drm/i915: Handle GPU hangs during fault gracefully.
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 struct change_domains {
40 uint32_t invalidate_domains;
41 uint32_t flush_domains;
42 uint32_t flush_rings;
43 };
44
45 static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
46 static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
47
48 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
49 bool pipelined);
50 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
51 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
52 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
53 int write);
54 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
55 uint64_t offset,
56 uint64_t size);
57 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
58 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
59 bool interruptible);
60 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
61 unsigned alignment,
62 bool map_and_fenceable);
63 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
64 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
65 struct drm_i915_gem_pwrite *args,
66 struct drm_file *file_priv);
67 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
68
69 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
70 int nr_to_scan,
71 gfp_t gfp_mask);
72
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
90 struct drm_i915_gem_object *obj)
91 {
92 dev_priv->mm.gtt_count++;
93 dev_priv->mm.gtt_memory += obj->gtt_space->size;
94 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
95 dev_priv->mm.mappable_gtt_used +=
96 min_t(size_t, obj->gtt_space->size,
97 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
98 }
99 }
100
101 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
102 struct drm_i915_gem_object *obj)
103 {
104 dev_priv->mm.gtt_count--;
105 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
106 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107 dev_priv->mm.mappable_gtt_used -=
108 min_t(size_t, obj->gtt_space->size,
109 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
110 }
111 }
112
113 /**
114 * Update the mappable working set counters. Call _only_ when there is a change
115 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
116 * @mappable: new state the changed mappable flag (either pin_ or fault_).
117 */
118 static void
119 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
120 struct drm_i915_gem_object *obj,
121 bool mappable)
122 {
123 if (mappable) {
124 if (obj->pin_mappable && obj->fault_mappable)
125 /* Combined state was already mappable. */
126 return;
127 dev_priv->mm.gtt_mappable_count++;
128 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
129 } else {
130 if (obj->pin_mappable || obj->fault_mappable)
131 /* Combined state still mappable. */
132 return;
133 dev_priv->mm.gtt_mappable_count--;
134 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
135 }
136 }
137
138 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
139 struct drm_i915_gem_object *obj,
140 bool mappable)
141 {
142 dev_priv->mm.pin_count++;
143 dev_priv->mm.pin_memory += obj->gtt_space->size;
144 if (mappable) {
145 obj->pin_mappable = true;
146 i915_gem_info_update_mappable(dev_priv, obj, true);
147 }
148 }
149
150 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
151 struct drm_i915_gem_object *obj)
152 {
153 dev_priv->mm.pin_count--;
154 dev_priv->mm.pin_memory -= obj->gtt_space->size;
155 if (obj->pin_mappable) {
156 obj->pin_mappable = false;
157 i915_gem_info_update_mappable(dev_priv, obj, false);
158 }
159 }
160
161 int
162 i915_gem_check_is_wedged(struct drm_device *dev)
163 {
164 struct drm_i915_private *dev_priv = dev->dev_private;
165 struct completion *x = &dev_priv->error_completion;
166 unsigned long flags;
167 int ret;
168
169 if (!atomic_read(&dev_priv->mm.wedged))
170 return 0;
171
172 ret = wait_for_completion_interruptible(x);
173 if (ret)
174 return ret;
175
176 /* Success, we reset the GPU! */
177 if (!atomic_read(&dev_priv->mm.wedged))
178 return 0;
179
180 /* GPU is hung, bump the completion count to account for
181 * the token we just consumed so that we never hit zero and
182 * end up waiting upon a subsequent completion event that
183 * will never happen.
184 */
185 spin_lock_irqsave(&x->wait.lock, flags);
186 x->done++;
187 spin_unlock_irqrestore(&x->wait.lock, flags);
188 return -EIO;
189 }
190
191 static int i915_mutex_lock_interruptible(struct drm_device *dev)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 int ret;
195
196 ret = i915_gem_check_is_wedged(dev);
197 if (ret)
198 return ret;
199
200 ret = mutex_lock_interruptible(&dev->struct_mutex);
201 if (ret)
202 return ret;
203
204 if (atomic_read(&dev_priv->mm.wedged)) {
205 mutex_unlock(&dev->struct_mutex);
206 return -EAGAIN;
207 }
208
209 WARN_ON(i915_verify_lists(dev));
210 return 0;
211 }
212
213 static inline bool
214 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
215 {
216 return obj_priv->gtt_space &&
217 !obj_priv->active &&
218 obj_priv->pin_count == 0;
219 }
220
221 int i915_gem_do_init(struct drm_device *dev,
222 unsigned long start,
223 unsigned long mappable_end,
224 unsigned long end)
225 {
226 drm_i915_private_t *dev_priv = dev->dev_private;
227
228 if (start >= end ||
229 (start & (PAGE_SIZE - 1)) != 0 ||
230 (end & (PAGE_SIZE - 1)) != 0) {
231 return -EINVAL;
232 }
233
234 drm_mm_init(&dev_priv->mm.gtt_space, start,
235 end - start);
236
237 dev_priv->mm.gtt_total = end - start;
238 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
239 dev_priv->mm.gtt_mappable_end = mappable_end;
240
241 return 0;
242 }
243
244 int
245 i915_gem_init_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file_priv)
247 {
248 struct drm_i915_gem_init *args = data;
249 int ret;
250
251 mutex_lock(&dev->struct_mutex);
252 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
253 mutex_unlock(&dev->struct_mutex);
254
255 return ret;
256 }
257
258 int
259 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
260 struct drm_file *file_priv)
261 {
262 struct drm_i915_private *dev_priv = dev->dev_private;
263 struct drm_i915_gem_get_aperture *args = data;
264
265 if (!(dev->driver->driver_features & DRIVER_GEM))
266 return -ENODEV;
267
268 mutex_lock(&dev->struct_mutex);
269 args->aper_size = dev_priv->mm.gtt_total;
270 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
271 mutex_unlock(&dev->struct_mutex);
272
273 return 0;
274 }
275
276
277 /**
278 * Creates a new mm object and returns a handle to it.
279 */
280 int
281 i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 struct drm_file *file_priv)
283 {
284 struct drm_i915_gem_create *args = data;
285 struct drm_gem_object *obj;
286 int ret;
287 u32 handle;
288
289 args->size = roundup(args->size, PAGE_SIZE);
290
291 /* Allocate the new object */
292 obj = i915_gem_alloc_object(dev, args->size);
293 if (obj == NULL)
294 return -ENOMEM;
295
296 ret = drm_gem_handle_create(file_priv, obj, &handle);
297 if (ret) {
298 drm_gem_object_release(obj);
299 i915_gem_info_remove_obj(dev->dev_private, obj->size);
300 kfree(obj);
301 return ret;
302 }
303
304 /* drop reference from allocate - handle holds it now */
305 drm_gem_object_unreference(obj);
306 trace_i915_gem_object_create(obj);
307
308 args->handle = handle;
309 return 0;
310 }
311
312 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
313 {
314 drm_i915_private_t *dev_priv = obj->dev->dev_private;
315 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
316
317 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
318 obj_priv->tiling_mode != I915_TILING_NONE;
319 }
320
321 static inline void
322 slow_shmem_copy(struct page *dst_page,
323 int dst_offset,
324 struct page *src_page,
325 int src_offset,
326 int length)
327 {
328 char *dst_vaddr, *src_vaddr;
329
330 dst_vaddr = kmap(dst_page);
331 src_vaddr = kmap(src_page);
332
333 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
334
335 kunmap(src_page);
336 kunmap(dst_page);
337 }
338
339 static inline void
340 slow_shmem_bit17_copy(struct page *gpu_page,
341 int gpu_offset,
342 struct page *cpu_page,
343 int cpu_offset,
344 int length,
345 int is_read)
346 {
347 char *gpu_vaddr, *cpu_vaddr;
348
349 /* Use the unswizzled path if this page isn't affected. */
350 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
351 if (is_read)
352 return slow_shmem_copy(cpu_page, cpu_offset,
353 gpu_page, gpu_offset, length);
354 else
355 return slow_shmem_copy(gpu_page, gpu_offset,
356 cpu_page, cpu_offset, length);
357 }
358
359 gpu_vaddr = kmap(gpu_page);
360 cpu_vaddr = kmap(cpu_page);
361
362 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
363 * XORing with the other bits (A9 for Y, A9 and A10 for X)
364 */
365 while (length > 0) {
366 int cacheline_end = ALIGN(gpu_offset + 1, 64);
367 int this_length = min(cacheline_end - gpu_offset, length);
368 int swizzled_gpu_offset = gpu_offset ^ 64;
369
370 if (is_read) {
371 memcpy(cpu_vaddr + cpu_offset,
372 gpu_vaddr + swizzled_gpu_offset,
373 this_length);
374 } else {
375 memcpy(gpu_vaddr + swizzled_gpu_offset,
376 cpu_vaddr + cpu_offset,
377 this_length);
378 }
379 cpu_offset += this_length;
380 gpu_offset += this_length;
381 length -= this_length;
382 }
383
384 kunmap(cpu_page);
385 kunmap(gpu_page);
386 }
387
388 /**
389 * This is the fast shmem pread path, which attempts to copy_from_user directly
390 * from the backing pages of the object to the user's address space. On a
391 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
392 */
393 static int
394 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file_priv)
397 {
398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
399 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
400 ssize_t remain;
401 loff_t offset;
402 char __user *user_data;
403 int page_offset, page_length;
404
405 user_data = (char __user *) (uintptr_t) args->data_ptr;
406 remain = args->size;
407
408 obj_priv = to_intel_bo(obj);
409 offset = args->offset;
410
411 while (remain > 0) {
412 struct page *page;
413 char *vaddr;
414 int ret;
415
416 /* Operation in this page
417 *
418 * page_offset = offset within page
419 * page_length = bytes to copy for this page
420 */
421 page_offset = offset & (PAGE_SIZE-1);
422 page_length = remain;
423 if ((page_offset + remain) > PAGE_SIZE)
424 page_length = PAGE_SIZE - page_offset;
425
426 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
427 GFP_HIGHUSER | __GFP_RECLAIMABLE);
428 if (IS_ERR(page))
429 return PTR_ERR(page);
430
431 vaddr = kmap_atomic(page);
432 ret = __copy_to_user_inatomic(user_data,
433 vaddr + page_offset,
434 page_length);
435 kunmap_atomic(vaddr);
436
437 mark_page_accessed(page);
438 page_cache_release(page);
439 if (ret)
440 return -EFAULT;
441
442 remain -= page_length;
443 user_data += page_length;
444 offset += page_length;
445 }
446
447 return 0;
448 }
449
450 /**
451 * This is the fallback shmem pread path, which allocates temporary storage
452 * in kernel space to copy_to_user into outside of the struct_mutex, so we
453 * can copy out of the object's backing pages while holding the struct mutex
454 * and not take page faults.
455 */
456 static int
457 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
458 struct drm_i915_gem_pread *args,
459 struct drm_file *file_priv)
460 {
461 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
463 struct mm_struct *mm = current->mm;
464 struct page **user_pages;
465 ssize_t remain;
466 loff_t offset, pinned_pages, i;
467 loff_t first_data_page, last_data_page, num_pages;
468 int shmem_page_offset;
469 int data_page_index, data_page_offset;
470 int page_length;
471 int ret;
472 uint64_t data_ptr = args->data_ptr;
473 int do_bit17_swizzling;
474
475 remain = args->size;
476
477 /* Pin the user pages containing the data. We can't fault while
478 * holding the struct mutex, yet we want to hold it while
479 * dereferencing the user data.
480 */
481 first_data_page = data_ptr / PAGE_SIZE;
482 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
483 num_pages = last_data_page - first_data_page + 1;
484
485 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
486 if (user_pages == NULL)
487 return -ENOMEM;
488
489 mutex_unlock(&dev->struct_mutex);
490 down_read(&mm->mmap_sem);
491 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
492 num_pages, 1, 0, user_pages, NULL);
493 up_read(&mm->mmap_sem);
494 mutex_lock(&dev->struct_mutex);
495 if (pinned_pages < num_pages) {
496 ret = -EFAULT;
497 goto out;
498 }
499
500 ret = i915_gem_object_set_cpu_read_domain_range(obj,
501 args->offset,
502 args->size);
503 if (ret)
504 goto out;
505
506 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
507
508 obj_priv = to_intel_bo(obj);
509 offset = args->offset;
510
511 while (remain > 0) {
512 struct page *page;
513
514 /* Operation in this page
515 *
516 * shmem_page_offset = offset within page in shmem file
517 * data_page_index = page number in get_user_pages return
518 * data_page_offset = offset with data_page_index page.
519 * page_length = bytes to copy for this page
520 */
521 shmem_page_offset = offset & ~PAGE_MASK;
522 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523 data_page_offset = data_ptr & ~PAGE_MASK;
524
525 page_length = remain;
526 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527 page_length = PAGE_SIZE - shmem_page_offset;
528 if ((data_page_offset + page_length) > PAGE_SIZE)
529 page_length = PAGE_SIZE - data_page_offset;
530
531 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
532 GFP_HIGHUSER | __GFP_RECLAIMABLE);
533 if (IS_ERR(page))
534 return PTR_ERR(page);
535
536 if (do_bit17_swizzling) {
537 slow_shmem_bit17_copy(page,
538 shmem_page_offset,
539 user_pages[data_page_index],
540 data_page_offset,
541 page_length,
542 1);
543 } else {
544 slow_shmem_copy(user_pages[data_page_index],
545 data_page_offset,
546 page,
547 shmem_page_offset,
548 page_length);
549 }
550
551 mark_page_accessed(page);
552 page_cache_release(page);
553
554 remain -= page_length;
555 data_ptr += page_length;
556 offset += page_length;
557 }
558
559 out:
560 for (i = 0; i < pinned_pages; i++) {
561 SetPageDirty(user_pages[i]);
562 mark_page_accessed(user_pages[i]);
563 page_cache_release(user_pages[i]);
564 }
565 drm_free_large(user_pages);
566
567 return ret;
568 }
569
570 /**
571 * Reads data from the object referenced by handle.
572 *
573 * On error, the contents of *data are undefined.
574 */
575 int
576 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
577 struct drm_file *file_priv)
578 {
579 struct drm_i915_gem_pread *args = data;
580 struct drm_gem_object *obj;
581 struct drm_i915_gem_object *obj_priv;
582 int ret = 0;
583
584 ret = i915_mutex_lock_interruptible(dev);
585 if (ret)
586 return ret;
587
588 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
589 if (obj == NULL) {
590 ret = -ENOENT;
591 goto unlock;
592 }
593 obj_priv = to_intel_bo(obj);
594
595 /* Bounds check source. */
596 if (args->offset > obj->size || args->size > obj->size - args->offset) {
597 ret = -EINVAL;
598 goto out;
599 }
600
601 if (args->size == 0)
602 goto out;
603
604 if (!access_ok(VERIFY_WRITE,
605 (char __user *)(uintptr_t)args->data_ptr,
606 args->size)) {
607 ret = -EFAULT;
608 goto out;
609 }
610
611 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
612 args->size);
613 if (ret) {
614 ret = -EFAULT;
615 goto out;
616 }
617
618 ret = i915_gem_object_set_cpu_read_domain_range(obj,
619 args->offset,
620 args->size);
621 if (ret)
622 goto out;
623
624 ret = -EFAULT;
625 if (!i915_gem_object_needs_bit17_swizzle(obj))
626 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
627 if (ret == -EFAULT)
628 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
629
630 out:
631 drm_gem_object_unreference(obj);
632 unlock:
633 mutex_unlock(&dev->struct_mutex);
634 return ret;
635 }
636
637 /* This is the fast write path which cannot handle
638 * page faults in the source data
639 */
640
641 static inline int
642 fast_user_write(struct io_mapping *mapping,
643 loff_t page_base, int page_offset,
644 char __user *user_data,
645 int length)
646 {
647 char *vaddr_atomic;
648 unsigned long unwritten;
649
650 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
651 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
652 user_data, length);
653 io_mapping_unmap_atomic(vaddr_atomic);
654 return unwritten;
655 }
656
657 /* Here's the write path which can sleep for
658 * page faults
659 */
660
661 static inline void
662 slow_kernel_write(struct io_mapping *mapping,
663 loff_t gtt_base, int gtt_offset,
664 struct page *user_page, int user_offset,
665 int length)
666 {
667 char __iomem *dst_vaddr;
668 char *src_vaddr;
669
670 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
671 src_vaddr = kmap(user_page);
672
673 memcpy_toio(dst_vaddr + gtt_offset,
674 src_vaddr + user_offset,
675 length);
676
677 kunmap(user_page);
678 io_mapping_unmap(dst_vaddr);
679 }
680
681 /**
682 * This is the fast pwrite path, where we copy the data directly from the
683 * user into the GTT, uncached.
684 */
685 static int
686 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
687 struct drm_i915_gem_pwrite *args,
688 struct drm_file *file_priv)
689 {
690 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
691 drm_i915_private_t *dev_priv = dev->dev_private;
692 ssize_t remain;
693 loff_t offset, page_base;
694 char __user *user_data;
695 int page_offset, page_length;
696
697 user_data = (char __user *) (uintptr_t) args->data_ptr;
698 remain = args->size;
699
700 obj_priv = to_intel_bo(obj);
701 offset = obj_priv->gtt_offset + args->offset;
702
703 while (remain > 0) {
704 /* Operation in this page
705 *
706 * page_base = page offset within aperture
707 * page_offset = offset within page
708 * page_length = bytes to copy for this page
709 */
710 page_base = (offset & ~(PAGE_SIZE-1));
711 page_offset = offset & (PAGE_SIZE-1);
712 page_length = remain;
713 if ((page_offset + remain) > PAGE_SIZE)
714 page_length = PAGE_SIZE - page_offset;
715
716 /* If we get a fault while copying data, then (presumably) our
717 * source page isn't available. Return the error and we'll
718 * retry in the slow path.
719 */
720 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
721 page_offset, user_data, page_length))
722
723 return -EFAULT;
724
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
728 }
729
730 return 0;
731 }
732
733 /**
734 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
735 * the memory and maps it using kmap_atomic for copying.
