drm/i915: Define some of the eLLC magic
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 if (obj->pin_count)
181 pinned += i915_gem_obj_ggtt_size(obj);
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (i915_gem_obj_ggtt_bound(obj)) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (i915_gem_obj_ggtt_bound(obj)) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093 {
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116 {
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
1129 return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138 {
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
1142 unsigned reset_counter;
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 mutex_unlock(&dev->struct_mutex);
1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 mutex_lock(&dev->struct_mutex);
1165 if (ret)
1166 return ret;
1167
1168 return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
1174 */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file)
1178 {
1179 struct drm_i915_gem_set_domain *args = data;
1180 struct drm_i915_gem_object *obj;
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
1183 int ret;
1184
1185 /* Only handle setting domains to types used by the CPU. */
1186 if (write_domain & I915_GEM_GPU_DOMAINS)
1187 return -EINVAL;
1188
1189 if (read_domains & I915_GEM_GPU_DOMAINS)
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
1198 ret = i915_mutex_lock_interruptible(dev);
1199 if (ret)
1200 return ret;
1201
1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 if (&obj->base == NULL) {
1204 ret = -ENOENT;
1205 goto unlock;
1206 }
1207
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
1225 } else {
1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 }
1228
1229 unref:
1230 drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234 }
1235
1236 /**
1237 * Called when user space has done writes to this buffer
1238 */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_sw_finish *args = data;
1244 struct drm_i915_gem_object *obj;
1245 int ret = 0;
1246
1247 ret = i915_mutex_lock_interruptible(dev);
1248 if (ret)
1249 return ret;
1250
1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 if (&obj->base == NULL) {
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
1256
1257 /* Pinned buffers may be scanout, so flush the cache */
1258 if (obj->pin_count)
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261 drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265 }
1266
1267 /**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
1280 unsigned long addr;
1281
1282 obj = drm_gem_object_lookup(dev, file, args->handle);
1283 if (obj == NULL)
1284 return -ENOENT;
1285
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
1294 addr = vm_mmap(obj->filp, 0, args->size,
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
1297 drm_gem_object_unreference_unlocked(obj);
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304 }
1305
1306 /**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
1326 drm_i915_private_t *dev_priv = dev->dev_private;
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
1339
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
1348 /* Now bind it into the GTT if needed */
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
1352
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
1356
1357 ret = i915_gem_object_get_fence(obj);
1358 if (ret)
1359 goto unpin;
1360
1361 obj->fault_mappable = true;
1362
1363 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364 pfn >>= PAGE_SHIFT;
1365 pfn += page_offset;
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 i915_gem_object_unpin(obj);
1371 unlock:
1372 mutex_unlock(&dev->struct_mutex);
1373 out:
1374 switch (ret) {
1375 case -EIO:
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 return VM_FAULT_SIGBUS;
1381 case -EAGAIN:
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
1389 set_need_resched();
1390 case 0:
1391 case -ERESTARTSYS:
1392 case -EINTR:
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
1398 return VM_FAULT_NOPAGE;
1399 case -ENOMEM:
1400 return VM_FAULT_OOM;
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
1403 default:
1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 return VM_FAULT_SIGBUS;
1406 }
1407 }
1408
1409 /**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
1413 * Preserve the reservation of the mmapping with the DRM core code, but
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 if (!obj->fault_mappable)
1427 return;
1428
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
1433
1434 obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 uint32_t gtt_size;
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
1448 gtt_size = 1024*1024;
1449 else
1450 gtt_size = 512*1024;
1451
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
1454
1455 return gtt_size;
1456 }
1457
1458 /**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
1463 * potential fence register mapping.
1464 */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
1468 {
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 tiling_mode == I915_TILING_NONE)
1475 return 4096;
1476
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
1496 goto out;
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
1508 goto out;
1509
1510 i915_gem_shrink_all(dev_priv);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
1531 {
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct drm_i915_gem_object *obj;
1534 int ret;
1535
1536 ret = i915_mutex_lock_interruptible(dev);
1537 if (ret)
1538 return ret;
1539
1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 if (&obj->base == NULL) {
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
1545
1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 ret = -E2BIG;
1548 goto out;
1549 }
1550
1551 if (obj->madv != I915_MADV_WILLNEED) {
1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 ret = -EINVAL;
1554 goto out;
1555 }
1556
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
1560
1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564 drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 mutex_unlock(&dev->struct_mutex);
1567 return ret;
1568 }
1569
1570 /**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588 {
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 struct inode *inode;
1599
1600 i915_gem_object_free_mmap_offset(obj);
1601
1602 if (obj->base.filp == NULL)
1603 return;
1604
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
1610 inode = file_inode(obj->base.filp);
1611 shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613 obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 struct sg_page_iter sg_iter;
1626 int ret;
1627
1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
1640 if (i915_gem_object_needs_bit17_swizzle(obj))
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
1645
1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649 if (obj->dirty)
1650 set_page_dirty(page);
1651
1652 if (obj->madv == I915_MADV_WILLNEED)
1653 mark_page_accessed(page);
1654
1655 page_cache_release(page);
1656 }
1657 obj->dirty = 0;
1658
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668 if (obj->pages == NULL)
1669 return 0;
1670
1671 BUG_ON(i915_gem_obj_ggtt_bound(obj));
1672
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
1679 list_del(&obj->global_list);
1680
1681 ops->put_pages(obj);
1682 obj->pages = NULL;
1683
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
1693 {
1694 struct drm_i915_gem_object *obj, *next;
1695 long count = 0;
1696
1697 list_for_each_entry_safe(obj, next,
1698 &dev_priv->mm.unbound_list,
1699 global_list) {
1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701 i915_gem_object_put_pages(obj) == 0) {
1702 count += obj->base.size >> PAGE_SHIFT;
1703 if (count >= target)
1704 return count;
1705 }
1706 }
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.inactive_list,
1710 mm_list) {
1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712 i915_gem_object_unbind(obj) == 0 &&
1713 i915_gem_object_put_pages(obj) == 0) {
1714 count += obj->base.size >> PAGE_SHIFT;
1715 if (count >= target)
1716 return count;
1717 }
1718 }
1719
1720 return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726 return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732 struct drm_i915_gem_object *obj, *next;
1733
1734 i915_gem_evict_everything(dev_priv->dev);
1735
1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1737 global_list)
1738 i915_gem_object_put_pages(obj);
1739 }
1740
1741 static int
1742 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1745 int page_count, i;
1746 struct address_space *mapping;
1747 struct sg_table *st;
1748 struct scatterlist *sg;
1749 struct sg_page_iter sg_iter;
1750 struct page *page;
1751 unsigned long last_pfn = 0; /* suppress gcc warning */
1752 gfp_t gfp;
1753
1754 /* Assert that the object is not currently in any GPU domain. As it
1755 * wasn't in the GTT, there shouldn't be any way it could have been in
1756 * a GPU cache
1757 */
1758 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1759 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1760
1761 st = kmalloc(sizeof(*st), GFP_KERNEL);
1762 if (st == NULL)
1763 return -ENOMEM;
1764
1765 page_count = obj->base.size / PAGE_SIZE;
1766 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1767 sg_free_table(st);
1768 kfree(st);
1769 return -ENOMEM;
1770 }
1771
1772 /* Get the list of pages out of our struct file. They'll be pinned
1773 * at this point until we release them.
1774 *
1775 * Fail silently without starting the shrinker
1776 */
1777 mapping = file_inode(obj->base.filp)->i_mapping;
1778 gfp = mapping_gfp_mask(mapping);
1779 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1780 gfp &= ~(__GFP_IO | __GFP_WAIT);
1781 sg = st->sgl;
1782 st->nents = 0;
1783 for (i = 0; i < page_count; i++) {
1784 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785 if (IS_ERR(page)) {
1786 i915_gem_purge(dev_priv, page_count);
1787 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788 }
1789 if (IS_ERR(page)) {
1790 /* We've tried hard to allocate the memory by reaping
1791 * our own buffer, now let the real VM do its job and
1792 * go down in flames if truly OOM.
1793 */
1794 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1795 gfp |= __GFP_IO | __GFP_WAIT;
1796
1797 i915_gem_shrink_all(dev_priv);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 if (IS_ERR(page))
1800 goto err_pages;
1801
1802 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1803 gfp &= ~(__GFP_IO | __GFP_WAIT);
1804 }
1805 #ifdef CONFIG_SWIOTLB
1806 if (swiotlb_nr_tbl()) {
1807 st->nents++;
1808 sg_set_page(sg, page, PAGE_SIZE, 0);
1809 sg = sg_next(sg);
1810 continue;
1811 }
1812 #endif
1813 if (!i || page_to_pfn(page) != last_pfn + 1) {
1814 if (i)
1815 sg = sg_next(sg);
1816 st->nents++;
1817 sg_set_page(sg, page, PAGE_SIZE, 0);
1818 } else {
1819 sg->length += PAGE_SIZE;
1820 }
1821 last_pfn = page_to_pfn(page);
1822 }
1823 #ifdef CONFIG_SWIOTLB
1824 if (!swiotlb_nr_tbl())
1825 #endif
1826 sg_mark_end(sg);
1827 obj->pages = st;
1828
1829 if (i915_gem_object_needs_bit17_swizzle(obj))
1830 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832 return 0;
1833
1834 err_pages:
1835 sg_mark_end(sg);
1836 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1837 page_cache_release(sg_page_iter_page(&sg_iter));
1838 sg_free_table(st);
1839 kfree(st);
1840 return PTR_ERR(page);
1841 }
1842
1843 /* Ensure that the associated pages are gathered from the backing storage
1844 * and pinned into our object. i915_gem_object_get_pages() may be called
1845 * multiple times before they are released by a single call to
1846 * i915_gem_object_put_pages() - once the pages are no longer referenced
1847 * either as a result of memory pressure (reaping pages under the shrinker)
1848 * or as the object is itself released.
