Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = obj->gtt_offset + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 /**
1091 * Ensures that all rendering to the object has completed and the object is
1092 * safe to unbind from the GTT or access from the CPU.
1093 */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096 bool readonly)
1097 {
1098 struct intel_ring_buffer *ring = obj->ring;
1099 u32 seqno;
1100 int ret;
1101
1102 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103 if (seqno == 0)
1104 return 0;
1105
1106 ret = i915_wait_seqno(ring, seqno);
1107 if (ret)
1108 return ret;
1109
1110 i915_gem_retire_requests_ring(ring);
1111
1112 /* Manually manage the write flush as we may have not yet
1113 * retired the buffer.
1114 */
1115 if (obj->last_write_seqno &&
1116 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117 obj->last_write_seqno = 0;
1118 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125 * as the object state may change during this call.
1126 */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129 bool readonly)
1130 {
1131 struct drm_device *dev = obj->base.dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 struct intel_ring_buffer *ring = obj->ring;
1134 unsigned reset_counter;
1135 u32 seqno;
1136 int ret;
1137
1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 BUG_ON(!dev_priv->mm.interruptible);
1140
1141 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142 if (seqno == 0)
1143 return 0;
1144
1145 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146 if (ret)
1147 return ret;
1148
1149 ret = i915_gem_check_olr(ring, seqno);
1150 if (ret)
1151 return ret;
1152
1153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154 mutex_unlock(&dev->struct_mutex);
1155 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156 mutex_lock(&dev->struct_mutex);
1157
1158 i915_gem_retire_requests_ring(ring);
1159
1160 /* Manually manage the write flush as we may have not yet
1161 * retired the buffer.
1162 */
1163 if (obj->last_write_seqno &&
1164 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165 obj->last_write_seqno = 0;
1166 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167 }
1168
1169 return ret;
1170 }
1171
1172 /**
1173 * Called when user space prepares to use an object with the CPU, either
1174 * through the mmap ioctl's mapping or a GTT mapping.
1175 */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178 struct drm_file *file)
1179 {
1180 struct drm_i915_gem_set_domain *args = data;
1181 struct drm_i915_gem_object *obj;
1182 uint32_t read_domains = args->read_domains;
1183 uint32_t write_domain = args->write_domain;
1184 int ret;
1185
1186 /* Only handle setting domains to types used by the CPU. */
1187 if (write_domain & I915_GEM_GPU_DOMAINS)
1188 return -EINVAL;
1189
1190 if (read_domains & I915_GEM_GPU_DOMAINS)
1191 return -EINVAL;
1192
1193 /* Having something in the write domain implies it's in the read
1194 * domain, and only that read domain. Enforce that in the request.
1195 */
1196 if (write_domain != 0 && read_domains != write_domain)
1197 return -EINVAL;
1198
1199 ret = i915_mutex_lock_interruptible(dev);
1200 if (ret)
1201 return ret;
1202
1203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204 if (&obj->base == NULL) {
1205 ret = -ENOENT;
1206 goto unlock;
1207 }
1208
1209 /* Try to flush the object off the GPU without holding the lock.
1210 * We will repeat the flush holding the lock in the normal manner
1211 * to catch cases where we are gazumped.
1212 */
1213 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214 if (ret)
1215 goto unref;
1216
1217 if (read_domains & I915_GEM_DOMAIN_GTT) {
1218 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219
1220 /* Silently promote "you're not bound, there was nothing to do"
1221 * to success, since the client was just asking us to
1222 * make sure everything was done.
1223 */
1224 if (ret == -EINVAL)
1225 ret = 0;
1226 } else {
1227 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228 }
1229
1230 unref:
1231 drm_gem_object_unreference(&obj->base);
1232 unlock:
1233 mutex_unlock(&dev->struct_mutex);
1234 return ret;
1235 }
1236
1237 /**
1238 * Called when user space has done writes to this buffer
1239 */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242 struct drm_file *file)
1243 {
1244 struct drm_i915_gem_sw_finish *args = data;
1245 struct drm_i915_gem_object *obj;
1246 int ret = 0;
1247
1248 ret = i915_mutex_lock_interruptible(dev);
1249 if (ret)
1250 return ret;
1251
1252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253 if (&obj->base == NULL) {
1254 ret = -ENOENT;
1255 goto unlock;
1256 }
1257
1258 /* Pinned buffers may be scanout, so flush the cache */
1259 if (obj->pin_count)
1260 i915_gem_object_flush_cpu_write_domain(obj);
1261
1262 drm_gem_object_unreference(&obj->base);
1263 unlock:
1264 mutex_unlock(&dev->struct_mutex);
1265 return ret;
1266 }
1267
1268 /**
1269 * Maps the contents of an object, returning the address it is mapped
1270 * into.
1271 *
1272 * While the mapping holds a reference on the contents of the object, it doesn't
1273 * imply a ref on the object itself.
1274 */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277 struct drm_file *file)
1278 {
1279 struct drm_i915_gem_mmap *args = data;
1280 struct drm_gem_object *obj;
1281 unsigned long addr;
1282
1283 obj = drm_gem_object_lookup(dev, file, args->handle);
1284 if (obj == NULL)
1285 return -ENOENT;
1286
1287 /* prime objects have no backing filp to GEM mmap
1288 * pages from.
1289 */
1290 if (!obj->filp) {
1291 drm_gem_object_unreference_unlocked(obj);
1292 return -EINVAL;
1293 }
1294
1295 addr = vm_mmap(obj->filp, 0, args->size,
1296 PROT_READ | PROT_WRITE, MAP_SHARED,
1297 args->offset);
1298 drm_gem_object_unreference_unlocked(obj);
1299 if (IS_ERR((void *)addr))
1300 return addr;
1301
1302 args->addr_ptr = (uint64_t) addr;
1303
1304 return 0;
1305 }
1306
1307 /**
1308 * i915_gem_fault - fault a page into the GTT
1309 * vma: VMA in question
1310 * vmf: fault info
1311 *
1312 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313 * from userspace. The fault handler takes care of binding the object to
1314 * the GTT (if needed), allocating and programming a fence register (again,
1315 * only if needed based on whether the old reg is still valid or the object
1316 * is tiled) and inserting a new PTE into the faulting process.
1317 *
1318 * Note that the faulting process may involve evicting existing objects
1319 * from the GTT and/or fence registers to make room. So performance may
1320 * suffer if the GTT working set is large or there are few fence registers
1321 * left.
1322 */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326 struct drm_device *dev = obj->base.dev;
1327 drm_i915_private_t *dev_priv = dev->dev_private;
1328 pgoff_t page_offset;
1329 unsigned long pfn;
1330 int ret = 0;
1331 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332
1333 /* We don't use vmf->pgoff since that has the fake offset */
1334 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335 PAGE_SHIFT;
1336
1337 ret = i915_mutex_lock_interruptible(dev);
1338 if (ret)
1339 goto out;
1340
1341 trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
1343 /* Access to snoopable pages through the GTT is incoherent. */
1344 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345 ret = -EINVAL;
1346 goto unlock;
1347 }
1348
1349 /* Now bind it into the GTT if needed */
1350 ret = i915_gem_object_pin(obj, 0, true, false);
1351 if (ret)
1352 goto unlock;
1353
1354 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355 if (ret)
1356 goto unpin;
1357
1358 ret = i915_gem_object_get_fence(obj);
1359 if (ret)
1360 goto unpin;
1361
1362 obj->fault_mappable = true;
1363
1364 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365 page_offset;
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 i915_gem_object_unpin(obj);
1371 unlock:
1372 mutex_unlock(&dev->struct_mutex);
1373 out:
1374 switch (ret) {
1375 case -EIO:
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 return VM_FAULT_SIGBUS;
1381 case -EAGAIN:
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
1389 set_need_resched();
1390 case 0:
1391 case -ERESTARTSYS:
1392 case -EINTR:
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
1398 return VM_FAULT_NOPAGE;
1399 case -ENOMEM:
1400 return VM_FAULT_OOM;
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
1403 default:
1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 return VM_FAULT_SIGBUS;
1406 }
1407 }
1408
1409 /**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
1413 * Preserve the reservation of the mmapping with the DRM core code, but
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 if (!obj->fault_mappable)
1427 return;
1428
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
1433
1434 obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 uint32_t gtt_size;
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
1448 gtt_size = 1024*1024;
1449 else
1450 gtt_size = 512*1024;
1451
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
1454
1455 return gtt_size;
1456 }
1457
1458 /**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
1463 * potential fence register mapping.
1464 */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
1468 {
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 tiling_mode == I915_TILING_NONE)
1475 return 4096;
1476
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
1496 goto out;
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
1508 goto out;
1509
1510 i915_gem_shrink_all(dev_priv);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
1531 {
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct drm_i915_gem_object *obj;
1534 int ret;
1535
1536 ret = i915_mutex_lock_interruptible(dev);
1537 if (ret)
1538 return ret;
1539
1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 if (&obj->base == NULL) {
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
1545
1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 ret = -E2BIG;
1548 goto out;
1549 }
1550
1551 if (obj->madv != I915_MADV_WILLNEED) {
1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 ret = -EINVAL;
1554 goto out;
1555 }
1556
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
1560
1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564 drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 mutex_unlock(&dev->struct_mutex);
1567 return ret;
1568 }
1569
1570 /**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588 {
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 struct inode *inode;
1599
1600 i915_gem_object_free_mmap_offset(obj);
1601
1602 if (obj->base.filp == NULL)
1603 return;
1604
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
1610 inode = file_inode(obj->base.filp);
1611 shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613 obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 struct sg_page_iter sg_iter;
1626 int ret;
1627
1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
1640 if (i915_gem_object_needs_bit17_swizzle(obj))
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
1645
1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649 if (obj->dirty)
1650 set_page_dirty(page);
1651
1652 if (obj->madv == I915_MADV_WILLNEED)
1653 mark_page_accessed(page);
1654
1655 page_cache_release(page);
1656 }
1657 obj->dirty = 0;
1658
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668 if (obj->pages == NULL)
1669 return 0;
1670
1671 BUG_ON(obj->gtt_space);
1672
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
1679 list_del(&obj->gtt_list);
1680
1681 ops->put_pages(obj);
1682 obj->pages = NULL;
1683
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
1693 {
1694 struct drm_i915_gem_object *obj, *next;
1695 long count = 0;
1696
1697 list_for_each_entry_safe(obj, next,
1698 &dev_priv->mm.unbound_list,
1699 gtt_list) {
1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701 i915_gem_object_put_pages(obj) == 0) {
1702 count += obj->base.size >> PAGE_SHIFT;
1703 if (count >= target)
1704 return count;
1705 }
1706 }
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.inactive_list,
1710 mm_list) {
1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712 i915_gem_object_unbind(obj) == 0 &&
1713 i915_gem_object_put_pages(obj) == 0) {
1714 count += obj->base.size >> PAGE_SHIFT;
1715 if (count >= target)
1716 return count;
1717 }
1718 }
1719
1720 return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726 return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732 struct drm_i915_gem_object *obj, *next;
1733
1734 i915_gem_evict_everything(dev_priv->dev);
1735
1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1737 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 int page_count, i;
1745 struct address_space *mapping;
1746 struct sg_table *st;
1747 struct scatterlist *sg;
1748 struct sg_page_iter sg_iter;
1749 struct page *page;
1750 unsigned long last_pfn = 0; /* suppress gcc warning */
1751 gfp_t gfp;
1752
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
1764 page_count = obj->base.size / PAGE_SIZE;
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
1768 return -ENOMEM;
1769 }
1770
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
1776 mapping = file_inode(obj->base.filp)->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1804
1805 if (!i || page_to_pfn(page) != last_pfn + 1) {
1806 if (i)
1807 sg = sg_next(sg);
1808 st->nents++;
1809 sg_set_page(sg, page, PAGE_SIZE, 0);
1810 } else {
1811 sg->length += PAGE_SIZE;
1812 }
1813 last_pfn = page_to_pfn(page);
1814 }
1815
1816 sg_mark_end(sg);
1817 obj->pages = st;
1818
1819 if (i915_gem_object_needs_bit17_swizzle(obj))
1820 i915_gem_object_do_bit_17_swizzle(obj);
1821
1822 return 0;
1823
1824 err_pages:
1825 sg_mark_end(sg);
1826 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1827 page_cache_release(sg_page_iter_page(&sg_iter));
1828 sg_free_table(st);
1829 kfree(st);
1830 return PTR_ERR(page);
1831 }
1832
1833 /* Ensure that the associated pages are gathered from the backing storage
1834 * and pinned into our object. i915_gem_object_get_pages() may be called
1835 * multiple times before they are released by a single call to
1836 * i915_gem_object_put_pages() - once the pages are no longer referenced
1837 * either as a result of memory pressure (reaping pages under the shrinker)
1838 * or as the object is itself released.