736 *
737 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
738 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
739 */
740 static int
741 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
742 struct drm_i915_gem_pwrite *args,
743 struct drm_file *file_priv)
744 {
745 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
746 drm_i915_private_t *dev_priv = dev->dev_private;
747 ssize_t remain;
748 loff_t gtt_page_base, offset;
749 loff_t first_data_page, last_data_page, num_pages;
750 loff_t pinned_pages, i;
751 struct page **user_pages;
752 struct mm_struct *mm = current->mm;
753 int gtt_page_offset, data_page_offset, data_page_index, page_length;
754 int ret;
755 uint64_t data_ptr = args->data_ptr;
756
757 remain = args->size;
758
759 /* Pin the user pages containing the data. We can't fault while
760 * holding the struct mutex, and all of the pwrite implementations
761 * want to hold it while dereferencing the user data.
762 */
763 first_data_page = data_ptr / PAGE_SIZE;
764 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
765 num_pages = last_data_page - first_data_page + 1;
766
767 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
768 if (user_pages == NULL)
769 return -ENOMEM;
770
771 mutex_unlock(&dev->struct_mutex);
772 down_read(&mm->mmap_sem);
773 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
774 num_pages, 0, 0, user_pages, NULL);
775 up_read(&mm->mmap_sem);
776 mutex_lock(&dev->struct_mutex);
777 if (pinned_pages < num_pages) {
778 ret = -EFAULT;
779 goto out_unpin_pages;
780 }
781
782 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
783 if (ret)
784 goto out_unpin_pages;
785
786 obj_priv = to_intel_bo(obj);
787 offset = obj_priv->gtt_offset + args->offset;
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * gtt_page_base = page offset within aperture
793 * gtt_page_offset = offset within page in aperture
794 * data_page_index = page number in get_user_pages return
795 * data_page_offset = offset with data_page_index page.
796 * page_length = bytes to copy for this page
797 */
798 gtt_page_base = offset & PAGE_MASK;
799 gtt_page_offset = offset & ~PAGE_MASK;
800 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
801 data_page_offset = data_ptr & ~PAGE_MASK;
802
803 page_length = remain;
804 if ((gtt_page_offset + page_length) > PAGE_SIZE)
805 page_length = PAGE_SIZE - gtt_page_offset;
806 if ((data_page_offset + page_length) > PAGE_SIZE)
807 page_length = PAGE_SIZE - data_page_offset;
808
809 slow_kernel_write(dev_priv->mm.gtt_mapping,
810 gtt_page_base, gtt_page_offset,
811 user_pages[data_page_index],
812 data_page_offset,
813 page_length);
814
815 remain -= page_length;
816 offset += page_length;
817 data_ptr += page_length;
818 }
819
820 out_unpin_pages:
821 for (i = 0; i < pinned_pages; i++)
822 page_cache_release(user_pages[i]);
823 drm_free_large(user_pages);
824
825 return ret;
826 }
827
828 /**
829 * This is the fast shmem pwrite path, which attempts to directly
830 * copy_from_user into the kmapped pages backing the object.
831 */
832 static int
833 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
834 struct drm_i915_gem_pwrite *args,
835 struct drm_file *file_priv)
836 {
837 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
838 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
839 ssize_t remain;
840 loff_t offset;
841 char __user *user_data;
842 int page_offset, page_length;
843
844 user_data = (char __user *) (uintptr_t) args->data_ptr;
845 remain = args->size;
846
847 obj_priv = to_intel_bo(obj);
848 offset = args->offset;
849 obj_priv->dirty = 1;
850
851 while (remain > 0) {
852 struct page *page;
853 char *vaddr;
854 int ret;
855
856 /* Operation in this page
857 *
858 * page_offset = offset within page
859 * page_length = bytes to copy for this page
860 */
861 page_offset = offset & (PAGE_SIZE-1);
862 page_length = remain;
863 if ((page_offset + remain) > PAGE_SIZE)
864 page_length = PAGE_SIZE - page_offset;
865
866 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
867 GFP_HIGHUSER | __GFP_RECLAIMABLE);
868 if (IS_ERR(page))
869 return PTR_ERR(page);
870
871 vaddr = kmap_atomic(page, KM_USER0);
872 ret = __copy_from_user_inatomic(vaddr + page_offset,
873 user_data,
874 page_length);
875 kunmap_atomic(vaddr, KM_USER0);
876
877 set_page_dirty(page);
878 mark_page_accessed(page);
879 page_cache_release(page);
880
881 /* If we get a fault while copying data, then (presumably) our
882 * source page isn't available. Return the error and we'll
883 * retry in the slow path.
884 */
885 if (ret)
886 return -EFAULT;
887
888 remain -= page_length;
889 user_data += page_length;
890 offset += page_length;
891 }
892
893 return 0;
894 }
895
896 /**
897 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
898 * the memory and maps it using kmap_atomic for copying.
899 *
900 * This avoids taking mmap_sem for faulting on the user's address while the
901 * struct_mutex is held.
902 */
903 static int
904 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
905 struct drm_i915_gem_pwrite *args,
906 struct drm_file *file_priv)
907 {
908 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
909 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
910 struct mm_struct *mm = current->mm;
911 struct page **user_pages;
912 ssize_t remain;
913 loff_t offset, pinned_pages, i;
914 loff_t first_data_page, last_data_page, num_pages;
915 int shmem_page_offset;
916 int data_page_index, data_page_offset;
917 int page_length;
918 int ret;
919 uint64_t data_ptr = args->data_ptr;
920 int do_bit17_swizzling;
921
922 remain = args->size;
923
924 /* Pin the user pages containing the data. We can't fault while
925 * holding the struct mutex, and all of the pwrite implementations
926 * want to hold it while dereferencing the user data.
927 */
928 first_data_page = data_ptr / PAGE_SIZE;
929 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
930 num_pages = last_data_page - first_data_page + 1;
931
932 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
933 if (user_pages == NULL)
934 return -ENOMEM;
935
936 mutex_unlock(&dev->struct_mutex);
937 down_read(&mm->mmap_sem);
938 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
939 num_pages, 0, 0, user_pages, NULL);
940 up_read(&mm->mmap_sem);
941 mutex_lock(&dev->struct_mutex);
942 if (pinned_pages < num_pages) {
943 ret = -EFAULT;
944 goto out;
945 }
946
947 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
948 if (ret)
949 goto out;
950
951 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952
953 obj_priv = to_intel_bo(obj);
954 offset = args->offset;
955 obj_priv->dirty = 1;
956
957 while (remain > 0) {
958 struct page *page;
959
960 /* Operation in this page
961 *
962 * shmem_page_offset = offset within page in shmem file
963 * data_page_index = page number in get_user_pages return
964 * data_page_offset = offset with data_page_index page.
965 * page_length = bytes to copy for this page
966 */
967 shmem_page_offset = offset & ~PAGE_MASK;
968 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
969 data_page_offset = data_ptr & ~PAGE_MASK;
970
971 page_length = remain;
972 if ((shmem_page_offset + page_length) > PAGE_SIZE)
973 page_length = PAGE_SIZE - shmem_page_offset;
974 if ((data_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - data_page_offset;
976
977 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
978 GFP_HIGHUSER | __GFP_RECLAIMABLE);
979 if (IS_ERR(page)) {
980 ret = PTR_ERR(page);
981 goto out;
982 }
983
984 if (do_bit17_swizzling) {
985 slow_shmem_bit17_copy(page,
986 shmem_page_offset,
987 user_pages[data_page_index],
988 data_page_offset,
989 page_length,
990 0);
991 } else {
992 slow_shmem_copy(page,
993 shmem_page_offset,
994 user_pages[data_page_index],
995 data_page_offset,
996 page_length);
997 }
998
999 set_page_dirty(page);
1000 mark_page_accessed(page);
1001 page_cache_release(page);
1002
1003 remain -= page_length;
1004 data_ptr += page_length;
1005 offset += page_length;
1006 }
1007
1008 out:
1009 for (i = 0; i < pinned_pages; i++)
1010 page_cache_release(user_pages[i]);
1011 drm_free_large(user_pages);
1012
1013 return ret;
1014 }
1015
1016 /**
1017 * Writes data to the object referenced by handle.
1018 *
1019 * On error, the contents of the buffer that were to be modified are undefined.
1020 */
1021 int
1022 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1023 struct drm_file *file)
1024 {
1025 struct drm_i915_gem_pwrite *args = data;
1026 struct drm_gem_object *obj;
1027 struct drm_i915_gem_object *obj_priv;
1028 int ret = 0;
1029
1030 ret = i915_mutex_lock_interruptible(dev);
1031 if (ret)
1032 return ret;
1033
1034 obj = drm_gem_object_lookup(dev, file, args->handle);
1035 if (obj == NULL) {
1036 ret = -ENOENT;
1037 goto unlock;
1038 }
1039 obj_priv = to_intel_bo(obj);
1040
1041
1042 /* Bounds check destination. */
1043 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1044 ret = -EINVAL;
1045 goto out;
1046 }
1047
1048 if (args->size == 0)
1049 goto out;
1050
1051 if (!access_ok(VERIFY_READ,
1052 (char __user *)(uintptr_t)args->data_ptr,
1053 args->size)) {
1054 ret = -EFAULT;
1055 goto out;
1056 }
1057
1058 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1059 args->size);
1060 if (ret) {
1061 ret = -EFAULT;
1062 goto out;
1063 }
1064
1065 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1066 * it would end up going through the fenced access, and we'll get
1067 * different detiling behavior between reading and writing.
1068 * pread/pwrite currently are reading and writing from the CPU
1069 * perspective, requiring manual detiling by the client.
1070 */
1071 if (obj_priv->phys_obj)
1072 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1073 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1074 obj_priv->gtt_space &&
1075 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1076 ret = i915_gem_object_pin(obj, 0, true);
1077 if (ret)
1078 goto out;
1079
1080 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1081 if (ret)
1082 goto out_unpin;
1083
1084 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1085 if (ret == -EFAULT)
1086 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1087
1088 out_unpin:
1089 i915_gem_object_unpin(obj);
1090 } else {
1091 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1092 if (ret)
1093 goto out;
1094
1095 ret = -EFAULT;
1096 if (!i915_gem_object_needs_bit17_swizzle(obj))
1097 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1098 if (ret == -EFAULT)
1099 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(obj);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107 }
1108
1109 /**
1110 * Called when user space prepares to use an object with the CPU, either
1111 * through the mmap ioctl's mapping or a GTT mapping.
1112 */
1113 int
1114 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1115 struct drm_file *file_priv)
1116 {
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 struct drm_i915_gem_set_domain *args = data;
1119 struct drm_gem_object *obj;
1120 struct drm_i915_gem_object *obj_priv;
1121 uint32_t read_domains = args->read_domains;
1122 uint32_t write_domain = args->write_domain;
1123 int ret;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 /* Only handle setting domains to types used by the CPU. */
1129 if (write_domain & I915_GEM_GPU_DOMAINS)
1130 return -EINVAL;
1131
1132 if (read_domains & I915_GEM_GPU_DOMAINS)
1133 return -EINVAL;
1134
1135 /* Having something in the write domain implies it's in the read
1136 * domain, and only that read domain. Enforce that in the request.
1137 */
1138 if (write_domain != 0 && read_domains != write_domain)
1139 return -EINVAL;
1140
1141 ret = i915_mutex_lock_interruptible(dev);
1142 if (ret)
1143 return ret;
1144
1145 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1146 if (obj == NULL) {
1147 ret = -ENOENT;
1148 goto unlock;
1149 }
1150 obj_priv = to_intel_bo(obj);
1151
1152 intel_mark_busy(dev, obj);
1153
1154 if (read_domains & I915_GEM_DOMAIN_GTT) {
1155 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1156
1157 /* Update the LRU on the fence for the CPU access that's
1158 * about to occur.
1159 */
1160 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1161 struct drm_i915_fence_reg *reg =
1162 &dev_priv->fence_regs[obj_priv->fence_reg];
1163 list_move_tail(&reg->lru_list,
1164 &dev_priv->mm.fence_list);
1165 }
1166
1167 /* Silently promote "you're not bound, there was nothing to do"
1168 * to success, since the client was just asking us to
1169 * make sure everything was done.
1170 */
1171 if (ret == -EINVAL)
1172 ret = 0;
1173 } else {
1174 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1175 }
1176
1177 /* Maintain LRU order of "inactive" objects */
1178 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1179 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1180
1181 drm_gem_object_unreference(obj);
1182 unlock:
1183 mutex_unlock(&dev->struct_mutex);
1184 return ret;
1185 }
1186
1187 /**
1188 * Called when user space has done writes to this buffer
1189 */
1190 int
1191 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1192 struct drm_file *file_priv)
1193 {
1194 struct drm_i915_gem_sw_finish *args = data;
1195 struct drm_gem_object *obj;
1196 int ret = 0;
1197
1198 if (!(dev->driver->driver_features & DRIVER_GEM))
1199 return -ENODEV;
1200
1201 ret = i915_mutex_lock_interruptible(dev);
1202 if (ret)
1203 return ret;
1204
1205 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1206 if (obj == NULL) {
1207 ret = -ENOENT;
1208 goto unlock;
1209 }
1210
1211 /* Pinned buffers may be scanout, so flush the cache */
1212 if (to_intel_bo(obj)->pin_count)
1213 i915_gem_object_flush_cpu_write_domain(obj);
1214
1215 drm_gem_object_unreference(obj);
1216 unlock:
1217 mutex_unlock(&dev->struct_mutex);
1218 return ret;
1219 }
1220
1221 /**
1222 * Maps the contents of an object, returning the address it is mapped
1223 * into.
1224 *
1225 * While the mapping holds a reference on the contents of the object, it doesn't
1226 * imply a ref on the object itself.
1227 */
1228 int
1229 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1230 struct drm_file *file_priv)
1231 {
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 struct drm_i915_gem_mmap *args = data;
1234 struct drm_gem_object *obj;
1235 loff_t offset;
1236 unsigned long addr;
1237
1238 if (!(dev->driver->driver_features & DRIVER_GEM))
1239 return -ENODEV;
1240
1241 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1242 if (obj == NULL)
1243 return -ENOENT;
1244
1245 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1246 drm_gem_object_unreference_unlocked(obj);
1247 return -E2BIG;
1248 }
1249
1250 offset = args->offset;
1251
1252 down_write(&current->mm->mmap_sem);
1253 addr = do_mmap(obj->filp, 0, args->size,
1254 PROT_READ | PROT_WRITE, MAP_SHARED,
1255 args->offset);
1256 up_write(&current->mm->mmap_sem);
1257 drm_gem_object_unreference_unlocked(obj);
1258 if (IS_ERR((void *)addr))
1259 return addr;
1260
1261 args->addr_ptr = (uint64_t) addr;
1262
1263 return 0;
1264 }
1265
1266 /**
1267 * i915_gem_fault - fault a page into the GTT
1268 * vma: VMA in question
1269 * vmf: fault info
1270 *
1271 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1272 * from userspace. The fault handler takes care of binding the object to
1273 * the GTT (if needed), allocating and programming a fence register (again,
1274 * only if needed based on whether the old reg is still valid or the object
1275 * is tiled) and inserting a new PTE into the faulting process.
1276 *
1277 * Note that the faulting process may involve evicting existing objects
1278 * from the GTT and/or fence registers to make room. So performance may
1279 * suffer if the GTT working set is large or there are few fence registers
1280 * left.
1281 */
1282 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1283 {
1284 struct drm_gem_object *obj = vma->vm_private_data;
1285 struct drm_device *dev = obj->dev;
1286 drm_i915_private_t *dev_priv = dev->dev_private;
1287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1288 pgoff_t page_offset;
1289 unsigned long pfn;
1290 int ret = 0;
1291 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1292
1293 /* We don't use vmf->pgoff since that has the fake offset */
1294 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1295 PAGE_SHIFT;
1296
1297 /* Now bind it into the GTT if needed */
1298 mutex_lock(&dev->struct_mutex);
1299 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1300
1301 if (obj_priv->gtt_space) {
1302 if (!obj_priv->map_and_fenceable) {
1303 ret = i915_gem_object_unbind(obj);
1304 if (ret)
1305 goto unlock;
1306 }
1307 }
1308
1309 if (!obj_priv->gtt_space) {
1310 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1311 if (ret)
1312 goto unlock;
1313 }
1314
1315 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1316 if (ret)
1317 goto unlock;
1318
1319 if (!obj_priv->fault_mappable) {
1320 obj_priv->fault_mappable = true;
1321 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1322 }
1323
1324 /* Need a new fence register? */
1325 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1326 ret = i915_gem_object_get_fence_reg(obj, true);
1327 if (ret)
1328 goto unlock;
1329 }
1330
1331 if (i915_gem_object_is_inactive(obj_priv))
1332 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1333
1334 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1335 page_offset;
1336
1337 /* Finally, remap it using the new GTT offset */
1338 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1339 unlock:
1340 mutex_unlock(&dev->struct_mutex);
1341
1342 switch (ret) {
1343 case -EAGAIN:
1344 set_need_resched();
1345 case 0:
1346 case -ERESTARTSYS:
1347 return VM_FAULT_NOPAGE;
1348 case -ENOMEM:
1349 return VM_FAULT_OOM;
1350 default:
1351 return VM_FAULT_SIGBUS;
1352 }
1353 }
1354
1355 /**
1356 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1357 * @obj: obj in question
1358 *
1359 * GEM memory mapping works by handing back to userspace a fake mmap offset
1360 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1361 * up the object based on the offset and sets up the various memory mapping
1362 * structures.
1363 *
1364 * This routine allocates and attaches a fake offset for @obj.
1365 */
1366 static int
1367 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1368 {
1369 struct drm_device *dev = obj->dev;
1370 struct drm_gem_mm *mm = dev->mm_private;
1371 struct drm_map_list *list;
1372 struct drm_local_map *map;
1373 int ret = 0;
1374
1375 /* Set the object up for mmap'ing */
1376 list = &obj->map_list;
1377 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1378 if (!list->map)
1379 return -ENOMEM;
1380
1381 map = list->map;
1382 map->type = _DRM_GEM;
1383 map->size = obj->size;
1384 map->handle = obj;
1385
1386 /* Get a DRM GEM mmap offset allocated... */
1387 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1388 obj->size / PAGE_SIZE, 0, 0);
1389 if (!list->file_offset_node) {
1390 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1391 ret = -ENOSPC;
1392 goto out_free_list;
1393 }
1394
1395 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1396 obj->size / PAGE_SIZE, 0);
1397 if (!list->file_offset_node) {
1398 ret = -ENOMEM;
1399 goto out_free_list;
1400 }
1401
1402 list->hash.key = list->file_offset_node->start;
1403 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1404 if (ret) {
1405 DRM_ERROR("failed to add to map hash\n");
1406 goto out_free_mm;
1407 }
1408
1409 return 0;
1410
1411 out_free_mm:
1412 drm_mm_put_block(list->file_offset_node);
1413 out_free_list:
1414 kfree(list->map);
1415 list->map = NULL;
1416
1417 return ret;
1418 }
1419
1420 /**
1421 * i915_gem_release_mmap - remove physical page mappings
1422 * @obj: obj in question
1423 *
1424 * Preserve the reservation of the mmapping with the DRM core code, but
1425 * relinquish ownership of the pages back to the system.
