 }
2072
2073 list_del_init(&obj->ring_list);
2074 obj->ring = NULL;
2075
2076 obj->last_read_seqno = 0;
2077 obj->last_write_seqno = 0;
2078 obj->base.write_domain = 0;
2079
2080 obj->last_fenced_seqno = 0;
2081 obj->fenced_gpu_access = false;
2082
2083 obj->active = 0;
2084 drm_gem_object_unreference(&obj->base);
2085
2086 WARN_ON(i915_verify_lists(dev));
2087 }
2088
2089 static void
2090 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2091 {
2092 struct intel_ring_buffer *ring = obj->ring;
2093
2094 if (ring == NULL)
2095 return;
2096
2097 if (i915_seqno_passed(ring->get_seqno(ring, true),
2098 obj->last_read_seqno))
2099 i915_gem_object_move_to_inactive(obj);
2100 }
2101
2102 static int
2103 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2104 {
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 struct intel_ring_buffer *ring;
2107 int ret, i, j;
2108
2109 /* Carefully retire all requests without writing to the rings */
2110 for_each_ring(ring, dev_priv, i) {
2111 ret = intel_ring_idle(ring);
2112 if (ret)
2113 return ret;
2114 }
2115 i915_gem_retire_requests(dev);
2116
2117 /* Finally reset hw state */
2118 for_each_ring(ring, dev_priv, i) {
2119 intel_ring_init_seqno(ring, seqno);
2120
2121 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2122 ring->semaphore.sync_seqno[j] = 0;
2123 }
2124
2125 return 0;
2126 }
2127
2128 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2129 {
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 int ret;
2132
2133 if (seqno == 0)
2134 return -EINVAL;
2135
2136 /* HWS page needs to be set less than what we
2137 * will inject to ring
2138 */
2139 ret = i915_gem_init_seqno(dev, seqno - 1);
2140 if (ret)
2141 return ret;
2142
2143 /* Carefully set the last_seqno value so that wrap
2144 * detection still works
2145 */
2146 dev_priv->next_seqno = seqno;
2147 dev_priv->last_seqno = seqno - 1;
2148 if (dev_priv->last_seqno == 0)
2149 dev_priv->last_seqno--;
2150
2151 return 0;
2152 }
2153
2154 int
2155 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2156 {
2157 struct drm_i915_private *dev_priv = dev->dev_private;
2158
2159 /* reserve 0 for non-seqno */
2160 if (dev_priv->next_seqno == 0) {
2161 int ret = i915_gem_init_seqno(dev, 0);
2162 if (ret)
2163 return ret;
2164
2165 dev_priv->next_seqno = 1;
2166 }
2167
2168 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2169 return 0;
2170 }
2171
2172 int __i915_add_request(struct intel_ring_buffer *ring,
2173 struct drm_file *file,
2174 struct drm_i915_gem_object *obj,
2175 u32 *out_seqno)
2176 {
2177 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2178 struct drm_i915_gem_request *request;
2179 u32 request_ring_position, request_start;
2180 int ret;
2181
2182 request_start = intel_ring_get_tail(ring);
2183 /*
2184 * Emit any outstanding flushes - execbuf can fail to emit the flush
2185 * after having emitted the batchbuffer command. Hence we need to fix
2186 * things up similar to emitting the lazy request. The difference here
2187 * is that the flush _must_ happen before the next request, no matter
2188 * what.
2189 */
2190 ret = intel_ring_flush_all_caches(ring);
2191 if (ret)
2192 return ret;
2193
2194 request = ring->preallocated_lazy_request;
2195 if (WARN_ON(request == NULL))
2196 return -ENOMEM;
2197
2198 /* Record the position of the start of the request so that
2199 * should we detect the updated seqno part-way through the
2200 * GPU processing the request, we never over-estimate the
2201 * position of the head.
2202 */
2203 request_ring_position = intel_ring_get_tail(ring);
2204
2205 ret = ring->add_request(ring);
2206 if (ret)
2207 return ret;
2208
2209 request->seqno = intel_ring_get_seqno(ring);
2210 request->ring = ring;
2211 request->head = request_start;
2212 request->tail = request_ring_position;
2213
2214 /* Whilst this request exists, batch_obj will be on the
2215 * active_list, and so will hold the active reference. Only when this
2216 * request is retired will the the batch_obj be moved onto the
2217 * inactive_list and lose its active reference. Hence we do not need
2218 * to explicitly hold another reference here.
2219 */
2220 request->batch_obj = obj;
2221
2222 /* Hold a reference to the current context so that we can inspect
2223 * it later in case a hangcheck error event fires.
2224 */
2225 request->ctx = ring->last_context;
2226 if (request->ctx)
2227 i915_gem_context_reference(request->ctx);
2228
2229 request->emitted_jiffies = jiffies;
2230 list_add_tail(&request->list, &ring->request_list);
2231 request->file_priv = NULL;
2232
2233 if (file) {
2234 struct drm_i915_file_private *file_priv = file->driver_priv;
2235
2236 spin_lock(&file_priv->mm.lock);
2237 request->file_priv = file_priv;
2238 list_add_tail(&request->client_list,
2239 &file_priv->mm.request_list);
2240 spin_unlock(&file_priv->mm.lock);
2241 }
2242
2243 trace_i915_gem_request_add(ring, request->seqno);
2244 ring->outstanding_lazy_seqno = 0;
2245 ring->preallocated_lazy_request = NULL;
2246
2247 if (!dev_priv->ums.mm_suspended) {
2248 i915_queue_hangcheck(ring->dev);
2249
2250 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2251 queue_delayed_work(dev_priv->wq,
2252 &dev_priv->mm.retire_work,
2253 round_jiffies_up_relative(HZ));
2254 intel_mark_busy(dev_priv->dev);
2255 }
2256
2257 if (out_seqno)
2258 *out_seqno = request->seqno;
2259 return 0;
2260 }
2261
2262 static inline void
2263 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2264 {
2265 struct drm_i915_file_private *file_priv = request->file_priv;
2266
2267 if (!file_priv)
2268 return;
2269
2270 spin_lock(&file_priv->mm.lock);
2271 list_del(&request->client_list);
2272 request->file_priv = NULL;
2273 spin_unlock(&file_priv->mm.lock);
2274 }
2275
2276 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2277 const struct i915_hw_context *ctx)
2278 {
2279 unsigned long elapsed;
2280
2281 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2282
2283 if (ctx->hang_stats.banned)
2284 return true;
2285
2286 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2287 if (!i915_gem_context_is_default(ctx)) {
2288 DRM_DEBUG("context hanging too fast, banning!\n");
2289 return true;
2290 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2291 if (i915_stop_ring_allow_warn(dev_priv))
2292 DRM_ERROR("gpu hanging too fast, banning!\n");
2293 return true;
2294 }
2295 }
2296
2297 return false;
2298 }
2299
2300 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2301 struct i915_hw_context *ctx,
2302 const bool guilty)
2303 {
2304 struct i915_ctx_hang_stats *hs;
2305
2306 if (WARN_ON(!ctx))
2307 return;
2308
2309 hs = &ctx->hang_stats;
2310
2311 if (guilty) {
2312 hs->banned = i915_context_is_banned(dev_priv, ctx);
2313 hs->batch_active++;
2314 hs->guilty_ts = get_seconds();
2315 } else {
2316 hs->batch_pending++;
2317 }
2318 }
2319
2320 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2321 {
2322 list_del(&request->list);
2323 i915_gem_request_remove_from_client(request);
2324
2325 if (request->ctx)
2326 i915_gem_context_unreference(request->ctx);
2327
2328 kfree(request);
2329 }
2330
2331 struct drm_i915_gem_request *
2332 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2333 {
2334 struct drm_i915_gem_request *request;
2335 u32 completed_seqno;
2336
2337 completed_seqno = ring->get_seqno(ring, false);
2338
2339 list_for_each_entry(request, &ring->request_list, list) {
2340 if (i915_seqno_passed(completed_seqno, request->seqno))
2341 continue;
2342
2343 return request;
2344 }
2345
2346 return NULL;
2347 }
2348
2349 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2350 struct intel_ring_buffer *ring)
2351 {
2352 struct drm_i915_gem_request *request;
2353 bool ring_hung;
2354
2355 request = i915_gem_find_active_request(ring);
2356
2357 if (request == NULL)
2358 return;
2359
2360 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2361
2362 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2363
2364 list_for_each_entry_continue(request, &ring->request_list, list)
2365 i915_set_reset_status(dev_priv, request->ctx, false);
2366 }
2367
2368 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2369 struct intel_ring_buffer *ring)
2370 {
2371 while (!list_empty(&ring->active_list)) {
2372 struct drm_i915_gem_object *obj;
2373
2374 obj = list_first_entry(&ring->active_list,
2375 struct drm_i915_gem_object,
2376 ring_list);
2377
2378 i915_gem_object_move_to_inactive(obj);
2379 }
2380
2381 /*
2382 * We must free the requests after all the corresponding objects have
2383 * been moved off active lists. Which is the same order as the normal
2384 * retire_requests function does. This is important if object hold
2385 * implicit references on things like e.g. ppgtt address spaces through
2386 * the request.
2387 */
2388 while (!list_empty(&ring->request_list)) {
2389 struct drm_i915_gem_request *request;
2390
2391 request = list_first_entry(&ring->request_list,
2392 struct drm_i915_gem_request,
2393 list);
2394
2395 i915_gem_free_request(request);
2396 }
2397
2398 /* These may not have been flush before the reset, do so now */
2399 kfree(ring->preallocated_lazy_request);
2400 ring->preallocated_lazy_request = NULL;
2401 ring->outstanding_lazy_seqno = 0;
2402 }
2403
2404 void i915_gem_restore_fences(struct drm_device *dev)
2405 {
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 int i;
2408
2409 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2410 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2411
2412 /*
2413 * Commit delayed tiling changes if we have an object still
2414 * attached to the fence, otherwise just clear the fence.
2415 */
2416 if (reg->obj) {
2417 i915_gem_object_update_fence(reg->obj, reg,
2418 reg->obj->tiling_mode);
2419 } else {
2420 i915_gem_write_fence(dev, i, NULL);
2421 }
2422 }
2423 }
2424
2425 void i915_gem_reset(struct drm_device *dev)
2426 {
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 struct intel_ring_buffer *ring;
2429 int i;
2430
2431 /*
2432 * Before we free the objects from the requests, we need to inspect
2433 * them for finding the guilty party. As the requests only borrow
2434 * their reference to the objects, the inspection must be done first.
2435 */
2436 for_each_ring(ring, dev_priv, i)
2437 i915_gem_reset_ring_status(dev_priv, ring);
2438
2439 for_each_ring(ring, dev_priv, i)
2440 i915_gem_reset_ring_cleanup(dev_priv, ring);
2441
2442 i915_gem_context_reset(dev);
2443
2444 i915_gem_restore_fences(dev);
2445 }
2446
2447 /**
2448 * This function clears the request list as sequence numbers are passed.
