drm/i915: change i915_add_request to macro
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error))
95 if (EXIT_COND)
96 return 0;
97
98 /* GPU is already declared terminally dead, give up. */
99 if (i915_terminally_wedged(error))
100 return -EIO;
101
102 /*
103 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104 * userspace. If it takes that long something really bad is going on and
105 * we should simply try to bail out and fail as gracefully as possible.
106 */
107 ret = wait_event_interruptible_timeout(error->reset_queue,
108 EXIT_COND,
109 10*HZ);
110 if (ret == 0) {
111 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112 return -EIO;
113 } else if (ret < 0) {
114 return ret;
115 }
116 #undef EXIT_COND
117
118 return 0;
119 }
120
121 int i915_mutex_lock_interruptible(struct drm_device *dev)
122 {
123 struct drm_i915_private *dev_priv = dev->dev_private;
124 int ret;
125
126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
127 if (ret)
128 return ret;
129
130 ret = mutex_lock_interruptible(&dev->struct_mutex);
131 if (ret)
132 return ret;
133
134 WARN_ON(i915_verify_lists(dev));
135 return 0;
136 }
137
138 static inline bool
139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
140 {
141 return obj->gtt_space && !obj->active;
142 }
143
144 int
145 i915_gem_init_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file)
147 {
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 struct drm_i915_gem_init *args = data;
150
151 if (drm_core_check_feature(dev, DRIVER_MODESET))
152 return -ENODEV;
153
154 if (args->gtt_start >= args->gtt_end ||
155 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156 return -EINVAL;
157
158 /* GEM with user mode setting was never supported on ilk and later. */
159 if (INTEL_INFO(dev)->gen >= 5)
160 return -ENODEV;
161
162 mutex_lock(&dev->struct_mutex);
163 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164 args->gtt_end);
165 dev_priv->gtt.mappable_end = args->gtt_end;
166 mutex_unlock(&dev->struct_mutex);
167
168 return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173 struct drm_file *file)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct drm_i915_gem_get_aperture *args = data;
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
179
180 pinned = 0;
181 mutex_lock(&dev->struct_mutex);
182 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
185 mutex_unlock(&dev->struct_mutex);
186
187 args->aper_size = dev_priv->gtt.total;
188 args->aper_available_size = args->aper_size - pinned;
189
190 return 0;
191 }
192
193 void *i915_gem_object_alloc(struct drm_device *dev)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197 }
198
199 void i915_gem_object_free(struct drm_i915_gem_object *obj)
200 {
201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202 kmem_cache_free(dev_priv->slab, obj);
203 }
204
205 static int
206 i915_gem_create(struct drm_file *file,
207 struct drm_device *dev,
208 uint64_t size,
209 uint32_t *handle_p)
210 {
211 struct drm_i915_gem_object *obj;
212 int ret;
213 u32 handle;
214
215 size = roundup(size, PAGE_SIZE);
216 if (size == 0)
217 return -EINVAL;
218
219 /* Allocate the new object */
220 obj = i915_gem_alloc_object(dev, size);
221 if (obj == NULL)
222 return -ENOMEM;
223
224 ret = drm_gem_handle_create(file, &obj->base, &handle);
225 if (ret) {
226 drm_gem_object_release(&obj->base);
227 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
228 i915_gem_object_free(obj);
229 return ret;
230 }
231
232 /* drop reference from allocate - handle holds it now */
233 drm_gem_object_unreference(&obj->base);
234 trace_i915_gem_object_create(obj);
235
236 *handle_p = handle;
237 return 0;
238 }
239
240 int
241 i915_gem_dumb_create(struct drm_file *file,
242 struct drm_device *dev,
243 struct drm_mode_create_dumb *args)
244 {
245 /* have to work out size/pitch and return them */
246 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
247 args->size = args->pitch * args->height;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 int i915_gem_dumb_destroy(struct drm_file *file,
253 struct drm_device *dev,
254 uint32_t handle)
255 {
256 return drm_gem_handle_delete(file, handle);
257 }
258
259 /**
260 * Creates a new mm object and returns a handle to it.
261 */
262 int
263 i915_gem_create_ioctl(struct drm_device *dev, void *data,
264 struct drm_file *file)
265 {
266 struct drm_i915_gem_create *args = data;
267
268 return i915_gem_create(file, dev,
269 args->size, &args->handle);
270 }
271
272 static inline int
273 __copy_to_user_swizzled(char __user *cpu_vaddr,
274 const char *gpu_vaddr, int gpu_offset,
275 int length)
276 {
277 int ret, cpu_offset = 0;
278
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285 gpu_vaddr + swizzled_gpu_offset,
286 this_length);
287 if (ret)
288 return ret + length;
289
290 cpu_offset += this_length;
291 gpu_offset += this_length;
292 length -= this_length;
293 }
294
295 return 0;
296 }
297
298 static inline int
299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300 const char __user *cpu_vaddr,
301 int length)
302 {
303 int ret, cpu_offset = 0;
304
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311 cpu_vaddr + cpu_offset,
312 this_length);
313 if (ret)
314 return ret + length;
315
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
321 return 0;
322 }
323
324 /* Per-page copy function for the shmem pread fastpath.
325 * Flushes invalid cachelines before reading the target if
326 * needs_clflush is set. */
327 static int
328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329 char __user *user_data,
330 bool page_do_bit17_swizzling, bool needs_clflush)
331 {
332 char *vaddr;
333 int ret;
334
335 if (unlikely(page_do_bit17_swizzling))
336 return -EINVAL;
337
338 vaddr = kmap_atomic(page);
339 if (needs_clflush)
340 drm_clflush_virt_range(vaddr + shmem_page_offset,
341 page_length);
342 ret = __copy_to_user_inatomic(user_data,
343 vaddr + shmem_page_offset,
344 page_length);
345 kunmap_atomic(vaddr);
346
347 return ret ? -EFAULT : 0;
348 }
349
350 static void
351 shmem_clflush_swizzled_range(char *addr, unsigned long length,
352 bool swizzled)
353 {
354 if (unlikely(swizzled)) {
355 unsigned long start = (unsigned long) addr;
356 unsigned long end = (unsigned long) addr + length;
357
358 /* For swizzling simply ensure that we always flush both
359 * channels. Lame, but simple and it works. Swizzled
360 * pwrite/pread is far from a hotpath - current userspace
361 * doesn't use it at all. */
362 start = round_down(start, 128);
363 end = round_up(end, 128);
364
365 drm_clflush_virt_range((void *)start, end - start);
366 } else {
367 drm_clflush_virt_range(addr, length);
368 }
369
370 }
371
372 /* Only difference to the fast-path function is that this can handle bit17
373 * and uses non-atomic copy and kmap functions. */
374 static int
375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376 char __user *user_data,
377 bool page_do_bit17_swizzling, bool needs_clflush)
378 {
379 char *vaddr;
380 int ret;
381
382 vaddr = kmap(page);
383 if (needs_clflush)
384 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385 page_length,
386 page_do_bit17_swizzling);
387
388 if (page_do_bit17_swizzling)
389 ret = __copy_to_user_swizzled(user_data,
390 vaddr, shmem_page_offset,
391 page_length);
392 else
393 ret = __copy_to_user(user_data,
394 vaddr + shmem_page_offset,
395 page_length);
396 kunmap(page);
397
398 return ret ? - EFAULT : 0;
399 }
400
401 static int
402 i915_gem_shmem_pread(struct drm_device *dev,
403 struct drm_i915_gem_object *obj,
404 struct drm_i915_gem_pread *args,
405 struct drm_file *file)
406 {
407 char __user *user_data;
408 ssize_t remain;
409 loff_t offset;
410 int shmem_page_offset, page_length, ret = 0;
411 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412 int prefaulted = 0;
413 int needs_clflush = 0;
414 struct sg_page_iter sg_iter;
415
416 user_data = to_user_ptr(args->data_ptr);
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
444 offset >> PAGE_SHIFT) {
445 struct page *page = sg_page_iter_page(&sg_iter);
446
447 if (remain <= 0)
448 break;
449
450 /* Operation in this page
451 *
452 * shmem_page_offset = offset within page in shmem file
453 * page_length = bytes to copy for this page
454 */
455 shmem_page_offset = offset_in_page(offset);
456 page_length = remain;
457 if ((shmem_page_offset + page_length) > PAGE_SIZE)
458 page_length = PAGE_SIZE - shmem_page_offset;
459
460 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
461 (page_to_phys(page) & (1 << 17)) != 0;
462
463 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
464 user_data, page_do_bit17_swizzling,
465 needs_clflush);
466 if (ret == 0)
467 goto next_page;
468
469 mutex_unlock(&dev->struct_mutex);
470
471 if (!prefaulted) {
472 ret = fault_in_multipages_writeable(user_data, remain);
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
480
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
484
485 mutex_lock(&dev->struct_mutex);
486
487 next_page:
488 mark_page_accessed(page);
489
490 if (ret)
491 goto out;
492
493 remain -= page_length;
494 user_data += page_length;
495 offset += page_length;
496 }
497
498 out:
499 i915_gem_object_unpin_pages(obj);
500
501 return ret;
502 }
503
504 /**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509 int
510 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511 struct drm_file *file)
512 {
513 struct drm_i915_gem_pread *args = data;
514 struct drm_i915_gem_object *obj;
515 int ret = 0;
516
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 to_user_ptr(args->data_ptr),
522 args->size))
523 return -EFAULT;
524
525 ret = i915_mutex_lock_interruptible(dev);
526 if (ret)
527 return ret;
528
529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530 if (&obj->base == NULL) {
531 ret = -ENOENT;
532 goto unlock;
533 }
534
535 /* Bounds check source. */
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_shmem_pread(dev, obj, args, file);
553
554 out:
555 drm_gem_object_unreference(&obj->base);
556 unlock:
557 mutex_unlock(&dev->struct_mutex);
558 return ret;
559 }
560
561 /* This is the fast write path which cannot handle
562 * page faults in the source data
563 */
564
565 static inline int
566 fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
570 {
571 void __iomem *vaddr_atomic;
572 void *vaddr;
573 unsigned long unwritten;
574
575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
579 user_data, length);
580 io_mapping_unmap_atomic(vaddr_atomic);
581 return unwritten;
582 }
583
584 /**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
588 static int
589 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pwrite *args,
592 struct drm_file *file)
593 {
594 drm_i915_private_t *dev_priv = dev->dev_private;
595 ssize_t remain;
596 loff_t offset, page_base;
597 char __user *user_data;
598 int page_offset, page_length, ret;
599
600 ret = i915_gem_object_pin(obj, 0, true, true);
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
611
612 user_data = to_user_ptr(args->data_ptr);
613 remain = args->size;
614
615 offset = obj->gtt_offset + args->offset;
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
623 */
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
630 /* If we get a fault while copying data, then (presumably) our
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
633 */
634 if (fast_user_write(dev_priv->gtt.mappable, page_base,
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
639
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out_unpin:
646 i915_gem_object_unpin(obj);
647 out:
648 return ret;
649 }
650
651 /* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
655 static int
656 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661 {
662 char *vaddr;
663 int ret;
664
665 if (unlikely(page_do_bit17_swizzling))
666 return -EINVAL;
667
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
679
680 return ret ? -EFAULT : 0;
681 }
682
683 /* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
685 static int
686 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
691 {
692 char *vaddr;
693 int ret;
694
695 vaddr = kmap(page);
696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 user_data,
703 page_length);
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
712 kunmap(page);
713
714 return ret ? -EFAULT : 0;
715 }
716
717 static int
718 i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
722 {
723 ssize_t remain;
724 loff_t offset;
725 char __user *user_data;
726 int shmem_page_offset, page_length, ret = 0;
727 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
728 int hit_slowpath = 0;
729 int needs_clflush_after = 0;
730 int needs_clflush_before = 0;
731 struct sg_page_iter sg_iter;
732
733 user_data = to_user_ptr(args->data_ptr);
734 remain = args->size;
735
736 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
737
738 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
739 /* If we're not in the cpu write domain, set ourself into the gtt
740 * write domain and manually flush cachelines (if required). This
741 * optimizes for the case when the gpu will use the data
742 * right away and we therefore have to clflush anyway. */
743 if (obj->cache_level == I915_CACHE_NONE)
744 needs_clflush_after = 1;
745 if (obj->gtt_space) {
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
750 }
751 /* Same trick applies for invalidate partially written cachelines before
752 * writing. */
753 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
754 && obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_before = 1;
756
757 ret = i915_gem_object_get_pages(obj);
758 if (ret)
759 return ret;
760
761 i915_gem_object_pin_pages(obj);
762
763 offset = args->offset;
764 obj->dirty = 1;
765
766 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
767 offset >> PAGE_SHIFT) {
768 struct page *page = sg_page_iter_page(&sg_iter);
769 int partial_cacheline_write;
770
771 if (remain <= 0)
772 break;
773
774 /* Operation in this page
775 *
776 * shmem_page_offset = offset within page in shmem file
777 * page_length = bytes to copy for this page
778 */
779 shmem_page_offset = offset_in_page(offset);
780
781 page_length = remain;
782 if ((shmem_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - shmem_page_offset;
784
785 /* If we don't overwrite a cacheline completely we need to be
786 * careful to have up-to-date data by first clflushing. Don't
787 * overcomplicate things and flush the entire patch. */
788 partial_cacheline_write = needs_clflush_before &&
789 ((shmem_page_offset | page_length)
790 & (boot_cpu_data.x86_clflush_size - 1));
791
792 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
793 (page_to_phys(page) & (1 << 17)) != 0;
794
795 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
796 user_data, page_do_bit17_swizzling,
797 partial_cacheline_write,
798 needs_clflush_after);
799 if (ret == 0)
800 goto next_page;
801
802 hit_slowpath = 1;
803 mutex_unlock(&dev->struct_mutex);
804 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808
809 mutex_lock(&dev->struct_mutex);
810
811 next_page:
812 set_page_dirty(page);
813 mark_page_accessed(page);
814
815 if (ret)
816 goto out;
817
818 remain -= page_length;
819 user_data += page_length;
820 offset += page_length;
821 }
822
823 out:
824 i915_gem_object_unpin_pages(obj);
825
826 if (hit_slowpath) {
827 /*
828 * Fixup: Flush cpu caches in case we didn't flush the dirty
829 * cachelines in-line while writing and the object moved
830 * out of the cpu write domain while we've dropped the lock.
831 */
832 if (!needs_clflush_after &&
833 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
834 i915_gem_clflush_object(obj);
835 i915_gem_chipset_flush(dev);
836 }
837 }
838
839 if (needs_clflush_after)
840 i915_gem_chipset_flush(dev);
841
842 return ret;
843 }
844
845 /**
846 * Writes data to the object referenced by handle.