1426 *
1427 * It is vital that we remove the page mapping if we have mapped a tiled
1428 * object through the GTT and then lose the fence register due to
1429 * resource pressure. Similarly if the object has been moved out of the
1430 * aperture, than pages mapped into userspace must be revoked. Removing the
1431 * mapping will then trigger a page fault on the next user access, allowing
1432 * fixup by i915_gem_fault().
1433 */
1434 void
1435 i915_gem_release_mmap(struct drm_gem_object *obj)
1436 {
1437 struct drm_device *dev = obj->dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440
1441 if (unlikely(obj->map_list.map && dev->dev_mapping))
1442 unmap_mapping_range(dev->dev_mapping,
1443 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1444 obj->size, 1);
1445
1446 if (obj_priv->fault_mappable) {
1447 obj_priv->fault_mappable = false;
1448 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1449 }
1450 }
1451
1452 static void
1453 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1454 {
1455 struct drm_device *dev = obj->dev;
1456 struct drm_gem_mm *mm = dev->mm_private;
1457 struct drm_map_list *list = &obj->map_list;
1458
1459 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1460 drm_mm_put_block(list->file_offset_node);
1461 kfree(list->map);
1462 list->map = NULL;
1463 }
1464
1465 /**
1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467 * @obj: object to check
1468 *
1469 * Return the required GTT alignment for an object, taking into account
1470 * potential fence register mapping if needed.
1471 */
1472 static uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1474 {
1475 struct drm_device *dev = obj_priv->base.dev;
1476
1477 /*
1478 * Minimum alignment is 4k (GTT page size), but might be greater
1479 * if a fence register is needed for the object.
1480 */
1481 if (INTEL_INFO(dev)->gen >= 4 ||
1482 obj_priv->tiling_mode == I915_TILING_NONE)
1483 return 4096;
1484
1485 /*
1486 * Previous chips need to be aligned to the size of the smallest
1487 * fence register that can contain the object.
1488 */
1489 return i915_gem_get_gtt_size(obj_priv);
1490 }
1491
1492 static uint32_t
1493 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1494 {
1495 struct drm_device *dev = obj_priv->base.dev;
1496 uint32_t size;
1497
1498 /*
1499 * Minimum alignment is 4k (GTT page size), but might be greater
1500 * if a fence register is needed for the object.
1501 */
1502 if (INTEL_INFO(dev)->gen >= 4)
1503 return obj_priv->base.size;
1504
1505 /*
1506 * Previous chips need to be aligned to the size of the smallest
1507 * fence register that can contain the object.
1508 */
1509 if (INTEL_INFO(dev)->gen == 3)
1510 size = 1024*1024;
1511 else
1512 size = 512*1024;
1513
1514 while (size < obj_priv->base.size)
1515 size <<= 1;
1516
1517 return size;
1518 }
1519
1520 /**
1521 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1522 * @dev: DRM device
1523 * @data: GTT mapping ioctl data
1524 * @file_priv: GEM object info
1525 *
1526 * Simply returns the fake offset to userspace so it can mmap it.
1527 * The mmap call will end up in drm_gem_mmap(), which will set things
1528 * up so we can get faults in the handler above.
1529 *
1530 * The fault handler will take care of binding the object into the GTT
1531 * (since it may have been evicted to make room for something), allocating
1532 * a fence register, and mapping the appropriate aperture address into
1533 * userspace.
1534 */
1535 int
1536 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1537 struct drm_file *file_priv)
1538 {
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 struct drm_i915_gem_mmap_gtt *args = data;
1541 struct drm_gem_object *obj;
1542 struct drm_i915_gem_object *obj_priv;
1543 int ret;
1544
1545 if (!(dev->driver->driver_features & DRIVER_GEM))
1546 return -ENODEV;
1547
1548 ret = i915_mutex_lock_interruptible(dev);
1549 if (ret)
1550 return ret;
1551
1552 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1553 if (obj == NULL) {
1554 ret = -ENOENT;
1555 goto unlock;
1556 }
1557 obj_priv = to_intel_bo(obj);
1558
1559 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1560 ret = -E2BIG;
1561 goto unlock;
1562 }
1563
1564 if (obj_priv->madv != I915_MADV_WILLNEED) {
1565 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1566 ret = -EINVAL;
1567 goto out;
1568 }
1569
1570 if (!obj->map_list.map) {
1571 ret = i915_gem_create_mmap_offset(obj);
1572 if (ret)
1573 goto out;
1574 }
1575
1576 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1577
1578 out:
1579 drm_gem_object_unreference(obj);
1580 unlock:
1581 mutex_unlock(&dev->struct_mutex);
1582 return ret;
1583 }
1584
1585 static int
1586 i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1587 gfp_t gfpmask)
1588 {
1589 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1590 int page_count, i;
1591 struct address_space *mapping;
1592 struct inode *inode;
1593 struct page *page;
1594
1595 /* Get the list of pages out of our struct file. They'll be pinned
1596 * at this point until we release them.
1597 */
1598 page_count = obj->size / PAGE_SIZE;
1599 BUG_ON(obj_priv->pages != NULL);
1600 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1601 if (obj_priv->pages == NULL)
1602 return -ENOMEM;
1603
1604 inode = obj->filp->f_path.dentry->d_inode;
1605 mapping = inode->i_mapping;
1606 for (i = 0; i < page_count; i++) {
1607 page = read_cache_page_gfp(mapping, i,
1608 GFP_HIGHUSER |
1609 __GFP_COLD |
1610 __GFP_RECLAIMABLE |
1611 gfpmask);
1612 if (IS_ERR(page))
1613 goto err_pages;
1614
1615 obj_priv->pages[i] = page;
1616 }
1617
1618 if (obj_priv->tiling_mode != I915_TILING_NONE)
1619 i915_gem_object_do_bit_17_swizzle(obj);
1620
1621 return 0;
1622
1623 err_pages:
1624 while (i--)
1625 page_cache_release(obj_priv->pages[i]);
1626
1627 drm_free_large(obj_priv->pages);
1628 obj_priv->pages = NULL;
1629 return PTR_ERR(page);
1630 }
1631
1632 static void
1633 i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1634 {
1635 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1636 int page_count = obj->size / PAGE_SIZE;
1637 int i;
1638
1639 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1640
1641 if (obj_priv->tiling_mode != I915_TILING_NONE)
1642 i915_gem_object_save_bit_17_swizzle(obj);
1643
1644 if (obj_priv->madv == I915_MADV_DONTNEED)
1645 obj_priv->dirty = 0;
1646
1647 for (i = 0; i < page_count; i++) {
1648 if (obj_priv->dirty)
1649 set_page_dirty(obj_priv->pages[i]);
1650
1651 if (obj_priv->madv == I915_MADV_WILLNEED)
1652 mark_page_accessed(obj_priv->pages[i]);
1653
1654 page_cache_release(obj_priv->pages[i]);
1655 }
1656 obj_priv->dirty = 0;
1657
1658 drm_free_large(obj_priv->pages);
1659 obj_priv->pages = NULL;
1660 }
1661
1662 static uint32_t
1663 i915_gem_next_request_seqno(struct drm_device *dev,
1664 struct intel_ring_buffer *ring)
1665 {
1666 drm_i915_private_t *dev_priv = dev->dev_private;
1667
1668 ring->outstanding_lazy_request = true;
1669 return dev_priv->next_seqno;
1670 }
1671
1672 static void
1673 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1674 struct intel_ring_buffer *ring)
1675 {
1676 struct drm_device *dev = obj->dev;
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1679 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1680
1681 BUG_ON(ring == NULL);
1682 obj_priv->ring = ring;
1683
1684 /* Add a reference if we're newly entering the active list. */
1685 if (!obj_priv->active) {
1686 drm_gem_object_reference(obj);
1687 obj_priv->active = 1;
1688 }
1689
1690 /* Move from whatever list we were on to the tail of execution. */
1691 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1692 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1693 obj_priv->last_rendering_seqno = seqno;
1694 }
1695
1696 static void
1697 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1698 {
1699 struct drm_device *dev = obj->dev;
1700 drm_i915_private_t *dev_priv = dev->dev_private;
1701 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1702
1703 BUG_ON(!obj_priv->active);
1704 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1705 list_del_init(&obj_priv->ring_list);
1706 obj_priv->last_rendering_seqno = 0;
1707 }
1708
1709 /* Immediately discard the backing storage */
1710 static void
1711 i915_gem_object_truncate(struct drm_gem_object *obj)
1712 {
1713 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1714 struct inode *inode;
1715
1716 /* Our goal here is to return as much of the memory as
1717 * is possible back to the system as we are called from OOM.
1718 * To do this we must instruct the shmfs to drop all of its
1719 * backing pages, *now*. Here we mirror the actions taken
1720 * when by shmem_delete_inode() to release the backing store.
1721 */
1722 inode = obj->filp->f_path.dentry->d_inode;
1723 truncate_inode_pages(inode->i_mapping, 0);
1724 if (inode->i_op->truncate_range)
1725 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1726
1727 obj_priv->madv = __I915_MADV_PURGED;
1728 }
1729
1730 static inline int
1731 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1732 {
1733 return obj_priv->madv == I915_MADV_DONTNEED;
1734 }
1735
1736 static void
1737 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1738 {
1739 struct drm_device *dev = obj->dev;
1740 drm_i915_private_t *dev_priv = dev->dev_private;
1741 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1742
1743 if (obj_priv->pin_count != 0)
1744 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1745 else
1746 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1747 list_del_init(&obj_priv->ring_list);
1748
1749 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1750
1751 obj_priv->last_rendering_seqno = 0;
1752 obj_priv->ring = NULL;
1753 if (obj_priv->active) {
1754 obj_priv->active = 0;
1755 drm_gem_object_unreference(obj);
1756 }
1757 WARN_ON(i915_verify_lists(dev));
1758 }
1759
1760 static void
1761 i915_gem_process_flushing_list(struct drm_device *dev,
1762 uint32_t flush_domains,
1763 struct intel_ring_buffer *ring)
1764 {
1765 drm_i915_private_t *dev_priv = dev->dev_private;
1766 struct drm_i915_gem_object *obj_priv, *next;
1767
1768 list_for_each_entry_safe(obj_priv, next,
1769 &ring->gpu_write_list,
1770 gpu_write_list) {
1771 struct drm_gem_object *obj = &obj_priv->base;
1772
1773 if (obj->write_domain & flush_domains) {
1774 uint32_t old_write_domain = obj->write_domain;
1775
1776 obj->write_domain = 0;
1777 list_del_init(&obj_priv->gpu_write_list);
1778 i915_gem_object_move_to_active(obj, ring);
1779
1780 /* update the fence lru list */
1781 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1782 struct drm_i915_fence_reg *reg =
1783 &dev_priv->fence_regs[obj_priv->fence_reg];
1784 list_move_tail(&reg->lru_list,
1785 &dev_priv->mm.fence_list);
1786 }
1787
1788 trace_i915_gem_object_change_domain(obj,
1789 obj->read_domains,
1790 old_write_domain);
1791 }
1792 }
1793 }
1794
1795 int
1796 i915_add_request(struct drm_device *dev,
1797 struct drm_file *file,
1798 struct drm_i915_gem_request *request,
1799 struct intel_ring_buffer *ring)
1800 {
1801 drm_i915_private_t *dev_priv = dev->dev_private;
1802 struct drm_i915_file_private *file_priv = NULL;
1803 uint32_t seqno;
1804 int was_empty;
1805 int ret;
1806
1807 BUG_ON(request == NULL);
1808
1809 if (file != NULL)
1810 file_priv = file->driver_priv;
1811
1812 ret = ring->add_request(ring, &seqno);
1813 if (ret)
1814 return ret;
1815
1816 ring->outstanding_lazy_request = false;
1817
1818 request->seqno = seqno;
1819 request->ring = ring;
1820 request->emitted_jiffies = jiffies;
1821 was_empty = list_empty(&ring->request_list);
1822 list_add_tail(&request->list, &ring->request_list);
1823
1824 if (file_priv) {
1825 spin_lock(&file_priv->mm.lock);
1826 request->file_priv = file_priv;
1827 list_add_tail(&request->client_list,
1828 &file_priv->mm.request_list);
1829 spin_unlock(&file_priv->mm.lock);
1830 }
1831
1832 if (!dev_priv->mm.suspended) {
1833 mod_timer(&dev_priv->hangcheck_timer,
1834 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1835 if (was_empty)
1836 queue_delayed_work(dev_priv->wq,
1837 &dev_priv->mm.retire_work, HZ);
1838 }
1839 return 0;
1840 }
1841
1842 /**
1843 * Command execution barrier
1844 *
1845 * Ensures that all commands in the ring are finished
1846 * before signalling the CPU
1847 */
1848 static void
1849 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1850 {
1851 uint32_t flush_domains = 0;
1852
1853 /* The sampler always gets flushed on i965 (sigh) */
1854 if (INTEL_INFO(dev)->gen >= 4)
1855 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1856
1857 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1858 }
1859
1860 static inline void
1861 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1862 {
1863 struct drm_i915_file_private *file_priv = request->file_priv;
1864
1865 if (!file_priv)
1866 return;
1867
1868 spin_lock(&file_priv->mm.lock);
1869 list_del(&request->client_list);
1870 request->file_priv = NULL;
1871 spin_unlock(&file_priv->mm.lock);
1872 }
1873
1874 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1875 struct intel_ring_buffer *ring)
1876 {
1877 while (!list_empty(&ring->request_list)) {
1878 struct drm_i915_gem_request *request;
1879
1880 request = list_first_entry(&ring->request_list,
1881 struct drm_i915_gem_request,
1882 list);
1883
1884 list_del(&request->list);
1885 i915_gem_request_remove_from_client(request);
1886 kfree(request);
1887 }
1888
1889 while (!list_empty(&ring->active_list)) {
1890 struct drm_i915_gem_object *obj_priv;
1891
1892 obj_priv = list_first_entry(&ring->active_list,
1893 struct drm_i915_gem_object,
1894 ring_list);
1895
1896 obj_priv->base.write_domain = 0;
1897 list_del_init(&obj_priv->gpu_write_list);
1898 i915_gem_object_move_to_inactive(&obj_priv->base);
1899 }
1900 }
1901
1902 void i915_gem_reset(struct drm_device *dev)
1903 {
1904 struct drm_i915_private *dev_priv = dev->dev_private;
1905 struct drm_i915_gem_object *obj_priv;
1906 int i;
1907
1908 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1909 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1910 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1911
1912 /* Remove anything from the flushing lists. The GPU cache is likely
1913 * to be lost on reset along with the data, so simply move the
1914 * lost bo to the inactive list.
1915 */
1916 while (!list_empty(&dev_priv->mm.flushing_list)) {
1917 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1918 struct drm_i915_gem_object,
1919 mm_list);
1920
1921 obj_priv->base.write_domain = 0;
1922 list_del_init(&obj_priv->gpu_write_list);
1923 i915_gem_object_move_to_inactive(&obj_priv->base);
1924 }
1925
1926 /* Move everything out of the GPU domains to ensure we do any
1927 * necessary invalidation upon reuse.
1928 */
1929 list_for_each_entry(obj_priv,
1930 &dev_priv->mm.inactive_list,
1931 mm_list)
1932 {
1933 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1934 }
1935
1936 /* The fence registers are invalidated so clear them out */
1937 for (i = 0; i < 16; i++) {
1938 struct drm_i915_fence_reg *reg;
1939
1940 reg = &dev_priv->fence_regs[i];
1941 if (!reg->obj)
1942 continue;
1943
1944 i915_gem_clear_fence_reg(reg->obj);
1945 }
1946 }
1947
1948 /**
1949 * This function clears the request list as sequence numbers are passed.
1950 */
1951 static void
1952 i915_gem_retire_requests_ring(struct drm_device *dev,
1953 struct intel_ring_buffer *ring)
1954 {
1955 drm_i915_private_t *dev_priv = dev->dev_private;
1956 uint32_t seqno;
1957
1958 if (!ring->status_page.page_addr ||
1959 list_empty(&ring->request_list))
1960 return;
1961
1962 WARN_ON(i915_verify_lists(dev));
1963
1964 seqno = ring->get_seqno(ring);
1965 while (!list_empty(&ring->request_list)) {
1966 struct drm_i915_gem_request *request;
1967
1968 request = list_first_entry(&ring->request_list,
1969 struct drm_i915_gem_request,
1970 list);
1971
1972 if (!i915_seqno_passed(seqno, request->seqno))
1973 break;
1974
1975 trace_i915_gem_request_retire(dev, request->seqno);
1976
1977 list_del(&request->list);
1978 i915_gem_request_remove_from_client(request);
1979 kfree(request);
1980 }
1981
1982 /* Move any buffers on the active list that are no longer referenced
1983 * by the ringbuffer to the flushing/inactive lists as appropriate.
1984 */
1985 while (!list_empty(&ring->active_list)) {
1986 struct drm_gem_object *obj;
1987 struct drm_i915_gem_object *obj_priv;
1988
1989 obj_priv = list_first_entry(&ring->active_list,
1990 struct drm_i915_gem_object,
1991 ring_list);
1992
1993 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1994 break;
1995
1996 obj = &obj_priv->base;
1997 if (obj->write_domain != 0)
1998 i915_gem_object_move_to_flushing(obj);
1999 else
2000 i915_gem_object_move_to_inactive(obj);
2001 }
2002
2003 if (unlikely (dev_priv->trace_irq_seqno &&
2004 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2005 ring->user_irq_put(ring);
2006 dev_priv->trace_irq_seqno = 0;
2007 }
2008
2009 WARN_ON(i915_verify_lists(dev));
2010 }
2011
2012 void
2013 i915_gem_retire_requests(struct drm_device *dev)
2014 {
2015 drm_i915_private_t *dev_priv = dev->dev_private;
2016
2017 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2018 struct drm_i915_gem_object *obj_priv, *tmp;
2019
2020 /* We must be careful that during unbind() we do not
2021 * accidentally infinitely recurse into retire requests.