2449 */
2450 void
2451 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2452 {
2453 uint32_t seqno;
2454
2455 if (list_empty(&ring->request_list))
2456 return;
2457
2458 WARN_ON(i915_verify_lists(ring->dev));
2459
2460 seqno = ring->get_seqno(ring, true);
2461
2462 /* Move any buffers on the active list that are no longer referenced
2463 * by the ringbuffer to the flushing/inactive lists as appropriate,
2464 * before we free the context associated with the requests.
2465 */
2466 while (!list_empty(&ring->active_list)) {
2467 struct drm_i915_gem_object *obj;
2468
2469 obj = list_first_entry(&ring->active_list,
2470 struct drm_i915_gem_object,
2471 ring_list);
2472
2473 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2474 break;
2475
2476 i915_gem_object_move_to_inactive(obj);
2477 }
2478
2479
2480 while (!list_empty(&ring->request_list)) {
2481 struct drm_i915_gem_request *request;
2482
2483 request = list_first_entry(&ring->request_list,
2484 struct drm_i915_gem_request,
2485 list);
2486
2487 if (!i915_seqno_passed(seqno, request->seqno))
2488 break;
2489
2490 trace_i915_gem_request_retire(ring, request->seqno);
2491 /* We know the GPU must have read the request to have
2492 * sent us the seqno + interrupt, so use the position
2493 * of tail of the request to update the last known position
2494 * of the GPU head.
2495 */
2496 ring->last_retired_head = request->tail;
2497
2498 i915_gem_free_request(request);
2499 }
2500
2501 if (unlikely(ring->trace_irq_seqno &&
2502 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2503 ring->irq_put(ring);
2504 ring->trace_irq_seqno = 0;
2505 }
2506
2507 WARN_ON(i915_verify_lists(ring->dev));
2508 }
2509
2510 bool
2511 i915_gem_retire_requests(struct drm_device *dev)
2512 {
2513 struct drm_i915_private *dev_priv = dev->dev_private;
2514 struct intel_ring_buffer *ring;
2515 bool idle = true;
2516 int i;
2517
2518 for_each_ring(ring, dev_priv, i) {
2519 i915_gem_retire_requests_ring(ring);
2520 idle &= list_empty(&ring->request_list);
2521 }
2522
2523 if (idle)
2524 mod_delayed_work(dev_priv->wq,
2525 &dev_priv->mm.idle_work,
2526 msecs_to_jiffies(100));
2527
2528 return idle;
2529 }
2530
2531 static void
2532 i915_gem_retire_work_handler(struct work_struct *work)
2533 {
2534 struct drm_i915_private *dev_priv =
2535 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2536 struct drm_device *dev = dev_priv->dev;
2537 bool idle;
2538
2539 /* Come back later if the device is busy... */
2540 idle = false;
2541 if (mutex_trylock(&dev->struct_mutex)) {
2542 idle = i915_gem_retire_requests(dev);
2543 mutex_unlock(&dev->struct_mutex);
2544 }
2545 if (!idle)
2546 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2547 round_jiffies_up_relative(HZ));
2548 }
2549
2550 static void
2551 i915_gem_idle_work_handler(struct work_struct *work)
2552 {
2553 struct drm_i915_private *dev_priv =
2554 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2555
2556 intel_mark_idle(dev_priv->dev);
2557 }
2558
2559 /**
2560 * Ensures that an object will eventually get non-busy by flushing any required
2561 * write domains, emitting any outstanding lazy request and retiring and
2562 * completed requests.
2563 */
2564 static int
2565 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2566 {
2567 int ret;
2568
2569 if (obj->active) {
2570 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2571 if (ret)
2572 return ret;
2573
2574 i915_gem_retire_requests_ring(obj->ring);
2575 }
2576
2577 return 0;
2578 }
2579
2580 /**
2581 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2582 * @DRM_IOCTL_ARGS: standard ioctl arguments
2583 *
2584 * Returns 0 if successful, else an error is returned with the remaining time in
2585 * the timeout parameter.
2586 * -ETIME: object is still busy after timeout
2587 * -ERESTARTSYS: signal interrupted the wait
2588 * -ENONENT: object doesn't exist
2589 * Also possible, but rare:
2590 * -EAGAIN: GPU wedged
2591 * -ENOMEM: damn
2592 * -ENODEV: Internal IRQ fail
2593 * -E?: The add request failed
2594 *
2595 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2596 * non-zero timeout parameter the wait ioctl will wait for the given number of
2597 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2598 * without holding struct_mutex the object may become re-busied before this
2599 * function completes. A similar but shorter * race condition exists in the busy
2600 * ioctl
2601 */
2602 int
2603 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2604 {
2605 struct drm_i915_private *dev_priv = dev->dev_private;
2606 struct drm_i915_gem_wait *args = data;
2607 struct drm_i915_gem_object *obj;
2608 struct intel_ring_buffer *ring = NULL;
2609 struct timespec timeout_stack, *timeout = NULL;
2610 unsigned reset_counter;
2611 u32 seqno = 0;
2612 int ret = 0;
2613
2614 if (args->timeout_ns >= 0) {
2615 timeout_stack = ns_to_timespec(args->timeout_ns);
2616 timeout = &timeout_stack;
2617 }
2618
2619 ret = i915_mutex_lock_interruptible(dev);
2620 if (ret)
2621 return ret;
2622
2623 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2624 if (&obj->base == NULL) {
2625 mutex_unlock(&dev->struct_mutex);
2626 return -ENOENT;
2627 }
2628
2629 /* Need to make sure the object gets inactive eventually. */
2630 ret = i915_gem_object_flush_active(obj);
2631 if (ret)
2632 goto out;
2633
2634 if (obj->active) {
2635 seqno = obj->last_read_seqno;
2636 ring = obj->ring;
2637 }
2638
2639 if (seqno == 0)
2640 goto out;
2641
2642 /* Do this after OLR check to make sure we make forward progress polling
2643 * on this IOCTL with a 0 timeout (like busy ioctl)
2644 */
2645 if (!args->timeout_ns) {
2646 ret = -ETIME;
2647 goto out;
2648 }
2649
2650 drm_gem_object_unreference(&obj->base);
2651 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2652 mutex_unlock(&dev->struct_mutex);
2653
2654 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2655 if (timeout)
2656 args->timeout_ns = timespec_to_ns(timeout);
2657 return ret;
2658
2659 out:
2660 drm_gem_object_unreference(&obj->base);
2661 mutex_unlock(&dev->struct_mutex);
2662 return ret;
2663 }
2664
2665 /**
2666 * i915_gem_object_sync - sync an object to a ring.
2667 *
2668 * @obj: object which may be in use on another ring.
2669 * @to: ring we wish to use the object on. May be NULL.
2670 *
2671 * This code is meant to abstract object synchronization with the GPU.
2672 * Calling with NULL implies synchronizing the object with the CPU
2673 * rather than a particular GPU ring.
2674 *
2675 * Returns 0 if successful, else propagates up the lower layer error.
2676 */
2677 int
2678 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2679 struct intel_ring_buffer *to)
2680 {
2681 struct intel_ring_buffer *from = obj->ring;
2682 u32 seqno;
2683 int ret, idx;
2684
2685 if (from == NULL || to == from)
2686 return 0;
2687
2688 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2689 return i915_gem_object_wait_rendering(obj, false);
2690
2691 idx = intel_ring_sync_index(from, to);
2692
2693 seqno = obj->last_read_seqno;
2694 if (seqno <= from->semaphore.sync_seqno[idx])
2695 return 0;
2696
2697 ret = i915_gem_check_olr(obj->ring, seqno);
2698 if (ret)
2699 return ret;
2700
2701 trace_i915_gem_ring_sync_to(from, to, seqno);
2702 ret = to->semaphore.sync_to(to, from, seqno);
2703 if (!ret)
2704 /* We use last_read_seqno because sync_to()
2705 * might have just caused seqno wrap under
2706 * the radar.
2707 */
2708 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2709
2710 return ret;
2711 }
2712
2713 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2714 {
2715 u32 old_write_domain, old_read_domains;
2716
2717 /* Force a pagefault for domain tracking on next user access */
2718 i915_gem_release_mmap(obj);
2719
2720 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2721 return;
2722
2723 /* Wait for any direct GTT access to complete */
2724 mb();
2725
2726 old_read_domains = obj->base.read_domains;
2727 old_write_domain = obj->base.write_domain;
2728
2729 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2730 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2731
2732 trace_i915_gem_object_change_domain(obj,
2733 old_read_domains,
2734 old_write_domain);
2735 }
2736
2737 int i915_vma_unbind(struct i915_vma *vma)
2738 {
2739 struct drm_i915_gem_object *obj = vma->obj;
2740 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2741 int ret;
2742
2743 if (list_empty(&vma->vma_link))
2744 return 0;
2745
2746 if (!drm_mm_node_allocated(&vma->node)) {
2747 i915_gem_vma_destroy(vma);
2748 return 0;
2749 }
2750
2751 if (vma->pin_count)
2752 return -EBUSY;
2753
2754 BUG_ON(obj->pages == NULL);
2755
2756 ret = i915_gem_object_finish_gpu(obj);
2757 if (ret)
2758 return ret;
2759 /* Continue on if we fail due to EIO, the GPU is hung so we
2760 * should be safe and we need to cleanup or else we might
2761 * cause memory corruption through use-after-free.
2762 */
2763
2764 if (i915_is_ggtt(vma->vm)) {
2765 i915_gem_object_finish_gtt(obj);
2766
2767 /* release the fence reg _after_ flushing */
2768 ret = i915_gem_object_put_fence(obj);
2769 if (ret)
2770 return ret;
2771 }
2772
2773 trace_i915_vma_unbind(vma);
2774
2775 vma->unbind_vma(vma);
2776
2777 i915_gem_gtt_finish_object(obj);
2778
2779 list_del_init(&vma->mm_list);
2780 /* Avoid an unnecessary call to unbind on rebind. */
2781 if (i915_is_ggtt(vma->vm))
2782 obj->map_and_fenceable = true;
2783
2784 drm_mm_remove_node(&vma->node);
2785 i915_gem_vma_destroy(vma);
2786
2787 /* Since the unbound list is global, only move to that list if
2788 * no more VMAs exist. */
2789 if (list_empty(&obj->vma_list))
2790 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2791
2792 /* And finally now the object is completely decoupled from this vma,
2793 * we can drop its hold on the backing storage and allow it to be
2794 * reaped by the shrinker.