1849 */
1850 int
1851 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852 {
1853 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854 const struct drm_i915_gem_object_ops *ops = obj->ops;
1855 int ret;
1856
1857 if (obj->pages)
1858 return 0;
1859
1860 if (obj->madv != I915_MADV_WILLNEED) {
1861 DRM_ERROR("Attempting to obtain a purgeable object\n");
1862 return -EINVAL;
1863 }
1864
1865 BUG_ON(obj->pages_pin_count);
1866
1867 ret = ops->get_pages(obj);
1868 if (ret)
1869 return ret;
1870
1871 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1872 return 0;
1873 }
1874
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877 struct intel_ring_buffer *ring)
1878 {
1879 struct drm_device *dev = obj->base.dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 u32 seqno = intel_ring_get_seqno(ring);
1882
1883 BUG_ON(ring == NULL);
1884 obj->ring = ring;
1885
1886 /* Add a reference if we're newly entering the active list. */
1887 if (!obj->active) {
1888 drm_gem_object_reference(&obj->base);
1889 obj->active = 1;
1890 }
1891
1892 /* Move from whatever list we were on to the tail of execution. */
1893 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1894 list_move_tail(&obj->ring_list, &ring->active_list);
1895
1896 obj->last_read_seqno = seqno;
1897
1898 if (obj->fenced_gpu_access) {
1899 obj->last_fenced_seqno = seqno;
1900
1901 /* Bump MRU to take account of the delayed flush */
1902 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903 struct drm_i915_fence_reg *reg;
1904
1905 reg = &dev_priv->fence_regs[obj->fence_reg];
1906 list_move_tail(&reg->lru_list,
1907 &dev_priv->mm.fence_list);
1908 }
1909 }
1910 }
1911
1912 static void
1913 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1914 {
1915 struct drm_device *dev = obj->base.dev;
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917
1918 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1919 BUG_ON(!obj->active);
1920
1921 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1922
1923 list_del_init(&obj->ring_list);
1924 obj->ring = NULL;
1925
1926 obj->last_read_seqno = 0;
1927 obj->last_write_seqno = 0;
1928 obj->base.write_domain = 0;
1929
1930 obj->last_fenced_seqno = 0;
1931 obj->fenced_gpu_access = false;
1932
1933 obj->active = 0;
1934 drm_gem_object_unreference(&obj->base);
1935
1936 WARN_ON(i915_verify_lists(dev));
1937 }
1938
1939 static int
1940 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1941 {
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 struct intel_ring_buffer *ring;
1944 int ret, i, j;
1945
1946 /* Carefully retire all requests without writing to the rings */
1947 for_each_ring(ring, dev_priv, i) {
1948 ret = intel_ring_idle(ring);
1949 if (ret)
1950 return ret;
1951 }
1952 i915_gem_retire_requests(dev);
1953
1954 /* Finally reset hw state */
1955 for_each_ring(ring, dev_priv, i) {
1956 intel_ring_init_seqno(ring, seqno);
1957
1958 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1959 ring->sync_seqno[j] = 0;
1960 }
1961
1962 return 0;
1963 }
1964
1965 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1966 {
1967 struct drm_i915_private *dev_priv = dev->dev_private;
1968 int ret;
1969
1970 if (seqno == 0)
1971 return -EINVAL;
1972
1973 /* HWS page needs to be set less than what we
1974 * will inject to ring
1975 */
1976 ret = i915_gem_init_seqno(dev, seqno - 1);
1977 if (ret)
1978 return ret;
1979
1980 /* Carefully set the last_seqno value so that wrap
1981 * detection still works
1982 */
1983 dev_priv->next_seqno = seqno;
1984 dev_priv->last_seqno = seqno - 1;
1985 if (dev_priv->last_seqno == 0)
1986 dev_priv->last_seqno--;
1987
1988 return 0;
1989 }
1990
1991 int
1992 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1993 {
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995
1996 /* reserve 0 for non-seqno */
1997 if (dev_priv->next_seqno == 0) {
1998 int ret = i915_gem_init_seqno(dev, 0);
1999 if (ret)
2000 return ret;
2001
2002 dev_priv->next_seqno = 1;
2003 }
2004
2005 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2006 return 0;
2007 }
2008
2009 int __i915_add_request(struct intel_ring_buffer *ring,
2010 struct drm_file *file,
2011 struct drm_i915_gem_object *obj,
2012 u32 *out_seqno)
2013 {
2014 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2015 struct drm_i915_gem_request *request;
2016 u32 request_ring_position, request_start;
2017 int was_empty;
2018 int ret;
2019
2020 request_start = intel_ring_get_tail(ring);
2021 /*
2022 * Emit any outstanding flushes - execbuf can fail to emit the flush
2023 * after having emitted the batchbuffer command. Hence we need to fix
2024 * things up similar to emitting the lazy request. The difference here
2025 * is that the flush _must_ happen before the next request, no matter
2026 * what.
2027 */
2028 ret = intel_ring_flush_all_caches(ring);
2029 if (ret)
2030 return ret;
2031
2032 request = kmalloc(sizeof(*request), GFP_KERNEL);
2033 if (request == NULL)
2034 return -ENOMEM;
2035
2036
2037 /* Record the position of the start of the request so that
2038 * should we detect the updated seqno part-way through the
2039 * GPU processing the request, we never over-estimate the
2040 * position of the head.
2041 */
2042 request_ring_position = intel_ring_get_tail(ring);
2043
2044 ret = ring->add_request(ring);
2045 if (ret) {
2046 kfree(request);
2047 return ret;
2048 }
2049
2050 request->seqno = intel_ring_get_seqno(ring);
2051 request->ring = ring;
2052 request->head = request_start;
2053 request->tail = request_ring_position;
2054 request->ctx = ring->last_context;
2055 request->batch_obj = obj;
2056
2057 /* Whilst this request exists, batch_obj will be on the
2058 * active_list, and so will hold the active reference. Only when this
2059 * request is retired will the the batch_obj be moved onto the
2060 * inactive_list and lose its active reference. Hence we do not need
2061 * to explicitly hold another reference here.
2062 */
2063
2064 if (request->ctx)
2065 i915_gem_context_reference(request->ctx);
2066
2067 request->emitted_jiffies = jiffies;
2068 was_empty = list_empty(&ring->request_list);
2069 list_add_tail(&request->list, &ring->request_list);
2070 request->file_priv = NULL;
2071
2072 if (file) {
2073 struct drm_i915_file_private *file_priv = file->driver_priv;
2074
2075 spin_lock(&file_priv->mm.lock);
2076 request->file_priv = file_priv;
2077 list_add_tail(&request->client_list,
2078 &file_priv->mm.request_list);
2079 spin_unlock(&file_priv->mm.lock);
2080 }
2081
2082 trace_i915_gem_request_add(ring, request->seqno);
2083 ring->outstanding_lazy_request = 0;
2084
2085 if (!dev_priv->ums.mm_suspended) {
2086 if (i915_enable_hangcheck) {
2087 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2088 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2089 }
2090 if (was_empty) {
2091 queue_delayed_work(dev_priv->wq,
2092 &dev_priv->mm.retire_work,
2093 round_jiffies_up_relative(HZ));
2094 intel_mark_busy(dev_priv->dev);
2095 }
2096 }
2097
2098 if (out_seqno)
2099 *out_seqno = request->seqno;
2100 return 0;
2101 }
2102
2103 static inline void
2104 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2105 {
2106 struct drm_i915_file_private *file_priv = request->file_priv;
2107
2108 if (!file_priv)
2109 return;
2110
2111 spin_lock(&file_priv->mm.lock);
2112 if (request->file_priv) {
2113 list_del(&request->client_list);
2114 request->file_priv = NULL;
2115 }
2116 spin_unlock(&file_priv->mm.lock);
2117 }
2118
2119 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2120 {
2121 if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2122 acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
2123 return true;
2124
2125 return false;
2126 }
2127
2128 static bool i915_head_inside_request(const u32 acthd_unmasked,
2129 const u32 request_start,
2130 const u32 request_end)
2131 {
2132 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2133
2134 if (request_start < request_end) {
2135 if (acthd >= request_start && acthd < request_end)
2136 return true;
2137 } else if (request_start > request_end) {
2138 if (acthd >= request_start || acthd < request_end)
2139 return true;
2140 }
2141
2142 return false;
2143 }
2144
2145 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2146 const u32 acthd, bool *inside)
2147 {
2148 /* There is a possibility that unmasked head address
2149 * pointing inside the ring, matches the batch_obj address range.
2150 * However this is extremely unlikely.
2151 */
2152
2153 if (request->batch_obj) {
2154 if (i915_head_inside_object(acthd, request->batch_obj)) {
2155 *inside = true;
2156 return true;
2157 }
2158 }
2159
2160 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2161 *inside = false;
2162 return true;
2163 }
2164
2165 return false;
2166 }
2167
2168 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2169 struct drm_i915_gem_request *request,
2170 u32 acthd)
2171 {
2172 struct i915_ctx_hang_stats *hs = NULL;
2173 bool inside, guilty;
2174
2175 /* Innocent until proven guilty */
2176 guilty = false;
2177
2178 if (ring->hangcheck.action != wait &&
2179 i915_request_guilty(request, acthd, &inside)) {
2180 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2181 ring->name,
2182 inside ? "inside" : "flushing",
2183 request->batch_obj ?
2184 i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
2185 request->ctx ? request->ctx->id : 0,
2186 acthd);
2187
2188 guilty = true;
2189 }
2190
2191 /* If contexts are disabled or this is the default context, use
2192 * file_priv->reset_state
2193 */
2194 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2195 hs = &request->ctx->hang_stats;
2196 else if (request->file_priv)
2197 hs = &request->file_priv->hang_stats;
2198
2199 if (hs) {
2200 if (guilty)
2201 hs->batch_active++;
2202 else
2203 hs->batch_pending++;
2204 }
2205 }
2206
2207 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2208 {
2209 list_del(&request->list);
2210 i915_gem_request_remove_from_client(request);
2211
2212 if (request->ctx)
2213 i915_gem_context_unreference(request->ctx);
2214
2215 kfree(request);
2216 }
2217
2218 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2219 struct intel_ring_buffer *ring)
2220 {
2221 u32 completed_seqno;
2222 u32 acthd;
2223
2224 acthd = intel_ring_get_active_head(ring);
2225 completed_seqno = ring->get_seqno(ring, false);
2226
2227 while (!list_empty(&ring->request_list)) {
2228 struct drm_i915_gem_request *request;
2229
2230 request = list_first_entry(&ring->request_list,
2231 struct drm_i915_gem_request,
2232 list);
2233
2234 if (request->seqno > completed_seqno)
2235 i915_set_reset_status(ring, request, acthd);
2236
2237 i915_gem_free_request(request);
2238 }
2239
2240 while (!list_empty(&ring->active_list)) {
2241 struct drm_i915_gem_object *obj;
2242
2243 obj = list_first_entry(&ring->active_list,
2244 struct drm_i915_gem_object,
2245 ring_list);
2246
2247 i915_gem_object_move_to_inactive(obj);
2248 }
2249 }
2250
2251 static void i915_gem_reset_fences(struct drm_device *dev)
2252 {
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254 int i;
2255
2256 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2257 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2258
2259 if (reg->obj)
2260 i915_gem_object_fence_lost(reg->obj);
2261
2262 i915_gem_write_fence(dev, i, NULL);
2263
2264 reg->pin_count = 0;
2265 reg->obj = NULL;
2266 INIT_LIST_HEAD(&reg->lru_list);
2267 }
2268
2269 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2270 }
2271
2272 void i915_gem_reset(struct drm_device *dev)
2273 {
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 struct drm_i915_gem_object *obj;
2276 struct intel_ring_buffer *ring;
2277 int i;
2278
2279 for_each_ring(ring, dev_priv, i)
2280 i915_gem_reset_ring_lists(dev_priv, ring);
2281
2282 /* Move everything out of the GPU domains to ensure we do any
2283 * necessary invalidation upon reuse.
2284 */
2285 list_for_each_entry(obj,
2286 &dev_priv->mm.inactive_list,
2287 mm_list)
2288 {
2289 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2290 }
2291
2292 /* The fence registers are invalidated so clear them out */
2293 i915_gem_reset_fences(dev);
2294 }
2295
2296 /**
2297 * This function clears the request list as sequence numbers are passed.
