drm/i915: Move execlists irq handler to a bottom half
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 struct i915_ggtt *ggtt = &dev_priv->ggtt;
135 struct drm_i915_gem_get_aperture *args = data;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = ggtt->base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = to_i915(dev);
769 struct i915_ggtt *ggtt = &dev_priv->ggtt;
770 ssize_t remain;
771 loff_t offset, page_base;
772 char __user *user_data;
773 int page_offset, page_length, ret;
774
775 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
776 if (ret)
777 goto out;
778
779 ret = i915_gem_object_set_to_gtt_domain(obj, true);
780 if (ret)
781 goto out_unpin;
782
783 ret = i915_gem_object_put_fence(obj);
784 if (ret)
785 goto out_unpin;
786
787 user_data = to_user_ptr(args->data_ptr);
788 remain = args->size;
789
790 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
791
792 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
793
794 while (remain > 0) {
795 /* Operation in this page
796 *
797 * page_base = page offset within aperture
798 * page_offset = offset within page
799 * page_length = bytes to copy for this page
800 */
801 page_base = offset & PAGE_MASK;
802 page_offset = offset_in_page(offset);
803 page_length = remain;
804 if ((page_offset + remain) > PAGE_SIZE)
805 page_length = PAGE_SIZE - page_offset;
806
807 /* If we get a fault while copying data, then (presumably) our
808 * source page isn't available. Return the error and we'll
809 * retry in the slow path.
810 */
811 if (fast_user_write(ggtt->mappable, page_base,
812 page_offset, user_data, page_length)) {
813 ret = -EFAULT;
814 goto out_flush;
815 }
816
817 remain -= page_length;
818 user_data += page_length;
819 offset += page_length;
820 }
821
822 out_flush:
823 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
824 out_unpin:
825 i915_gem_object_ggtt_unpin(obj);
826 out:
827 return ret;
828 }
829
830 /* Per-page copy function for the shmem pwrite fastpath.
831 * Flushes invalid cachelines before writing to the target if
832 * needs_clflush_before is set and flushes out any written cachelines after
833 * writing if needs_clflush is set. */
834 static int
835 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
836 char __user *user_data,
837 bool page_do_bit17_swizzling,
838 bool needs_clflush_before,
839 bool needs_clflush_after)
840 {
841 char *vaddr;
842 int ret;
843
844 if (unlikely(page_do_bit17_swizzling))
845 return -EINVAL;
846
847 vaddr = kmap_atomic(page);
848 if (needs_clflush_before)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
852 user_data, page_length);
853 if (needs_clflush_after)
854 drm_clflush_virt_range(vaddr + shmem_page_offset,
855 page_length);
856 kunmap_atomic(vaddr);
857
858 return ret ? -EFAULT : 0;
859 }
860
861 /* Only difference to the fast-path function is that this can handle bit17
862 * and uses non-atomic copy and kmap functions. */
863 static int
864 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
865 char __user *user_data,
866 bool page_do_bit17_swizzling,
867 bool needs_clflush_before,
868 bool needs_clflush_after)
869 {
870 char *vaddr;
871 int ret;
872
873 vaddr = kmap(page);
874 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
875 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
876 page_length,
877 page_do_bit17_swizzling);
878 if (page_do_bit17_swizzling)
879 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
880 user_data,
881 page_length);
882 else
883 ret = __copy_from_user(vaddr + shmem_page_offset,
884 user_data,
885 page_length);
886 if (needs_clflush_after)
887 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
888 page_length,
889 page_do_bit17_swizzling);
890 kunmap(page);
891
892 return ret ? -EFAULT : 0;
893 }
894
895 static int
896 i915_gem_shmem_pwrite(struct drm_device *dev,
897 struct drm_i915_gem_object *obj,
898 struct drm_i915_gem_pwrite *args,
899 struct drm_file *file)
900 {
901 ssize_t remain;
902 loff_t offset;
903 char __user *user_data;
904 int shmem_page_offset, page_length, ret = 0;
905 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
906 int hit_slowpath = 0;
907 int needs_clflush_after = 0;
908 int needs_clflush_before = 0;
909 struct sg_page_iter sg_iter;
910
911 user_data = to_user_ptr(args->data_ptr);
912 remain = args->size;
913
914 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
915
916 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