2022 * Currently:
2023 * retire -> free -> unbind -> wait -> retire_ring
2024 */
2025 list_for_each_entry_safe(obj_priv, tmp,
2026 &dev_priv->mm.deferred_free_list,
2027 mm_list)
2028 i915_gem_free_object_tail(&obj_priv->base);
2029 }
2030
2031 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2032 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2033 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2034 }
2035
2036 static void
2037 i915_gem_retire_work_handler(struct work_struct *work)
2038 {
2039 drm_i915_private_t *dev_priv;
2040 struct drm_device *dev;
2041
2042 dev_priv = container_of(work, drm_i915_private_t,
2043 mm.retire_work.work);
2044 dev = dev_priv->dev;
2045
2046 /* Come back later if the device is busy... */
2047 if (!mutex_trylock(&dev->struct_mutex)) {
2048 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2049 return;
2050 }
2051
2052 i915_gem_retire_requests(dev);
2053
2054 if (!dev_priv->mm.suspended &&
2055 (!list_empty(&dev_priv->render_ring.request_list) ||
2056 !list_empty(&dev_priv->bsd_ring.request_list) ||
2057 !list_empty(&dev_priv->blt_ring.request_list)))
2058 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2059 mutex_unlock(&dev->struct_mutex);
2060 }
2061
2062 int
2063 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2064 bool interruptible, struct intel_ring_buffer *ring)
2065 {
2066 drm_i915_private_t *dev_priv = dev->dev_private;
2067 u32 ier;
2068 int ret = 0;
2069
2070 BUG_ON(seqno == 0);
2071
2072 if (atomic_read(&dev_priv->mm.wedged))
2073 return -EAGAIN;
2074
2075 if (ring->outstanding_lazy_request) {
2076 struct drm_i915_gem_request *request;
2077
2078 request = kzalloc(sizeof(*request), GFP_KERNEL);
2079 if (request == NULL)
2080 return -ENOMEM;
2081
2082 ret = i915_add_request(dev, NULL, request, ring);
2083 if (ret) {
2084 kfree(request);
2085 return ret;
2086 }
2087
2088 seqno = request->seqno;
2089 }
2090 BUG_ON(seqno == dev_priv->next_seqno);
2091
2092 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2093 if (HAS_PCH_SPLIT(dev))
2094 ier = I915_READ(DEIER) | I915_READ(GTIER);
2095 else
2096 ier = I915_READ(IER);
2097 if (!ier) {
2098 DRM_ERROR("something (likely vbetool) disabled "
2099 "interrupts, re-enabling\n");
2100 i915_driver_irq_preinstall(dev);
2101 i915_driver_irq_postinstall(dev);
2102 }
2103
2104 trace_i915_gem_request_wait_begin(dev, seqno);
2105
2106 ring->waiting_seqno = seqno;
2107 ring->user_irq_get(ring);
2108 if (interruptible)
2109 ret = wait_event_interruptible(ring->irq_queue,
2110 i915_seqno_passed(ring->get_seqno(ring), seqno)
2111 || atomic_read(&dev_priv->mm.wedged));
2112 else
2113 wait_event(ring->irq_queue,
2114 i915_seqno_passed(ring->get_seqno(ring), seqno)
2115 || atomic_read(&dev_priv->mm.wedged));
2116
2117 ring->user_irq_put(ring);
2118 ring->waiting_seqno = 0;
2119
2120 trace_i915_gem_request_wait_end(dev, seqno);
2121 }
2122 if (atomic_read(&dev_priv->mm.wedged))
2123 ret = -EAGAIN;
2124
2125 if (ret && ret != -ERESTARTSYS)
2126 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2127 __func__, ret, seqno, ring->get_seqno(ring),
2128 dev_priv->next_seqno);
2129
2130 /* Directly dispatch request retiring. While we have the work queue
2131 * to handle this, the waiter on a request often wants an associated
2132 * buffer to have made it to the inactive list, and we would need
2133 * a separate wait queue to handle that.
2134 */
2135 if (ret == 0)
2136 i915_gem_retire_requests_ring(dev, ring);
2137
2138 return ret;
2139 }
2140
2141 /**
2142 * Waits for a sequence number to be signaled, and cleans up the
2143 * request and object lists appropriately for that event.
2144 */
2145 static int
2146 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2147 struct intel_ring_buffer *ring)
2148 {
2149 return i915_do_wait_request(dev, seqno, 1, ring);
2150 }
2151
2152 static void
2153 i915_gem_flush_ring(struct drm_device *dev,
2154 struct drm_file *file_priv,
2155 struct intel_ring_buffer *ring,
2156 uint32_t invalidate_domains,
2157 uint32_t flush_domains)
2158 {
2159 ring->flush(ring, invalidate_domains, flush_domains);
2160 i915_gem_process_flushing_list(dev, flush_domains, ring);
2161 }
2162
2163 static void
2164 i915_gem_flush(struct drm_device *dev,
2165 struct drm_file *file_priv,
2166 uint32_t invalidate_domains,
2167 uint32_t flush_domains,
2168 uint32_t flush_rings)
2169 {
2170 drm_i915_private_t *dev_priv = dev->dev_private;
2171
2172 if (flush_domains & I915_GEM_DOMAIN_CPU)
2173 drm_agp_chipset_flush(dev);
2174
2175 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2176 if (flush_rings & RING_RENDER)
2177 i915_gem_flush_ring(dev, file_priv,
2178 &dev_priv->render_ring,
2179 invalidate_domains, flush_domains);
2180 if (flush_rings & RING_BSD)
2181 i915_gem_flush_ring(dev, file_priv,
2182 &dev_priv->bsd_ring,
2183 invalidate_domains, flush_domains);
2184 if (flush_rings & RING_BLT)
2185 i915_gem_flush_ring(dev, file_priv,
2186 &dev_priv->blt_ring,
2187 invalidate_domains, flush_domains);
2188 }
2189 }
2190
2191 /**
2192 * Ensures that all rendering to the object has completed and the object is
2193 * safe to unbind from the GTT or access from the CPU.
2194 */
2195 static int
2196 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2197 bool interruptible)
2198 {
2199 struct drm_device *dev = obj->dev;
2200 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2201 int ret;
2202
2203 /* This function only exists to support waiting for existing rendering,
2204 * not for emitting required flushes.
2205 */
2206 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2207
2208 /* If there is rendering queued on the buffer being evicted, wait for
2209 * it.
2210 */
2211 if (obj_priv->active) {
2212 ret = i915_do_wait_request(dev,
2213 obj_priv->last_rendering_seqno,
2214 interruptible,
2215 obj_priv->ring);
2216 if (ret)
2217 return ret;
2218 }
2219
2220 return 0;
2221 }
2222
2223 /**
2224 * Unbinds an object from the GTT aperture.
2225 */
2226 int
2227 i915_gem_object_unbind(struct drm_gem_object *obj)
2228 {
2229 struct drm_device *dev = obj->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2232 int ret = 0;
2233
2234 if (obj_priv->gtt_space == NULL)
2235 return 0;
2236
2237 if (obj_priv->pin_count != 0) {
2238 DRM_ERROR("Attempting to unbind pinned buffer\n");
2239 return -EINVAL;
2240 }
2241
2242 /* blow away mappings if mapped through GTT */
2243 i915_gem_release_mmap(obj);
2244
2245 /* Move the object to the CPU domain to ensure that
2246 * any possible CPU writes while it's not in the GTT
2247 * are flushed when we go to remap it. This will
2248 * also ensure that all pending GPU writes are finished
2249 * before we unbind.
2250 */
2251 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2252 if (ret == -ERESTARTSYS)
2253 return ret;
2254 /* Continue on if we fail due to EIO, the GPU is hung so we
2255 * should be safe and we need to cleanup or else we might
2256 * cause memory corruption through use-after-free.
2257 */
2258 if (ret) {
2259 i915_gem_clflush_object(obj);
2260 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2261 }
2262
2263 /* release the fence reg _after_ flushing */
2264 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2265 i915_gem_clear_fence_reg(obj);
2266
2267 drm_unbind_agp(obj_priv->agp_mem);
2268 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2269
2270 i915_gem_object_put_pages_gtt(obj);
2271
2272 i915_gem_info_remove_gtt(dev_priv, obj_priv);
2273 list_del_init(&obj_priv->mm_list);
2274 /* Avoid an unnecessary call to unbind on rebind. */
2275 obj_priv->map_and_fenceable = true;
2276
2277 drm_mm_put_block(obj_priv->gtt_space);
2278 obj_priv->gtt_space = NULL;
2279 obj_priv->gtt_offset = 0;
2280
2281 if (i915_gem_object_is_purgeable(obj_priv))
2282 i915_gem_object_truncate(obj);
2283
2284 trace_i915_gem_object_unbind(obj);
2285
2286 return ret;
2287 }
2288
2289 static int i915_ring_idle(struct drm_device *dev,
2290 struct intel_ring_buffer *ring)
2291 {
2292 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2293 return 0;
2294
2295 i915_gem_flush_ring(dev, NULL, ring,
2296 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2297 return i915_wait_request(dev,
2298 i915_gem_next_request_seqno(dev, ring),
2299 ring);
2300 }
2301
2302 int
2303 i915_gpu_idle(struct drm_device *dev)
2304 {
2305 drm_i915_private_t *dev_priv = dev->dev_private;
2306 bool lists_empty;
2307 int ret;
2308
2309 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2310 list_empty(&dev_priv->mm.active_list));
2311 if (lists_empty)
2312 return 0;
2313
2314 /* Flush everything onto the inactive list. */
2315 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2316 if (ret)
2317 return ret;
2318
2319 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2320 if (ret)
2321 return ret;
2322
2323 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2324 if (ret)
2325 return ret;
2326
2327 return 0;
2328 }
2329
2330 static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2331 {
2332 struct drm_device *dev = obj->dev;
2333 drm_i915_private_t *dev_priv = dev->dev_private;
2334 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2335 u32 size = i915_gem_get_gtt_size(obj_priv);
2336 int regnum = obj_priv->fence_reg;
2337 uint64_t val;
2338
2339 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2340 0xfffff000) << 32;
2341 val |= obj_priv->gtt_offset & 0xfffff000;
2342 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2343 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2344
2345 if (obj_priv->tiling_mode == I915_TILING_Y)
2346 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2347 val |= I965_FENCE_REG_VALID;
2348
2349 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2350 }
2351
2352 static void i965_write_fence_reg(struct drm_gem_object *obj)
2353 {
2354 struct drm_device *dev = obj->dev;
2355 drm_i915_private_t *dev_priv = dev->dev_private;
2356 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2357 u32 size = i915_gem_get_gtt_size(obj_priv);
2358 int regnum = obj_priv->fence_reg;
2359 uint64_t val;
2360
2361 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2362 0xfffff000) << 32;
2363 val |= obj_priv->gtt_offset & 0xfffff000;
2364 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2365 if (obj_priv->tiling_mode == I915_TILING_Y)
2366 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2367 val |= I965_FENCE_REG_VALID;
2368
2369 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2370 }
2371
2372 static void i915_write_fence_reg(struct drm_gem_object *obj)
2373 {
2374 struct drm_device *dev = obj->dev;
2375 drm_i915_private_t *dev_priv = dev->dev_private;
2376 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2377 u32 size = i915_gem_get_gtt_size(obj_priv);
2378 uint32_t fence_reg, val, pitch_val;
2379 int tile_width;
2380
2381 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2382 (obj_priv->gtt_offset & (size - 1))) {
2383 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2384 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
2385 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2386 return;
2387 }
2388
2389 if (obj_priv->tiling_mode == I915_TILING_Y &&
2390 HAS_128_BYTE_Y_TILING(dev))
2391 tile_width = 128;
2392 else
2393 tile_width = 512;
2394
2395 /* Note: pitch better be a power of two tile widths */
2396 pitch_val = obj_priv->stride / tile_width;
2397 pitch_val = ffs(pitch_val) - 1;
2398
2399 if (obj_priv->tiling_mode == I915_TILING_Y &&
2400 HAS_128_BYTE_Y_TILING(dev))
2401 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2402 else
2403 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2404
2405 val = obj_priv->gtt_offset;
2406 if (obj_priv->tiling_mode == I915_TILING_Y)
2407 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2408 val |= I915_FENCE_SIZE_BITS(size);
2409 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2410 val |= I830_FENCE_REG_VALID;
2411
2412 fence_reg = obj_priv->fence_reg;
2413 if (fence_reg < 8)
2414 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2415 else
2416 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2417 I915_WRITE(fence_reg, val);
2418 }
2419
2420 static void i830_write_fence_reg(struct drm_gem_object *obj)
2421 {
2422 struct drm_device *dev = obj->dev;
2423 drm_i915_private_t *dev_priv = dev->dev_private;
2424 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2425 u32 size = i915_gem_get_gtt_size(obj_priv);
2426 int regnum = obj_priv->fence_reg;
2427 uint32_t val;
2428 uint32_t pitch_val;
2429 uint32_t fence_size_bits;
2430
2431 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2432 (obj_priv->gtt_offset & (obj->size - 1))) {
2433 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2434 __func__, obj_priv->gtt_offset);
2435 return;
2436 }
2437
2438 pitch_val = obj_priv->stride / 128;
2439 pitch_val = ffs(pitch_val) - 1;
2440 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2441
2442 val = obj_priv->gtt_offset;
2443 if (obj_priv->tiling_mode == I915_TILING_Y)
2444 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2445 fence_size_bits = I830_FENCE_SIZE_BITS(size);
2446 WARN_ON(fence_size_bits & ~0x00000f00);
2447 val |= fence_size_bits;
2448 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2449 val |= I830_FENCE_REG_VALID;
2450
2451 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2452 }
2453
2454 static int i915_find_fence_reg(struct drm_device *dev,
2455 bool interruptible)
2456 {
2457 struct drm_i915_private *dev_priv = dev->dev_private;
2458 struct drm_i915_fence_reg *reg;
2459 struct drm_i915_gem_object *obj_priv = NULL;
2460 int i, avail, ret;
2461
2462 /* First try to find a free reg */
2463 avail = 0;
2464 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2465 reg = &dev_priv->fence_regs[i];
2466 if (!reg->obj)
2467 return i;
2468
2469 obj_priv = to_intel_bo(reg->obj);
2470 if (!obj_priv->pin_count)
2471 avail++;
2472 }
2473
2474 if (avail == 0)
2475 return -ENOSPC;
2476
2477 /* None available, try to steal one or wait for a user to finish */
2478 avail = I915_FENCE_REG_NONE;
2479 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2480 lru_list) {
2481 obj_priv = to_intel_bo(reg->obj);
2482 if (obj_priv->pin_count)
2483 continue;
2484
2485 /* found one! */
2486 avail = obj_priv->fence_reg;
2487 break;
2488 }
2489
2490 BUG_ON(avail == I915_FENCE_REG_NONE);
2491
2492 /* We only have a reference on obj from the active list. put_fence_reg
2493 * might drop that one, causing a use-after-free in it. So hold a
2494 * private reference to obj like the other callers of put_fence_reg
2495 * (set_tiling ioctl) do. */
2496 drm_gem_object_reference(&obj_priv->base);
2497 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2498 drm_gem_object_unreference(&obj_priv->base);
2499 if (ret != 0)
2500 return ret;
2501
2502 return avail;
2503 }
2504
2505 /**
2506 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2507 * @obj: object to map through a fence reg
2508 *
2509 * When mapping objects through the GTT, userspace wants to be able to write
2510 * to them without having to worry about swizzling if the object is tiled.
2511 *
2512 * This function walks the fence regs looking for a free one for @obj,
2513 * stealing one if it can't find any.
2514 *
2515 * It then sets up the reg based on the object's properties: address, pitch
2516 * and tiling format.
2517 */
2518 int
2519 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2520 bool interruptible)
2521 {
2522 struct drm_device *dev = obj->dev;
2523 struct drm_i915_private *dev_priv = dev->dev_private;
2524 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2525 struct drm_i915_fence_reg *reg = NULL;
2526 int ret;
2527
2528 /* Just update our place in the LRU if our fence is getting used. */
2529 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2530 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2531 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2532 return 0;
2533 }
2534
2535 switch (obj_priv->tiling_mode) {
2536 case I915_TILING_NONE:
2537 WARN(1, "allocating a fence for non-tiled object?\n");
2538 break;
2539 case I915_TILING_X:
2540 if (!obj_priv->stride)
2541 return -EINVAL;
2542 WARN((obj_priv->stride & (512 - 1)),
2543 "object 0x%08x is X tiled but has non-512B pitch\n",
2544 obj_priv->gtt_offset);
2545 break;
2546 case I915_TILING_Y:
2547 if (!obj_priv->stride)
2548 return -EINVAL;
2549 WARN((obj_priv->stride & (128 - 1)),
2550 "object 0x%08x is Y tiled but has non-128B pitch\n",
2551 obj_priv->gtt_offset);
2552 break;
2553 }
2554
2555 ret = i915_find_fence_reg(dev, interruptible);
2556 if (ret < 0)
2557 return ret;
2558
2559 obj_priv->fence_reg = ret;
2560 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2561 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2562
2563 reg->obj = obj;
2564
2565 switch (INTEL_INFO(dev)->gen) {
2566 case 6:
2567 sandybridge_write_fence_reg(obj);
2568 break;
2569 case 5:
2570 case 4:
2571 i965_write_fence_reg(obj);
2572 break;
2573 case 3:
2574 i915_write_fence_reg(obj);
2575 break;
2576 case 2:
2577 i830_write_fence_reg(obj);
2578 break;
2579 }
2580
2581 trace_i915_gem_object_get_fence(obj,
2582 obj_priv->fence_reg,
2583 obj_priv->tiling_mode);
2584
2585 return 0;
2586 }
2587
2588 /**
2589 * i915_gem_clear_fence_reg - clear out fence register info
2590 * @obj: object to clear
2591 *
2592 * Zeroes out the fence register itself and clears out the associated
2593 * data structures in dev_priv and obj_priv.
2594 */
2595 static void
2596 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2597 {
2598 struct drm_device *dev = obj->dev;
2599 drm_i915_private_t *dev_priv = dev->dev_private;
2600 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2601 struct drm_i915_fence_reg *reg =
2602 &dev_priv->fence_regs[obj_priv->fence_reg];
2603 uint32_t fence_reg;
2604
2605 switch (INTEL_INFO(dev)->gen) {
2606 case 6:
2607 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2608 (obj_priv->fence_reg * 8), 0);
2609 break;
2610 case 5:
2611 case 4:
2612 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2613 break;
2614 case 3:
2615 if (obj_priv->fence_reg >= 8)
2616 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2617 else
2618 case 2:
2619 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2620
2621 I915_WRITE(fence_reg, 0);
2622 break;
2623 }
2624
2625 reg->obj = NULL;
2626 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2627 list_del_init(&reg->lru_list);
2628 }
2629
2630 /**
2631 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2632 * to the buffer to finish, and then resets the fence register.