847 *
848 * On error, the contents of the buffer that were to be modified are undefined.
849 */
850 int
851 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
852 struct drm_file *file)
853 {
854 struct drm_i915_gem_pwrite *args = data;
855 struct drm_i915_gem_object *obj;
856 int ret;
857
858 if (args->size == 0)
859 return 0;
860
861 if (!access_ok(VERIFY_READ,
862 to_user_ptr(args->data_ptr),
863 args->size))
864 return -EFAULT;
865
866 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
867 args->size);
868 if (ret)
869 return -EFAULT;
870
871 ret = i915_mutex_lock_interruptible(dev);
872 if (ret)
873 return ret;
874
875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
876 if (&obj->base == NULL) {
877 ret = -ENOENT;
878 goto unlock;
879 }
880
881 /* Bounds check destination. */
882 if (args->offset > obj->base.size ||
883 args->size > obj->base.size - args->offset) {
884 ret = -EINVAL;
885 goto out;
886 }
887
888 /* prime objects have no backing filp to GEM pread/pwrite
889 * pages from.
890 */
891 if (!obj->base.filp) {
892 ret = -EINVAL;
893 goto out;
894 }
895
896 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
897
898 ret = -EFAULT;
899 /* We can only do the GTT pwrite on untiled buffers, as otherwise
900 * it would end up going through the fenced access, and we'll get
901 * different detiling behavior between reading and writing.
902 * pread/pwrite currently are reading and writing from the CPU
903 * perspective, requiring manual detiling by the client.
904 */
905 if (obj->phys_obj) {
906 ret = i915_gem_phys_pwrite(dev, obj, args, file);
907 goto out;
908 }
909
910 if (obj->cache_level == I915_CACHE_NONE &&
911 obj->tiling_mode == I915_TILING_NONE &&
912 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
913 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
914 /* Note that the gtt paths might fail with non-page-backed user
915 * pointers (e.g. gtt mappings when moving data between
916 * textures). Fallback to the shmem path in that case. */
917 }
918
919 if (ret == -EFAULT || ret == -ENOSPC)
920 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
921
922 out:
923 drm_gem_object_unreference(&obj->base);
924 unlock:
925 mutex_unlock(&dev->struct_mutex);
926 return ret;
927 }
928
929 int
930 i915_gem_check_wedge(struct i915_gpu_error *error,
931 bool interruptible)
932 {
933 if (i915_reset_in_progress(error)) {
934 /* Non-interruptible callers can't handle -EAGAIN, hence return
935 * -EIO unconditionally for these. */
936 if (!interruptible)
937 return -EIO;
938
939 /* Recovery complete, but the reset failed ... */
940 if (i915_terminally_wedged(error))
941 return -EIO;
942
943 return -EAGAIN;
944 }
945
946 return 0;
947 }
948
949 /*
950 * Compare seqno against outstanding lazy request. Emit a request if they are
951 * equal.
952 */
953 static int
954 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
955 {
956 int ret;
957
958 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
959
960 ret = 0;
961 if (seqno == ring->outstanding_lazy_request)
962 ret = i915_add_request(ring, NULL);
963
964 return ret;
965 }
966
967 /**
968 * __wait_seqno - wait until execution of seqno has finished
969 * @ring: the ring expected to report seqno
970 * @seqno: duh!
971 * @reset_counter: reset sequence associated with the given seqno
972 * @interruptible: do an interruptible wait (normally yes)
973 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
974 *
975 * Note: It is of utmost importance that the passed in seqno and reset_counter
976 * values have been read by the caller in an smp safe manner. Where read-side
977 * locks are involved, it is sufficient to read the reset_counter before
978 * unlocking the lock that protects the seqno. For lockless tricks, the
979 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
980 * inserted.
981 *
982 * Returns 0 if the seqno was found within the alloted time. Else returns the
983 * errno with remaining time filled in timeout argument.
984 */
985 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
986 unsigned reset_counter,
987 bool interruptible, struct timespec *timeout)
988 {
989 drm_i915_private_t *dev_priv = ring->dev->dev_private;
990 struct timespec before, now, wait_time={1,0};
991 unsigned long timeout_jiffies;
992 long end;
993 bool wait_forever = true;
994 int ret;
995
996 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
997 return 0;
998
999 trace_i915_gem_request_wait_begin(ring, seqno);
1000
1001 if (timeout != NULL) {
1002 wait_time = *timeout;
1003 wait_forever = false;
1004 }
1005
1006 timeout_jiffies = timespec_to_jiffies(&wait_time);
1007
1008 if (WARN_ON(!ring->irq_get(ring)))
1009 return -ENODEV;
1010
1011 /* Record current time in case interrupted by signal, or wedged * */
1012 getrawmonotonic(&before);
1013
1014 #define EXIT_COND \
1015 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1016 i915_reset_in_progress(&dev_priv->gpu_error) || \
1017 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1018 do {
1019 if (interruptible)
1020 end = wait_event_interruptible_timeout(ring->irq_queue,
1021 EXIT_COND,
1022 timeout_jiffies);
1023 else
1024 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1025 timeout_jiffies);
1026
1027 /* We need to check whether any gpu reset happened in between
1028 * the caller grabbing the seqno and now ... */
1029 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1030 end = -EAGAIN;
1031
1032 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1033 * gone. */
1034 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1035 if (ret)
1036 end = ret;
1037 } while (end == 0 && wait_forever);
1038
1039 getrawmonotonic(&now);
1040
1041 ring->irq_put(ring);
1042 trace_i915_gem_request_wait_end(ring, seqno);
1043 #undef EXIT_COND
1044
1045 if (timeout) {
1046 struct timespec sleep_time = timespec_sub(now, before);
1047 *timeout = timespec_sub(*timeout, sleep_time);
1048 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1049 set_normalized_timespec(timeout, 0, 0);
1050 }
1051
1052 switch (end) {
1053 case -EIO:
1054 case -EAGAIN: /* Wedged */
1055 case -ERESTARTSYS: /* Signal */
1056 return (int)end;
1057 case 0: /* Timeout */
1058 return -ETIME;
1059 default: /* Completed */
1060 WARN_ON(end < 0); /* We're not aware of other errors */
1061 return 0;
1062 }
1063 }
1064
1065 /**
1066 * Waits for a sequence number to be signaled, and cleans up the
1067 * request and object lists appropriately for that event.
1068 */
1069 int
1070 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1071 {
1072 struct drm_device *dev = ring->dev;
1073 struct drm_i915_private *dev_priv = dev->dev_private;
1074 bool interruptible = dev_priv->mm.interruptible;
1075 int ret;
1076
1077 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1078 BUG_ON(seqno == 0);
1079
1080 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1081 if (ret)
1082 return ret;
1083
1084 ret = i915_gem_check_olr(ring, seqno);
1085 if (ret)
1086 return ret;
1087
1088 return __wait_seqno(ring, seqno,
1089 atomic_read(&dev_priv->gpu_error.reset_counter),
1090 interruptible, NULL);
1091 }
1092
1093 /**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100 {
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133 {
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
1137 unsigned reset_counter;
1138 u32 seqno;
1139 int ret;
1140
1141 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1142 BUG_ON(!dev_priv->mm.interruptible);
1143
1144 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1145 if (seqno == 0)
1146 return 0;
1147
1148 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1149 if (ret)
1150 return ret;
1151
1152 ret = i915_gem_check_olr(ring, seqno);
1153 if (ret)
1154 return ret;
1155
1156 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1157 mutex_unlock(&dev->struct_mutex);
1158 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1159 mutex_lock(&dev->struct_mutex);
1160
1161 i915_gem_retire_requests_ring(ring);
1162
1163 /* Manually manage the write flush as we may have not yet
1164 * retired the buffer.
1165 */
1166 if (obj->last_write_seqno &&
1167 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1168 obj->last_write_seqno = 0;
1169 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1170 }
1171
1172 return ret;
1173 }
1174
1175 /**
1176 * Called when user space prepares to use an object with the CPU, either
1177 * through the mmap ioctl's mapping or a GTT mapping.
1178 */
1179 int
1180 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1181 struct drm_file *file)
1182 {
1183 struct drm_i915_gem_set_domain *args = data;
1184 struct drm_i915_gem_object *obj;
1185 uint32_t read_domains = args->read_domains;
1186 uint32_t write_domain = args->write_domain;
1187 int ret;
1188
1189 /* Only handle setting domains to types used by the CPU. */
1190 if (write_domain & I915_GEM_GPU_DOMAINS)
1191 return -EINVAL;
1192
1193 if (read_domains & I915_GEM_GPU_DOMAINS)
1194 return -EINVAL;
1195
1196 /* Having something in the write domain implies it's in the read
1197 * domain, and only that read domain. Enforce that in the request.
1198 */
1199 if (write_domain != 0 && read_domains != write_domain)
1200 return -EINVAL;
1201
1202 ret = i915_mutex_lock_interruptible(dev);
1203 if (ret)
1204 return ret;
1205
1206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1207 if (&obj->base == NULL) {
1208 ret = -ENOENT;
1209 goto unlock;
1210 }
1211
1212 /* Try to flush the object off the GPU without holding the lock.
1213 * We will repeat the flush holding the lock in the normal manner
1214 * to catch cases where we are gazumped.
1215 */
1216 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1217 if (ret)
1218 goto unref;
1219
1220 if (read_domains & I915_GEM_DOMAIN_GTT) {
1221 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1222
1223 /* Silently promote "you're not bound, there was nothing to do"
1224 * to success, since the client was just asking us to
1225 * make sure everything was done.
1226 */
1227 if (ret == -EINVAL)
1228 ret = 0;
1229 } else {
1230 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1231 }
1232
1233 unref:
1234 drm_gem_object_unreference(&obj->base);
1235 unlock:
1236 mutex_unlock(&dev->struct_mutex);
1237 return ret;
1238 }
1239
1240 /**
1241 * Called when user space has done writes to this buffer
1242 */
1243 int
1244 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1245 struct drm_file *file)
1246 {
1247 struct drm_i915_gem_sw_finish *args = data;
1248 struct drm_i915_gem_object *obj;
1249 int ret = 0;
1250
1251 ret = i915_mutex_lock_interruptible(dev);
1252 if (ret)
1253 return ret;
1254
1255 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1256 if (&obj->base == NULL) {
1257 ret = -ENOENT;
1258 goto unlock;
1259 }
1260
1261 /* Pinned buffers may be scanout, so flush the cache */
1262 if (obj->pin_count)
1263 i915_gem_object_flush_cpu_write_domain(obj);
1264
1265 drm_gem_object_unreference(&obj->base);
1266 unlock:
1267 mutex_unlock(&dev->struct_mutex);
1268 return ret;
1269 }
1270
1271 /**
1272 * Maps the contents of an object, returning the address it is mapped
1273 * into.
1274 *
1275 * While the mapping holds a reference on the contents of the object, it doesn't
1276 * imply a ref on the object itself.
1277 */
1278 int
1279 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1280 struct drm_file *file)
1281 {
1282 struct drm_i915_gem_mmap *args = data;
1283 struct drm_gem_object *obj;
1284 unsigned long addr;
1285
1286 obj = drm_gem_object_lookup(dev, file, args->handle);
1287 if (obj == NULL)
1288 return -ENOENT;
1289
1290 /* prime objects have no backing filp to GEM mmap
1291 * pages from.
1292 */
1293 if (!obj->filp) {
1294 drm_gem_object_unreference_unlocked(obj);
1295 return -EINVAL;
1296 }
1297
1298 addr = vm_mmap(obj->filp, 0, args->size,
1299 PROT_READ | PROT_WRITE, MAP_SHARED,
1300 args->offset);
1301 drm_gem_object_unreference_unlocked(obj);
1302 if (IS_ERR((void *)addr))
1303 return addr;
1304
1305 args->addr_ptr = (uint64_t) addr;
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * i915_gem_fault - fault a page into the GTT
1312 * vma: VMA in question
1313 * vmf: fault info
1314 *
1315 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1316 * from userspace. The fault handler takes care of binding the object to
1317 * the GTT (if needed), allocating and programming a fence register (again,
1318 * only if needed based on whether the old reg is still valid or the object
1319 * is tiled) and inserting a new PTE into the faulting process.
1320 *
1321 * Note that the faulting process may involve evicting existing objects
1322 * from the GTT and/or fence registers to make room. So performance may
1323 * suffer if the GTT working set is large or there are few fence registers
1324 * left.
1325 */
1326 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1327 {
1328 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1329 struct drm_device *dev = obj->base.dev;
1330 drm_i915_private_t *dev_priv = dev->dev_private;
1331 pgoff_t page_offset;
1332 unsigned long pfn;
1333 int ret = 0;
1334 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1335
1336 /* We don't use vmf->pgoff since that has the fake offset */
1337 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1338 PAGE_SHIFT;
1339
1340 ret = i915_mutex_lock_interruptible(dev);
1341 if (ret)
1342 goto out;
1343
1344 trace_i915_gem_object_fault(obj, page_offset, true, write);
1345
1346 /* Access to snoopable pages through the GTT is incoherent. */
1347 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1348 ret = -EINVAL;
1349 goto unlock;
1350 }
1351
1352 /* Now bind it into the GTT if needed */
1353 ret = i915_gem_object_pin(obj, 0, true, false);
1354 if (ret)
1355 goto unlock;
1356
1357 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1358 if (ret)
1359 goto unpin;
1360
1361 ret = i915_gem_object_get_fence(obj);
1362 if (ret)
1363 goto unpin;
1364
1365 obj->fault_mappable = true;
1366
1367 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1368 page_offset;
1369
1370 /* Finally, remap it using the new GTT offset */
1371 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1372 unpin:
1373 i915_gem_object_unpin(obj);
1374 unlock:
1375 mutex_unlock(&dev->struct_mutex);
1376 out:
1377 switch (ret) {
1378 case -EIO:
1379 /* If this -EIO is due to a gpu hang, give the reset code a
1380 * chance to clean up the mess. Otherwise return the proper
1381 * SIGBUS. */
1382 if (i915_terminally_wedged(&dev_priv->gpu_error))
1383 return VM_FAULT_SIGBUS;
1384 case -EAGAIN:
1385 /* Give the error handler a chance to run and move the
1386 * objects off the GPU active list. Next time we service the
1387 * fault, we should be able to transition the page into the
1388 * GTT without touching the GPU (and so avoid further
1389 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1390 * with coherency, just lost writes.
1391 */
1392 set_need_resched();
1393 case 0:
1394 case -ERESTARTSYS:
1395 case -EINTR:
1396 case -EBUSY:
1397 /*
1398 * EBUSY is ok: this just means that another thread
1399 * already did the job.