1839 */
1840 int
1841 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1842 {
1843 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1844 const struct drm_i915_gem_object_ops *ops = obj->ops;
1845 int ret;
1846
1847 if (obj->pages)
1848 return 0;
1849
1850 if (obj->madv != I915_MADV_WILLNEED) {
1851 DRM_ERROR("Attempting to obtain a purgeable object\n");
1852 return -EINVAL;
1853 }
1854
1855 BUG_ON(obj->pages_pin_count);
1856
1857 ret = ops->get_pages(obj);
1858 if (ret)
1859 return ret;
1860
1861 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1862 return 0;
1863 }
1864
1865 void
1866 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1867 struct intel_ring_buffer *ring)
1868 {
1869 struct drm_device *dev = obj->base.dev;
1870 struct drm_i915_private *dev_priv = dev->dev_private;
1871 u32 seqno = intel_ring_get_seqno(ring);
1872
1873 BUG_ON(ring == NULL);
1874 obj->ring = ring;
1875
1876 /* Add a reference if we're newly entering the active list. */
1877 if (!obj->active) {
1878 drm_gem_object_reference(&obj->base);
1879 obj->active = 1;
1880 }
1881
1882 /* Move from whatever list we were on to the tail of execution. */
1883 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1884 list_move_tail(&obj->ring_list, &ring->active_list);
1885
1886 obj->last_read_seqno = seqno;
1887
1888 if (obj->fenced_gpu_access) {
1889 obj->last_fenced_seqno = seqno;
1890
1891 /* Bump MRU to take account of the delayed flush */
1892 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1893 struct drm_i915_fence_reg *reg;
1894
1895 reg = &dev_priv->fence_regs[obj->fence_reg];
1896 list_move_tail(&reg->lru_list,
1897 &dev_priv->mm.fence_list);
1898 }
1899 }
1900 }
1901
1902 static void
1903 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1904 {
1905 struct drm_device *dev = obj->base.dev;
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907
1908 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1909 BUG_ON(!obj->active);
1910
1911 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1912
1913 list_del_init(&obj->ring_list);
1914 obj->ring = NULL;
1915
1916 obj->last_read_seqno = 0;
1917 obj->last_write_seqno = 0;
1918 obj->base.write_domain = 0;
1919
1920 obj->last_fenced_seqno = 0;
1921 obj->fenced_gpu_access = false;
1922
1923 obj->active = 0;
1924 drm_gem_object_unreference(&obj->base);
1925
1926 WARN_ON(i915_verify_lists(dev));
1927 }
1928
1929 static int
1930 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1931 {
1932 struct drm_i915_private *dev_priv = dev->dev_private;
1933 struct intel_ring_buffer *ring;
1934 int ret, i, j;
1935
1936 /* Carefully retire all requests without writing to the rings */
1937 for_each_ring(ring, dev_priv, i) {
1938 ret = intel_ring_idle(ring);
1939 if (ret)
1940 return ret;
1941 }
1942 i915_gem_retire_requests(dev);
1943
1944 /* Finally reset hw state */
1945 for_each_ring(ring, dev_priv, i) {
1946 intel_ring_init_seqno(ring, seqno);
1947
1948 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1949 ring->sync_seqno[j] = 0;
1950 }
1951
1952 return 0;
1953 }
1954
1955 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1956 {
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 int ret;
1959
1960 if (seqno == 0)
1961 return -EINVAL;
1962
1963 /* HWS page needs to be set less than what we
1964 * will inject to ring
1965 */
1966 ret = i915_gem_init_seqno(dev, seqno - 1);
1967 if (ret)
1968 return ret;
1969
1970 /* Carefully set the last_seqno value so that wrap
1971 * detection still works
1972 */
1973 dev_priv->next_seqno = seqno;
1974 dev_priv->last_seqno = seqno - 1;
1975 if (dev_priv->last_seqno == 0)
1976 dev_priv->last_seqno--;
1977
1978 return 0;
1979 }
1980
1981 int
1982 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1983 {
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986 /* reserve 0 for non-seqno */
1987 if (dev_priv->next_seqno == 0) {
1988 int ret = i915_gem_init_seqno(dev, 0);
1989 if (ret)
1990 return ret;
1991
1992 dev_priv->next_seqno = 1;
1993 }
1994
1995 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1996 return 0;
1997 }
1998
1999 int
2000 i915_add_request(struct intel_ring_buffer *ring,
2001 struct drm_file *file,
2002 u32 *out_seqno)
2003 {
2004 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2005 struct drm_i915_gem_request *request;
2006 u32 request_ring_position;
2007 int was_empty;
2008 int ret;
2009
2010 /*
2011 * Emit any outstanding flushes - execbuf can fail to emit the flush
2012 * after having emitted the batchbuffer command. Hence we need to fix
2013 * things up similar to emitting the lazy request. The difference here
2014 * is that the flush _must_ happen before the next request, no matter
2015 * what.
2016 */
2017 ret = intel_ring_flush_all_caches(ring);
2018 if (ret)
2019 return ret;
2020
2021 request = kmalloc(sizeof(*request), GFP_KERNEL);
2022 if (request == NULL)
2023 return -ENOMEM;
2024
2025
2026 /* Record the position of the start of the request so that
2027 * should we detect the updated seqno part-way through the
2028 * GPU processing the request, we never over-estimate the
2029 * position of the head.
2030 */
2031 request_ring_position = intel_ring_get_tail(ring);
2032
2033 ret = ring->add_request(ring);
2034 if (ret) {
2035 kfree(request);
2036 return ret;
2037 }
2038
2039 request->seqno = intel_ring_get_seqno(ring);
2040 request->ring = ring;
2041 request->tail = request_ring_position;
2042 request->emitted_jiffies = jiffies;
2043 was_empty = list_empty(&ring->request_list);
2044 list_add_tail(&request->list, &ring->request_list);
2045 request->file_priv = NULL;
2046
2047 if (file) {
2048 struct drm_i915_file_private *file_priv = file->driver_priv;
2049
2050 spin_lock(&file_priv->mm.lock);
2051 request->file_priv = file_priv;
2052 list_add_tail(&request->client_list,
2053 &file_priv->mm.request_list);
2054 spin_unlock(&file_priv->mm.lock);
2055 }
2056
2057 trace_i915_gem_request_add(ring, request->seqno);
2058 ring->outstanding_lazy_request = 0;
2059
2060 if (!dev_priv->mm.suspended) {
2061 if (i915_enable_hangcheck) {
2062 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2063 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2064 }
2065 if (was_empty) {
2066 queue_delayed_work(dev_priv->wq,
2067 &dev_priv->mm.retire_work,
2068 round_jiffies_up_relative(HZ));
2069 intel_mark_busy(dev_priv->dev);
2070 }
2071 }
2072
2073 if (out_seqno)
2074 *out_seqno = request->seqno;
2075 return 0;
2076 }
2077
2078 static inline void
2079 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2080 {
2081 struct drm_i915_file_private *file_priv = request->file_priv;
2082
2083 if (!file_priv)
2084 return;
2085
2086 spin_lock(&file_priv->mm.lock);
2087 if (request->file_priv) {
2088 list_del(&request->client_list);
2089 request->file_priv = NULL;
2090 }
2091 spin_unlock(&file_priv->mm.lock);
2092 }
2093
2094 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2095 struct intel_ring_buffer *ring)
2096 {
2097 while (!list_empty(&ring->request_list)) {
2098 struct drm_i915_gem_request *request;
2099
2100 request = list_first_entry(&ring->request_list,
2101 struct drm_i915_gem_request,
2102 list);
2103
2104 list_del(&request->list);
2105 i915_gem_request_remove_from_client(request);
2106 kfree(request);
2107 }
2108
2109 while (!list_empty(&ring->active_list)) {
2110 struct drm_i915_gem_object *obj;
2111
2112 obj = list_first_entry(&ring->active_list,
2113 struct drm_i915_gem_object,
2114 ring_list);
2115
2116 i915_gem_object_move_to_inactive(obj);
2117 }
2118 }
2119
2120 static void i915_gem_reset_fences(struct drm_device *dev)
2121 {
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 int i;
2124
2125 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2126 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2127
2128 if (reg->obj)
2129 i915_gem_object_fence_lost(reg->obj);
2130
2131 i915_gem_write_fence(dev, i, NULL);
2132
2133 reg->pin_count = 0;
2134 reg->obj = NULL;
2135 INIT_LIST_HEAD(&reg->lru_list);
2136 }
2137
2138 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2139 }
2140
2141 void i915_gem_reset(struct drm_device *dev)
2142 {
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144 struct drm_i915_gem_object *obj;
2145 struct intel_ring_buffer *ring;
2146 int i;
2147
2148 for_each_ring(ring, dev_priv, i)
2149 i915_gem_reset_ring_lists(dev_priv, ring);
2150
2151 /* Move everything out of the GPU domains to ensure we do any
2152 * necessary invalidation upon reuse.
2153 */
2154 list_for_each_entry(obj,
2155 &dev_priv->mm.inactive_list,
2156 mm_list)
2157 {
2158 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2159 }
2160
2161 /* The fence registers are invalidated so clear them out */
2162 i915_gem_reset_fences(dev);
2163 }
2164
2165 /**
2166 * This function clears the request list as sequence numbers are passed.