2633 * @obj: tiled object holding a fence register.
2634 * @bool: whether the wait upon the fence is interruptible
2635 *
2636 * Zeroes out the fence register itself and clears out the associated
2637 * data structures in dev_priv and obj_priv.
2638 */
2639 int
2640 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2641 bool interruptible)
2642 {
2643 struct drm_device *dev = obj->dev;
2644 struct drm_i915_private *dev_priv = dev->dev_private;
2645 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2646 struct drm_i915_fence_reg *reg;
2647
2648 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2649 return 0;
2650
2651 /* If we've changed tiling, GTT-mappings of the object
2652 * need to re-fault to ensure that the correct fence register
2653 * setup is in place.
2654 */
2655 i915_gem_release_mmap(obj);
2656
2657 /* On the i915, GPU access to tiled buffers is via a fence,
2658 * therefore we must wait for any outstanding access to complete
2659 * before clearing the fence.
2660 */
2661 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2662 if (reg->gpu) {
2663 int ret;
2664
2665 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2666 if (ret)
2667 return ret;
2668
2669 ret = i915_gem_object_wait_rendering(obj, interruptible);
2670 if (ret)
2671 return ret;
2672
2673 reg->gpu = false;
2674 }
2675
2676 i915_gem_object_flush_gtt_write_domain(obj);
2677 i915_gem_clear_fence_reg(obj);
2678
2679 return 0;
2680 }
2681
2682 /**
2683 * Finds free space in the GTT aperture and binds the object there.
2684 */
2685 static int
2686 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2687 unsigned alignment,
2688 bool map_and_fenceable)
2689 {
2690 struct drm_device *dev = obj->dev;
2691 drm_i915_private_t *dev_priv = dev->dev_private;
2692 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2693 struct drm_mm_node *free_space;
2694 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2695 u32 size, fence_size, fence_alignment;
2696 bool mappable, fenceable;
2697 int ret;
2698
2699 if (obj_priv->madv != I915_MADV_WILLNEED) {
2700 DRM_ERROR("Attempting to bind a purgeable object\n");
2701 return -EINVAL;
2702 }
2703
2704 fence_size = i915_gem_get_gtt_size(obj_priv);
2705 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2706
2707 if (alignment == 0)
2708 alignment = map_and_fenceable ? fence_alignment : 4096;
2709 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2710 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2711 return -EINVAL;
2712 }
2713
2714 size = map_and_fenceable ? fence_size : obj->size;
2715
2716 /* If the object is bigger than the entire aperture, reject it early
2717 * before evicting everything in a vain attempt to find space.
2718 */
2719 if (obj->size >
2720 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2721 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2722 return -E2BIG;
2723 }
2724
2725 search_free:
2726 if (map_and_fenceable)
2727 free_space =
2728 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2729 size, alignment, 0,
2730 dev_priv->mm.gtt_mappable_end,
2731 0);
2732 else
2733 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2734 size, alignment, 0);
2735
2736 if (free_space != NULL) {
2737 if (map_and_fenceable)
2738 obj_priv->gtt_space =
2739 drm_mm_get_block_range_generic(free_space,
2740 size, alignment, 0,
2741 dev_priv->mm.gtt_mappable_end,
2742 0);
2743 else
2744 obj_priv->gtt_space =
2745 drm_mm_get_block(free_space, size, alignment);
2746 }
2747 if (obj_priv->gtt_space == NULL) {
2748 /* If the gtt is empty and we're still having trouble
2749 * fitting our object in, we're out of memory.
2750 */
2751 ret = i915_gem_evict_something(dev, size, alignment,
2752 map_and_fenceable);
2753 if (ret)
2754 return ret;
2755
2756 goto search_free;
2757 }
2758
2759 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2760 if (ret) {
2761 drm_mm_put_block(obj_priv->gtt_space);
2762 obj_priv->gtt_space = NULL;
2763
2764 if (ret == -ENOMEM) {
2765 /* first try to clear up some space from the GTT */
2766 ret = i915_gem_evict_something(dev, size,
2767 alignment,
2768 map_and_fenceable);
2769 if (ret) {
2770 /* now try to shrink everyone else */
2771 if (gfpmask) {
2772 gfpmask = 0;
2773 goto search_free;
2774 }
2775
2776 return ret;
2777 }
2778
2779 goto search_free;
2780 }
2781
2782 return ret;
2783 }
2784
2785 /* Create an AGP memory structure pointing at our pages, and bind it
2786 * into the GTT.
2787 */
2788 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2789 obj_priv->pages,
2790 obj->size >> PAGE_SHIFT,
2791 obj_priv->gtt_space->start,
2792 obj_priv->agp_type);
2793 if (obj_priv->agp_mem == NULL) {
2794 i915_gem_object_put_pages_gtt(obj);
2795 drm_mm_put_block(obj_priv->gtt_space);
2796 obj_priv->gtt_space = NULL;
2797
2798 ret = i915_gem_evict_something(dev, size,
2799 alignment, map_and_fenceable);
2800 if (ret)
2801 return ret;
2802
2803 goto search_free;
2804 }
2805
2806 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2807
2808 /* keep track of bounds object by adding it to the inactive list */
2809 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2810 i915_gem_info_add_gtt(dev_priv, obj_priv);
2811
2812 /* Assert that the object is not currently in any GPU domain. As it
2813 * wasn't in the GTT, there shouldn't be any way it could have been in
2814 * a GPU cache
2815 */
2816 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2817 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2818
2819 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
2820
2821 fenceable =
2822 obj_priv->gtt_space->size == fence_size &&
2823 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2824
2825 mappable =
2826 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2827
2828 obj_priv->map_and_fenceable = mappable && fenceable;
2829
2830 return 0;
2831 }
2832
2833 void
2834 i915_gem_clflush_object(struct drm_gem_object *obj)
2835 {
2836 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2837
2838 /* If we don't have a page list set up, then we're not pinned
2839 * to GPU, and we can ignore the cache flush because it'll happen
2840 * again at bind time.
2841 */
2842 if (obj_priv->pages == NULL)
2843 return;
2844
2845 trace_i915_gem_object_clflush(obj);
2846
2847 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2848 }
2849
2850 /** Flushes any GPU write domain for the object if it's dirty. */
2851 static int
2852 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2853 bool pipelined)
2854 {
2855 struct drm_device *dev = obj->dev;
2856
2857 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2858 return 0;
2859
2860 /* Queue the GPU write cache flushing we need. */
2861 i915_gem_flush_ring(dev, NULL,
2862 to_intel_bo(obj)->ring,
2863 0, obj->write_domain);
2864 BUG_ON(obj->write_domain);
2865
2866 if (pipelined)
2867 return 0;
2868
2869 return i915_gem_object_wait_rendering(obj, true);
2870 }
2871
2872 /** Flushes the GTT write domain for the object if it's dirty. */
2873 static void
2874 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2875 {
2876 uint32_t old_write_domain;
2877
2878 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2879 return;
2880
2881 /* No actual flushing is required for the GTT write domain. Writes
2882 * to it immediately go to main memory as far as we know, so there's
2883 * no chipset flush. It also doesn't land in render cache.
2884 */
2885 i915_gem_release_mmap(obj);
2886
2887 old_write_domain = obj->write_domain;
2888 obj->write_domain = 0;
2889
2890 trace_i915_gem_object_change_domain(obj,
2891 obj->read_domains,
2892 old_write_domain);
2893 }
2894
2895 /** Flushes the CPU write domain for the object if it's dirty. */
2896 static void
2897 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2898 {
2899 struct drm_device *dev = obj->dev;
2900 uint32_t old_write_domain;
2901
2902 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2903 return;
2904
2905 i915_gem_clflush_object(obj);
2906 drm_agp_chipset_flush(dev);
2907 old_write_domain = obj->write_domain;
2908 obj->write_domain = 0;
2909
2910 trace_i915_gem_object_change_domain(obj,
2911 obj->read_domains,
2912 old_write_domain);
2913 }
2914
2915 /**
2916 * Moves a single object to the GTT read, and possibly write domain.
2917 *
2918 * This function returns when the move is complete, including waiting on
2919 * flushes to occur.
2920 */
2921 int
2922 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2923 {
2924 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2925 uint32_t old_write_domain, old_read_domains;
2926 int ret;
2927
2928 /* Not valid to be called on unbound objects. */
2929 if (obj_priv->gtt_space == NULL)
2930 return -EINVAL;
2931
2932 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2933 if (ret != 0)
2934 return ret;
2935
2936 i915_gem_object_flush_cpu_write_domain(obj);
2937
2938 if (write) {
2939 ret = i915_gem_object_wait_rendering(obj, true);
2940 if (ret)
2941 return ret;
2942 }
2943
2944 old_write_domain = obj->write_domain;
2945 old_read_domains = obj->read_domains;
2946
2947 /* It should now be out of any other write domains, and we can update
2948 * the domain values for our changes.
2949 */
2950 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2951 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2952 if (write) {
2953 obj->read_domains = I915_GEM_DOMAIN_GTT;
2954 obj->write_domain = I915_GEM_DOMAIN_GTT;
2955 obj_priv->dirty = 1;
2956 }
2957
2958 trace_i915_gem_object_change_domain(obj,
2959 old_read_domains,
2960 old_write_domain);
2961
2962 return 0;
2963 }
2964
2965 /*
2966 * Prepare buffer for display plane. Use uninterruptible for possible flush
2967 * wait, as in modesetting process we're not supposed to be interrupted.
2968 */
2969 int
2970 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2971 bool pipelined)
2972 {
2973 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2974 uint32_t old_read_domains;
2975 int ret;
2976
2977 /* Not valid to be called on unbound objects. */
2978 if (obj_priv->gtt_space == NULL)
2979 return -EINVAL;
2980
2981 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2982 if (ret)
2983 return ret;
2984
2985 /* Currently, we are always called from an non-interruptible context. */
2986 if (!pipelined) {
2987 ret = i915_gem_object_wait_rendering(obj, false);
2988 if (ret)
2989 return ret;
2990 }
2991
2992 i915_gem_object_flush_cpu_write_domain(obj);
2993
2994 old_read_domains = obj->read_domains;
2995 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2996
2997 trace_i915_gem_object_change_domain(obj,
2998 old_read_domains,
2999 obj->write_domain);
3000
3001 return 0;
3002 }
3003
3004 /**
3005 * Moves a single object to the CPU read, and possibly write domain.
3006 *
3007 * This function returns when the move is complete, including waiting on
3008 * flushes to occur.
3009 */
3010 static int
3011 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3012 {
3013 uint32_t old_write_domain, old_read_domains;
3014 int ret;
3015
3016 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3017 if (ret != 0)
3018 return ret;
3019
3020 i915_gem_object_flush_gtt_write_domain(obj);
3021
3022 /* If we have a partially-valid cache of the object in the CPU,
3023 * finish invalidating it and free the per-page flags.
3024 */
3025 i915_gem_object_set_to_full_cpu_read_domain(obj);
3026
3027 if (write) {
3028 ret = i915_gem_object_wait_rendering(obj, true);
3029 if (ret)
3030 return ret;
3031 }
3032
3033 old_write_domain = obj->write_domain;
3034 old_read_domains = obj->read_domains;
3035
3036 /* Flush the CPU cache if it's still invalid. */
3037 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3038 i915_gem_clflush_object(obj);
3039
3040 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3041 }
3042
3043 /* It should now be out of any other write domains, and we can update
3044 * the domain values for our changes.
3045 */
3046 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3047
3048 /* If we're writing through the CPU, then the GPU read domains will
3049 * need to be invalidated at next use.
3050 */
3051 if (write) {
3052 obj->read_domains = I915_GEM_DOMAIN_CPU;
3053 obj->write_domain = I915_GEM_DOMAIN_CPU;
3054 }
3055
3056 trace_i915_gem_object_change_domain(obj,
3057 old_read_domains,
3058 old_write_domain);
3059
3060 return 0;
3061 }
3062
3063 /*
3064 * Set the next domain for the specified object. This
3065 * may not actually perform the necessary flushing/invaliding though,
3066 * as that may want to be batched with other set_domain operations
3067 *
3068 * This is (we hope) the only really tricky part of gem. The goal
3069 * is fairly simple -- track which caches hold bits of the object
3070 * and make sure they remain coherent. A few concrete examples may
3071 * help to explain how it works. For shorthand, we use the notation
3072 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3073 * a pair of read and write domain masks.
3074 *
3075 * Case 1: the batch buffer
3076 *
3077 * 1. Allocated
3078 * 2. Written by CPU
3079 * 3. Mapped to GTT
3080 * 4. Read by GPU
3081 * 5. Unmapped from GTT
3082 * 6. Freed
3083 *
3084 * Let's take these a step at a time
3085 *
3086 * 1. Allocated
3087 * Pages allocated from the kernel may still have
3088 * cache contents, so we set them to (CPU, CPU) always.
3089 * 2. Written by CPU (using pwrite)
3090 * The pwrite function calls set_domain (CPU, CPU) and
3091 * this function does nothing (as nothing changes)
3092 * 3. Mapped by GTT
3093 * This function asserts that the object is not
3094 * currently in any GPU-based read or write domains
3095 * 4. Read by GPU
3096 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3097 * As write_domain is zero, this function adds in the
3098 * current read domains (CPU+COMMAND, 0).
3099 * flush_domains is set to CPU.
3100 * invalidate_domains is set to COMMAND
3101 * clflush is run to get data out of the CPU caches
3102 * then i915_dev_set_domain calls i915_gem_flush to
3103 * emit an MI_FLUSH and drm_agp_chipset_flush
3104 * 5. Unmapped from GTT
3105 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3106 * flush_domains and invalidate_domains end up both zero
3107 * so no flushing/invalidating happens
3108 * 6. Freed
3109 * yay, done
3110 *
3111 * Case 2: The shared render buffer
3112 *
3113 * 1. Allocated
3114 * 2. Mapped to GTT
3115 * 3. Read/written by GPU
3116 * 4. set_domain to (CPU,CPU)
3117 * 5. Read/written by CPU
3118 * 6. Read/written by GPU
3119 *
3120 * 1. Allocated
3121 * Same as last example, (CPU, CPU)
3122 * 2. Mapped to GTT
3123 * Nothing changes (assertions find that it is not in the GPU)
3124 * 3. Read/written by GPU
3125 * execbuffer calls set_domain (RENDER, RENDER)
3126 * flush_domains gets CPU
3127 * invalidate_domains gets GPU
3128 * clflush (obj)
3129 * MI_FLUSH and drm_agp_chipset_flush
3130 * 4. set_domain (CPU, CPU)
3131 * flush_domains gets GPU
3132 * invalidate_domains gets CPU
3133 * wait_rendering (obj) to make sure all drawing is complete.
3134 * This will include an MI_FLUSH to get the data from GPU
3135 * to memory
3136 * clflush (obj) to invalidate the CPU cache
3137 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3138 * 5. Read/written by CPU
3139 * cache lines are loaded and dirtied
3140 * 6. Read written by GPU
3141 * Same as last GPU access
3142 *
3143 * Case 3: The constant buffer
3144 *
3145 * 1. Allocated
3146 * 2. Written by CPU
3147 * 3. Read by GPU
3148 * 4. Updated (written) by CPU again
3149 * 5. Read by GPU
3150 *
3151 * 1. Allocated
3152 * (CPU, CPU)
3153 * 2. Written by CPU
3154 * (CPU, CPU)
3155 * 3. Read by GPU
3156 * (CPU+RENDER, 0)
3157 * flush_domains = CPU
3158 * invalidate_domains = RENDER
3159 * clflush (obj)
3160 * MI_FLUSH
3161 * drm_agp_chipset_flush
3162 * 4. Updated (written) by CPU again
3163 * (CPU, CPU)
3164 * flush_domains = 0 (no previous write domain)
3165 * invalidate_domains = 0 (no new read domains)
3166 * 5. Read by GPU
3167 * (CPU+RENDER, 0)
3168 * flush_domains = CPU
3169 * invalidate_domains = RENDER
3170 * clflush (obj)
3171 * MI_FLUSH
3172 * drm_agp_chipset_flush
3173 */
3174 static void
3175 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3176 struct intel_ring_buffer *ring,
3177 struct change_domains *cd)
3178 {
3179 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3180 uint32_t invalidate_domains = 0;
3181 uint32_t flush_domains = 0;
3182
3183 /*
3184 * If the object isn't moving to a new write domain,
3185 * let the object stay in multiple read domains
3186 */
3187 if (obj->pending_write_domain == 0)
3188 obj->pending_read_domains |= obj->read_domains;
3189
3190 /*
3191 * Flush the current write domain if
3192 * the new read domains don't match. Invalidate
3193 * any read domains which differ from the old
3194 * write domain
3195 */
3196 if (obj->write_domain &&
3197 (obj->write_domain != obj->pending_read_domains ||
3198 obj_priv->ring != ring)) {
3199 flush_domains |= obj->write_domain;
3200 invalidate_domains |=
3201 obj->pending_read_domains & ~obj->write_domain;
3202 }
3203 /*
3204 * Invalidate any read caches which may have
3205 * stale data. That is, any new read domains.
3206 */
3207 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3208 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3209 i915_gem_clflush_object(obj);
3210
3211 /* blow away mappings if mapped through GTT */
3212 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3213 i915_gem_release_mmap(obj);
3214
3215 /* The actual obj->write_domain will be updated with
3216 * pending_write_domain after we emit the accumulated flush for all
3217 * of our domain changes in execbuffers (which clears objects'
3218 * write_domains). So if we have a current write domain that we
3219 * aren't changing, set pending_write_domain to that.
3220 */
3221 if (flush_domains == 0 && obj->pending_write_domain == 0)
3222 obj->pending_write_domain = obj->write_domain;
3223
3224 cd->invalidate_domains |= invalidate_domains;
3225 cd->flush_domains |= flush_domains;
3226 if (flush_domains & I915_GEM_GPU_DOMAINS)
3227 cd->flush_rings |= obj_priv->ring->id;
3228 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3229 cd->flush_rings |= ring->id;
3230 }
3231
3232 /**
3233 * Moves the object from a partially CPU read to a full one.