917 /* If we're not in the cpu write domain, set ourself into the gtt
918 * write domain and manually flush cachelines (if required). This
919 * optimizes for the case when the gpu will use the data
920 * right away and we therefore have to clflush anyway. */
921 needs_clflush_after = cpu_write_needs_clflush(obj);
922 ret = i915_gem_object_wait_rendering(obj, false);
923 if (ret)
924 return ret;
925 }
926 /* Same trick applies to invalidate partially written cachelines read
927 * before writing. */
928 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
929 needs_clflush_before =
930 !cpu_cache_is_coherent(dev, obj->cache_level);
931
932 ret = i915_gem_object_get_pages(obj);
933 if (ret)
934 return ret;
935
936 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
937
938 i915_gem_object_pin_pages(obj);
939
940 offset = args->offset;
941 obj->dirty = 1;
942
943 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
944 offset >> PAGE_SHIFT) {
945 struct page *page = sg_page_iter_page(&sg_iter);
946 int partial_cacheline_write;
947
948 if (remain <= 0)
949 break;
950
951 /* Operation in this page
952 *
953 * shmem_page_offset = offset within page in shmem file
954 * page_length = bytes to copy for this page
955 */
956 shmem_page_offset = offset_in_page(offset);
957
958 page_length = remain;
959 if ((shmem_page_offset + page_length) > PAGE_SIZE)
960 page_length = PAGE_SIZE - shmem_page_offset;
961
962 /* If we don't overwrite a cacheline completely we need to be
963 * careful to have up-to-date data by first clflushing. Don't
964 * overcomplicate things and flush the entire patch. */
965 partial_cacheline_write = needs_clflush_before &&
966 ((shmem_page_offset | page_length)
967 & (boot_cpu_data.x86_clflush_size - 1));
968
969 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
970 (page_to_phys(page) & (1 << 17)) != 0;
971
972 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
973 user_data, page_do_bit17_swizzling,
974 partial_cacheline_write,
975 needs_clflush_after);
976 if (ret == 0)
977 goto next_page;
978
979 hit_slowpath = 1;
980 mutex_unlock(&dev->struct_mutex);
981 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
982 user_data, page_do_bit17_swizzling,
983 partial_cacheline_write,
984 needs_clflush_after);
985
986 mutex_lock(&dev->struct_mutex);
987
988 if (ret)
989 goto out;
990
991 next_page:
992 remain -= page_length;
993 user_data += page_length;
994 offset += page_length;
995 }
996
997 out:
998 i915_gem_object_unpin_pages(obj);
999
1000 if (hit_slowpath) {
1001 /*
1002 * Fixup: Flush cpu caches in case we didn't flush the dirty
1003 * cachelines in-line while writing and the object moved
1004 * out of the cpu write domain while we've dropped the lock.
1005 */
1006 if (!needs_clflush_after &&
1007 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1008 if (i915_gem_clflush_object(obj, obj->pin_display))
1009 needs_clflush_after = true;
1010 }
1011 }
1012
1013 if (needs_clflush_after)
1014 i915_gem_chipset_flush(dev);
1015 else
1016 obj->cache_dirty = true;
1017
1018 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1019 return ret;
1020 }
1021
1022 /**
1023 * Writes data to the object referenced by handle.
1024 *
1025 * On error, the contents of the buffer that were to be modified are undefined.
1026 */
1027 int
1028 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1029 struct drm_file *file)
1030 {
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 struct drm_i915_gem_pwrite *args = data;
1033 struct drm_i915_gem_object *obj;
1034 int ret;
1035
1036 if (args->size == 0)
1037 return 0;
1038
1039 if (!access_ok(VERIFY_READ,
1040 to_user_ptr(args->data_ptr),
1041 args->size))
1042 return -EFAULT;
1043
1044 if (likely(!i915.prefault_disable)) {
1045 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1046 args->size);
1047 if (ret)
1048 return -EFAULT;
1049 }
1050
1051 intel_runtime_pm_get(dev_priv);
1052
1053 ret = i915_mutex_lock_interruptible(dev);
1054 if (ret)
1055 goto put_rpm;
1056
1057 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1058 if (&obj->base == NULL) {
1059 ret = -ENOENT;
1060 goto unlock;
1061 }
1062
1063 /* Bounds check destination. */
1064 if (args->offset > obj->base.size ||
1065 args->size > obj->base.size - args->offset) {
1066 ret = -EINVAL;
1067 goto out;
1068 }
1069
1070 /* prime objects have no backing filp to GEM pread/pwrite
1071 * pages from.