1400 */
1401 return VM_FAULT_NOPAGE;
1402 case -ENOMEM:
1403 return VM_FAULT_OOM;
1404 case -ENOSPC:
1405 return VM_FAULT_SIGBUS;
1406 default:
1407 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1408 return VM_FAULT_SIGBUS;
1409 }
1410 }
1411
1412 /**
1413 * i915_gem_release_mmap - remove physical page mappings
1414 * @obj: obj in question
1415 *
1416 * Preserve the reservation of the mmapping with the DRM core code, but
1417 * relinquish ownership of the pages back to the system.
1418 *
1419 * It is vital that we remove the page mapping if we have mapped a tiled
1420 * object through the GTT and then lose the fence register due to
1421 * resource pressure. Similarly if the object has been moved out of the
1422 * aperture, than pages mapped into userspace must be revoked. Removing the
1423 * mapping will then trigger a page fault on the next user access, allowing
1424 * fixup by i915_gem_fault().
1425 */
1426 void
1427 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1428 {
1429 if (!obj->fault_mappable)
1430 return;
1431
1432 if (obj->base.dev->dev_mapping)
1433 unmap_mapping_range(obj->base.dev->dev_mapping,
1434 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1435 obj->base.size, 1);
1436
1437 obj->fault_mappable = false;
1438 }
1439
1440 uint32_t
1441 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1442 {
1443 uint32_t gtt_size;
1444
1445 if (INTEL_INFO(dev)->gen >= 4 ||
1446 tiling_mode == I915_TILING_NONE)
1447 return size;
1448
1449 /* Previous chips need a power-of-two fence region when tiling */
1450 if (INTEL_INFO(dev)->gen == 3)
1451 gtt_size = 1024*1024;
1452 else
1453 gtt_size = 512*1024;
1454
1455 while (gtt_size < size)
1456 gtt_size <<= 1;
1457
1458 return gtt_size;
1459 }
1460
1461 /**
1462 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1463 * @obj: object to check
1464 *
1465 * Return the required GTT alignment for an object, taking into account
1466 * potential fence register mapping.
1467 */
1468 uint32_t
1469 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1470 int tiling_mode, bool fenced)
1471 {
1472 /*
1473 * Minimum alignment is 4k (GTT page size), but might be greater
1474 * if a fence register is needed for the object.
1475 */
1476 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1477 tiling_mode == I915_TILING_NONE)
1478 return 4096;
1479
1480 /*
1481 * Previous chips need to be aligned to the size of the smallest
1482 * fence register that can contain the object.
1483 */
1484 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1485 }
1486
1487 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1488 {
1489 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1490 int ret;
1491
1492 if (obj->base.map_list.map)
1493 return 0;
1494
1495 dev_priv->mm.shrinker_no_lock_stealing = true;
1496
1497 ret = drm_gem_create_mmap_offset(&obj->base);
1498 if (ret != -ENOSPC)
1499 goto out;
1500
1501 /* Badly fragmented mmap space? The only way we can recover
1502 * space is by destroying unwanted objects. We can't randomly release
1503 * mmap_offsets as userspace expects them to be persistent for the
1504 * lifetime of the objects. The closest we can is to release the
1505 * offsets on purgeable objects by truncating it and marking it purged,
1506 * which prevents userspace from ever using that object again.
1507 */
1508 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
1511 goto out;
1512
1513 i915_gem_shrink_all(dev_priv);
1514 ret = drm_gem_create_mmap_offset(&obj->base);
1515 out:
1516 dev_priv->mm.shrinker_no_lock_stealing = false;
1517
1518 return ret;
1519 }
1520
1521 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523 if (!obj->base.map_list.map)
1524 return;
1525
1526 drm_gem_free_mmap_offset(&obj->base);
1527 }
1528
1529 int
1530 i915_gem_mmap_gtt(struct drm_file *file,
1531 struct drm_device *dev,
1532 uint32_t handle,
1533 uint64_t *offset)
1534 {
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 struct drm_i915_gem_object *obj;
1537 int ret;
1538
1539 ret = i915_mutex_lock_interruptible(dev);
1540 if (ret)
1541 return ret;
1542
1543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1544 if (&obj->base == NULL) {
1545 ret = -ENOENT;
1546 goto unlock;
1547 }
1548
1549 if (obj->base.size > dev_priv->gtt.mappable_end) {
1550 ret = -E2BIG;
1551 goto out;
1552 }
1553
1554 if (obj->madv != I915_MADV_WILLNEED) {
1555 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1556 ret = -EINVAL;
1557 goto out;
1558 }
1559
1560 ret = i915_gem_object_create_mmap_offset(obj);
1561 if (ret)
1562 goto out;
1563
1564 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1565
1566 out:
1567 drm_gem_object_unreference(&obj->base);
1568 unlock:
1569 mutex_unlock(&dev->struct_mutex);
1570 return ret;
1571 }
1572
1573 /**
1574 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1575 * @dev: DRM device
1576 * @data: GTT mapping ioctl data
1577 * @file: GEM object info
1578 *
1579 * Simply returns the fake offset to userspace so it can mmap it.
1580 * The mmap call will end up in drm_gem_mmap(), which will set things
1581 * up so we can get faults in the handler above.
1582 *
1583 * The fault handler will take care of binding the object into the GTT
1584 * (since it may have been evicted to make room for something), allocating
1585 * a fence register, and mapping the appropriate aperture address into
1586 * userspace.
1587 */
1588 int
1589 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1590 struct drm_file *file)
1591 {
1592 struct drm_i915_gem_mmap_gtt *args = data;
1593
1594 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1595 }
1596
1597 /* Immediately discard the backing storage */
1598 static void
1599 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1600 {
1601 struct inode *inode;
1602
1603 i915_gem_object_free_mmap_offset(obj);
1604
1605 if (obj->base.filp == NULL)
1606 return;
1607
1608 /* Our goal here is to return as much of the memory as
1609 * is possible back to the system as we are called from OOM.
1610 * To do this we must instruct the shmfs to drop all of its
1611 * backing pages, *now*.
1612 */
1613 inode = file_inode(obj->base.filp);
1614 shmem_truncate_range(inode, 0, (loff_t)-1);
1615
1616 obj->madv = __I915_MADV_PURGED;
1617 }
1618
1619 static inline int
1620 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1621 {
1622 return obj->madv == I915_MADV_DONTNEED;
1623 }
1624
1625 static void
1626 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1627 {
1628 struct sg_page_iter sg_iter;
1629 int ret;
1630
1631 BUG_ON(obj->madv == __I915_MADV_PURGED);
1632
1633 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1634 if (ret) {
1635 /* In the event of a disaster, abandon all caches and
1636 * hope for the best.
1637 */
1638 WARN_ON(ret != -EIO);
1639 i915_gem_clflush_object(obj);
1640 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1641 }
1642
1643 if (i915_gem_object_needs_bit17_swizzle(obj))
1644 i915_gem_object_save_bit_17_swizzle(obj);
1645
1646 if (obj->madv == I915_MADV_DONTNEED)
1647 obj->dirty = 0;
1648
1649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1650 struct page *page = sg_page_iter_page(&sg_iter);
1651
1652 if (obj->dirty)
1653 set_page_dirty(page);
1654
1655 if (obj->madv == I915_MADV_WILLNEED)
1656 mark_page_accessed(page);
1657
1658 page_cache_release(page);
1659 }
1660 obj->dirty = 0;
1661
1662 sg_free_table(obj->pages);
1663 kfree(obj->pages);
1664 }
1665
1666 int
1667 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1668 {
1669 const struct drm_i915_gem_object_ops *ops = obj->ops;
1670
1671 if (obj->pages == NULL)
1672 return 0;
1673
1674 BUG_ON(obj->gtt_space);
1675
1676 if (obj->pages_pin_count)
1677 return -EBUSY;
1678
1679 /* ->put_pages might need to allocate memory for the bit17 swizzle
1680 * array, hence protect them from being reaped by removing them from gtt
1681 * lists early. */
1682 list_del(&obj->global_list);
1683
1684 ops->put_pages(obj);
1685 obj->pages = NULL;
1686
1687 if (i915_gem_object_is_purgeable(obj))
1688 i915_gem_object_truncate(obj);
1689
1690 return 0;
1691 }
1692
1693 static long
1694 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1695 bool purgeable_only)
1696 {
1697 struct drm_i915_gem_object *obj, *next;
1698 long count = 0;
1699
1700 list_for_each_entry_safe(obj, next,
1701 &dev_priv->mm.unbound_list,
1702 global_list) {
1703 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1704 i915_gem_object_put_pages(obj) == 0) {
1705 count += obj->base.size >> PAGE_SHIFT;
1706 if (count >= target)
1707 return count;
1708 }
1709 }
1710
1711 list_for_each_entry_safe(obj, next,
1712 &dev_priv->mm.inactive_list,
1713 mm_list) {
1714 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1715 i915_gem_object_unbind(obj) == 0 &&
1716 i915_gem_object_put_pages(obj) == 0) {
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
1723 return count;
1724 }
1725
1726 static long
1727 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1728 {
1729 return __i915_gem_shrink(dev_priv, target, true);
1730 }
1731
1732 static void
1733 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1734 {
1735 struct drm_i915_gem_object *obj, *next;
1736
1737 i915_gem_evict_everything(dev_priv->dev);
1738
1739 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1740 global_list)
1741 i915_gem_object_put_pages(obj);
1742 }
1743
1744 static int
1745 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1746 {
1747 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1748 int page_count, i;
1749 struct address_space *mapping;
1750 struct sg_table *st;
1751 struct scatterlist *sg;
1752 struct sg_page_iter sg_iter;
1753 struct page *page;
1754 unsigned long last_pfn = 0; /* suppress gcc warning */
1755 gfp_t gfp;
1756
1757 /* Assert that the object is not currently in any GPU domain. As it
1758 * wasn't in the GTT, there shouldn't be any way it could have been in
1759 * a GPU cache
1760 */
1761 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1762 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1763
1764 st = kmalloc(sizeof(*st), GFP_KERNEL);
1765 if (st == NULL)
1766 return -ENOMEM;
1767
1768 page_count = obj->base.size / PAGE_SIZE;
1769 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1770 sg_free_table(st);
1771 kfree(st);
1772 return -ENOMEM;
1773 }
1774
1775 /* Get the list of pages out of our struct file. They'll be pinned
1776 * at this point until we release them.
1777 *
1778 * Fail silently without starting the shrinker
1779 */
1780 mapping = file_inode(obj->base.filp)->i_mapping;
1781 gfp = mapping_gfp_mask(mapping);
1782 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1783 gfp &= ~(__GFP_IO | __GFP_WAIT);
1784 sg = st->sgl;
1785 st->nents = 0;
1786 for (i = 0; i < page_count; i++) {
1787 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788 if (IS_ERR(page)) {
1789 i915_gem_purge(dev_priv, page_count);
1790 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1791 }
1792 if (IS_ERR(page)) {
1793 /* We've tried hard to allocate the memory by reaping
1794 * our own buffer, now let the real VM do its job and
1795 * go down in flames if truly OOM.
1796 */
1797 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1798 gfp |= __GFP_IO | __GFP_WAIT;
1799
1800 i915_gem_shrink_all(dev_priv);
1801 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1802 if (IS_ERR(page))
1803 goto err_pages;
1804
1805 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1806 gfp &= ~(__GFP_IO | __GFP_WAIT);
1807 }
1808
1809 if (!i || page_to_pfn(page) != last_pfn + 1) {
1810 if (i)
1811 sg = sg_next(sg);
1812 st->nents++;
1813 sg_set_page(sg, page, PAGE_SIZE, 0);
1814 } else {
1815 sg->length += PAGE_SIZE;
1816 }
1817 last_pfn = page_to_pfn(page);
1818 }
1819
1820 sg_mark_end(sg);
1821 obj->pages = st;
1822
1823 if (i915_gem_object_needs_bit17_swizzle(obj))
1824 i915_gem_object_do_bit_17_swizzle(obj);
1825
1826 return 0;
1827
1828 err_pages:
1829 sg_mark_end(sg);
1830 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1831 page_cache_release(sg_page_iter_page(&sg_iter));
1832 sg_free_table(st);
1833 kfree(st);
1834 return PTR_ERR(page);
1835 }
1836
1837 /* Ensure that the associated pages are gathered from the backing storage
1838 * and pinned into our object. i915_gem_object_get_pages() may be called
1839 * multiple times before they are released by a single call to
1840 * i915_gem_object_put_pages() - once the pages are no longer referenced
1841 * either as a result of memory pressure (reaping pages under the shrinker)
1842 * or as the object is itself released.