2167 */
2168 void
2169 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2170 {
2171 uint32_t seqno;
2172
2173 if (list_empty(&ring->request_list))
2174 return;
2175
2176 WARN_ON(i915_verify_lists(ring->dev));
2177
2178 seqno = ring->get_seqno(ring, true);
2179
2180 while (!list_empty(&ring->request_list)) {
2181 struct drm_i915_gem_request *request;
2182
2183 request = list_first_entry(&ring->request_list,
2184 struct drm_i915_gem_request,
2185 list);
2186
2187 if (!i915_seqno_passed(seqno, request->seqno))
2188 break;
2189
2190 trace_i915_gem_request_retire(ring, request->seqno);
2191 /* We know the GPU must have read the request to have
2192 * sent us the seqno + interrupt, so use the position
2193 * of tail of the request to update the last known position
2194 * of the GPU head.
2195 */
2196 ring->last_retired_head = request->tail;
2197
2198 list_del(&request->list);
2199 i915_gem_request_remove_from_client(request);
2200 kfree(request);
2201 }
2202
2203 /* Move any buffers on the active list that are no longer referenced
2204 * by the ringbuffer to the flushing/inactive lists as appropriate.
2205 */
2206 while (!list_empty(&ring->active_list)) {
2207 struct drm_i915_gem_object *obj;
2208
2209 obj = list_first_entry(&ring->active_list,
2210 struct drm_i915_gem_object,
2211 ring_list);
2212
2213 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2214 break;
2215
2216 i915_gem_object_move_to_inactive(obj);
2217 }
2218
2219 if (unlikely(ring->trace_irq_seqno &&
2220 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2221 ring->irq_put(ring);
2222 ring->trace_irq_seqno = 0;
2223 }
2224
2225 WARN_ON(i915_verify_lists(ring->dev));
2226 }
2227
2228 void
2229 i915_gem_retire_requests(struct drm_device *dev)
2230 {
2231 drm_i915_private_t *dev_priv = dev->dev_private;
2232 struct intel_ring_buffer *ring;
2233 int i;
2234
2235 for_each_ring(ring, dev_priv, i)
2236 i915_gem_retire_requests_ring(ring);
2237 }
2238
2239 static void
2240 i915_gem_retire_work_handler(struct work_struct *work)
2241 {
2242 drm_i915_private_t *dev_priv;
2243 struct drm_device *dev;
2244 struct intel_ring_buffer *ring;
2245 bool idle;
2246 int i;
2247
2248 dev_priv = container_of(work, drm_i915_private_t,
2249 mm.retire_work.work);
2250 dev = dev_priv->dev;
2251
2252 /* Come back later if the device is busy... */
2253 if (!mutex_trylock(&dev->struct_mutex)) {
2254 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2255 round_jiffies_up_relative(HZ));
2256 return;
2257 }
2258
2259 i915_gem_retire_requests(dev);
2260
2261 /* Send a periodic flush down the ring so we don't hold onto GEM
2262 * objects indefinitely.
2263 */
2264 idle = true;
2265 for_each_ring(ring, dev_priv, i) {
2266 if (ring->gpu_caches_dirty)
2267 i915_add_request(ring, NULL, NULL);
2268
2269 idle &= list_empty(&ring->request_list);
2270 }
2271
2272 if (!dev_priv->mm.suspended && !idle)
2273 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2274 round_jiffies_up_relative(HZ));
2275 if (idle)
2276 intel_mark_idle(dev);
2277
2278 mutex_unlock(&dev->struct_mutex);
2279 }
2280
2281 /**
2282 * Ensures that an object will eventually get non-busy by flushing any required
2283 * write domains, emitting any outstanding lazy request and retiring and
2284 * completed requests.
2285 */
2286 static int
2287 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2288 {
2289 int ret;
2290
2291 if (obj->active) {
2292 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2293 if (ret)
2294 return ret;
2295
2296 i915_gem_retire_requests_ring(obj->ring);
2297 }
2298
2299 return 0;
2300 }
2301
2302 /**
2303 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2304 * @DRM_IOCTL_ARGS: standard ioctl arguments
2305 *
2306 * Returns 0 if successful, else an error is returned with the remaining time in
2307 * the timeout parameter.
2308 * -ETIME: object is still busy after timeout
2309 * -ERESTARTSYS: signal interrupted the wait
2310 * -ENONENT: object doesn't exist
2311 * Also possible, but rare:
2312 * -EAGAIN: GPU wedged
2313 * -ENOMEM: damn
2314 * -ENODEV: Internal IRQ fail
2315 * -E?: The add request failed
2316 *
2317 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2318 * non-zero timeout parameter the wait ioctl will wait for the given number of
2319 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2320 * without holding struct_mutex the object may become re-busied before this
2321 * function completes. A similar but shorter * race condition exists in the busy
2322 * ioctl
2323 */
2324 int
2325 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2326 {
2327 drm_i915_private_t *dev_priv = dev->dev_private;
2328 struct drm_i915_gem_wait *args = data;
2329 struct drm_i915_gem_object *obj;
2330 struct intel_ring_buffer *ring = NULL;
2331 struct timespec timeout_stack, *timeout = NULL;
2332 unsigned reset_counter;
2333 u32 seqno = 0;
2334 int ret = 0;
2335
2336 if (args->timeout_ns >= 0) {
2337 timeout_stack = ns_to_timespec(args->timeout_ns);
2338 timeout = &timeout_stack;
2339 }
2340
2341 ret = i915_mutex_lock_interruptible(dev);
2342 if (ret)
2343 return ret;
2344
2345 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2346 if (&obj->base == NULL) {
2347 mutex_unlock(&dev->struct_mutex);
2348 return -ENOENT;
2349 }
2350
2351 /* Need to make sure the object gets inactive eventually. */
2352 ret = i915_gem_object_flush_active(obj);
2353 if (ret)
2354 goto out;
2355
2356 if (obj->active) {
2357 seqno = obj->last_read_seqno;
2358 ring = obj->ring;
2359 }
2360
2361 if (seqno == 0)
2362 goto out;
2363
2364 /* Do this after OLR check to make sure we make forward progress polling
2365 * on this IOCTL with a 0 timeout (like busy ioctl)
2366 */
2367 if (!args->timeout_ns) {
2368 ret = -ETIME;
2369 goto out;
2370 }
2371
2372 drm_gem_object_unreference(&obj->base);
2373 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2374 mutex_unlock(&dev->struct_mutex);
2375
2376 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2377 if (timeout)
2378 args->timeout_ns = timespec_to_ns(timeout);
2379 return ret;
2380
2381 out:
2382 drm_gem_object_unreference(&obj->base);
2383 mutex_unlock(&dev->struct_mutex);
2384 return ret;
2385 }
2386
2387 /**
2388 * i915_gem_object_sync - sync an object to a ring.
2389 *
2390 * @obj: object which may be in use on another ring.
2391 * @to: ring we wish to use the object on. May be NULL.
2392 *
2393 * This code is meant to abstract object synchronization with the GPU.
2394 * Calling with NULL implies synchronizing the object with the CPU
2395 * rather than a particular GPU ring.
2396 *
2397 * Returns 0 if successful, else propagates up the lower layer error.
2398 */
2399 int
2400 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2401 struct intel_ring_buffer *to)
2402 {
2403 struct intel_ring_buffer *from = obj->ring;
2404 u32 seqno;
2405 int ret, idx;
2406
2407 if (from == NULL || to == from)
2408 return 0;
2409
2410 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2411 return i915_gem_object_wait_rendering(obj, false);
2412
2413 idx = intel_ring_sync_index(from, to);
2414
2415 seqno = obj->last_read_seqno;
2416 if (seqno <= from->sync_seqno[idx])
2417 return 0;
2418
2419 ret = i915_gem_check_olr(obj->ring, seqno);
2420 if (ret)
2421 return ret;
2422
2423 ret = to->sync_to(to, from, seqno);
2424 if (!ret)
2425 /* We use last_read_seqno because sync_to()
2426 * might have just caused seqno wrap under
2427 * the radar.
2428 */
2429 from->sync_seqno[idx] = obj->last_read_seqno;
2430
2431 return ret;
2432 }
2433
2434 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2435 {
2436 u32 old_write_domain, old_read_domains;
2437
2438 /* Force a pagefault for domain tracking on next user access */
2439 i915_gem_release_mmap(obj);
2440
2441 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2442 return;
2443
2444 /* Wait for any direct GTT access to complete */
2445 mb();
2446
2447 old_read_domains = obj->base.read_domains;
2448 old_write_domain = obj->base.write_domain;
2449
2450 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2451 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2452
2453 trace_i915_gem_object_change_domain(obj,
2454 old_read_domains,
2455 old_write_domain);
2456 }
2457
2458 /**
2459 * Unbinds an object from the GTT aperture.
2460 */
2461 int
2462 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2463 {
2464 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2465 int ret;
2466
2467 if (obj->gtt_space == NULL)
2468 return 0;
2469
2470 if (obj->pin_count)
2471 return -EBUSY;
2472
2473 BUG_ON(obj->pages == NULL);
2474
2475 ret = i915_gem_object_finish_gpu(obj);
2476 if (ret)
2477 return ret;
2478 /* Continue on if we fail due to EIO, the GPU is hung so we
2479 * should be safe and we need to cleanup or else we might
2480 * cause memory corruption through use-after-free.