2298 */
2299 void
2300 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2301 {
2302 uint32_t seqno;
2303
2304 if (list_empty(&ring->request_list))
2305 return;
2306
2307 WARN_ON(i915_verify_lists(ring->dev));
2308
2309 seqno = ring->get_seqno(ring, true);
2310
2311 while (!list_empty(&ring->request_list)) {
2312 struct drm_i915_gem_request *request;
2313
2314 request = list_first_entry(&ring->request_list,
2315 struct drm_i915_gem_request,
2316 list);
2317
2318 if (!i915_seqno_passed(seqno, request->seqno))
2319 break;
2320
2321 trace_i915_gem_request_retire(ring, request->seqno);
2322 /* We know the GPU must have read the request to have
2323 * sent us the seqno + interrupt, so use the position
2324 * of tail of the request to update the last known position
2325 * of the GPU head.
2326 */
2327 ring->last_retired_head = request->tail;
2328
2329 i915_gem_free_request(request);
2330 }
2331
2332 /* Move any buffers on the active list that are no longer referenced
2333 * by the ringbuffer to the flushing/inactive lists as appropriate.
2334 */
2335 while (!list_empty(&ring->active_list)) {
2336 struct drm_i915_gem_object *obj;
2337
2338 obj = list_first_entry(&ring->active_list,
2339 struct drm_i915_gem_object,
2340 ring_list);
2341
2342 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2343 break;
2344
2345 i915_gem_object_move_to_inactive(obj);
2346 }
2347
2348 if (unlikely(ring->trace_irq_seqno &&
2349 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2350 ring->irq_put(ring);
2351 ring->trace_irq_seqno = 0;
2352 }
2353
2354 WARN_ON(i915_verify_lists(ring->dev));
2355 }
2356
2357 void
2358 i915_gem_retire_requests(struct drm_device *dev)
2359 {
2360 drm_i915_private_t *dev_priv = dev->dev_private;
2361 struct intel_ring_buffer *ring;
2362 int i;
2363
2364 for_each_ring(ring, dev_priv, i)
2365 i915_gem_retire_requests_ring(ring);
2366 }
2367
2368 static void
2369 i915_gem_retire_work_handler(struct work_struct *work)
2370 {
2371 drm_i915_private_t *dev_priv;
2372 struct drm_device *dev;
2373 struct intel_ring_buffer *ring;
2374 bool idle;
2375 int i;
2376
2377 dev_priv = container_of(work, drm_i915_private_t,
2378 mm.retire_work.work);
2379 dev = dev_priv->dev;
2380
2381 /* Come back later if the device is busy... */
2382 if (!mutex_trylock(&dev->struct_mutex)) {
2383 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2384 round_jiffies_up_relative(HZ));
2385 return;
2386 }
2387
2388 i915_gem_retire_requests(dev);
2389
2390 /* Send a periodic flush down the ring so we don't hold onto GEM
2391 * objects indefinitely.
2392 */
2393 idle = true;
2394 for_each_ring(ring, dev_priv, i) {
2395 if (ring->gpu_caches_dirty)
2396 i915_add_request(ring, NULL);
2397
2398 idle &= list_empty(&ring->request_list);
2399 }
2400
2401 if (!dev_priv->ums.mm_suspended && !idle)
2402 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2403 round_jiffies_up_relative(HZ));
2404 if (idle)
2405 intel_mark_idle(dev);
2406
2407 mutex_unlock(&dev->struct_mutex);
2408 }
2409
2410 /**
2411 * Ensures that an object will eventually get non-busy by flushing any required
2412 * write domains, emitting any outstanding lazy request and retiring and
2413 * completed requests.
2414 */
2415 static int
2416 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2417 {
2418 int ret;
2419
2420 if (obj->active) {
2421 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2422 if (ret)
2423 return ret;
2424
2425 i915_gem_retire_requests_ring(obj->ring);
2426 }
2427
2428 return 0;
2429 }
2430
2431 /**
2432 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2433 * @DRM_IOCTL_ARGS: standard ioctl arguments
2434 *
2435 * Returns 0 if successful, else an error is returned with the remaining time in
2436 * the timeout parameter.
2437 * -ETIME: object is still busy after timeout
2438 * -ERESTARTSYS: signal interrupted the wait
2439 * -ENONENT: object doesn't exist
2440 * Also possible, but rare:
2441 * -EAGAIN: GPU wedged
2442 * -ENOMEM: damn
2443 * -ENODEV: Internal IRQ fail
2444 * -E?: The add request failed
2445 *
2446 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2447 * non-zero timeout parameter the wait ioctl will wait for the given number of
2448 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2449 * without holding struct_mutex the object may become re-busied before this
2450 * function completes. A similar but shorter * race condition exists in the busy
2451 * ioctl
2452 */
2453 int
2454 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2455 {
2456 drm_i915_private_t *dev_priv = dev->dev_private;
2457 struct drm_i915_gem_wait *args = data;
2458 struct drm_i915_gem_object *obj;
2459 struct intel_ring_buffer *ring = NULL;
2460 struct timespec timeout_stack, *timeout = NULL;
2461 unsigned reset_counter;
2462 u32 seqno = 0;
2463 int ret = 0;
2464
2465 if (args->timeout_ns >= 0) {
2466 timeout_stack = ns_to_timespec(args->timeout_ns);
2467 timeout = &timeout_stack;
2468 }
2469
2470 ret = i915_mutex_lock_interruptible(dev);
2471 if (ret)
2472 return ret;
2473
2474 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2475 if (&obj->base == NULL) {
2476 mutex_unlock(&dev->struct_mutex);
2477 return -ENOENT;
2478 }
2479
2480 /* Need to make sure the object gets inactive eventually. */
2481 ret = i915_gem_object_flush_active(obj);
2482 if (ret)
2483 goto out;
2484
2485 if (obj->active) {
2486 seqno = obj->last_read_seqno;
2487 ring = obj->ring;
2488 }
2489
2490 if (seqno == 0)
2491 goto out;
2492
2493 /* Do this after OLR check to make sure we make forward progress polling
2494 * on this IOCTL with a 0 timeout (like busy ioctl)
2495 */
2496 if (!args->timeout_ns) {
2497 ret = -ETIME;
2498 goto out;
2499 }
2500
2501 drm_gem_object_unreference(&obj->base);
2502 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2503 mutex_unlock(&dev->struct_mutex);
2504
2505 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2506 if (timeout)
2507 args->timeout_ns = timespec_to_ns(timeout);
2508 return ret;
2509
2510 out:
2511 drm_gem_object_unreference(&obj->base);
2512 mutex_unlock(&dev->struct_mutex);
2513 return ret;
2514 }
2515
2516 /**
2517 * i915_gem_object_sync - sync an object to a ring.
2518 *
2519 * @obj: object which may be in use on another ring.
2520 * @to: ring we wish to use the object on. May be NULL.
2521 *
2522 * This code is meant to abstract object synchronization with the GPU.
2523 * Calling with NULL implies synchronizing the object with the CPU
2524 * rather than a particular GPU ring.
2525 *
2526 * Returns 0 if successful, else propagates up the lower layer error.
2527 */
2528 int
2529 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2530 struct intel_ring_buffer *to)
2531 {
2532 struct intel_ring_buffer *from = obj->ring;
2533 u32 seqno;
2534 int ret, idx;
2535
2536 if (from == NULL || to == from)
2537 return 0;
2538
2539 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2540 return i915_gem_object_wait_rendering(obj, false);
2541
2542 idx = intel_ring_sync_index(from, to);
2543
2544 seqno = obj->last_read_seqno;
2545 if (seqno <= from->sync_seqno[idx])
2546 return 0;
2547
2548 ret = i915_gem_check_olr(obj->ring, seqno);
2549 if (ret)
2550 return ret;
2551
2552 ret = to->sync_to(to, from, seqno);
2553 if (!ret)
2554 /* We use last_read_seqno because sync_to()
2555 * might have just caused seqno wrap under
2556 * the radar.
2557 */
2558 from->sync_seqno[idx] = obj->last_read_seqno;
2559
2560 return ret;
2561 }
2562
2563 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2564 {
2565 u32 old_write_domain, old_read_domains;
2566
2567 /* Force a pagefault for domain tracking on next user access */
2568 i915_gem_release_mmap(obj);
2569
2570 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2571 return;
2572
2573 /* Wait for any direct GTT access to complete */
2574 mb();
2575
2576 old_read_domains = obj->base.read_domains;
2577 old_write_domain = obj->base.write_domain;
2578
2579 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2580 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2581
2582 trace_i915_gem_object_change_domain(obj,
2583 old_read_domains,
2584 old_write_domain);
2585 }
2586
2587 /**
2588 * Unbinds an object from the GTT aperture.
2589 */
2590 int
2591 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2592 {
2593 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2594 int ret;
2595
2596 if (!i915_gem_obj_ggtt_bound(obj))
2597 return 0;
2598
2599 if (obj->pin_count)
2600 return -EBUSY;
2601
2602 BUG_ON(obj->pages == NULL);
2603
2604 ret = i915_gem_object_finish_gpu(obj);
2605 if (ret)
2606 return ret;
2607 /* Continue on if we fail due to EIO, the GPU is hung so we
2608 * should be safe and we need to cleanup or else we might
2609 * cause memory corruption through use-after-free.
