Merge tag 'drm-intel-fixes-2015-03-19' into drm-intel-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/oom.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 int
157 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158 struct drm_file *file)
159 {
160 struct drm_i915_private *dev_priv = dev->dev_private;
161 struct drm_i915_gem_get_aperture *args = data;
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
164
165 pinned = 0;
166 mutex_lock(&dev->struct_mutex);
167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
168 if (i915_gem_obj_is_pinned(obj))
169 pinned += i915_gem_obj_ggtt_size(obj);
170 mutex_unlock(&dev->struct_mutex);
171
172 args->aper_size = dev_priv->gtt.base.total;
173 args->aper_available_size = args->aper_size - pinned;
174
175 return 0;
176 }
177
178 static int
179 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180 {
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
186
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
221
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228 }
229
230 static void
231 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232 {
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
236
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251 char *vaddr = obj->phys_handle->vaddr;
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
269 mark_page_accessed(page);
270 page_cache_release(page);
271 vaddr += PAGE_SIZE;
272 }
273 obj->dirty = 0;
274 }
275
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280 }
281
282 static void
283 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284 {
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286 }
287
288 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292 };
293
294 static int
295 drop_pages(struct drm_i915_gem_object *obj)
296 {
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
309 }
310
311 int
312 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314 {
315 drm_dma_handle_t *phys;
316 int ret;
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
340 obj->phys_handle = phys;
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
344 }
345
346 static int
347 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350 {
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
354 int ret = 0;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
362
363 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
364 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
365 unsigned long unwritten;
366
367 /* The physical object once assigned is fixed for the lifetime
368 * of the obj, so we can safely drop the lock and continue
369 * to access vaddr.
370 */
371 mutex_unlock(&dev->struct_mutex);
372 unwritten = copy_from_user(vaddr, user_data, args->size);
373 mutex_lock(&dev->struct_mutex);
374 if (unwritten) {
375 ret = -EFAULT;
376 goto out;
377 }
378 }
379
380 drm_clflush_virt_range(vaddr, args->size);
381 i915_gem_chipset_flush(dev);
382
383 out:
384 intel_fb_obj_flush(obj, false);
385 return ret;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402 struct drm_device *dev,
403 uint64_t size,
404 uint32_t *handle_p)
405 {
406 struct drm_i915_gem_object *obj;
407 int ret;
408 u32 handle;
409
410 size = roundup(size, PAGE_SIZE);
411 if (size == 0)
412 return -EINVAL;
413
414 /* Allocate the new object */
415 obj = i915_gem_alloc_object(dev, size);
416 if (obj == NULL)
417 return -ENOMEM;
418
419 ret = drm_gem_handle_create(file, &obj->base, &handle);
420 /* drop reference from allocate - handle holds it now */
421 drm_gem_object_unreference_unlocked(&obj->base);
422 if (ret)
423 return ret;
424
425 *handle_p = handle;
426 return 0;
427 }
428
429 int
430 i915_gem_dumb_create(struct drm_file *file,
431 struct drm_device *dev,
432 struct drm_mode_create_dumb *args)
433 {
434 /* have to work out size/pitch and return them */
435 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
436 args->size = args->pitch * args->height;
437 return i915_gem_create(file, dev,
438 args->size, &args->handle);
439 }
440
441 /**
442 * Creates a new mm object and returns a handle to it.
443 */
444 int
445 i915_gem_create_ioctl(struct drm_device *dev, void *data,
446 struct drm_file *file)
447 {
448 struct drm_i915_gem_create *args = data;
449
450 return i915_gem_create(file, dev,
451 args->size, &args->handle);
452 }
453
454 static inline int
455 __copy_to_user_swizzled(char __user *cpu_vaddr,
456 const char *gpu_vaddr, int gpu_offset,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467 gpu_vaddr + swizzled_gpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 static inline int
481 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482 const char __user *cpu_vaddr,
483 int length)
484 {
485 int ret, cpu_offset = 0;
486
487 while (length > 0) {
488 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489 int this_length = min(cacheline_end - gpu_offset, length);
490 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493 cpu_vaddr + cpu_offset,
494 this_length);
495 if (ret)
496 return ret + length;
497
498 cpu_offset += this_length;
499 gpu_offset += this_length;
500 length -= this_length;
501 }
502
503 return 0;
504 }
505
506 /*
507 * Pins the specified object's pages and synchronizes the object with
508 * GPU accesses. Sets needs_clflush to non-zero if the caller should
509 * flush the object from the CPU cache.
510 */
511 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512 int *needs_clflush)
513 {
514 int ret;
515
516 *needs_clflush = 0;
517
518 if (!obj->base.filp)
519 return -EINVAL;
520
521 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
522 /* If we're not in the cpu read domain, set ourself into the gtt
523 * read domain and manually flush cachelines (if required). This
524 * optimizes for the case when the gpu will dirty the data
525 * anyway again before the next pread happens. */
526 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
527 obj->cache_level);
528 ret = i915_gem_object_wait_rendering(obj, true);
529 if (ret)
530 return ret;
531
532 i915_gem_object_retire(obj);
533 }
534
535 ret = i915_gem_object_get_pages(obj);
536 if (ret)
537 return ret;
538
539 i915_gem_object_pin_pages(obj);
540
541 return ret;
542 }
543
544 /* Per-page copy function for the shmem pread fastpath.
545 * Flushes invalid cachelines before reading the target if
546 * needs_clflush is set. */
547 static int
548 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
549 char __user *user_data,
550 bool page_do_bit17_swizzling, bool needs_clflush)
551 {
552 char *vaddr;
553 int ret;
554
555 if (unlikely(page_do_bit17_swizzling))
556 return -EINVAL;
557
558 vaddr = kmap_atomic(page);
559 if (needs_clflush)
560 drm_clflush_virt_range(vaddr + shmem_page_offset,
561 page_length);
562 ret = __copy_to_user_inatomic(user_data,
563 vaddr + shmem_page_offset,
564 page_length);
565 kunmap_atomic(vaddr);
566
567 return ret ? -EFAULT : 0;
568 }
569
570 static void
571 shmem_clflush_swizzled_range(char *addr, unsigned long length,
572 bool swizzled)
573 {
574 if (unlikely(swizzled)) {
575 unsigned long start = (unsigned long) addr;
576 unsigned long end = (unsigned long) addr + length;
577
578 /* For swizzling simply ensure that we always flush both
579 * channels. Lame, but simple and it works. Swizzled
580 * pwrite/pread is far from a hotpath - current userspace
581 * doesn't use it at all. */
582 start = round_down(start, 128);
583 end = round_up(end, 128);
584
585 drm_clflush_virt_range((void *)start, end - start);
586 } else {
587 drm_clflush_virt_range(addr, length);
588 }
589
590 }
591
592 /* Only difference to the fast-path function is that this can handle bit17
593 * and uses non-atomic copy and kmap functions. */
594 static int
595 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
596 char __user *user_data,
597 bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599 char *vaddr;
600 int ret;
601
602 vaddr = kmap(page);
603 if (needs_clflush)
604 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
605 page_length,
606 page_do_bit17_swizzling);
607
608 if (page_do_bit17_swizzling)
609 ret = __copy_to_user_swizzled(user_data,
610 vaddr, shmem_page_offset,
611 page_length);
612 else
613 ret = __copy_to_user(user_data,
614 vaddr + shmem_page_offset,
615 page_length);
616 kunmap(page);
617
618 return ret ? - EFAULT : 0;
619 }
620
621 static int
622 i915_gem_shmem_pread(struct drm_device *dev,
623 struct drm_i915_gem_object *obj,
624 struct drm_i915_gem_pread *args,
625 struct drm_file *file)
626 {
627 char __user *user_data;
628 ssize_t remain;
629 loff_t offset;
630 int shmem_page_offset, page_length, ret = 0;
631 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
632 int prefaulted = 0;
633 int needs_clflush = 0;
634 struct sg_page_iter sg_iter;
635
636 user_data = to_user_ptr(args->data_ptr);
637 remain = args->size;
638
639 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
640
641 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
642 if (ret)
643 return ret;
644
645 offset = args->offset;
646
647 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
648 offset >> PAGE_SHIFT) {
649 struct page *page = sg_page_iter_page(&sg_iter);
650
651 if (remain <= 0)
652 break;
653
654 /* Operation in this page
655 *
656 * shmem_page_offset = offset within page in shmem file
657 * page_length = bytes to copy for this page
658 */
659 shmem_page_offset = offset_in_page(offset);
660 page_length = remain;
661 if ((shmem_page_offset + page_length) > PAGE_SIZE)
662 page_length = PAGE_SIZE - shmem_page_offset;
663
664 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
665 (page_to_phys(page) & (1 << 17)) != 0;
666
667 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
668 user_data, page_do_bit17_swizzling,
669 needs_clflush);
670 if (ret == 0)
671 goto next_page;
672
673 mutex_unlock(&dev->struct_mutex);
674
675 if (likely(!i915.prefault_disable) && !prefaulted) {
676 ret = fault_in_multipages_writeable(user_data, remain);
677 /* Userspace is tricking us, but we've already clobbered
678 * its pages with the prefault and promised to write the
679 * data up to the first fault. Hence ignore any errors
680 * and just continue. */
681 (void)ret;
682 prefaulted = 1;
683 }
684
685 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
686 user_data, page_do_bit17_swizzling,
687 needs_clflush);
688
689 mutex_lock(&dev->struct_mutex);
690
691 if (ret)
692 goto out;
693
694 next_page:
695 remain -= page_length;
696 user_data += page_length;
697 offset += page_length;
698 }
699
700 out:
701 i915_gem_object_unpin_pages(obj);
702
703 return ret;
704 }
705
706 /**
707 * Reads data from the object referenced by handle.
708 *
709 * On error, the contents of *data are undefined.
710 */
711 int
712 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
713 struct drm_file *file)
714 {
715 struct drm_i915_gem_pread *args = data;
716 struct drm_i915_gem_object *obj;
717 int ret = 0;
718
719 if (args->size == 0)
720 return 0;
721
722 if (!access_ok(VERIFY_WRITE,
723 to_user_ptr(args->data_ptr),
724 args->size))
725 return -EFAULT;
726
727 ret = i915_mutex_lock_interruptible(dev);
728 if (ret)
729 return ret;
730
731 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
732 if (&obj->base == NULL) {
733 ret = -ENOENT;
734 goto unlock;
735 }
736
737 /* Bounds check source. */
738 if (args->offset > obj->base.size ||
739 args->size > obj->base.size - args->offset) {
740 ret = -EINVAL;
741 goto out;
742 }
743
744 /* prime objects have no backing filp to GEM pread/pwrite
745 * pages from.
746 */
747 if (!obj->base.filp) {
748 ret = -EINVAL;
749 goto out;
750 }
751
752 trace_i915_gem_object_pread(obj, args->offset, args->size);
753
754 ret = i915_gem_shmem_pread(dev, obj, args, file);
755
756 out:
757 drm_gem_object_unreference(&obj->base);
758 unlock:
759 mutex_unlock(&dev->struct_mutex);
760 return ret;
761 }
762
763 /* This is the fast write path which cannot handle
764 * page faults in the source data
765 */
766
767 static inline int
768 fast_user_write(struct io_mapping *mapping,
769 loff_t page_base, int page_offset,
770 char __user *user_data,
771 int length)
772 {
773 void __iomem *vaddr_atomic;
774 void *vaddr;
775 unsigned long unwritten;
776
777 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
778 /* We can use the cpu mem copy function because this is X86. */
779 vaddr = (void __force*)vaddr_atomic + page_offset;
780 unwritten = __copy_from_user_inatomic_nocache(vaddr,
781 user_data, length);
782 io_mapping_unmap_atomic(vaddr_atomic);
783 return unwritten;
784 }
785
786 /**
787 * This is the fast pwrite path, where we copy the data directly from the
788 * user into the GTT, uncached.
789 */
790 static int
791 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
792 struct drm_i915_gem_object *obj,
793 struct drm_i915_gem_pwrite *args,
794 struct drm_file *file)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 ssize_t remain;
798 loff_t offset, page_base;
799 char __user *user_data;
800 int page_offset, page_length, ret;
801
802 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
803 if (ret)
804 goto out;
805
806 ret = i915_gem_object_set_to_gtt_domain(obj, true);
807 if (ret)
808 goto out_unpin;
809
810 ret = i915_gem_object_put_fence(obj);
811 if (ret)
812 goto out_unpin;
813
814 user_data = to_user_ptr(args->data_ptr);
815 remain = args->size;
816
817 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
818
819 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
820
821 while (remain > 0) {
822 /* Operation in this page
823 *
824 * page_base = page offset within aperture
825 * page_offset = offset within page
826 * page_length = bytes to copy for this page
827 */
828 page_base = offset & PAGE_MASK;
829 page_offset = offset_in_page(offset);
830 page_length = remain;
831 if ((page_offset + remain) > PAGE_SIZE)
832 page_length = PAGE_SIZE - page_offset;
833
834 /* If we get a fault while copying data, then (presumably) our
835 * source page isn't available. Return the error and we'll
836 * retry in the slow path.
837 */
838 if (fast_user_write(dev_priv->gtt.mappable, page_base,
839 page_offset, user_data, page_length)) {
840 ret = -EFAULT;
841 goto out_flush;
842 }
843
844 remain -= page_length;
845 user_data += page_length;
846 offset += page_length;
847 }
848
849 out_flush:
850 intel_fb_obj_flush(obj, false);
851 out_unpin:
852 i915_gem_object_ggtt_unpin(obj);
853 out:
854 return ret;
855 }
856
857 /* Per-page copy function for the shmem pwrite fastpath.
858 * Flushes invalid cachelines before writing to the target if
859 * needs_clflush_before is set and flushes out any written cachelines after
860 * writing if needs_clflush is set. */
861 static int
862 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
863 char __user *user_data,
864 bool page_do_bit17_swizzling,
865 bool needs_clflush_before,
866 bool needs_clflush_after)
867 {
868 char *vaddr;
869 int ret;
870
871 if (unlikely(page_do_bit17_swizzling))
872 return -EINVAL;
873
874 vaddr = kmap_atomic(page);
875 if (needs_clflush_before)
876 drm_clflush_virt_range(vaddr + shmem_page_offset,
877 page_length);
878 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
879 user_data, page_length);
880 if (needs_clflush_after)
881 drm_clflush_virt_range(vaddr + shmem_page_offset,
882 page_length);
883 kunmap_atomic(vaddr);
884
885 return ret ? -EFAULT : 0;
886 }
887
888 /* Only difference to the fast-path function is that this can handle bit17
889 * and uses non-atomic copy and kmap functions. */
890 static int
891 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
892 char __user *user_data,
893 bool page_do_bit17_swizzling,
894 bool needs_clflush_before,
895 bool needs_clflush_after)
896 {
897 char *vaddr;
898 int ret;
899
900 vaddr = kmap(page);
901 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 if (page_do_bit17_swizzling)
906 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
907 user_data,
908 page_length);
909 else
910 ret = __copy_from_user(vaddr + shmem_page_offset,
911 user_data,
912 page_length);
913 if (needs_clflush_after)
914 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
915 page_length,
916 page_do_bit17_swizzling);
917 kunmap(page);
918
919 return ret ? -EFAULT : 0;
920 }
921
922 static int
923 i915_gem_shmem_pwrite(struct drm_device *dev,
924 struct drm_i915_gem_object *obj,
925 struct drm_i915_gem_pwrite *args,
926 struct drm_file *file)
927 {
928 ssize_t remain;
929 loff_t offset;
930 char __user *user_data;
931 int shmem_page_offset, page_length, ret = 0;
932 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
933 int hit_slowpath = 0;
934 int needs_clflush_after = 0;
935 int needs_clflush_before = 0;
936 struct sg_page_iter sg_iter;
937
938 user_data = to_user_ptr(args->data_ptr);
939 remain = args->size;
940
941 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
942
943 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
944 /* If we're not in the cpu write domain, set ourself into the gtt
945 * write domain and manually flush cachelines (if required). This
946 * optimizes for the case when the gpu will use the data
947 * right away and we therefore have to clflush anyway. */
948 needs_clflush_after = cpu_write_needs_clflush(obj);
949 ret = i915_gem_object_wait_rendering(obj, false);
950 if (ret)
951 return ret;
952
953 i915_gem_object_retire(obj);
954 }
955 /* Same trick applies to invalidate partially written cachelines read
956 * before writing. */
957 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
958 needs_clflush_before =
959 !cpu_cache_is_coherent(dev, obj->cache_level);
960
961 ret = i915_gem_object_get_pages(obj);
962 if (ret)
963 return ret;
964
965 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
966
967 i915_gem_object_pin_pages(obj);
968
969 offset = args->offset;
970 obj->dirty = 1;
971
972 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
973 offset >> PAGE_SHIFT) {
974 struct page *page = sg_page_iter_page(&sg_iter);
975 int partial_cacheline_write;
976
977 if (remain <= 0)
978 break;
979
980 /* Operation in this page
981 *
982 * shmem_page_offset = offset within page in shmem file
983 * page_length = bytes to copy for this page
984 */
985 shmem_page_offset = offset_in_page(offset);
986
987 page_length = remain;
988 if ((shmem_page_offset + page_length) > PAGE_SIZE)
989 page_length = PAGE_SIZE - shmem_page_offset;
990
991 /* If we don't overwrite a cacheline completely we need to be
992 * careful to have up-to-date data by first clflushing. Don't
993 * overcomplicate things and flush the entire patch. */
994 partial_cacheline_write = needs_clflush_before &&
995 ((shmem_page_offset | page_length)
996 & (boot_cpu_data.x86_clflush_size - 1));
997
998 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
999 (page_to_phys(page) & (1 << 17)) != 0;
1000
1001 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1002 user_data, page_do_bit17_swizzling,
1003 partial_cacheline_write,
1004 needs_clflush_after);
1005 if (ret == 0)
1006 goto next_page;
1007
1008 hit_slowpath = 1;
1009 mutex_unlock(&dev->struct_mutex);
1010 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1011 user_data, page_do_bit17_swizzling,
1012 partial_cacheline_write,
1013 needs_clflush_after);
1014
1015 mutex_lock(&dev->struct_mutex);
1016
1017 if (ret)
1018 goto out;
1019
1020 next_page:
1021 remain -= page_length;
1022 user_data += page_length;
1023 offset += page_length;
1024 }
1025
1026 out:
1027 i915_gem_object_unpin_pages(obj);
1028
1029 if (hit_slowpath) {
1030 /*
1031 * Fixup: Flush cpu caches in case we didn't flush the dirty
1032 * cachelines in-line while writing and the object moved
1033 * out of the cpu write domain while we've dropped the lock.