2481 */
2482
2483 i915_gem_object_finish_gtt(obj);
2484
2485 /* release the fence reg _after_ flushing */
2486 ret = i915_gem_object_put_fence(obj);
2487 if (ret)
2488 return ret;
2489
2490 trace_i915_gem_object_unbind(obj);
2491
2492 if (obj->has_global_gtt_mapping)
2493 i915_gem_gtt_unbind_object(obj);
2494 if (obj->has_aliasing_ppgtt_mapping) {
2495 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2496 obj->has_aliasing_ppgtt_mapping = 0;
2497 }
2498 i915_gem_gtt_finish_object(obj);
2499
2500 list_del(&obj->mm_list);
2501 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2502 /* Avoid an unnecessary call to unbind on rebind. */
2503 obj->map_and_fenceable = true;
2504
2505 drm_mm_put_block(obj->gtt_space);
2506 obj->gtt_space = NULL;
2507 obj->gtt_offset = 0;
2508
2509 return 0;
2510 }
2511
2512 int i915_gpu_idle(struct drm_device *dev)
2513 {
2514 drm_i915_private_t *dev_priv = dev->dev_private;
2515 struct intel_ring_buffer *ring;
2516 int ret, i;
2517
2518 /* Flush everything onto the inactive list. */
2519 for_each_ring(ring, dev_priv, i) {
2520 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2521 if (ret)
2522 return ret;
2523
2524 ret = intel_ring_idle(ring);
2525 if (ret)
2526 return ret;
2527 }
2528
2529 return 0;
2530 }
2531
2532 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2533 struct drm_i915_gem_object *obj)
2534 {
2535 drm_i915_private_t *dev_priv = dev->dev_private;
2536 int fence_reg;
2537 int fence_pitch_shift;
2538 uint64_t val;
2539
2540 if (INTEL_INFO(dev)->gen >= 6) {
2541 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2542 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2543 } else {
2544 fence_reg = FENCE_REG_965_0;
2545 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2546 }
2547
2548 if (obj) {
2549 u32 size = obj->gtt_space->size;
2550
2551 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2552 0xfffff000) << 32;
2553 val |= obj->gtt_offset & 0xfffff000;
2554 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2555 if (obj->tiling_mode == I915_TILING_Y)
2556 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2557 val |= I965_FENCE_REG_VALID;
2558 } else
2559 val = 0;
2560
2561 fence_reg += reg * 8;
2562 I915_WRITE64(fence_reg, val);
2563 POSTING_READ(fence_reg);
2564 }
2565
2566 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2567 struct drm_i915_gem_object *obj)
2568 {
2569 drm_i915_private_t *dev_priv = dev->dev_private;
2570 u32 val;
2571
2572 if (obj) {
2573 u32 size = obj->gtt_space->size;
2574 int pitch_val;
2575 int tile_width;
2576
2577 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2578 (size & -size) != size ||
2579 (obj->gtt_offset & (size - 1)),
2580 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2581 obj->gtt_offset, obj->map_and_fenceable, size);
2582
2583 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2584 tile_width = 128;
2585 else
2586 tile_width = 512;
2587
2588 /* Note: pitch better be a power of two tile widths */
2589 pitch_val = obj->stride / tile_width;
2590 pitch_val = ffs(pitch_val) - 1;
2591
2592 val = obj->gtt_offset;
2593 if (obj->tiling_mode == I915_TILING_Y)
2594 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2595 val |= I915_FENCE_SIZE_BITS(size);
2596 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2597 val |= I830_FENCE_REG_VALID;
2598 } else
2599 val = 0;
2600
2601 if (reg < 8)
2602 reg = FENCE_REG_830_0 + reg * 4;
2603 else
2604 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2605
2606 I915_WRITE(reg, val);
2607 POSTING_READ(reg);
2608 }
2609
2610 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2611 struct drm_i915_gem_object *obj)
2612 {
2613 drm_i915_private_t *dev_priv = dev->dev_private;
2614 uint32_t val;
2615
2616 if (obj) {
2617 u32 size = obj->gtt_space->size;
2618 uint32_t pitch_val;
2619
2620 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2621 (size & -size) != size ||
2622 (obj->gtt_offset & (size - 1)),
2623 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2624 obj->gtt_offset, size);
2625
2626 pitch_val = obj->stride / 128;
2627 pitch_val = ffs(pitch_val) - 1;
2628
2629 val = obj->gtt_offset;
2630 if (obj->tiling_mode == I915_TILING_Y)
2631 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2632 val |= I830_FENCE_SIZE_BITS(size);
2633 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2634 val |= I830_FENCE_REG_VALID;
2635 } else
2636 val = 0;
2637
2638 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2639 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2640 }
2641
2642 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2643 {
2644 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2645 }
2646
2647 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2648 struct drm_i915_gem_object *obj)
2649 {
2650 struct drm_i915_private *dev_priv = dev->dev_private;
2651
2652 /* Ensure that all CPU reads are completed before installing a fence
2653 * and all writes before removing the fence.
2654 */
2655 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2656 mb();
2657
2658 switch (INTEL_INFO(dev)->gen) {
2659 case 7:
2660 case 6:
2661 case 5:
2662 case 4: i965_write_fence_reg(dev, reg, obj); break;
2663 case 3: i915_write_fence_reg(dev, reg, obj); break;
2664 case 2: i830_write_fence_reg(dev, reg, obj); break;
2665 default: BUG();
2666 }
2667
2668 /* And similarly be paranoid that no direct access to this region
2669 * is reordered to before the fence is installed.
2670 */
2671 if (i915_gem_object_needs_mb(obj))
2672 mb();
2673 }
2674
2675 static inline int fence_number(struct drm_i915_private *dev_priv,
2676 struct drm_i915_fence_reg *fence)
2677 {
2678 return fence - dev_priv->fence_regs;
2679 }
2680
2681 static void i915_gem_write_fence__ipi(void *data)
2682 {
2683 wbinvd();
2684 }
2685
2686 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2687 struct drm_i915_fence_reg *fence,
2688 bool enable)
2689 {
2690 struct drm_device *dev = obj->base.dev;
2691 struct drm_i915_private *dev_priv = dev->dev_private;
2692 int fence_reg = fence_number(dev_priv, fence);
2693
2694 /* In order to fully serialize access to the fenced region and
2695 * the update to the fence register we need to take extreme
2696 * measures on SNB+. In theory, the write to the fence register
2697 * flushes all memory transactions before, and coupled with the
2698 * mb() placed around the register write we serialise all memory
2699 * operations with respect to the changes in the tiler. Yet, on
2700 * SNB+ we need to take a step further and emit an explicit wbinvd()
2701 * on each processor in order to manually flush all memory
2702 * transactions before updating the fence register.
2703 */
2704 if (HAS_LLC(obj->base.dev))
2705 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2706 i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2707
2708 if (enable) {
2709 obj->fence_reg = fence_reg;
2710 fence->obj = obj;
2711 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2712 } else {
2713 obj->fence_reg = I915_FENCE_REG_NONE;
2714 fence->obj = NULL;
2715 list_del_init(&fence->lru_list);
2716 }
2717 }
2718
2719 static int
2720 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2721 {
2722 if (obj->last_fenced_seqno) {
2723 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2724 if (ret)
2725 return ret;
2726
2727 obj->last_fenced_seqno = 0;
2728 }
2729
2730 obj->fenced_gpu_access = false;
2731 return 0;
2732 }
2733
2734 int
2735 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2736 {
2737 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2738 struct drm_i915_fence_reg *fence;
2739 int ret;
2740
2741 ret = i915_gem_object_wait_fence(obj);
2742 if (ret)
2743 return ret;
2744
2745 if (obj->fence_reg == I915_FENCE_REG_NONE)
2746 return 0;
2747
2748 fence = &dev_priv->fence_regs[obj->fence_reg];
2749
2750 i915_gem_object_fence_lost(obj);
2751 i915_gem_object_update_fence(obj, fence, false);
2752
2753 return 0;
2754 }
2755
2756 static struct drm_i915_fence_reg *
2757 i915_find_fence_reg(struct drm_device *dev)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 struct drm_i915_fence_reg *reg, *avail;
2761 int i;
2762
2763 /* First try to find a free reg */
2764 avail = NULL;
2765 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2766 reg = &dev_priv->fence_regs[i];
2767 if (!reg->obj)
2768 return reg;
2769
2770 if (!reg->pin_count)
2771 avail = reg;
2772 }
2773
2774 if (avail == NULL)
2775 return NULL;
2776
2777 /* None available, try to steal one or wait for a user to finish */
2778 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2779 if (reg->pin_count)
2780 continue;
2781
2782 return reg;
2783 }
2784
2785 return NULL;
2786 }
2787
2788 /**
2789 * i915_gem_object_get_fence - set up fencing for an object
2790 * @obj: object to map through a fence reg
2791 *
2792 * When mapping objects through the GTT, userspace wants to be able to write
2793 * to them without having to worry about swizzling if the object is tiled.
2794 * This function walks the fence regs looking for a free one for @obj,
2795 * stealing one if it can't find any.
2796 *
2797 * It then sets up the reg based on the object's properties: address, pitch
2798 * and tiling format.
2799 *
2800 * For an untiled surface, this removes any existing fence.
2801 */
2802 int
2803 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2804 {
2805 struct drm_device *dev = obj->base.dev;
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 bool enable = obj->tiling_mode != I915_TILING_NONE;
2808 struct drm_i915_fence_reg *reg;
2809 int ret;
2810
2811 /* Have we updated the tiling parameters upon the object and so
2812 * will need to serialise the write to the associated fence register?
2813 */
2814 if (obj->fence_dirty) {
2815 ret = i915_gem_object_wait_fence(obj);
2816 if (ret)
2817 return ret;
2818 }
2819
2820 /* Just update our place in the LRU if our fence is getting reused. */
2821 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2822 reg = &dev_priv->fence_regs[obj->fence_reg];
2823 if (!obj->fence_dirty) {
2824 list_move_tail(&reg->lru_list,
2825 &dev_priv->mm.fence_list);
2826 return 0;
2827 }
2828 } else if (enable) {
2829 reg = i915_find_fence_reg(dev);
2830 if (reg == NULL)
2831 return -EDEADLK;
2832
2833 if (reg->obj) {
2834 struct drm_i915_gem_object *old = reg->obj;
2835
2836 ret = i915_gem_object_wait_fence(old);
2837 if (ret)
2838 return ret;
2839
2840 i915_gem_object_fence_lost(old);
2841 }
2842 } else
2843 return 0;
2844
2845 i915_gem_object_update_fence(obj, reg, enable);
2846 obj->fence_dirty = false;
2847
2848 return 0;
2849 }
2850
2851 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2852 struct drm_mm_node *gtt_space,
2853 unsigned long cache_level)
2854 {
2855 struct drm_mm_node *other;
2856
2857 /* On non-LLC machines we have to be careful when putting differing
2858 * types of snoopable memory together to avoid the prefetcher
2859 * crossing memory domains and dying.
2860 */
2861 if (HAS_LLC(dev))
2862 return true;
2863
2864 if (gtt_space == NULL)
2865 return true;
2866
2867 if (list_empty(&gtt_space->node_list))
2868 return true;
2869
2870 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2871 if (other->allocated && !other->hole_follows && other->color != cache_level)
2872 return false;
2873
2874 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2875 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2876 return false;
2877
2878 return true;
2879 }
2880
2881 static void i915_gem_verify_gtt(struct drm_device *dev)
2882 {
2883 #if WATCH_GTT
2884 struct drm_i915_private *dev_priv = dev->dev_private;
2885 struct drm_i915_gem_object *obj;
2886 int err = 0;
2887
2888 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2889 if (obj->gtt_space == NULL) {
2890 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2891 err++;
2892 continue;
2893 }
2894
2895 if (obj->cache_level != obj->gtt_space->color) {
2896 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2897 obj->gtt_space->start,
2898 obj->gtt_space->start + obj->gtt_space->size,
2899 obj->cache_level,
2900 obj->gtt_space->color);
2901 err++;
2902 continue;
2903 }
2904
2905 if (!i915_gem_valid_gtt_space(dev,
2906 obj->gtt_space,
2907 obj->cache_level)) {
2908 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2909 obj->gtt_space->start,
2910 obj->gtt_space->start + obj->gtt_space->size,
2911 obj->cache_level);
2912 err++;
2913 continue;
2914 }
2915 }
2916
2917 WARN_ON(err);
2918 #endif
2919 }
2920
2921 /**
2922 * Finds free space in the GTT aperture and binds the object there.