1072 */
1073 if (!obj->base.filp) {
1074 ret = -EINVAL;
1075 goto out;
1076 }
1077
1078 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1079
1080 ret = -EFAULT;
1081 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1082 * it would end up going through the fenced access, and we'll get
1083 * different detiling behavior between reading and writing.
1084 * pread/pwrite currently are reading and writing from the CPU
1085 * perspective, requiring manual detiling by the client.
1086 */
1087 if (obj->tiling_mode == I915_TILING_NONE &&
1088 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1089 cpu_write_needs_clflush(obj)) {
1090 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1091 /* Note that the gtt paths might fail with non-page-backed user
1092 * pointers (e.g. gtt mappings when moving data between
1093 * textures). Fallback to the shmem path in that case. */
1094 }
1095
1096 if (ret == -EFAULT || ret == -ENOSPC) {
1097 if (obj->phys_handle)
1098 ret = i915_gem_phys_pwrite(obj, args, file);
1099 else
1100 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1101 }
1102
1103 out:
1104 drm_gem_object_unreference(&obj->base);
1105 unlock:
1106 mutex_unlock(&dev->struct_mutex);
1107 put_rpm:
1108 intel_runtime_pm_put(dev_priv);
1109
1110 return ret;
1111 }
1112
1113 int
1114 i915_gem_check_wedge(struct i915_gpu_error *error,
1115 bool interruptible)
1116 {
1117 if (i915_reset_in_progress(error)) {
1118 /* Non-interruptible callers can't handle -EAGAIN, hence return
1119 * -EIO unconditionally for these. */
1120 if (!interruptible)
1121 return -EIO;
1122
1123 /* Recovery complete, but the reset failed ... */
1124 if (i915_terminally_wedged(error))
1125 return -EIO;
1126
1127 /*
1128 * Check if GPU Reset is in progress - we need intel_ring_begin
1129 * to work properly to reinit the hw state while the gpu is
1130 * still marked as reset-in-progress. Handle this with a flag.
1131 */
1132 if (!error->reload_in_reset)
1133 return -EAGAIN;
1134 }
1135
1136 return 0;
1137 }
1138
1139 static void fake_irq(unsigned long data)
1140 {
1141 wake_up_process((struct task_struct *)data);
1142 }
1143
1144 static bool missed_irq(struct drm_i915_private *dev_priv,
1145 struct intel_engine_cs *engine)
1146 {
1147 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1148 }
1149
1150 static unsigned long local_clock_us(unsigned *cpu)
1151 {
1152 unsigned long t;
1153
1154 /* Cheaply and approximately convert from nanoseconds to microseconds.
1155 * The result and subsequent calculations are also defined in the same
1156 * approximate microseconds units. The principal source of timing
1157 * error here is from the simple truncation.
1158 *
1159 * Note that local_clock() is only defined wrt to the current CPU;
1160 * the comparisons are no longer valid if we switch CPUs. Instead of
1161 * blocking preemption for the entire busywait, we can detect the CPU
1162 * switch and use that as indicator of system load and a reason to
1163 * stop busywaiting, see busywait_stop().
1164 */
1165 *cpu = get_cpu();
1166 t = local_clock() >> 10;
1167 put_cpu();
1168
1169 return t;
1170 }
1171
1172 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1173 {
1174 unsigned this_cpu;
1175
1176 if (time_after(local_clock_us(&this_cpu), timeout))
1177 return true;
1178
1179 return this_cpu != cpu;
1180 }
1181
1182 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1183 {
1184 unsigned long timeout;
1185 unsigned cpu;
1186
1187 /* When waiting for high frequency requests, e.g. during synchronous
1188 * rendering split between the CPU and GPU, the finite amount of time
1189 * required to set up the irq and wait upon it limits the response
1190 * rate. By busywaiting on the request completion for a short while we
1191 * can service the high frequency waits as quick as possible. However,
1192 * if it is a slow request, we want to sleep as quickly as possible.
1193 * The tradeoff between waiting and sleeping is roughly the time it
1194 * takes to sleep on a request, on the order of a microsecond.
1195 */
1196
1197 if (req->engine->irq_refcount)
1198 return -EBUSY;
1199
1200 /* Only spin if we know the GPU is processing this request */
1201 if (!i915_gem_request_started(req, true))
1202 return -EAGAIN;
1203
1204 timeout = local_clock_us(&cpu) + 5;
1205 while (!need_resched()) {
1206 if (i915_gem_request_completed(req, true))
1207 return 0;
1208
1209 if (signal_pending_state(state, current))
1210 break;
1211
1212 if (busywait_stop(timeout, cpu))
1213 break;
1214
1215 cpu_relax_lowlatency();
1216 }
1217
1218 if (i915_gem_request_completed(req, false))
1219 return 0;
1220
1221 return -EAGAIN;
1222 }
1223
1224 /**
1225 * __i915_wait_request - wait until execution of request has finished
1226 * @req: duh!