2795 */
2796 i915_gem_object_unpin_pages(obj);
2797
2798 return 0;
2799 }
2800
2801 int i915_gpu_idle(struct drm_device *dev)
2802 {
2803 struct drm_i915_private *dev_priv = dev->dev_private;
2804 struct intel_ring_buffer *ring;
2805 int ret, i;
2806
2807 /* Flush everything onto the inactive list. */
2808 for_each_ring(ring, dev_priv, i) {
2809 ret = i915_switch_context(ring, ring->default_context);
2810 if (ret)
2811 return ret;
2812
2813 ret = intel_ring_idle(ring);
2814 if (ret)
2815 return ret;
2816 }
2817
2818 return 0;
2819 }
2820
2821 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2822 struct drm_i915_gem_object *obj)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 int fence_reg;
2826 int fence_pitch_shift;
2827
2828 if (INTEL_INFO(dev)->gen >= 6) {
2829 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2830 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2831 } else {
2832 fence_reg = FENCE_REG_965_0;
2833 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2834 }
2835
2836 fence_reg += reg * 8;
2837
2838 /* To w/a incoherency with non-atomic 64-bit register updates,
2839 * we split the 64-bit update into two 32-bit writes. In order
2840 * for a partial fence not to be evaluated between writes, we
2841 * precede the update with write to turn off the fence register,
2842 * and only enable the fence as the last step.
2843 *
2844 * For extra levels of paranoia, we make sure each step lands
2845 * before applying the next step.
2846 */
2847 I915_WRITE(fence_reg, 0);
2848 POSTING_READ(fence_reg);
2849
2850 if (obj) {
2851 u32 size = i915_gem_obj_ggtt_size(obj);
2852 uint64_t val;
2853
2854 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2855 0xfffff000) << 32;
2856 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2857 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2858 if (obj->tiling_mode == I915_TILING_Y)
2859 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2860 val |= I965_FENCE_REG_VALID;
2861
2862 I915_WRITE(fence_reg + 4, val >> 32);
2863 POSTING_READ(fence_reg + 4);
2864
2865 I915_WRITE(fence_reg + 0, val);
2866 POSTING_READ(fence_reg);
2867 } else {
2868 I915_WRITE(fence_reg + 4, 0);
2869 POSTING_READ(fence_reg + 4);
2870 }
2871 }
2872
2873 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2874 struct drm_i915_gem_object *obj)
2875 {
2876 struct drm_i915_private *dev_priv = dev->dev_private;
2877 u32 val;
2878
2879 if (obj) {
2880 u32 size = i915_gem_obj_ggtt_size(obj);
2881 int pitch_val;
2882 int tile_width;
2883
2884 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2885 (size & -size) != size ||
2886 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2887 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2888 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2889
2890 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2891 tile_width = 128;
2892 else
2893 tile_width = 512;
2894
2895 /* Note: pitch better be a power of two tile widths */
2896 pitch_val = obj->stride / tile_width;
2897 pitch_val = ffs(pitch_val) - 1;
2898
2899 val = i915_gem_obj_ggtt_offset(obj);
2900 if (obj->tiling_mode == I915_TILING_Y)
2901 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2902 val |= I915_FENCE_SIZE_BITS(size);
2903 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2904 val |= I830_FENCE_REG_VALID;
2905 } else
2906 val = 0;
2907
2908 if (reg < 8)
2909 reg = FENCE_REG_830_0 + reg * 4;
2910 else
2911 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2912
2913 I915_WRITE(reg, val);
2914 POSTING_READ(reg);
2915 }
2916
2917 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2918 struct drm_i915_gem_object *obj)
2919 {
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921 uint32_t val;
2922
2923 if (obj) {
2924 u32 size = i915_gem_obj_ggtt_size(obj);
2925 uint32_t pitch_val;
2926
2927 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2928 (size & -size) != size ||
2929 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2930 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2931 i915_gem_obj_ggtt_offset(obj), size);
2932
2933 pitch_val = obj->stride / 128;
2934 pitch_val = ffs(pitch_val) - 1;
2935
2936 val = i915_gem_obj_ggtt_offset(obj);
2937 if (obj->tiling_mode == I915_TILING_Y)
2938 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2939 val |= I830_FENCE_SIZE_BITS(size);
2940 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2941 val |= I830_FENCE_REG_VALID;
2942 } else
2943 val = 0;
2944
2945 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2946 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2947 }
2948
2949 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2950 {
2951 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2952 }
2953
2954 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2955 struct drm_i915_gem_object *obj)
2956 {
2957 struct drm_i915_private *dev_priv = dev->dev_private;
2958
2959 /* Ensure that all CPU reads are completed before installing a fence
2960 * and all writes before removing the fence.
2961 */
2962 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2963 mb();
2964
2965 WARN(obj && (!obj->stride || !obj->tiling_mode),
2966 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2967 obj->stride, obj->tiling_mode);
2968
2969 switch (INTEL_INFO(dev)->gen) {
2970 case 8:
2971 case 7:
2972 case 6:
2973 case 5:
2974 case 4: i965_write_fence_reg(dev, reg, obj); break;
2975 case 3: i915_write_fence_reg(dev, reg, obj); break;
2976 case 2: i830_write_fence_reg(dev, reg, obj); break;
2977 default: BUG();
2978 }
2979
2980 /* And similarly be paranoid that no direct access to this region
2981 * is reordered to before the fence is installed.
2982 */
2983 if (i915_gem_object_needs_mb(obj))
2984 mb();
2985 }
2986
2987 static inline int fence_number(struct drm_i915_private *dev_priv,
2988 struct drm_i915_fence_reg *fence)
2989 {
2990 return fence - dev_priv->fence_regs;
2991 }
2992
2993 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2994 struct drm_i915_fence_reg *fence,
2995 bool enable)
2996 {
2997 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2998 int reg = fence_number(dev_priv, fence);
2999
3000 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3001
3002 if (enable) {
3003 obj->fence_reg = reg;
3004 fence->obj = obj;
3005 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3006 } else {
3007 obj->fence_reg = I915_FENCE_REG_NONE;
3008 fence->obj = NULL;
3009 list_del_init(&fence->lru_list);
3010 }
3011 obj->fence_dirty = false;
3012 }
3013
3014 static int
3015 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3016 {
3017 if (obj->last_fenced_seqno) {
3018 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3019 if (ret)
3020 return ret;
3021
3022 obj->last_fenced_seqno = 0;
3023 }
3024
3025 obj->fenced_gpu_access = false;
3026 return 0;
3027 }
3028
3029 int
3030 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3031 {
3032 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3033 struct drm_i915_fence_reg *fence;
3034 int ret;
3035
3036 ret = i915_gem_object_wait_fence(obj);
3037 if (ret)
3038 return ret;
3039
3040 if (obj->fence_reg == I915_FENCE_REG_NONE)
3041 return 0;
3042
3043 fence = &dev_priv->fence_regs[obj->fence_reg];
3044
3045 if (WARN_ON(fence->pin_count))
3046 return -EBUSY;
3047
3048 i915_gem_object_fence_lost(obj);
3049 i915_gem_object_update_fence(obj, fence, false);
3050
3051 return 0;
3052 }
3053
3054 static struct drm_i915_fence_reg *
3055 i915_find_fence_reg(struct drm_device *dev)
3056 {
3057 struct drm_i915_private *dev_priv = dev->dev_private;
3058 struct drm_i915_fence_reg *reg, *avail;
3059 int i;
3060
3061 /* First try to find a free reg */
3062 avail = NULL;
3063 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3064 reg = &dev_priv->fence_regs[i];
3065 if (!reg->obj)
3066 return reg;
3067
3068 if (!reg->pin_count)
3069 avail = reg;
3070 }
3071
3072 if (avail == NULL)
3073 goto deadlock;
3074
3075 /* None available, try to steal one or wait for a user to finish */
3076 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3077 if (reg->pin_count)
3078 continue;
3079
3080 return reg;
3081 }
3082
3083 deadlock:
3084 /* Wait for completion of pending flips which consume fences */
3085 if (intel_has_pending_fb_unpin(dev))
3086 return ERR_PTR(-EAGAIN);
3087
3088 return ERR_PTR(-EDEADLK);
3089 }
3090
3091 /**
3092 * i915_gem_object_get_fence - set up fencing for an object
3093 * @obj: object to map through a fence reg
3094 *
3095 * When mapping objects through the GTT, userspace wants to be able to write
3096 * to them without having to worry about swizzling if the object is tiled.
3097 * This function walks the fence regs looking for a free one for @obj,
3098 * stealing one if it can't find any.
3099 *
3100 * It then sets up the reg based on the object's properties: address, pitch
3101 * and tiling format.
3102 *
3103 * For an untiled surface, this removes any existing fence.
3104 */
3105 int
3106 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3107 {
3108 struct drm_device *dev = obj->base.dev;
3109 struct drm_i915_private *dev_priv = dev->dev_private;
3110 bool enable = obj->tiling_mode != I915_TILING_NONE;
3111 struct drm_i915_fence_reg *reg;
3112 int ret;
3113
3114 /* Have we updated the tiling parameters upon the object and so
3115 * will need to serialise the write to the associated fence register?
3116 */
3117 if (obj->fence_dirty) {
3118 ret = i915_gem_object_wait_fence(obj);
3119 if (ret)
3120 return ret;
3121 }
3122
3123 /* Just update our place in the LRU if our fence is getting reused. */
3124 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3125 reg = &dev_priv->fence_regs[obj->fence_reg];
3126 if (!obj->fence_dirty) {
3127 list_move_tail(&reg->lru_list,
3128 &dev_priv->mm.fence_list);
3129 return 0;
3130 }
3131 } else if (enable) {
3132 reg = i915_find_fence_reg(dev);
3133 if (IS_ERR(reg))
3134 return PTR_ERR(reg);
3135
3136 if (reg->obj) {
3137 struct drm_i915_gem_object *old = reg->obj;
3138
3139 ret = i915_gem_object_wait_fence(old);
3140 if (ret)
3141 return ret;
3142
3143 i915_gem_object_fence_lost(old);
3144 }
3145 } else
3146 return 0;
3147
3148 i915_gem_object_update_fence(obj, reg, enable);
3149
3150 return 0;
3151 }
3152
3153 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3154 struct drm_mm_node *gtt_space,
3155 unsigned long cache_level)
3156 {
3157 struct drm_mm_node *other;
3158
3159 /* On non-LLC machines we have to be careful when putting differing
3160 * types of snoopable memory together to avoid the prefetcher
3161 * crossing memory domains and dying.
3162 */
3163 if (HAS_LLC(dev))
3164 return true;
3165
3166 if (!drm_mm_node_allocated(gtt_space))
3167 return true;
3168
3169 if (list_empty(&gtt_space->node_list))
3170 return true;
3171
3172 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3173 if (other->allocated && !other->hole_follows && other->color != cache_level)
3174 return false;
3175
3176 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3177 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3178 return false;
3179
3180 return true;
3181 }
3182
3183 static void i915_gem_verify_gtt(struct drm_device *dev)
3184 {
3185 #if WATCH_GTT
3186 struct drm_i915_private *dev_priv = dev->dev_private;
3187 struct drm_i915_gem_object *obj;
3188 int err = 0;
3189
3190 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3191 if (obj->gtt_space == NULL) {
3192 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3193 err++;
3194 continue;
3195 }
3196
3197 if (obj->cache_level != obj->gtt_space->color) {
3198 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3199 i915_gem_obj_ggtt_offset(obj),
3200 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3201 obj->cache_level,
3202 obj->gtt_space->color);
3203 err++;
3204 continue;
3205 }
3206
3207 if (!i915_gem_valid_gtt_space(dev,
3208 obj->gtt_space,
3209 obj->cache_level)) {
3210 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3211 i915_gem_obj_ggtt_offset(obj),
3212 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3213 obj->cache_level);
3214 err++;
3215 continue;
3216 }
3217 }
3218
3219 WARN_ON(err);
3220 #endif
3221 }
3222
3223 /**
3224 * Finds free space in the GTT aperture and binds the object there.