2610 */
2611
2612 i915_gem_object_finish_gtt(obj);
2613
2614 /* release the fence reg _after_ flushing */
2615 ret = i915_gem_object_put_fence(obj);
2616 if (ret)
2617 return ret;
2618
2619 trace_i915_gem_object_unbind(obj);
2620
2621 if (obj->has_global_gtt_mapping)
2622 i915_gem_gtt_unbind_object(obj);
2623 if (obj->has_aliasing_ppgtt_mapping) {
2624 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2625 obj->has_aliasing_ppgtt_mapping = 0;
2626 }
2627 i915_gem_gtt_finish_object(obj);
2628 i915_gem_object_unpin_pages(obj);
2629
2630 list_del(&obj->mm_list);
2631 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2632 /* Avoid an unnecessary call to unbind on rebind. */
2633 obj->map_and_fenceable = true;
2634
2635 drm_mm_remove_node(&obj->gtt_space);
2636
2637 return 0;
2638 }
2639
2640 int i915_gpu_idle(struct drm_device *dev)
2641 {
2642 drm_i915_private_t *dev_priv = dev->dev_private;
2643 struct intel_ring_buffer *ring;
2644 int ret, i;
2645
2646 /* Flush everything onto the inactive list. */
2647 for_each_ring(ring, dev_priv, i) {
2648 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2649 if (ret)
2650 return ret;
2651
2652 ret = intel_ring_idle(ring);
2653 if (ret)
2654 return ret;
2655 }
2656
2657 return 0;
2658 }
2659
2660 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2661 struct drm_i915_gem_object *obj)
2662 {
2663 drm_i915_private_t *dev_priv = dev->dev_private;
2664 int fence_reg;
2665 int fence_pitch_shift;
2666 uint64_t val;
2667
2668 if (INTEL_INFO(dev)->gen >= 6) {
2669 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2670 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2671 } else {
2672 fence_reg = FENCE_REG_965_0;
2673 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2674 }
2675
2676 if (obj) {
2677 u32 size = i915_gem_obj_ggtt_size(obj);
2678
2679 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2680 0xfffff000) << 32;
2681 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2682 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2683 if (obj->tiling_mode == I915_TILING_Y)
2684 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2685 val |= I965_FENCE_REG_VALID;
2686 } else
2687 val = 0;
2688
2689 fence_reg += reg * 8;
2690 I915_WRITE64(fence_reg, val);
2691 POSTING_READ(fence_reg);
2692 }
2693
2694 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2695 struct drm_i915_gem_object *obj)
2696 {
2697 drm_i915_private_t *dev_priv = dev->dev_private;
2698 u32 val;
2699
2700 if (obj) {
2701 u32 size = i915_gem_obj_ggtt_size(obj);
2702 int pitch_val;
2703 int tile_width;
2704
2705 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2706 (size & -size) != size ||
2707 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2708 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2709 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2710
2711 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2712 tile_width = 128;
2713 else
2714 tile_width = 512;
2715
2716 /* Note: pitch better be a power of two tile widths */
2717 pitch_val = obj->stride / tile_width;
2718 pitch_val = ffs(pitch_val) - 1;
2719
2720 val = i915_gem_obj_ggtt_offset(obj);
2721 if (obj->tiling_mode == I915_TILING_Y)
2722 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2723 val |= I915_FENCE_SIZE_BITS(size);
2724 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2725 val |= I830_FENCE_REG_VALID;
2726 } else
2727 val = 0;
2728
2729 if (reg < 8)
2730 reg = FENCE_REG_830_0 + reg * 4;
2731 else
2732 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2733
2734 I915_WRITE(reg, val);
2735 POSTING_READ(reg);
2736 }
2737
2738 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2739 struct drm_i915_gem_object *obj)
2740 {
2741 drm_i915_private_t *dev_priv = dev->dev_private;
2742 uint32_t val;
2743
2744 if (obj) {
2745 u32 size = i915_gem_obj_ggtt_size(obj);
2746 uint32_t pitch_val;
2747
2748 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2749 (size & -size) != size ||
2750 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2751 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2752 i915_gem_obj_ggtt_offset(obj), size);
2753
2754 pitch_val = obj->stride / 128;
2755 pitch_val = ffs(pitch_val) - 1;
2756
2757 val = i915_gem_obj_ggtt_offset(obj);
2758 if (obj->tiling_mode == I915_TILING_Y)
2759 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2760 val |= I830_FENCE_SIZE_BITS(size);
2761 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2762 val |= I830_FENCE_REG_VALID;
2763 } else
2764 val = 0;
2765
2766 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2767 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2768 }
2769
2770 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2771 {
2772 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2773 }
2774
2775 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2776 struct drm_i915_gem_object *obj)
2777 {
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779
2780 /* Ensure that all CPU reads are completed before installing a fence
2781 * and all writes before removing the fence.
2782 */
2783 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2784 mb();
2785
2786 switch (INTEL_INFO(dev)->gen) {
2787 case 7:
2788 case 6:
2789 case 5:
2790 case 4: i965_write_fence_reg(dev, reg, obj); break;
2791 case 3: i915_write_fence_reg(dev, reg, obj); break;
2792 case 2: i830_write_fence_reg(dev, reg, obj); break;
2793 default: BUG();
2794 }
2795
2796 /* And similarly be paranoid that no direct access to this region
2797 * is reordered to before the fence is installed.
2798 */
2799 if (i915_gem_object_needs_mb(obj))
2800 mb();
2801 }
2802
2803 static inline int fence_number(struct drm_i915_private *dev_priv,
2804 struct drm_i915_fence_reg *fence)
2805 {
2806 return fence - dev_priv->fence_regs;
2807 }
2808
2809 struct write_fence {
2810 struct drm_device *dev;
2811 struct drm_i915_gem_object *obj;
2812 int fence;
2813 };
2814
2815 static void i915_gem_write_fence__ipi(void *data)
2816 {
2817 struct write_fence *args = data;
2818
2819 /* Required for SNB+ with LLC */
2820 wbinvd();
2821
2822 /* Required for VLV */
2823 i915_gem_write_fence(args->dev, args->fence, args->obj);
2824 }
2825
2826 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2827 struct drm_i915_fence_reg *fence,
2828 bool enable)
2829 {
2830 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2831 struct write_fence args = {
2832 .dev = obj->base.dev,
2833 .fence = fence_number(dev_priv, fence),
2834 .obj = enable ? obj : NULL,
2835 };
2836
2837 /* In order to fully serialize access to the fenced region and
2838 * the update to the fence register we need to take extreme
2839 * measures on SNB+. In theory, the write to the fence register
2840 * flushes all memory transactions before, and coupled with the
2841 * mb() placed around the register write we serialise all memory
2842 * operations with respect to the changes in the tiler. Yet, on
2843 * SNB+ we need to take a step further and emit an explicit wbinvd()
2844 * on each processor in order to manually flush all memory
2845 * transactions before updating the fence register.
2846 *
2847 * However, Valleyview complicates matter. There the wbinvd is
2848 * insufficient and unlike SNB/IVB requires the serialising
2849 * register write. (Note that that register write by itself is
2850 * conversely not sufficient for SNB+.) To compromise, we do both.
2851 */
2852 if (INTEL_INFO(args.dev)->gen >= 6)
2853 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2854 else
2855 i915_gem_write_fence(args.dev, args.fence, args.obj);
2856
2857 if (enable) {
2858 obj->fence_reg = args.fence;
2859 fence->obj = obj;
2860 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2861 } else {
2862 obj->fence_reg = I915_FENCE_REG_NONE;
2863 fence->obj = NULL;
2864 list_del_init(&fence->lru_list);
2865 }
2866 }
2867
2868 static int
2869 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2870 {
2871 if (obj->last_fenced_seqno) {
2872 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2873 if (ret)
2874 return ret;
2875
2876 obj->last_fenced_seqno = 0;
2877 }
2878
2879 obj->fenced_gpu_access = false;
2880 return 0;
2881 }
2882
2883 int
2884 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2885 {
2886 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2887 struct drm_i915_fence_reg *fence;
2888 int ret;
2889
2890 ret = i915_gem_object_wait_fence(obj);
2891 if (ret)
2892 return ret;
2893
2894 if (obj->fence_reg == I915_FENCE_REG_NONE)
2895 return 0;
2896
2897 fence = &dev_priv->fence_regs[obj->fence_reg];
2898
2899 i915_gem_object_fence_lost(obj);
2900 i915_gem_object_update_fence(obj, fence, false);
2901
2902 return 0;
2903 }
2904
2905 static struct drm_i915_fence_reg *
2906 i915_find_fence_reg(struct drm_device *dev)
2907 {
2908 struct drm_i915_private *dev_priv = dev->dev_private;
2909 struct drm_i915_fence_reg *reg, *avail;
2910 int i;
2911
2912 /* First try to find a free reg */
2913 avail = NULL;
2914 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2915 reg = &dev_priv->fence_regs[i];
2916 if (!reg->obj)
2917 return reg;
2918
2919 if (!reg->pin_count)
2920 avail = reg;
2921 }
2922
2923 if (avail == NULL)
2924 return NULL;
2925
2926 /* None available, try to steal one or wait for a user to finish */
2927 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2928 if (reg->pin_count)
2929 continue;
2930
2931 return reg;
2932 }
2933
2934 return NULL;
2935 }
2936
2937 /**
2938 * i915_gem_object_get_fence - set up fencing for an object
2939 * @obj: object to map through a fence reg
2940 *
2941 * When mapping objects through the GTT, userspace wants to be able to write
2942 * to them without having to worry about swizzling if the object is tiled.
2943 * This function walks the fence regs looking for a free one for @obj,
2944 * stealing one if it can't find any.
2945 *
2946 * It then sets up the reg based on the object's properties: address, pitch
2947 * and tiling format.
2948 *
2949 * For an untiled surface, this removes any existing fence.
2950 */
2951 int
2952 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2953 {
2954 struct drm_device *dev = obj->base.dev;
2955 struct drm_i915_private *dev_priv = dev->dev_private;
2956 bool enable = obj->tiling_mode != I915_TILING_NONE;
2957 struct drm_i915_fence_reg *reg;
2958 int ret;
2959
2960 /* Have we updated the tiling parameters upon the object and so
2961 * will need to serialise the write to the associated fence register?
2962 */
2963 if (obj->fence_dirty) {
2964 ret = i915_gem_object_wait_fence(obj);
2965 if (ret)
2966 return ret;
2967 }
2968
2969 /* Just update our place in the LRU if our fence is getting reused. */
2970 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2971 reg = &dev_priv->fence_regs[obj->fence_reg];
2972 if (!obj->fence_dirty) {
2973 list_move_tail(&reg->lru_list,
2974 &dev_priv->mm.fence_list);
2975 return 0;
2976 }
2977 } else if (enable) {
2978 reg = i915_find_fence_reg(dev);
2979 if (reg == NULL)
2980 return -EDEADLK;
2981
2982 if (reg->obj) {
2983 struct drm_i915_gem_object *old = reg->obj;
2984
2985 ret = i915_gem_object_wait_fence(old);
2986 if (ret)
2987 return ret;
2988
2989 i915_gem_object_fence_lost(old);
2990 }
2991 } else
2992 return 0;
2993
2994 i915_gem_object_update_fence(obj, reg, enable);
2995 obj->fence_dirty = false;
2996
2997 return 0;
2998 }
2999
3000 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3001 struct drm_mm_node *gtt_space,
3002 unsigned long cache_level)
3003 {
3004 struct drm_mm_node *other;
3005
3006 /* On non-LLC machines we have to be careful when putting differing
3007 * types of snoopable memory together to avoid the prefetcher
3008 * crossing memory domains and dying.
3009 */
3010 if (HAS_LLC(dev))
3011 return true;
3012
3013 if (!drm_mm_node_allocated(gtt_space))
3014 return true;
3015
3016 if (list_empty(&gtt_space->node_list))
3017 return true;
3018
3019 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3020 if (other->allocated && !other->hole_follows && other->color != cache_level)
3021 return false;
3022
3023 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3024 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3025 return false;
3026
3027 return true;
3028 }
3029
3030 static void i915_gem_verify_gtt(struct drm_device *dev)
3031 {
3032 #if WATCH_GTT
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 struct drm_i915_gem_object *obj;
3035 int err = 0;
3036
3037 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3038 if (obj->gtt_space == NULL) {
3039 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3040 err++;
3041 continue;
3042 }
3043
3044 if (obj->cache_level != obj->gtt_space->color) {
3045 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3046 i915_gem_obj_ggtt_offset(obj),
3047 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3048 obj->cache_level,
3049 obj->gtt_space->color);
3050 err++;
3051 continue;
3052 }
3053
3054 if (!i915_gem_valid_gtt_space(dev,
3055 obj->gtt_space,
3056 obj->cache_level)) {
3057 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3058 i915_gem_obj_ggtt_offset(obj),
3059 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3060 obj->cache_level);
3061 err++;
3062 continue;
3063 }
3064 }
3065
3066 WARN_ON(err);
3067 #endif
3068 }
3069
3070 /**
3071 * Finds free space in the GTT aperture and binds the object there.