1034 */
1035 if (!needs_clflush_after &&
1036 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1037 if (i915_gem_clflush_object(obj, obj->pin_display))
1038 i915_gem_chipset_flush(dev);
1039 }
1040 }
1041
1042 if (needs_clflush_after)
1043 i915_gem_chipset_flush(dev);
1044
1045 intel_fb_obj_flush(obj, false);
1046 return ret;
1047 }
1048
1049 /**
1050 * Writes data to the object referenced by handle.
1051 *
1052 * On error, the contents of the buffer that were to be modified are undefined.
1053 */
1054 int
1055 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1056 struct drm_file *file)
1057 {
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 struct drm_i915_gem_pwrite *args = data;
1060 struct drm_i915_gem_object *obj;
1061 int ret;
1062
1063 if (args->size == 0)
1064 return 0;
1065
1066 if (!access_ok(VERIFY_READ,
1067 to_user_ptr(args->data_ptr),
1068 args->size))
1069 return -EFAULT;
1070
1071 if (likely(!i915.prefault_disable)) {
1072 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1073 args->size);
1074 if (ret)
1075 return -EFAULT;
1076 }
1077
1078 intel_runtime_pm_get(dev_priv);
1079
1080 ret = i915_mutex_lock_interruptible(dev);
1081 if (ret)
1082 goto put_rpm;
1083
1084 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1085 if (&obj->base == NULL) {
1086 ret = -ENOENT;
1087 goto unlock;
1088 }
1089
1090 /* Bounds check destination. */
1091 if (args->offset > obj->base.size ||
1092 args->size > obj->base.size - args->offset) {
1093 ret = -EINVAL;
1094 goto out;
1095 }
1096
1097 /* prime objects have no backing filp to GEM pread/pwrite
1098 * pages from.
1099 */
1100 if (!obj->base.filp) {
1101 ret = -EINVAL;
1102 goto out;
1103 }
1104
1105 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1106
1107 ret = -EFAULT;
1108 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1109 * it would end up going through the fenced access, and we'll get
1110 * different detiling behavior between reading and writing.
1111 * pread/pwrite currently are reading and writing from the CPU
1112 * perspective, requiring manual detiling by the client.
1113 */
1114 if (obj->tiling_mode == I915_TILING_NONE &&
1115 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1116 cpu_write_needs_clflush(obj)) {
1117 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1118 /* Note that the gtt paths might fail with non-page-backed user
1119 * pointers (e.g. gtt mappings when moving data between
1120 * textures). Fallback to the shmem path in that case. */
1121 }
1122
1123 if (ret == -EFAULT || ret == -ENOSPC) {
1124 if (obj->phys_handle)
1125 ret = i915_gem_phys_pwrite(obj, args, file);
1126 else
1127 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1128 }
1129
1130 out:
1131 drm_gem_object_unreference(&obj->base);
1132 unlock:
1133 mutex_unlock(&dev->struct_mutex);
1134 put_rpm:
1135 intel_runtime_pm_put(dev_priv);
1136
1137 return ret;
1138 }
1139
1140 int
1141 i915_gem_check_wedge(struct i915_gpu_error *error,
1142 bool interruptible)
1143 {
1144 if (i915_reset_in_progress(error)) {
1145 /* Non-interruptible callers can't handle -EAGAIN, hence return
1146 * -EIO unconditionally for these. */
1147 if (!interruptible)
1148 return -EIO;
1149
1150 /* Recovery complete, but the reset failed ... */
1151 if (i915_terminally_wedged(error))
1152 return -EIO;
1153
1154 /*
1155 * Check if GPU Reset is in progress - we need intel_ring_begin
1156 * to work properly to reinit the hw state while the gpu is
1157 * still marked as reset-in-progress. Handle this with a flag.
1158 */
1159 if (!error->reload_in_reset)
1160 return -EAGAIN;
1161 }
1162
1163 return 0;
1164 }
1165
1166 /*
1167 * Compare arbitrary request against outstanding lazy request. Emit on match.
1168 */
1169 int
1170 i915_gem_check_olr(struct drm_i915_gem_request *req)
1171 {
1172 int ret;
1173
1174 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1175
1176 ret = 0;
1177 if (req == req->ring->outstanding_lazy_request)
1178 ret = i915_add_request(req->ring);
1179
1180 return ret;
1181 }
1182
1183 static void fake_irq(unsigned long data)
1184 {
1185 wake_up_process((struct task_struct *)data);
1186 }
1187
1188 static bool missed_irq(struct drm_i915_private *dev_priv,
1189 struct intel_engine_cs *ring)
1190 {
1191 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1192 }
1193
1194 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1195 {
1196 if (file_priv == NULL)
1197 return true;
1198
1199 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1200 }
1201
1202 /**
1203 * __i915_wait_request - wait until execution of request has finished
1204 * @req: duh!
1205 * @reset_counter: reset sequence associated with the given request
1206 * @interruptible: do an interruptible wait (normally yes)
1207 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1208 *
1209 * Note: It is of utmost importance that the passed in seqno and reset_counter
1210 * values have been read by the caller in an smp safe manner. Where read-side
1211 * locks are involved, it is sufficient to read the reset_counter before
1212 * unlocking the lock that protects the seqno. For lockless tricks, the
1213 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1214 * inserted.
1215 *
1216 * Returns 0 if the request was found within the alloted time. Else returns the
1217 * errno with remaining time filled in timeout argument.
1218 */
1219 int __i915_wait_request(struct drm_i915_gem_request *req,
1220 unsigned reset_counter,
1221 bool interruptible,
1222 s64 *timeout,
1223 struct drm_i915_file_private *file_priv)
1224 {
1225 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1226 struct drm_device *dev = ring->dev;
1227 struct drm_i915_private *dev_priv = dev->dev_private;
1228 const bool irq_test_in_progress =
1229 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1230 DEFINE_WAIT(wait);
1231 unsigned long timeout_expire;
1232 s64 before, now;
1233 int ret;
1234
1235 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1236
1237 if (i915_gem_request_completed(req, true))
1238 return 0;
1239
1240 timeout_expire = timeout ?
1241 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1242
1243 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1244 gen6_rps_boost(dev_priv);
1245 if (file_priv)
1246 mod_delayed_work(dev_priv->wq,
1247 &file_priv->mm.idle_work,
1248 msecs_to_jiffies(100));
1249 }
1250
1251 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1252 return -ENODEV;
1253
1254 /* Record current time in case interrupted by signal, or wedged */
1255 trace_i915_gem_request_wait_begin(req);
1256 before = ktime_get_raw_ns();
1257 for (;;) {
1258 struct timer_list timer;
1259
1260 prepare_to_wait(&ring->irq_queue, &wait,
1261 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1262
1263 /* We need to check whether any gpu reset happened in between
1264 * the caller grabbing the seqno and now ... */
1265 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1266 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1267 * is truely gone. */
1268 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1269 if (ret == 0)
1270 ret = -EAGAIN;
1271 break;
1272 }
1273
1274 if (i915_gem_request_completed(req, false)) {
1275 ret = 0;
1276 break;
1277 }
1278
1279 if (interruptible && signal_pending(current)) {
1280 ret = -ERESTARTSYS;
1281 break;
1282 }
1283
1284 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1285 ret = -ETIME;
1286 break;
1287 }
1288
1289 timer.function = NULL;
1290 if (timeout || missed_irq(dev_priv, ring)) {
1291 unsigned long expire;
1292
1293 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1294 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1295 mod_timer(&timer, expire);
1296 }
1297
1298 io_schedule();
1299
1300 if (timer.function) {
1301 del_singleshot_timer_sync(&timer);
1302 destroy_timer_on_stack(&timer);
1303 }
1304 }
1305 now = ktime_get_raw_ns();
1306 trace_i915_gem_request_wait_end(req);
1307
1308 if (!irq_test_in_progress)
1309 ring->irq_put(ring);
1310
1311 finish_wait(&ring->irq_queue, &wait);
1312
1313 if (timeout) {
1314 s64 tres = *timeout - (now - before);
1315
1316 *timeout = tres < 0 ? 0 : tres;
1317
1318 /*
1319 * Apparently ktime isn't accurate enough and occasionally has a
1320 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1321 * things up to make the test happy. We allow up to 1 jiffy.
1322 *
1323 * This is a regrssion from the timespec->ktime conversion.
1324 */
1325 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1326 *timeout = 0;
1327 }
1328
1329 return ret;
1330 }
1331
1332 /**
1333 * Waits for a request to be signaled, and cleans up the
1334 * request and object lists appropriately for that event.
1335 */
1336 int
1337 i915_wait_request(struct drm_i915_gem_request *req)
1338 {
1339 struct drm_device *dev;
1340 struct drm_i915_private *dev_priv;
1341 bool interruptible;
1342 unsigned reset_counter;
1343 int ret;
1344
1345 BUG_ON(req == NULL);
1346
1347 dev = req->ring->dev;
1348 dev_priv = dev->dev_private;
1349 interruptible = dev_priv->mm.interruptible;
1350
1351 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1352
1353 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1354 if (ret)
1355 return ret;
1356
1357 ret = i915_gem_check_olr(req);
1358 if (ret)
1359 return ret;
1360
1361 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1362 i915_gem_request_reference(req);
1363 ret = __i915_wait_request(req, reset_counter,
1364 interruptible, NULL, NULL);
1365 i915_gem_request_unreference(req);
1366 return ret;
1367 }
1368
1369 static int
1370 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1371 {
1372 if (!obj->active)
1373 return 0;
1374
1375 /* Manually manage the write flush as we may have not yet
1376 * retired the buffer.
1377 *
1378 * Note that the last_write_req is always the earlier of
1379 * the two (read/write) requests, so if we haved successfully waited,
1380 * we know we have passed the last write.
1381 */
1382 i915_gem_request_assign(&obj->last_write_req, NULL);
1383
1384 return 0;
1385 }
1386
1387 /**
1388 * Ensures that all rendering to the object has completed and the object is
1389 * safe to unbind from the GTT or access from the CPU.
1390 */
1391 static __must_check int
1392 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1393 bool readonly)
1394 {
1395 struct drm_i915_gem_request *req;
1396 int ret;
1397
1398 req = readonly ? obj->last_write_req : obj->last_read_req;
1399 if (!req)
1400 return 0;
1401
1402 ret = i915_wait_request(req);
1403 if (ret)
1404 return ret;
1405
1406 return i915_gem_object_wait_rendering__tail(obj);
1407 }
1408
1409 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1410 * as the object state may change during this call.
1411 */
1412 static __must_check int
1413 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1414 struct drm_i915_file_private *file_priv,
1415 bool readonly)
1416 {
1417 struct drm_i915_gem_request *req;
1418 struct drm_device *dev = obj->base.dev;
1419 struct drm_i915_private *dev_priv = dev->dev_private;
1420 unsigned reset_counter;
1421 int ret;
1422
1423 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1424 BUG_ON(!dev_priv->mm.interruptible);
1425
1426 req = readonly ? obj->last_write_req : obj->last_read_req;
1427 if (!req)
1428 return 0;
1429
1430 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1431 if (ret)
1432 return ret;
1433
1434 ret = i915_gem_check_olr(req);
1435 if (ret)
1436 return ret;
1437
1438 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1439 i915_gem_request_reference(req);
1440 mutex_unlock(&dev->struct_mutex);
1441 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1442 mutex_lock(&dev->struct_mutex);
1443 i915_gem_request_unreference(req);
1444 if (ret)
1445 return ret;
1446
1447 return i915_gem_object_wait_rendering__tail(obj);
1448 }
1449
1450 /**
1451 * Called when user space prepares to use an object with the CPU, either
1452 * through the mmap ioctl's mapping or a GTT mapping.
1453 */
1454 int
1455 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1456 struct drm_file *file)
1457 {
1458 struct drm_i915_gem_set_domain *args = data;
1459 struct drm_i915_gem_object *obj;
1460 uint32_t read_domains = args->read_domains;
1461 uint32_t write_domain = args->write_domain;
1462 int ret;
1463
1464 /* Only handle setting domains to types used by the CPU. */
1465 if (write_domain & I915_GEM_GPU_DOMAINS)
1466 return -EINVAL;
1467
1468 if (read_domains & I915_GEM_GPU_DOMAINS)
1469 return -EINVAL;
1470
1471 /* Having something in the write domain implies it's in the read
1472 * domain, and only that read domain. Enforce that in the request.
1473 */
1474 if (write_domain != 0 && read_domains != write_domain)
1475 return -EINVAL;
1476
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1480
1481 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1482 if (&obj->base == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
1486
1487 /* Try to flush the object off the GPU without holding the lock.
1488 * We will repeat the flush holding the lock in the normal manner
1489 * to catch cases where we are gazumped.
1490 */
1491 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1492 file->driver_priv,
1493 !write_domain);
1494 if (ret)
1495 goto unref;
1496
1497 if (read_domains & I915_GEM_DOMAIN_GTT)
1498 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1499 else
1500 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1501
1502 unref:
1503 drm_gem_object_unreference(&obj->base);
1504 unlock:
1505 mutex_unlock(&dev->struct_mutex);
1506 return ret;
1507 }
1508
1509 /**
1510 * Called when user space has done writes to this buffer
1511 */
1512 int
1513 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1514 struct drm_file *file)
1515 {
1516 struct drm_i915_gem_sw_finish *args = data;
1517 struct drm_i915_gem_object *obj;
1518 int ret = 0;
1519
1520 ret = i915_mutex_lock_interruptible(dev);
1521 if (ret)
1522 return ret;
1523
1524 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1525 if (&obj->base == NULL) {
1526 ret = -ENOENT;
1527 goto unlock;
1528 }
1529
1530 /* Pinned buffers may be scanout, so flush the cache */
1531 if (obj->pin_display)
1532 i915_gem_object_flush_cpu_write_domain(obj);
1533
1534 drm_gem_object_unreference(&obj->base);
1535 unlock:
1536 mutex_unlock(&dev->struct_mutex);
1537 return ret;
1538 }
1539
1540 /**
1541 * Maps the contents of an object, returning the address it is mapped
1542 * into.
1543 *
1544 * While the mapping holds a reference on the contents of the object, it doesn't
1545 * imply a ref on the object itself.
1546 *
1547 * IMPORTANT:
1548 *
1549 * DRM driver writers who look a this function as an example for how to do GEM
1550 * mmap support, please don't implement mmap support like here. The modern way
1551 * to implement DRM mmap support is with an mmap offset ioctl (like
1552 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1553 * That way debug tooling like valgrind will understand what's going on, hiding
1554 * the mmap call in a driver private ioctl will break that. The i915 driver only
1555 * does cpu mmaps this way because we didn't know better.
1556 */
1557 int
1558 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1559 struct drm_file *file)
1560 {
1561 struct drm_i915_gem_mmap *args = data;
1562 struct drm_gem_object *obj;
1563 unsigned long addr;
1564
1565 if (args->flags & ~(I915_MMAP_WC))
1566 return -EINVAL;
1567
1568 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1569 return -ENODEV;
1570
1571 obj = drm_gem_object_lookup(dev, file, args->handle);
1572 if (obj == NULL)
1573 return -ENOENT;
1574
1575 /* prime objects have no backing filp to GEM mmap
1576 * pages from.
1577 */
1578 if (!obj->filp) {
1579 drm_gem_object_unreference_unlocked(obj);
1580 return -EINVAL;
1581 }
1582
1583 addr = vm_mmap(obj->filp, 0, args->size,
1584 PROT_READ | PROT_WRITE, MAP_SHARED,
1585 args->offset);
1586 if (args->flags & I915_MMAP_WC) {
1587 struct mm_struct *mm = current->mm;
1588 struct vm_area_struct *vma;
1589
1590 down_write(&mm->mmap_sem);
1591 vma = find_vma(mm, addr);
1592 if (vma)
1593 vma->vm_page_prot =
1594 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1595 else
1596 addr = -ENOMEM;
1597 up_write(&mm->mmap_sem);
1598 }
1599 drm_gem_object_unreference_unlocked(obj);
1600 if (IS_ERR((void *)addr))
1601 return addr;
1602
1603 args->addr_ptr = (uint64_t) addr;
1604
1605 return 0;
1606 }
1607
1608 /**
1609 * i915_gem_fault - fault a page into the GTT
1610 * vma: VMA in question
1611 * vmf: fault info
1612 *
1613 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1614 * from userspace. The fault handler takes care of binding the object to
1615 * the GTT (if needed), allocating and programming a fence register (again,
1616 * only if needed based on whether the old reg is still valid or the object
1617 * is tiled) and inserting a new PTE into the faulting process.
1618 *
1619 * Note that the faulting process may involve evicting existing objects
1620 * from the GTT and/or fence registers to make room. So performance may
1621 * suffer if the GTT working set is large or there are few fence registers
1622 * left.