1843 */
1844 int
1845 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1846 {
1847 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1848 const struct drm_i915_gem_object_ops *ops = obj->ops;
1849 int ret;
1850
1851 if (obj->pages)
1852 return 0;
1853
1854 if (obj->madv != I915_MADV_WILLNEED) {
1855 DRM_ERROR("Attempting to obtain a purgeable object\n");
1856 return -EINVAL;
1857 }
1858
1859 BUG_ON(obj->pages_pin_count);
1860
1861 ret = ops->get_pages(obj);
1862 if (ret)
1863 return ret;
1864
1865 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1866 return 0;
1867 }
1868
1869 void
1870 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1871 struct intel_ring_buffer *ring)
1872 {
1873 struct drm_device *dev = obj->base.dev;
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875 u32 seqno = intel_ring_get_seqno(ring);
1876
1877 BUG_ON(ring == NULL);
1878 obj->ring = ring;
1879
1880 /* Add a reference if we're newly entering the active list. */
1881 if (!obj->active) {
1882 drm_gem_object_reference(&obj->base);
1883 obj->active = 1;
1884 }
1885
1886 /* Move from whatever list we were on to the tail of execution. */
1887 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1888 list_move_tail(&obj->ring_list, &ring->active_list);
1889
1890 obj->last_read_seqno = seqno;
1891
1892 if (obj->fenced_gpu_access) {
1893 obj->last_fenced_seqno = seqno;
1894
1895 /* Bump MRU to take account of the delayed flush */
1896 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1897 struct drm_i915_fence_reg *reg;
1898
1899 reg = &dev_priv->fence_regs[obj->fence_reg];
1900 list_move_tail(&reg->lru_list,
1901 &dev_priv->mm.fence_list);
1902 }
1903 }
1904 }
1905
1906 static void
1907 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1908 {
1909 struct drm_device *dev = obj->base.dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911
1912 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1913 BUG_ON(!obj->active);
1914
1915 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1916
1917 list_del_init(&obj->ring_list);
1918 obj->ring = NULL;
1919
1920 obj->last_read_seqno = 0;
1921 obj->last_write_seqno = 0;
1922 obj->base.write_domain = 0;
1923
1924 obj->last_fenced_seqno = 0;
1925 obj->fenced_gpu_access = false;
1926
1927 obj->active = 0;
1928 drm_gem_object_unreference(&obj->base);
1929
1930 WARN_ON(i915_verify_lists(dev));
1931 }
1932
1933 static int
1934 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1935 {
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937 struct intel_ring_buffer *ring;
1938 int ret, i, j;
1939
1940 /* Carefully retire all requests without writing to the rings */
1941 for_each_ring(ring, dev_priv, i) {
1942 ret = intel_ring_idle(ring);
1943 if (ret)
1944 return ret;
1945 }
1946 i915_gem_retire_requests(dev);
1947
1948 /* Finally reset hw state */
1949 for_each_ring(ring, dev_priv, i) {
1950 intel_ring_init_seqno(ring, seqno);
1951
1952 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1953 ring->sync_seqno[j] = 0;
1954 }
1955
1956 return 0;
1957 }
1958
1959 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1960 {
1961 struct drm_i915_private *dev_priv = dev->dev_private;
1962 int ret;
1963
1964 if (seqno == 0)
1965 return -EINVAL;
1966
1967 /* HWS page needs to be set less than what we
1968 * will inject to ring
1969 */
1970 ret = i915_gem_init_seqno(dev, seqno - 1);
1971 if (ret)
1972 return ret;
1973
1974 /* Carefully set the last_seqno value so that wrap
1975 * detection still works
1976 */
1977 dev_priv->next_seqno = seqno;
1978 dev_priv->last_seqno = seqno - 1;
1979 if (dev_priv->last_seqno == 0)
1980 dev_priv->last_seqno--;
1981
1982 return 0;
1983 }
1984
1985 int
1986 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1987 {
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989
1990 /* reserve 0 for non-seqno */
1991 if (dev_priv->next_seqno == 0) {
1992 int ret = i915_gem_init_seqno(dev, 0);
1993 if (ret)
1994 return ret;
1995
1996 dev_priv->next_seqno = 1;
1997 }
1998
1999 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2000 return 0;
2001 }
2002
2003 int __i915_add_request(struct intel_ring_buffer *ring,
2004 struct drm_file *file,
2005 u32 *out_seqno)
2006 {
2007 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2008 struct drm_i915_gem_request *request;
2009 u32 request_ring_position;
2010 int was_empty;
2011 int ret;
2012
2013 /*
2014 * Emit any outstanding flushes - execbuf can fail to emit the flush
2015 * after having emitted the batchbuffer command. Hence we need to fix
2016 * things up similar to emitting the lazy request. The difference here
2017 * is that the flush _must_ happen before the next request, no matter
2018 * what.
2019 */
2020 ret = intel_ring_flush_all_caches(ring);
2021 if (ret)
2022 return ret;
2023
2024 request = kmalloc(sizeof(*request), GFP_KERNEL);
2025 if (request == NULL)
2026 return -ENOMEM;
2027
2028
2029 /* Record the position of the start of the request so that
2030 * should we detect the updated seqno part-way through the
2031 * GPU processing the request, we never over-estimate the
2032 * position of the head.
2033 */
2034 request_ring_position = intel_ring_get_tail(ring);
2035
2036 ret = ring->add_request(ring);
2037 if (ret) {
2038 kfree(request);
2039 return ret;
2040 }
2041
2042 request->seqno = intel_ring_get_seqno(ring);
2043 request->ring = ring;
2044 request->tail = request_ring_position;
2045 request->ctx = ring->last_context;
2046
2047 if (request->ctx)
2048 i915_gem_context_reference(request->ctx);
2049
2050 request->emitted_jiffies = jiffies;
2051 was_empty = list_empty(&ring->request_list);
2052 list_add_tail(&request->list, &ring->request_list);
2053 request->file_priv = NULL;
2054
2055 if (file) {
2056 struct drm_i915_file_private *file_priv = file->driver_priv;
2057
2058 spin_lock(&file_priv->mm.lock);
2059 request->file_priv = file_priv;
2060 list_add_tail(&request->client_list,
2061 &file_priv->mm.request_list);
2062 spin_unlock(&file_priv->mm.lock);
2063 }
2064
2065 trace_i915_gem_request_add(ring, request->seqno);
2066 ring->outstanding_lazy_request = 0;
2067
2068 if (!dev_priv->mm.suspended) {
2069 if (i915_enable_hangcheck) {
2070 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2071 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2072 }
2073 if (was_empty) {
2074 queue_delayed_work(dev_priv->wq,
2075 &dev_priv->mm.retire_work,
2076 round_jiffies_up_relative(HZ));
2077 intel_mark_busy(dev_priv->dev);
2078 }
2079 }
2080
2081 if (out_seqno)
2082 *out_seqno = request->seqno;
2083 return 0;
2084 }
2085
2086 static inline void
2087 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2088 {
2089 struct drm_i915_file_private *file_priv = request->file_priv;
2090
2091 if (!file_priv)
2092 return;
2093
2094 spin_lock(&file_priv->mm.lock);
2095 if (request->file_priv) {
2096 list_del(&request->client_list);
2097 request->file_priv = NULL;
2098 }
2099 spin_unlock(&file_priv->mm.lock);
2100 }
2101
2102 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2103 {
2104 list_del(&request->list);
2105 i915_gem_request_remove_from_client(request);
2106
2107 if (request->ctx)
2108 i915_gem_context_unreference(request->ctx);
2109
2110 kfree(request);
2111 }
2112
2113 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2114 struct intel_ring_buffer *ring)
2115 {
2116 while (!list_empty(&ring->request_list)) {
2117 struct drm_i915_gem_request *request;
2118
2119 request = list_first_entry(&ring->request_list,
2120 struct drm_i915_gem_request,
2121 list);
2122
2123 i915_gem_free_request(request);
2124 }
2125
2126 while (!list_empty(&ring->active_list)) {
2127 struct drm_i915_gem_object *obj;
2128
2129 obj = list_first_entry(&ring->active_list,
2130 struct drm_i915_gem_object,
2131 ring_list);
2132
2133 i915_gem_object_move_to_inactive(obj);
2134 }
2135 }
2136
2137 static void i915_gem_reset_fences(struct drm_device *dev)
2138 {
2139 struct drm_i915_private *dev_priv = dev->dev_private;
2140 int i;
2141
2142 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2143 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2144
2145 if (reg->obj)
2146 i915_gem_object_fence_lost(reg->obj);
2147
2148 i915_gem_write_fence(dev, i, NULL);
2149
2150 reg->pin_count = 0;
2151 reg->obj = NULL;
2152 INIT_LIST_HEAD(&reg->lru_list);
2153 }
2154
2155 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2156 }
2157
2158 void i915_gem_reset(struct drm_device *dev)
2159 {
2160 struct drm_i915_private *dev_priv = dev->dev_private;
2161 struct drm_i915_gem_object *obj;
2162 struct intel_ring_buffer *ring;
2163 int i;
2164
2165 for_each_ring(ring, dev_priv, i)
2166 i915_gem_reset_ring_lists(dev_priv, ring);
2167
2168 /* Move everything out of the GPU domains to ensure we do any
2169 * necessary invalidation upon reuse.
2170 */
2171 list_for_each_entry(obj,
2172 &dev_priv->mm.inactive_list,
2173 mm_list)
2174 {
2175 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2176 }
2177
2178 /* The fence registers are invalidated so clear them out */
2179 i915_gem_reset_fences(dev);
2180 }
2181
2182 /**
2183 * This function clears the request list as sequence numbers are passed.
2184 */
2185 void
2186 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2187 {
2188 uint32_t seqno;
2189
2190 if (list_empty(&ring->request_list))
2191 return;
2192
2193 WARN_ON(i915_verify_lists(ring->dev));
2194
2195 seqno = ring->get_seqno(ring, true);
2196
2197 while (!list_empty(&ring->request_list)) {
2198 struct drm_i915_gem_request *request;
2199
2200 request = list_first_entry(&ring->request_list,
2201 struct drm_i915_gem_request,
2202 list);
2203
2204 if (!i915_seqno_passed(seqno, request->seqno))
2205 break;
2206
2207 trace_i915_gem_request_retire(ring, request->seqno);
2208 /* We know the GPU must have read the request to have
2209 * sent us the seqno + interrupt, so use the position
2210 * of tail of the request to update the last known position
2211 * of the GPU head.
2212 */
2213 ring->last_retired_head = request->tail;
2214
2215 i915_gem_free_request(request);
2216 }
2217
2218 /* Move any buffers on the active list that are no longer referenced
2219 * by the ringbuffer to the flushing/inactive lists as appropriate.
2220 */
2221 while (!list_empty(&ring->active_list)) {
2222 struct drm_i915_gem_object *obj;
2223
2224 obj = list_first_entry(&ring->active_list,
2225 struct drm_i915_gem_object,
2226 ring_list);
2227
2228 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2229 break;
2230
2231 i915_gem_object_move_to_inactive(obj);
2232 }
2233
2234 if (unlikely(ring->trace_irq_seqno &&
2235 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2236 ring->irq_put(ring);
2237 ring->trace_irq_seqno = 0;
2238 }
2239
2240 WARN_ON(i915_verify_lists(ring->dev));
2241 }
2242
2243 void
2244 i915_gem_retire_requests(struct drm_device *dev)
2245 {
2246 drm_i915_private_t *dev_priv = dev->dev_private;
2247 struct intel_ring_buffer *ring;
2248 int i;
2249
2250 for_each_ring(ring, dev_priv, i)
2251 i915_gem_retire_requests_ring(ring);
2252 }
2253
2254 static void
2255 i915_gem_retire_work_handler(struct work_struct *work)
2256 {
2257 drm_i915_private_t *dev_priv;
2258 struct drm_device *dev;
2259 struct intel_ring_buffer *ring;
2260 bool idle;
2261 int i;
2262
2263 dev_priv = container_of(work, drm_i915_private_t,
2264 mm.retire_work.work);
2265 dev = dev_priv->dev;
2266
2267 /* Come back later if the device is busy... */
2268 if (!mutex_trylock(&dev->struct_mutex)) {
2269 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2270 round_jiffies_up_relative(HZ));
2271 return;
2272 }
2273
2274 i915_gem_retire_requests(dev);
2275
2276 /* Send a periodic flush down the ring so we don't hold onto GEM
2277 * objects indefinitely.
2278 */
2279 idle = true;
2280 for_each_ring(ring, dev_priv, i) {
2281 if (ring->gpu_caches_dirty)
2282 i915_add_request(ring, NULL);
2283
2284 idle &= list_empty(&ring->request_list);
2285 }
2286
2287 if (!dev_priv->mm.suspended && !idle)
2288 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2289 round_jiffies_up_relative(HZ));
2290 if (idle)
2291 intel_mark_idle(dev);
2292
2293 mutex_unlock(&dev->struct_mutex);
2294 }
2295
2296 /**
2297 * Ensures that an object will eventually get non-busy by flushing any required
2298 * write domains, emitting any outstanding lazy request and retiring and
2299 * completed requests.
2300 */
2301 static int
2302 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2303 {
2304 int ret;
2305
2306 if (obj->active) {
2307 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2308 if (ret)
2309 return ret;
2310
2311 i915_gem_retire_requests_ring(obj->ring);
2312 }
2313
2314 return 0;
2315 }
2316
2317 /**
2318 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2319 * @DRM_IOCTL_ARGS: standard ioctl arguments
2320 *
2321 * Returns 0 if successful, else an error is returned with the remaining time in
2322 * the timeout parameter.
2323 * -ETIME: object is still busy after timeout
2324 * -ERESTARTSYS: signal interrupted the wait
2325 * -ENONENT: object doesn't exist
2326 * Also possible, but rare:
2327 * -EAGAIN: GPU wedged
2328 * -ENOMEM: damn
2329 * -ENODEV: Internal IRQ fail
2330 * -E?: The add request failed
2331 *
2332 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2333 * non-zero timeout parameter the wait ioctl will wait for the given number of
2334 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2335 * without holding struct_mutex the object may become re-busied before this
2336 * function completes. A similar but shorter * race condition exists in the busy
2337 * ioctl
2338 */
2339 int
2340 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2341 {
2342 drm_i915_private_t *dev_priv = dev->dev_private;
2343 struct drm_i915_gem_wait *args = data;
2344 struct drm_i915_gem_object *obj;
2345 struct intel_ring_buffer *ring = NULL;
2346 struct timespec timeout_stack, *timeout = NULL;
2347 unsigned reset_counter;
2348 u32 seqno = 0;
2349 int ret = 0;
2350
2351 if (args->timeout_ns >= 0) {
2352 timeout_stack = ns_to_timespec(args->timeout_ns);
2353 timeout = &timeout_stack;
2354 }
2355
2356 ret = i915_mutex_lock_interruptible(dev);
2357 if (ret)
2358 return ret;
2359
2360 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2361 if (&obj->base == NULL) {
2362 mutex_unlock(&dev->struct_mutex);
2363 return -ENOENT;
2364 }
2365
2366 /* Need to make sure the object gets inactive eventually. */
2367 ret = i915_gem_object_flush_active(obj);
2368 if (ret)
2369 goto out;
2370
2371 if (obj->active) {
2372 seqno = obj->last_read_seqno;
2373 ring = obj->ring;
2374 }
2375
2376 if (seqno == 0)
2377 goto out;
2378
2379 /* Do this after OLR check to make sure we make forward progress polling
2380 * on this IOCTL with a 0 timeout (like busy ioctl)
2381 */
2382 if (!args->timeout_ns) {
2383 ret = -ETIME;
2384 goto out;
2385 }
2386
2387 drm_gem_object_unreference(&obj->base);
2388 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2389 mutex_unlock(&dev->struct_mutex);
2390
2391 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2392 if (timeout)
2393 args->timeout_ns = timespec_to_ns(timeout);
2394 return ret;
2395
2396 out:
2397 drm_gem_object_unreference(&obj->base);
2398 mutex_unlock(&dev->struct_mutex);
2399 return ret;
2400 }
2401
2402 /**
2403 * i915_gem_object_sync - sync an object to a ring.
2404 *
2405 * @obj: object which may be in use on another ring.
2406 * @to: ring we wish to use the object on. May be NULL.
2407 *
2408 * This code is meant to abstract object synchronization with the GPU.
2409 * Calling with NULL implies synchronizing the object with the CPU
2410 * rather than a particular GPU ring.
2411 *
2412 * Returns 0 if successful, else propagates up the lower layer error.