3234 *
3235 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3236 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3237 */
3238 static void
3239 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3240 {
3241 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3242
3243 if (!obj_priv->page_cpu_valid)
3244 return;
3245
3246 /* If we're partially in the CPU read domain, finish moving it in.
3247 */
3248 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3249 int i;
3250
3251 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3252 if (obj_priv->page_cpu_valid[i])
3253 continue;
3254 drm_clflush_pages(obj_priv->pages + i, 1);
3255 }
3256 }
3257
3258 /* Free the page_cpu_valid mappings which are now stale, whether
3259 * or not we've got I915_GEM_DOMAIN_CPU.
3260 */
3261 kfree(obj_priv->page_cpu_valid);
3262 obj_priv->page_cpu_valid = NULL;
3263 }
3264
3265 /**
3266 * Set the CPU read domain on a range of the object.
3267 *
3268 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3269 * not entirely valid. The page_cpu_valid member of the object flags which
3270 * pages have been flushed, and will be respected by
3271 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3272 * of the whole object.
3273 *
3274 * This function returns when the move is complete, including waiting on
3275 * flushes to occur.
3276 */
3277 static int
3278 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3279 uint64_t offset, uint64_t size)
3280 {
3281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3282 uint32_t old_read_domains;
3283 int i, ret;
3284
3285 if (offset == 0 && size == obj->size)
3286 return i915_gem_object_set_to_cpu_domain(obj, 0);
3287
3288 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3289 if (ret != 0)
3290 return ret;
3291 i915_gem_object_flush_gtt_write_domain(obj);
3292
3293 /* If we're already fully in the CPU read domain, we're done. */
3294 if (obj_priv->page_cpu_valid == NULL &&
3295 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3296 return 0;
3297
3298 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3299 * newly adding I915_GEM_DOMAIN_CPU
3300 */
3301 if (obj_priv->page_cpu_valid == NULL) {
3302 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3303 GFP_KERNEL);
3304 if (obj_priv->page_cpu_valid == NULL)
3305 return -ENOMEM;
3306 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3307 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3308
3309 /* Flush the cache on any pages that are still invalid from the CPU's
3310 * perspective.
3311 */
3312 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3313 i++) {
3314 if (obj_priv->page_cpu_valid[i])
3315 continue;
3316
3317 drm_clflush_pages(obj_priv->pages + i, 1);
3318
3319 obj_priv->page_cpu_valid[i] = 1;
3320 }
3321
3322 /* It should now be out of any other write domains, and we can update
3323 * the domain values for our changes.
3324 */
3325 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3326
3327 old_read_domains = obj->read_domains;
3328 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3329
3330 trace_i915_gem_object_change_domain(obj,
3331 old_read_domains,
3332 obj->write_domain);
3333
3334 return 0;
3335 }
3336
3337 /**
3338 * Pin an object to the GTT and evaluate the relocations landing in it.
3339 */
3340 static int
3341 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3342 struct drm_file *file_priv,
3343 struct drm_i915_gem_exec_object2 *entry)
3344 {
3345 struct drm_device *dev = obj->base.dev;
3346 drm_i915_private_t *dev_priv = dev->dev_private;
3347 struct drm_i915_gem_relocation_entry __user *user_relocs;
3348 struct drm_gem_object *target_obj = NULL;
3349 uint32_t target_handle = 0;
3350 int i, ret = 0;
3351
3352 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3353 for (i = 0; i < entry->relocation_count; i++) {
3354 struct drm_i915_gem_relocation_entry reloc;
3355 uint32_t target_offset;
3356
3357 if (__copy_from_user_inatomic(&reloc,
3358 user_relocs+i,
3359 sizeof(reloc))) {
3360 ret = -EFAULT;
3361 break;
3362 }
3363
3364 if (reloc.target_handle != target_handle) {
3365 drm_gem_object_unreference(target_obj);
3366
3367 target_obj = drm_gem_object_lookup(dev, file_priv,
3368 reloc.target_handle);
3369 if (target_obj == NULL) {
3370 ret = -ENOENT;
3371 break;
3372 }
3373
3374 target_handle = reloc.target_handle;
3375 }
3376 target_offset = to_intel_bo(target_obj)->gtt_offset;
3377
3378 #if WATCH_RELOC
3379 DRM_INFO("%s: obj %p offset %08x target %d "
3380 "read %08x write %08x gtt %08x "
3381 "presumed %08x delta %08x\n",
3382 __func__,
3383 obj,
3384 (int) reloc.offset,
3385 (int) reloc.target_handle,
3386 (int) reloc.read_domains,
3387 (int) reloc.write_domain,
3388 (int) target_offset,
3389 (int) reloc.presumed_offset,
3390 reloc.delta);
3391 #endif
3392
3393 /* The target buffer should have appeared before us in the
3394 * exec_object list, so it should have a GTT space bound by now.
3395 */
3396 if (target_offset == 0) {
3397 DRM_ERROR("No GTT space found for object %d\n",
3398 reloc.target_handle);
3399 ret = -EINVAL;
3400 break;
3401 }
3402
3403 /* Validate that the target is in a valid r/w GPU domain */
3404 if (reloc.write_domain & (reloc.write_domain - 1)) {
3405 DRM_ERROR("reloc with multiple write domains: "
3406 "obj %p target %d offset %d "
3407 "read %08x write %08x",
3408 obj, reloc.target_handle,
3409 (int) reloc.offset,
3410 reloc.read_domains,
3411 reloc.write_domain);
3412 ret = -EINVAL;
3413 break;
3414 }
3415 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3416 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3417 DRM_ERROR("reloc with read/write CPU domains: "
3418 "obj %p target %d offset %d "
3419 "read %08x write %08x",
3420 obj, reloc.target_handle,
3421 (int) reloc.offset,
3422 reloc.read_domains,
3423 reloc.write_domain);
3424 ret = -EINVAL;
3425 break;
3426 }
3427 if (reloc.write_domain && target_obj->pending_write_domain &&
3428 reloc.write_domain != target_obj->pending_write_domain) {
3429 DRM_ERROR("Write domain conflict: "
3430 "obj %p target %d offset %d "
3431 "new %08x old %08x\n",
3432 obj, reloc.target_handle,
3433 (int) reloc.offset,
3434 reloc.write_domain,
3435 target_obj->pending_write_domain);
3436 ret = -EINVAL;
3437 break;
3438 }
3439
3440 target_obj->pending_read_domains |= reloc.read_domains;
3441 target_obj->pending_write_domain |= reloc.write_domain;
3442
3443 /* If the relocation already has the right value in it, no
3444 * more work needs to be done.
3445 */
3446 if (target_offset == reloc.presumed_offset)
3447 continue;
3448
3449 /* Check that the relocation address is valid... */
3450 if (reloc.offset > obj->base.size - 4) {
3451 DRM_ERROR("Relocation beyond object bounds: "
3452 "obj %p target %d offset %d size %d.\n",
3453 obj, reloc.target_handle,
3454 (int) reloc.offset, (int) obj->base.size);
3455 ret = -EINVAL;
3456 break;
3457 }
3458 if (reloc.offset & 3) {
3459 DRM_ERROR("Relocation not 4-byte aligned: "
3460 "obj %p target %d offset %d.\n",
3461 obj, reloc.target_handle,
3462 (int) reloc.offset);
3463 ret = -EINVAL;
3464 break;
3465 }
3466
3467 /* and points to somewhere within the target object. */
3468 if (reloc.delta >= target_obj->size) {
3469 DRM_ERROR("Relocation beyond target object bounds: "
3470 "obj %p target %d delta %d size %d.\n",
3471 obj, reloc.target_handle,
3472 (int) reloc.delta, (int) target_obj->size);
3473 ret = -EINVAL;
3474 break;
3475 }
3476
3477 reloc.delta += target_offset;
3478 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3479 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3480 char *vaddr;
3481
3482 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3483 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3484 kunmap_atomic(vaddr);
3485 } else {
3486 uint32_t __iomem *reloc_entry;
3487 void __iomem *reloc_page;
3488
3489 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3490 if (ret)
3491 break;
3492
3493 /* Map the page containing the relocation we're going to perform. */
3494 reloc.offset += obj->gtt_offset;
3495 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3496 reloc.offset & PAGE_MASK);
3497 reloc_entry = (uint32_t __iomem *)
3498 (reloc_page + (reloc.offset & ~PAGE_MASK));
3499 iowrite32(reloc.delta, reloc_entry);
3500 io_mapping_unmap_atomic(reloc_page);
3501 }
3502
3503 /* and update the user's relocation entry */
3504 reloc.presumed_offset = target_offset;
3505 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3506 &reloc.presumed_offset,
3507 sizeof(reloc.presumed_offset))) {
3508 ret = -EFAULT;
3509 break;
3510 }
3511 }
3512
3513 drm_gem_object_unreference(target_obj);
3514 return ret;
3515 }
3516
3517 static int
3518 i915_gem_execbuffer_pin(struct drm_device *dev,
3519 struct drm_file *file,
3520 struct drm_gem_object **object_list,
3521 struct drm_i915_gem_exec_object2 *exec_list,
3522 int count)
3523 {
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 int ret, i, retry;
3526
3527 /* attempt to pin all of the buffers into the GTT */
3528 retry = 0;
3529 do {
3530 ret = 0;
3531 for (i = 0; i < count; i++) {
3532 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3533 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3534 bool need_fence =
3535 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3536 obj->tiling_mode != I915_TILING_NONE;
3537
3538 /* g33/pnv can't fence buffers in the unmappable part */
3539 bool need_mappable =
3540 entry->relocation_count ? true : need_fence;
3541
3542 /* Check fence reg constraints and rebind if necessary */
3543 if (need_mappable && !obj->map_and_fenceable) {
3544 ret = i915_gem_object_unbind(&obj->base);
3545 if (ret)
3546 break;
3547 }
3548
3549 ret = i915_gem_object_pin(&obj->base,
3550 entry->alignment,
3551 need_mappable);
3552 if (ret)
3553 break;
3554
3555 /*
3556 * Pre-965 chips need a fence register set up in order
3557 * to properly handle blits to/from tiled surfaces.
3558 */
3559 if (need_fence) {
3560 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3561 if (ret) {
3562 i915_gem_object_unpin(&obj->base);
3563 break;
3564 }
3565
3566 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3567 }
3568
3569 entry->offset = obj->gtt_offset;
3570 }
3571
3572 while (i--)
3573 i915_gem_object_unpin(object_list[i]);
3574
3575 if (ret != -ENOSPC || retry > 1)
3576 return ret;
3577
3578 /* First attempt, just clear anything that is purgeable.
3579 * Second attempt, clear the entire GTT.
3580 */
3581 ret = i915_gem_evict_everything(dev, retry == 0);
3582 if (ret)
3583 return ret;
3584
3585 retry++;
3586 } while (1);
3587 }
3588
3589 static int
3590 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3591 struct drm_file *file,
3592 struct intel_ring_buffer *ring,
3593 struct drm_gem_object **objects,
3594 int count)
3595 {
3596 struct change_domains cd;
3597 int ret, i;
3598
3599 cd.invalidate_domains = 0;
3600 cd.flush_domains = 0;
3601 cd.flush_rings = 0;
3602 for (i = 0; i < count; i++)
3603 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3604
3605 if (cd.invalidate_domains | cd.flush_domains) {
3606 #if WATCH_EXEC
3607 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3608 __func__,
3609 cd.invalidate_domains,
3610 cd.flush_domains);
3611 #endif
3612 i915_gem_flush(dev, file,
3613 cd.invalidate_domains,
3614 cd.flush_domains,
3615 cd.flush_rings);
3616 }
3617
3618 for (i = 0; i < count; i++) {
3619 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3620 /* XXX replace with semaphores */
3621 if (obj->ring && ring != obj->ring) {
3622 ret = i915_gem_object_wait_rendering(&obj->base, true);
3623 if (ret)
3624 return ret;
3625 }
3626 }
3627
3628 return 0;
3629 }
3630
3631 /* Throttle our rendering by waiting until the ring has completed our requests
3632 * emitted over 20 msec ago.
3633 *
3634 * Note that if we were to use the current jiffies each time around the loop,
3635 * we wouldn't escape the function with any frames outstanding if the time to
3636 * render a frame was over 20ms.
3637 *
3638 * This should get us reasonable parallelism between CPU and GPU but also
3639 * relatively low latency when blocking on a particular request to finish.
3640 */
3641 static int
3642 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3643 {
3644 struct drm_i915_private *dev_priv = dev->dev_private;
3645 struct drm_i915_file_private *file_priv = file->driver_priv;
3646 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3647 struct drm_i915_gem_request *request;
3648 struct intel_ring_buffer *ring = NULL;
3649 u32 seqno = 0;
3650 int ret;
3651
3652 spin_lock(&file_priv->mm.lock);
3653 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3654 if (time_after_eq(request->emitted_jiffies, recent_enough))
3655 break;
3656
3657 ring = request->ring;
3658 seqno = request->seqno;
3659 }
3660 spin_unlock(&file_priv->mm.lock);
3661
3662 if (seqno == 0)
3663 return 0;
3664
3665 ret = 0;
3666 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3667 /* And wait for the seqno passing without holding any locks and
3668 * causing extra latency for others. This is safe as the irq
3669 * generation is designed to be run atomically and so is
3670 * lockless.
3671 */
3672 ring->user_irq_get(ring);
3673 ret = wait_event_interruptible(ring->irq_queue,
3674 i915_seqno_passed(ring->get_seqno(ring), seqno)
3675 || atomic_read(&dev_priv->mm.wedged));
3676 ring->user_irq_put(ring);
3677
3678 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3679 ret = -EIO;
3680 }
3681
3682 if (ret == 0)
3683 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3684
3685 return ret;
3686 }
3687
3688 static int
3689 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3690 uint64_t exec_offset)
3691 {
3692 uint32_t exec_start, exec_len;
3693
3694 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3695 exec_len = (uint32_t) exec->batch_len;
3696
3697 if ((exec_start | exec_len) & 0x7)
3698 return -EINVAL;
3699
3700 if (!exec_start)
3701 return -EINVAL;
3702
3703 return 0;
3704 }
3705
3706 static int
3707 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3708 int count)
3709 {
3710 int i;
3711
3712 for (i = 0; i < count; i++) {
3713 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3714 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3715
3716 if (!access_ok(VERIFY_READ, ptr, length))
3717 return -EFAULT;
3718
3719 /* we may also need to update the presumed offsets */
3720 if (!access_ok(VERIFY_WRITE, ptr, length))
3721 return -EFAULT;
3722
3723 if (fault_in_pages_readable(ptr, length))
3724 return -EFAULT;
3725 }
3726
3727 return 0;
3728 }
3729
3730 static int
3731 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3732 struct drm_file *file,
3733 struct drm_i915_gem_execbuffer2 *args,
3734 struct drm_i915_gem_exec_object2 *exec_list)
3735 {
3736 drm_i915_private_t *dev_priv = dev->dev_private;
3737 struct drm_gem_object **object_list = NULL;
3738 struct drm_gem_object *batch_obj;
3739 struct drm_clip_rect *cliprects = NULL;
3740 struct drm_i915_gem_request *request = NULL;
3741 int ret, i, flips;
3742 uint64_t exec_offset;
3743
3744 struct intel_ring_buffer *ring = NULL;
3745
3746 ret = i915_gem_check_is_wedged(dev);
3747 if (ret)
3748 return ret;
3749
3750 ret = validate_exec_list(exec_list, args->buffer_count);
3751 if (ret)
3752 return ret;
3753
3754 #if WATCH_EXEC
3755 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3756 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3757 #endif
3758 switch (args->flags & I915_EXEC_RING_MASK) {
3759 case I915_EXEC_DEFAULT:
3760 case I915_EXEC_RENDER:
3761 ring = &dev_priv->render_ring;
3762 break;
3763 case I915_EXEC_BSD:
3764 if (!HAS_BSD(dev)) {
3765 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3766 return -EINVAL;
3767 }
3768 ring = &dev_priv->bsd_ring;
3769 break;
3770 case I915_EXEC_BLT:
3771 if (!HAS_BLT(dev)) {
3772 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3773 return -EINVAL;
3774 }
3775 ring = &dev_priv->blt_ring;
3776 break;
3777 default:
3778 DRM_ERROR("execbuf with unknown ring: %d\n",
3779 (int)(args->flags & I915_EXEC_RING_MASK));
3780 return -EINVAL;
3781 }
3782
3783 if (args->buffer_count < 1) {
3784 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3785 return -EINVAL;
3786 }
3787 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3788 if (object_list == NULL) {
3789 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3790 args->buffer_count);
3791 ret = -ENOMEM;
3792 goto pre_mutex_err;
3793 }
3794
3795 if (args->num_cliprects != 0) {
3796 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3797 GFP_KERNEL);
3798 if (cliprects == NULL) {
3799 ret = -ENOMEM;
3800 goto pre_mutex_err;
3801 }
3802
3803 ret = copy_from_user(cliprects,
3804 (struct drm_clip_rect __user *)
3805 (uintptr_t) args->cliprects_ptr,
3806 sizeof(*cliprects) * args->num_cliprects);
3807 if (ret != 0) {
3808 DRM_ERROR("copy %d cliprects failed: %d\n",
3809 args->num_cliprects, ret);
3810 ret = -EFAULT;
3811 goto pre_mutex_err;
3812 }
3813 }
3814
3815 request = kzalloc(sizeof(*request), GFP_KERNEL);
3816 if (request == NULL) {
3817 ret = -ENOMEM;
3818 goto pre_mutex_err;
3819 }
3820
3821 ret = i915_mutex_lock_interruptible(dev);
3822 if (ret)
3823 goto pre_mutex_err;
3824
3825 if (dev_priv->mm.suspended) {
3826 mutex_unlock(&dev->struct_mutex);
3827 ret = -EBUSY;
3828 goto pre_mutex_err;
3829 }
3830
3831 /* Look up object handles */
3832 for (i = 0; i < args->buffer_count; i++) {
3833 struct drm_i915_gem_object *obj_priv;
3834
3835 object_list[i] = drm_gem_object_lookup(dev, file,
3836 exec_list[i].handle);
3837 if (object_list[i] == NULL) {
3838 DRM_ERROR("Invalid object handle %d at index %d\n",
3839 exec_list[i].handle, i);
3840 /* prevent error path from reading uninitialized data */
3841 args->buffer_count = i + 1;
3842 ret = -ENOENT;
3843 goto err;
3844 }
3845
3846 obj_priv = to_intel_bo(object_list[i]);
3847 if (obj_priv->in_execbuffer) {
3848 DRM_ERROR("Object %p appears more than once in object list\n",
3849 object_list[i]);
3850 /* prevent error path from reading uninitialized data */
3851 args->buffer_count = i + 1;
3852 ret = -EINVAL;
3853 goto err;
3854 }
3855 obj_priv->in_execbuffer = true;
3856 }
3857
3858 /* Move the objects en-masse into the GTT, evicting if necessary. */
3859 ret = i915_gem_execbuffer_pin(dev, file,
3860 object_list, exec_list,
3861 args->buffer_count);
3862 if (ret)
3863 goto err;
3864
3865 /* The objects are in their final locations, apply the relocations. */
3866 for (i = 0; i < args->buffer_count; i++) {
3867 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3868 obj->base.pending_read_domains = 0;
3869 obj->base.pending_write_domain = 0;
3870 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3871 if (ret)
3872 goto err;
3873 }
3874
3875 /* Set the pending read domains for the batch buffer to COMMAND */
3876 batch_obj = object_list[args->buffer_count-1];
3877 if (batch_obj->pending_write_domain) {
3878 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3879 ret = -EINVAL;
3880 goto err;
3881 }
3882 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3883
3884 /* Sanity check the batch buffer */
3885 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3886 ret = i915_gem_check_execbuffer(args, exec_offset);
3887 if (ret != 0) {
3888 DRM_ERROR("execbuf with invalid offset/length\n");
3889 goto err;
3890 }
3891
3892 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3893 object_list, args->buffer_count);
3894 if (ret)
3895 goto err;
3896
3897 #if WATCH_COHERENCY
3898 for (i = 0; i < args->buffer_count; i++) {
3899 i915_gem_object_check_coherency(object_list[i],
3900 exec_list[i].handle);
3901 }
3902 #endif
3903
3904 #if WATCH_EXEC
3905 i915_gem_dump_object(batch_obj,
3906 args->batch_len,
3907 __func__,
3908 ~0);
3909 #endif
3910
3911 /* Check for any pending flips. As we only maintain a flip queue depth
3912 * of 1, we can simply insert a WAIT for the next display flip prior
3913 * to executing the batch and avoid stalling the CPU.