2923 */
2924 static int
2925 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2926 unsigned alignment,
2927 bool map_and_fenceable,
2928 bool nonblocking)
2929 {
2930 struct drm_device *dev = obj->base.dev;
2931 drm_i915_private_t *dev_priv = dev->dev_private;
2932 struct drm_mm_node *node;
2933 u32 size, fence_size, fence_alignment, unfenced_alignment;
2934 bool mappable, fenceable;
2935 int ret;
2936
2937 fence_size = i915_gem_get_gtt_size(dev,
2938 obj->base.size,
2939 obj->tiling_mode);
2940 fence_alignment = i915_gem_get_gtt_alignment(dev,
2941 obj->base.size,
2942 obj->tiling_mode, true);
2943 unfenced_alignment =
2944 i915_gem_get_gtt_alignment(dev,
2945 obj->base.size,
2946 obj->tiling_mode, false);
2947
2948 if (alignment == 0)
2949 alignment = map_and_fenceable ? fence_alignment :
2950 unfenced_alignment;
2951 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2952 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2953 return -EINVAL;
2954 }
2955
2956 size = map_and_fenceable ? fence_size : obj->base.size;
2957
2958 /* If the object is bigger than the entire aperture, reject it early
2959 * before evicting everything in a vain attempt to find space.
2960 */
2961 if (obj->base.size >
2962 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2963 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2964 return -E2BIG;
2965 }
2966
2967 ret = i915_gem_object_get_pages(obj);
2968 if (ret)
2969 return ret;
2970
2971 i915_gem_object_pin_pages(obj);
2972
2973 node = kzalloc(sizeof(*node), GFP_KERNEL);
2974 if (node == NULL) {
2975 i915_gem_object_unpin_pages(obj);
2976 return -ENOMEM;
2977 }
2978
2979 search_free:
2980 if (map_and_fenceable)
2981 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2982 size, alignment, obj->cache_level,
2983 0, dev_priv->gtt.mappable_end);
2984 else
2985 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2986 size, alignment, obj->cache_level);
2987 if (ret) {
2988 ret = i915_gem_evict_something(dev, size, alignment,
2989 obj->cache_level,
2990 map_and_fenceable,
2991 nonblocking);
2992 if (ret == 0)
2993 goto search_free;
2994
2995 i915_gem_object_unpin_pages(obj);
2996 kfree(node);
2997 return ret;
2998 }
2999 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3000 i915_gem_object_unpin_pages(obj);
3001 drm_mm_put_block(node);
3002 return -EINVAL;
3003 }
3004
3005 ret = i915_gem_gtt_prepare_object(obj);
3006 if (ret) {
3007 i915_gem_object_unpin_pages(obj);
3008 drm_mm_put_block(node);
3009 return ret;
3010 }
3011
3012 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3013 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3014
3015 obj->gtt_space = node;
3016 obj->gtt_offset = node->start;
3017
3018 fenceable =
3019 node->size == fence_size &&
3020 (node->start & (fence_alignment - 1)) == 0;
3021
3022 mappable =
3023 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3024
3025 obj->map_and_fenceable = mappable && fenceable;
3026
3027 i915_gem_object_unpin_pages(obj);
3028 trace_i915_gem_object_bind(obj, map_and_fenceable);
3029 i915_gem_verify_gtt(dev);
3030 return 0;
3031 }
3032
3033 void
3034 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3035 {
3036 /* If we don't have a page list set up, then we're not pinned
3037 * to GPU, and we can ignore the cache flush because it'll happen
3038 * again at bind time.
3039 */
3040 if (obj->pages == NULL)
3041 return;
3042
3043 /*
3044 * Stolen memory is always coherent with the GPU as it is explicitly
3045 * marked as wc by the system, or the system is cache-coherent.
3046 */
3047 if (obj->stolen)
3048 return;
3049
3050 /* If the GPU is snooping the contents of the CPU cache,
3051 * we do not need to manually clear the CPU cache lines. However,
3052 * the caches are only snooped when the render cache is
3053 * flushed/invalidated. As we always have to emit invalidations
3054 * and flushes when moving into and out of the RENDER domain, correct
3055 * snooping behaviour occurs naturally as the result of our domain
3056 * tracking.
3057 */
3058 if (obj->cache_level != I915_CACHE_NONE)
3059 return;
3060
3061 trace_i915_gem_object_clflush(obj);
3062
3063 drm_clflush_sg(obj->pages);
3064 }
3065
3066 /** Flushes the GTT write domain for the object if it's dirty. */
3067 static void
3068 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3069 {
3070 uint32_t old_write_domain;
3071
3072 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3073 return;
3074
3075 /* No actual flushing is required for the GTT write domain. Writes
3076 * to it immediately go to main memory as far as we know, so there's
3077 * no chipset flush. It also doesn't land in render cache.
3078 *
3079 * However, we do have to enforce the order so that all writes through
3080 * the GTT land before any writes to the device, such as updates to
3081 * the GATT itself.
3082 */
3083 wmb();
3084
3085 old_write_domain = obj->base.write_domain;
3086 obj->base.write_domain = 0;
3087
3088 trace_i915_gem_object_change_domain(obj,
3089 obj->base.read_domains,
3090 old_write_domain);
3091 }
3092
3093 /** Flushes the CPU write domain for the object if it's dirty. */
3094 static void
3095 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3096 {
3097 uint32_t old_write_domain;
3098
3099 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3100 return;
3101
3102 i915_gem_clflush_object(obj);
3103 i915_gem_chipset_flush(obj->base.dev);
3104 old_write_domain = obj->base.write_domain;
3105 obj->base.write_domain = 0;
3106
3107 trace_i915_gem_object_change_domain(obj,
3108 obj->base.read_domains,
3109 old_write_domain);
3110 }
3111
3112 /**
3113 * Moves a single object to the GTT read, and possibly write domain.
3114 *
3115 * This function returns when the move is complete, including waiting on
3116 * flushes to occur.
3117 */
3118 int
3119 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3120 {
3121 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3122 uint32_t old_write_domain, old_read_domains;
3123 int ret;
3124
3125 /* Not valid to be called on unbound objects. */
3126 if (obj->gtt_space == NULL)
3127 return -EINVAL;
3128
3129 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3130 return 0;
3131
3132 ret = i915_gem_object_wait_rendering(obj, !write);
3133 if (ret)
3134 return ret;
3135
3136 i915_gem_object_flush_cpu_write_domain(obj);
3137
3138 /* Serialise direct access to this object with the barriers for
3139 * coherent writes from the GPU, by effectively invalidating the
3140 * GTT domain upon first access.
3141 */
3142 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3143 mb();
3144
3145 old_write_domain = obj->base.write_domain;
3146 old_read_domains = obj->base.read_domains;
3147
3148 /* It should now be out of any other write domains, and we can update
3149 * the domain values for our changes.
3150 */
3151 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3152 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3153 if (write) {
3154 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3155 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3156 obj->dirty = 1;
3157 }
3158
3159 trace_i915_gem_object_change_domain(obj,
3160 old_read_domains,
3161 old_write_domain);
3162
3163 /* And bump the LRU for this access */
3164 if (i915_gem_object_is_inactive(obj))
3165 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3166
3167 return 0;
3168 }
3169
3170 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3171 enum i915_cache_level cache_level)
3172 {
3173 struct drm_device *dev = obj->base.dev;
3174 drm_i915_private_t *dev_priv = dev->dev_private;
3175 int ret;
3176
3177 if (obj->cache_level == cache_level)
3178 return 0;
3179
3180 if (obj->pin_count) {
3181 DRM_DEBUG("can not change the cache level of pinned objects\n");
3182 return -EBUSY;
3183 }
3184
3185 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3186 ret = i915_gem_object_unbind(obj);
3187 if (ret)
3188 return ret;
3189 }
3190
3191 if (obj->gtt_space) {
3192 ret = i915_gem_object_finish_gpu(obj);
3193 if (ret)
3194 return ret;
3195
3196 i915_gem_object_finish_gtt(obj);
3197
3198 /* Before SandyBridge, you could not use tiling or fence
3199 * registers with snooped memory, so relinquish any fences
3200 * currently pointing to our region in the aperture.
3201 */
3202 if (INTEL_INFO(dev)->gen < 6) {
3203 ret = i915_gem_object_put_fence(obj);
3204 if (ret)
3205 return ret;
3206 }
3207
3208 if (obj->has_global_gtt_mapping)
3209 i915_gem_gtt_bind_object(obj, cache_level);
3210 if (obj->has_aliasing_ppgtt_mapping)
3211 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3212 obj, cache_level);
3213
3214 obj->gtt_space->color = cache_level;
3215 }
3216
3217 if (cache_level == I915_CACHE_NONE) {
3218 u32 old_read_domains, old_write_domain;
3219
3220 /* If we're coming from LLC cached, then we haven't
3221 * actually been tracking whether the data is in the
3222 * CPU cache or not, since we only allow one bit set
3223 * in obj->write_domain and have been skipping the clflushes.
3224 * Just set it to the CPU cache for now.
3225 */
3226 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3227 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3228
3229 old_read_domains = obj->base.read_domains;
3230 old_write_domain = obj->base.write_domain;
3231
3232 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3233 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3234
3235 trace_i915_gem_object_change_domain(obj,
3236 old_read_domains,
3237 old_write_domain);
3238 }
3239
3240 obj->cache_level = cache_level;
3241 i915_gem_verify_gtt(dev);
3242 return 0;
3243 }
3244
3245 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3246 struct drm_file *file)
3247 {
3248 struct drm_i915_gem_caching *args = data;
3249 struct drm_i915_gem_object *obj;
3250 int ret;
3251
3252 ret = i915_mutex_lock_interruptible(dev);
3253 if (ret)
3254 return ret;
3255
3256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3257 if (&obj->base == NULL) {
3258 ret = -ENOENT;
3259 goto unlock;
3260 }
3261
3262 args->caching = obj->cache_level != I915_CACHE_NONE;
3263
3264 drm_gem_object_unreference(&obj->base);
3265 unlock:
3266 mutex_unlock(&dev->struct_mutex);
3267 return ret;
3268 }
3269
3270 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3271 struct drm_file *file)
3272 {
3273 struct drm_i915_gem_caching *args = data;
3274 struct drm_i915_gem_object *obj;
3275 enum i915_cache_level level;
3276 int ret;
3277
3278 switch (args->caching) {
3279 case I915_CACHING_NONE:
3280 level = I915_CACHE_NONE;
3281 break;
3282 case I915_CACHING_CACHED:
3283 level = I915_CACHE_LLC;
3284 break;
3285 default:
3286 return -EINVAL;
3287 }
3288
3289 ret = i915_mutex_lock_interruptible(dev);
3290 if (ret)
3291 return ret;
3292
3293 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3294 if (&obj->base == NULL) {
3295 ret = -ENOENT;
3296 goto unlock;
3297 }
3298
3299 ret = i915_gem_object_set_cache_level(obj, level);
3300
3301 drm_gem_object_unreference(&obj->base);
3302 unlock:
3303 mutex_unlock(&dev->struct_mutex);
3304 return ret;
3305 }
3306
3307 /*
3308 * Prepare buffer for display plane (scanout, cursors, etc).