3225 */
3226 static struct i915_vma *
3227 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3228 struct i915_address_space *vm,
3229 unsigned alignment,
3230 unsigned flags)
3231 {
3232 struct drm_device *dev = obj->base.dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 u32 size, fence_size, fence_alignment, unfenced_alignment;
3235 size_t gtt_max =
3236 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3237 struct i915_vma *vma;
3238 int ret;
3239
3240 fence_size = i915_gem_get_gtt_size(dev,
3241 obj->base.size,
3242 obj->tiling_mode);
3243 fence_alignment = i915_gem_get_gtt_alignment(dev,
3244 obj->base.size,
3245 obj->tiling_mode, true);
3246 unfenced_alignment =
3247 i915_gem_get_gtt_alignment(dev,
3248 obj->base.size,
3249 obj->tiling_mode, false);
3250
3251 if (alignment == 0)
3252 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3253 unfenced_alignment;
3254 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3255 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3256 return ERR_PTR(-EINVAL);
3257 }
3258
3259 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3260
3261 /* If the object is bigger than the entire aperture, reject it early
3262 * before evicting everything in a vain attempt to find space.
3263 */
3264 if (obj->base.size > gtt_max) {
3265 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3266 obj->base.size,
3267 flags & PIN_MAPPABLE ? "mappable" : "total",
3268 gtt_max);
3269 return ERR_PTR(-E2BIG);
3270 }
3271
3272 ret = i915_gem_object_get_pages(obj);
3273 if (ret)
3274 return ERR_PTR(ret);
3275
3276 i915_gem_object_pin_pages(obj);
3277
3278 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3279 if (IS_ERR(vma))
3280 goto err_unpin;
3281
3282 search_free:
3283 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3284 size, alignment,
3285 obj->cache_level, 0, gtt_max,
3286 DRM_MM_SEARCH_DEFAULT,
3287 DRM_MM_CREATE_DEFAULT);
3288 if (ret) {
3289 ret = i915_gem_evict_something(dev, vm, size, alignment,
3290 obj->cache_level, flags);
3291 if (ret == 0)
3292 goto search_free;
3293
3294 goto err_free_vma;
3295 }
3296 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3297 obj->cache_level))) {
3298 ret = -EINVAL;
3299 goto err_remove_node;
3300 }
3301
3302 ret = i915_gem_gtt_prepare_object(obj);
3303 if (ret)
3304 goto err_remove_node;
3305
3306 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3307 list_add_tail(&vma->mm_list, &vm->inactive_list);
3308
3309 if (i915_is_ggtt(vm)) {
3310 bool mappable, fenceable;
3311
3312 fenceable = (vma->node.size == fence_size &&
3313 (vma->node.start & (fence_alignment - 1)) == 0);
3314
3315 mappable = (vma->node.start + obj->base.size <=
3316 dev_priv->gtt.mappable_end);
3317
3318 obj->map_and_fenceable = mappable && fenceable;
3319 }
3320
3321 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3322
3323 trace_i915_vma_bind(vma, flags);
3324 vma->bind_vma(vma, obj->cache_level,
3325 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3326
3327 i915_gem_verify_gtt(dev);
3328 return vma;
3329
3330 err_remove_node:
3331 drm_mm_remove_node(&vma->node);
3332 err_free_vma:
3333 i915_gem_vma_destroy(vma);
3334 vma = ERR_PTR(ret);
3335 err_unpin:
3336 i915_gem_object_unpin_pages(obj);
3337 return vma;
3338 }
3339
3340 bool
3341 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3342 bool force)
3343 {
3344 /* If we don't have a page list set up, then we're not pinned
3345 * to GPU, and we can ignore the cache flush because it'll happen
3346 * again at bind time.
3347 */
3348 if (obj->pages == NULL)
3349 return false;
3350
3351 /*
3352 * Stolen memory is always coherent with the GPU as it is explicitly
3353 * marked as wc by the system, or the system is cache-coherent.
3354 */
3355 if (obj->stolen)
3356 return false;
3357
3358 /* If the GPU is snooping the contents of the CPU cache,
3359 * we do not need to manually clear the CPU cache lines. However,
3360 * the caches are only snooped when the render cache is
3361 * flushed/invalidated. As we always have to emit invalidations
3362 * and flushes when moving into and out of the RENDER domain, correct
3363 * snooping behaviour occurs naturally as the result of our domain
3364 * tracking.
3365 */
3366 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3367 return false;
3368
3369 trace_i915_gem_object_clflush(obj);
3370 drm_clflush_sg(obj->pages);
3371
3372 return true;
3373 }
3374
3375 /** Flushes the GTT write domain for the object if it's dirty. */
3376 static void
3377 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3378 {
3379 uint32_t old_write_domain;
3380
3381 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3382 return;
3383
3384 /* No actual flushing is required for the GTT write domain. Writes
3385 * to it immediately go to main memory as far as we know, so there's
3386 * no chipset flush. It also doesn't land in render cache.
3387 *
3388 * However, we do have to enforce the order so that all writes through
3389 * the GTT land before any writes to the device, such as updates to
3390 * the GATT itself.
3391 */
3392 wmb();
3393
3394 old_write_domain = obj->base.write_domain;
3395 obj->base.write_domain = 0;
3396
3397 trace_i915_gem_object_change_domain(obj,
3398 obj->base.read_domains,
3399 old_write_domain);
3400 }
3401
3402 /** Flushes the CPU write domain for the object if it's dirty. */
3403 static void
3404 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3405 bool force)
3406 {
3407 uint32_t old_write_domain;
3408
3409 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3410 return;
3411
3412 if (i915_gem_clflush_object(obj, force))
3413 i915_gem_chipset_flush(obj->base.dev);
3414
3415 old_write_domain = obj->base.write_domain;
3416 obj->base.write_domain = 0;
3417
3418 trace_i915_gem_object_change_domain(obj,
3419 obj->base.read_domains,
3420 old_write_domain);
3421 }
3422
3423 /**
3424 * Moves a single object to the GTT read, and possibly write domain.
3425 *
3426 * This function returns when the move is complete, including waiting on
3427 * flushes to occur.
3428 */
3429 int
3430 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3431 {
3432 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3433 uint32_t old_write_domain, old_read_domains;
3434 int ret;
3435
3436 /* Not valid to be called on unbound objects. */
3437 if (!i915_gem_obj_bound_any(obj))
3438 return -EINVAL;
3439
3440 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3441 return 0;
3442
3443 ret = i915_gem_object_wait_rendering(obj, !write);
3444 if (ret)
3445 return ret;
3446
3447 i915_gem_object_retire(obj);
3448 i915_gem_object_flush_cpu_write_domain(obj, false);
3449
3450 /* Serialise direct access to this object with the barriers for
3451 * coherent writes from the GPU, by effectively invalidating the
3452 * GTT domain upon first access.
3453 */
3454 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3455 mb();
3456
3457 old_write_domain = obj->base.write_domain;
3458 old_read_domains = obj->base.read_domains;
3459
3460 /* It should now be out of any other write domains, and we can update
3461 * the domain values for our changes.
3462 */
3463 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3464 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3465 if (write) {
3466 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3467 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3468 obj->dirty = 1;
3469 }
3470
3471 trace_i915_gem_object_change_domain(obj,
3472 old_read_domains,
3473 old_write_domain);
3474
3475 /* And bump the LRU for this access */
3476 if (i915_gem_object_is_inactive(obj)) {
3477 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3478 if (vma)
3479 list_move_tail(&vma->mm_list,
3480 &dev_priv->gtt.base.inactive_list);
3481
3482 }
3483
3484 return 0;
3485 }
3486
3487 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3488 enum i915_cache_level cache_level)
3489 {
3490 struct drm_device *dev = obj->base.dev;
3491 struct i915_vma *vma, *next;
3492 int ret;
3493
3494 if (obj->cache_level == cache_level)
3495 return 0;
3496
3497 if (i915_gem_obj_is_pinned(obj)) {
3498 DRM_DEBUG("can not change the cache level of pinned objects\n");
3499 return -EBUSY;
3500 }
3501
3502 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3503 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3504 ret = i915_vma_unbind(vma);
3505 if (ret)
3506 return ret;
3507 }
3508 }
3509
3510 if (i915_gem_obj_bound_any(obj)) {
3511 ret = i915_gem_object_finish_gpu(obj);
3512 if (ret)
3513 return ret;
3514
3515 i915_gem_object_finish_gtt(obj);
3516
3517 /* Before SandyBridge, you could not use tiling or fence
3518 * registers with snooped memory, so relinquish any fences
3519 * currently pointing to our region in the aperture.
3520 */
3521 if (INTEL_INFO(dev)->gen < 6) {
3522 ret = i915_gem_object_put_fence(obj);
3523 if (ret)
3524 return ret;
3525 }
3526
3527 list_for_each_entry(vma, &obj->vma_list, vma_link)
3528 if (drm_mm_node_allocated(&vma->node))
3529 vma->bind_vma(vma, cache_level,
3530 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3531 }
3532
3533 list_for_each_entry(vma, &obj->vma_list, vma_link)
3534 vma->node.color = cache_level;
3535 obj->cache_level = cache_level;
3536
3537 if (cpu_write_needs_clflush(obj)) {
3538 u32 old_read_domains, old_write_domain;
3539
3540 /* If we're coming from LLC cached, then we haven't
3541 * actually been tracking whether the data is in the
3542 * CPU cache or not, since we only allow one bit set
3543 * in obj->write_domain and have been skipping the clflushes.
3544 * Just set it to the CPU cache for now.