2413 */
2414 int
2415 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2416 struct intel_ring_buffer *to)
2417 {
2418 struct intel_ring_buffer *from = obj->ring;
2419 u32 seqno;
2420 int ret, idx;
2421
2422 if (from == NULL || to == from)
2423 return 0;
2424
2425 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2426 return i915_gem_object_wait_rendering(obj, false);
2427
2428 idx = intel_ring_sync_index(from, to);
2429
2430 seqno = obj->last_read_seqno;
2431 if (seqno <= from->sync_seqno[idx])
2432 return 0;
2433
2434 ret = i915_gem_check_olr(obj->ring, seqno);
2435 if (ret)
2436 return ret;
2437
2438 ret = to->sync_to(to, from, seqno);
2439 if (!ret)
2440 /* We use last_read_seqno because sync_to()
2441 * might have just caused seqno wrap under
2442 * the radar.
2443 */
2444 from->sync_seqno[idx] = obj->last_read_seqno;
2445
2446 return ret;
2447 }
2448
2449 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2450 {
2451 u32 old_write_domain, old_read_domains;
2452
2453 /* Force a pagefault for domain tracking on next user access */
2454 i915_gem_release_mmap(obj);
2455
2456 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2457 return;
2458
2459 /* Wait for any direct GTT access to complete */
2460 mb();
2461
2462 old_read_domains = obj->base.read_domains;
2463 old_write_domain = obj->base.write_domain;
2464
2465 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2466 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2467
2468 trace_i915_gem_object_change_domain(obj,
2469 old_read_domains,
2470 old_write_domain);
2471 }
2472
2473 /**
2474 * Unbinds an object from the GTT aperture.
2475 */
2476 int
2477 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2478 {
2479 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2480 int ret;
2481
2482 if (obj->gtt_space == NULL)
2483 return 0;
2484
2485 if (obj->pin_count)
2486 return -EBUSY;
2487
2488 BUG_ON(obj->pages == NULL);
2489
2490 ret = i915_gem_object_finish_gpu(obj);
2491 if (ret)
2492 return ret;
2493 /* Continue on if we fail due to EIO, the GPU is hung so we
2494 * should be safe and we need to cleanup or else we might
2495 * cause memory corruption through use-after-free.
2496 */
2497
2498 i915_gem_object_finish_gtt(obj);
2499
2500 /* release the fence reg _after_ flushing */
2501 ret = i915_gem_object_put_fence(obj);
2502 if (ret)
2503 return ret;
2504
2505 trace_i915_gem_object_unbind(obj);
2506
2507 if (obj->has_global_gtt_mapping)
2508 i915_gem_gtt_unbind_object(obj);
2509 if (obj->has_aliasing_ppgtt_mapping) {
2510 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2511 obj->has_aliasing_ppgtt_mapping = 0;
2512 }
2513 i915_gem_gtt_finish_object(obj);
2514 i915_gem_object_unpin_pages(obj);
2515
2516 list_del(&obj->mm_list);
2517 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2518 /* Avoid an unnecessary call to unbind on rebind. */
2519 obj->map_and_fenceable = true;
2520
2521 drm_mm_put_block(obj->gtt_space);
2522 obj->gtt_space = NULL;
2523 obj->gtt_offset = 0;
2524
2525 return 0;
2526 }
2527
2528 int i915_gpu_idle(struct drm_device *dev)
2529 {
2530 drm_i915_private_t *dev_priv = dev->dev_private;
2531 struct intel_ring_buffer *ring;
2532 int ret, i;
2533
2534 /* Flush everything onto the inactive list. */
2535 for_each_ring(ring, dev_priv, i) {
2536 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2537 if (ret)
2538 return ret;
2539
2540 ret = intel_ring_idle(ring);
2541 if (ret)
2542 return ret;
2543 }
2544
2545 return 0;
2546 }
2547
2548 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2549 struct drm_i915_gem_object *obj)
2550 {
2551 drm_i915_private_t *dev_priv = dev->dev_private;
2552 int fence_reg;
2553 int fence_pitch_shift;
2554 uint64_t val;
2555
2556 if (INTEL_INFO(dev)->gen >= 6) {
2557 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2558 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2559 } else {
2560 fence_reg = FENCE_REG_965_0;
2561 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2562 }
2563
2564 if (obj) {
2565 u32 size = obj->gtt_space->size;
2566
2567 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2568 0xfffff000) << 32;
2569 val |= obj->gtt_offset & 0xfffff000;
2570 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2571 if (obj->tiling_mode == I915_TILING_Y)
2572 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2573 val |= I965_FENCE_REG_VALID;
2574 } else
2575 val = 0;
2576
2577 fence_reg += reg * 8;
2578 I915_WRITE64(fence_reg, val);
2579 POSTING_READ(fence_reg);
2580 }
2581
2582 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2583 struct drm_i915_gem_object *obj)
2584 {
2585 drm_i915_private_t *dev_priv = dev->dev_private;
2586 u32 val;
2587
2588 if (obj) {
2589 u32 size = obj->gtt_space->size;
2590 int pitch_val;
2591 int tile_width;
2592
2593 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2594 (size & -size) != size ||
2595 (obj->gtt_offset & (size - 1)),
2596 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2597 obj->gtt_offset, obj->map_and_fenceable, size);
2598
2599 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2600 tile_width = 128;
2601 else
2602 tile_width = 512;
2603
2604 /* Note: pitch better be a power of two tile widths */
2605 pitch_val = obj->stride / tile_width;
2606 pitch_val = ffs(pitch_val) - 1;
2607
2608 val = obj->gtt_offset;
2609 if (obj->tiling_mode == I915_TILING_Y)
2610 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2611 val |= I915_FENCE_SIZE_BITS(size);
2612 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2613 val |= I830_FENCE_REG_VALID;
2614 } else
2615 val = 0;
2616
2617 if (reg < 8)
2618 reg = FENCE_REG_830_0 + reg * 4;
2619 else
2620 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2621
2622 I915_WRITE(reg, val);
2623 POSTING_READ(reg);
2624 }
2625
2626 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2627 struct drm_i915_gem_object *obj)
2628 {
2629 drm_i915_private_t *dev_priv = dev->dev_private;
2630 uint32_t val;
2631
2632 if (obj) {
2633 u32 size = obj->gtt_space->size;
2634 uint32_t pitch_val;
2635
2636 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2637 (size & -size) != size ||
2638 (obj->gtt_offset & (size - 1)),
2639 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2640 obj->gtt_offset, size);
2641
2642 pitch_val = obj->stride / 128;
2643 pitch_val = ffs(pitch_val) - 1;
2644
2645 val = obj->gtt_offset;
2646 if (obj->tiling_mode == I915_TILING_Y)
2647 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2648 val |= I830_FENCE_SIZE_BITS(size);
2649 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2650 val |= I830_FENCE_REG_VALID;
2651 } else
2652 val = 0;
2653
2654 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2655 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2656 }
2657
2658 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2659 {
2660 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2661 }
2662
2663 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2664 struct drm_i915_gem_object *obj)
2665 {
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667
2668 /* Ensure that all CPU reads are completed before installing a fence
2669 * and all writes before removing the fence.
2670 */
2671 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2672 mb();
2673
2674 switch (INTEL_INFO(dev)->gen) {
2675 case 7:
2676 case 6:
2677 case 5:
2678 case 4: i965_write_fence_reg(dev, reg, obj); break;
2679 case 3: i915_write_fence_reg(dev, reg, obj); break;
2680 case 2: i830_write_fence_reg(dev, reg, obj); break;
2681 default: BUG();
2682 }
2683
2684 /* And similarly be paranoid that no direct access to this region
2685 * is reordered to before the fence is installed.
2686 */
2687 if (i915_gem_object_needs_mb(obj))
2688 mb();
2689 }
2690
2691 static inline int fence_number(struct drm_i915_private *dev_priv,
2692 struct drm_i915_fence_reg *fence)
2693 {
2694 return fence - dev_priv->fence_regs;
2695 }
2696
2697 struct write_fence {
2698 struct drm_device *dev;
2699 struct drm_i915_gem_object *obj;
2700 int fence;
2701 };
2702
2703 static void i915_gem_write_fence__ipi(void *data)
2704 {
2705 struct write_fence *args = data;
2706
2707 /* Required for SNB+ with LLC */
2708 wbinvd();
2709
2710 /* Required for VLV */
2711 i915_gem_write_fence(args->dev, args->fence, args->obj);
2712 }
2713
2714 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2715 struct drm_i915_fence_reg *fence,
2716 bool enable)
2717 {
2718 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2719 struct write_fence args = {
2720 .dev = obj->base.dev,
2721 .fence = fence_number(dev_priv, fence),
2722 .obj = enable ? obj : NULL,
2723 };
2724
2725 /* In order to fully serialize access to the fenced region and
2726 * the update to the fence register we need to take extreme
2727 * measures on SNB+. In theory, the write to the fence register
2728 * flushes all memory transactions before, and coupled with the
2729 * mb() placed around the register write we serialise all memory
2730 * operations with respect to the changes in the tiler. Yet, on
2731 * SNB+ we need to take a step further and emit an explicit wbinvd()
2732 * on each processor in order to manually flush all memory
2733 * transactions before updating the fence register.
2734 *
2735 * However, Valleyview complicates matter. There the wbinvd is
2736 * insufficient and unlike SNB/IVB requires the serialising
2737 * register write. (Note that that register write by itself is
2738 * conversely not sufficient for SNB+.) To compromise, we do both.
2739 */
2740 if (INTEL_INFO(args.dev)->gen >= 6)
2741 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2742 else
2743 i915_gem_write_fence(args.dev, args.fence, args.obj);
2744
2745 if (enable) {
2746 obj->fence_reg = args.fence;
2747 fence->obj = obj;
2748 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2749 } else {
2750 obj->fence_reg = I915_FENCE_REG_NONE;
2751 fence->obj = NULL;
2752 list_del_init(&fence->lru_list);
2753 }
2754 }
2755
2756 static int
2757 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2758 {
2759 if (obj->last_fenced_seqno) {
2760 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2761 if (ret)
2762 return ret;
2763
2764 obj->last_fenced_seqno = 0;
2765 }
2766
2767 obj->fenced_gpu_access = false;
2768 return 0;
2769 }
2770
2771 int
2772 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2773 {
2774 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2775 struct drm_i915_fence_reg *fence;
2776 int ret;
2777
2778 ret = i915_gem_object_wait_fence(obj);
2779 if (ret)
2780 return ret;
2781
2782 if (obj->fence_reg == I915_FENCE_REG_NONE)
2783 return 0;
2784
2785 fence = &dev_priv->fence_regs[obj->fence_reg];
2786
2787 i915_gem_object_fence_lost(obj);
2788 i915_gem_object_update_fence(obj, fence, false);
2789
2790 return 0;
2791 }
2792
2793 static struct drm_i915_fence_reg *
2794 i915_find_fence_reg(struct drm_device *dev)
2795 {
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 struct drm_i915_fence_reg *reg, *avail;
2798 int i;
2799
2800 /* First try to find a free reg */
2801 avail = NULL;
2802 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2803 reg = &dev_priv->fence_regs[i];
2804 if (!reg->obj)
2805 return reg;
2806
2807 if (!reg->pin_count)
2808 avail = reg;
2809 }
2810
2811 if (avail == NULL)
2812 return NULL;
2813
2814 /* None available, try to steal one or wait for a user to finish */
2815 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2816 if (reg->pin_count)
2817 continue;
2818
2819 return reg;
2820 }
2821
2822 return NULL;
2823 }
2824
2825 /**
2826 * i915_gem_object_get_fence - set up fencing for an object
2827 * @obj: object to map through a fence reg
2828 *
2829 * When mapping objects through the GTT, userspace wants to be able to write
2830 * to them without having to worry about swizzling if the object is tiled.
2831 * This function walks the fence regs looking for a free one for @obj,
2832 * stealing one if it can't find any.
2833 *
2834 * It then sets up the reg based on the object's properties: address, pitch
2835 * and tiling format.
2836 *
2837 * For an untiled surface, this removes any existing fence.
2838 */
2839 int
2840 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2841 {
2842 struct drm_device *dev = obj->base.dev;
2843 struct drm_i915_private *dev_priv = dev->dev_private;
2844 bool enable = obj->tiling_mode != I915_TILING_NONE;
2845 struct drm_i915_fence_reg *reg;
2846 int ret;
2847
2848 /* Have we updated the tiling parameters upon the object and so
2849 * will need to serialise the write to the associated fence register?
2850 */
2851 if (obj->fence_dirty) {
2852 ret = i915_gem_object_wait_fence(obj);
2853 if (ret)
2854 return ret;
2855 }
2856
2857 /* Just update our place in the LRU if our fence is getting reused. */
2858 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2859 reg = &dev_priv->fence_regs[obj->fence_reg];
2860 if (!obj->fence_dirty) {
2861 list_move_tail(&reg->lru_list,
2862 &dev_priv->mm.fence_list);
2863 return 0;
2864 }
2865 } else if (enable) {
2866 reg = i915_find_fence_reg(dev);
2867 if (reg == NULL)
2868 return -EDEADLK;
2869
2870 if (reg->obj) {
2871 struct drm_i915_gem_object *old = reg->obj;
2872
2873 ret = i915_gem_object_wait_fence(old);
2874 if (ret)
2875 return ret;
2876
2877 i915_gem_object_fence_lost(old);
2878 }
2879 } else
2880 return 0;
2881
2882 i915_gem_object_update_fence(obj, reg, enable);
2883 obj->fence_dirty = false;
2884
2885 return 0;
2886 }
2887
2888 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2889 struct drm_mm_node *gtt_space,
2890 unsigned long cache_level)
2891 {
2892 struct drm_mm_node *other;
2893
2894 /* On non-LLC machines we have to be careful when putting differing
2895 * types of snoopable memory together to avoid the prefetcher
2896 * crossing memory domains and dying.
2897 */
2898 if (HAS_LLC(dev))
2899 return true;
2900
2901 if (gtt_space == NULL)
2902 return true;
2903
2904 if (list_empty(&gtt_space->node_list))
2905 return true;
2906
2907 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2908 if (other->allocated && !other->hole_follows && other->color != cache_level)
2909 return false;
2910
2911 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2912 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2913 return false;
2914
2915 return true;
2916 }
2917
2918 static void i915_gem_verify_gtt(struct drm_device *dev)
2919 {
2920 #if WATCH_GTT
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 struct drm_i915_gem_object *obj;
2923 int err = 0;
2924
2925 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
2926 if (obj->gtt_space == NULL) {
2927 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2928 err++;
2929 continue;
2930 }
2931
2932 if (obj->cache_level != obj->gtt_space->color) {
2933 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2934 obj->gtt_space->start,
2935 obj->gtt_space->start + obj->gtt_space->size,
2936 obj->cache_level,
2937 obj->gtt_space->color);
2938 err++;
2939 continue;
2940 }
2941
2942 if (!i915_gem_valid_gtt_space(dev,
2943 obj->gtt_space,
2944 obj->cache_level)) {
2945 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2946 obj->gtt_space->start,
2947 obj->gtt_space->start + obj->gtt_space->size,
2948 obj->cache_level);
2949 err++;
2950 continue;
2951 }
2952 }
2953
2954 WARN_ON(err);
2955 #endif
2956 }
2957
2958 /**
2959 * Finds free space in the GTT aperture and binds the object there.