3914 */
3915 flips = 0;
3916 for (i = 0; i < args->buffer_count; i++) {
3917 if (object_list[i]->write_domain)
3918 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3919 }
3920 if (flips) {
3921 int plane, flip_mask;
3922
3923 for (plane = 0; flips >> plane; plane++) {
3924 if (((flips >> plane) & 1) == 0)
3925 continue;
3926
3927 if (plane)
3928 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3929 else
3930 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3931
3932 ret = intel_ring_begin(ring, 2);
3933 if (ret)
3934 goto err;
3935
3936 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3937 intel_ring_emit(ring, MI_NOOP);
3938 intel_ring_advance(ring);
3939 }
3940 }
3941
3942 /* Exec the batchbuffer */
3943 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3944 if (ret) {
3945 DRM_ERROR("dispatch failed %d\n", ret);
3946 goto err;
3947 }
3948
3949 for (i = 0; i < args->buffer_count; i++) {
3950 struct drm_gem_object *obj = object_list[i];
3951
3952 obj->read_domains = obj->pending_read_domains;
3953 obj->write_domain = obj->pending_write_domain;
3954
3955 i915_gem_object_move_to_active(obj, ring);
3956 if (obj->write_domain) {
3957 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3958 obj_priv->dirty = 1;
3959 list_move_tail(&obj_priv->gpu_write_list,
3960 &ring->gpu_write_list);
3961 intel_mark_busy(dev, obj);
3962 }
3963
3964 trace_i915_gem_object_change_domain(obj,
3965 obj->read_domains,
3966 obj->write_domain);
3967 }
3968
3969 /*
3970 * Ensure that the commands in the batch buffer are
3971 * finished before the interrupt fires
3972 */
3973 i915_retire_commands(dev, ring);
3974
3975 if (i915_add_request(dev, file, request, ring))
3976 ring->outstanding_lazy_request = true;
3977 else
3978 request = NULL;
3979
3980 err:
3981 for (i = 0; i < args->buffer_count; i++) {
3982 if (object_list[i] == NULL)
3983 break;
3984
3985 to_intel_bo(object_list[i])->in_execbuffer = false;
3986 drm_gem_object_unreference(object_list[i]);
3987 }
3988
3989 mutex_unlock(&dev->struct_mutex);
3990
3991 pre_mutex_err:
3992 drm_free_large(object_list);
3993 kfree(cliprects);
3994 kfree(request);
3995
3996 return ret;
3997 }
3998
3999 /*
4000 * Legacy execbuffer just creates an exec2 list from the original exec object
4001 * list array and passes it to the real function.
4002 */
4003 int
4004 i915_gem_execbuffer(struct drm_device *dev, void *data,
4005 struct drm_file *file_priv)
4006 {
4007 struct drm_i915_gem_execbuffer *args = data;
4008 struct drm_i915_gem_execbuffer2 exec2;
4009 struct drm_i915_gem_exec_object *exec_list = NULL;
4010 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4011 int ret, i;
4012
4013 #if WATCH_EXEC
4014 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4015 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4016 #endif
4017
4018 if (args->buffer_count < 1) {
4019 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4020 return -EINVAL;
4021 }
4022
4023 /* Copy in the exec list from userland */
4024 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4025 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4026 if (exec_list == NULL || exec2_list == NULL) {
4027 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4028 args->buffer_count);
4029 drm_free_large(exec_list);
4030 drm_free_large(exec2_list);
4031 return -ENOMEM;
4032 }
4033 ret = copy_from_user(exec_list,
4034 (struct drm_i915_relocation_entry __user *)
4035 (uintptr_t) args->buffers_ptr,
4036 sizeof(*exec_list) * args->buffer_count);
4037 if (ret != 0) {
4038 DRM_ERROR("copy %d exec entries failed %d\n",
4039 args->buffer_count, ret);
4040 drm_free_large(exec_list);
4041 drm_free_large(exec2_list);
4042 return -EFAULT;
4043 }
4044
4045 for (i = 0; i < args->buffer_count; i++) {
4046 exec2_list[i].handle = exec_list[i].handle;
4047 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4048 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4049 exec2_list[i].alignment = exec_list[i].alignment;
4050 exec2_list[i].offset = exec_list[i].offset;
4051 if (INTEL_INFO(dev)->gen < 4)
4052 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4053 else
4054 exec2_list[i].flags = 0;
4055 }
4056
4057 exec2.buffers_ptr = args->buffers_ptr;
4058 exec2.buffer_count = args->buffer_count;
4059 exec2.batch_start_offset = args->batch_start_offset;
4060 exec2.batch_len = args->batch_len;
4061 exec2.DR1 = args->DR1;
4062 exec2.DR4 = args->DR4;
4063 exec2.num_cliprects = args->num_cliprects;
4064 exec2.cliprects_ptr = args->cliprects_ptr;
4065 exec2.flags = I915_EXEC_RENDER;
4066
4067 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4068 if (!ret) {
4069 /* Copy the new buffer offsets back to the user's exec list. */
4070 for (i = 0; i < args->buffer_count; i++)
4071 exec_list[i].offset = exec2_list[i].offset;
4072 /* ... and back out to userspace */
4073 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4074 (uintptr_t) args->buffers_ptr,
4075 exec_list,
4076 sizeof(*exec_list) * args->buffer_count);
4077 if (ret) {
4078 ret = -EFAULT;
4079 DRM_ERROR("failed to copy %d exec entries "
4080 "back to user (%d)\n",
4081 args->buffer_count, ret);
4082 }
4083 }
4084
4085 drm_free_large(exec_list);
4086 drm_free_large(exec2_list);
4087 return ret;
4088 }
4089
4090 int
4091 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4092 struct drm_file *file_priv)
4093 {
4094 struct drm_i915_gem_execbuffer2 *args = data;
4095 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4096 int ret;
4097
4098 #if WATCH_EXEC
4099 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4100 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4101 #endif
4102
4103 if (args->buffer_count < 1) {
4104 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4105 return -EINVAL;
4106 }
4107
4108 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4109 if (exec2_list == NULL) {
4110 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4111 args->buffer_count);
4112 return -ENOMEM;
4113 }
4114 ret = copy_from_user(exec2_list,
4115 (struct drm_i915_relocation_entry __user *)
4116 (uintptr_t) args->buffers_ptr,
4117 sizeof(*exec2_list) * args->buffer_count);
4118 if (ret != 0) {
4119 DRM_ERROR("copy %d exec entries failed %d\n",
4120 args->buffer_count, ret);
4121 drm_free_large(exec2_list);
4122 return -EFAULT;
4123 }
4124
4125 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4126 if (!ret) {
4127 /* Copy the new buffer offsets back to the user's exec list. */
4128 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4129 (uintptr_t) args->buffers_ptr,
4130 exec2_list,
4131 sizeof(*exec2_list) * args->buffer_count);
4132 if (ret) {
4133 ret = -EFAULT;
4134 DRM_ERROR("failed to copy %d exec entries "
4135 "back to user (%d)\n",
4136 args->buffer_count, ret);
4137 }
4138 }
4139
4140 drm_free_large(exec2_list);
4141 return ret;
4142 }
4143
4144 int
4145 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4146 bool map_and_fenceable)
4147 {
4148 struct drm_device *dev = obj->dev;
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4151 int ret;
4152
4153 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4154 BUG_ON(map_and_fenceable && !map_and_fenceable);
4155 WARN_ON(i915_verify_lists(dev));
4156
4157 if (obj_priv->gtt_space != NULL) {
4158 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4159 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
4160 WARN(obj_priv->pin_count,
4161 "bo is already pinned with incorrect alignment:"
4162 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4163 " obj->map_and_fenceable=%d\n",
4164 obj_priv->gtt_offset, alignment,
4165 map_and_fenceable,
4166 obj_priv->map_and_fenceable);
4167 ret = i915_gem_object_unbind(obj);
4168 if (ret)
4169 return ret;
4170 }
4171 }
4172
4173 if (obj_priv->gtt_space == NULL) {
4174 ret = i915_gem_object_bind_to_gtt(obj, alignment,
4175 map_and_fenceable);
4176 if (ret)
4177 return ret;
4178 }
4179
4180 if (obj_priv->pin_count++ == 0) {
4181 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
4182 if (!obj_priv->active)
4183 list_move_tail(&obj_priv->mm_list,
4184 &dev_priv->mm.pinned_list);
4185 }
4186 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
4187
4188 WARN_ON(i915_verify_lists(dev));
4189 return 0;
4190 }
4191
4192 void
4193 i915_gem_object_unpin(struct drm_gem_object *obj)
4194 {
4195 struct drm_device *dev = obj->dev;
4196 drm_i915_private_t *dev_priv = dev->dev_private;
4197 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4198
4199 WARN_ON(i915_verify_lists(dev));
4200 BUG_ON(obj_priv->pin_count == 0);
4201 BUG_ON(obj_priv->gtt_space == NULL);
4202
4203 if (--obj_priv->pin_count == 0) {
4204 if (!obj_priv->active)
4205 list_move_tail(&obj_priv->mm_list,
4206 &dev_priv->mm.inactive_list);
4207 i915_gem_info_remove_pin(dev_priv, obj_priv);
4208 }
4209 WARN_ON(i915_verify_lists(dev));
4210 }
4211
4212 int
4213 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4214 struct drm_file *file_priv)
4215 {
4216 struct drm_i915_gem_pin *args = data;
4217 struct drm_gem_object *obj;
4218 struct drm_i915_gem_object *obj_priv;
4219 int ret;
4220
4221 ret = i915_mutex_lock_interruptible(dev);
4222 if (ret)
4223 return ret;
4224
4225 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4226 if (obj == NULL) {
4227 ret = -ENOENT;
4228 goto unlock;
4229 }
4230 obj_priv = to_intel_bo(obj);
4231
4232 if (obj_priv->madv != I915_MADV_WILLNEED) {
4233 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4234 ret = -EINVAL;
4235 goto out;
4236 }
4237
4238 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4239 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4240 args->handle);
4241 ret = -EINVAL;
4242 goto out;
4243 }
4244
4245 obj_priv->user_pin_count++;
4246 obj_priv->pin_filp = file_priv;
4247 if (obj_priv->user_pin_count == 1) {
4248 ret = i915_gem_object_pin(obj, args->alignment, true);
4249 if (ret)
4250 goto out;
4251 }
4252
4253 /* XXX - flush the CPU caches for pinned objects
4254 * as the X server doesn't manage domains yet
4255 */
4256 i915_gem_object_flush_cpu_write_domain(obj);
4257 args->offset = obj_priv->gtt_offset;
4258 out:
4259 drm_gem_object_unreference(obj);
4260 unlock:
4261 mutex_unlock(&dev->struct_mutex);
4262 return ret;
4263 }
4264
4265 int
4266 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4268 {
4269 struct drm_i915_gem_pin *args = data;
4270 struct drm_gem_object *obj;
4271 struct drm_i915_gem_object *obj_priv;
4272 int ret;
4273
4274 ret = i915_mutex_lock_interruptible(dev);
4275 if (ret)
4276 return ret;
4277
4278 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4279 if (obj == NULL) {
4280 ret = -ENOENT;
4281 goto unlock;
4282 }
4283 obj_priv = to_intel_bo(obj);
4284
4285 if (obj_priv->pin_filp != file_priv) {
4286 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4287 args->handle);
4288 ret = -EINVAL;
4289 goto out;
4290 }
4291 obj_priv->user_pin_count--;
4292 if (obj_priv->user_pin_count == 0) {
4293 obj_priv->pin_filp = NULL;
4294 i915_gem_object_unpin(obj);
4295 }
4296
4297 out:
4298 drm_gem_object_unreference(obj);
4299 unlock:
4300 mutex_unlock(&dev->struct_mutex);
4301 return ret;
4302 }
4303
4304 int
4305 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4306 struct drm_file *file_priv)
4307 {
4308 struct drm_i915_gem_busy *args = data;
4309 struct drm_gem_object *obj;
4310 struct drm_i915_gem_object *obj_priv;
4311 int ret;
4312
4313 ret = i915_mutex_lock_interruptible(dev);
4314 if (ret)
4315 return ret;
4316
4317 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4318 if (obj == NULL) {
4319 ret = -ENOENT;
4320 goto unlock;
4321 }
4322 obj_priv = to_intel_bo(obj);
4323
4324 /* Count all active objects as busy, even if they are currently not used
4325 * by the gpu. Users of this interface expect objects to eventually
4326 * become non-busy without any further actions, therefore emit any
4327 * necessary flushes here.
4328 */
4329 args->busy = obj_priv->active;
4330 if (args->busy) {
4331 /* Unconditionally flush objects, even when the gpu still uses this
4332 * object. Userspace calling this function indicates that it wants to
4333 * use this buffer rather sooner than later, so issuing the required
4334 * flush earlier is beneficial.
4335 */
4336 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4337 i915_gem_flush_ring(dev, file_priv,
4338 obj_priv->ring,
4339 0, obj->write_domain);
4340
4341 /* Update the active list for the hardware's current position.
4342 * Otherwise this only updates on a delayed timer or when irqs
4343 * are actually unmasked, and our working set ends up being
4344 * larger than required.
4345 */
4346 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4347
4348 args->busy = obj_priv->active;
4349 }
4350
4351 drm_gem_object_unreference(obj);
4352 unlock:
4353 mutex_unlock(&dev->struct_mutex);
4354 return ret;
4355 }
4356
4357 int
4358 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4359 struct drm_file *file_priv)
4360 {
4361 return i915_gem_ring_throttle(dev, file_priv);
4362 }
4363
4364 int
4365 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4366 struct drm_file *file_priv)
4367 {
4368 struct drm_i915_gem_madvise *args = data;
4369 struct drm_gem_object *obj;
4370 struct drm_i915_gem_object *obj_priv;
4371 int ret;
4372
4373 switch (args->madv) {
4374 case I915_MADV_DONTNEED:
4375 case I915_MADV_WILLNEED:
4376 break;
4377 default:
4378 return -EINVAL;
4379 }
4380
4381 ret = i915_mutex_lock_interruptible(dev);
4382 if (ret)
4383 return ret;
4384
4385 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4386 if (obj == NULL) {
4387 ret = -ENOENT;
4388 goto unlock;
4389 }
4390 obj_priv = to_intel_bo(obj);
4391
4392 if (obj_priv->pin_count) {
4393 ret = -EINVAL;
4394 goto out;
4395 }
4396
4397 if (obj_priv->madv != __I915_MADV_PURGED)
4398 obj_priv->madv = args->madv;
4399
4400 /* if the object is no longer bound, discard its backing storage */
4401 if (i915_gem_object_is_purgeable(obj_priv) &&
4402 obj_priv->gtt_space == NULL)
4403 i915_gem_object_truncate(obj);
4404
4405 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4406
4407 out:
4408 drm_gem_object_unreference(obj);
4409 unlock:
4410 mutex_unlock(&dev->struct_mutex);
4411 return ret;
4412 }
4413
4414 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4415 size_t size)
4416 {
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418 struct drm_i915_gem_object *obj;
4419
4420 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4421 if (obj == NULL)
4422 return NULL;
4423
4424 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4425 kfree(obj);
4426 return NULL;
4427 }
4428
4429 i915_gem_info_add_obj(dev_priv, size);
4430
4431 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4432 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4433
4434 obj->agp_type = AGP_USER_MEMORY;
4435 obj->base.driver_private = NULL;
4436 obj->fence_reg = I915_FENCE_REG_NONE;
4437 INIT_LIST_HEAD(&obj->mm_list);
4438 INIT_LIST_HEAD(&obj->ring_list);
4439 INIT_LIST_HEAD(&obj->gpu_write_list);
4440 obj->madv = I915_MADV_WILLNEED;
4441 /* Avoid an unnecessary call to unbind on the first bind. */
4442 obj->map_and_fenceable = true;
4443
4444 return &obj->base;
4445 }
4446
4447 int i915_gem_init_object(struct drm_gem_object *obj)
4448 {
4449 BUG();
4450
4451 return 0;
4452 }
4453
4454 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4455 {
4456 struct drm_device *dev = obj->dev;
4457 drm_i915_private_t *dev_priv = dev->dev_private;
4458 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4459 int ret;
4460
4461 ret = i915_gem_object_unbind(obj);
4462 if (ret == -ERESTARTSYS) {
4463 list_move(&obj_priv->mm_list,
4464 &dev_priv->mm.deferred_free_list);
4465 return;
4466 }
4467
4468 if (obj->map_list.map)
4469 i915_gem_free_mmap_offset(obj);
4470
4471 drm_gem_object_release(obj);
4472 i915_gem_info_remove_obj(dev_priv, obj->size);
4473
4474 kfree(obj_priv->page_cpu_valid);
4475 kfree(obj_priv->bit_17);
4476 kfree(obj_priv);
4477 }
4478
4479 void i915_gem_free_object(struct drm_gem_object *obj)
4480 {
4481 struct drm_device *dev = obj->dev;
4482 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4483
4484 trace_i915_gem_object_destroy(obj);
4485
4486 while (obj_priv->pin_count > 0)
4487 i915_gem_object_unpin(obj);
4488
4489 if (obj_priv->phys_obj)
4490 i915_gem_detach_phys_object(dev, obj);
4491
4492 i915_gem_free_object_tail(obj);
4493 }
4494
4495 int
4496 i915_gem_idle(struct drm_device *dev)
4497 {
4498 drm_i915_private_t *dev_priv = dev->dev_private;
4499 int ret;
4500
4501 mutex_lock(&dev->struct_mutex);
4502
4503 if (dev_priv->mm.suspended) {
4504 mutex_unlock(&dev->struct_mutex);
4505 return 0;
4506 }
4507
4508 ret = i915_gpu_idle(dev);
4509 if (ret) {
4510 mutex_unlock(&dev->struct_mutex);
4511 return ret;
4512 }
4513
4514 /* Under UMS, be paranoid and evict. */
4515 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4516 ret = i915_gem_evict_inactive(dev, false);
4517 if (ret) {
4518 mutex_unlock(&dev->struct_mutex);
4519 return ret;
4520 }
4521 }
4522
4523 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4524 * We need to replace this with a semaphore, or something.