3545 */
3546 i915_gem_object_retire(obj);
3547 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3548
3549 old_read_domains = obj->base.read_domains;
3550 old_write_domain = obj->base.write_domain;
3551
3552 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3553 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3554
3555 trace_i915_gem_object_change_domain(obj,
3556 old_read_domains,
3557 old_write_domain);
3558 }
3559
3560 i915_gem_verify_gtt(dev);
3561 return 0;
3562 }
3563
3564 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3565 struct drm_file *file)
3566 {
3567 struct drm_i915_gem_caching *args = data;
3568 struct drm_i915_gem_object *obj;
3569 int ret;
3570
3571 ret = i915_mutex_lock_interruptible(dev);
3572 if (ret)
3573 return ret;
3574
3575 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3576 if (&obj->base == NULL) {
3577 ret = -ENOENT;
3578 goto unlock;
3579 }
3580
3581 switch (obj->cache_level) {
3582 case I915_CACHE_LLC:
3583 case I915_CACHE_L3_LLC:
3584 args->caching = I915_CACHING_CACHED;
3585 break;
3586
3587 case I915_CACHE_WT:
3588 args->caching = I915_CACHING_DISPLAY;
3589 break;
3590
3591 default:
3592 args->caching = I915_CACHING_NONE;
3593 break;
3594 }
3595
3596 drm_gem_object_unreference(&obj->base);
3597 unlock:
3598 mutex_unlock(&dev->struct_mutex);
3599 return ret;
3600 }
3601
3602 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3603 struct drm_file *file)
3604 {
3605 struct drm_i915_gem_caching *args = data;
3606 struct drm_i915_gem_object *obj;
3607 enum i915_cache_level level;
3608 int ret;
3609
3610 switch (args->caching) {
3611 case I915_CACHING_NONE:
3612 level = I915_CACHE_NONE;
3613 break;
3614 case I915_CACHING_CACHED:
3615 level = I915_CACHE_LLC;
3616 break;
3617 case I915_CACHING_DISPLAY:
3618 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3619 break;
3620 default:
3621 return -EINVAL;
3622 }
3623
3624 ret = i915_mutex_lock_interruptible(dev);
3625 if (ret)
3626 return ret;
3627
3628 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3629 if (&obj->base == NULL) {
3630 ret = -ENOENT;
3631 goto unlock;
3632 }
3633
3634 ret = i915_gem_object_set_cache_level(obj, level);
3635
3636 drm_gem_object_unreference(&obj->base);
3637 unlock:
3638 mutex_unlock(&dev->struct_mutex);
3639 return ret;
3640 }
3641
3642 static bool is_pin_display(struct drm_i915_gem_object *obj)
3643 {
3644 struct i915_vma *vma;
3645
3646 if (list_empty(&obj->vma_list))
3647 return false;
3648
3649 vma = i915_gem_obj_to_ggtt(obj);
3650 if (!vma)
3651 return false;
3652
3653 /* There are 3 sources that pin objects:
3654 * 1. The display engine (scanouts, sprites, cursors);
3655 * 2. Reservations for execbuffer;
3656 * 3. The user.
3657 *
3658 * We can ignore reservations as we hold the struct_mutex and
3659 * are only called outside of the reservation path. The user
3660 * can only increment pin_count once, and so if after
3661 * subtracting the potential reference by the user, any pin_count
3662 * remains, it must be due to another use by the display engine.
3663 */
3664 return vma->pin_count - !!obj->user_pin_count;
3665 }
3666
3667 /*
3668 * Prepare buffer for display plane (scanout, cursors, etc).
3669 * Can be called from an uninterruptible phase (modesetting) and allows
3670 * any flushes to be pipelined (for pageflips).
3671 */
3672 int
3673 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3674 u32 alignment,
3675 struct intel_ring_buffer *pipelined)
3676 {
3677 u32 old_read_domains, old_write_domain;
3678 bool was_pin_display;
3679 int ret;
3680
3681 if (pipelined != obj->ring) {
3682 ret = i915_gem_object_sync(obj, pipelined);
3683 if (ret)
3684 return ret;
3685 }
3686
3687 /* Mark the pin_display early so that we account for the
3688 * display coherency whilst setting up the cache domains.
3689 */
3690 was_pin_display = obj->pin_display;
3691 obj->pin_display = true;
3692
3693 /* The display engine is not coherent with the LLC cache on gen6. As
3694 * a result, we make sure that the pinning that is about to occur is
3695 * done with uncached PTEs. This is lowest common denominator for all
3696 * chipsets.
3697 *
3698 * However for gen6+, we could do better by using the GFDT bit instead
3699 * of uncaching, which would allow us to flush all the LLC-cached data
3700 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3701 */
3702 ret = i915_gem_object_set_cache_level(obj,
3703 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3704 if (ret)
3705 goto err_unpin_display;
3706
3707 /* As the user may map the buffer once pinned in the display plane
3708 * (e.g. libkms for the bootup splash), we have to ensure that we
3709 * always use map_and_fenceable for all scanout buffers.
3710 */
3711 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3712 if (ret)
3713 goto err_unpin_display;
3714
3715 i915_gem_object_flush_cpu_write_domain(obj, true);
3716
3717 old_write_domain = obj->base.write_domain;
3718 old_read_domains = obj->base.read_domains;
3719
3720 /* It should now be out of any other write domains, and we can update
3721 * the domain values for our changes.
3722 */
3723 obj->base.write_domain = 0;
3724 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3725
3726 trace_i915_gem_object_change_domain(obj,
3727 old_read_domains,
3728 old_write_domain);
3729
3730 return 0;
3731
3732 err_unpin_display:
3733 WARN_ON(was_pin_display != is_pin_display(obj));
3734 obj->pin_display = was_pin_display;
3735 return ret;
3736 }
3737
3738 void
3739 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3740 {
3741 i915_gem_object_ggtt_unpin(obj);
3742 obj->pin_display = is_pin_display(obj);
3743 }
3744
3745 int
3746 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3747 {
3748 int ret;
3749
3750 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3751 return 0;
3752
3753 ret = i915_gem_object_wait_rendering(obj, false);
3754 if (ret)
3755 return ret;
3756
3757 /* Ensure that we invalidate the GPU's caches and TLBs. */
3758 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3759 return 0;
3760 }
3761
3762 /**
3763 * Moves a single object to the CPU read, and possibly write domain.
3764 *
3765 * This function returns when the move is complete, including waiting on
3766 * flushes to occur.
3767 */
3768 int
3769 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3770 {
3771 uint32_t old_write_domain, old_read_domains;
3772 int ret;
3773
3774 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3775 return 0;
3776
3777 ret = i915_gem_object_wait_rendering(obj, !write);
3778 if (ret)
3779 return ret;
3780
3781 i915_gem_object_retire(obj);
3782 i915_gem_object_flush_gtt_write_domain(obj);
3783
3784 old_write_domain = obj->base.write_domain;
3785 old_read_domains = obj->base.read_domains;
3786
3787 /* Flush the CPU cache if it's still invalid. */
3788 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3789 i915_gem_clflush_object(obj, false);
3790
3791 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3792 }
3793
3794 /* It should now be out of any other write domains, and we can update
3795 * the domain values for our changes.
3796 */
3797 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3798
3799 /* If we're writing through the CPU, then the GPU read domains will
3800 * need to be invalidated at next use.
3801 */
3802 if (write) {
3803 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3804 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3805 }
3806
3807 trace_i915_gem_object_change_domain(obj,
3808 old_read_domains,
3809 old_write_domain);
3810
3811 return 0;
3812 }
3813
3814 /* Throttle our rendering by waiting until the ring has completed our requests
3815 * emitted over 20 msec ago.
3816 *
3817 * Note that if we were to use the current jiffies each time around the loop,
3818 * we wouldn't escape the function with any frames outstanding if the time to
3819 * render a frame was over 20ms.
3820 *
3821 * This should get us reasonable parallelism between CPU and GPU but also
3822 * relatively low latency when blocking on a particular request to finish.
3823 */
3824 static int
3825 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3826 {
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 struct drm_i915_file_private *file_priv = file->driver_priv;
3829 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3830 struct drm_i915_gem_request *request;
3831 struct intel_ring_buffer *ring = NULL;
3832 unsigned reset_counter;
3833 u32 seqno = 0;
3834 int ret;
3835
3836 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3837 if (ret)
3838 return ret;
3839
3840 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3841 if (ret)
3842 return ret;
3843
3844 spin_lock(&file_priv->mm.lock);
3845 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3846 if (time_after_eq(request->emitted_jiffies, recent_enough))
3847 break;
3848
3849 ring = request->ring;
3850 seqno = request->seqno;
3851 }
3852 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3853 spin_unlock(&file_priv->mm.lock);
3854
3855 if (seqno == 0)
3856 return 0;
3857
3858 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3859 if (ret == 0)
3860 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3861
3862 return ret;
3863 }
3864
3865 int
3866 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3867 struct i915_address_space *vm,
3868 uint32_t alignment,
3869 unsigned flags)
3870 {
3871 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3872 struct i915_vma *vma;
3873 int ret;
3874
3875 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3876 return -ENODEV;
3877
3878 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3879 return -EINVAL;
3880
3881 vma = i915_gem_obj_to_vma(obj, vm);
3882 if (vma) {
3883 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3884 return -EBUSY;
3885
3886 if ((alignment &&
3887 vma->node.start & (alignment - 1)) ||
3888 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3889 WARN(vma->pin_count,
3890 "bo is already pinned with incorrect alignment:"
3891 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3892 " obj->map_and_fenceable=%d\n",
3893 i915_gem_obj_offset(obj, vm), alignment,
3894 flags & PIN_MAPPABLE,
3895 obj->map_and_fenceable);
3896 ret = i915_vma_unbind(vma);
3897 if (ret)
3898 return ret;
3899
3900 vma = NULL;
3901 }
3902 }
3903
3904 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3905 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3906 if (IS_ERR(vma))
3907 return PTR_ERR(vma);
3908 }
3909
3910 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3911 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3912
3913 vma->pin_count++;
3914 if (flags & PIN_MAPPABLE)
3915 obj->pin_mappable |= true;
3916
3917 return 0;
3918 }
3919
3920 void
3921 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3922 {
3923 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3924
3925 BUG_ON(!vma);
3926 BUG_ON(vma->pin_count == 0);
3927 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3928
3929 if (--vma->pin_count == 0)
3930 obj->pin_mappable = false;
3931 }
3932
3933 bool
3934 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3935 {
3936 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3937 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3938 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3939
3940 WARN_ON(!ggtt_vma ||
3941 dev_priv->fence_regs[obj->fence_reg].pin_count >
3942 ggtt_vma->pin_count);
3943 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3944 return true;
3945 } else
3946 return false;
3947 }
3948
3949 void
3950 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3951 {
3952 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3953 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3954 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3955 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3956 }
3957 }
3958
3959 int
3960 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3961 struct drm_file *file)
3962 {
3963 struct drm_i915_gem_pin *args = data;
3964 struct drm_i915_gem_object *obj;
3965 int ret;
3966
3967 if (INTEL_INFO(dev)->gen >= 6)
3968 return -ENODEV;
3969
3970 ret = i915_mutex_lock_interruptible(dev);
3971 if (ret)
3972 return ret;
3973
3974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3975 if (&obj->base == NULL) {
3976 ret = -ENOENT;
3977 goto unlock;
3978 }
3979
3980 if (obj->madv != I915_MADV_WILLNEED) {
3981 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3982 ret = -EFAULT;
3983 goto out;
3984 }
3985
3986 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3987 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3988 args->handle);
3989 ret = -EINVAL;
3990 goto out;
3991 }
3992
3993 if (obj->user_pin_count == ULONG_MAX) {
3994 ret = -EBUSY;
3995 goto out;
3996 }
3997
3998 if (obj->user_pin_count == 0) {
3999 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4000 if (ret)
4001 goto out;
4002 }
4003
4004 obj->user_pin_count++;
4005 obj->pin_filp = file;
4006
4007 args->offset = i915_gem_obj_ggtt_offset(obj);
4008 out:
4009 drm_gem_object_unreference(&obj->base);
4010 unlock:
4011 mutex_unlock(&dev->struct_mutex);
4012 return ret;
4013 }
4014
4015 int
4016 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4017 struct drm_file *file)
4018 {
4019 struct drm_i915_gem_pin *args = data;
4020 struct drm_i915_gem_object *obj;
4021 int ret;
4022
4023 ret = i915_mutex_lock_interruptible(dev);
4024 if (ret)
4025 return ret;
4026
4027 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4028 if (&obj->base == NULL) {
4029 ret = -ENOENT;
4030 goto unlock;
4031 }
4032
4033 if (obj->pin_filp != file) {
4034 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4035 args->handle);
4036 ret = -EINVAL;
4037 goto out;
4038 }
4039 obj->user_pin_count--;
4040 if (obj->user_pin_count == 0) {
4041 obj->pin_filp = NULL;
4042 i915_gem_object_ggtt_unpin(obj);
4043 }
4044
4045 out:
4046 drm_gem_object_unreference(&obj->base);
4047 unlock:
4048 mutex_unlock(&dev->struct_mutex);
4049 return ret;
4050 }
4051
4052 int
4053 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4054 struct drm_file *file)
4055 {
4056 struct drm_i915_gem_busy *args = data;
4057 struct drm_i915_gem_object *obj;
4058 int ret;
4059
4060 ret = i915_mutex_lock_interruptible(dev);
4061 if (ret)
4062 return ret;
4063
4064 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4065 if (&obj->base == NULL) {
4066 ret = -ENOENT;
4067 goto unlock;
4068 }
4069
4070 /* Count all active objects as busy, even if they are currently not used
4071 * by the gpu. Users of this interface expect objects to eventually
4072 * become non-busy without any further actions, therefore emit any
4073 * necessary flushes here.