2960 */
2961 static int
2962 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2963 unsigned alignment,
2964 bool map_and_fenceable,
2965 bool nonblocking)
2966 {
2967 struct drm_device *dev = obj->base.dev;
2968 drm_i915_private_t *dev_priv = dev->dev_private;
2969 struct drm_mm_node *node;
2970 u32 size, fence_size, fence_alignment, unfenced_alignment;
2971 bool mappable, fenceable;
2972 size_t gtt_max = map_and_fenceable ?
2973 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
2974 int ret;
2975
2976 fence_size = i915_gem_get_gtt_size(dev,
2977 obj->base.size,
2978 obj->tiling_mode);
2979 fence_alignment = i915_gem_get_gtt_alignment(dev,
2980 obj->base.size,
2981 obj->tiling_mode, true);
2982 unfenced_alignment =
2983 i915_gem_get_gtt_alignment(dev,
2984 obj->base.size,
2985 obj->tiling_mode, false);
2986
2987 if (alignment == 0)
2988 alignment = map_and_fenceable ? fence_alignment :
2989 unfenced_alignment;
2990 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2991 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2992 return -EINVAL;
2993 }
2994
2995 size = map_and_fenceable ? fence_size : obj->base.size;
2996
2997 /* If the object is bigger than the entire aperture, reject it early
2998 * before evicting everything in a vain attempt to find space.
2999 */
3000 if (obj->base.size > gtt_max) {
3001 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%ld\n",
3002 obj->base.size,
3003 map_and_fenceable ? "mappable" : "total",
3004 gtt_max);
3005 return -E2BIG;
3006 }
3007
3008 ret = i915_gem_object_get_pages(obj);
3009 if (ret)
3010 return ret;
3011
3012 i915_gem_object_pin_pages(obj);
3013
3014 node = kzalloc(sizeof(*node), GFP_KERNEL);
3015 if (node == NULL) {
3016 i915_gem_object_unpin_pages(obj);
3017 return -ENOMEM;
3018 }
3019
3020 search_free:
3021 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3022 size, alignment,
3023 obj->cache_level, 0, gtt_max);
3024 if (ret) {
3025 ret = i915_gem_evict_something(dev, size, alignment,
3026 obj->cache_level,
3027 map_and_fenceable,
3028 nonblocking);
3029 if (ret == 0)
3030 goto search_free;
3031
3032 i915_gem_object_unpin_pages(obj);
3033 kfree(node);
3034 return ret;
3035 }
3036 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3037 i915_gem_object_unpin_pages(obj);
3038 drm_mm_put_block(node);
3039 return -EINVAL;
3040 }
3041
3042 ret = i915_gem_gtt_prepare_object(obj);
3043 if (ret) {
3044 i915_gem_object_unpin_pages(obj);
3045 drm_mm_put_block(node);
3046 return ret;
3047 }
3048
3049 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3050 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3051
3052 obj->gtt_space = node;
3053 obj->gtt_offset = node->start;
3054
3055 fenceable =
3056 node->size == fence_size &&
3057 (node->start & (fence_alignment - 1)) == 0;
3058
3059 mappable =
3060 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3061
3062 obj->map_and_fenceable = mappable && fenceable;
3063
3064 trace_i915_gem_object_bind(obj, map_and_fenceable);
3065 i915_gem_verify_gtt(dev);
3066 return 0;
3067 }
3068
3069 void
3070 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3071 {
3072 /* If we don't have a page list set up, then we're not pinned
3073 * to GPU, and we can ignore the cache flush because it'll happen
3074 * again at bind time.
3075 */
3076 if (obj->pages == NULL)
3077 return;
3078
3079 /*
3080 * Stolen memory is always coherent with the GPU as it is explicitly
3081 * marked as wc by the system, or the system is cache-coherent.
3082 */
3083 if (obj->stolen)
3084 return;
3085
3086 /* If the GPU is snooping the contents of the CPU cache,
3087 * we do not need to manually clear the CPU cache lines. However,
3088 * the caches are only snooped when the render cache is
3089 * flushed/invalidated. As we always have to emit invalidations
3090 * and flushes when moving into and out of the RENDER domain, correct
3091 * snooping behaviour occurs naturally as the result of our domain
3092 * tracking.
3093 */
3094 if (obj->cache_level != I915_CACHE_NONE)
3095 return;
3096
3097 trace_i915_gem_object_clflush(obj);
3098
3099 drm_clflush_sg(obj->pages);
3100 }
3101
3102 /** Flushes the GTT write domain for the object if it's dirty. */
3103 static void
3104 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3105 {
3106 uint32_t old_write_domain;
3107
3108 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3109 return;
3110
3111 /* No actual flushing is required for the GTT write domain. Writes
3112 * to it immediately go to main memory as far as we know, so there's
3113 * no chipset flush. It also doesn't land in render cache.
3114 *
3115 * However, we do have to enforce the order so that all writes through
3116 * the GTT land before any writes to the device, such as updates to
3117 * the GATT itself.
3118 */
3119 wmb();
3120
3121 old_write_domain = obj->base.write_domain;
3122 obj->base.write_domain = 0;
3123
3124 trace_i915_gem_object_change_domain(obj,
3125 obj->base.read_domains,
3126 old_write_domain);
3127 }
3128
3129 /** Flushes the CPU write domain for the object if it's dirty. */
3130 static void
3131 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3132 {
3133 uint32_t old_write_domain;
3134
3135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3136 return;
3137
3138 i915_gem_clflush_object(obj);
3139 i915_gem_chipset_flush(obj->base.dev);
3140 old_write_domain = obj->base.write_domain;
3141 obj->base.write_domain = 0;
3142
3143 trace_i915_gem_object_change_domain(obj,
3144 obj->base.read_domains,
3145 old_write_domain);
3146 }
3147
3148 /**
3149 * Moves a single object to the GTT read, and possibly write domain.
3150 *
3151 * This function returns when the move is complete, including waiting on
3152 * flushes to occur.
3153 */
3154 int
3155 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3156 {
3157 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3158 uint32_t old_write_domain, old_read_domains;
3159 int ret;
3160
3161 /* Not valid to be called on unbound objects. */
3162 if (obj->gtt_space == NULL)
3163 return -EINVAL;
3164
3165 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3166 return 0;
3167
3168 ret = i915_gem_object_wait_rendering(obj, !write);
3169 if (ret)
3170 return ret;
3171
3172 i915_gem_object_flush_cpu_write_domain(obj);
3173
3174 /* Serialise direct access to this object with the barriers for
3175 * coherent writes from the GPU, by effectively invalidating the
3176 * GTT domain upon first access.
3177 */
3178 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3179 mb();
3180
3181 old_write_domain = obj->base.write_domain;
3182 old_read_domains = obj->base.read_domains;
3183
3184 /* It should now be out of any other write domains, and we can update
3185 * the domain values for our changes.
3186 */
3187 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3188 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3189 if (write) {
3190 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3191 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3192 obj->dirty = 1;
3193 }
3194
3195 trace_i915_gem_object_change_domain(obj,
3196 old_read_domains,
3197 old_write_domain);
3198
3199 /* And bump the LRU for this access */
3200 if (i915_gem_object_is_inactive(obj))
3201 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3202
3203 return 0;
3204 }
3205
3206 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3207 enum i915_cache_level cache_level)
3208 {
3209 struct drm_device *dev = obj->base.dev;
3210 drm_i915_private_t *dev_priv = dev->dev_private;
3211 int ret;
3212
3213 if (obj->cache_level == cache_level)
3214 return 0;
3215
3216 if (obj->pin_count) {
3217 DRM_DEBUG("can not change the cache level of pinned objects\n");
3218 return -EBUSY;
3219 }
3220
3221 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3222 ret = i915_gem_object_unbind(obj);
3223 if (ret)
3224 return ret;
3225 }
3226
3227 if (obj->gtt_space) {
3228 ret = i915_gem_object_finish_gpu(obj);
3229 if (ret)
3230 return ret;
3231
3232 i915_gem_object_finish_gtt(obj);
3233
3234 /* Before SandyBridge, you could not use tiling or fence
3235 * registers with snooped memory, so relinquish any fences
3236 * currently pointing to our region in the aperture.
3237 */
3238 if (INTEL_INFO(dev)->gen < 6) {
3239 ret = i915_gem_object_put_fence(obj);
3240 if (ret)
3241 return ret;
3242 }
3243
3244 if (obj->has_global_gtt_mapping)
3245 i915_gem_gtt_bind_object(obj, cache_level);
3246 if (obj->has_aliasing_ppgtt_mapping)
3247 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3248 obj, cache_level);
3249
3250 obj->gtt_space->color = cache_level;
3251 }
3252
3253 if (cache_level == I915_CACHE_NONE) {
3254 u32 old_read_domains, old_write_domain;
3255
3256 /* If we're coming from LLC cached, then we haven't
3257 * actually been tracking whether the data is in the
3258 * CPU cache or not, since we only allow one bit set
3259 * in obj->write_domain and have been skipping the clflushes.
3260 * Just set it to the CPU cache for now.
3261 */
3262 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3263 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3264
3265 old_read_domains = obj->base.read_domains;
3266 old_write_domain = obj->base.write_domain;
3267
3268 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3269 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3270
3271 trace_i915_gem_object_change_domain(obj,
3272 old_read_domains,
3273 old_write_domain);
3274 }
3275
3276 obj->cache_level = cache_level;
3277 i915_gem_verify_gtt(dev);
3278 return 0;
3279 }
3280
3281 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3282 struct drm_file *file)
3283 {
3284 struct drm_i915_gem_caching *args = data;
3285 struct drm_i915_gem_object *obj;
3286 int ret;
3287
3288 ret = i915_mutex_lock_interruptible(dev);
3289 if (ret)
3290 return ret;
3291
3292 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3293 if (&obj->base == NULL) {
3294 ret = -ENOENT;
3295 goto unlock;
3296 }
3297
3298 args->caching = obj->cache_level != I915_CACHE_NONE;
3299
3300 drm_gem_object_unreference(&obj->base);
3301 unlock:
3302 mutex_unlock(&dev->struct_mutex);
3303 return ret;
3304 }
3305
3306 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3307 struct drm_file *file)
3308 {
3309 struct drm_i915_gem_caching *args = data;
3310 struct drm_i915_gem_object *obj;
3311 enum i915_cache_level level;
3312 int ret;
3313
3314 switch (args->caching) {
3315 case I915_CACHING_NONE:
3316 level = I915_CACHE_NONE;
3317 break;
3318 case I915_CACHING_CACHED:
3319 level = I915_CACHE_LLC;
3320 break;
3321 default:
3322 return -EINVAL;
3323 }
3324
3325 ret = i915_mutex_lock_interruptible(dev);
3326 if (ret)
3327 return ret;
3328
3329 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3330 if (&obj->base == NULL) {
3331 ret = -ENOENT;
3332 goto unlock;
3333 }
3334
3335 ret = i915_gem_object_set_cache_level(obj, level);
3336
3337 drm_gem_object_unreference(&obj->base);
3338 unlock:
3339 mutex_unlock(&dev->struct_mutex);
3340 return ret;
3341 }
3342
3343 /*
3344 * Prepare buffer for display plane (scanout, cursors, etc).
3345 * Can be called from an uninterruptible phase (modesetting) and allows
3346 * any flushes to be pipelined (for pageflips).
3347 */
3348 int
3349 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3350 u32 alignment,
3351 struct intel_ring_buffer *pipelined)
3352 {
3353 u32 old_read_domains, old_write_domain;
3354 int ret;
3355
3356 if (pipelined != obj->ring) {
3357 ret = i915_gem_object_sync(obj, pipelined);
3358 if (ret)
3359 return ret;
3360 }
3361
3362 /* The display engine is not coherent with the LLC cache on gen6. As
3363 * a result, we make sure that the pinning that is about to occur is
3364 * done with uncached PTEs. This is lowest common denominator for all
3365 * chipsets.
3366 *
3367 * However for gen6+, we could do better by using the GFDT bit instead
3368 * of uncaching, which would allow us to flush all the LLC-cached data
3369 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3370 */
3371 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3372 if (ret)
3373 return ret;
3374
3375 /* As the user may map the buffer once pinned in the display plane
3376 * (e.g. libkms for the bootup splash), we have to ensure that we
3377 * always use map_and_fenceable for all scanout buffers.
3378 */
3379 ret = i915_gem_object_pin(obj, alignment, true, false);
3380 if (ret)
3381 return ret;
3382
3383 i915_gem_object_flush_cpu_write_domain(obj);
3384
3385 old_write_domain = obj->base.write_domain;
3386 old_read_domains = obj->base.read_domains;
3387
3388 /* It should now be out of any other write domains, and we can update
3389 * the domain values for our changes.
3390 */
3391 obj->base.write_domain = 0;
3392 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3393
3394 trace_i915_gem_object_change_domain(obj,
3395 old_read_domains,
3396 old_write_domain);
3397
3398 return 0;
3399 }
3400
3401 int
3402 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3403 {
3404 int ret;
3405
3406 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3407 return 0;
3408
3409 ret = i915_gem_object_wait_rendering(obj, false);
3410 if (ret)
3411 return ret;
3412
3413 /* Ensure that we invalidate the GPU's caches and TLBs. */
3414 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3415 return 0;
3416 }
3417
3418 /**
3419 * Moves a single object to the CPU read, and possibly write domain.
3420 *
3421 * This function returns when the move is complete, including waiting on
3422 * flushes to occur.
3423 */
3424 int
3425 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3426 {
3427 uint32_t old_write_domain, old_read_domains;
3428 int ret;
3429
3430 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3431 return 0;
3432
3433 ret = i915_gem_object_wait_rendering(obj, !write);
3434 if (ret)
3435 return ret;
3436
3437 i915_gem_object_flush_gtt_write_domain(obj);
3438
3439 old_write_domain = obj->base.write_domain;
3440 old_read_domains = obj->base.read_domains;
3441
3442 /* Flush the CPU cache if it's still invalid. */
3443 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3444 i915_gem_clflush_object(obj);
3445
3446 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3447 }
3448
3449 /* It should now be out of any other write domains, and we can update
3450 * the domain values for our changes.
3451 */
3452 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3453
3454 /* If we're writing through the CPU, then the GPU read domains will
3455 * need to be invalidated at next use.