3072 */
3073 static int
3074 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3075 unsigned alignment,
3076 bool map_and_fenceable,
3077 bool nonblocking)
3078 {
3079 struct drm_device *dev = obj->base.dev;
3080 drm_i915_private_t *dev_priv = dev->dev_private;
3081 u32 size, fence_size, fence_alignment, unfenced_alignment;
3082 bool mappable, fenceable;
3083 size_t gtt_max = map_and_fenceable ?
3084 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3085 int ret;
3086
3087 fence_size = i915_gem_get_gtt_size(dev,
3088 obj->base.size,
3089 obj->tiling_mode);
3090 fence_alignment = i915_gem_get_gtt_alignment(dev,
3091 obj->base.size,
3092 obj->tiling_mode, true);
3093 unfenced_alignment =
3094 i915_gem_get_gtt_alignment(dev,
3095 obj->base.size,
3096 obj->tiling_mode, false);
3097
3098 if (alignment == 0)
3099 alignment = map_and_fenceable ? fence_alignment :
3100 unfenced_alignment;
3101 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3102 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3103 return -EINVAL;
3104 }
3105
3106 size = map_and_fenceable ? fence_size : obj->base.size;
3107
3108 /* If the object is bigger than the entire aperture, reject it early
3109 * before evicting everything in a vain attempt to find space.
3110 */
3111 if (obj->base.size > gtt_max) {
3112 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3113 obj->base.size,
3114 map_and_fenceable ? "mappable" : "total",
3115 gtt_max);
3116 return -E2BIG;
3117 }
3118
3119 ret = i915_gem_object_get_pages(obj);
3120 if (ret)
3121 return ret;
3122
3123 i915_gem_object_pin_pages(obj);
3124
3125 search_free:
3126 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space,
3127 &obj->gtt_space,
3128 size, alignment,
3129 obj->cache_level, 0, gtt_max);
3130 if (ret) {
3131 ret = i915_gem_evict_something(dev, size, alignment,
3132 obj->cache_level,
3133 map_and_fenceable,
3134 nonblocking);
3135 if (ret == 0)
3136 goto search_free;
3137
3138 i915_gem_object_unpin_pages(obj);
3139 return ret;
3140 }
3141 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &obj->gtt_space,
3142 obj->cache_level))) {
3143 i915_gem_object_unpin_pages(obj);
3144 drm_mm_remove_node(&obj->gtt_space);
3145 return -EINVAL;
3146 }
3147
3148 ret = i915_gem_gtt_prepare_object(obj);
3149 if (ret) {
3150 i915_gem_object_unpin_pages(obj);
3151 drm_mm_remove_node(&obj->gtt_space);
3152 return ret;
3153 }
3154
3155 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3156 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3157
3158 fenceable =
3159 i915_gem_obj_ggtt_size(obj) == fence_size &&
3160 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3161
3162 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3163 dev_priv->gtt.mappable_end;
3164
3165 obj->map_and_fenceable = mappable && fenceable;
3166
3167 trace_i915_gem_object_bind(obj, map_and_fenceable);
3168 i915_gem_verify_gtt(dev);
3169 return 0;
3170 }
3171
3172 void
3173 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3174 {
3175 /* If we don't have a page list set up, then we're not pinned
3176 * to GPU, and we can ignore the cache flush because it'll happen
3177 * again at bind time.
3178 */
3179 if (obj->pages == NULL)
3180 return;
3181
3182 /*
3183 * Stolen memory is always coherent with the GPU as it is explicitly
3184 * marked as wc by the system, or the system is cache-coherent.
3185 */
3186 if (obj->stolen)
3187 return;
3188
3189 /* If the GPU is snooping the contents of the CPU cache,
3190 * we do not need to manually clear the CPU cache lines. However,
3191 * the caches are only snooped when the render cache is
3192 * flushed/invalidated. As we always have to emit invalidations
3193 * and flushes when moving into and out of the RENDER domain, correct
3194 * snooping behaviour occurs naturally as the result of our domain
3195 * tracking.
3196 */
3197 if (obj->cache_level != I915_CACHE_NONE)
3198 return;
3199
3200 trace_i915_gem_object_clflush(obj);
3201
3202 drm_clflush_sg(obj->pages);
3203 }
3204
3205 /** Flushes the GTT write domain for the object if it's dirty. */
3206 static void
3207 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3208 {
3209 uint32_t old_write_domain;
3210
3211 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3212 return;
3213
3214 /* No actual flushing is required for the GTT write domain. Writes
3215 * to it immediately go to main memory as far as we know, so there's
3216 * no chipset flush. It also doesn't land in render cache.
3217 *
3218 * However, we do have to enforce the order so that all writes through
3219 * the GTT land before any writes to the device, such as updates to
3220 * the GATT itself.
3221 */
3222 wmb();
3223
3224 old_write_domain = obj->base.write_domain;
3225 obj->base.write_domain = 0;
3226
3227 trace_i915_gem_object_change_domain(obj,
3228 obj->base.read_domains,
3229 old_write_domain);
3230 }
3231
3232 /** Flushes the CPU write domain for the object if it's dirty. */
3233 static void
3234 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3235 {
3236 uint32_t old_write_domain;
3237
3238 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3239 return;
3240
3241 i915_gem_clflush_object(obj);
3242 i915_gem_chipset_flush(obj->base.dev);
3243 old_write_domain = obj->base.write_domain;
3244 obj->base.write_domain = 0;
3245
3246 trace_i915_gem_object_change_domain(obj,
3247 obj->base.read_domains,
3248 old_write_domain);
3249 }
3250
3251 /**
3252 * Moves a single object to the GTT read, and possibly write domain.
3253 *
3254 * This function returns when the move is complete, including waiting on
3255 * flushes to occur.
3256 */
3257 int
3258 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3259 {
3260 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3261 uint32_t old_write_domain, old_read_domains;
3262 int ret;
3263
3264 /* Not valid to be called on unbound objects. */
3265 if (!i915_gem_obj_ggtt_bound(obj))
3266 return -EINVAL;
3267
3268 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3269 return 0;
3270
3271 ret = i915_gem_object_wait_rendering(obj, !write);
3272 if (ret)
3273 return ret;
3274
3275 i915_gem_object_flush_cpu_write_domain(obj);
3276
3277 /* Serialise direct access to this object with the barriers for
3278 * coherent writes from the GPU, by effectively invalidating the
3279 * GTT domain upon first access.
3280 */
3281 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3282 mb();
3283
3284 old_write_domain = obj->base.write_domain;
3285 old_read_domains = obj->base.read_domains;
3286
3287 /* It should now be out of any other write domains, and we can update
3288 * the domain values for our changes.
3289 */
3290 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3291 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3292 if (write) {
3293 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3294 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3295 obj->dirty = 1;
3296 }
3297
3298 trace_i915_gem_object_change_domain(obj,
3299 old_read_domains,
3300 old_write_domain);
3301
3302 /* And bump the LRU for this access */
3303 if (i915_gem_object_is_inactive(obj))
3304 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3305
3306 return 0;
3307 }
3308
3309 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3310 enum i915_cache_level cache_level)
3311 {
3312 struct drm_device *dev = obj->base.dev;
3313 drm_i915_private_t *dev_priv = dev->dev_private;
3314 int ret;
3315
3316 if (obj->cache_level == cache_level)
3317 return 0;
3318
3319 if (obj->pin_count) {
3320 DRM_DEBUG("can not change the cache level of pinned objects\n");
3321 return -EBUSY;
3322 }
3323
3324 if (!i915_gem_valid_gtt_space(dev, &obj->gtt_space, cache_level)) {
3325 ret = i915_gem_object_unbind(obj);
3326 if (ret)
3327 return ret;
3328 }
3329
3330 if (i915_gem_obj_ggtt_bound(obj)) {
3331 ret = i915_gem_object_finish_gpu(obj);
3332 if (ret)
3333 return ret;
3334
3335 i915_gem_object_finish_gtt(obj);
3336
3337 /* Before SandyBridge, you could not use tiling or fence
3338 * registers with snooped memory, so relinquish any fences
3339 * currently pointing to our region in the aperture.
3340 */
3341 if (INTEL_INFO(dev)->gen < 6) {
3342 ret = i915_gem_object_put_fence(obj);
3343 if (ret)
3344 return ret;
3345 }
3346
3347 if (obj->has_global_gtt_mapping)
3348 i915_gem_gtt_bind_object(obj, cache_level);
3349 if (obj->has_aliasing_ppgtt_mapping)
3350 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3351 obj, cache_level);
3352
3353 i915_gem_obj_ggtt_set_color(obj, cache_level);
3354 }
3355
3356 if (cache_level == I915_CACHE_NONE) {
3357 u32 old_read_domains, old_write_domain;
3358
3359 /* If we're coming from LLC cached, then we haven't
3360 * actually been tracking whether the data is in the
3361 * CPU cache or not, since we only allow one bit set
3362 * in obj->write_domain and have been skipping the clflushes.
3363 * Just set it to the CPU cache for now.
3364 */
3365 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3366 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3367
3368 old_read_domains = obj->base.read_domains;
3369 old_write_domain = obj->base.write_domain;
3370
3371 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3373
3374 trace_i915_gem_object_change_domain(obj,
3375 old_read_domains,
3376 old_write_domain);
3377 }
3378
3379 obj->cache_level = cache_level;
3380 i915_gem_verify_gtt(dev);
3381 return 0;
3382 }
3383
3384 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3385 struct drm_file *file)
3386 {
3387 struct drm_i915_gem_caching *args = data;
3388 struct drm_i915_gem_object *obj;
3389 int ret;
3390
3391 ret = i915_mutex_lock_interruptible(dev);
3392 if (ret)
3393 return ret;
3394
3395 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3396 if (&obj->base == NULL) {
3397 ret = -ENOENT;
3398 goto unlock;
3399 }
3400
3401 args->caching = obj->cache_level != I915_CACHE_NONE;
3402
3403 drm_gem_object_unreference(&obj->base);
3404 unlock:
3405 mutex_unlock(&dev->struct_mutex);
3406 return ret;
3407 }
3408
3409 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3410 struct drm_file *file)
3411 {
3412 struct drm_i915_gem_caching *args = data;
3413 struct drm_i915_gem_object *obj;
3414 enum i915_cache_level level;
3415 int ret;
3416
3417 switch (args->caching) {
3418 case I915_CACHING_NONE:
3419 level = I915_CACHE_NONE;
3420 break;
3421 case I915_CACHING_CACHED:
3422 level = I915_CACHE_LLC;
3423 break;
3424 default:
3425 return -EINVAL;
3426 }
3427
3428 ret = i915_mutex_lock_interruptible(dev);
3429 if (ret)
3430 return ret;
3431
3432 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3433 if (&obj->base == NULL) {
3434 ret = -ENOENT;
3435 goto unlock;
3436 }
3437
3438 ret = i915_gem_object_set_cache_level(obj, level);
3439
3440 drm_gem_object_unreference(&obj->base);
3441 unlock:
3442 mutex_unlock(&dev->struct_mutex);
3443 return ret;
3444 }
3445
3446 /*
3447 * Prepare buffer for display plane (scanout, cursors, etc).