1623 */
1624 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1625 {
1626 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1627 struct drm_device *dev = obj->base.dev;
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629 pgoff_t page_offset;
1630 unsigned long pfn;
1631 int ret = 0;
1632 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1633
1634 intel_runtime_pm_get(dev_priv);
1635
1636 /* We don't use vmf->pgoff since that has the fake offset */
1637 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1638 PAGE_SHIFT;
1639
1640 ret = i915_mutex_lock_interruptible(dev);
1641 if (ret)
1642 goto out;
1643
1644 trace_i915_gem_object_fault(obj, page_offset, true, write);
1645
1646 /* Try to flush the object off the GPU first without holding the lock.
1647 * Upon reacquiring the lock, we will perform our sanity checks and then
1648 * repeat the flush holding the lock in the normal manner to catch cases
1649 * where we are gazumped.
1650 */
1651 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1652 if (ret)
1653 goto unlock;
1654
1655 /* Access to snoopable pages through the GTT is incoherent. */
1656 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1657 ret = -EFAULT;
1658 goto unlock;
1659 }
1660
1661 /* Now bind it into the GTT if needed */
1662 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1663 if (ret)
1664 goto unlock;
1665
1666 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1667 if (ret)
1668 goto unpin;
1669
1670 ret = i915_gem_object_get_fence(obj);
1671 if (ret)
1672 goto unpin;
1673
1674 /* Finally, remap it using the new GTT offset */
1675 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1676 pfn >>= PAGE_SHIFT;
1677
1678 if (!obj->fault_mappable) {
1679 unsigned long size = min_t(unsigned long,
1680 vma->vm_end - vma->vm_start,
1681 obj->base.size);
1682 int i;
1683
1684 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1685 ret = vm_insert_pfn(vma,
1686 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1687 pfn + i);
1688 if (ret)
1689 break;
1690 }
1691
1692 obj->fault_mappable = true;
1693 } else
1694 ret = vm_insert_pfn(vma,
1695 (unsigned long)vmf->virtual_address,
1696 pfn + page_offset);
1697 unpin:
1698 i915_gem_object_ggtt_unpin(obj);
1699 unlock:
1700 mutex_unlock(&dev->struct_mutex);
1701 out:
1702 switch (ret) {
1703 case -EIO:
1704 /*
1705 * We eat errors when the gpu is terminally wedged to avoid
1706 * userspace unduly crashing (gl has no provisions for mmaps to
1707 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1708 * and so needs to be reported.
1709 */
1710 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1711 ret = VM_FAULT_SIGBUS;
1712 break;
1713 }
1714 case -EAGAIN:
1715 /*
1716 * EAGAIN means the gpu is hung and we'll wait for the error
1717 * handler to reset everything when re-faulting in
1718 * i915_mutex_lock_interruptible.
1719 */
1720 case 0:
1721 case -ERESTARTSYS:
1722 case -EINTR:
1723 case -EBUSY:
1724 /*
1725 * EBUSY is ok: this just means that another thread
1726 * already did the job.
1727 */
1728 ret = VM_FAULT_NOPAGE;
1729 break;
1730 case -ENOMEM:
1731 ret = VM_FAULT_OOM;
1732 break;
1733 case -ENOSPC:
1734 case -EFAULT:
1735 ret = VM_FAULT_SIGBUS;
1736 break;
1737 default:
1738 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1739 ret = VM_FAULT_SIGBUS;
1740 break;
1741 }
1742
1743 intel_runtime_pm_put(dev_priv);
1744 return ret;
1745 }
1746
1747 /**
1748 * i915_gem_release_mmap - remove physical page mappings
1749 * @obj: obj in question
1750 *
1751 * Preserve the reservation of the mmapping with the DRM core code, but
1752 * relinquish ownership of the pages back to the system.
1753 *
1754 * It is vital that we remove the page mapping if we have mapped a tiled
1755 * object through the GTT and then lose the fence register due to
1756 * resource pressure. Similarly if the object has been moved out of the
1757 * aperture, than pages mapped into userspace must be revoked. Removing the
1758 * mapping will then trigger a page fault on the next user access, allowing
1759 * fixup by i915_gem_fault().
1760 */
1761 void
1762 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1763 {
1764 if (!obj->fault_mappable)
1765 return;
1766
1767 drm_vma_node_unmap(&obj->base.vma_node,
1768 obj->base.dev->anon_inode->i_mapping);
1769 obj->fault_mappable = false;
1770 }
1771
1772 void
1773 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1774 {
1775 struct drm_i915_gem_object *obj;
1776
1777 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1778 i915_gem_release_mmap(obj);
1779 }
1780
1781 uint32_t
1782 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1783 {
1784 uint32_t gtt_size;
1785
1786 if (INTEL_INFO(dev)->gen >= 4 ||
1787 tiling_mode == I915_TILING_NONE)
1788 return size;
1789
1790 /* Previous chips need a power-of-two fence region when tiling */
1791 if (INTEL_INFO(dev)->gen == 3)
1792 gtt_size = 1024*1024;
1793 else
1794 gtt_size = 512*1024;
1795
1796 while (gtt_size < size)
1797 gtt_size <<= 1;
1798
1799 return gtt_size;
1800 }
1801
1802 /**
1803 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1804 * @obj: object to check
1805 *
1806 * Return the required GTT alignment for an object, taking into account
1807 * potential fence register mapping.
1808 */
1809 uint32_t
1810 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1811 int tiling_mode, bool fenced)
1812 {
1813 /*
1814 * Minimum alignment is 4k (GTT page size), but might be greater
1815 * if a fence register is needed for the object.
1816 */
1817 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1818 tiling_mode == I915_TILING_NONE)
1819 return 4096;
1820
1821 /*
1822 * Previous chips need to be aligned to the size of the smallest
1823 * fence register that can contain the object.
1824 */
1825 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1826 }
1827
1828 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1829 {
1830 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1831 int ret;
1832
1833 if (drm_vma_node_has_offset(&obj->base.vma_node))
1834 return 0;
1835
1836 dev_priv->mm.shrinker_no_lock_stealing = true;
1837
1838 ret = drm_gem_create_mmap_offset(&obj->base);
1839 if (ret != -ENOSPC)
1840 goto out;
1841
1842 /* Badly fragmented mmap space? The only way we can recover
1843 * space is by destroying unwanted objects. We can't randomly release
1844 * mmap_offsets as userspace expects them to be persistent for the
1845 * lifetime of the objects. The closest we can is to release the
1846 * offsets on purgeable objects by truncating it and marking it purged,
1847 * which prevents userspace from ever using that object again.
1848 */
1849 i915_gem_shrink(dev_priv,
1850 obj->base.size >> PAGE_SHIFT,
1851 I915_SHRINK_BOUND |
1852 I915_SHRINK_UNBOUND |
1853 I915_SHRINK_PURGEABLE);
1854 ret = drm_gem_create_mmap_offset(&obj->base);
1855 if (ret != -ENOSPC)
1856 goto out;
1857
1858 i915_gem_shrink_all(dev_priv);
1859 ret = drm_gem_create_mmap_offset(&obj->base);
1860 out:
1861 dev_priv->mm.shrinker_no_lock_stealing = false;
1862
1863 return ret;
1864 }
1865
1866 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1867 {
1868 drm_gem_free_mmap_offset(&obj->base);
1869 }
1870
1871 int
1872 i915_gem_mmap_gtt(struct drm_file *file,
1873 struct drm_device *dev,
1874 uint32_t handle,
1875 uint64_t *offset)
1876 {
1877 struct drm_i915_private *dev_priv = dev->dev_private;
1878 struct drm_i915_gem_object *obj;
1879 int ret;
1880
1881 ret = i915_mutex_lock_interruptible(dev);
1882 if (ret)
1883 return ret;
1884
1885 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1886 if (&obj->base == NULL) {
1887 ret = -ENOENT;
1888 goto unlock;
1889 }
1890
1891 if (obj->base.size > dev_priv->gtt.mappable_end) {
1892 ret = -E2BIG;
1893 goto out;
1894 }
1895
1896 if (obj->madv != I915_MADV_WILLNEED) {
1897 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1898 ret = -EFAULT;
1899 goto out;
1900 }
1901
1902 ret = i915_gem_object_create_mmap_offset(obj);
1903 if (ret)
1904 goto out;
1905
1906 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1907
1908 out:
1909 drm_gem_object_unreference(&obj->base);
1910 unlock:
1911 mutex_unlock(&dev->struct_mutex);
1912 return ret;
1913 }
1914
1915 /**
1916 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1917 * @dev: DRM device
1918 * @data: GTT mapping ioctl data
1919 * @file: GEM object info
1920 *
1921 * Simply returns the fake offset to userspace so it can mmap it.
1922 * The mmap call will end up in drm_gem_mmap(), which will set things
1923 * up so we can get faults in the handler above.
1924 *
1925 * The fault handler will take care of binding the object into the GTT
1926 * (since it may have been evicted to make room for something), allocating
1927 * a fence register, and mapping the appropriate aperture address into
1928 * userspace.
1929 */
1930 int
1931 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1932 struct drm_file *file)
1933 {
1934 struct drm_i915_gem_mmap_gtt *args = data;
1935
1936 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1937 }
1938
1939 static inline int
1940 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1941 {
1942 return obj->madv == I915_MADV_DONTNEED;
1943 }
1944
1945 /* Immediately discard the backing storage */
1946 static void
1947 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1948 {
1949 i915_gem_object_free_mmap_offset(obj);
1950
1951 if (obj->base.filp == NULL)
1952 return;
1953
1954 /* Our goal here is to return as much of the memory as
1955 * is possible back to the system as we are called from OOM.
1956 * To do this we must instruct the shmfs to drop all of its
1957 * backing pages, *now*.
1958 */
1959 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1960 obj->madv = __I915_MADV_PURGED;
1961 }
1962
1963 /* Try to discard unwanted pages */
1964 static void
1965 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1966 {
1967 struct address_space *mapping;
1968
1969 switch (obj->madv) {
1970 case I915_MADV_DONTNEED:
1971 i915_gem_object_truncate(obj);
1972 case __I915_MADV_PURGED:
1973 return;
1974 }
1975
1976 if (obj->base.filp == NULL)
1977 return;
1978
1979 mapping = file_inode(obj->base.filp)->i_mapping,
1980 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1981 }
1982
1983 static void
1984 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1985 {
1986 struct sg_page_iter sg_iter;
1987 int ret;
1988
1989 BUG_ON(obj->madv == __I915_MADV_PURGED);
1990
1991 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1992 if (ret) {
1993 /* In the event of a disaster, abandon all caches and
1994 * hope for the best.
1995 */
1996 WARN_ON(ret != -EIO);
1997 i915_gem_clflush_object(obj, true);
1998 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1999 }
2000
2001 if (i915_gem_object_needs_bit17_swizzle(obj))
2002 i915_gem_object_save_bit_17_swizzle(obj);
2003
2004 if (obj->madv == I915_MADV_DONTNEED)
2005 obj->dirty = 0;
2006
2007 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2008 struct page *page = sg_page_iter_page(&sg_iter);
2009
2010 if (obj->dirty)
2011 set_page_dirty(page);
2012
2013 if (obj->madv == I915_MADV_WILLNEED)
2014 mark_page_accessed(page);
2015
2016 page_cache_release(page);
2017 }
2018 obj->dirty = 0;
2019
2020 sg_free_table(obj->pages);
2021 kfree(obj->pages);
2022 }
2023
2024 int
2025 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2026 {
2027 const struct drm_i915_gem_object_ops *ops = obj->ops;
2028
2029 if (obj->pages == NULL)
2030 return 0;
2031
2032 if (obj->pages_pin_count)
2033 return -EBUSY;
2034
2035 BUG_ON(i915_gem_obj_bound_any(obj));
2036
2037 /* ->put_pages might need to allocate memory for the bit17 swizzle
2038 * array, hence protect them from being reaped by removing them from gtt
2039 * lists early. */
2040 list_del(&obj->global_list);
2041
2042 ops->put_pages(obj);
2043 obj->pages = NULL;
2044
2045 i915_gem_object_invalidate(obj);
2046
2047 return 0;
2048 }
2049
2050 unsigned long
2051 i915_gem_shrink(struct drm_i915_private *dev_priv,
2052 long target, unsigned flags)
2053 {
2054 const struct {
2055 struct list_head *list;
2056 unsigned int bit;
2057 } phases[] = {
2058 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2059 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2060 { NULL, 0 },
2061 }, *phase;
2062 unsigned long count = 0;
2063
2064 /*
2065 * As we may completely rewrite the (un)bound list whilst unbinding
2066 * (due to retiring requests) we have to strictly process only
2067 * one element of the list at the time, and recheck the list
2068 * on every iteration.
2069 *
2070 * In particular, we must hold a reference whilst removing the
2071 * object as we may end up waiting for and/or retiring the objects.
2072 * This might release the final reference (held by the active list)
2073 * and result in the object being freed from under us. This is
2074 * similar to the precautions the eviction code must take whilst
2075 * removing objects.
2076 *
2077 * Also note that although these lists do not hold a reference to
2078 * the object we can safely grab one here: The final object
2079 * unreferencing and the bound_list are both protected by the
2080 * dev->struct_mutex and so we won't ever be able to observe an
2081 * object on the bound_list with a reference count equals 0.
2082 */
2083 for (phase = phases; phase->list; phase++) {
2084 struct list_head still_in_list;
2085
2086 if ((flags & phase->bit) == 0)
2087 continue;
2088
2089 INIT_LIST_HEAD(&still_in_list);
2090 while (count < target && !list_empty(phase->list)) {
2091 struct drm_i915_gem_object *obj;
2092 struct i915_vma *vma, *v;
2093
2094 obj = list_first_entry(phase->list,
2095 typeof(*obj), global_list);
2096 list_move_tail(&obj->global_list, &still_in_list);
2097
2098 if (flags & I915_SHRINK_PURGEABLE &&
2099 !i915_gem_object_is_purgeable(obj))
2100 continue;
2101
2102 drm_gem_object_reference(&obj->base);
2103
2104 /* For the unbound phase, this should be a no-op! */
2105 list_for_each_entry_safe(vma, v,
2106 &obj->vma_list, vma_link)
2107 if (i915_vma_unbind(vma))
2108 break;
2109
2110 if (i915_gem_object_put_pages(obj) == 0)
2111 count += obj->base.size >> PAGE_SHIFT;
2112
2113 drm_gem_object_unreference(&obj->base);
2114 }
2115 list_splice(&still_in_list, phase->list);
2116 }
2117
2118 return count;
2119 }
2120
2121 static unsigned long
2122 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2123 {
2124 i915_gem_evict_everything(dev_priv->dev);
2125 return i915_gem_shrink(dev_priv, LONG_MAX,
2126 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2127 }
2128
2129 static int
2130 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2131 {
2132 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2133 int page_count, i;
2134 struct address_space *mapping;
2135 struct sg_table *st;
2136 struct scatterlist *sg;
2137 struct sg_page_iter sg_iter;
2138 struct page *page;
2139 unsigned long last_pfn = 0; /* suppress gcc warning */
2140 gfp_t gfp;
2141
2142 /* Assert that the object is not currently in any GPU domain. As it
2143 * wasn't in the GTT, there shouldn't be any way it could have been in
2144 * a GPU cache
2145 */
2146 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2147 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2148
2149 st = kmalloc(sizeof(*st), GFP_KERNEL);
2150 if (st == NULL)
2151 return -ENOMEM;
2152
2153 page_count = obj->base.size / PAGE_SIZE;
2154 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2155 kfree(st);
2156 return -ENOMEM;
2157 }
2158
2159 /* Get the list of pages out of our struct file. They'll be pinned
2160 * at this point until we release them.
2161 *
2162 * Fail silently without starting the shrinker
2163 */
2164 mapping = file_inode(obj->base.filp)->i_mapping;
2165 gfp = mapping_gfp_mask(mapping);
2166 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2167 gfp &= ~(__GFP_IO | __GFP_WAIT);
2168 sg = st->sgl;
2169 st->nents = 0;
2170 for (i = 0; i < page_count; i++) {
2171 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2172 if (IS_ERR(page)) {
2173 i915_gem_shrink(dev_priv,
2174 page_count,
2175 I915_SHRINK_BOUND |
2176 I915_SHRINK_UNBOUND |
2177 I915_SHRINK_PURGEABLE);
2178 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2179 }
2180 if (IS_ERR(page)) {
2181 /* We've tried hard to allocate the memory by reaping
2182 * our own buffer, now let the real VM do its job and
2183 * go down in flames if truly OOM.
2184 */
2185 i915_gem_shrink_all(dev_priv);
2186 page = shmem_read_mapping_page(mapping, i);
2187 if (IS_ERR(page))
2188 goto err_pages;
2189 }
2190 #ifdef CONFIG_SWIOTLB
2191 if (swiotlb_nr_tbl()) {
2192 st->nents++;
2193 sg_set_page(sg, page, PAGE_SIZE, 0);
2194 sg = sg_next(sg);
2195 continue;
2196 }
2197 #endif
2198 if (!i || page_to_pfn(page) != last_pfn + 1) {
2199 if (i)
2200 sg = sg_next(sg);
2201 st->nents++;
2202 sg_set_page(sg, page, PAGE_SIZE, 0);
2203 } else {
2204 sg->length += PAGE_SIZE;
2205 }
2206 last_pfn = page_to_pfn(page);
2207
2208 /* Check that the i965g/gm workaround works. */
2209 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2210 }
2211 #ifdef CONFIG_SWIOTLB
2212 if (!swiotlb_nr_tbl())
2213 #endif
2214 sg_mark_end(sg);
2215 obj->pages = st;
2216
2217 if (i915_gem_object_needs_bit17_swizzle(obj))
2218 i915_gem_object_do_bit_17_swizzle(obj);
2219
2220 if (obj->tiling_mode != I915_TILING_NONE &&
2221 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2222 i915_gem_object_pin_pages(obj);
2223
2224 return 0;
2225
2226 err_pages:
2227 sg_mark_end(sg);
2228 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2229 page_cache_release(sg_page_iter_page(&sg_iter));
2230 sg_free_table(st);
2231 kfree(st);
2232
2233 /* shmemfs first checks if there is enough memory to allocate the page
2234 * and reports ENOSPC should there be insufficient, along with the usual
2235 * ENOMEM for a genuine allocation failure.