4525 * And not confound mm.suspended!
4526 */
4527 dev_priv->mm.suspended = 1;
4528 del_timer_sync(&dev_priv->hangcheck_timer);
4529
4530 i915_kernel_lost_context(dev);
4531 i915_gem_cleanup_ringbuffer(dev);
4532
4533 mutex_unlock(&dev->struct_mutex);
4534
4535 /* Cancel the retire work handler, which should be idle now. */
4536 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4537
4538 return 0;
4539 }
4540
4541 /*
4542 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4543 * over cache flushing.
4544 */
4545 static int
4546 i915_gem_init_pipe_control(struct drm_device *dev)
4547 {
4548 drm_i915_private_t *dev_priv = dev->dev_private;
4549 struct drm_gem_object *obj;
4550 struct drm_i915_gem_object *obj_priv;
4551 int ret;
4552
4553 obj = i915_gem_alloc_object(dev, 4096);
4554 if (obj == NULL) {
4555 DRM_ERROR("Failed to allocate seqno page\n");
4556 ret = -ENOMEM;
4557 goto err;
4558 }
4559 obj_priv = to_intel_bo(obj);
4560 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4561
4562 ret = i915_gem_object_pin(obj, 4096, true);
4563 if (ret)
4564 goto err_unref;
4565
4566 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4567 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4568 if (dev_priv->seqno_page == NULL)
4569 goto err_unpin;
4570
4571 dev_priv->seqno_obj = obj;
4572 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4573
4574 return 0;
4575
4576 err_unpin:
4577 i915_gem_object_unpin(obj);
4578 err_unref:
4579 drm_gem_object_unreference(obj);
4580 err:
4581 return ret;
4582 }
4583
4584
4585 static void
4586 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4587 {
4588 drm_i915_private_t *dev_priv = dev->dev_private;
4589 struct drm_gem_object *obj;
4590 struct drm_i915_gem_object *obj_priv;
4591
4592 obj = dev_priv->seqno_obj;
4593 obj_priv = to_intel_bo(obj);
4594 kunmap(obj_priv->pages[0]);
4595 i915_gem_object_unpin(obj);
4596 drm_gem_object_unreference(obj);
4597 dev_priv->seqno_obj = NULL;
4598
4599 dev_priv->seqno_page = NULL;
4600 }
4601
4602 int
4603 i915_gem_init_ringbuffer(struct drm_device *dev)
4604 {
4605 drm_i915_private_t *dev_priv = dev->dev_private;
4606 int ret;
4607
4608 if (HAS_PIPE_CONTROL(dev)) {
4609 ret = i915_gem_init_pipe_control(dev);
4610 if (ret)
4611 return ret;
4612 }
4613
4614 ret = intel_init_render_ring_buffer(dev);
4615 if (ret)
4616 goto cleanup_pipe_control;
4617
4618 if (HAS_BSD(dev)) {
4619 ret = intel_init_bsd_ring_buffer(dev);
4620 if (ret)
4621 goto cleanup_render_ring;
4622 }
4623
4624 if (HAS_BLT(dev)) {
4625 ret = intel_init_blt_ring_buffer(dev);
4626 if (ret)
4627 goto cleanup_bsd_ring;
4628 }
4629
4630 dev_priv->next_seqno = 1;
4631
4632 return 0;
4633
4634 cleanup_bsd_ring:
4635 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4636 cleanup_render_ring:
4637 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4638 cleanup_pipe_control:
4639 if (HAS_PIPE_CONTROL(dev))
4640 i915_gem_cleanup_pipe_control(dev);
4641 return ret;
4642 }
4643
4644 void
4645 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4646 {
4647 drm_i915_private_t *dev_priv = dev->dev_private;
4648
4649 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4650 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4651 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4652 if (HAS_PIPE_CONTROL(dev))
4653 i915_gem_cleanup_pipe_control(dev);
4654 }
4655
4656 int
4657 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4658 struct drm_file *file_priv)
4659 {
4660 drm_i915_private_t *dev_priv = dev->dev_private;
4661 int ret;
4662
4663 if (drm_core_check_feature(dev, DRIVER_MODESET))
4664 return 0;
4665
4666 if (atomic_read(&dev_priv->mm.wedged)) {
4667 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4668 atomic_set(&dev_priv->mm.wedged, 0);
4669 }
4670
4671 mutex_lock(&dev->struct_mutex);
4672 dev_priv->mm.suspended = 0;
4673
4674 ret = i915_gem_init_ringbuffer(dev);
4675 if (ret != 0) {
4676 mutex_unlock(&dev->struct_mutex);
4677 return ret;
4678 }
4679
4680 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4681 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4682 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4683 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4684 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4685 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4686 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4687 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4688 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4689 mutex_unlock(&dev->struct_mutex);
4690
4691 ret = drm_irq_install(dev);
4692 if (ret)
4693 goto cleanup_ringbuffer;
4694
4695 return 0;
4696
4697 cleanup_ringbuffer:
4698 mutex_lock(&dev->struct_mutex);
4699 i915_gem_cleanup_ringbuffer(dev);
4700 dev_priv->mm.suspended = 1;
4701 mutex_unlock(&dev->struct_mutex);
4702
4703 return ret;
4704 }
4705
4706 int
4707 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4708 struct drm_file *file_priv)
4709 {
4710 if (drm_core_check_feature(dev, DRIVER_MODESET))
4711 return 0;
4712
4713 drm_irq_uninstall(dev);
4714 return i915_gem_idle(dev);
4715 }
4716
4717 void
4718 i915_gem_lastclose(struct drm_device *dev)
4719 {
4720 int ret;
4721
4722 if (drm_core_check_feature(dev, DRIVER_MODESET))
4723 return;
4724
4725 ret = i915_gem_idle(dev);
4726 if (ret)
4727 DRM_ERROR("failed to idle hardware: %d\n", ret);
4728 }
4729
4730 static void
4731 init_ring_lists(struct intel_ring_buffer *ring)
4732 {
4733 INIT_LIST_HEAD(&ring->active_list);
4734 INIT_LIST_HEAD(&ring->request_list);
4735 INIT_LIST_HEAD(&ring->gpu_write_list);
4736 }
4737
4738 void
4739 i915_gem_load(struct drm_device *dev)
4740 {
4741 int i;
4742 drm_i915_private_t *dev_priv = dev->dev_private;
4743
4744 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4745 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4746 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4747 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4748 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4749 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4750 init_ring_lists(&dev_priv->render_ring);
4751 init_ring_lists(&dev_priv->bsd_ring);
4752 init_ring_lists(&dev_priv->blt_ring);
4753 for (i = 0; i < 16; i++)
4754 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4755 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4756 i915_gem_retire_work_handler);
4757 init_completion(&dev_priv->error_completion);
4758
4759 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4760 if (IS_GEN3(dev)) {
4761 u32 tmp = I915_READ(MI_ARB_STATE);
4762 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4763 /* arb state is a masked write, so set bit + bit in mask */
4764 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4765 I915_WRITE(MI_ARB_STATE, tmp);
4766 }
4767 }
4768
4769 /* Old X drivers will take 0-2 for front, back, depth buffers */
4770 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4771 dev_priv->fence_reg_start = 3;
4772
4773 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4774 dev_priv->num_fence_regs = 16;
4775 else
4776 dev_priv->num_fence_regs = 8;
4777
4778 /* Initialize fence registers to zero */
4779 switch (INTEL_INFO(dev)->gen) {
4780 case 6:
4781 for (i = 0; i < 16; i++)
4782 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4783 break;
4784 case 5:
4785 case 4:
4786 for (i = 0; i < 16; i++)
4787 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4788 break;
4789 case 3:
4790 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4791 for (i = 0; i < 8; i++)
4792 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4793 case 2:
4794 for (i = 0; i < 8; i++)
4795 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4796 break;
4797 }
4798 i915_gem_detect_bit_6_swizzle(dev);
4799 init_waitqueue_head(&dev_priv->pending_flip_queue);
4800
4801 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4802 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4803 register_shrinker(&dev_priv->mm.inactive_shrinker);
4804 }
4805
4806 /*
4807 * Create a physically contiguous memory object for this object
4808 * e.g. for cursor + overlay regs
4809 */
4810 static int i915_gem_init_phys_object(struct drm_device *dev,
4811 int id, int size, int align)
4812 {
4813 drm_i915_private_t *dev_priv = dev->dev_private;
4814 struct drm_i915_gem_phys_object *phys_obj;
4815 int ret;
4816
4817 if (dev_priv->mm.phys_objs[id - 1] || !size)
4818 return 0;
4819
4820 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4821 if (!phys_obj)
4822 return -ENOMEM;
4823
4824 phys_obj->id = id;
4825
4826 phys_obj->handle = drm_pci_alloc(dev, size, align);
4827 if (!phys_obj->handle) {
4828 ret = -ENOMEM;
4829 goto kfree_obj;
4830 }
4831 #ifdef CONFIG_X86
4832 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4833 #endif
4834
4835 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4836
4837 return 0;
4838 kfree_obj:
4839 kfree(phys_obj);
4840 return ret;
4841 }
4842
4843 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4844 {
4845 drm_i915_private_t *dev_priv = dev->dev_private;
4846 struct drm_i915_gem_phys_object *phys_obj;
4847
4848 if (!dev_priv->mm.phys_objs[id - 1])
4849 return;
4850
4851 phys_obj = dev_priv->mm.phys_objs[id - 1];
4852 if (phys_obj->cur_obj) {
4853 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4854 }
4855
4856 #ifdef CONFIG_X86
4857 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4858 #endif
4859 drm_pci_free(dev, phys_obj->handle);
4860 kfree(phys_obj);
4861 dev_priv->mm.phys_objs[id - 1] = NULL;
4862 }
4863
4864 void i915_gem_free_all_phys_object(struct drm_device *dev)
4865 {
4866 int i;
4867
4868 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4869 i915_gem_free_phys_object(dev, i);
4870 }
4871
4872 void i915_gem_detach_phys_object(struct drm_device *dev,
4873 struct drm_gem_object *obj)
4874 {
4875 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4877 char *vaddr;
4878 int i;
4879 int page_count;
4880
4881 if (!obj_priv->phys_obj)
4882 return;
4883 vaddr = obj_priv->phys_obj->handle->vaddr;
4884
4885 page_count = obj->size / PAGE_SIZE;
4886
4887 for (i = 0; i < page_count; i++) {
4888 struct page *page = read_cache_page_gfp(mapping, i,
4889 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4890 if (!IS_ERR(page)) {
4891 char *dst = kmap_atomic(page);
4892 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4893 kunmap_atomic(dst);
4894
4895 drm_clflush_pages(&page, 1);
4896
4897 set_page_dirty(page);
4898 mark_page_accessed(page);
4899 page_cache_release(page);
4900 }
4901 }
4902 drm_agp_chipset_flush(dev);
4903
4904 obj_priv->phys_obj->cur_obj = NULL;
4905 obj_priv->phys_obj = NULL;
4906 }
4907
4908 int
4909 i915_gem_attach_phys_object(struct drm_device *dev,
4910 struct drm_gem_object *obj,
4911 int id,
4912 int align)
4913 {
4914 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4915 drm_i915_private_t *dev_priv = dev->dev_private;
4916 struct drm_i915_gem_object *obj_priv;
4917 int ret = 0;
4918 int page_count;
4919 int i;
4920
4921 if (id > I915_MAX_PHYS_OBJECT)
4922 return -EINVAL;
4923
4924 obj_priv = to_intel_bo(obj);
4925
4926 if (obj_priv->phys_obj) {
4927 if (obj_priv->phys_obj->id == id)
4928 return 0;
4929 i915_gem_detach_phys_object(dev, obj);
4930 }
4931
4932 /* create a new object */
4933 if (!dev_priv->mm.phys_objs[id - 1]) {
4934 ret = i915_gem_init_phys_object(dev, id,
4935 obj->size, align);
4936 if (ret) {
4937 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4938 return ret;
4939 }
4940 }
4941
4942 /* bind to the object */
4943 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4944 obj_priv->phys_obj->cur_obj = obj;
4945
4946 page_count = obj->size / PAGE_SIZE;
4947
4948 for (i = 0; i < page_count; i++) {
4949 struct page *page;
4950 char *dst, *src;
4951
4952 page = read_cache_page_gfp(mapping, i,
4953 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4954 if (IS_ERR(page))
4955 return PTR_ERR(page);
4956
4957 src = kmap_atomic(page);
4958 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4959 memcpy(dst, src, PAGE_SIZE);
4960 kunmap_atomic(src);
4961
4962 mark_page_accessed(page);
4963 page_cache_release(page);
4964 }
4965
4966 return 0;
4967 }
4968
4969 static int
4970 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4971 struct drm_i915_gem_pwrite *args,
4972 struct drm_file *file_priv)
4973 {
4974 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4975 void *obj_addr;
4976 int ret;
4977 char __user *user_data;
4978
4979 user_data = (char __user *) (uintptr_t) args->data_ptr;
4980 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4981
4982 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4983 ret = copy_from_user(obj_addr, user_data, args->size);
4984 if (ret)
4985 return -EFAULT;
4986
4987 drm_agp_chipset_flush(dev);
4988 return 0;
4989 }
4990
4991 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4992 {
4993 struct drm_i915_file_private *file_priv = file->driver_priv;
4994
4995 /* Clean up our request list when the client is going away, so that
4996 * later retire_requests won't dereference our soon-to-be-gone
4997 * file_priv.
4998 */
4999 spin_lock(&file_priv->mm.lock);
5000 while (!list_empty(&file_priv->mm.request_list)) {
5001 struct drm_i915_gem_request *request;
5002
5003 request = list_first_entry(&file_priv->mm.request_list,
5004 struct drm_i915_gem_request,
5005 client_list);
5006 list_del(&request->client_list);
5007 request->file_priv = NULL;
5008 }
5009 spin_unlock(&file_priv->mm.lock);
5010 }
5011
5012 static int
5013 i915_gpu_is_active(struct drm_device *dev)
5014 {
5015 drm_i915_private_t *dev_priv = dev->dev_private;
5016 int lists_empty;
5017
5018 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5019 list_empty(&dev_priv->mm.active_list);
5020
5021 return !lists_empty;
5022 }
5023
5024 static int
5025 i915_gem_inactive_shrink(struct shrinker *shrinker,
5026 int nr_to_scan,
5027 gfp_t gfp_mask)
5028 {
5029 struct drm_i915_private *dev_priv =
5030 container_of(shrinker,
5031 struct drm_i915_private,
5032 mm.inactive_shrinker);
5033 struct drm_device *dev = dev_priv->dev;
5034 struct drm_i915_gem_object *obj, *next;
5035 int cnt;
5036
5037 if (!mutex_trylock(&dev->struct_mutex))
5038 return 0;
5039
5040 /* "fast-path" to count number of available objects */
5041 if (nr_to_scan == 0) {
5042 cnt = 0;
5043 list_for_each_entry(obj,
5044 &dev_priv->mm.inactive_list,
5045 mm_list)
5046 cnt++;
5047 mutex_unlock(&dev->struct_mutex);
5048 return cnt / 100 * sysctl_vfs_cache_pressure;
5049 }
5050
5051 rescan:
5052 /* first scan for clean buffers */
5053 i915_gem_retire_requests(dev);
5054
5055 list_for_each_entry_safe(obj, next,
5056 &dev_priv->mm.inactive_list,
5057 mm_list) {
5058 if (i915_gem_object_is_purgeable(obj)) {
5059 i915_gem_object_unbind(&obj->base);
5060 if (--nr_to_scan == 0)
5061 break;
5062 }
5063 }
5064
5065 /* second pass, evict/count anything still on the inactive list */
5066 cnt = 0;
5067 list_for_each_entry_safe(obj, next,
5068 &dev_priv->mm.inactive_list,
5069 mm_list) {
5070 if (nr_to_scan) {
5071 i915_gem_object_unbind(&obj->base);
5072 nr_to_scan--;
5073 } else
5074 cnt++;
5075 }
5076
5077 if (nr_to_scan && i915_gpu_is_active(dev)) {
5078 /*
5079 * We are desperate for pages, so as a last resort, wait
5080 * for the GPU to finish and discard whatever we can.
5081 * This has a dramatic impact to reduce the number of
5082 * OOM-killer events whilst running the GPU aggressively.
5083 */
5084 if (i915_gpu_idle(dev) == 0)
5085 goto rescan;
5086 }
5087 mutex_unlock(&dev->struct_mutex);
5088 return cnt / 100 * sysctl_vfs_cache_pressure;
5089 }
This page took 0.129038 seconds and 6 git commands to generate.