4074 */
4075 ret = i915_gem_object_flush_active(obj);
4076
4077 args->busy = obj->active;
4078 if (obj->ring) {
4079 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4080 args->busy |= intel_ring_flag(obj->ring) << 16;
4081 }
4082
4083 drm_gem_object_unreference(&obj->base);
4084 unlock:
4085 mutex_unlock(&dev->struct_mutex);
4086 return ret;
4087 }
4088
4089 int
4090 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4091 struct drm_file *file_priv)
4092 {
4093 return i915_gem_ring_throttle(dev, file_priv);
4094 }
4095
4096 int
4097 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4098 struct drm_file *file_priv)
4099 {
4100 struct drm_i915_gem_madvise *args = data;
4101 struct drm_i915_gem_object *obj;
4102 int ret;
4103
4104 switch (args->madv) {
4105 case I915_MADV_DONTNEED:
4106 case I915_MADV_WILLNEED:
4107 break;
4108 default:
4109 return -EINVAL;
4110 }
4111
4112 ret = i915_mutex_lock_interruptible(dev);
4113 if (ret)
4114 return ret;
4115
4116 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4117 if (&obj->base == NULL) {
4118 ret = -ENOENT;
4119 goto unlock;
4120 }
4121
4122 if (i915_gem_obj_is_pinned(obj)) {
4123 ret = -EINVAL;
4124 goto out;
4125 }
4126
4127 if (obj->madv != __I915_MADV_PURGED)
4128 obj->madv = args->madv;
4129
4130 /* if the object is no longer attached, discard its backing storage */
4131 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4132 i915_gem_object_truncate(obj);
4133
4134 args->retained = obj->madv != __I915_MADV_PURGED;
4135
4136 out:
4137 drm_gem_object_unreference(&obj->base);
4138 unlock:
4139 mutex_unlock(&dev->struct_mutex);
4140 return ret;
4141 }
4142
4143 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4144 const struct drm_i915_gem_object_ops *ops)
4145 {
4146 INIT_LIST_HEAD(&obj->global_list);
4147 INIT_LIST_HEAD(&obj->ring_list);
4148 INIT_LIST_HEAD(&obj->obj_exec_link);
4149 INIT_LIST_HEAD(&obj->vma_list);
4150
4151 obj->ops = ops;
4152
4153 obj->fence_reg = I915_FENCE_REG_NONE;
4154 obj->madv = I915_MADV_WILLNEED;
4155 /* Avoid an unnecessary call to unbind on the first bind. */
4156 obj->map_and_fenceable = true;
4157
4158 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4159 }
4160
4161 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4162 .get_pages = i915_gem_object_get_pages_gtt,
4163 .put_pages = i915_gem_object_put_pages_gtt,
4164 };
4165
4166 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4167 size_t size)
4168 {
4169 struct drm_i915_gem_object *obj;
4170 struct address_space *mapping;
4171 gfp_t mask;
4172
4173 obj = i915_gem_object_alloc(dev);
4174 if (obj == NULL)
4175 return NULL;
4176
4177 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4178 i915_gem_object_free(obj);
4179 return NULL;
4180 }
4181
4182 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4183 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4184 /* 965gm cannot relocate objects above 4GiB. */
4185 mask &= ~__GFP_HIGHMEM;
4186 mask |= __GFP_DMA32;
4187 }
4188
4189 mapping = file_inode(obj->base.filp)->i_mapping;
4190 mapping_set_gfp_mask(mapping, mask);
4191
4192 i915_gem_object_init(obj, &i915_gem_object_ops);
4193
4194 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4195 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4196
4197 if (HAS_LLC(dev)) {
4198 /* On some devices, we can have the GPU use the LLC (the CPU
4199 * cache) for about a 10% performance improvement
4200 * compared to uncached. Graphics requests other than
4201 * display scanout are coherent with the CPU in
4202 * accessing this cache. This means in this mode we
4203 * don't need to clflush on the CPU side, and on the
4204 * GPU side we only need to flush internal caches to
4205 * get data visible to the CPU.
4206 *
4207 * However, we maintain the display planes as UC, and so
4208 * need to rebind when first used as such.
4209 */
4210 obj->cache_level = I915_CACHE_LLC;
4211 } else
4212 obj->cache_level = I915_CACHE_NONE;
4213
4214 trace_i915_gem_object_create(obj);
4215
4216 return obj;
4217 }
4218
4219 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4220 {
4221 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4222 struct drm_device *dev = obj->base.dev;
4223 struct drm_i915_private *dev_priv = dev->dev_private;
4224 struct i915_vma *vma, *next;
4225
4226 intel_runtime_pm_get(dev_priv);
4227
4228 trace_i915_gem_object_destroy(obj);
4229
4230 if (obj->phys_obj)
4231 i915_gem_detach_phys_object(dev, obj);
4232
4233 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4234 int ret;
4235
4236 vma->pin_count = 0;
4237 ret = i915_vma_unbind(vma);
4238 if (WARN_ON(ret == -ERESTARTSYS)) {
4239 bool was_interruptible;
4240
4241 was_interruptible = dev_priv->mm.interruptible;
4242 dev_priv->mm.interruptible = false;
4243
4244 WARN_ON(i915_vma_unbind(vma));
4245
4246 dev_priv->mm.interruptible = was_interruptible;
4247 }
4248 }
4249
4250 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4251 * before progressing. */
4252 if (obj->stolen)
4253 i915_gem_object_unpin_pages(obj);
4254
4255 if (WARN_ON(obj->pages_pin_count))
4256 obj->pages_pin_count = 0;
4257 i915_gem_object_put_pages(obj);
4258 i915_gem_object_free_mmap_offset(obj);
4259 i915_gem_object_release_stolen(obj);
4260
4261 BUG_ON(obj->pages);
4262
4263 if (obj->base.import_attach)
4264 drm_prime_gem_destroy(&obj->base, NULL);
4265
4266 drm_gem_object_release(&obj->base);
4267 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4268
4269 kfree(obj->bit_17);
4270 i915_gem_object_free(obj);
4271
4272 intel_runtime_pm_put(dev_priv);
4273 }
4274
4275 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4276 struct i915_address_space *vm)
4277 {
4278 struct i915_vma *vma;
4279 list_for_each_entry(vma, &obj->vma_list, vma_link)
4280 if (vma->vm == vm)
4281 return vma;
4282
4283 return NULL;
4284 }
4285
4286 void i915_gem_vma_destroy(struct i915_vma *vma)
4287 {
4288 WARN_ON(vma->node.allocated);
4289
4290 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4291 if (!list_empty(&vma->exec_list))
4292 return;
4293
4294 list_del(&vma->vma_link);
4295
4296 kfree(vma);
4297 }
4298
4299 static void
4300 i915_gem_stop_ringbuffers(struct drm_device *dev)
4301 {
4302 struct drm_i915_private *dev_priv = dev->dev_private;
4303 struct intel_ring_buffer *ring;
4304 int i;
4305
4306 for_each_ring(ring, dev_priv, i)
4307 intel_stop_ring_buffer(ring);
4308 }
4309
4310 int
4311 i915_gem_suspend(struct drm_device *dev)
4312 {
4313 struct drm_i915_private *dev_priv = dev->dev_private;
4314 int ret = 0;
4315
4316 mutex_lock(&dev->struct_mutex);
4317 if (dev_priv->ums.mm_suspended)
4318 goto err;
4319
4320 ret = i915_gpu_idle(dev);
4321 if (ret)
4322 goto err;
4323
4324 i915_gem_retire_requests(dev);
4325
4326 /* Under UMS, be paranoid and evict. */
4327 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4328 i915_gem_evict_everything(dev);
4329
4330 i915_kernel_lost_context(dev);
4331 i915_gem_stop_ringbuffers(dev);
4332
4333 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4334 * We need to replace this with a semaphore, or something.
4335 * And not confound ums.mm_suspended!
4336 */
4337 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4338 DRIVER_MODESET);
4339 mutex_unlock(&dev->struct_mutex);
4340
4341 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4342 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4343 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4344
4345 return 0;
4346
4347 err:
4348 mutex_unlock(&dev->struct_mutex);
4349 return ret;
4350 }
4351
4352 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4353 {
4354 struct drm_device *dev = ring->dev;
4355 struct drm_i915_private *dev_priv = dev->dev_private;
4356 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4357 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4358 int i, ret;
4359
4360 if (!HAS_L3_DPF(dev) || !remap_info)
4361 return 0;
4362
4363 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4364 if (ret)
4365 return ret;
4366
4367 /*
4368 * Note: We do not worry about the concurrent register cacheline hang
4369 * here because no other code should access these registers other than
4370 * at initialization time.