2236 *
2237 * We use ENOSPC in our driver to mean that we have run out of aperture
2238 * space and so want to translate the error from shmemfs back to our
2239 * usual understanding of ENOMEM.
2240 */
2241 if (PTR_ERR(page) == -ENOSPC)
2242 return -ENOMEM;
2243 else
2244 return PTR_ERR(page);
2245 }
2246
2247 /* Ensure that the associated pages are gathered from the backing storage
2248 * and pinned into our object. i915_gem_object_get_pages() may be called
2249 * multiple times before they are released by a single call to
2250 * i915_gem_object_put_pages() - once the pages are no longer referenced
2251 * either as a result of memory pressure (reaping pages under the shrinker)
2252 * or as the object is itself released.
2253 */
2254 int
2255 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2256 {
2257 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2258 const struct drm_i915_gem_object_ops *ops = obj->ops;
2259 int ret;
2260
2261 if (obj->pages)
2262 return 0;
2263
2264 if (obj->madv != I915_MADV_WILLNEED) {
2265 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2266 return -EFAULT;
2267 }
2268
2269 BUG_ON(obj->pages_pin_count);
2270
2271 ret = ops->get_pages(obj);
2272 if (ret)
2273 return ret;
2274
2275 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2276 return 0;
2277 }
2278
2279 static void
2280 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2281 struct intel_engine_cs *ring)
2282 {
2283 struct drm_i915_gem_request *req;
2284 struct intel_engine_cs *old_ring;
2285
2286 BUG_ON(ring == NULL);
2287
2288 req = intel_ring_get_request(ring);
2289 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2290
2291 if (old_ring != ring && obj->last_write_req) {
2292 /* Keep the request relative to the current ring */
2293 i915_gem_request_assign(&obj->last_write_req, req);
2294 }
2295
2296 /* Add a reference if we're newly entering the active list. */
2297 if (!obj->active) {
2298 drm_gem_object_reference(&obj->base);
2299 obj->active = 1;
2300 }
2301
2302 list_move_tail(&obj->ring_list, &ring->active_list);
2303
2304 i915_gem_request_assign(&obj->last_read_req, req);
2305 }
2306
2307 void i915_vma_move_to_active(struct i915_vma *vma,
2308 struct intel_engine_cs *ring)
2309 {
2310 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2311 return i915_gem_object_move_to_active(vma->obj, ring);
2312 }
2313
2314 static void
2315 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2316 {
2317 struct i915_vma *vma;
2318
2319 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2320 BUG_ON(!obj->active);
2321
2322 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2323 if (!list_empty(&vma->mm_list))
2324 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2325 }
2326
2327 intel_fb_obj_flush(obj, true);
2328
2329 list_del_init(&obj->ring_list);
2330
2331 i915_gem_request_assign(&obj->last_read_req, NULL);
2332 i915_gem_request_assign(&obj->last_write_req, NULL);
2333 obj->base.write_domain = 0;
2334
2335 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2336
2337 obj->active = 0;
2338 drm_gem_object_unreference(&obj->base);
2339
2340 WARN_ON(i915_verify_lists(dev));
2341 }
2342
2343 static void
2344 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2345 {
2346 if (obj->last_read_req == NULL)
2347 return;
2348
2349 if (i915_gem_request_completed(obj->last_read_req, true))
2350 i915_gem_object_move_to_inactive(obj);
2351 }
2352
2353 static int
2354 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2355 {
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357 struct intel_engine_cs *ring;
2358 int ret, i, j;
2359
2360 /* Carefully retire all requests without writing to the rings */
2361 for_each_ring(ring, dev_priv, i) {
2362 ret = intel_ring_idle(ring);
2363 if (ret)
2364 return ret;
2365 }
2366 i915_gem_retire_requests(dev);
2367
2368 /* Finally reset hw state */
2369 for_each_ring(ring, dev_priv, i) {
2370 intel_ring_init_seqno(ring, seqno);
2371
2372 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2373 ring->semaphore.sync_seqno[j] = 0;
2374 }
2375
2376 return 0;
2377 }
2378
2379 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2380 {
2381 struct drm_i915_private *dev_priv = dev->dev_private;
2382 int ret;
2383
2384 if (seqno == 0)
2385 return -EINVAL;
2386
2387 /* HWS page needs to be set less than what we
2388 * will inject to ring
2389 */
2390 ret = i915_gem_init_seqno(dev, seqno - 1);
2391 if (ret)
2392 return ret;
2393
2394 /* Carefully set the last_seqno value so that wrap
2395 * detection still works
2396 */
2397 dev_priv->next_seqno = seqno;
2398 dev_priv->last_seqno = seqno - 1;
2399 if (dev_priv->last_seqno == 0)
2400 dev_priv->last_seqno--;
2401
2402 return 0;
2403 }
2404
2405 int
2406 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2407 {
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409
2410 /* reserve 0 for non-seqno */
2411 if (dev_priv->next_seqno == 0) {
2412 int ret = i915_gem_init_seqno(dev, 0);
2413 if (ret)
2414 return ret;
2415
2416 dev_priv->next_seqno = 1;
2417 }
2418
2419 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2420 return 0;
2421 }
2422
2423 int __i915_add_request(struct intel_engine_cs *ring,
2424 struct drm_file *file,
2425 struct drm_i915_gem_object *obj)
2426 {
2427 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2428 struct drm_i915_gem_request *request;
2429 struct intel_ringbuffer *ringbuf;
2430 u32 request_start;
2431 int ret;
2432
2433 request = ring->outstanding_lazy_request;
2434 if (WARN_ON(request == NULL))
2435 return -ENOMEM;
2436
2437 if (i915.enable_execlists) {
2438 ringbuf = request->ctx->engine[ring->id].ringbuf;
2439 } else
2440 ringbuf = ring->buffer;
2441
2442 request_start = intel_ring_get_tail(ringbuf);
2443 /*
2444 * Emit any outstanding flushes - execbuf can fail to emit the flush
2445 * after having emitted the batchbuffer command. Hence we need to fix
2446 * things up similar to emitting the lazy request. The difference here
2447 * is that the flush _must_ happen before the next request, no matter
2448 * what.
2449 */
2450 if (i915.enable_execlists) {
2451 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2452 if (ret)
2453 return ret;
2454 } else {
2455 ret = intel_ring_flush_all_caches(ring);
2456 if (ret)
2457 return ret;
2458 }
2459
2460 /* Record the position of the start of the request so that
2461 * should we detect the updated seqno part-way through the
2462 * GPU processing the request, we never over-estimate the
2463 * position of the head.
2464 */
2465 request->postfix = intel_ring_get_tail(ringbuf);
2466
2467 if (i915.enable_execlists) {
2468 ret = ring->emit_request(ringbuf, request);
2469 if (ret)
2470 return ret;
2471 } else {
2472 ret = ring->add_request(ring);
2473 if (ret)
2474 return ret;
2475 }
2476
2477 request->head = request_start;
2478 request->tail = intel_ring_get_tail(ringbuf);
2479
2480 /* Whilst this request exists, batch_obj will be on the
2481 * active_list, and so will hold the active reference. Only when this
2482 * request is retired will the the batch_obj be moved onto the
2483 * inactive_list and lose its active reference. Hence we do not need
2484 * to explicitly hold another reference here.
2485 */
2486 request->batch_obj = obj;
2487
2488 if (!i915.enable_execlists) {
2489 /* Hold a reference to the current context so that we can inspect
2490 * it later in case a hangcheck error event fires.
2491 */
2492 request->ctx = ring->last_context;
2493 if (request->ctx)
2494 i915_gem_context_reference(request->ctx);
2495 }
2496
2497 request->emitted_jiffies = jiffies;
2498 list_add_tail(&request->list, &ring->request_list);
2499 request->file_priv = NULL;
2500
2501 if (file) {
2502 struct drm_i915_file_private *file_priv = file->driver_priv;
2503
2504 spin_lock(&file_priv->mm.lock);
2505 request->file_priv = file_priv;
2506 list_add_tail(&request->client_list,
2507 &file_priv->mm.request_list);
2508 spin_unlock(&file_priv->mm.lock);
2509
2510 request->pid = get_pid(task_pid(current));
2511 }
2512
2513 trace_i915_gem_request_add(request);
2514 ring->outstanding_lazy_request = NULL;
2515
2516 i915_queue_hangcheck(ring->dev);
2517
2518 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2519 queue_delayed_work(dev_priv->wq,
2520 &dev_priv->mm.retire_work,
2521 round_jiffies_up_relative(HZ));
2522 intel_mark_busy(dev_priv->dev);
2523
2524 return 0;
2525 }
2526
2527 static inline void
2528 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2529 {
2530 struct drm_i915_file_private *file_priv = request->file_priv;
2531
2532 if (!file_priv)
2533 return;
2534
2535 spin_lock(&file_priv->mm.lock);
2536 list_del(&request->client_list);
2537 request->file_priv = NULL;
2538 spin_unlock(&file_priv->mm.lock);
2539 }
2540
2541 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2542 const struct intel_context *ctx)
2543 {
2544 unsigned long elapsed;
2545
2546 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2547
2548 if (ctx->hang_stats.banned)
2549 return true;
2550
2551 if (ctx->hang_stats.ban_period_seconds &&
2552 elapsed <= ctx->hang_stats.ban_period_seconds) {
2553 if (!i915_gem_context_is_default(ctx)) {
2554 DRM_DEBUG("context hanging too fast, banning!\n");
2555 return true;
2556 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2557 if (i915_stop_ring_allow_warn(dev_priv))
2558 DRM_ERROR("gpu hanging too fast, banning!\n");
2559 return true;
2560 }
2561 }
2562
2563 return false;
2564 }
2565
2566 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2567 struct intel_context *ctx,
2568 const bool guilty)
2569 {
2570 struct i915_ctx_hang_stats *hs;
2571
2572 if (WARN_ON(!ctx))
2573 return;
2574
2575 hs = &ctx->hang_stats;
2576
2577 if (guilty) {
2578 hs->banned = i915_context_is_banned(dev_priv, ctx);
2579 hs->batch_active++;
2580 hs->guilty_ts = get_seconds();
2581 } else {
2582 hs->batch_pending++;
2583 }
2584 }
2585
2586 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2587 {
2588 list_del(&request->list);
2589 i915_gem_request_remove_from_client(request);
2590
2591 put_pid(request->pid);
2592
2593 i915_gem_request_unreference(request);
2594 }
2595
2596 void i915_gem_request_free(struct kref *req_ref)
2597 {
2598 struct drm_i915_gem_request *req = container_of(req_ref,
2599 typeof(*req), ref);
2600 struct intel_context *ctx = req->ctx;
2601
2602 if (ctx) {
2603 if (i915.enable_execlists) {
2604 struct intel_engine_cs *ring = req->ring;
2605
2606 if (ctx != ring->default_context)
2607 intel_lr_context_unpin(ring, ctx);
2608 }
2609
2610 i915_gem_context_unreference(ctx);
2611 }
2612
2613 kfree(req);
2614 }
2615
2616 struct drm_i915_gem_request *
2617 i915_gem_find_active_request(struct intel_engine_cs *ring)
2618 {
2619 struct drm_i915_gem_request *request;
2620
2621 list_for_each_entry(request, &ring->request_list, list) {
2622 if (i915_gem_request_completed(request, false))
2623 continue;
2624
2625 return request;
2626 }
2627
2628 return NULL;
2629 }
2630
2631 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2632 struct intel_engine_cs *ring)
2633 {
2634 struct drm_i915_gem_request *request;
2635 bool ring_hung;
2636
2637 request = i915_gem_find_active_request(ring);
2638
2639 if (request == NULL)
2640 return;
2641
2642 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2643
2644 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2645
2646 list_for_each_entry_continue(request, &ring->request_list, list)
2647 i915_set_reset_status(dev_priv, request->ctx, false);
2648 }
2649
2650 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2651 struct intel_engine_cs *ring)
2652 {
2653 while (!list_empty(&ring->active_list)) {
2654 struct drm_i915_gem_object *obj;
2655
2656 obj = list_first_entry(&ring->active_list,
2657 struct drm_i915_gem_object,
2658 ring_list);
2659
2660 i915_gem_object_move_to_inactive(obj);
2661 }
2662
2663 /*
2664 * Clear the execlists queue up before freeing the requests, as those
2665 * are the ones that keep the context and ringbuffer backing objects
2666 * pinned in place.
2667 */
2668 while (!list_empty(&ring->execlist_queue)) {
2669 struct drm_i915_gem_request *submit_req;
2670
2671 submit_req = list_first_entry(&ring->execlist_queue,
2672 struct drm_i915_gem_request,
2673 execlist_link);
2674 list_del(&submit_req->execlist_link);
2675 intel_runtime_pm_put(dev_priv);
2676
2677 if (submit_req->ctx != ring->default_context)
2678 intel_lr_context_unpin(ring, submit_req->ctx);
2679
2680 i915_gem_request_unreference(submit_req);
2681 }
2682
2683 /*
2684 * We must free the requests after all the corresponding objects have
2685 * been moved off active lists. Which is the same order as the normal
2686 * retire_requests function does. This is important if object hold
2687 * implicit references on things like e.g. ppgtt address spaces through
2688 * the request.
2689 */
2690 while (!list_empty(&ring->request_list)) {
2691 struct drm_i915_gem_request *request;
2692
2693 request = list_first_entry(&ring->request_list,
2694 struct drm_i915_gem_request,
2695 list);
2696
2697 i915_gem_free_request(request);
2698 }
2699
2700 /* This may not have been flushed before the reset, so clean it now */
2701 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2702 }
2703
2704 void i915_gem_restore_fences(struct drm_device *dev)
2705 {
2706 struct drm_i915_private *dev_priv = dev->dev_private;
2707 int i;
2708
2709 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2710 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2711
2712 /*
2713 * Commit delayed tiling changes if we have an object still
2714 * attached to the fence, otherwise just clear the fence.
2715 */
2716 if (reg->obj) {
2717 i915_gem_object_update_fence(reg->obj, reg,
2718 reg->obj->tiling_mode);
2719 } else {
2720 i915_gem_write_fence(dev, i, NULL);
2721 }
2722 }
2723 }
2724
2725 void i915_gem_reset(struct drm_device *dev)
2726 {
2727 struct drm_i915_private *dev_priv = dev->dev_private;
2728 struct intel_engine_cs *ring;
2729 int i;
2730
2731 /*
2732 * Before we free the objects from the requests, we need to inspect
2733 * them for finding the guilty party. As the requests only borrow
2734 * their reference to the objects, the inspection must be done first.
2735 */
2736 for_each_ring(ring, dev_priv, i)
2737 i915_gem_reset_ring_status(dev_priv, ring);
2738
2739 for_each_ring(ring, dev_priv, i)
2740 i915_gem_reset_ring_cleanup(dev_priv, ring);
2741
2742 i915_gem_context_reset(dev);
2743
2744 i915_gem_restore_fences(dev);
2745 }
2746
2747 /**
2748 * This function clears the request list as sequence numbers are passed.
2749 */
2750 void
2751 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2752 {
2753 if (list_empty(&ring->request_list))
2754 return;
2755
2756 WARN_ON(i915_verify_lists(ring->dev));
2757
2758 /* Move any buffers on the active list that are no longer referenced
2759 * by the ringbuffer to the flushing/inactive lists as appropriate,
2760 * before we free the context associated with the requests.
2761 */
2762 while (!list_empty(&ring->active_list)) {
2763 struct drm_i915_gem_object *obj;
2764
2765 obj = list_first_entry(&ring->active_list,
2766 struct drm_i915_gem_object,
2767 ring_list);
2768
2769 if (!i915_gem_request_completed(obj->last_read_req, true))
2770 break;
2771
2772 i915_gem_object_move_to_inactive(obj);
2773 }
2774
2775
2776 while (!list_empty(&ring->request_list)) {
2777 struct drm_i915_gem_request *request;
2778
2779 request = list_first_entry(&ring->request_list,
2780 struct drm_i915_gem_request,
2781 list);
2782
2783 if (!i915_gem_request_completed(request, true))
2784 break;
2785
2786 trace_i915_gem_request_retire(request);
2787
2788 /* We know the GPU must have read the request to have
2789 * sent us the seqno + interrupt, so use the position
2790 * of tail of the request to update the last known position
2791 * of the GPU head.
2792 */
2793 request->ringbuf->last_retired_head = request->postfix;
2794
2795 i915_gem_free_request(request);
2796 }
2797
2798 if (unlikely(ring->trace_irq_req &&
2799 i915_gem_request_completed(ring->trace_irq_req, true))) {
2800 ring->irq_put(ring);
2801 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2802 }
2803
2804 WARN_ON(i915_verify_lists(ring->dev));
2805 }
2806
2807 bool
2808 i915_gem_retire_requests(struct drm_device *dev)
2809 {
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811 struct intel_engine_cs *ring;
2812 bool idle = true;
2813 int i;
2814
2815 for_each_ring(ring, dev_priv, i) {
2816 i915_gem_retire_requests_ring(ring);
2817 idle &= list_empty(&ring->request_list);
2818 if (i915.enable_execlists) {
2819 unsigned long flags;
2820
2821 spin_lock_irqsave(&ring->execlist_lock, flags);
2822 idle &= list_empty(&ring->execlist_queue);
2823 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2824
2825 intel_execlists_retire_requests(ring);
2826 }
2827 }
2828
2829 if (idle)
2830 mod_delayed_work(dev_priv->wq,
2831 &dev_priv->mm.idle_work,
2832 msecs_to_jiffies(100));
2833
2834 return idle;
2835 }
2836
2837 static void
2838 i915_gem_retire_work_handler(struct work_struct *work)
2839 {
2840 struct drm_i915_private *dev_priv =
2841 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2842 struct drm_device *dev = dev_priv->dev;
2843 bool idle;
2844
2845 /* Come back later if the device is busy... */
2846 idle = false;
2847 if (mutex_trylock(&dev->struct_mutex)) {
2848 idle = i915_gem_retire_requests(dev);
2849 mutex_unlock(&dev->struct_mutex);
2850 }
2851 if (!idle)
2852 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2853 round_jiffies_up_relative(HZ));
2854 }
2855
2856 static void
2857 i915_gem_idle_work_handler(struct work_struct *work)
2858 {
2859 struct drm_i915_private *dev_priv =
2860 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2861
2862 intel_mark_idle(dev_priv->dev);
2863 }
2864
2865 /**
2866 * Ensures that an object will eventually get non-busy by flushing any required
2867 * write domains, emitting any outstanding lazy request and retiring and
2868 * completed requests.