3448 * Can be called from an uninterruptible phase (modesetting) and allows
3449 * any flushes to be pipelined (for pageflips).
3450 */
3451 int
3452 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3453 u32 alignment,
3454 struct intel_ring_buffer *pipelined)
3455 {
3456 u32 old_read_domains, old_write_domain;
3457 int ret;
3458
3459 if (pipelined != obj->ring) {
3460 ret = i915_gem_object_sync(obj, pipelined);
3461 if (ret)
3462 return ret;
3463 }
3464
3465 /* The display engine is not coherent with the LLC cache on gen6. As
3466 * a result, we make sure that the pinning that is about to occur is
3467 * done with uncached PTEs. This is lowest common denominator for all
3468 * chipsets.
3469 *
3470 * However for gen6+, we could do better by using the GFDT bit instead
3471 * of uncaching, which would allow us to flush all the LLC-cached data
3472 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3473 */
3474 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3475 if (ret)
3476 return ret;
3477
3478 /* As the user may map the buffer once pinned in the display plane
3479 * (e.g. libkms for the bootup splash), we have to ensure that we
3480 * always use map_and_fenceable for all scanout buffers.
3481 */
3482 ret = i915_gem_object_pin(obj, alignment, true, false);
3483 if (ret)
3484 return ret;
3485
3486 i915_gem_object_flush_cpu_write_domain(obj);
3487
3488 old_write_domain = obj->base.write_domain;
3489 old_read_domains = obj->base.read_domains;
3490
3491 /* It should now be out of any other write domains, and we can update
3492 * the domain values for our changes.
3493 */
3494 obj->base.write_domain = 0;
3495 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3496
3497 trace_i915_gem_object_change_domain(obj,
3498 old_read_domains,
3499 old_write_domain);
3500
3501 return 0;
3502 }
3503
3504 int
3505 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3506 {
3507 int ret;
3508
3509 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3510 return 0;
3511
3512 ret = i915_gem_object_wait_rendering(obj, false);
3513 if (ret)
3514 return ret;
3515
3516 /* Ensure that we invalidate the GPU's caches and TLBs. */
3517 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3518 return 0;
3519 }
3520
3521 /**
3522 * Moves a single object to the CPU read, and possibly write domain.
3523 *
3524 * This function returns when the move is complete, including waiting on
3525 * flushes to occur.
3526 */
3527 int
3528 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3529 {
3530 uint32_t old_write_domain, old_read_domains;
3531 int ret;
3532
3533 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3534 return 0;
3535
3536 ret = i915_gem_object_wait_rendering(obj, !write);
3537 if (ret)
3538 return ret;
3539
3540 i915_gem_object_flush_gtt_write_domain(obj);
3541
3542 old_write_domain = obj->base.write_domain;
3543 old_read_domains = obj->base.read_domains;
3544
3545 /* Flush the CPU cache if it's still invalid. */
3546 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3547 i915_gem_clflush_object(obj);
3548
3549 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3550 }
3551
3552 /* It should now be out of any other write domains, and we can update
3553 * the domain values for our changes.
3554 */
3555 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3556
3557 /* If we're writing through the CPU, then the GPU read domains will
3558 * need to be invalidated at next use.
3559 */
3560 if (write) {
3561 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3562 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3563 }
3564
3565 trace_i915_gem_object_change_domain(obj,
3566 old_read_domains,
3567 old_write_domain);
3568
3569 return 0;
3570 }
3571
3572 /* Throttle our rendering by waiting until the ring has completed our requests
3573 * emitted over 20 msec ago.
3574 *
3575 * Note that if we were to use the current jiffies each time around the loop,
3576 * we wouldn't escape the function with any frames outstanding if the time to
3577 * render a frame was over 20ms.
3578 *
3579 * This should get us reasonable parallelism between CPU and GPU but also
3580 * relatively low latency when blocking on a particular request to finish.
3581 */
3582 static int
3583 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3584 {
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586 struct drm_i915_file_private *file_priv = file->driver_priv;
3587 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3588 struct drm_i915_gem_request *request;
3589 struct intel_ring_buffer *ring = NULL;
3590 unsigned reset_counter;
3591 u32 seqno = 0;
3592 int ret;
3593
3594 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3595 if (ret)
3596 return ret;
3597
3598 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3599 if (ret)
3600 return ret;
3601
3602 spin_lock(&file_priv->mm.lock);
3603 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3604 if (time_after_eq(request->emitted_jiffies, recent_enough))
3605 break;
3606
3607 ring = request->ring;
3608 seqno = request->seqno;
3609 }
3610 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3611 spin_unlock(&file_priv->mm.lock);
3612
3613 if (seqno == 0)
3614 return 0;
3615
3616 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3617 if (ret == 0)
3618 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3619
3620 return ret;
3621 }
3622
3623 int
3624 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3625 uint32_t alignment,
3626 bool map_and_fenceable,
3627 bool nonblocking)
3628 {
3629 int ret;
3630
3631 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3632 return -EBUSY;
3633
3634 if (i915_gem_obj_ggtt_bound(obj)) {
3635 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3636 (map_and_fenceable && !obj->map_and_fenceable)) {
3637 WARN(obj->pin_count,
3638 "bo is already pinned with incorrect alignment:"
3639 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3640 " obj->map_and_fenceable=%d\n",
3641 i915_gem_obj_ggtt_offset(obj), alignment,
3642 map_and_fenceable,
3643 obj->map_and_fenceable);
3644 ret = i915_gem_object_unbind(obj);
3645 if (ret)
3646 return ret;
3647 }
3648 }
3649
3650 if (!i915_gem_obj_ggtt_bound(obj)) {
3651 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3652
3653 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3654 map_and_fenceable,
3655 nonblocking);
3656 if (ret)
3657 return ret;
3658
3659 if (!dev_priv->mm.aliasing_ppgtt)
3660 i915_gem_gtt_bind_object(obj, obj->cache_level);
3661 }
3662
3663 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3664 i915_gem_gtt_bind_object(obj, obj->cache_level);
3665
3666 obj->pin_count++;
3667 obj->pin_mappable |= map_and_fenceable;
3668
3669 return 0;
3670 }
3671
3672 void
3673 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3674 {
3675 BUG_ON(obj->pin_count == 0);
3676 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3677
3678 if (--obj->pin_count == 0)
3679 obj->pin_mappable = false;
3680 }
3681
3682 int
3683 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3684 struct drm_file *file)
3685 {
3686 struct drm_i915_gem_pin *args = data;
3687 struct drm_i915_gem_object *obj;
3688 int ret;
3689
3690 ret = i915_mutex_lock_interruptible(dev);
3691 if (ret)
3692 return ret;
3693
3694 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3695 if (&obj->base == NULL) {
3696 ret = -ENOENT;
3697 goto unlock;
3698 }
3699
3700 if (obj->madv != I915_MADV_WILLNEED) {
3701 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3702 ret = -EINVAL;
3703 goto out;
3704 }
3705
3706 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3707 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3708 args->handle);
3709 ret = -EINVAL;
3710 goto out;
3711 }
3712
3713 if (obj->user_pin_count == 0) {
3714 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3715 if (ret)
3716 goto out;
3717 }
3718
3719 obj->user_pin_count++;
3720 obj->pin_filp = file;
3721
3722 /* XXX - flush the CPU caches for pinned objects
3723 * as the X server doesn't manage domains yet
3724 */
3725 i915_gem_object_flush_cpu_write_domain(obj);
3726 args->offset = i915_gem_obj_ggtt_offset(obj);
3727 out:
3728 drm_gem_object_unreference(&obj->base);
3729 unlock:
3730 mutex_unlock(&dev->struct_mutex);
3731 return ret;
3732 }
3733
3734 int
3735 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3736 struct drm_file *file)
3737 {
3738 struct drm_i915_gem_pin *args = data;
3739 struct drm_i915_gem_object *obj;
3740 int ret;
3741
3742 ret = i915_mutex_lock_interruptible(dev);
3743 if (ret)
3744 return ret;
3745
3746 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3747 if (&obj->base == NULL) {
3748 ret = -ENOENT;
3749 goto unlock;
3750 }
3751
3752 if (obj->pin_filp != file) {
3753 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3754 args->handle);
3755 ret = -EINVAL;
3756 goto out;
3757 }
3758 obj->user_pin_count--;
3759 if (obj->user_pin_count == 0) {
3760 obj->pin_filp = NULL;
3761 i915_gem_object_unpin(obj);
3762 }
3763
3764 out:
3765 drm_gem_object_unreference(&obj->base);
3766 unlock:
3767 mutex_unlock(&dev->struct_mutex);
3768 return ret;
3769 }
3770
3771 int
3772 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3773 struct drm_file *file)
3774 {
3775 struct drm_i915_gem_busy *args = data;
3776 struct drm_i915_gem_object *obj;
3777 int ret;
3778
3779 ret = i915_mutex_lock_interruptible(dev);
3780 if (ret)
3781 return ret;
3782
3783 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3784 if (&obj->base == NULL) {
3785 ret = -ENOENT;
3786 goto unlock;
3787 }
3788
3789 /* Count all active objects as busy, even if they are currently not used
3790 * by the gpu. Users of this interface expect objects to eventually
3791 * become non-busy without any further actions, therefore emit any
3792 * necessary flushes here.