3309 * Can be called from an uninterruptible phase (modesetting) and allows
3310 * any flushes to be pipelined (for pageflips).
3311 */
3312 int
3313 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3314 u32 alignment,
3315 struct intel_ring_buffer *pipelined)
3316 {
3317 u32 old_read_domains, old_write_domain;
3318 int ret;
3319
3320 if (pipelined != obj->ring) {
3321 ret = i915_gem_object_sync(obj, pipelined);
3322 if (ret)
3323 return ret;
3324 }
3325
3326 /* The display engine is not coherent with the LLC cache on gen6. As
3327 * a result, we make sure that the pinning that is about to occur is
3328 * done with uncached PTEs. This is lowest common denominator for all
3329 * chipsets.
3330 *
3331 * However for gen6+, we could do better by using the GFDT bit instead
3332 * of uncaching, which would allow us to flush all the LLC-cached data
3333 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3334 */
3335 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3336 if (ret)
3337 return ret;
3338
3339 /* As the user may map the buffer once pinned in the display plane
3340 * (e.g. libkms for the bootup splash), we have to ensure that we
3341 * always use map_and_fenceable for all scanout buffers.
3342 */
3343 ret = i915_gem_object_pin(obj, alignment, true, false);
3344 if (ret)
3345 return ret;
3346
3347 i915_gem_object_flush_cpu_write_domain(obj);
3348
3349 old_write_domain = obj->base.write_domain;
3350 old_read_domains = obj->base.read_domains;
3351
3352 /* It should now be out of any other write domains, and we can update
3353 * the domain values for our changes.
3354 */
3355 obj->base.write_domain = 0;
3356 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3357
3358 trace_i915_gem_object_change_domain(obj,
3359 old_read_domains,
3360 old_write_domain);
3361
3362 return 0;
3363 }
3364
3365 int
3366 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3367 {
3368 int ret;
3369
3370 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3371 return 0;
3372
3373 ret = i915_gem_object_wait_rendering(obj, false);
3374 if (ret)
3375 return ret;
3376
3377 /* Ensure that we invalidate the GPU's caches and TLBs. */
3378 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3379 return 0;
3380 }
3381
3382 /**
3383 * Moves a single object to the CPU read, and possibly write domain.
3384 *
3385 * This function returns when the move is complete, including waiting on
3386 * flushes to occur.
3387 */
3388 int
3389 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3390 {
3391 uint32_t old_write_domain, old_read_domains;
3392 int ret;
3393
3394 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3395 return 0;
3396
3397 ret = i915_gem_object_wait_rendering(obj, !write);
3398 if (ret)
3399 return ret;
3400
3401 i915_gem_object_flush_gtt_write_domain(obj);
3402
3403 old_write_domain = obj->base.write_domain;
3404 old_read_domains = obj->base.read_domains;
3405
3406 /* Flush the CPU cache if it's still invalid. */
3407 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3408 i915_gem_clflush_object(obj);
3409
3410 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3411 }
3412
3413 /* It should now be out of any other write domains, and we can update
3414 * the domain values for our changes.
3415 */
3416 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3417
3418 /* If we're writing through the CPU, then the GPU read domains will
3419 * need to be invalidated at next use.
3420 */
3421 if (write) {
3422 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3423 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3424 }
3425
3426 trace_i915_gem_object_change_domain(obj,
3427 old_read_domains,
3428 old_write_domain);
3429
3430 return 0;
3431 }
3432
3433 /* Throttle our rendering by waiting until the ring has completed our requests
3434 * emitted over 20 msec ago.
3435 *
3436 * Note that if we were to use the current jiffies each time around the loop,
3437 * we wouldn't escape the function with any frames outstanding if the time to
3438 * render a frame was over 20ms.
3439 *
3440 * This should get us reasonable parallelism between CPU and GPU but also
3441 * relatively low latency when blocking on a particular request to finish.
3442 */
3443 static int
3444 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3445 {
3446 struct drm_i915_private *dev_priv = dev->dev_private;
3447 struct drm_i915_file_private *file_priv = file->driver_priv;
3448 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3449 struct drm_i915_gem_request *request;
3450 struct intel_ring_buffer *ring = NULL;
3451 unsigned reset_counter;
3452 u32 seqno = 0;
3453 int ret;
3454
3455 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3456 if (ret)
3457 return ret;
3458
3459 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3460 if (ret)
3461 return ret;
3462
3463 spin_lock(&file_priv->mm.lock);
3464 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3465 if (time_after_eq(request->emitted_jiffies, recent_enough))
3466 break;
3467
3468 ring = request->ring;
3469 seqno = request->seqno;
3470 }
3471 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3472 spin_unlock(&file_priv->mm.lock);
3473
3474 if (seqno == 0)
3475 return 0;
3476
3477 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3478 if (ret == 0)
3479 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3480
3481 return ret;
3482 }
3483
3484 int
3485 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3486 uint32_t alignment,
3487 bool map_and_fenceable,
3488 bool nonblocking)
3489 {
3490 int ret;
3491
3492 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3493 return -EBUSY;
3494
3495 if (obj->gtt_space != NULL) {
3496 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3497 (map_and_fenceable && !obj->map_and_fenceable)) {
3498 WARN(obj->pin_count,
3499 "bo is already pinned with incorrect alignment:"
3500 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3501 " obj->map_and_fenceable=%d\n",
3502 obj->gtt_offset, alignment,
3503 map_and_fenceable,
3504 obj->map_and_fenceable);
3505 ret = i915_gem_object_unbind(obj);
3506 if (ret)
3507 return ret;
3508 }
3509 }
3510
3511 if (obj->gtt_space == NULL) {
3512 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3513
3514 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3515 map_and_fenceable,
3516 nonblocking);
3517 if (ret)
3518 return ret;
3519
3520 if (!dev_priv->mm.aliasing_ppgtt)
3521 i915_gem_gtt_bind_object(obj, obj->cache_level);
3522 }
3523
3524 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3525 i915_gem_gtt_bind_object(obj, obj->cache_level);
3526
3527 obj->pin_count++;
3528 obj->pin_mappable |= map_and_fenceable;
3529
3530 return 0;
3531 }
3532
3533 void
3534 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3535 {
3536 BUG_ON(obj->pin_count == 0);
3537 BUG_ON(obj->gtt_space == NULL);
3538
3539 if (--obj->pin_count == 0)
3540 obj->pin_mappable = false;
3541 }
3542
3543 int
3544 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3545 struct drm_file *file)
3546 {
3547 struct drm_i915_gem_pin *args = data;
3548 struct drm_i915_gem_object *obj;
3549 int ret;
3550
3551 ret = i915_mutex_lock_interruptible(dev);
3552 if (ret)
3553 return ret;
3554
3555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3556 if (&obj->base == NULL) {
3557 ret = -ENOENT;
3558 goto unlock;
3559 }
3560
3561 if (obj->madv != I915_MADV_WILLNEED) {
3562 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3563 ret = -EINVAL;
3564 goto out;
3565 }
3566
3567 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3568 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3569 args->handle);
3570 ret = -EINVAL;
3571 goto out;
3572 }
3573
3574 if (obj->user_pin_count == 0) {
3575 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3576 if (ret)
3577 goto out;
3578 }
3579
3580 obj->user_pin_count++;
3581 obj->pin_filp = file;
3582
3583 /* XXX - flush the CPU caches for pinned objects
3584 * as the X server doesn't manage domains yet
3585 */
3586 i915_gem_object_flush_cpu_write_domain(obj);
3587 args->offset = obj->gtt_offset;
3588 out:
3589 drm_gem_object_unreference(&obj->base);
3590 unlock:
3591 mutex_unlock(&dev->struct_mutex);
3592 return ret;
3593 }
3594
3595 int
3596 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3597 struct drm_file *file)
3598 {
3599 struct drm_i915_gem_pin *args = data;
3600 struct drm_i915_gem_object *obj;
3601 int ret;
3602
3603 ret = i915_mutex_lock_interruptible(dev);
3604 if (ret)
3605 return ret;
3606
3607 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3608 if (&obj->base == NULL) {
3609 ret = -ENOENT;
3610 goto unlock;
3611 }
3612
3613 if (obj->pin_filp != file) {
3614 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3615 args->handle);
3616 ret = -EINVAL;
3617 goto out;
3618 }
3619 obj->user_pin_count--;
3620 if (obj->user_pin_count == 0) {
3621 obj->pin_filp = NULL;
3622 i915_gem_object_unpin(obj);
3623 }
3624
3625 out:
3626 drm_gem_object_unreference(&obj->base);
3627 unlock:
3628 mutex_unlock(&dev->struct_mutex);
3629 return ret;
3630 }
3631
3632 int
3633 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3634 struct drm_file *file)
3635 {
3636 struct drm_i915_gem_busy *args = data;
3637 struct drm_i915_gem_object *obj;
3638 int ret;
3639
3640 ret = i915_mutex_lock_interruptible(dev);
3641 if (ret)
3642 return ret;
3643
3644 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3645 if (&obj->base == NULL) {
3646 ret = -ENOENT;
3647 goto unlock;
3648 }
3649
3650 /* Count all active objects as busy, even if they are currently not used
3651 * by the gpu. Users of this interface expect objects to eventually
3652 * become non-busy without any further actions, therefore emit any
3653 * necessary flushes here.