3456 */
3457 if (write) {
3458 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3459 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3460 }
3461
3462 trace_i915_gem_object_change_domain(obj,
3463 old_read_domains,
3464 old_write_domain);
3465
3466 return 0;
3467 }
3468
3469 /* Throttle our rendering by waiting until the ring has completed our requests
3470 * emitted over 20 msec ago.
3471 *
3472 * Note that if we were to use the current jiffies each time around the loop,
3473 * we wouldn't escape the function with any frames outstanding if the time to
3474 * render a frame was over 20ms.
3475 *
3476 * This should get us reasonable parallelism between CPU and GPU but also
3477 * relatively low latency when blocking on a particular request to finish.
3478 */
3479 static int
3480 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3481 {
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483 struct drm_i915_file_private *file_priv = file->driver_priv;
3484 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3485 struct drm_i915_gem_request *request;
3486 struct intel_ring_buffer *ring = NULL;
3487 unsigned reset_counter;
3488 u32 seqno = 0;
3489 int ret;
3490
3491 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3492 if (ret)
3493 return ret;
3494
3495 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3496 if (ret)
3497 return ret;
3498
3499 spin_lock(&file_priv->mm.lock);
3500 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3501 if (time_after_eq(request->emitted_jiffies, recent_enough))
3502 break;
3503
3504 ring = request->ring;
3505 seqno = request->seqno;
3506 }
3507 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3508 spin_unlock(&file_priv->mm.lock);
3509
3510 if (seqno == 0)
3511 return 0;
3512
3513 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3514 if (ret == 0)
3515 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3516
3517 return ret;
3518 }
3519
3520 int
3521 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3522 uint32_t alignment,
3523 bool map_and_fenceable,
3524 bool nonblocking)
3525 {
3526 int ret;
3527
3528 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3529 return -EBUSY;
3530
3531 if (obj->gtt_space != NULL) {
3532 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3533 (map_and_fenceable && !obj->map_and_fenceable)) {
3534 WARN(obj->pin_count,
3535 "bo is already pinned with incorrect alignment:"
3536 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3537 " obj->map_and_fenceable=%d\n",
3538 obj->gtt_offset, alignment,
3539 map_and_fenceable,
3540 obj->map_and_fenceable);
3541 ret = i915_gem_object_unbind(obj);
3542 if (ret)
3543 return ret;
3544 }
3545 }
3546
3547 if (obj->gtt_space == NULL) {
3548 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3549
3550 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3551 map_and_fenceable,
3552 nonblocking);
3553 if (ret)
3554 return ret;
3555
3556 if (!dev_priv->mm.aliasing_ppgtt)
3557 i915_gem_gtt_bind_object(obj, obj->cache_level);
3558 }
3559
3560 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3561 i915_gem_gtt_bind_object(obj, obj->cache_level);
3562
3563 obj->pin_count++;
3564 obj->pin_mappable |= map_and_fenceable;
3565
3566 return 0;
3567 }
3568
3569 void
3570 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3571 {
3572 BUG_ON(obj->pin_count == 0);
3573 BUG_ON(obj->gtt_space == NULL);
3574
3575 if (--obj->pin_count == 0)
3576 obj->pin_mappable = false;
3577 }
3578
3579 int
3580 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3581 struct drm_file *file)
3582 {
3583 struct drm_i915_gem_pin *args = data;
3584 struct drm_i915_gem_object *obj;
3585 int ret;
3586
3587 ret = i915_mutex_lock_interruptible(dev);
3588 if (ret)
3589 return ret;
3590
3591 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3592 if (&obj->base == NULL) {
3593 ret = -ENOENT;
3594 goto unlock;
3595 }
3596
3597 if (obj->madv != I915_MADV_WILLNEED) {
3598 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3599 ret = -EINVAL;
3600 goto out;
3601 }
3602
3603 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3604 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3605 args->handle);
3606 ret = -EINVAL;
3607 goto out;
3608 }
3609
3610 if (obj->user_pin_count == 0) {
3611 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3612 if (ret)
3613 goto out;
3614 }
3615
3616 obj->user_pin_count++;
3617 obj->pin_filp = file;
3618
3619 /* XXX - flush the CPU caches for pinned objects
3620 * as the X server doesn't manage domains yet
3621 */
3622 i915_gem_object_flush_cpu_write_domain(obj);
3623 args->offset = obj->gtt_offset;
3624 out:
3625 drm_gem_object_unreference(&obj->base);
3626 unlock:
3627 mutex_unlock(&dev->struct_mutex);
3628 return ret;
3629 }
3630
3631 int
3632 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3633 struct drm_file *file)
3634 {
3635 struct drm_i915_gem_pin *args = data;
3636 struct drm_i915_gem_object *obj;
3637 int ret;
3638
3639 ret = i915_mutex_lock_interruptible(dev);
3640 if (ret)
3641 return ret;
3642
3643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3644 if (&obj->base == NULL) {
3645 ret = -ENOENT;
3646 goto unlock;
3647 }
3648
3649 if (obj->pin_filp != file) {
3650 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3651 args->handle);
3652 ret = -EINVAL;
3653 goto out;
3654 }
3655 obj->user_pin_count--;
3656 if (obj->user_pin_count == 0) {
3657 obj->pin_filp = NULL;
3658 i915_gem_object_unpin(obj);
3659 }
3660
3661 out:
3662 drm_gem_object_unreference(&obj->base);
3663 unlock:
3664 mutex_unlock(&dev->struct_mutex);
3665 return ret;
3666 }
3667
3668 int
3669 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3670 struct drm_file *file)
3671 {
3672 struct drm_i915_gem_busy *args = data;
3673 struct drm_i915_gem_object *obj;
3674 int ret;
3675
3676 ret = i915_mutex_lock_interruptible(dev);
3677 if (ret)
3678 return ret;
3679
3680 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3681 if (&obj->base == NULL) {
3682 ret = -ENOENT;
3683 goto unlock;
3684 }
3685
3686 /* Count all active objects as busy, even if they are currently not used
3687 * by the gpu. Users of this interface expect objects to eventually
3688 * become non-busy without any further actions, therefore emit any
3689 * necessary flushes here.
3690 */
3691 ret = i915_gem_object_flush_active(obj);
3692
3693 args->busy = obj->active;
3694 if (obj->ring) {
3695 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3696 args->busy |= intel_ring_flag(obj->ring) << 16;
3697 }
3698
3699 drm_gem_object_unreference(&obj->base);
3700 unlock:
3701 mutex_unlock(&dev->struct_mutex);
3702 return ret;
3703 }
3704
3705 int
3706 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3707 struct drm_file *file_priv)
3708 {
3709 return i915_gem_ring_throttle(dev, file_priv);
3710 }
3711
3712 int
3713 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3714 struct drm_file *file_priv)
3715 {
3716 struct drm_i915_gem_madvise *args = data;
3717 struct drm_i915_gem_object *obj;
3718 int ret;
3719
3720 switch (args->madv) {
3721 case I915_MADV_DONTNEED:
3722 case I915_MADV_WILLNEED:
3723 break;
3724 default:
3725 return -EINVAL;
3726 }
3727
3728 ret = i915_mutex_lock_interruptible(dev);
3729 if (ret)
3730 return ret;
3731
3732 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3733 if (&obj->base == NULL) {
3734 ret = -ENOENT;
3735 goto unlock;
3736 }
3737
3738 if (obj->pin_count) {
3739 ret = -EINVAL;
3740 goto out;
3741 }
3742
3743 if (obj->madv != __I915_MADV_PURGED)
3744 obj->madv = args->madv;
3745
3746 /* if the object is no longer attached, discard its backing storage */
3747 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3748 i915_gem_object_truncate(obj);
3749
3750 args->retained = obj->madv != __I915_MADV_PURGED;
3751
3752 out:
3753 drm_gem_object_unreference(&obj->base);
3754 unlock:
3755 mutex_unlock(&dev->struct_mutex);
3756 return ret;
3757 }
3758
3759 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3760 const struct drm_i915_gem_object_ops *ops)
3761 {
3762 INIT_LIST_HEAD(&obj->mm_list);
3763 INIT_LIST_HEAD(&obj->global_list);
3764 INIT_LIST_HEAD(&obj->ring_list);
3765 INIT_LIST_HEAD(&obj->exec_list);
3766
3767 obj->ops = ops;
3768
3769 obj->fence_reg = I915_FENCE_REG_NONE;
3770 obj->madv = I915_MADV_WILLNEED;
3771 /* Avoid an unnecessary call to unbind on the first bind. */
3772 obj->map_and_fenceable = true;
3773
3774 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3775 }
3776
3777 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3778 .get_pages = i915_gem_object_get_pages_gtt,
3779 .put_pages = i915_gem_object_put_pages_gtt,
3780 };
3781
3782 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3783 size_t size)
3784 {
3785 struct drm_i915_gem_object *obj;
3786 struct address_space *mapping;
3787 gfp_t mask;
3788
3789 obj = i915_gem_object_alloc(dev);
3790 if (obj == NULL)
3791 return NULL;
3792
3793 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3794 i915_gem_object_free(obj);
3795 return NULL;
3796 }
3797
3798 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3799 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3800 /* 965gm cannot relocate objects above 4GiB. */
3801 mask &= ~__GFP_HIGHMEM;
3802 mask |= __GFP_DMA32;
3803 }
3804
3805 mapping = file_inode(obj->base.filp)->i_mapping;
3806 mapping_set_gfp_mask(mapping, mask);
3807
3808 i915_gem_object_init(obj, &i915_gem_object_ops);
3809
3810 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3811 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3812
3813 if (HAS_LLC(dev)) {
3814 /* On some devices, we can have the GPU use the LLC (the CPU
3815 * cache) for about a 10% performance improvement
3816 * compared to uncached. Graphics requests other than
3817 * display scanout are coherent with the CPU in
3818 * accessing this cache. This means in this mode we
3819 * don't need to clflush on the CPU side, and on the
3820 * GPU side we only need to flush internal caches to
3821 * get data visible to the CPU.
3822 *
3823 * However, we maintain the display planes as UC, and so
3824 * need to rebind when first used as such.
3825 */
3826 obj->cache_level = I915_CACHE_LLC;
3827 } else
3828 obj->cache_level = I915_CACHE_NONE;
3829
3830 return obj;
3831 }
3832
3833 int i915_gem_init_object(struct drm_gem_object *obj)
3834 {
3835 BUG();
3836
3837 return 0;
3838 }
3839
3840 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3841 {
3842 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3843 struct drm_device *dev = obj->base.dev;
3844 drm_i915_private_t *dev_priv = dev->dev_private;
3845
3846 trace_i915_gem_object_destroy(obj);
3847
3848 if (obj->phys_obj)
3849 i915_gem_detach_phys_object(dev, obj);
3850
3851 obj->pin_count = 0;
3852 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3853 bool was_interruptible;
3854
3855 was_interruptible = dev_priv->mm.interruptible;
3856 dev_priv->mm.interruptible = false;
3857
3858 WARN_ON(i915_gem_object_unbind(obj));
3859
3860 dev_priv->mm.interruptible = was_interruptible;
3861 }
3862
3863 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3864 * before progressing. */
3865 if (obj->stolen)
3866 i915_gem_object_unpin_pages(obj);
3867
3868 if (WARN_ON(obj->pages_pin_count))
3869 obj->pages_pin_count = 0;
3870 i915_gem_object_put_pages(obj);
3871 i915_gem_object_free_mmap_offset(obj);
3872 i915_gem_object_release_stolen(obj);
3873
3874 BUG_ON(obj->pages);
3875
3876 if (obj->base.import_attach)
3877 drm_prime_gem_destroy(&obj->base, NULL);
3878
3879 drm_gem_object_release(&obj->base);
3880 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3881
3882 kfree(obj->bit_17);
3883 i915_gem_object_free(obj);
3884 }
3885
3886 int
3887 i915_gem_idle(struct drm_device *dev)
3888 {
3889 drm_i915_private_t *dev_priv = dev->dev_private;
3890 int ret;
3891
3892 mutex_lock(&dev->struct_mutex);
3893
3894 if (dev_priv->mm.suspended) {
3895 mutex_unlock(&dev->struct_mutex);
3896 return 0;
3897 }
3898
3899 ret = i915_gpu_idle(dev);
3900 if (ret) {
3901 mutex_unlock(&dev->struct_mutex);
3902 return ret;
3903 }
3904 i915_gem_retire_requests(dev);
3905
3906 /* Under UMS, be paranoid and evict. */
3907 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3908 i915_gem_evict_everything(dev);
3909
3910 i915_gem_reset_fences(dev);
3911
3912 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3913 * We need to replace this with a semaphore, or something.
3914 * And not confound mm.suspended!
3915 */
3916 dev_priv->mm.suspended = 1;
3917 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3918
3919 i915_kernel_lost_context(dev);
3920 i915_gem_cleanup_ringbuffer(dev);
3921
3922 mutex_unlock(&dev->struct_mutex);
3923
3924 /* Cancel the retire work handler, which should be idle now. */
3925 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3926
3927 return 0;
3928 }
3929
3930 void i915_gem_l3_remap(struct drm_device *dev)
3931 {
3932 drm_i915_private_t *dev_priv = dev->dev_private;
3933 u32 misccpctl;
3934 int i;
3935
3936 if (!HAS_L3_GPU_CACHE(dev))
3937 return;
3938
3939 if (!dev_priv->l3_parity.remap_info)
3940 return;
3941
3942 misccpctl = I915_READ(GEN7_MISCCPCTL);
3943 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3944 POSTING_READ(GEN7_MISCCPCTL);
3945
3946 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3947 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3948 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3949 DRM_DEBUG("0x%x was already programmed to %x\n",
3950 GEN7_L3LOG_BASE + i, remap);
3951 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3952 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3953 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3954 }
3955
3956 /* Make sure all the writes land before disabling dop clock gating */
3957 POSTING_READ(GEN7_L3LOG_BASE);
3958
3959 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3960 }
3961
3962 void i915_gem_init_swizzling(struct drm_device *dev)
3963 {
3964 drm_i915_private_t *dev_priv = dev->dev_private;
3965
3966 if (INTEL_INFO(dev)->gen < 5 ||
3967 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3968 return;
3969
3970 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3971 DISP_TILE_SURFACE_SWIZZLING);
3972
3973 if (IS_GEN5(dev))
3974 return;
3975
3976 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3977 if (IS_GEN6(dev))
3978 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3979 else if (IS_GEN7(dev))
3980 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3981 else
3982 BUG();
3983 }
3984
3985 static bool
3986 intel_enable_blt(struct drm_device *dev)
3987 {
3988 if (!HAS_BLT(dev))
3989 return false;
3990
3991 /* The blitter was dysfunctional on early prototypes */
3992 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3993 DRM_INFO("BLT not supported on this pre-production hardware;"
3994 " graphics performance will be degraded.\n");
3995 return false;
3996 }
3997
3998 return true;
3999 }
4000
4001 static int i915_gem_init_rings(struct drm_device *dev)
4002 {
4003 struct drm_i915_private *dev_priv = dev->dev_private;
4004 int ret;
4005
4006 ret = intel_init_render_ring_buffer(dev);
4007 if (ret)
4008 return ret;
4009
4010 if (HAS_BSD(dev)) {
4011 ret = intel_init_bsd_ring_buffer(dev);
4012 if (ret)
4013 goto cleanup_render_ring;
4014 }
4015
4016 if (intel_enable_blt(dev)) {
4017 ret = intel_init_blt_ring_buffer(dev);
4018 if (ret)
4019 goto cleanup_bsd_ring;
4020 }
4021
4022 if (HAS_VEBOX(dev)) {
4023 ret = intel_init_vebox_ring_buffer(dev);
4024 if (ret)
4025 goto cleanup_blt_ring;
4026 }
4027
4028
4029 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4030 if (ret)
4031 goto cleanup_vebox_ring;
4032
4033 return 0;
4034
4035 cleanup_vebox_ring:
4036 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4037 cleanup_blt_ring:
4038 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4039 cleanup_bsd_ring:
4040 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4041 cleanup_render_ring:
4042 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4043
4044 return ret;
4045 }
4046
4047 int
4048 i915_gem_init_hw(struct drm_device *dev)
4049 {
4050 drm_i915_private_t *dev_priv = dev->dev_private;
4051 int ret;
4052
4053 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4054 return -EIO;
4055
4056 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4057 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4058
4059 if (HAS_PCH_NOP(dev)) {
4060 u32 temp = I915_READ(GEN7_MSG_CTL);
4061 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4062 I915_WRITE(GEN7_MSG_CTL, temp);
4063 }
4064
4065 i915_gem_l3_remap(dev);
4066
4067 i915_gem_init_swizzling(dev);
4068
4069 ret = i915_gem_init_rings(dev);
4070 if (ret)
4071 return ret;
4072
4073 /*
4074 * XXX: There was some w/a described somewhere suggesting loading
4075 * contexts before PPGTT.