3793 */
3794 ret = i915_gem_object_flush_active(obj);
3795
3796 args->busy = obj->active;
3797 if (obj->ring) {
3798 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3799 args->busy |= intel_ring_flag(obj->ring) << 16;
3800 }
3801
3802 drm_gem_object_unreference(&obj->base);
3803 unlock:
3804 mutex_unlock(&dev->struct_mutex);
3805 return ret;
3806 }
3807
3808 int
3809 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3810 struct drm_file *file_priv)
3811 {
3812 return i915_gem_ring_throttle(dev, file_priv);
3813 }
3814
3815 int
3816 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3817 struct drm_file *file_priv)
3818 {
3819 struct drm_i915_gem_madvise *args = data;
3820 struct drm_i915_gem_object *obj;
3821 int ret;
3822
3823 switch (args->madv) {
3824 case I915_MADV_DONTNEED:
3825 case I915_MADV_WILLNEED:
3826 break;
3827 default:
3828 return -EINVAL;
3829 }
3830
3831 ret = i915_mutex_lock_interruptible(dev);
3832 if (ret)
3833 return ret;
3834
3835 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3836 if (&obj->base == NULL) {
3837 ret = -ENOENT;
3838 goto unlock;
3839 }
3840
3841 if (obj->pin_count) {
3842 ret = -EINVAL;
3843 goto out;
3844 }
3845
3846 if (obj->madv != __I915_MADV_PURGED)
3847 obj->madv = args->madv;
3848
3849 /* if the object is no longer attached, discard its backing storage */
3850 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3851 i915_gem_object_truncate(obj);
3852
3853 args->retained = obj->madv != __I915_MADV_PURGED;
3854
3855 out:
3856 drm_gem_object_unreference(&obj->base);
3857 unlock:
3858 mutex_unlock(&dev->struct_mutex);
3859 return ret;
3860 }
3861
3862 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3863 const struct drm_i915_gem_object_ops *ops)
3864 {
3865 INIT_LIST_HEAD(&obj->mm_list);
3866 INIT_LIST_HEAD(&obj->global_list);
3867 INIT_LIST_HEAD(&obj->ring_list);
3868 INIT_LIST_HEAD(&obj->exec_list);
3869
3870 obj->ops = ops;
3871
3872 obj->fence_reg = I915_FENCE_REG_NONE;
3873 obj->madv = I915_MADV_WILLNEED;
3874 /* Avoid an unnecessary call to unbind on the first bind. */
3875 obj->map_and_fenceable = true;
3876
3877 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3878 }
3879
3880 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3881 .get_pages = i915_gem_object_get_pages_gtt,
3882 .put_pages = i915_gem_object_put_pages_gtt,
3883 };
3884
3885 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3886 size_t size)
3887 {
3888 struct drm_i915_gem_object *obj;
3889 struct address_space *mapping;
3890 gfp_t mask;
3891
3892 obj = i915_gem_object_alloc(dev);
3893 if (obj == NULL)
3894 return NULL;
3895
3896 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3897 i915_gem_object_free(obj);
3898 return NULL;
3899 }
3900
3901 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3902 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3903 /* 965gm cannot relocate objects above 4GiB. */
3904 mask &= ~__GFP_HIGHMEM;
3905 mask |= __GFP_DMA32;
3906 }
3907
3908 mapping = file_inode(obj->base.filp)->i_mapping;
3909 mapping_set_gfp_mask(mapping, mask);
3910
3911 i915_gem_object_init(obj, &i915_gem_object_ops);
3912
3913 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3914 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3915
3916 if (HAS_LLC(dev)) {
3917 /* On some devices, we can have the GPU use the LLC (the CPU
3918 * cache) for about a 10% performance improvement
3919 * compared to uncached. Graphics requests other than
3920 * display scanout are coherent with the CPU in
3921 * accessing this cache. This means in this mode we
3922 * don't need to clflush on the CPU side, and on the
3923 * GPU side we only need to flush internal caches to
3924 * get data visible to the CPU.
3925 *
3926 * However, we maintain the display planes as UC, and so
3927 * need to rebind when first used as such.
3928 */
3929 obj->cache_level = I915_CACHE_LLC;
3930 } else
3931 obj->cache_level = I915_CACHE_NONE;
3932
3933 return obj;
3934 }
3935
3936 int i915_gem_init_object(struct drm_gem_object *obj)
3937 {
3938 BUG();
3939
3940 return 0;
3941 }
3942
3943 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3944 {
3945 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3946 struct drm_device *dev = obj->base.dev;
3947 drm_i915_private_t *dev_priv = dev->dev_private;
3948
3949 trace_i915_gem_object_destroy(obj);
3950
3951 if (obj->phys_obj)
3952 i915_gem_detach_phys_object(dev, obj);
3953
3954 obj->pin_count = 0;
3955 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3956 bool was_interruptible;
3957
3958 was_interruptible = dev_priv->mm.interruptible;
3959 dev_priv->mm.interruptible = false;
3960
3961 WARN_ON(i915_gem_object_unbind(obj));
3962
3963 dev_priv->mm.interruptible = was_interruptible;
3964 }
3965
3966 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3967 * before progressing. */
3968 if (obj->stolen)
3969 i915_gem_object_unpin_pages(obj);
3970
3971 if (WARN_ON(obj->pages_pin_count))
3972 obj->pages_pin_count = 0;
3973 i915_gem_object_put_pages(obj);
3974 i915_gem_object_free_mmap_offset(obj);
3975 i915_gem_object_release_stolen(obj);
3976
3977 BUG_ON(obj->pages);
3978
3979 if (obj->base.import_attach)
3980 drm_prime_gem_destroy(&obj->base, NULL);
3981
3982 drm_gem_object_release(&obj->base);
3983 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3984
3985 kfree(obj->bit_17);
3986 i915_gem_object_free(obj);
3987 }
3988
3989 int
3990 i915_gem_idle(struct drm_device *dev)
3991 {
3992 drm_i915_private_t *dev_priv = dev->dev_private;
3993 int ret;
3994
3995 if (dev_priv->ums.mm_suspended) {
3996 mutex_unlock(&dev->struct_mutex);
3997 return 0;
3998 }
3999
4000 ret = i915_gpu_idle(dev);
4001 if (ret) {
4002 mutex_unlock(&dev->struct_mutex);
4003 return ret;
4004 }
4005 i915_gem_retire_requests(dev);
4006
4007 /* Under UMS, be paranoid and evict. */
4008 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4009 i915_gem_evict_everything(dev);
4010
4011 i915_gem_reset_fences(dev);
4012
4013 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4014
4015 i915_kernel_lost_context(dev);
4016 i915_gem_cleanup_ringbuffer(dev);
4017
4018 /* Cancel the retire work handler, which should be idle now. */
4019 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4020
4021 return 0;
4022 }
4023
4024 void i915_gem_l3_remap(struct drm_device *dev)
4025 {
4026 drm_i915_private_t *dev_priv = dev->dev_private;
4027 u32 misccpctl;
4028 int i;
4029
4030 if (!HAS_L3_GPU_CACHE(dev))
4031 return;
4032
4033 if (!dev_priv->l3_parity.remap_info)
4034 return;
4035
4036 misccpctl = I915_READ(GEN7_MISCCPCTL);
4037 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4038 POSTING_READ(GEN7_MISCCPCTL);
4039
4040 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4041 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4042 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4043 DRM_DEBUG("0x%x was already programmed to %x\n",
4044 GEN7_L3LOG_BASE + i, remap);
4045 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4046 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4047 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4048 }
4049
4050 /* Make sure all the writes land before disabling dop clock gating */
4051 POSTING_READ(GEN7_L3LOG_BASE);
4052
4053 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4054 }
4055
4056 void i915_gem_init_swizzling(struct drm_device *dev)
4057 {
4058 drm_i915_private_t *dev_priv = dev->dev_private;
4059
4060 if (INTEL_INFO(dev)->gen < 5 ||
4061 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4062 return;
4063
4064 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4065 DISP_TILE_SURFACE_SWIZZLING);
4066
4067 if (IS_GEN5(dev))
4068 return;
4069
4070 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4071 if (IS_GEN6(dev))
4072 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4073 else if (IS_GEN7(dev))
4074 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4075 else
4076 BUG();
4077 }
4078
4079 static bool
4080 intel_enable_blt(struct drm_device *dev)
4081 {
4082 if (!HAS_BLT(dev))
4083 return false;
4084
4085 /* The blitter was dysfunctional on early prototypes */
4086 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4087 DRM_INFO("BLT not supported on this pre-production hardware;"
4088 " graphics performance will be degraded.\n");
4089 return false;
4090 }
4091
4092 return true;
4093 }
4094
4095 static int i915_gem_init_rings(struct drm_device *dev)
4096 {
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 int ret;
4099
4100 ret = intel_init_render_ring_buffer(dev);
4101 if (ret)
4102 return ret;
4103
4104 if (HAS_BSD(dev)) {
4105 ret = intel_init_bsd_ring_buffer(dev);
4106 if (ret)
4107 goto cleanup_render_ring;
4108 }
4109
4110 if (intel_enable_blt(dev)) {
4111 ret = intel_init_blt_ring_buffer(dev);
4112 if (ret)
4113 goto cleanup_bsd_ring;
4114 }
4115
4116 if (HAS_VEBOX(dev)) {
4117 ret = intel_init_vebox_ring_buffer(dev);
4118 if (ret)
4119 goto cleanup_blt_ring;
4120 }
4121
4122
4123 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4124 if (ret)
4125 goto cleanup_vebox_ring;
4126
4127 return 0;
4128
4129 cleanup_vebox_ring:
4130 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4131 cleanup_blt_ring:
4132 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4133 cleanup_bsd_ring:
4134 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4135 cleanup_render_ring:
4136 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4137
4138 return ret;
4139 }
4140
4141 int
4142 i915_gem_init_hw(struct drm_device *dev)
4143 {
4144 drm_i915_private_t *dev_priv = dev->dev_private;
4145 int ret;
4146
4147 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4148 return -EIO;
4149
4150 if (IS_HASWELL(dev) && (I915_READ(HSW_EDRAM_PRESENT) == 1))
4151 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4152
4153 if (HAS_PCH_NOP(dev)) {
4154 u32 temp = I915_READ(GEN7_MSG_CTL);
4155 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4156 I915_WRITE(GEN7_MSG_CTL, temp);
4157 }
4158
4159 i915_gem_l3_remap(dev);
4160
4161 i915_gem_init_swizzling(dev);
4162
4163 ret = i915_gem_init_rings(dev);
4164 if (ret)
4165 return ret;
4166
4167 /*
4168 * XXX: There was some w/a described somewhere suggesting loading
4169 * contexts before PPGTT.
4170 */
4171 i915_gem_context_init(dev);
4172 if (dev_priv->mm.aliasing_ppgtt) {
4173 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4174 if (ret) {
4175 i915_gem_cleanup_aliasing_ppgtt(dev);
4176 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4177 }
4178 }
4179
4180 return 0;
4181 }
4182
4183 int i915_gem_init(struct drm_device *dev)
4184 {
4185 struct drm_i915_private *dev_priv = dev->dev_private;
4186 int ret;
4187
4188 mutex_lock(&dev->struct_mutex);
4189
4190 if (IS_VALLEYVIEW(dev)) {
4191 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4192 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4193 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4194 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4195 }
4196
4197 i915_gem_init_global_gtt(dev);
4198
4199 ret = i915_gem_init_hw(dev);
4200 mutex_unlock(&dev->struct_mutex);
4201 if (ret) {
4202 i915_gem_cleanup_aliasing_ppgtt(dev);
4203 return ret;
4204 }
4205
4206 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4207 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4208 dev_priv->dri1.allow_batchbuffer = 1;
4209 return 0;
4210 }
4211
4212 void
4213 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4214 {
4215 drm_i915_private_t *dev_priv = dev->dev_private;
4216 struct intel_ring_buffer *ring;
4217 int i;
4218
4219 for_each_ring(ring, dev_priv, i)
4220 intel_cleanup_ring_buffer(ring);
4221 }
4222
4223 int
4224 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4225 struct drm_file *file_priv)
4226 {
4227 struct drm_i915_private *dev_priv = dev->dev_private;
4228 int ret;
4229
4230 if (drm_core_check_feature(dev, DRIVER_MODESET))
4231 return 0;
4232
4233 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4234 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4235 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4236 }
4237
4238 mutex_lock(&dev->struct_mutex);
4239 dev_priv->ums.mm_suspended = 0;
4240
4241 ret = i915_gem_init_hw(dev);
4242 if (ret != 0) {
4243 mutex_unlock(&dev->struct_mutex);
4244 return ret;
4245 }
4246
4247 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4248 mutex_unlock(&dev->struct_mutex);
4249
4250 ret = drm_irq_install(dev);
4251 if (ret)
4252 goto cleanup_ringbuffer;
4253
4254 return 0;
4255
4256 cleanup_ringbuffer:
4257 mutex_lock(&dev->struct_mutex);
4258 i915_gem_cleanup_ringbuffer(dev);
4259 dev_priv->ums.mm_suspended = 1;
4260 mutex_unlock(&dev->struct_mutex);
4261
4262 return ret;
4263 }
4264
4265 int
4266 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4268 {
4269 struct drm_i915_private *dev_priv = dev->dev_private;
4270 int ret;
4271
4272 if (drm_core_check_feature(dev, DRIVER_MODESET))
4273 return 0;
4274
4275 drm_irq_uninstall(dev);
4276
4277 mutex_lock(&dev->struct_mutex);
4278 ret = i915_gem_idle(dev);
4279
4280 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4281 * We need to replace this with a semaphore, or something.