4371 */
4372 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4373 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4374 intel_ring_emit(ring, reg_base + i);
4375 intel_ring_emit(ring, remap_info[i/4]);
4376 }
4377
4378 intel_ring_advance(ring);
4379
4380 return ret;
4381 }
4382
4383 void i915_gem_init_swizzling(struct drm_device *dev)
4384 {
4385 struct drm_i915_private *dev_priv = dev->dev_private;
4386
4387 if (INTEL_INFO(dev)->gen < 5 ||
4388 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4389 return;
4390
4391 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4392 DISP_TILE_SURFACE_SWIZZLING);
4393
4394 if (IS_GEN5(dev))
4395 return;
4396
4397 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4398 if (IS_GEN6(dev))
4399 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4400 else if (IS_GEN7(dev))
4401 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4402 else if (IS_GEN8(dev))
4403 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4404 else
4405 BUG();
4406 }
4407
4408 static bool
4409 intel_enable_blt(struct drm_device *dev)
4410 {
4411 if (!HAS_BLT(dev))
4412 return false;
4413
4414 /* The blitter was dysfunctional on early prototypes */
4415 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4416 DRM_INFO("BLT not supported on this pre-production hardware;"
4417 " graphics performance will be degraded.\n");
4418 return false;
4419 }
4420
4421 return true;
4422 }
4423
4424 static int i915_gem_init_rings(struct drm_device *dev)
4425 {
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427 int ret;
4428
4429 ret = intel_init_render_ring_buffer(dev);
4430 if (ret)
4431 return ret;
4432
4433 if (HAS_BSD(dev)) {
4434 ret = intel_init_bsd_ring_buffer(dev);
4435 if (ret)
4436 goto cleanup_render_ring;
4437 }
4438
4439 if (intel_enable_blt(dev)) {
4440 ret = intel_init_blt_ring_buffer(dev);
4441 if (ret)
4442 goto cleanup_bsd_ring;
4443 }
4444
4445 if (HAS_VEBOX(dev)) {
4446 ret = intel_init_vebox_ring_buffer(dev);
4447 if (ret)
4448 goto cleanup_blt_ring;
4449 }
4450
4451 if (HAS_BSD2(dev)) {
4452 ret = intel_init_bsd2_ring_buffer(dev);
4453 if (ret)
4454 goto cleanup_vebox_ring;
4455 }
4456
4457 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4458 if (ret)
4459 goto cleanup_bsd2_ring;
4460
4461 return 0;
4462
4463 cleanup_bsd2_ring:
4464 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4465 cleanup_vebox_ring:
4466 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4467 cleanup_blt_ring:
4468 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4469 cleanup_bsd_ring:
4470 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4471 cleanup_render_ring:
4472 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4473
4474 return ret;
4475 }
4476
4477 int
4478 i915_gem_init_hw(struct drm_device *dev)
4479 {
4480 struct drm_i915_private *dev_priv = dev->dev_private;
4481 int ret, i;
4482
4483 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4484 return -EIO;
4485
4486 if (dev_priv->ellc_size)
4487 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4488
4489 if (IS_HASWELL(dev))
4490 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4491 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4492
4493 if (HAS_PCH_NOP(dev)) {
4494 if (IS_IVYBRIDGE(dev)) {
4495 u32 temp = I915_READ(GEN7_MSG_CTL);
4496 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4497 I915_WRITE(GEN7_MSG_CTL, temp);
4498 } else if (INTEL_INFO(dev)->gen >= 7) {
4499 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4500 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4501 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4502 }
4503 }
4504
4505 i915_gem_init_swizzling(dev);
4506
4507 ret = i915_gem_init_rings(dev);
4508 if (ret)
4509 return ret;
4510
4511 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4512 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4513
4514 /*
4515 * XXX: Contexts should only be initialized once. Doing a switch to the
4516 * default context switch however is something we'd like to do after
4517 * reset or thaw (the latter may not actually be necessary for HW, but
4518 * goes with our code better). Context switching requires rings (for
4519 * the do_switch), but before enabling PPGTT. So don't move this.
4520 */
4521 ret = i915_gem_context_enable(dev_priv);
4522 if (ret && ret != -EIO) {
4523 DRM_ERROR("Context enable failed %d\n", ret);
4524 i915_gem_cleanup_ringbuffer(dev);
4525 }
4526
4527 return ret;
4528 }
4529
4530 int i915_gem_init(struct drm_device *dev)
4531 {
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533 int ret;
4534
4535 mutex_lock(&dev->struct_mutex);
4536
4537 if (IS_VALLEYVIEW(dev)) {
4538 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4539 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4540 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4541 VLV_GTLC_ALLOWWAKEACK), 10))
4542 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4543 }
4544
4545 i915_gem_init_global_gtt(dev);
4546
4547 ret = i915_gem_context_init(dev);
4548 if (ret) {
4549 mutex_unlock(&dev->struct_mutex);
4550 return ret;
4551 }
4552
4553 ret = i915_gem_init_hw(dev);
4554 if (ret == -EIO) {
4555 /* Allow ring initialisation to fail by marking the GPU as
4556 * wedged. But we only want to do this where the GPU is angry,
4557 * for all other failure, such as an allocation failure, bail.
4558 */
4559 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4560 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4561 ret = 0;
4562 }
4563 mutex_unlock(&dev->struct_mutex);
4564
4565 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4566 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4567 dev_priv->dri1.allow_batchbuffer = 1;
4568 return ret;
4569 }
4570
4571 void
4572 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4573 {
4574 struct drm_i915_private *dev_priv = dev->dev_private;
4575 struct intel_ring_buffer *ring;
4576 int i;
4577
4578 for_each_ring(ring, dev_priv, i)
4579 intel_cleanup_ring_buffer(ring);
4580 }
4581
4582 int
4583 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4584 struct drm_file *file_priv)
4585 {
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587 int ret;
4588
4589 if (drm_core_check_feature(dev, DRIVER_MODESET))
4590 return 0;
4591
4592 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4593 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4594 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4595 }
4596
4597 mutex_lock(&dev->struct_mutex);
4598 dev_priv->ums.mm_suspended = 0;
4599
4600 ret = i915_gem_init_hw(dev);
4601 if (ret != 0) {
4602 mutex_unlock(&dev->struct_mutex);
4603 return ret;
4604 }
4605
4606 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4607
4608 ret = drm_irq_install(dev, dev->pdev->irq);
4609 if (ret)
4610 goto cleanup_ringbuffer;
4611 mutex_unlock(&dev->struct_mutex);
4612
4613 return 0;
4614
4615 cleanup_ringbuffer:
4616 i915_gem_cleanup_ringbuffer(dev);
4617 dev_priv->ums.mm_suspended = 1;
4618 mutex_unlock(&dev->struct_mutex);
4619
4620 return ret;
4621 }
4622
4623 int
4624 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4625 struct drm_file *file_priv)
4626 {
4627 if (drm_core_check_feature(dev, DRIVER_MODESET))
4628 return 0;
4629
4630 mutex_lock(&dev->struct_mutex);
4631 drm_irq_uninstall(dev);
4632 mutex_unlock(&dev->struct_mutex);
4633
4634 return i915_gem_suspend(dev);
4635 }
4636
4637 void
4638 i915_gem_lastclose(struct drm_device *dev)
4639 {
4640 int ret;
4641
4642 if (drm_core_check_feature(dev, DRIVER_MODESET))
4643 return;
4644
4645 ret = i915_gem_suspend(dev);
4646 if (ret)
4647 DRM_ERROR("failed to idle hardware: %d\n", ret);
4648 }
4649
4650 static void
4651 init_ring_lists(struct intel_ring_buffer *ring)
4652 {
4653 INIT_LIST_HEAD(&ring->active_list);
4654 INIT_LIST_HEAD(&ring->request_list);
4655 }
4656
4657 void i915_init_vm(struct drm_i915_private *dev_priv,
4658 struct i915_address_space *vm)
4659 {
4660 if (!i915_is_ggtt(vm))
4661 drm_mm_init(&vm->mm, vm->start, vm->total);
4662 vm->dev = dev_priv->dev;
4663 INIT_LIST_HEAD(&vm->active_list);
4664 INIT_LIST_HEAD(&vm->inactive_list);
4665 INIT_LIST_HEAD(&vm->global_link);
4666 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4667 }
4668
4669 void
4670 i915_gem_load(struct drm_device *dev)
4671 {
4672 struct drm_i915_private *dev_priv = dev->dev_private;
4673 int i;
4674
4675 dev_priv->slab =
4676 kmem_cache_create("i915_gem_object",
4677 sizeof(struct drm_i915_gem_object), 0,
4678 SLAB_HWCACHE_ALIGN,
4679 NULL);
4680
4681 INIT_LIST_HEAD(&dev_priv->vm_list);
4682 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4683
4684 INIT_LIST_HEAD(&dev_priv->context_list);
4685 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4686 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4687 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4688 for (i = 0; i < I915_NUM_RINGS; i++)
4689 init_ring_lists(&dev_priv->ring[i]);
4690 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4691 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4692 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4693 i915_gem_retire_work_handler);
4694 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4695 i915_gem_idle_work_handler);
4696 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4697
4698 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4699 if (IS_GEN3(dev)) {
4700 I915_WRITE(MI_ARB_STATE,
4701 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4702 }
4703
4704 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4705
4706 /* Old X drivers will take 0-2 for front, back, depth buffers */
4707 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4708 dev_priv->fence_reg_start = 3;
4709
4710 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4711 dev_priv->num_fence_regs = 32;
4712 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4713 dev_priv->num_fence_regs = 16;
4714 else
4715 dev_priv->num_fence_regs = 8;
4716
4717 /* Initialize fence registers to zero */
4718 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4719 i915_gem_restore_fences(dev);
4720
4721 i915_gem_detect_bit_6_swizzle(dev);
4722 init_waitqueue_head(&dev_priv->pending_flip_queue);
4723
4724 dev_priv->mm.interruptible = true;
4725
4726 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4727 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4728 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4729 register_shrinker(&dev_priv->mm.inactive_shrinker);
4730 }
4731
4732 /*
4733 * Create a physically contiguous memory object for this object
4734 * e.g. for cursor + overlay regs
4735 */
4736 static int i915_gem_init_phys_object(struct drm_device *dev,
4737 int id, int size, int align)
4738 {