2869 */
2870 static int
2871 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2872 {
2873 struct intel_engine_cs *ring;
2874 int ret;
2875
2876 if (obj->active) {
2877 ring = i915_gem_request_get_ring(obj->last_read_req);
2878
2879 ret = i915_gem_check_olr(obj->last_read_req);
2880 if (ret)
2881 return ret;
2882
2883 i915_gem_retire_requests_ring(ring);
2884 }
2885
2886 return 0;
2887 }
2888
2889 /**
2890 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2891 * @DRM_IOCTL_ARGS: standard ioctl arguments
2892 *
2893 * Returns 0 if successful, else an error is returned with the remaining time in
2894 * the timeout parameter.
2895 * -ETIME: object is still busy after timeout
2896 * -ERESTARTSYS: signal interrupted the wait
2897 * -ENONENT: object doesn't exist
2898 * Also possible, but rare:
2899 * -EAGAIN: GPU wedged
2900 * -ENOMEM: damn
2901 * -ENODEV: Internal IRQ fail
2902 * -E?: The add request failed
2903 *
2904 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2905 * non-zero timeout parameter the wait ioctl will wait for the given number of
2906 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2907 * without holding struct_mutex the object may become re-busied before this
2908 * function completes. A similar but shorter * race condition exists in the busy
2909 * ioctl
2910 */
2911 int
2912 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2913 {
2914 struct drm_i915_private *dev_priv = dev->dev_private;
2915 struct drm_i915_gem_wait *args = data;
2916 struct drm_i915_gem_object *obj;
2917 struct drm_i915_gem_request *req;
2918 unsigned reset_counter;
2919 int ret = 0;
2920
2921 if (args->flags != 0)
2922 return -EINVAL;
2923
2924 ret = i915_mutex_lock_interruptible(dev);
2925 if (ret)
2926 return ret;
2927
2928 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2929 if (&obj->base == NULL) {
2930 mutex_unlock(&dev->struct_mutex);
2931 return -ENOENT;
2932 }
2933
2934 /* Need to make sure the object gets inactive eventually. */
2935 ret = i915_gem_object_flush_active(obj);
2936 if (ret)
2937 goto out;
2938
2939 if (!obj->active || !obj->last_read_req)
2940 goto out;
2941
2942 req = obj->last_read_req;
2943
2944 /* Do this after OLR check to make sure we make forward progress polling
2945 * on this IOCTL with a timeout == 0 (like busy ioctl)
2946 */
2947 if (args->timeout_ns == 0) {
2948 ret = -ETIME;
2949 goto out;
2950 }
2951
2952 drm_gem_object_unreference(&obj->base);
2953 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2954 i915_gem_request_reference(req);
2955 mutex_unlock(&dev->struct_mutex);
2956
2957 ret = __i915_wait_request(req, reset_counter, true,
2958 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2959 file->driver_priv);
2960 mutex_lock(&dev->struct_mutex);
2961 i915_gem_request_unreference(req);
2962 mutex_unlock(&dev->struct_mutex);
2963 return ret;
2964
2965 out:
2966 drm_gem_object_unreference(&obj->base);
2967 mutex_unlock(&dev->struct_mutex);
2968 return ret;
2969 }
2970
2971 /**
2972 * i915_gem_object_sync - sync an object to a ring.
2973 *
2974 * @obj: object which may be in use on another ring.
2975 * @to: ring we wish to use the object on. May be NULL.
2976 *
2977 * This code is meant to abstract object synchronization with the GPU.
2978 * Calling with NULL implies synchronizing the object with the CPU
2979 * rather than a particular GPU ring.
2980 *
2981 * Returns 0 if successful, else propagates up the lower layer error.
2982 */
2983 int
2984 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2985 struct intel_engine_cs *to)
2986 {
2987 struct intel_engine_cs *from;
2988 u32 seqno;
2989 int ret, idx;
2990
2991 from = i915_gem_request_get_ring(obj->last_read_req);
2992
2993 if (from == NULL || to == from)
2994 return 0;
2995
2996 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2997 return i915_gem_object_wait_rendering(obj, false);
2998
2999 idx = intel_ring_sync_index(from, to);
3000
3001 seqno = i915_gem_request_get_seqno(obj->last_read_req);
3002 /* Optimization: Avoid semaphore sync when we are sure we already
3003 * waited for an object with higher seqno */
3004 if (seqno <= from->semaphore.sync_seqno[idx])
3005 return 0;
3006
3007 ret = i915_gem_check_olr(obj->last_read_req);
3008 if (ret)
3009 return ret;
3010
3011 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3012 ret = to->semaphore.sync_to(to, from, seqno);
3013 if (!ret)
3014 /* We use last_read_req because sync_to()
3015 * might have just caused seqno wrap under
3016 * the radar.
3017 */
3018 from->semaphore.sync_seqno[idx] =
3019 i915_gem_request_get_seqno(obj->last_read_req);
3020
3021 return ret;
3022 }
3023
3024 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3025 {
3026 u32 old_write_domain, old_read_domains;
3027
3028 /* Force a pagefault for domain tracking on next user access */
3029 i915_gem_release_mmap(obj);
3030
3031 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3032 return;
3033
3034 /* Wait for any direct GTT access to complete */
3035 mb();
3036
3037 old_read_domains = obj->base.read_domains;
3038 old_write_domain = obj->base.write_domain;
3039
3040 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3041 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3042
3043 trace_i915_gem_object_change_domain(obj,
3044 old_read_domains,
3045 old_write_domain);
3046 }
3047
3048 int i915_vma_unbind(struct i915_vma *vma)
3049 {
3050 struct drm_i915_gem_object *obj = vma->obj;
3051 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3052 int ret;
3053
3054 if (list_empty(&vma->vma_link))
3055 return 0;
3056
3057 if (!drm_mm_node_allocated(&vma->node)) {
3058 i915_gem_vma_destroy(vma);
3059 return 0;
3060 }
3061
3062 if (vma->pin_count)
3063 return -EBUSY;
3064
3065 BUG_ON(obj->pages == NULL);
3066
3067 ret = i915_gem_object_finish_gpu(obj);
3068 if (ret)
3069 return ret;
3070 /* Continue on if we fail due to EIO, the GPU is hung so we
3071 * should be safe and we need to cleanup or else we might
3072 * cause memory corruption through use-after-free.
3073 */
3074
3075 if (i915_is_ggtt(vma->vm) &&
3076 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3077 i915_gem_object_finish_gtt(obj);
3078
3079 /* release the fence reg _after_ flushing */
3080 ret = i915_gem_object_put_fence(obj);
3081 if (ret)
3082 return ret;
3083 }
3084
3085 trace_i915_vma_unbind(vma);
3086
3087 vma->unbind_vma(vma);
3088
3089 list_del_init(&vma->mm_list);
3090 if (i915_is_ggtt(vma->vm)) {
3091 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3092 obj->map_and_fenceable = false;
3093 } else if (vma->ggtt_view.pages) {
3094 sg_free_table(vma->ggtt_view.pages);
3095 kfree(vma->ggtt_view.pages);
3096 vma->ggtt_view.pages = NULL;
3097 }
3098 }
3099
3100 drm_mm_remove_node(&vma->node);
3101 i915_gem_vma_destroy(vma);
3102
3103 /* Since the unbound list is global, only move to that list if
3104 * no more VMAs exist. */
3105 if (list_empty(&obj->vma_list)) {
3106 /* Throw away the active reference before
3107 * moving to the unbound list. */
3108 i915_gem_object_retire(obj);
3109
3110 i915_gem_gtt_finish_object(obj);
3111 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3112 }
3113
3114 /* And finally now the object is completely decoupled from this vma,
3115 * we can drop its hold on the backing storage and allow it to be
3116 * reaped by the shrinker.
3117 */
3118 i915_gem_object_unpin_pages(obj);
3119
3120 return 0;
3121 }
3122
3123 int i915_gpu_idle(struct drm_device *dev)
3124 {
3125 struct drm_i915_private *dev_priv = dev->dev_private;
3126 struct intel_engine_cs *ring;
3127 int ret, i;
3128
3129 /* Flush everything onto the inactive list. */
3130 for_each_ring(ring, dev_priv, i) {
3131 if (!i915.enable_execlists) {
3132 ret = i915_switch_context(ring, ring->default_context);
3133 if (ret)
3134 return ret;
3135 }
3136
3137 ret = intel_ring_idle(ring);
3138 if (ret)
3139 return ret;
3140 }
3141
3142 return 0;
3143 }
3144
3145 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3146 struct drm_i915_gem_object *obj)
3147 {
3148 struct drm_i915_private *dev_priv = dev->dev_private;
3149 int fence_reg;
3150 int fence_pitch_shift;
3151
3152 if (INTEL_INFO(dev)->gen >= 6) {
3153 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3154 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3155 } else {
3156 fence_reg = FENCE_REG_965_0;
3157 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3158 }
3159
3160 fence_reg += reg * 8;
3161
3162 /* To w/a incoherency with non-atomic 64-bit register updates,
3163 * we split the 64-bit update into two 32-bit writes. In order
3164 * for a partial fence not to be evaluated between writes, we
3165 * precede the update with write to turn off the fence register,
3166 * and only enable the fence as the last step.
3167 *
3168 * For extra levels of paranoia, we make sure each step lands
3169 * before applying the next step.
3170 */
3171 I915_WRITE(fence_reg, 0);
3172 POSTING_READ(fence_reg);
3173
3174 if (obj) {
3175 u32 size = i915_gem_obj_ggtt_size(obj);
3176 uint64_t val;
3177
3178 /* Adjust fence size to match tiled area */
3179 if (obj->tiling_mode != I915_TILING_NONE) {
3180 uint32_t row_size = obj->stride *
3181 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3182 size = (size / row_size) * row_size;
3183 }
3184
3185 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3186 0xfffff000) << 32;
3187 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3188 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3189 if (obj->tiling_mode == I915_TILING_Y)
3190 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3191 val |= I965_FENCE_REG_VALID;
3192
3193 I915_WRITE(fence_reg + 4, val >> 32);
3194 POSTING_READ(fence_reg + 4);
3195
3196 I915_WRITE(fence_reg + 0, val);
3197 POSTING_READ(fence_reg);
3198 } else {
3199 I915_WRITE(fence_reg + 4, 0);
3200 POSTING_READ(fence_reg + 4);
3201 }
3202 }
3203
3204 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3205 struct drm_i915_gem_object *obj)
3206 {
3207 struct drm_i915_private *dev_priv = dev->dev_private;
3208 u32 val;
3209
3210 if (obj) {
3211 u32 size = i915_gem_obj_ggtt_size(obj);
3212 int pitch_val;
3213 int tile_width;
3214
3215 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3216 (size & -size) != size ||
3217 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3218 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3219 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3220
3221 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3222 tile_width = 128;
3223 else
3224 tile_width = 512;
3225
3226 /* Note: pitch better be a power of two tile widths */
3227 pitch_val = obj->stride / tile_width;
3228 pitch_val = ffs(pitch_val) - 1;
3229
3230 val = i915_gem_obj_ggtt_offset(obj);
3231 if (obj->tiling_mode == I915_TILING_Y)
3232 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3233 val |= I915_FENCE_SIZE_BITS(size);
3234 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3235 val |= I830_FENCE_REG_VALID;
3236 } else
3237 val = 0;
3238
3239 if (reg < 8)
3240 reg = FENCE_REG_830_0 + reg * 4;
3241 else
3242 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3243
3244 I915_WRITE(reg, val);
3245 POSTING_READ(reg);
3246 }
3247
3248 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3249 struct drm_i915_gem_object *obj)
3250 {
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3252 uint32_t val;
3253
3254 if (obj) {
3255 u32 size = i915_gem_obj_ggtt_size(obj);
3256 uint32_t pitch_val;
3257
3258 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3259 (size & -size) != size ||
3260 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3261 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3262 i915_gem_obj_ggtt_offset(obj), size);
3263
3264 pitch_val = obj->stride / 128;
3265 pitch_val = ffs(pitch_val) - 1;
3266
3267 val = i915_gem_obj_ggtt_offset(obj);
3268 if (obj->tiling_mode == I915_TILING_Y)
3269 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3270 val |= I830_FENCE_SIZE_BITS(size);
3271 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3272 val |= I830_FENCE_REG_VALID;
3273 } else
3274 val = 0;
3275
3276 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3277 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3278 }
3279
3280 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3281 {
3282 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3283 }
3284
3285 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3286 struct drm_i915_gem_object *obj)
3287 {
3288 struct drm_i915_private *dev_priv = dev->dev_private;
3289
3290 /* Ensure that all CPU reads are completed before installing a fence
3291 * and all writes before removing the fence.
3292 */
3293 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3294 mb();
3295
3296 WARN(obj && (!obj->stride || !obj->tiling_mode),
3297 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3298 obj->stride, obj->tiling_mode);
3299
3300 if (IS_GEN2(dev))
3301 i830_write_fence_reg(dev, reg, obj);
3302 else if (IS_GEN3(dev))
3303 i915_write_fence_reg(dev, reg, obj);
3304 else if (INTEL_INFO(dev)->gen >= 4)
3305 i965_write_fence_reg(dev, reg, obj);
3306
3307 /* And similarly be paranoid that no direct access to this region
3308 * is reordered to before the fence is installed.
3309 */
3310 if (i915_gem_object_needs_mb(obj))
3311 mb();
3312 }
3313
3314 static inline int fence_number(struct drm_i915_private *dev_priv,
3315 struct drm_i915_fence_reg *fence)
3316 {
3317 return fence - dev_priv->fence_regs;
3318 }
3319
3320 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3321 struct drm_i915_fence_reg *fence,
3322 bool enable)
3323 {
3324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3325 int reg = fence_number(dev_priv, fence);
3326
3327 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3328
3329 if (enable) {
3330 obj->fence_reg = reg;
3331 fence->obj = obj;
3332 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3333 } else {
3334 obj->fence_reg = I915_FENCE_REG_NONE;
3335 fence->obj = NULL;
3336 list_del_init(&fence->lru_list);
3337 }
3338 obj->fence_dirty = false;
3339 }
3340
3341 static int
3342 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3343 {
3344 if (obj->last_fenced_req) {
3345 int ret = i915_wait_request(obj->last_fenced_req);
3346 if (ret)
3347 return ret;
3348
3349 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3350 }
3351
3352 return 0;
3353 }
3354
3355 int
3356 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3357 {
3358 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3359 struct drm_i915_fence_reg *fence;
3360 int ret;
3361
3362 ret = i915_gem_object_wait_fence(obj);
3363 if (ret)
3364 return ret;
3365
3366 if (obj->fence_reg == I915_FENCE_REG_NONE)
3367 return 0;
3368
3369 fence = &dev_priv->fence_regs[obj->fence_reg];
3370
3371 if (WARN_ON(fence->pin_count))
3372 return -EBUSY;
3373
3374 i915_gem_object_fence_lost(obj);
3375 i915_gem_object_update_fence(obj, fence, false);
3376
3377 return 0;
3378 }
3379
3380 static struct drm_i915_fence_reg *
3381 i915_find_fence_reg(struct drm_device *dev)
3382 {
3383 struct drm_i915_private *dev_priv = dev->dev_private;
3384 struct drm_i915_fence_reg *reg, *avail;
3385 int i;
3386
3387 /* First try to find a free reg */
3388 avail = NULL;
3389 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3390 reg = &dev_priv->fence_regs[i];
3391 if (!reg->obj)
3392 return reg;
3393
3394 if (!reg->pin_count)
3395 avail = reg;
3396 }
3397
3398 if (avail == NULL)
3399 goto deadlock;
3400
3401 /* None available, try to steal one or wait for a user to finish */
3402 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3403 if (reg->pin_count)
3404 continue;
3405
3406 return reg;
3407 }
3408
3409 deadlock:
3410 /* Wait for completion of pending flips which consume fences */
3411 if (intel_has_pending_fb_unpin(dev))
3412 return ERR_PTR(-EAGAIN);
3413
3414 return ERR_PTR(-EDEADLK);
3415 }
3416
3417 /**
3418 * i915_gem_object_get_fence - set up fencing for an object
3419 * @obj: object to map through a fence reg
3420 *
3421 * When mapping objects through the GTT, userspace wants to be able to write
3422 * to them without having to worry about swizzling if the object is tiled.
3423 * This function walks the fence regs looking for a free one for @obj,
3424 * stealing one if it can't find any.
3425 *
3426 * It then sets up the reg based on the object's properties: address, pitch
3427 * and tiling format.
3428 *
3429 * For an untiled surface, this removes any existing fence.
3430 */
3431 int
3432 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3433 {
3434 struct drm_device *dev = obj->base.dev;
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 bool enable = obj->tiling_mode != I915_TILING_NONE;
3437 struct drm_i915_fence_reg *reg;
3438 int ret;
3439
3440 /* Have we updated the tiling parameters upon the object and so
3441 * will need to serialise the write to the associated fence register?