3654 */
3655 ret = i915_gem_object_flush_active(obj);
3656
3657 args->busy = obj->active;
3658 if (obj->ring) {
3659 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3660 args->busy |= intel_ring_flag(obj->ring) << 16;
3661 }
3662
3663 drm_gem_object_unreference(&obj->base);
3664 unlock:
3665 mutex_unlock(&dev->struct_mutex);
3666 return ret;
3667 }
3668
3669 int
3670 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3671 struct drm_file *file_priv)
3672 {
3673 return i915_gem_ring_throttle(dev, file_priv);
3674 }
3675
3676 int
3677 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3678 struct drm_file *file_priv)
3679 {
3680 struct drm_i915_gem_madvise *args = data;
3681 struct drm_i915_gem_object *obj;
3682 int ret;
3683
3684 switch (args->madv) {
3685 case I915_MADV_DONTNEED:
3686 case I915_MADV_WILLNEED:
3687 break;
3688 default:
3689 return -EINVAL;
3690 }
3691
3692 ret = i915_mutex_lock_interruptible(dev);
3693 if (ret)
3694 return ret;
3695
3696 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3697 if (&obj->base == NULL) {
3698 ret = -ENOENT;
3699 goto unlock;
3700 }
3701
3702 if (obj->pin_count) {
3703 ret = -EINVAL;
3704 goto out;
3705 }
3706
3707 if (obj->madv != __I915_MADV_PURGED)
3708 obj->madv = args->madv;
3709
3710 /* if the object is no longer attached, discard its backing storage */
3711 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3712 i915_gem_object_truncate(obj);
3713
3714 args->retained = obj->madv != __I915_MADV_PURGED;
3715
3716 out:
3717 drm_gem_object_unreference(&obj->base);
3718 unlock:
3719 mutex_unlock(&dev->struct_mutex);
3720 return ret;
3721 }
3722
3723 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3724 const struct drm_i915_gem_object_ops *ops)
3725 {
3726 INIT_LIST_HEAD(&obj->mm_list);
3727 INIT_LIST_HEAD(&obj->gtt_list);
3728 INIT_LIST_HEAD(&obj->ring_list);
3729 INIT_LIST_HEAD(&obj->exec_list);
3730
3731 obj->ops = ops;
3732
3733 obj->fence_reg = I915_FENCE_REG_NONE;
3734 obj->madv = I915_MADV_WILLNEED;
3735 /* Avoid an unnecessary call to unbind on the first bind. */
3736 obj->map_and_fenceable = true;
3737
3738 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3739 }
3740
3741 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3742 .get_pages = i915_gem_object_get_pages_gtt,
3743 .put_pages = i915_gem_object_put_pages_gtt,
3744 };
3745
3746 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3747 size_t size)
3748 {
3749 struct drm_i915_gem_object *obj;
3750 struct address_space *mapping;
3751 gfp_t mask;
3752
3753 obj = i915_gem_object_alloc(dev);
3754 if (obj == NULL)
3755 return NULL;
3756
3757 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3758 i915_gem_object_free(obj);
3759 return NULL;
3760 }
3761
3762 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3763 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3764 /* 965gm cannot relocate objects above 4GiB. */
3765 mask &= ~__GFP_HIGHMEM;
3766 mask |= __GFP_DMA32;
3767 }
3768
3769 mapping = file_inode(obj->base.filp)->i_mapping;
3770 mapping_set_gfp_mask(mapping, mask);
3771
3772 i915_gem_object_init(obj, &i915_gem_object_ops);
3773
3774 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3775 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3776
3777 if (HAS_LLC(dev)) {
3778 /* On some devices, we can have the GPU use the LLC (the CPU
3779 * cache) for about a 10% performance improvement
3780 * compared to uncached. Graphics requests other than
3781 * display scanout are coherent with the CPU in
3782 * accessing this cache. This means in this mode we
3783 * don't need to clflush on the CPU side, and on the
3784 * GPU side we only need to flush internal caches to
3785 * get data visible to the CPU.
3786 *
3787 * However, we maintain the display planes as UC, and so
3788 * need to rebind when first used as such.
3789 */
3790 obj->cache_level = I915_CACHE_LLC;
3791 } else
3792 obj->cache_level = I915_CACHE_NONE;
3793
3794 return obj;
3795 }
3796
3797 int i915_gem_init_object(struct drm_gem_object *obj)
3798 {
3799 BUG();
3800
3801 return 0;
3802 }
3803
3804 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3805 {
3806 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3807 struct drm_device *dev = obj->base.dev;
3808 drm_i915_private_t *dev_priv = dev->dev_private;
3809
3810 trace_i915_gem_object_destroy(obj);
3811
3812 if (obj->phys_obj)
3813 i915_gem_detach_phys_object(dev, obj);
3814
3815 obj->pin_count = 0;
3816 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3817 bool was_interruptible;
3818
3819 was_interruptible = dev_priv->mm.interruptible;
3820 dev_priv->mm.interruptible = false;
3821
3822 WARN_ON(i915_gem_object_unbind(obj));
3823
3824 dev_priv->mm.interruptible = was_interruptible;
3825 }
3826
3827 obj->pages_pin_count = 0;
3828 i915_gem_object_put_pages(obj);
3829 i915_gem_object_free_mmap_offset(obj);
3830 i915_gem_object_release_stolen(obj);
3831
3832 BUG_ON(obj->pages);
3833
3834 if (obj->base.import_attach)
3835 drm_prime_gem_destroy(&obj->base, NULL);
3836
3837 drm_gem_object_release(&obj->base);
3838 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3839
3840 kfree(obj->bit_17);
3841 i915_gem_object_free(obj);
3842 }
3843
3844 int
3845 i915_gem_idle(struct drm_device *dev)
3846 {
3847 drm_i915_private_t *dev_priv = dev->dev_private;
3848 int ret;
3849
3850 mutex_lock(&dev->struct_mutex);
3851
3852 if (dev_priv->mm.suspended) {
3853 mutex_unlock(&dev->struct_mutex);
3854 return 0;
3855 }
3856
3857 ret = i915_gpu_idle(dev);
3858 if (ret) {
3859 mutex_unlock(&dev->struct_mutex);
3860 return ret;
3861 }
3862 i915_gem_retire_requests(dev);
3863
3864 /* Under UMS, be paranoid and evict. */
3865 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3866 i915_gem_evict_everything(dev);
3867
3868 i915_gem_reset_fences(dev);
3869
3870 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3871 * We need to replace this with a semaphore, or something.
3872 * And not confound mm.suspended!
3873 */
3874 dev_priv->mm.suspended = 1;
3875 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3876
3877 i915_kernel_lost_context(dev);
3878 i915_gem_cleanup_ringbuffer(dev);
3879
3880 mutex_unlock(&dev->struct_mutex);
3881
3882 /* Cancel the retire work handler, which should be idle now. */
3883 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3884
3885 return 0;
3886 }
3887
3888 void i915_gem_l3_remap(struct drm_device *dev)
3889 {
3890 drm_i915_private_t *dev_priv = dev->dev_private;
3891 u32 misccpctl;
3892 int i;
3893
3894 if (!HAS_L3_GPU_CACHE(dev))
3895 return;
3896
3897 if (!dev_priv->l3_parity.remap_info)
3898 return;
3899
3900 misccpctl = I915_READ(GEN7_MISCCPCTL);
3901 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3902 POSTING_READ(GEN7_MISCCPCTL);
3903
3904 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3905 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3906 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3907 DRM_DEBUG("0x%x was already programmed to %x\n",
3908 GEN7_L3LOG_BASE + i, remap);
3909 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3910 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3911 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3912 }
3913
3914 /* Make sure all the writes land before disabling dop clock gating */
3915 POSTING_READ(GEN7_L3LOG_BASE);
3916
3917 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3918 }
3919
3920 void i915_gem_init_swizzling(struct drm_device *dev)
3921 {
3922 drm_i915_private_t *dev_priv = dev->dev_private;
3923
3924 if (INTEL_INFO(dev)->gen < 5 ||
3925 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3926 return;
3927
3928 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3929 DISP_TILE_SURFACE_SWIZZLING);
3930
3931 if (IS_GEN5(dev))
3932 return;
3933
3934 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3935 if (IS_GEN6(dev))
3936 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3937 else if (IS_GEN7(dev))
3938 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3939 else
3940 BUG();
3941 }
3942
3943 static bool
3944 intel_enable_blt(struct drm_device *dev)
3945 {
3946 if (!HAS_BLT(dev))
3947 return false;
3948
3949 /* The blitter was dysfunctional on early prototypes */
3950 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3951 DRM_INFO("BLT not supported on this pre-production hardware;"
3952 " graphics performance will be degraded.\n");
3953 return false;
3954 }
3955
3956 return true;
3957 }
3958
3959 static int i915_gem_init_rings(struct drm_device *dev)
3960 {
3961 struct drm_i915_private *dev_priv = dev->dev_private;
3962 int ret;
3963
3964 ret = intel_init_render_ring_buffer(dev);
3965 if (ret)
3966 return ret;
3967
3968 if (HAS_BSD(dev)) {
3969 ret = intel_init_bsd_ring_buffer(dev);
3970 if (ret)
3971 goto cleanup_render_ring;
3972 }
3973
3974 if (intel_enable_blt(dev)) {
3975 ret = intel_init_blt_ring_buffer(dev);
3976 if (ret)
3977 goto cleanup_bsd_ring;
3978 }
3979
3980 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3981 if (ret)
3982 goto cleanup_blt_ring;
3983
3984 return 0;
3985
3986 cleanup_blt_ring:
3987 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3988 cleanup_bsd_ring:
3989 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3990 cleanup_render_ring:
3991 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3992
3993 return ret;
3994 }
3995
3996 int
3997 i915_gem_init_hw(struct drm_device *dev)
3998 {
3999 drm_i915_private_t *dev_priv = dev->dev_private;
4000 int ret;
4001
4002 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4003 return -EIO;
4004
4005 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4006 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4007
4008 if (HAS_PCH_NOP(dev)) {
4009 u32 temp = I915_READ(GEN7_MSG_CTL);
4010 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4011 I915_WRITE(GEN7_MSG_CTL, temp);
4012 }
4013
4014 i915_gem_l3_remap(dev);
4015
4016 i915_gem_init_swizzling(dev);
4017
4018 ret = i915_gem_init_rings(dev);
4019 if (ret)
4020 return ret;
4021
4022 /*
4023 * XXX: There was some w/a described somewhere suggesting loading
4024 * contexts before PPGTT.