1227 * @reset_counter: reset sequence associated with the given request
1228 * @interruptible: do an interruptible wait (normally yes)
1229 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1230 *
1231 * Note: It is of utmost importance that the passed in seqno and reset_counter
1232 * values have been read by the caller in an smp safe manner. Where read-side
1233 * locks are involved, it is sufficient to read the reset_counter before
1234 * unlocking the lock that protects the seqno. For lockless tricks, the
1235 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1236 * inserted.
1237 *
1238 * Returns 0 if the request was found within the alloted time. Else returns the
1239 * errno with remaining time filled in timeout argument.
1240 */
1241 int __i915_wait_request(struct drm_i915_gem_request *req,
1242 unsigned reset_counter,
1243 bool interruptible,
1244 s64 *timeout,
1245 struct intel_rps_client *rps)
1246 {
1247 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1248 struct drm_device *dev = engine->dev;
1249 struct drm_i915_private *dev_priv = dev->dev_private;
1250 const bool irq_test_in_progress =
1251 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1252 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1253 DEFINE_WAIT(wait);
1254 unsigned long timeout_expire;
1255 s64 before = 0; /* Only to silence a compiler warning. */
1256 int ret;
1257
1258 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1259
1260 if (list_empty(&req->list))
1261 return 0;
1262
1263 if (i915_gem_request_completed(req, true))
1264 return 0;
1265
1266 timeout_expire = 0;
1267 if (timeout) {
1268 if (WARN_ON(*timeout < 0))
1269 return -EINVAL;
1270
1271 if (*timeout == 0)
1272 return -ETIME;
1273
1274 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1275
1276 /*
1277 * Record current time in case interrupted by signal, or wedged.
1278 */
1279 before = ktime_get_raw_ns();
1280 }
1281
1282 if (INTEL_INFO(dev_priv)->gen >= 6)
1283 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1284
1285 trace_i915_gem_request_wait_begin(req);
1286
1287 /* Optimistic spin for the next jiffie before touching IRQs */
1288 ret = __i915_spin_request(req, state);
1289 if (ret == 0)
1290 goto out;
1291
1292 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1293 ret = -ENODEV;
1294 goto out;
1295 }
1296
1297 for (;;) {
1298 struct timer_list timer;
1299
1300 prepare_to_wait(&engine->irq_queue, &wait, state);
1301
1302 /* We need to check whether any gpu reset happened in between
1303 * the caller grabbing the seqno and now ... */
1304 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1305 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1306 * is truely gone. */
1307 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1308 if (ret == 0)
1309 ret = -EAGAIN;
1310 break;
1311 }
1312
1313 if (i915_gem_request_completed(req, false)) {
1314 ret = 0;
1315 break;
1316 }
1317
1318 if (signal_pending_state(state, current)) {
1319 ret = -ERESTARTSYS;
1320 break;
1321 }
1322
1323 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1324 ret = -ETIME;
1325 break;
1326 }
1327
1328 timer.function = NULL;
1329 if (timeout || missed_irq(dev_priv, engine)) {
1330 unsigned long expire;
1331
1332 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1333 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1334 mod_timer(&timer, expire);
1335 }
1336
1337 io_schedule();
1338
1339 if (timer.function) {
1340 del_singleshot_timer_sync(&timer);
1341 destroy_timer_on_stack(&timer);
1342 }
1343 }
1344 if (!irq_test_in_progress)
1345 engine->irq_put(engine);
1346
1347 finish_wait(&engine->irq_queue, &wait);
1348
1349 out:
1350 trace_i915_gem_request_wait_end(req);
1351
1352 if (timeout) {
1353 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1354
1355 *timeout = tres < 0 ? 0 : tres;
1356
1357 /*
1358 * Apparently ktime isn't accurate enough and occasionally has a
1359 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1360 * things up to make the test happy. We allow up to 1 jiffy.
1361 *
1362 * This is a regrssion from the timespec->ktime conversion.