3442 */
3443 if (obj->fence_dirty) {
3444 ret = i915_gem_object_wait_fence(obj);
3445 if (ret)
3446 return ret;
3447 }
3448
3449 /* Just update our place in the LRU if our fence is getting reused. */
3450 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3451 reg = &dev_priv->fence_regs[obj->fence_reg];
3452 if (!obj->fence_dirty) {
3453 list_move_tail(&reg->lru_list,
3454 &dev_priv->mm.fence_list);
3455 return 0;
3456 }
3457 } else if (enable) {
3458 if (WARN_ON(!obj->map_and_fenceable))
3459 return -EINVAL;
3460
3461 reg = i915_find_fence_reg(dev);
3462 if (IS_ERR(reg))
3463 return PTR_ERR(reg);
3464
3465 if (reg->obj) {
3466 struct drm_i915_gem_object *old = reg->obj;
3467
3468 ret = i915_gem_object_wait_fence(old);
3469 if (ret)
3470 return ret;
3471
3472 i915_gem_object_fence_lost(old);
3473 }
3474 } else
3475 return 0;
3476
3477 i915_gem_object_update_fence(obj, reg, enable);
3478
3479 return 0;
3480 }
3481
3482 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3483 unsigned long cache_level)
3484 {
3485 struct drm_mm_node *gtt_space = &vma->node;
3486 struct drm_mm_node *other;
3487
3488 /*
3489 * On some machines we have to be careful when putting differing types
3490 * of snoopable memory together to avoid the prefetcher crossing memory
3491 * domains and dying. During vm initialisation, we decide whether or not
3492 * these constraints apply and set the drm_mm.color_adjust
3493 * appropriately.
3494 */
3495 if (vma->vm->mm.color_adjust == NULL)
3496 return true;
3497
3498 if (!drm_mm_node_allocated(gtt_space))
3499 return true;
3500
3501 if (list_empty(&gtt_space->node_list))
3502 return true;
3503
3504 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3505 if (other->allocated && !other->hole_follows && other->color != cache_level)
3506 return false;
3507
3508 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3509 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3510 return false;
3511
3512 return true;
3513 }
3514
3515 /**
3516 * Finds free space in the GTT aperture and binds the object there.
3517 */
3518 static struct i915_vma *
3519 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3520 struct i915_address_space *vm,
3521 unsigned alignment,
3522 uint64_t flags,
3523 const struct i915_ggtt_view *view)
3524 {
3525 struct drm_device *dev = obj->base.dev;
3526 struct drm_i915_private *dev_priv = dev->dev_private;
3527 u32 size, fence_size, fence_alignment, unfenced_alignment;
3528 unsigned long start =
3529 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3530 unsigned long end =
3531 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3532 struct i915_vma *vma;
3533 int ret;
3534
3535 fence_size = i915_gem_get_gtt_size(dev,
3536 obj->base.size,
3537 obj->tiling_mode);
3538 fence_alignment = i915_gem_get_gtt_alignment(dev,
3539 obj->base.size,
3540 obj->tiling_mode, true);
3541 unfenced_alignment =
3542 i915_gem_get_gtt_alignment(dev,
3543 obj->base.size,
3544 obj->tiling_mode, false);
3545
3546 if (alignment == 0)
3547 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3548 unfenced_alignment;
3549 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3550 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3551 return ERR_PTR(-EINVAL);
3552 }
3553
3554 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3555
3556 /* If the object is bigger than the entire aperture, reject it early
3557 * before evicting everything in a vain attempt to find space.
3558 */
3559 if (obj->base.size > end) {
3560 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3561 obj->base.size,
3562 flags & PIN_MAPPABLE ? "mappable" : "total",
3563 end);
3564 return ERR_PTR(-E2BIG);
3565 }
3566
3567 ret = i915_gem_object_get_pages(obj);
3568 if (ret)
3569 return ERR_PTR(ret);
3570
3571 i915_gem_object_pin_pages(obj);
3572
3573 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3574 if (IS_ERR(vma))
3575 goto err_unpin;
3576
3577 search_free:
3578 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3579 size, alignment,
3580 obj->cache_level,
3581 start, end,
3582 DRM_MM_SEARCH_DEFAULT,
3583 DRM_MM_CREATE_DEFAULT);
3584 if (ret) {
3585 ret = i915_gem_evict_something(dev, vm, size, alignment,
3586 obj->cache_level,
3587 start, end,
3588 flags);
3589 if (ret == 0)
3590 goto search_free;
3591
3592 goto err_free_vma;
3593 }
3594 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3595 ret = -EINVAL;
3596 goto err_remove_node;
3597 }
3598
3599 ret = i915_gem_gtt_prepare_object(obj);
3600 if (ret)
3601 goto err_remove_node;
3602
3603 trace_i915_vma_bind(vma, flags);
3604 ret = i915_vma_bind(vma, obj->cache_level,
3605 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3606 if (ret)
3607 goto err_finish_gtt;
3608
3609 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3610 list_add_tail(&vma->mm_list, &vm->inactive_list);
3611
3612 return vma;
3613
3614 err_finish_gtt:
3615 i915_gem_gtt_finish_object(obj);
3616 err_remove_node:
3617 drm_mm_remove_node(&vma->node);
3618 err_free_vma:
3619 i915_gem_vma_destroy(vma);
3620 vma = ERR_PTR(ret);
3621 err_unpin:
3622 i915_gem_object_unpin_pages(obj);
3623 return vma;
3624 }
3625
3626 bool
3627 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3628 bool force)
3629 {
3630 /* If we don't have a page list set up, then we're not pinned
3631 * to GPU, and we can ignore the cache flush because it'll happen
3632 * again at bind time.
3633 */
3634 if (obj->pages == NULL)
3635 return false;
3636
3637 /*
3638 * Stolen memory is always coherent with the GPU as it is explicitly
3639 * marked as wc by the system, or the system is cache-coherent.
3640 */
3641 if (obj->stolen || obj->phys_handle)
3642 return false;
3643
3644 /* If the GPU is snooping the contents of the CPU cache,
3645 * we do not need to manually clear the CPU cache lines. However,
3646 * the caches are only snooped when the render cache is
3647 * flushed/invalidated. As we always have to emit invalidations
3648 * and flushes when moving into and out of the RENDER domain, correct
3649 * snooping behaviour occurs naturally as the result of our domain
3650 * tracking.
3651 */
3652 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3653 obj->cache_dirty = true;
3654 return false;
3655 }
3656
3657 trace_i915_gem_object_clflush(obj);
3658 drm_clflush_sg(obj->pages);
3659 obj->cache_dirty = false;
3660
3661 return true;
3662 }
3663
3664 /** Flushes the GTT write domain for the object if it's dirty. */
3665 static void
3666 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3667 {
3668 uint32_t old_write_domain;
3669
3670 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3671 return;
3672
3673 /* No actual flushing is required for the GTT write domain. Writes
3674 * to it immediately go to main memory as far as we know, so there's
3675 * no chipset flush. It also doesn't land in render cache.
3676 *
3677 * However, we do have to enforce the order so that all writes through
3678 * the GTT land before any writes to the device, such as updates to
3679 * the GATT itself.
3680 */
3681 wmb();
3682
3683 old_write_domain = obj->base.write_domain;
3684 obj->base.write_domain = 0;
3685
3686 intel_fb_obj_flush(obj, false);
3687
3688 trace_i915_gem_object_change_domain(obj,
3689 obj->base.read_domains,
3690 old_write_domain);
3691 }
3692
3693 /** Flushes the CPU write domain for the object if it's dirty. */
3694 static void
3695 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3696 {
3697 uint32_t old_write_domain;
3698
3699 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3700 return;
3701
3702 if (i915_gem_clflush_object(obj, obj->pin_display))
3703 i915_gem_chipset_flush(obj->base.dev);
3704
3705 old_write_domain = obj->base.write_domain;
3706 obj->base.write_domain = 0;
3707
3708 intel_fb_obj_flush(obj, false);
3709
3710 trace_i915_gem_object_change_domain(obj,
3711 obj->base.read_domains,
3712 old_write_domain);
3713 }
3714
3715 /**
3716 * Moves a single object to the GTT read, and possibly write domain.
3717 *
3718 * This function returns when the move is complete, including waiting on
3719 * flushes to occur.
3720 */
3721 int
3722 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3723 {
3724 uint32_t old_write_domain, old_read_domains;
3725 struct i915_vma *vma;
3726 int ret;
3727
3728 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3729 return 0;
3730
3731 ret = i915_gem_object_wait_rendering(obj, !write);
3732 if (ret)
3733 return ret;
3734
3735 i915_gem_object_retire(obj);
3736
3737 /* Flush and acquire obj->pages so that we are coherent through
3738 * direct access in memory with previous cached writes through
3739 * shmemfs and that our cache domain tracking remains valid.
3740 * For example, if the obj->filp was moved to swap without us
3741 * being notified and releasing the pages, we would mistakenly
3742 * continue to assume that the obj remained out of the CPU cached
3743 * domain.
3744 */
3745 ret = i915_gem_object_get_pages(obj);
3746 if (ret)
3747 return ret;
3748
3749 i915_gem_object_flush_cpu_write_domain(obj);
3750
3751 /* Serialise direct access to this object with the barriers for
3752 * coherent writes from the GPU, by effectively invalidating the
3753 * GTT domain upon first access.
3754 */
3755 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3756 mb();
3757
3758 old_write_domain = obj->base.write_domain;
3759 old_read_domains = obj->base.read_domains;
3760
3761 /* It should now be out of any other write domains, and we can update
3762 * the domain values for our changes.
3763 */
3764 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3765 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3766 if (write) {
3767 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3768 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3769 obj->dirty = 1;
3770 }
3771
3772 if (write)
3773 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3774
3775 trace_i915_gem_object_change_domain(obj,
3776 old_read_domains,
3777 old_write_domain);
3778
3779 /* And bump the LRU for this access */
3780 vma = i915_gem_obj_to_ggtt(obj);
3781 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3782 list_move_tail(&vma->mm_list,
3783 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3784
3785 return 0;
3786 }
3787
3788 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3789 enum i915_cache_level cache_level)
3790 {
3791 struct drm_device *dev = obj->base.dev;
3792 struct i915_vma *vma, *next;
3793 int ret;
3794
3795 if (obj->cache_level == cache_level)
3796 return 0;
3797
3798 if (i915_gem_obj_is_pinned(obj)) {
3799 DRM_DEBUG("can not change the cache level of pinned objects\n");
3800 return -EBUSY;
3801 }
3802
3803 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3804 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3805 ret = i915_vma_unbind(vma);
3806 if (ret)
3807 return ret;
3808 }
3809 }
3810
3811 if (i915_gem_obj_bound_any(obj)) {
3812 ret = i915_gem_object_finish_gpu(obj);
3813 if (ret)
3814 return ret;
3815
3816 i915_gem_object_finish_gtt(obj);
3817
3818 /* Before SandyBridge, you could not use tiling or fence
3819 * registers with snooped memory, so relinquish any fences
3820 * currently pointing to our region in the aperture.
3821 */
3822 if (INTEL_INFO(dev)->gen < 6) {
3823 ret = i915_gem_object_put_fence(obj);
3824 if (ret)
3825 return ret;
3826 }
3827
3828 list_for_each_entry(vma, &obj->vma_list, vma_link)
3829 if (drm_mm_node_allocated(&vma->node)) {
3830 ret = i915_vma_bind(vma, cache_level,
3831 vma->bound & GLOBAL_BIND);
3832 if (ret)
3833 return ret;
3834 }
3835 }
3836
3837 list_for_each_entry(vma, &obj->vma_list, vma_link)
3838 vma->node.color = cache_level;
3839 obj->cache_level = cache_level;
3840
3841 if (obj->cache_dirty &&
3842 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3843 cpu_write_needs_clflush(obj)) {
3844 if (i915_gem_clflush_object(obj, true))
3845 i915_gem_chipset_flush(obj->base.dev);
3846 }
3847
3848 return 0;
3849 }
3850
3851 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3852 struct drm_file *file)
3853 {
3854 struct drm_i915_gem_caching *args = data;
3855 struct drm_i915_gem_object *obj;
3856 int ret;
3857
3858 ret = i915_mutex_lock_interruptible(dev);
3859 if (ret)
3860 return ret;
3861
3862 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3863 if (&obj->base == NULL) {
3864 ret = -ENOENT;
3865 goto unlock;
3866 }
3867
3868 switch (obj->cache_level) {
3869 case I915_CACHE_LLC:
3870 case I915_CACHE_L3_LLC:
3871 args->caching = I915_CACHING_CACHED;
3872 break;
3873
3874 case I915_CACHE_WT:
3875 args->caching = I915_CACHING_DISPLAY;
3876 break;
3877
3878 default:
3879 args->caching = I915_CACHING_NONE;
3880 break;
3881 }
3882
3883 drm_gem_object_unreference(&obj->base);
3884 unlock:
3885 mutex_unlock(&dev->struct_mutex);
3886 return ret;
3887 }
3888
3889 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3890 struct drm_file *file)
3891 {
3892 struct drm_i915_gem_caching *args = data;
3893 struct drm_i915_gem_object *obj;
3894 enum i915_cache_level level;
3895 int ret;
3896
3897 switch (args->caching) {
3898 case I915_CACHING_NONE:
3899 level = I915_CACHE_NONE;
3900 break;
3901 case I915_CACHING_CACHED:
3902 level = I915_CACHE_LLC;
3903 break;
3904 case I915_CACHING_DISPLAY:
3905 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3906 break;
3907 default:
3908 return -EINVAL;
3909 }
3910
3911 ret = i915_mutex_lock_interruptible(dev);
3912 if (ret)
3913 return ret;
3914
3915 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3916 if (&obj->base == NULL) {
3917 ret = -ENOENT;
3918 goto unlock;
3919 }
3920
3921 ret = i915_gem_object_set_cache_level(obj, level);
3922
3923 drm_gem_object_unreference(&obj->base);
3924 unlock:
3925 mutex_unlock(&dev->struct_mutex);
3926 return ret;
3927 }
3928
3929 static bool is_pin_display(struct drm_i915_gem_object *obj)
3930 {
3931 struct i915_vma *vma;
3932
3933 vma = i915_gem_obj_to_ggtt(obj);
3934 if (!vma)
3935 return false;
3936
3937 /* There are 2 sources that pin objects:
3938 * 1. The display engine (scanouts, sprites, cursors);
3939 * 2. Reservations for execbuffer;
3940 *
3941 * We can ignore reservations as we hold the struct_mutex and
3942 * are only called outside of the reservation path.
3943 */
3944 return vma->pin_count;
3945 }
3946
3947 /*
3948 * Prepare buffer for display plane (scanout, cursors, etc).
3949 * Can be called from an uninterruptible phase (modesetting) and allows
3950 * any flushes to be pipelined (for pageflips).
3951 */
3952 int
3953 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3954 u32 alignment,
3955 struct intel_engine_cs *pipelined)
3956 {
3957 u32 old_read_domains, old_write_domain;
3958 bool was_pin_display;
3959 int ret;
3960
3961 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3962 ret = i915_gem_object_sync(obj, pipelined);
3963 if (ret)
3964 return ret;
3965 }
3966
3967 /* Mark the pin_display early so that we account for the
3968 * display coherency whilst setting up the cache domains.
3969 */
3970 was_pin_display = obj->pin_display;
3971 obj->pin_display = true;
3972
3973 /* The display engine is not coherent with the LLC cache on gen6. As
3974 * a result, we make sure that the pinning that is about to occur is
3975 * done with uncached PTEs. This is lowest common denominator for all
3976 * chipsets.
3977 *
3978 * However for gen6+, we could do better by using the GFDT bit instead
3979 * of uncaching, which would allow us to flush all the LLC-cached data
3980 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3981 */
3982 ret = i915_gem_object_set_cache_level(obj,
3983 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3984 if (ret)
3985 goto err_unpin_display;
3986
3987 /* As the user may map the buffer once pinned in the display plane
3988 * (e.g. libkms for the bootup splash), we have to ensure that we
3989 * always use map_and_fenceable for all scanout buffers.
3990 */
3991 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3992 if (ret)
3993 goto err_unpin_display;
3994
3995 i915_gem_object_flush_cpu_write_domain(obj);
3996
3997 old_write_domain = obj->base.write_domain;
3998 old_read_domains = obj->base.read_domains;
3999
4000 /* It should now be out of any other write domains, and we can update
4001 * the domain values for our changes.
4002 */
4003 obj->base.write_domain = 0;
4004 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4005
4006 trace_i915_gem_object_change_domain(obj,
4007 old_read_domains,
4008 old_write_domain);
4009
4010 return 0;
4011
4012 err_unpin_display:
4013 WARN_ON(was_pin_display != is_pin_display(obj));
4014 obj->pin_display = was_pin_display;
4015 return ret;
4016 }
4017
4018 void
4019 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4020 {
4021 i915_gem_object_ggtt_unpin(obj);
4022 obj->pin_display = is_pin_display(obj);
4023 }
4024
4025 int
4026 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4027 {
4028 int ret;
4029
4030 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4031 return 0;
4032
4033 ret = i915_gem_object_wait_rendering(obj, false);
4034 if (ret)
4035 return ret;
4036
4037 /* Ensure that we invalidate the GPU's caches and TLBs. */
4038 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4039 return 0;
4040 }
4041
4042 /**
4043 * Moves a single object to the CPU read, and possibly write domain.
4044 *
4045 * This function returns when the move is complete, including waiting on
4046 * flushes to occur.
4047 */
4048 int
4049 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4050 {
4051 uint32_t old_write_domain, old_read_domains;
4052 int ret;
4053
4054 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4055 return 0;
4056
4057 ret = i915_gem_object_wait_rendering(obj, !write);
4058 if (ret)
4059 return ret;
4060
4061 i915_gem_object_retire(obj);
4062 i915_gem_object_flush_gtt_write_domain(obj);
4063
4064 old_write_domain = obj->base.write_domain;
4065 old_read_domains = obj->base.read_domains;
4066
4067 /* Flush the CPU cache if it's still invalid. */
4068 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4069 i915_gem_clflush_object(obj, false);
4070
4071 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4072 }
4073
4074 /* It should now be out of any other write domains, and we can update
4075 * the domain values for our changes.