4025 */
4026 i915_gem_context_init(dev);
4027 if (dev_priv->mm.aliasing_ppgtt) {
4028 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4029 if (ret) {
4030 i915_gem_cleanup_aliasing_ppgtt(dev);
4031 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4032 }
4033 }
4034
4035 return 0;
4036 }
4037
4038 int i915_gem_init(struct drm_device *dev)
4039 {
4040 struct drm_i915_private *dev_priv = dev->dev_private;
4041 int ret;
4042
4043 mutex_lock(&dev->struct_mutex);
4044
4045 if (IS_VALLEYVIEW(dev)) {
4046 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4047 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4048 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4049 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4050 }
4051
4052 i915_gem_init_global_gtt(dev);
4053
4054 ret = i915_gem_init_hw(dev);
4055 mutex_unlock(&dev->struct_mutex);
4056 if (ret) {
4057 i915_gem_cleanup_aliasing_ppgtt(dev);
4058 return ret;
4059 }
4060
4061 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4062 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4063 dev_priv->dri1.allow_batchbuffer = 1;
4064 return 0;
4065 }
4066
4067 void
4068 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4069 {
4070 drm_i915_private_t *dev_priv = dev->dev_private;
4071 struct intel_ring_buffer *ring;
4072 int i;
4073
4074 for_each_ring(ring, dev_priv, i)
4075 intel_cleanup_ring_buffer(ring);
4076 }
4077
4078 int
4079 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4080 struct drm_file *file_priv)
4081 {
4082 drm_i915_private_t *dev_priv = dev->dev_private;
4083 int ret;
4084
4085 if (drm_core_check_feature(dev, DRIVER_MODESET))
4086 return 0;
4087
4088 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4089 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4090 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4091 }
4092
4093 mutex_lock(&dev->struct_mutex);
4094 dev_priv->mm.suspended = 0;
4095
4096 ret = i915_gem_init_hw(dev);
4097 if (ret != 0) {
4098 mutex_unlock(&dev->struct_mutex);
4099 return ret;
4100 }
4101
4102 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4103 mutex_unlock(&dev->struct_mutex);
4104
4105 ret = drm_irq_install(dev);
4106 if (ret)
4107 goto cleanup_ringbuffer;
4108
4109 return 0;
4110
4111 cleanup_ringbuffer:
4112 mutex_lock(&dev->struct_mutex);
4113 i915_gem_cleanup_ringbuffer(dev);
4114 dev_priv->mm.suspended = 1;
4115 mutex_unlock(&dev->struct_mutex);
4116
4117 return ret;
4118 }
4119
4120 int
4121 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4122 struct drm_file *file_priv)
4123 {
4124 if (drm_core_check_feature(dev, DRIVER_MODESET))
4125 return 0;
4126
4127 drm_irq_uninstall(dev);
4128 return i915_gem_idle(dev);
4129 }
4130
4131 void
4132 i915_gem_lastclose(struct drm_device *dev)
4133 {
4134 int ret;
4135
4136 if (drm_core_check_feature(dev, DRIVER_MODESET))
4137 return;
4138
4139 ret = i915_gem_idle(dev);
4140 if (ret)
4141 DRM_ERROR("failed to idle hardware: %d\n", ret);
4142 }
4143
4144 static void
4145 init_ring_lists(struct intel_ring_buffer *ring)
4146 {
4147 INIT_LIST_HEAD(&ring->active_list);
4148 INIT_LIST_HEAD(&ring->request_list);
4149 }
4150
4151 void
4152 i915_gem_load(struct drm_device *dev)
4153 {
4154 drm_i915_private_t *dev_priv = dev->dev_private;
4155 int i;
4156
4157 dev_priv->slab =
4158 kmem_cache_create("i915_gem_object",
4159 sizeof(struct drm_i915_gem_object), 0,
4160 SLAB_HWCACHE_ALIGN,
4161 NULL);
4162
4163 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4164 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4165 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4166 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4167 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4168 for (i = 0; i < I915_NUM_RINGS; i++)
4169 init_ring_lists(&dev_priv->ring[i]);
4170 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4171 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4172 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4173 i915_gem_retire_work_handler);
4174 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4175
4176 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4177 if (IS_GEN3(dev)) {
4178 I915_WRITE(MI_ARB_STATE,
4179 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4180 }
4181
4182 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4183
4184 /* Old X drivers will take 0-2 for front, back, depth buffers */
4185 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4186 dev_priv->fence_reg_start = 3;
4187
4188 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4189 dev_priv->num_fence_regs = 32;
4190 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4191 dev_priv->num_fence_regs = 16;
4192 else
4193 dev_priv->num_fence_regs = 8;
4194
4195 /* Initialize fence registers to zero */
4196 i915_gem_reset_fences(dev);
4197
4198 i915_gem_detect_bit_6_swizzle(dev);
4199 init_waitqueue_head(&dev_priv->pending_flip_queue);
4200
4201 dev_priv->mm.interruptible = true;
4202
4203 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4204 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4205 register_shrinker(&dev_priv->mm.inactive_shrinker);
4206 }
4207
4208 /*
4209 * Create a physically contiguous memory object for this object
4210 * e.g. for cursor + overlay regs
4211 */
4212 static int i915_gem_init_phys_object(struct drm_device *dev,
4213 int id, int size, int align)
4214 {
4215 drm_i915_private_t *dev_priv = dev->dev_private;
4216 struct drm_i915_gem_phys_object *phys_obj;
4217 int ret;
4218
4219 if (dev_priv->mm.phys_objs[id - 1] || !size)
4220 return 0;
4221
4222 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4223 if (!phys_obj)
4224 return -ENOMEM;
4225
4226 phys_obj->id = id;
4227
4228 phys_obj->handle = drm_pci_alloc(dev, size, align);
4229 if (!phys_obj->handle) {
4230 ret = -ENOMEM;
4231 goto kfree_obj;
4232 }
4233 #ifdef CONFIG_X86
4234 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4235 #endif
4236
4237 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4238
4239 return 0;
4240 kfree_obj:
4241 kfree(phys_obj);
4242 return ret;
4243 }
4244
4245 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4246 {
4247 drm_i915_private_t *dev_priv = dev->dev_private;
4248 struct drm_i915_gem_phys_object *phys_obj;
4249
4250 if (!dev_priv->mm.phys_objs[id - 1])
4251 return;
4252
4253 phys_obj = dev_priv->mm.phys_objs[id - 1];
4254 if (phys_obj->cur_obj) {
4255 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4256 }
4257
4258 #ifdef CONFIG_X86
4259 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4260 #endif
4261 drm_pci_free(dev, phys_obj->handle);
4262 kfree(phys_obj);
4263 dev_priv->mm.phys_objs[id - 1] = NULL;
4264 }
4265
4266 void i915_gem_free_all_phys_object(struct drm_device *dev)
4267 {
4268 int i;
4269
4270 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4271 i915_gem_free_phys_object(dev, i);
4272 }
4273
4274 void i915_gem_detach_phys_object(struct drm_device *dev,
4275 struct drm_i915_gem_object *obj)
4276 {
4277 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4278 char *vaddr;
4279 int i;
4280 int page_count;
4281
4282 if (!obj->phys_obj)
4283 return;
4284 vaddr = obj->phys_obj->handle->vaddr;
4285
4286 page_count = obj->base.size / PAGE_SIZE;
4287 for (i = 0; i < page_count; i++) {
4288 struct page *page = shmem_read_mapping_page(mapping, i);
4289 if (!IS_ERR(page)) {
4290 char *dst = kmap_atomic(page);
4291 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4292 kunmap_atomic(dst);
4293
4294 drm_clflush_pages(&page, 1);
4295
4296 set_page_dirty(page);
4297 mark_page_accessed(page);
4298 page_cache_release(page);
4299 }
4300 }
4301 i915_gem_chipset_flush(dev);
4302
4303 obj->phys_obj->cur_obj = NULL;
4304 obj->phys_obj = NULL;
4305 }
4306
4307 int
4308 i915_gem_attach_phys_object(struct drm_device *dev,
4309 struct drm_i915_gem_object *obj,
4310 int id,
4311 int align)
4312 {
4313 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4314 drm_i915_private_t *dev_priv = dev->dev_private;
4315 int ret = 0;
4316 int page_count;
4317 int i;
4318
4319 if (id > I915_MAX_PHYS_OBJECT)
4320 return -EINVAL;
4321
4322 if (obj->phys_obj) {
4323 if (obj->phys_obj->id == id)
4324 return 0;
4325 i915_gem_detach_phys_object(dev, obj);
4326 }
4327
4328 /* create a new object */
4329 if (!dev_priv->mm.phys_objs[id - 1]) {
4330 ret = i915_gem_init_phys_object(dev, id,
4331 obj->base.size, align);
4332 if (ret) {
4333 DRM_ERROR("failed to init phys object %d size: %zu\n",
4334 id, obj->base.size);
4335 return ret;
4336 }
4337 }
4338
4339 /* bind to the object */
4340 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4341 obj->phys_obj->cur_obj = obj;
4342
4343 page_count = obj->base.size / PAGE_SIZE;
4344
4345 for (i = 0; i < page_count; i++) {
4346 struct page *page;
4347 char *dst, *src;
4348
4349 page = shmem_read_mapping_page(mapping, i);
4350 if (IS_ERR(page))
4351 return PTR_ERR(page);
4352
4353 src = kmap_atomic(page);
4354 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4355 memcpy(dst, src, PAGE_SIZE);
4356 kunmap_atomic(src);
4357
4358 mark_page_accessed(page);
4359 page_cache_release(page);
4360 }
4361
4362 return 0;
4363 }
4364
4365 static int
4366 i915_gem_phys_pwrite(struct drm_device *dev,
4367 struct drm_i915_gem_object *obj,
4368 struct drm_i915_gem_pwrite *args,
4369 struct drm_file *file_priv)
4370 {
4371 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4372 char __user *user_data = to_user_ptr(args->data_ptr);
4373
4374 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4375 unsigned long unwritten;
4376
4377 /* The physical object once assigned is fixed for the lifetime
4378 * of the obj, so we can safely drop the lock and continue
4379 * to access vaddr.
4380 */
4381 mutex_unlock(&dev->struct_mutex);
4382 unwritten = copy_from_user(vaddr, user_data, args->size);
4383 mutex_lock(&dev->struct_mutex);
4384 if (unwritten)
4385 return -EFAULT;
4386 }
4387
4388 i915_gem_chipset_flush(dev);
4389 return 0;
4390 }
4391
4392 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4393 {
4394 struct drm_i915_file_private *file_priv = file->driver_priv;
4395
4396 /* Clean up our request list when the client is going away, so that
4397 * later retire_requests won't dereference our soon-to-be-gone
4398 * file_priv.
4399 */
4400 spin_lock(&file_priv->mm.lock);
4401 while (!list_empty(&file_priv->mm.request_list)) {
4402 struct drm_i915_gem_request *request;
4403
4404 request = list_first_entry(&file_priv->mm.request_list,
4405 struct drm_i915_gem_request,
4406 client_list);
4407 list_del(&request->client_list);
4408 request->file_priv = NULL;
4409 }
4410 spin_unlock(&file_priv->mm.lock);
4411 }
4412
4413 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4414 {
4415 if (!mutex_is_locked(mutex))
4416 return false;
4417
4418 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4419 return mutex->owner == task;
4420 #else
4421 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4422 return false;
4423 #endif
4424 }
4425
4426 static int
4427 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4428 {
4429 struct drm_i915_private *dev_priv =
4430 container_of(shrinker,
4431 struct drm_i915_private,
4432 mm.inactive_shrinker);
4433 struct drm_device *dev = dev_priv->dev;
4434 struct drm_i915_gem_object *obj;
4435 int nr_to_scan = sc->nr_to_scan;
4436 bool unlock = true;
4437 int cnt;
4438
4439 if (!mutex_trylock(&dev->struct_mutex)) {
4440 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4441 return 0;
4442
4443 if (dev_priv->mm.shrinker_no_lock_stealing)
4444 return 0;
4445
4446 unlock = false;
4447 }
4448
4449 if (nr_to_scan) {
4450 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4451 if (nr_to_scan > 0)
4452 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4453 false);
4454 if (nr_to_scan > 0)
4455 i915_gem_shrink_all(dev_priv);
4456 }
4457
4458 cnt = 0;
4459 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4460 if (obj->pages_pin_count == 0)
4461 cnt += obj->base.size >> PAGE_SHIFT;
4462 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4463 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4464 cnt += obj->base.size >> PAGE_SHIFT;
4465
4466 if (unlock)
4467 mutex_unlock(&dev->struct_mutex);
4468 return cnt;
4469 }
This page took 0.125698 seconds and 6 git commands to generate.