1363 */
1364 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1365 *timeout = 0;
1366 }
1367
1368 return ret;
1369 }
1370
1371 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1372 struct drm_file *file)
1373 {
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 file_priv = file->driver_priv;
1385
1386 spin_lock(&file_priv->mm.lock);
1387 req->file_priv = file_priv;
1388 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1389 spin_unlock(&file_priv->mm.lock);
1390
1391 req->pid = get_pid(task_pid(current));
1392
1393 return 0;
1394 }
1395
1396 static inline void
1397 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1398 {
1399 struct drm_i915_file_private *file_priv = request->file_priv;
1400
1401 if (!file_priv)
1402 return;
1403
1404 spin_lock(&file_priv->mm.lock);
1405 list_del(&request->client_list);
1406 request->file_priv = NULL;
1407 spin_unlock(&file_priv->mm.lock);
1408
1409 put_pid(request->pid);
1410 request->pid = NULL;
1411 }
1412
1413 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1414 {
1415 trace_i915_gem_request_retire(request);
1416
1417 /* We know the GPU must have read the request to have
1418 * sent us the seqno + interrupt, so use the position
1419 * of tail of the request to update the last known position
1420 * of the GPU head.
1421 *
1422 * Note this requires that we are always called in request
1423 * completion order.
1424 */
1425 request->ringbuf->last_retired_head = request->postfix;
1426
1427 list_del_init(&request->list);
1428 i915_gem_request_remove_from_client(request);
1429
1430 i915_gem_request_unreference(request);
1431 }
1432
1433 static void
1434 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1435 {
1436 struct intel_engine_cs *engine = req->engine;
1437 struct drm_i915_gem_request *tmp;
1438
1439 lockdep_assert_held(&engine->dev->struct_mutex);
1440
1441 if (list_empty(&req->list))
1442 return;
1443
1444 do {
1445 tmp = list_first_entry(&engine->request_list,
1446 typeof(*tmp), list);
1447
1448 i915_gem_request_retire(tmp);
1449 } while (tmp != req);
1450
1451 WARN_ON(i915_verify_lists(engine->dev));
1452 }
1453
1454 /**
1455 * Waits for a request to be signaled, and cleans up the
1456 * request and object lists appropriately for that event.
1457 */
1458 int
1459 i915_wait_request(struct drm_i915_gem_request *req)
1460 {
1461 struct drm_device *dev;
1462 struct drm_i915_private *dev_priv;
1463 bool interruptible;
1464 int ret;
1465
1466 BUG_ON(req == NULL);
1467
1468 dev = req->engine->dev;
1469 dev_priv = dev->dev_private;
1470 interruptible = dev_priv->mm.interruptible;
1471
1472 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1473
1474 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1475 if (ret)
1476 return ret;
1477
1478 ret = __i915_wait_request(req,
1479 atomic_read(&dev_priv->gpu_error.reset_counter),
1480 interruptible, NULL, NULL);
1481 if (ret)
1482 return ret;
1483
1484 __i915_gem_request_retire__upto(req);
1485 return 0;
1486 }
1487
1488 /**
1489 * Ensures that all rendering to the object has completed and the object is
1490 * safe to unbind from the GTT or access from the CPU.
1491 */
1492 int
1493 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1494 bool readonly)
1495 {
1496 int ret, i;
1497
1498 if (!obj->active)
1499 return 0;
1500
1501 if (readonly) {
1502 if (obj->last_write_req != NULL) {
1503 ret = i915_wait_request(obj->last_write_req);
1504 if (ret)
1505 return ret;
1506
1507 i = obj->last_write_req->engine->id;
1508 if (obj->last_read_req[i] == obj->last_write_req)
1509 i915_gem_object_retire__read(obj, i);
1510 else
1511 i915_gem_object_retire__write(obj);
1512 }
1513 } else {
1514 for (i = 0; i < I915_NUM_ENGINES; i++) {
1515 if (obj->last_read_req[i] == NULL)
1516 continue;
1517
1518 ret = i915_wait_request(obj->last_read_req[i]);
1519 if (ret)
1520 return ret;
1521
1522 i915_gem_object_retire__read(obj, i);
1523 }
1524 RQ_BUG_ON(obj->active);
1525 }
1526
1527 return 0;
1528 }
1529
1530 static void
1531 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1532 struct drm_i915_gem_request *req)
1533 {
1534 int ring = req->engine->id;
1535
1536 if (obj->last_read_req[ring] == req)
1537 i915_gem_object_retire__read(obj, ring);
1538 else if (obj->last_write_req == req)
1539 i915_gem_object_retire__write(obj);
1540
1541 __i915_gem_request_retire__upto(req);
1542 }
1543
1544 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1545 * as the object state may change during this call.