4076 */
4077 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4078
4079 /* If we're writing through the CPU, then the GPU read domains will
4080 * need to be invalidated at next use.
4081 */
4082 if (write) {
4083 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4084 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4085 }
4086
4087 if (write)
4088 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4089
4090 trace_i915_gem_object_change_domain(obj,
4091 old_read_domains,
4092 old_write_domain);
4093
4094 return 0;
4095 }
4096
4097 /* Throttle our rendering by waiting until the ring has completed our requests
4098 * emitted over 20 msec ago.
4099 *
4100 * Note that if we were to use the current jiffies each time around the loop,
4101 * we wouldn't escape the function with any frames outstanding if the time to
4102 * render a frame was over 20ms.
4103 *
4104 * This should get us reasonable parallelism between CPU and GPU but also
4105 * relatively low latency when blocking on a particular request to finish.
4106 */
4107 static int
4108 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4109 {
4110 struct drm_i915_private *dev_priv = dev->dev_private;
4111 struct drm_i915_file_private *file_priv = file->driver_priv;
4112 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4113 struct drm_i915_gem_request *request, *target = NULL;
4114 unsigned reset_counter;
4115 int ret;
4116
4117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4118 if (ret)
4119 return ret;
4120
4121 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4122 if (ret)
4123 return ret;
4124
4125 spin_lock(&file_priv->mm.lock);
4126 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4127 if (time_after_eq(request->emitted_jiffies, recent_enough))
4128 break;
4129
4130 target = request;
4131 }
4132 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4133 if (target)
4134 i915_gem_request_reference(target);
4135 spin_unlock(&file_priv->mm.lock);
4136
4137 if (target == NULL)
4138 return 0;
4139
4140 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4141 if (ret == 0)
4142 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4143
4144 mutex_lock(&dev->struct_mutex);
4145 i915_gem_request_unreference(target);
4146 mutex_unlock(&dev->struct_mutex);
4147
4148 return ret;
4149 }
4150
4151 static bool
4152 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4153 {
4154 struct drm_i915_gem_object *obj = vma->obj;
4155
4156 if (alignment &&
4157 vma->node.start & (alignment - 1))
4158 return true;
4159
4160 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4161 return true;
4162
4163 if (flags & PIN_OFFSET_BIAS &&
4164 vma->node.start < (flags & PIN_OFFSET_MASK))
4165 return true;
4166
4167 return false;
4168 }
4169
4170 int
4171 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4172 struct i915_address_space *vm,
4173 uint32_t alignment,
4174 uint64_t flags,
4175 const struct i915_ggtt_view *view)
4176 {
4177 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4178 struct i915_vma *vma;
4179 unsigned bound;
4180 int ret;
4181
4182 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4183 return -ENODEV;
4184
4185 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4186 return -EINVAL;
4187
4188 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4189 return -EINVAL;
4190
4191 vma = i915_gem_obj_to_vma_view(obj, vm, view);
4192 if (vma) {
4193 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4194 return -EBUSY;
4195
4196 if (i915_vma_misplaced(vma, alignment, flags)) {
4197 WARN(vma->pin_count,
4198 "bo is already pinned with incorrect alignment:"
4199 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4200 " obj->map_and_fenceable=%d\n",
4201 i915_gem_obj_offset_view(obj, vm, view->type),
4202 alignment,
4203 !!(flags & PIN_MAPPABLE),
4204 obj->map_and_fenceable);
4205 ret = i915_vma_unbind(vma);
4206 if (ret)
4207 return ret;
4208
4209 vma = NULL;
4210 }
4211 }
4212
4213 bound = vma ? vma->bound : 0;
4214 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4215 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4216 flags, view);
4217 if (IS_ERR(vma))
4218 return PTR_ERR(vma);
4219 }
4220
4221 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4222 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4223 if (ret)
4224 return ret;
4225 }
4226
4227 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4228 bool mappable, fenceable;
4229 u32 fence_size, fence_alignment;
4230
4231 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4232 obj->base.size,
4233 obj->tiling_mode);
4234 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4235 obj->base.size,
4236 obj->tiling_mode,
4237 true);
4238
4239 fenceable = (vma->node.size == fence_size &&
4240 (vma->node.start & (fence_alignment - 1)) == 0);
4241
4242 mappable = (vma->node.start + fence_size <=
4243 dev_priv->gtt.mappable_end);
4244
4245 obj->map_and_fenceable = mappable && fenceable;
4246 }
4247
4248 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4249
4250 vma->pin_count++;
4251 if (flags & PIN_MAPPABLE)
4252 obj->pin_mappable |= true;
4253
4254 return 0;
4255 }
4256
4257 void
4258 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4259 {
4260 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4261
4262 BUG_ON(!vma);
4263 BUG_ON(vma->pin_count == 0);
4264 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4265
4266 if (--vma->pin_count == 0)
4267 obj->pin_mappable = false;
4268 }
4269
4270 bool
4271 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4272 {
4273 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4274 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4275 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4276
4277 WARN_ON(!ggtt_vma ||
4278 dev_priv->fence_regs[obj->fence_reg].pin_count >
4279 ggtt_vma->pin_count);
4280 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4281 return true;
4282 } else
4283 return false;
4284 }
4285
4286 void
4287 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4288 {
4289 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4290 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4291 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4292 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4293 }
4294 }
4295
4296 int
4297 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4298 struct drm_file *file)
4299 {
4300 struct drm_i915_gem_busy *args = data;
4301 struct drm_i915_gem_object *obj;
4302 int ret;
4303
4304 ret = i915_mutex_lock_interruptible(dev);
4305 if (ret)
4306 return ret;
4307
4308 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4309 if (&obj->base == NULL) {
4310 ret = -ENOENT;
4311 goto unlock;
4312 }
4313
4314 /* Count all active objects as busy, even if they are currently not used
4315 * by the gpu. Users of this interface expect objects to eventually
4316 * become non-busy without any further actions, therefore emit any
4317 * necessary flushes here.
4318 */
4319 ret = i915_gem_object_flush_active(obj);
4320
4321 args->busy = obj->active;
4322 if (obj->last_read_req) {
4323 struct intel_engine_cs *ring;
4324 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4325 ring = i915_gem_request_get_ring(obj->last_read_req);
4326 args->busy |= intel_ring_flag(ring) << 16;
4327 }
4328
4329 drm_gem_object_unreference(&obj->base);
4330 unlock:
4331 mutex_unlock(&dev->struct_mutex);
4332 return ret;
4333 }
4334
4335 int
4336 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4337 struct drm_file *file_priv)
4338 {
4339 return i915_gem_ring_throttle(dev, file_priv);
4340 }
4341
4342 int
4343 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4344 struct drm_file *file_priv)
4345 {
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347 struct drm_i915_gem_madvise *args = data;
4348 struct drm_i915_gem_object *obj;
4349 int ret;
4350
4351 switch (args->madv) {
4352 case I915_MADV_DONTNEED:
4353 case I915_MADV_WILLNEED:
4354 break;
4355 default:
4356 return -EINVAL;
4357 }
4358
4359 ret = i915_mutex_lock_interruptible(dev);
4360 if (ret)
4361 return ret;
4362
4363 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4364 if (&obj->base == NULL) {
4365 ret = -ENOENT;
4366 goto unlock;
4367 }
4368
4369 if (i915_gem_obj_is_pinned(obj)) {
4370 ret = -EINVAL;
4371 goto out;
4372 }
4373
4374 if (obj->pages &&
4375 obj->tiling_mode != I915_TILING_NONE &&
4376 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4377 if (obj->madv == I915_MADV_WILLNEED)
4378 i915_gem_object_unpin_pages(obj);
4379 if (args->madv == I915_MADV_WILLNEED)
4380 i915_gem_object_pin_pages(obj);
4381 }
4382
4383 if (obj->madv != __I915_MADV_PURGED)
4384 obj->madv = args->madv;
4385
4386 /* if the object is no longer attached, discard its backing storage */
4387 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4388 i915_gem_object_truncate(obj);
4389
4390 args->retained = obj->madv != __I915_MADV_PURGED;
4391
4392 out:
4393 drm_gem_object_unreference(&obj->base);
4394 unlock:
4395 mutex_unlock(&dev->struct_mutex);
4396 return ret;
4397 }
4398
4399 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4400 const struct drm_i915_gem_object_ops *ops)
4401 {
4402 INIT_LIST_HEAD(&obj->global_list);
4403 INIT_LIST_HEAD(&obj->ring_list);
4404 INIT_LIST_HEAD(&obj->obj_exec_link);
4405 INIT_LIST_HEAD(&obj->vma_list);
4406 INIT_LIST_HEAD(&obj->batch_pool_list);
4407
4408 obj->ops = ops;
4409
4410 obj->fence_reg = I915_FENCE_REG_NONE;
4411 obj->madv = I915_MADV_WILLNEED;
4412
4413 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4414 }
4415
4416 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4417 .get_pages = i915_gem_object_get_pages_gtt,
4418 .put_pages = i915_gem_object_put_pages_gtt,
4419 };
4420
4421 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4422 size_t size)
4423 {
4424 struct drm_i915_gem_object *obj;
4425 struct address_space *mapping;
4426 gfp_t mask;
4427
4428 obj = i915_gem_object_alloc(dev);
4429 if (obj == NULL)
4430 return NULL;
4431
4432 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4433 i915_gem_object_free(obj);
4434 return NULL;
4435 }
4436
4437 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4438 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4439 /* 965gm cannot relocate objects above 4GiB. */
4440 mask &= ~__GFP_HIGHMEM;
4441 mask |= __GFP_DMA32;
4442 }
4443
4444 mapping = file_inode(obj->base.filp)->i_mapping;
4445 mapping_set_gfp_mask(mapping, mask);
4446
4447 i915_gem_object_init(obj, &i915_gem_object_ops);
4448
4449 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4450 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4451
4452 if (HAS_LLC(dev)) {
4453 /* On some devices, we can have the GPU use the LLC (the CPU
4454 * cache) for about a 10% performance improvement
4455 * compared to uncached. Graphics requests other than
4456 * display scanout are coherent with the CPU in
4457 * accessing this cache. This means in this mode we
4458 * don't need to clflush on the CPU side, and on the
4459 * GPU side we only need to flush internal caches to
4460 * get data visible to the CPU.
4461 *
4462 * However, we maintain the display planes as UC, and so
4463 * need to rebind when first used as such.
4464 */
4465 obj->cache_level = I915_CACHE_LLC;
4466 } else
4467 obj->cache_level = I915_CACHE_NONE;
4468
4469 trace_i915_gem_object_create(obj);
4470
4471 return obj;
4472 }
4473
4474 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4475 {
4476 /* If we are the last user of the backing storage (be it shmemfs
4477 * pages or stolen etc), we know that the pages are going to be
4478 * immediately released. In this case, we can then skip copying
4479 * back the contents from the GPU.
4480 */
4481
4482 if (obj->madv != I915_MADV_WILLNEED)
4483 return false;
4484
4485 if (obj->base.filp == NULL)
4486 return true;
4487
4488 /* At first glance, this looks racy, but then again so would be
4489 * userspace racing mmap against close. However, the first external
4490 * reference to the filp can only be obtained through the
4491 * i915_gem_mmap_ioctl() which safeguards us against the user
4492 * acquiring such a reference whilst we are in the middle of
4493 * freeing the object.
4494 */
4495 return atomic_long_read(&obj->base.filp->f_count) == 1;
4496 }
4497
4498 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4499 {
4500 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4501 struct drm_device *dev = obj->base.dev;
4502 struct drm_i915_private *dev_priv = dev->dev_private;
4503 struct i915_vma *vma, *next;
4504
4505 intel_runtime_pm_get(dev_priv);
4506
4507 trace_i915_gem_object_destroy(obj);
4508
4509 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4510 int ret;
4511
4512 vma->pin_count = 0;
4513 ret = i915_vma_unbind(vma);
4514 if (WARN_ON(ret == -ERESTARTSYS)) {
4515 bool was_interruptible;
4516
4517 was_interruptible = dev_priv->mm.interruptible;
4518 dev_priv->mm.interruptible = false;
4519
4520 WARN_ON(i915_vma_unbind(vma));
4521
4522 dev_priv->mm.interruptible = was_interruptible;
4523 }
4524 }
4525
4526 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4527 * before progressing. */
4528 if (obj->stolen)
4529 i915_gem_object_unpin_pages(obj);
4530
4531 WARN_ON(obj->frontbuffer_bits);
4532
4533 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4534 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4535 obj->tiling_mode != I915_TILING_NONE)
4536 i915_gem_object_unpin_pages(obj);
4537
4538 if (WARN_ON(obj->pages_pin_count))
4539 obj->pages_pin_count = 0;
4540 if (discard_backing_storage(obj))
4541 obj->madv = I915_MADV_DONTNEED;
4542 i915_gem_object_put_pages(obj);
4543 i915_gem_object_free_mmap_offset(obj);
4544
4545 BUG_ON(obj->pages);
4546
4547 if (obj->base.import_attach)
4548 drm_prime_gem_destroy(&obj->base, NULL);
4549
4550 if (obj->ops->release)
4551 obj->ops->release(obj);
4552
4553 drm_gem_object_release(&obj->base);
4554 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4555
4556 kfree(obj->bit_17);
4557 i915_gem_object_free(obj);
4558
4559 intel_runtime_pm_put(dev_priv);
4560 }
4561
4562 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4563 struct i915_address_space *vm,
4564 const struct i915_ggtt_view *view)
4565 {
4566 struct i915_vma *vma;
4567 list_for_each_entry(vma, &obj->vma_list, vma_link)
4568 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4569 return vma;
4570
4571 return NULL;
4572 }
4573
4574 void i915_gem_vma_destroy(struct i915_vma *vma)
4575 {
4576 struct i915_address_space *vm = NULL;
4577 WARN_ON(vma->node.allocated);
4578
4579 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4580 if (!list_empty(&vma->exec_list))
4581 return;
4582
4583 vm = vma->vm;
4584
4585 if (!i915_is_ggtt(vm))
4586 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4587
4588 list_del(&vma->vma_link);
4589
4590 kfree(vma);
4591 }
4592
4593 static void
4594 i915_gem_stop_ringbuffers(struct drm_device *dev)
4595 {
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597 struct intel_engine_cs *ring;
4598 int i;
4599
4600 for_each_ring(ring, dev_priv, i)
4601 dev_priv->gt.stop_ring(ring);
4602 }
4603
4604 int
4605 i915_gem_suspend(struct drm_device *dev)
4606 {
4607 struct drm_i915_private *dev_priv = dev->dev_private;
4608 int ret = 0;
4609
4610 mutex_lock(&dev->struct_mutex);
4611 ret = i915_gpu_idle(dev);
4612 if (ret)
4613 goto err;
4614
4615 i915_gem_retire_requests(dev);
4616
4617 i915_gem_stop_ringbuffers(dev);
4618 mutex_unlock(&dev->struct_mutex);
4619
4620 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4621 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4622 flush_delayed_work(&dev_priv->mm.idle_work);
4623
4624 /* Assert that we sucessfully flushed all the work and
4625 * reset the GPU back to its idle, low power state.
4626 */
4627 WARN_ON(dev_priv->mm.busy);
4628
4629 return 0;
4630
4631 err:
4632 mutex_unlock(&dev->struct_mutex);
4633 return ret;
4634 }
4635
4636 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4637 {
4638 struct drm_device *dev = ring->dev;
4639 struct drm_i915_private *dev_priv = dev->dev_private;
4640 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4641 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4642 int i, ret;
4643
4644 if (!HAS_L3_DPF(dev) || !remap_info)
4645 return 0;
4646
4647 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4648 if (ret)
4649 return ret;
4650
4651 /*
4652 * Note: We do not worry about the concurrent register cacheline hang
4653 * here because no other code should access these registers other than
4654 * at initialization time.