4076 */
4077 i915_gem_context_init(dev);
4078 if (dev_priv->mm.aliasing_ppgtt) {
4079 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4080 if (ret) {
4081 i915_gem_cleanup_aliasing_ppgtt(dev);
4082 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4083 }
4084 }
4085
4086 return 0;
4087 }
4088
4089 int i915_gem_init(struct drm_device *dev)
4090 {
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092 int ret;
4093
4094 mutex_lock(&dev->struct_mutex);
4095
4096 if (IS_VALLEYVIEW(dev)) {
4097 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4098 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4099 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4100 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4101 }
4102
4103 i915_gem_init_global_gtt(dev);
4104
4105 ret = i915_gem_init_hw(dev);
4106 mutex_unlock(&dev->struct_mutex);
4107 if (ret) {
4108 i915_gem_cleanup_aliasing_ppgtt(dev);
4109 return ret;
4110 }
4111
4112 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4113 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4114 dev_priv->dri1.allow_batchbuffer = 1;
4115 return 0;
4116 }
4117
4118 void
4119 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4120 {
4121 drm_i915_private_t *dev_priv = dev->dev_private;
4122 struct intel_ring_buffer *ring;
4123 int i;
4124
4125 for_each_ring(ring, dev_priv, i)
4126 intel_cleanup_ring_buffer(ring);
4127 }
4128
4129 int
4130 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4131 struct drm_file *file_priv)
4132 {
4133 drm_i915_private_t *dev_priv = dev->dev_private;
4134 int ret;
4135
4136 if (drm_core_check_feature(dev, DRIVER_MODESET))
4137 return 0;
4138
4139 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4140 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4141 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4142 }
4143
4144 mutex_lock(&dev->struct_mutex);
4145 dev_priv->mm.suspended = 0;
4146
4147 ret = i915_gem_init_hw(dev);
4148 if (ret != 0) {
4149 mutex_unlock(&dev->struct_mutex);
4150 return ret;
4151 }
4152
4153 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4154 mutex_unlock(&dev->struct_mutex);
4155
4156 ret = drm_irq_install(dev);
4157 if (ret)
4158 goto cleanup_ringbuffer;
4159
4160 return 0;
4161
4162 cleanup_ringbuffer:
4163 mutex_lock(&dev->struct_mutex);
4164 i915_gem_cleanup_ringbuffer(dev);
4165 dev_priv->mm.suspended = 1;
4166 mutex_unlock(&dev->struct_mutex);
4167
4168 return ret;
4169 }
4170
4171 int
4172 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4173 struct drm_file *file_priv)
4174 {
4175 if (drm_core_check_feature(dev, DRIVER_MODESET))
4176 return 0;
4177
4178 drm_irq_uninstall(dev);
4179 return i915_gem_idle(dev);
4180 }
4181
4182 void
4183 i915_gem_lastclose(struct drm_device *dev)
4184 {
4185 int ret;
4186
4187 if (drm_core_check_feature(dev, DRIVER_MODESET))
4188 return;
4189
4190 ret = i915_gem_idle(dev);
4191 if (ret)
4192 DRM_ERROR("failed to idle hardware: %d\n", ret);
4193 }
4194
4195 static void
4196 init_ring_lists(struct intel_ring_buffer *ring)
4197 {
4198 INIT_LIST_HEAD(&ring->active_list);
4199 INIT_LIST_HEAD(&ring->request_list);
4200 }
4201
4202 void
4203 i915_gem_load(struct drm_device *dev)
4204 {
4205 drm_i915_private_t *dev_priv = dev->dev_private;
4206 int i;
4207
4208 dev_priv->slab =
4209 kmem_cache_create("i915_gem_object",
4210 sizeof(struct drm_i915_gem_object), 0,
4211 SLAB_HWCACHE_ALIGN,
4212 NULL);
4213
4214 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4215 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4216 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4217 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4218 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4219 for (i = 0; i < I915_NUM_RINGS; i++)
4220 init_ring_lists(&dev_priv->ring[i]);
4221 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4222 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4223 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4224 i915_gem_retire_work_handler);
4225 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4226
4227 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4228 if (IS_GEN3(dev)) {
4229 I915_WRITE(MI_ARB_STATE,
4230 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4231 }
4232
4233 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4234
4235 /* Old X drivers will take 0-2 for front, back, depth buffers */
4236 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4237 dev_priv->fence_reg_start = 3;
4238
4239 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4240 dev_priv->num_fence_regs = 32;
4241 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4242 dev_priv->num_fence_regs = 16;
4243 else
4244 dev_priv->num_fence_regs = 8;
4245
4246 /* Initialize fence registers to zero */
4247 i915_gem_reset_fences(dev);
4248
4249 i915_gem_detect_bit_6_swizzle(dev);
4250 init_waitqueue_head(&dev_priv->pending_flip_queue);
4251
4252 dev_priv->mm.interruptible = true;
4253
4254 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4255 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4256 register_shrinker(&dev_priv->mm.inactive_shrinker);
4257 }
4258
4259 /*
4260 * Create a physically contiguous memory object for this object
4261 * e.g. for cursor + overlay regs
4262 */
4263 static int i915_gem_init_phys_object(struct drm_device *dev,
4264 int id, int size, int align)
4265 {
4266 drm_i915_private_t *dev_priv = dev->dev_private;
4267 struct drm_i915_gem_phys_object *phys_obj;
4268 int ret;
4269
4270 if (dev_priv->mm.phys_objs[id - 1] || !size)
4271 return 0;
4272
4273 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4274 if (!phys_obj)
4275 return -ENOMEM;
4276
4277 phys_obj->id = id;
4278
4279 phys_obj->handle = drm_pci_alloc(dev, size, align);
4280 if (!phys_obj->handle) {
4281 ret = -ENOMEM;
4282 goto kfree_obj;
4283 }
4284 #ifdef CONFIG_X86
4285 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4286 #endif
4287
4288 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4289
4290 return 0;
4291 kfree_obj:
4292 kfree(phys_obj);
4293 return ret;
4294 }
4295
4296 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4297 {
4298 drm_i915_private_t *dev_priv = dev->dev_private;
4299 struct drm_i915_gem_phys_object *phys_obj;
4300
4301 if (!dev_priv->mm.phys_objs[id - 1])
4302 return;
4303
4304 phys_obj = dev_priv->mm.phys_objs[id - 1];
4305 if (phys_obj->cur_obj) {
4306 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4307 }
4308
4309 #ifdef CONFIG_X86
4310 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4311 #endif
4312 drm_pci_free(dev, phys_obj->handle);
4313 kfree(phys_obj);
4314 dev_priv->mm.phys_objs[id - 1] = NULL;
4315 }
4316
4317 void i915_gem_free_all_phys_object(struct drm_device *dev)
4318 {
4319 int i;
4320
4321 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4322 i915_gem_free_phys_object(dev, i);
4323 }
4324
4325 void i915_gem_detach_phys_object(struct drm_device *dev,
4326 struct drm_i915_gem_object *obj)
4327 {
4328 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4329 char *vaddr;
4330 int i;
4331 int page_count;
4332
4333 if (!obj->phys_obj)
4334 return;
4335 vaddr = obj->phys_obj->handle->vaddr;
4336
4337 page_count = obj->base.size / PAGE_SIZE;
4338 for (i = 0; i < page_count; i++) {
4339 struct page *page = shmem_read_mapping_page(mapping, i);
4340 if (!IS_ERR(page)) {
4341 char *dst = kmap_atomic(page);
4342 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4343 kunmap_atomic(dst);
4344
4345 drm_clflush_pages(&page, 1);
4346
4347 set_page_dirty(page);
4348 mark_page_accessed(page);
4349 page_cache_release(page);
4350 }
4351 }
4352 i915_gem_chipset_flush(dev);
4353
4354 obj->phys_obj->cur_obj = NULL;
4355 obj->phys_obj = NULL;
4356 }
4357
4358 int
4359 i915_gem_attach_phys_object(struct drm_device *dev,
4360 struct drm_i915_gem_object *obj,
4361 int id,
4362 int align)
4363 {
4364 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4365 drm_i915_private_t *dev_priv = dev->dev_private;
4366 int ret = 0;
4367 int page_count;
4368 int i;
4369
4370 if (id > I915_MAX_PHYS_OBJECT)
4371 return -EINVAL;
4372
4373 if (obj->phys_obj) {
4374 if (obj->phys_obj->id == id)
4375 return 0;
4376 i915_gem_detach_phys_object(dev, obj);
4377 }
4378
4379 /* create a new object */
4380 if (!dev_priv->mm.phys_objs[id - 1]) {
4381 ret = i915_gem_init_phys_object(dev, id,
4382 obj->base.size, align);
4383 if (ret) {
4384 DRM_ERROR("failed to init phys object %d size: %zu\n",
4385 id, obj->base.size);
4386 return ret;
4387 }
4388 }
4389
4390 /* bind to the object */
4391 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4392 obj->phys_obj->cur_obj = obj;
4393
4394 page_count = obj->base.size / PAGE_SIZE;
4395
4396 for (i = 0; i < page_count; i++) {
4397 struct page *page;
4398 char *dst, *src;
4399
4400 page = shmem_read_mapping_page(mapping, i);
4401 if (IS_ERR(page))
4402 return PTR_ERR(page);
4403
4404 src = kmap_atomic(page);
4405 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4406 memcpy(dst, src, PAGE_SIZE);
4407 kunmap_atomic(src);
4408
4409 mark_page_accessed(page);
4410 page_cache_release(page);
4411 }
4412
4413 return 0;
4414 }
4415
4416 static int
4417 i915_gem_phys_pwrite(struct drm_device *dev,
4418 struct drm_i915_gem_object *obj,
4419 struct drm_i915_gem_pwrite *args,
4420 struct drm_file *file_priv)
4421 {
4422 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4423 char __user *user_data = to_user_ptr(args->data_ptr);
4424
4425 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4426 unsigned long unwritten;
4427
4428 /* The physical object once assigned is fixed for the lifetime
4429 * of the obj, so we can safely drop the lock and continue
4430 * to access vaddr.
4431 */
4432 mutex_unlock(&dev->struct_mutex);
4433 unwritten = copy_from_user(vaddr, user_data, args->size);
4434 mutex_lock(&dev->struct_mutex);
4435 if (unwritten)
4436 return -EFAULT;
4437 }
4438
4439 i915_gem_chipset_flush(dev);
4440 return 0;
4441 }
4442
4443 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4444 {
4445 struct drm_i915_file_private *file_priv = file->driver_priv;
4446
4447 /* Clean up our request list when the client is going away, so that
4448 * later retire_requests won't dereference our soon-to-be-gone
4449 * file_priv.
4450 */
4451 spin_lock(&file_priv->mm.lock);
4452 while (!list_empty(&file_priv->mm.request_list)) {
4453 struct drm_i915_gem_request *request;
4454
4455 request = list_first_entry(&file_priv->mm.request_list,
4456 struct drm_i915_gem_request,
4457 client_list);
4458 list_del(&request->client_list);
4459 request->file_priv = NULL;
4460 }
4461 spin_unlock(&file_priv->mm.lock);
4462 }
4463
4464 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4465 {
4466 if (!mutex_is_locked(mutex))
4467 return false;
4468
4469 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4470 return mutex->owner == task;
4471 #else
4472 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4473 return false;
4474 #endif
4475 }
4476
4477 static int
4478 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4479 {
4480 struct drm_i915_private *dev_priv =
4481 container_of(shrinker,
4482 struct drm_i915_private,
4483 mm.inactive_shrinker);
4484 struct drm_device *dev = dev_priv->dev;
4485 struct drm_i915_gem_object *obj;
4486 int nr_to_scan = sc->nr_to_scan;
4487 bool unlock = true;
4488 int cnt;
4489
4490 if (!mutex_trylock(&dev->struct_mutex)) {
4491 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4492 return 0;
4493
4494 if (dev_priv->mm.shrinker_no_lock_stealing)
4495 return 0;
4496
4497 unlock = false;
4498 }
4499
4500 if (nr_to_scan) {
4501 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4502 if (nr_to_scan > 0)
4503 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4504 false);
4505 if (nr_to_scan > 0)
4506 i915_gem_shrink_all(dev_priv);
4507 }
4508
4509 cnt = 0;
4510 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4511 if (obj->pages_pin_count == 0)
4512 cnt += obj->base.size >> PAGE_SHIFT;
4513 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4514 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4515 cnt += obj->base.size >> PAGE_SHIFT;
4516
4517 if (unlock)
4518 mutex_unlock(&dev->struct_mutex);
4519 return cnt;
4520 }
This page took 0.119996 seconds and 6 git commands to generate.