4282 * And not confound ums.mm_suspended!
4283 */
4284 if (ret != 0)
4285 dev_priv->ums.mm_suspended = 1;
4286 mutex_unlock(&dev->struct_mutex);
4287
4288 return ret;
4289 }
4290
4291 void
4292 i915_gem_lastclose(struct drm_device *dev)
4293 {
4294 int ret;
4295
4296 if (drm_core_check_feature(dev, DRIVER_MODESET))
4297 return;
4298
4299 mutex_lock(&dev->struct_mutex);
4300 ret = i915_gem_idle(dev);
4301 if (ret)
4302 DRM_ERROR("failed to idle hardware: %d\n", ret);
4303 mutex_unlock(&dev->struct_mutex);
4304 }
4305
4306 static void
4307 init_ring_lists(struct intel_ring_buffer *ring)
4308 {
4309 INIT_LIST_HEAD(&ring->active_list);
4310 INIT_LIST_HEAD(&ring->request_list);
4311 }
4312
4313 void
4314 i915_gem_load(struct drm_device *dev)
4315 {
4316 drm_i915_private_t *dev_priv = dev->dev_private;
4317 int i;
4318
4319 dev_priv->slab =
4320 kmem_cache_create("i915_gem_object",
4321 sizeof(struct drm_i915_gem_object), 0,
4322 SLAB_HWCACHE_ALIGN,
4323 NULL);
4324
4325 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4326 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4327 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4328 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4329 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4330 for (i = 0; i < I915_NUM_RINGS; i++)
4331 init_ring_lists(&dev_priv->ring[i]);
4332 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4333 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4334 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4335 i915_gem_retire_work_handler);
4336 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4337
4338 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4339 if (IS_GEN3(dev)) {
4340 I915_WRITE(MI_ARB_STATE,
4341 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4342 }
4343
4344 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4345
4346 /* Old X drivers will take 0-2 for front, back, depth buffers */
4347 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4348 dev_priv->fence_reg_start = 3;
4349
4350 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4351 dev_priv->num_fence_regs = 32;
4352 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4353 dev_priv->num_fence_regs = 16;
4354 else
4355 dev_priv->num_fence_regs = 8;
4356
4357 /* Initialize fence registers to zero */
4358 i915_gem_reset_fences(dev);
4359
4360 i915_gem_detect_bit_6_swizzle(dev);
4361 init_waitqueue_head(&dev_priv->pending_flip_queue);
4362
4363 dev_priv->mm.interruptible = true;
4364
4365 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4366 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4367 register_shrinker(&dev_priv->mm.inactive_shrinker);
4368 }
4369
4370 /*
4371 * Create a physically contiguous memory object for this object
4372 * e.g. for cursor + overlay regs
4373 */
4374 static int i915_gem_init_phys_object(struct drm_device *dev,
4375 int id, int size, int align)
4376 {
4377 drm_i915_private_t *dev_priv = dev->dev_private;
4378 struct drm_i915_gem_phys_object *phys_obj;
4379 int ret;
4380
4381 if (dev_priv->mm.phys_objs[id - 1] || !size)
4382 return 0;
4383
4384 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4385 if (!phys_obj)
4386 return -ENOMEM;
4387
4388 phys_obj->id = id;
4389
4390 phys_obj->handle = drm_pci_alloc(dev, size, align);
4391 if (!phys_obj->handle) {
4392 ret = -ENOMEM;
4393 goto kfree_obj;
4394 }
4395 #ifdef CONFIG_X86
4396 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4397 #endif
4398
4399 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4400
4401 return 0;
4402 kfree_obj:
4403 kfree(phys_obj);
4404 return ret;
4405 }
4406
4407 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4408 {
4409 drm_i915_private_t *dev_priv = dev->dev_private;
4410 struct drm_i915_gem_phys_object *phys_obj;
4411
4412 if (!dev_priv->mm.phys_objs[id - 1])
4413 return;
4414
4415 phys_obj = dev_priv->mm.phys_objs[id - 1];
4416 if (phys_obj->cur_obj) {
4417 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4418 }
4419
4420 #ifdef CONFIG_X86
4421 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4422 #endif
4423 drm_pci_free(dev, phys_obj->handle);
4424 kfree(phys_obj);
4425 dev_priv->mm.phys_objs[id - 1] = NULL;
4426 }
4427
4428 void i915_gem_free_all_phys_object(struct drm_device *dev)
4429 {
4430 int i;
4431
4432 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4433 i915_gem_free_phys_object(dev, i);
4434 }
4435
4436 void i915_gem_detach_phys_object(struct drm_device *dev,
4437 struct drm_i915_gem_object *obj)
4438 {
4439 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4440 char *vaddr;
4441 int i;
4442 int page_count;
4443
4444 if (!obj->phys_obj)
4445 return;
4446 vaddr = obj->phys_obj->handle->vaddr;
4447
4448 page_count = obj->base.size / PAGE_SIZE;
4449 for (i = 0; i < page_count; i++) {
4450 struct page *page = shmem_read_mapping_page(mapping, i);
4451 if (!IS_ERR(page)) {
4452 char *dst = kmap_atomic(page);
4453 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4454 kunmap_atomic(dst);
4455
4456 drm_clflush_pages(&page, 1);
4457
4458 set_page_dirty(page);
4459 mark_page_accessed(page);
4460 page_cache_release(page);
4461 }
4462 }
4463 i915_gem_chipset_flush(dev);
4464
4465 obj->phys_obj->cur_obj = NULL;
4466 obj->phys_obj = NULL;
4467 }
4468
4469 int
4470 i915_gem_attach_phys_object(struct drm_device *dev,
4471 struct drm_i915_gem_object *obj,
4472 int id,
4473 int align)
4474 {
4475 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4476 drm_i915_private_t *dev_priv = dev->dev_private;
4477 int ret = 0;
4478 int page_count;
4479 int i;
4480
4481 if (id > I915_MAX_PHYS_OBJECT)
4482 return -EINVAL;
4483
4484 if (obj->phys_obj) {
4485 if (obj->phys_obj->id == id)
4486 return 0;
4487 i915_gem_detach_phys_object(dev, obj);
4488 }
4489
4490 /* create a new object */
4491 if (!dev_priv->mm.phys_objs[id - 1]) {
4492 ret = i915_gem_init_phys_object(dev, id,
4493 obj->base.size, align);
4494 if (ret) {
4495 DRM_ERROR("failed to init phys object %d size: %zu\n",
4496 id, obj->base.size);
4497 return ret;
4498 }
4499 }
4500
4501 /* bind to the object */
4502 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4503 obj->phys_obj->cur_obj = obj;
4504
4505 page_count = obj->base.size / PAGE_SIZE;
4506
4507 for (i = 0; i < page_count; i++) {
4508 struct page *page;
4509 char *dst, *src;
4510
4511 page = shmem_read_mapping_page(mapping, i);
4512 if (IS_ERR(page))
4513 return PTR_ERR(page);
4514
4515 src = kmap_atomic(page);
4516 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4517 memcpy(dst, src, PAGE_SIZE);
4518 kunmap_atomic(src);
4519
4520 mark_page_accessed(page);
4521 page_cache_release(page);
4522 }
4523
4524 return 0;
4525 }
4526
4527 static int
4528 i915_gem_phys_pwrite(struct drm_device *dev,
4529 struct drm_i915_gem_object *obj,
4530 struct drm_i915_gem_pwrite *args,
4531 struct drm_file *file_priv)
4532 {
4533 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4534 char __user *user_data = to_user_ptr(args->data_ptr);
4535
4536 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4537 unsigned long unwritten;
4538
4539 /* The physical object once assigned is fixed for the lifetime
4540 * of the obj, so we can safely drop the lock and continue
4541 * to access vaddr.
4542 */
4543 mutex_unlock(&dev->struct_mutex);
4544 unwritten = copy_from_user(vaddr, user_data, args->size);
4545 mutex_lock(&dev->struct_mutex);
4546 if (unwritten)
4547 return -EFAULT;
4548 }
4549
4550 i915_gem_chipset_flush(dev);
4551 return 0;
4552 }
4553
4554 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4555 {
4556 struct drm_i915_file_private *file_priv = file->driver_priv;
4557
4558 /* Clean up our request list when the client is going away, so that
4559 * later retire_requests won't dereference our soon-to-be-gone
4560 * file_priv.
4561 */
4562 spin_lock(&file_priv->mm.lock);
4563 while (!list_empty(&file_priv->mm.request_list)) {
4564 struct drm_i915_gem_request *request;
4565
4566 request = list_first_entry(&file_priv->mm.request_list,
4567 struct drm_i915_gem_request,
4568 client_list);
4569 list_del(&request->client_list);
4570 request->file_priv = NULL;
4571 }
4572 spin_unlock(&file_priv->mm.lock);
4573 }
4574
4575 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4576 {
4577 if (!mutex_is_locked(mutex))
4578 return false;
4579
4580 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4581 return mutex->owner == task;
4582 #else
4583 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4584 return false;
4585 #endif
4586 }
4587
4588 static int
4589 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4590 {
4591 struct drm_i915_private *dev_priv =
4592 container_of(shrinker,
4593 struct drm_i915_private,
4594 mm.inactive_shrinker);
4595 struct drm_device *dev = dev_priv->dev;
4596 struct drm_i915_gem_object *obj;
4597 int nr_to_scan = sc->nr_to_scan;
4598 bool unlock = true;
4599 int cnt;
4600
4601 if (!mutex_trylock(&dev->struct_mutex)) {
4602 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4603 return 0;
4604
4605 if (dev_priv->mm.shrinker_no_lock_stealing)
4606 return 0;
4607
4608 unlock = false;
4609 }
4610
4611 if (nr_to_scan) {
4612 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4613 if (nr_to_scan > 0)
4614 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4615 false);
4616 if (nr_to_scan > 0)
4617 i915_gem_shrink_all(dev_priv);
4618 }
4619
4620 cnt = 0;
4621 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4622 if (obj->pages_pin_count == 0)
4623 cnt += obj->base.size >> PAGE_SHIFT;
4624 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4625 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4626 cnt += obj->base.size >> PAGE_SHIFT;
4627
4628 if (unlock)
4629 mutex_unlock(&dev->struct_mutex);
4630 return cnt;
4631 }
This page took 0.136629 seconds and 6 git commands to generate.