4655 */
4656 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4657 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4658 intel_ring_emit(ring, reg_base + i);
4659 intel_ring_emit(ring, remap_info[i/4]);
4660 }
4661
4662 intel_ring_advance(ring);
4663
4664 return ret;
4665 }
4666
4667 void i915_gem_init_swizzling(struct drm_device *dev)
4668 {
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670
4671 if (INTEL_INFO(dev)->gen < 5 ||
4672 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4673 return;
4674
4675 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4676 DISP_TILE_SURFACE_SWIZZLING);
4677
4678 if (IS_GEN5(dev))
4679 return;
4680
4681 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4682 if (IS_GEN6(dev))
4683 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4684 else if (IS_GEN7(dev))
4685 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4686 else if (IS_GEN8(dev))
4687 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4688 else
4689 BUG();
4690 }
4691
4692 static bool
4693 intel_enable_blt(struct drm_device *dev)
4694 {
4695 if (!HAS_BLT(dev))
4696 return false;
4697
4698 /* The blitter was dysfunctional on early prototypes */
4699 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4700 DRM_INFO("BLT not supported on this pre-production hardware;"
4701 " graphics performance will be degraded.\n");
4702 return false;
4703 }
4704
4705 return true;
4706 }
4707
4708 static void init_unused_ring(struct drm_device *dev, u32 base)
4709 {
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712 I915_WRITE(RING_CTL(base), 0);
4713 I915_WRITE(RING_HEAD(base), 0);
4714 I915_WRITE(RING_TAIL(base), 0);
4715 I915_WRITE(RING_START(base), 0);
4716 }
4717
4718 static void init_unused_rings(struct drm_device *dev)
4719 {
4720 if (IS_I830(dev)) {
4721 init_unused_ring(dev, PRB1_BASE);
4722 init_unused_ring(dev, SRB0_BASE);
4723 init_unused_ring(dev, SRB1_BASE);
4724 init_unused_ring(dev, SRB2_BASE);
4725 init_unused_ring(dev, SRB3_BASE);
4726 } else if (IS_GEN2(dev)) {
4727 init_unused_ring(dev, SRB0_BASE);
4728 init_unused_ring(dev, SRB1_BASE);
4729 } else if (IS_GEN3(dev)) {
4730 init_unused_ring(dev, PRB1_BASE);
4731 init_unused_ring(dev, PRB2_BASE);
4732 }
4733 }
4734
4735 int i915_gem_init_rings(struct drm_device *dev)
4736 {
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 int ret;
4739
4740 ret = intel_init_render_ring_buffer(dev);
4741 if (ret)
4742 return ret;
4743
4744 if (HAS_BSD(dev)) {
4745 ret = intel_init_bsd_ring_buffer(dev);
4746 if (ret)
4747 goto cleanup_render_ring;
4748 }
4749
4750 if (intel_enable_blt(dev)) {
4751 ret = intel_init_blt_ring_buffer(dev);
4752 if (ret)
4753 goto cleanup_bsd_ring;
4754 }
4755
4756 if (HAS_VEBOX(dev)) {
4757 ret = intel_init_vebox_ring_buffer(dev);
4758 if (ret)
4759 goto cleanup_blt_ring;
4760 }
4761
4762 if (HAS_BSD2(dev)) {
4763 ret = intel_init_bsd2_ring_buffer(dev);
4764 if (ret)
4765 goto cleanup_vebox_ring;
4766 }
4767
4768 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4769 if (ret)
4770 goto cleanup_bsd2_ring;
4771
4772 return 0;
4773
4774 cleanup_bsd2_ring:
4775 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4776 cleanup_vebox_ring:
4777 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4778 cleanup_blt_ring:
4779 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4780 cleanup_bsd_ring:
4781 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4782 cleanup_render_ring:
4783 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4784
4785 return ret;
4786 }
4787
4788 int
4789 i915_gem_init_hw(struct drm_device *dev)
4790 {
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 struct intel_engine_cs *ring;
4793 int ret, i;
4794
4795 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4796 return -EIO;
4797
4798 /* Double layer security blanket, see i915_gem_init() */
4799 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4800
4801 if (dev_priv->ellc_size)
4802 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4803
4804 if (IS_HASWELL(dev))
4805 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4806 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4807
4808 if (HAS_PCH_NOP(dev)) {
4809 if (IS_IVYBRIDGE(dev)) {
4810 u32 temp = I915_READ(GEN7_MSG_CTL);
4811 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4812 I915_WRITE(GEN7_MSG_CTL, temp);
4813 } else if (INTEL_INFO(dev)->gen >= 7) {
4814 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4815 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4816 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4817 }
4818 }
4819
4820 i915_gem_init_swizzling(dev);
4821
4822 /*
4823 * At least 830 can leave some of the unused rings
4824 * "active" (ie. head != tail) after resume which
4825 * will prevent c3 entry. Makes sure all unused rings
4826 * are totally idle.
4827 */
4828 init_unused_rings(dev);
4829
4830 for_each_ring(ring, dev_priv, i) {
4831 ret = ring->init_hw(ring);
4832 if (ret)
4833 goto out;
4834 }
4835
4836 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4837 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4838
4839 ret = i915_ppgtt_init_hw(dev);
4840 if (ret && ret != -EIO) {
4841 DRM_ERROR("PPGTT enable failed %d\n", ret);
4842 i915_gem_cleanup_ringbuffer(dev);
4843 }
4844
4845 ret = i915_gem_context_enable(dev_priv);
4846 if (ret && ret != -EIO) {
4847 DRM_ERROR("Context enable failed %d\n", ret);
4848 i915_gem_cleanup_ringbuffer(dev);
4849
4850 goto out;
4851 }
4852
4853 out:
4854 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4855 return ret;
4856 }
4857
4858 int i915_gem_init(struct drm_device *dev)
4859 {
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 int ret;
4862
4863 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4864 i915.enable_execlists);
4865
4866 mutex_lock(&dev->struct_mutex);
4867
4868 if (IS_VALLEYVIEW(dev)) {
4869 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4870 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4871 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4872 VLV_GTLC_ALLOWWAKEACK), 10))
4873 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4874 }
4875
4876 if (!i915.enable_execlists) {
4877 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4878 dev_priv->gt.init_rings = i915_gem_init_rings;
4879 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4880 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4881 } else {
4882 dev_priv->gt.do_execbuf = intel_execlists_submission;
4883 dev_priv->gt.init_rings = intel_logical_rings_init;
4884 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4885 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4886 }
4887
4888 /* This is just a security blanket to placate dragons.
4889 * On some systems, we very sporadically observe that the first TLBs
4890 * used by the CS may be stale, despite us poking the TLB reset. If
4891 * we hold the forcewake during initialisation these problems
4892 * just magically go away.
4893 */
4894 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4895
4896 ret = i915_gem_init_userptr(dev);
4897 if (ret)
4898 goto out_unlock;
4899
4900 i915_gem_init_global_gtt(dev);
4901
4902 ret = i915_gem_context_init(dev);
4903 if (ret)
4904 goto out_unlock;
4905
4906 ret = dev_priv->gt.init_rings(dev);
4907 if (ret)
4908 goto out_unlock;
4909
4910 ret = i915_gem_init_hw(dev);
4911 if (ret == -EIO) {
4912 /* Allow ring initialisation to fail by marking the GPU as
4913 * wedged. But we only want to do this where the GPU is angry,
4914 * for all other failure, such as an allocation failure, bail.
4915 */
4916 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4917 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4918 ret = 0;
4919 }
4920
4921 out_unlock:
4922 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4923 mutex_unlock(&dev->struct_mutex);
4924
4925 return ret;
4926 }
4927
4928 void
4929 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4930 {
4931 struct drm_i915_private *dev_priv = dev->dev_private;
4932 struct intel_engine_cs *ring;
4933 int i;
4934
4935 for_each_ring(ring, dev_priv, i)
4936 dev_priv->gt.cleanup_ring(ring);
4937 }
4938
4939 static void
4940 init_ring_lists(struct intel_engine_cs *ring)
4941 {
4942 INIT_LIST_HEAD(&ring->active_list);
4943 INIT_LIST_HEAD(&ring->request_list);
4944 }
4945
4946 void i915_init_vm(struct drm_i915_private *dev_priv,
4947 struct i915_address_space *vm)
4948 {
4949 if (!i915_is_ggtt(vm))
4950 drm_mm_init(&vm->mm, vm->start, vm->total);
4951 vm->dev = dev_priv->dev;
4952 INIT_LIST_HEAD(&vm->active_list);
4953 INIT_LIST_HEAD(&vm->inactive_list);
4954 INIT_LIST_HEAD(&vm->global_link);
4955 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4956 }
4957
4958 void
4959 i915_gem_load(struct drm_device *dev)
4960 {
4961 struct drm_i915_private *dev_priv = dev->dev_private;
4962 int i;
4963
4964 dev_priv->slab =
4965 kmem_cache_create("i915_gem_object",
4966 sizeof(struct drm_i915_gem_object), 0,
4967 SLAB_HWCACHE_ALIGN,
4968 NULL);
4969
4970 INIT_LIST_HEAD(&dev_priv->vm_list);
4971 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4972
4973 INIT_LIST_HEAD(&dev_priv->context_list);
4974 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4975 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4976 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4977 for (i = 0; i < I915_NUM_RINGS; i++)
4978 init_ring_lists(&dev_priv->ring[i]);
4979 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4980 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4981 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4982 i915_gem_retire_work_handler);
4983 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4984 i915_gem_idle_work_handler);
4985 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4986
4987 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4988
4989 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4990 dev_priv->num_fence_regs = 32;
4991 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4992 dev_priv->num_fence_regs = 16;
4993 else
4994 dev_priv->num_fence_regs = 8;
4995
4996 if (intel_vgpu_active(dev))
4997 dev_priv->num_fence_regs =
4998 I915_READ(vgtif_reg(avail_rs.fence_num));
4999
5000 /* Initialize fence registers to zero */
5001 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5002 i915_gem_restore_fences(dev);
5003
5004 i915_gem_detect_bit_6_swizzle(dev);
5005 init_waitqueue_head(&dev_priv->pending_flip_queue);
5006
5007 dev_priv->mm.interruptible = true;
5008
5009 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5010 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5011 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5012 register_shrinker(&dev_priv->mm.shrinker);
5013
5014 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5015 register_oom_notifier(&dev_priv->mm.oom_notifier);
5016
5017 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5018
5019 mutex_init(&dev_priv->fb_tracking.lock);
5020 }
5021
5022 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5023 {
5024 struct drm_i915_file_private *file_priv = file->driver_priv;
5025
5026 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5027
5028 /* Clean up our request list when the client is going away, so that
5029 * later retire_requests won't dereference our soon-to-be-gone
5030 * file_priv.
5031 */
5032 spin_lock(&file_priv->mm.lock);
5033 while (!list_empty(&file_priv->mm.request_list)) {
5034 struct drm_i915_gem_request *request;
5035
5036 request = list_first_entry(&file_priv->mm.request_list,
5037 struct drm_i915_gem_request,
5038 client_list);
5039 list_del(&request->client_list);
5040 request->file_priv = NULL;
5041 }
5042 spin_unlock(&file_priv->mm.lock);
5043 }
5044
5045 static void
5046 i915_gem_file_idle_work_handler(struct work_struct *work)
5047 {
5048 struct drm_i915_file_private *file_priv =
5049 container_of(work, typeof(*file_priv), mm.idle_work.work);
5050
5051 atomic_set(&file_priv->rps_wait_boost, false);
5052 }
5053
5054 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5055 {
5056 struct drm_i915_file_private *file_priv;
5057 int ret;
5058
5059 DRM_DEBUG_DRIVER("\n");
5060
5061 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5062 if (!file_priv)
5063 return -ENOMEM;
5064
5065 file->driver_priv = file_priv;
5066 file_priv->dev_priv = dev->dev_private;
5067 file_priv->file = file;
5068
5069 spin_lock_init(&file_priv->mm.lock);
5070 INIT_LIST_HEAD(&file_priv->mm.request_list);
5071 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5072 i915_gem_file_idle_work_handler);
5073
5074 ret = i915_gem_context_open(dev, file);
5075 if (ret)
5076 kfree(file_priv);
5077
5078 return ret;
5079 }
5080
5081 /**
5082 * i915_gem_track_fb - update frontbuffer tracking
5083 * old: current GEM buffer for the frontbuffer slots
5084 * new: new GEM buffer for the frontbuffer slots
5085 * frontbuffer_bits: bitmask of frontbuffer slots
5086 *
5087 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5088 * from @old and setting them in @new. Both @old and @new can be NULL.
5089 */
5090 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5091 struct drm_i915_gem_object *new,
5092 unsigned frontbuffer_bits)
5093 {
5094 if (old) {
5095 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5096 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5097 old->frontbuffer_bits &= ~frontbuffer_bits;
5098 }
5099
5100 if (new) {
5101 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5102 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5103 new->frontbuffer_bits |= frontbuffer_bits;
5104 }
5105 }
5106
5107 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5108 {
5109 if (!mutex_is_locked(mutex))
5110 return false;
5111
5112 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5113 return mutex->owner == task;
5114 #else
5115 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5116 return false;
5117 #endif
5118 }
5119
5120 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5121 {
5122 if (!mutex_trylock(&dev->struct_mutex)) {
5123 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5124 return false;
5125
5126 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5127 return false;
5128
5129 *unlock = false;
5130 } else
5131 *unlock = true;
5132
5133 return true;
5134 }
5135
5136 static int num_vma_bound(struct drm_i915_gem_object *obj)
5137 {
5138 struct i915_vma *vma;
5139 int count = 0;
5140
5141 list_for_each_entry(vma, &obj->vma_list, vma_link)
5142 if (drm_mm_node_allocated(&vma->node))
5143 count++;
5144
5145 return count;
5146 }
5147
5148 static unsigned long
5149 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5150 {
5151 struct drm_i915_private *dev_priv =
5152 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5153 struct drm_device *dev = dev_priv->dev;
5154 struct drm_i915_gem_object *obj;
5155 unsigned long count;
5156 bool unlock;
5157
5158 if (!i915_gem_shrinker_lock(dev, &unlock))
5159 return 0;
5160
5161 count = 0;
5162 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5163 if (obj->pages_pin_count == 0)
5164 count += obj->base.size >> PAGE_SHIFT;
5165
5166 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5167 if (!i915_gem_obj_is_pinned(obj) &&
5168 obj->pages_pin_count == num_vma_bound(obj))
5169 count += obj->base.size >> PAGE_SHIFT;
5170 }
5171
5172 if (unlock)
5173 mutex_unlock(&dev->struct_mutex);
5174
5175 return count;
5176 }
5177
5178 /* All the new VM stuff */
5179 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5180 struct i915_address_space *vm,
5181 enum i915_ggtt_view_type view)
5182 {
5183 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5184 struct i915_vma *vma;
5185
5186 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5187
5188 list_for_each_entry(vma, &o->vma_list, vma_link) {
5189 if (vma->vm == vm && vma->ggtt_view.type == view)
5190 return vma->node.start;
5191
5192 }
5193 WARN(1, "%s vma for this object not found.\n",
5194 i915_is_ggtt(vm) ? "global" : "ppgtt");
5195 return -1;
5196 }
5197
5198 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5199 struct i915_address_space *vm,
5200 enum i915_ggtt_view_type view)
5201 {
5202 struct i915_vma *vma;
5203
5204 list_for_each_entry(vma, &o->vma_list, vma_link)
5205 if (vma->vm == vm &&
5206 vma->ggtt_view.type == view &&
5207 drm_mm_node_allocated(&vma->node))
5208 return true;
5209
5210 return false;
5211 }
5212
5213 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5214 {
5215 struct i915_vma *vma;
5216
5217 list_for_each_entry(vma, &o->vma_list, vma_link)
5218 if (drm_mm_node_allocated(&vma->node))
5219 return true;
5220
5221 return false;
5222 }
5223
5224 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5225 struct i915_address_space *vm)
5226 {
5227 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5228 struct i915_vma *vma;
5229
5230 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5231
5232 BUG_ON(list_empty(&o->vma_list));
5233
5234 list_for_each_entry(vma, &o->vma_list, vma_link)
5235 if (vma->vm == vm)
5236 return vma->node.size;
5237
5238 return 0;
5239 }
5240
5241 static unsigned long
5242 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5243 {
5244 struct drm_i915_private *dev_priv =
5245 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5246 struct drm_device *dev = dev_priv->dev;
5247 unsigned long freed;
5248 bool unlock;
5249
5250 if (!i915_gem_shrinker_lock(dev, &unlock))
5251 return SHRINK_STOP;
5252
5253 freed = i915_gem_shrink(dev_priv,
5254 sc->nr_to_scan,
5255 I915_SHRINK_BOUND |
5256 I915_SHRINK_UNBOUND |
5257 I915_SHRINK_PURGEABLE);
5258 if (freed < sc->nr_to_scan)
5259 freed += i915_gem_shrink(dev_priv,
5260 sc->nr_to_scan - freed,
5261 I915_SHRINK_BOUND |
5262 I915_SHRINK_UNBOUND);
5263 if (unlock)
5264 mutex_unlock(&dev->struct_mutex);
5265
5266 return freed;
5267 }
5268
5269 static int
5270 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5271 {
5272 struct drm_i915_private *dev_priv =
5273 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5274 struct drm_device *dev = dev_priv->dev;
5275 struct drm_i915_gem_object *obj;
5276 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5277 unsigned long pinned, bound, unbound, freed_pages;
5278 bool was_interruptible;
5279 bool unlock;
5280
5281 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5282 schedule_timeout_killable(1);
5283 if (fatal_signal_pending(current))
5284 return NOTIFY_DONE;
5285 }
5286 if (timeout == 0) {
5287 pr_err("Unable to purge GPU memory due lock contention.\n");
5288 return NOTIFY_DONE;
5289 }
5290
5291 was_interruptible = dev_priv->mm.interruptible;
5292 dev_priv->mm.interruptible = false;
5293
5294 freed_pages = i915_gem_shrink_all(dev_priv);
5295
5296 dev_priv->mm.interruptible = was_interruptible;
5297
5298 /* Because we may be allocating inside our own driver, we cannot
5299 * assert that there are no objects with pinned pages that are not
5300 * being pointed to by hardware.
5301 */
5302 unbound = bound = pinned = 0;
5303 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5304 if (!obj->base.filp) /* not backed by a freeable object */
5305 continue;
5306
5307 if (obj->pages_pin_count)
5308 pinned += obj->base.size;
5309 else
5310 unbound += obj->base.size;
5311 }
5312 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5313 if (!obj->base.filp)
5314 continue;
5315
5316 if (obj->pages_pin_count)
5317 pinned += obj->base.size;
5318 else
5319 bound += obj->base.size;
5320 }
5321
5322 if (unlock)
5323 mutex_unlock(&dev->struct_mutex);
5324
5325 if (freed_pages || unbound || bound)
5326 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5327 freed_pages << PAGE_SHIFT, pinned);
5328 if (unbound || bound)
5329 pr_err("%lu and %lu bytes still available in the "
5330 "bound and unbound GPU page lists.\n",
5331 bound, unbound);
5332
5333 *(unsigned long *)ptr += freed_pages;
5334 return NOTIFY_DONE;
5335 }
5336
5337 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5338 {
5339 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5340 struct i915_vma *vma;
5341
5342 list_for_each_entry(vma, &obj->vma_list, vma_link)
5343 if (vma->vm == ggtt &&
5344 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5345 return vma;
5346
5347 return NULL;
5348 }
This page took 0.21273 seconds and 6 git commands to generate.