1546 */
1547 static __must_check int
1548 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1549 struct intel_rps_client *rps,
1550 bool readonly)
1551 {
1552 struct drm_device *dev = obj->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1555 unsigned reset_counter;
1556 int ret, i, n = 0;
1557
1558 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1559 BUG_ON(!dev_priv->mm.interruptible);
1560
1561 if (!obj->active)
1562 return 0;
1563
1564 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1565 if (ret)
1566 return ret;
1567
1568 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1569
1570 if (readonly) {
1571 struct drm_i915_gem_request *req;
1572
1573 req = obj->last_write_req;
1574 if (req == NULL)
1575 return 0;
1576
1577 requests[n++] = i915_gem_request_reference(req);
1578 } else {
1579 for (i = 0; i < I915_NUM_ENGINES; i++) {
1580 struct drm_i915_gem_request *req;
1581
1582 req = obj->last_read_req[i];
1583 if (req == NULL)
1584 continue;
1585
1586 requests[n++] = i915_gem_request_reference(req);
1587 }
1588 }
1589
1590 mutex_unlock(&dev->struct_mutex);
1591 for (i = 0; ret == 0 && i < n; i++)
1592 ret = __i915_wait_request(requests[i], reset_counter, true,
1593 NULL, rps);
1594 mutex_lock(&dev->struct_mutex);
1595
1596 for (i = 0; i < n; i++) {
1597 if (ret == 0)
1598 i915_gem_object_retire_request(obj, requests[i]);
1599 i915_gem_request_unreference(requests[i]);
1600 }
1601
1602 return ret;
1603 }
1604
1605 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1606 {
1607 struct drm_i915_file_private *fpriv = file->driver_priv;
1608 return &fpriv->rps;
1609 }
1610
1611 /**
1612 * Called when user space prepares to use an object with the CPU, either
1613 * through the mmap ioctl's mapping or a GTT mapping.
1614 */
1615 int
1616 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1617 struct drm_file *file)
1618 {
1619 struct drm_i915_gem_set_domain *args = data;
1620 struct drm_i915_gem_object *obj;
1621 uint32_t read_domains = args->read_domains;
1622 uint32_t write_domain = args->write_domain;
1623 int ret;
1624
1625 /* Only handle setting domains to types used by the CPU. */
1626 if (write_domain & I915_GEM_GPU_DOMAINS)
1627 return -EINVAL;
1628
1629 if (read_domains & I915_GEM_GPU_DOMAINS)
1630 return -EINVAL;
1631
1632 /* Having something in the write domain implies it's in the read
1633 * domain, and only that read domain. Enforce that in the request.
1634 */
1635 if (write_domain != 0 && read_domains != write_domain)
1636 return -EINVAL;
1637
1638 ret = i915_mutex_lock_interruptible(dev);
1639 if (ret)
1640 return ret;
1641
1642 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1643 if (&obj->base == NULL) {
1644 ret = -ENOENT;
1645 goto unlock;
1646 }
1647
1648 /* Try to flush the object off the GPU without holding the lock.
1649 * We will repeat the flush holding the lock in the normal manner
1650 * to catch cases where we are gazumped.
1651 */
1652 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1653 to_rps_client(file),
1654 !write_domain);
1655 if (ret)
1656 goto unref;
1657
1658 if (read_domains & I915_GEM_DOMAIN_GTT)
1659 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1660 else
1661 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1662
1663 if (write_domain != 0)
1664 intel_fb_obj_invalidate(obj,
1665 write_domain == I915_GEM_DOMAIN_GTT ?
1666 ORIGIN_GTT : ORIGIN_CPU);
1667
1668 unref:
1669 drm_gem_object_unreference(&obj->base);
1670 unlock:
1671 mutex_unlock(&dev->struct_mutex);
1672 return ret;
1673 }
1674
1675 /**
1676 * Called when user space has done writes to this buffer
1677 */
1678 int
1679 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1680 struct drm_file *file)
1681 {
1682 struct drm_i915_gem_sw_finish *args = data;
1683 struct drm_i915_gem_object *obj;
1684 int ret = 0;
1685
1686 ret = i915_mutex_lock_interruptible(dev);
1687 if (ret)
1688 return ret;
1689
1690 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1691 if (&obj->base == NULL) {
1692 ret = -ENOENT;
1693 goto unlock;
1694 }
1695
1696 /* Pinned buffers may be scanout, so flush the cache */
1697 if (obj->pin_display)
1698 i915_gem_object_flush_cpu_write_domain(obj);
1699
1700 drm_gem_object_unreference(&obj->base);
1701 unlock:
1702 mutex_unlock(&dev->struct_mutex);
1703 return ret;
1704 }
1705
1706 /**
1707 * Maps the contents of an object, returning the address it is mapped
1708 * into.