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740 struct drm_i915_gem_phys_object *phys_obj;
4741 int ret;
4742
4743 if (dev_priv->mm.phys_objs[id - 1] || !size)
4744 return 0;
4745
4746 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4747 if (!phys_obj)
4748 return -ENOMEM;
4749
4750 phys_obj->id = id;
4751
4752 phys_obj->handle = drm_pci_alloc(dev, size, align);
4753 if (!phys_obj->handle) {
4754 ret = -ENOMEM;
4755 goto kfree_obj;
4756 }
4757 #ifdef CONFIG_X86
4758 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4759 #endif
4760
4761 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4762
4763 return 0;
4764 kfree_obj:
4765 kfree(phys_obj);
4766 return ret;
4767 }
4768
4769 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4770 {
4771 struct drm_i915_private *dev_priv = dev->dev_private;
4772 struct drm_i915_gem_phys_object *phys_obj;
4773
4774 if (!dev_priv->mm.phys_objs[id - 1])
4775 return;
4776
4777 phys_obj = dev_priv->mm.phys_objs[id - 1];
4778 if (phys_obj->cur_obj) {
4779 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4780 }
4781
4782 #ifdef CONFIG_X86
4783 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4784 #endif
4785 drm_pci_free(dev, phys_obj->handle);
4786 kfree(phys_obj);
4787 dev_priv->mm.phys_objs[id - 1] = NULL;
4788 }
4789
4790 void i915_gem_free_all_phys_object(struct drm_device *dev)
4791 {
4792 int i;
4793
4794 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4795 i915_gem_free_phys_object(dev, i);
4796 }
4797
4798 void i915_gem_detach_phys_object(struct drm_device *dev,
4799 struct drm_i915_gem_object *obj)
4800 {
4801 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4802 char *vaddr;
4803 int i;
4804 int page_count;
4805
4806 if (!obj->phys_obj)
4807 return;
4808 vaddr = obj->phys_obj->handle->vaddr;
4809
4810 page_count = obj->base.size / PAGE_SIZE;
4811 for (i = 0; i < page_count; i++) {
4812 struct page *page = shmem_read_mapping_page(mapping, i);
4813 if (!IS_ERR(page)) {
4814 char *dst = kmap_atomic(page);
4815 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4816 kunmap_atomic(dst);
4817
4818 drm_clflush_pages(&page, 1);
4819
4820 set_page_dirty(page);
4821 mark_page_accessed(page);
4822 page_cache_release(page);
4823 }
4824 }
4825 i915_gem_chipset_flush(dev);
4826
4827 obj->phys_obj->cur_obj = NULL;
4828 obj->phys_obj = NULL;
4829 }
4830
4831 int
4832 i915_gem_attach_phys_object(struct drm_device *dev,
4833 struct drm_i915_gem_object *obj,
4834 int id,
4835 int align)
4836 {
4837 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4838 struct drm_i915_private *dev_priv = dev->dev_private;
4839 int ret = 0;
4840 int page_count;
4841 int i;
4842
4843 if (id > I915_MAX_PHYS_OBJECT)
4844 return -EINVAL;
4845
4846 if (obj->phys_obj) {
4847 if (obj->phys_obj->id == id)
4848 return 0;
4849 i915_gem_detach_phys_object(dev, obj);
4850 }
4851
4852 /* create a new object */
4853 if (!dev_priv->mm.phys_objs[id - 1]) {
4854 ret = i915_gem_init_phys_object(dev, id,
4855 obj->base.size, align);
4856 if (ret) {
4857 DRM_ERROR("failed to init phys object %d size: %zu\n",
4858 id, obj->base.size);
4859 return ret;
4860 }
4861 }
4862
4863 /* bind to the object */
4864 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4865 obj->phys_obj->cur_obj = obj;
4866
4867 page_count = obj->base.size / PAGE_SIZE;
4868
4869 for (i = 0; i < page_count; i++) {
4870 struct page *page;
4871 char *dst, *src;
4872
4873 page = shmem_read_mapping_page(mapping, i);
4874 if (IS_ERR(page))
4875 return PTR_ERR(page);
4876
4877 src = kmap_atomic(page);
4878 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4879 memcpy(dst, src, PAGE_SIZE);
4880 kunmap_atomic(src);
4881
4882 mark_page_accessed(page);
4883 page_cache_release(page);
4884 }
4885
4886 return 0;
4887 }
4888
4889 static int
4890 i915_gem_phys_pwrite(struct drm_device *dev,
4891 struct drm_i915_gem_object *obj,
4892 struct drm_i915_gem_pwrite *args,
4893 struct drm_file *file_priv)
4894 {
4895 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4896 char __user *user_data = to_user_ptr(args->data_ptr);
4897
4898 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4899 unsigned long unwritten;
4900
4901 /* The physical object once assigned is fixed for the lifetime
4902 * of the obj, so we can safely drop the lock and continue
4903 * to access vaddr.
4904 */
4905 mutex_unlock(&dev->struct_mutex);
4906 unwritten = copy_from_user(vaddr, user_data, args->size);
4907 mutex_lock(&dev->struct_mutex);
4908 if (unwritten)
4909 return -EFAULT;
4910 }
4911
4912 i915_gem_chipset_flush(dev);
4913 return 0;
4914 }
4915
4916 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4917 {
4918 struct drm_i915_file_private *file_priv = file->driver_priv;
4919
4920 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4921
4922 /* Clean up our request list when the client is going away, so that
4923 * later retire_requests won't dereference our soon-to-be-gone
4924 * file_priv.
4925 */
4926 spin_lock(&file_priv->mm.lock);
4927 while (!list_empty(&file_priv->mm.request_list)) {
4928 struct drm_i915_gem_request *request;
4929
4930 request = list_first_entry(&file_priv->mm.request_list,
4931 struct drm_i915_gem_request,
4932 client_list);
4933 list_del(&request->client_list);
4934 request->file_priv = NULL;
4935 }
4936 spin_unlock(&file_priv->mm.lock);
4937 }
4938
4939 static void
4940 i915_gem_file_idle_work_handler(struct work_struct *work)
4941 {
4942 struct drm_i915_file_private *file_priv =
4943 container_of(work, typeof(*file_priv), mm.idle_work.work);
4944
4945 atomic_set(&file_priv->rps_wait_boost, false);
4946 }
4947
4948 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4949 {
4950 struct drm_i915_file_private *file_priv;
4951 int ret;
4952
4953 DRM_DEBUG_DRIVER("\n");
4954
4955 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4956 if (!file_priv)
4957 return -ENOMEM;
4958
4959 file->driver_priv = file_priv;
4960 file_priv->dev_priv = dev->dev_private;
4961 file_priv->file = file;
4962
4963 spin_lock_init(&file_priv->mm.lock);
4964 INIT_LIST_HEAD(&file_priv->mm.request_list);
4965 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4966 i915_gem_file_idle_work_handler);
4967
4968 ret = i915_gem_context_open(dev, file);
4969 if (ret)
4970 kfree(file_priv);
4971
4972 return ret;
4973 }
4974
4975 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4976 {
4977 if (!mutex_is_locked(mutex))
4978 return false;
4979
4980 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4981 return mutex->owner == task;
4982 #else
4983 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4984 return false;
4985 #endif
4986 }
4987
4988 static unsigned long
4989 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4990 {
4991 struct drm_i915_private *dev_priv =
4992 container_of(shrinker,
4993 struct drm_i915_private,
4994 mm.inactive_shrinker);
4995 struct drm_device *dev = dev_priv->dev;
4996 struct drm_i915_gem_object *obj;
4997 bool unlock = true;
4998 unsigned long count;
4999
5000 if (!mutex_trylock(&dev->struct_mutex)) {
5001 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5002 return 0;
5003
5004 if (dev_priv->mm.shrinker_no_lock_stealing)
5005 return 0;
5006
5007 unlock = false;
5008 }
5009
5010 count = 0;
5011 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5012 if (obj->pages_pin_count == 0)
5013 count += obj->base.size >> PAGE_SHIFT;
5014
5015 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5016 if (obj->active)
5017 continue;
5018
5019 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
5020 count += obj->base.size >> PAGE_SHIFT;
5021 }
5022
5023 if (unlock)
5024 mutex_unlock(&dev->struct_mutex);
5025
5026 return count;
5027 }
5028
5029 /* All the new VM stuff */
5030 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5031 struct i915_address_space *vm)
5032 {
5033 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5034 struct i915_vma *vma;
5035
5036 if (!dev_priv->mm.aliasing_ppgtt ||
5037 vm == &dev_priv->mm.aliasing_ppgtt->base)
5038 vm = &dev_priv->gtt.base;
5039
5040 BUG_ON(list_empty(&o->vma_list));
5041 list_for_each_entry(vma, &o->vma_list, vma_link) {
5042 if (vma->vm == vm)
5043 return vma->node.start;
5044
5045 }
5046 return -1;
5047 }
5048
5049 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5050 struct i915_address_space *vm)
5051 {
5052 struct i915_vma *vma;
5053
5054 list_for_each_entry(vma, &o->vma_list, vma_link)
5055 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5056 return true;
5057
5058 return false;
5059 }
5060
5061 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5062 {
5063 struct i915_vma *vma;
5064
5065 list_for_each_entry(vma, &o->vma_list, vma_link)
5066 if (drm_mm_node_allocated(&vma->node))
5067 return true;
5068
5069 return false;
5070 }
5071
5072 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5073 struct i915_address_space *vm)
5074 {
5075 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5076 struct i915_vma *vma;
5077
5078 if (!dev_priv->mm.aliasing_ppgtt ||
5079 vm == &dev_priv->mm.aliasing_ppgtt->base)
5080 vm = &dev_priv->gtt.base;
5081
5082 BUG_ON(list_empty(&o->vma_list));
5083
5084 list_for_each_entry(vma, &o->vma_list, vma_link)
5085 if (vma->vm == vm)
5086 return vma->node.size;
5087
5088 return 0;
5089 }
5090
5091 static unsigned long
5092 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5093 {
5094 struct drm_i915_private *dev_priv =
5095 container_of(shrinker,
5096 struct drm_i915_private,
5097 mm.inactive_shrinker);
5098 struct drm_device *dev = dev_priv->dev;
5099 unsigned long freed;
5100 bool unlock = true;
5101
5102 if (!mutex_trylock(&dev->struct_mutex)) {
5103 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5104 return SHRINK_STOP;
5105
5106 if (dev_priv->mm.shrinker_no_lock_stealing)
5107 return SHRINK_STOP;
5108
5109 unlock = false;
5110 }
5111
5112 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5113 if (freed < sc->nr_to_scan)
5114 freed += __i915_gem_shrink(dev_priv,
5115 sc->nr_to_scan - freed,
5116 false);
5117 if (freed < sc->nr_to_scan)
5118 freed += i915_gem_shrink_all(dev_priv);
5119
5120 if (unlock)
5121 mutex_unlock(&dev->struct_mutex);
5122
5123 return freed;
5124 }
5125
5126 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5127 {
5128 struct i915_vma *vma;
5129
5130 /* This WARN has probably outlived its usefulness (callers already
5131 * WARN if they don't find the GGTT vma they expect). When removing,
5132 * remember to remove the pre-check in is_pin_display() as well */
5133 if (WARN_ON(list_empty(&obj->vma_list)))
5134 return NULL;
5135
5136 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5137 if (vma->vm != obj_to_ggtt(obj))
5138 return NULL;
5139
5140 return vma;
5141 }
This page took 0.146926 seconds and 5 git commands to generate.