1709 *
1710 * While the mapping holds a reference on the contents of the object, it doesn't
1711 * imply a ref on the object itself.
1712 *
1713 * IMPORTANT:
1714 *
1715 * DRM driver writers who look a this function as an example for how to do GEM
1716 * mmap support, please don't implement mmap support like here. The modern way
1717 * to implement DRM mmap support is with an mmap offset ioctl (like
1718 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1719 * That way debug tooling like valgrind will understand what's going on, hiding
1720 * the mmap call in a driver private ioctl will break that. The i915 driver only
1721 * does cpu mmaps this way because we didn't know better.
1722 */
1723 int
1724 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1725 struct drm_file *file)
1726 {
1727 struct drm_i915_gem_mmap *args = data;
1728 struct drm_gem_object *obj;
1729 unsigned long addr;
1730
1731 if (args->flags & ~(I915_MMAP_WC))
1732 return -EINVAL;
1733
1734 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1735 return -ENODEV;
1736
1737 obj = drm_gem_object_lookup(dev, file, args->handle);
1738 if (obj == NULL)
1739 return -ENOENT;
1740
1741 /* prime objects have no backing filp to GEM mmap
1742 * pages from.
1743 */
1744 if (!obj->filp) {
1745 drm_gem_object_unreference_unlocked(obj);
1746 return -EINVAL;
1747 }
1748
1749 addr = vm_mmap(obj->filp, 0, args->size,
1750 PROT_READ | PROT_WRITE, MAP_SHARED,
1751 args->offset);
1752 if (args->flags & I915_MMAP_WC) {
1753 struct mm_struct *mm = current->mm;
1754 struct vm_area_struct *vma;
1755
1756 down_write(&mm->mmap_sem);
1757 vma = find_vma(mm, addr);
1758 if (vma)
1759 vma->vm_page_prot =
1760 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1761 else
1762 addr = -ENOMEM;
1763 up_write(&mm->mmap_sem);
1764 }
1765 drm_gem_object_unreference_unlocked(obj);
1766 if (IS_ERR((void *)addr))
1767 return addr;
1768
1769 args->addr_ptr = (uint64_t) addr;
1770
1771 return 0;
1772 }
1773
1774 /**
1775 * i915_gem_fault - fault a page into the GTT
1776 * @vma: VMA in question
1777 * @vmf: fault info
1778 *
1779 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1780 * from userspace. The fault handler takes care of binding the object to
1781 * the GTT (if needed), allocating and programming a fence register (again,
1782 * only if needed based on whether the old reg is still valid or the object
1783 * is tiled) and inserting a new PTE into the faulting process.
1784 *
1785 * Note that the faulting process may involve evicting existing objects
1786 * from the GTT and/or fence registers to make room. So performance may
1787 * suffer if the GTT working set is large or there are few fence registers
1788 * left.
1789 */
1790 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1791 {
1792 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1793 struct drm_device *dev = obj->base.dev;
1794 struct drm_i915_private *dev_priv = to_i915(dev);
1795 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802 intel_runtime_pm_get(dev_priv);
1803
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
1811
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 ret = -EFAULT;
1826 goto unlock;
1827 }
1828
1829 /* Use a partial view if the object is bigger than the aperture. */
1830 if (obj->base.size >= ggtt->mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
1832 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 /* Finally, remap it using the new GTT offset */
1858 pfn = ggtt->mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
1860 pfn >>= PAGE_SHIFT;
1861
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
1871
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
1900 unpin:
1901 i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903 mutex_unlock(&dev->struct_mutex);
1904 out:
1905 switch (ret) {
1906 case -EIO:
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
1917 case -EAGAIN:
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
1922 */
1923 case 0:
1924 case -ERESTARTSYS:
1925 case -EINTR:
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
1931 ret = VM_FAULT_NOPAGE;
1932 break;
1933 case -ENOMEM:
1934 ret = VM_FAULT_OOM;
1935 break;
1936 case -ENOSPC:
1937 case -EFAULT:
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 default:
1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 ret = VM_FAULT_SIGBUS;
1943 break;
1944 }
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
1948 }
1949
1950 /**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967 if (!obj->fault_mappable)
1968 return;
1969
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972 obj->fault_mappable = false;
1973 }
1974
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982 }
1983
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987 uint32_t gtt_size;
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
1995 gtt_size = 1024*1024;
1996 else
1997 gtt_size = 512*1024;
1998
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
2001
2002 return gtt_size;
2003 }
2004
2005 /**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
2015 {
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 tiling_mode == I915_TILING_NONE)
2022 return 4096;
2023
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
2036 if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 return 0;
2038
2039 dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
2043 goto out;
2044
2045 /* Badly fragmented mmap space? The only way we can recover
2046 * space is by destroying unwanted objects. We can't randomly release
2047 * mmap_offsets as userspace expects them to be persistent for the
2048 * lifetime of the objects. The closest we can is to release the
2049 * offsets on purgeable objects by truncating it and marking it purged,
2050 * which prevents userspace from ever using that object again.
2051 */
2052 i915_gem_shrink(dev_priv,
2053 obj->base.size >> PAGE_SHIFT,
2054 I915_SHRINK_BOUND |
2055 I915_SHRINK_UNBOUND |
2056 I915_SHRINK_PURGEABLE);
2057 ret = drm_gem_create_mmap_offset(&obj->base);
2058 if (ret != -ENOSPC)
2059 goto out;
2060
2061 i915_gem_shrink_all(dev_priv);
2062 ret = drm_gem_create_mmap_offset(&obj->base);
2063 out:
2064 dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066 return ret;
2067 }
2068
2069 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070 {
2071 drm_gem_free_mmap_offset(&obj->base);
2072 }
2073
2074 int
2075 i915_gem_mmap_gtt(struct drm_file *file,
2076 struct drm_device *dev,
2077 uint32_t handle,
2078 uint64_t *offset)
2079 {
2080 struct drm_i915_gem_object *obj;
2081 int ret;
2082
2083 ret = i915_mutex_lock_interruptible(dev);
2084 if (ret)
2085 return ret;
2086
2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088 if (&obj->base == NULL) {
2089 ret = -ENOENT;
2090 goto unlock;
2091 }
2092
2093 if (obj->madv != I915_MADV_WILLNEED) {
2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095 ret = -EFAULT;
2096 goto out;
2097 }
2098
2099 ret = i915_gem_object_create_mmap_offset(obj);
2100 if (ret)
2101 goto out;
2102
2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105 out:
2106 drm_gem_object_unreference(&obj->base);
2107 unlock:
2108 mutex_unlock(&dev->struct_mutex);
2109 return ret;
2110 }
2111
2112 /**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127 int
2128 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 struct drm_file *file)
2130 {
2131 struct drm_i915_gem_mmap_gtt *args = data;
2132
2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 }
2135
2136 /* Immediately discard the backing storage */
2137 static void
2138 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139 {
2140 i915_gem_object_free_mmap_offset(obj);
2141
2142 if (obj->base.filp == NULL)
2143 return;
2144
2145 /* Our goal here is to return as much of the memory as
2146 * is possible back to the system as we are called from OOM.
2147 * To do this we must instruct the shmfs to drop all of its
2148 * backing pages, *now*.
2149 */
2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151 obj->madv = __I915_MADV_PURGED;
2152 }
2153
2154 /* Try to discard unwanted pages */
2155 static void
2156 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157 {
2158 struct address_space *mapping;
2159
2160 switch (obj->madv) {
2161 case I915_MADV_DONTNEED:
2162 i915_gem_object_truncate(obj);
2163 case __I915_MADV_PURGED:
2164 return;
2165 }
2166
2167 if (obj->base.filp == NULL)
2168 return;
2169
2170 mapping = file_inode(obj->base.filp)->i_mapping,
2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 }
2173
2174 static void
2175 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176 {
2177 struct sg_page_iter sg_iter;
2178 int ret;
2179
2180 BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 if (ret) {
2184 /* In the event of a disaster, abandon all caches and
2185 * hope for the best.
2186 */
2187 WARN_ON(ret != -EIO);
2188 i915_gem_clflush_object(obj, true);
2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 }
2191
2192 i915_gem_gtt_finish_object(obj);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197 if (obj->madv == I915_MADV_DONTNEED)
2198 obj->dirty = 0;
2199
2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203 if (obj->dirty)
2204 set_page_dirty(page);
2205
2206 if (obj->madv == I915_MADV_WILLNEED)
2207 mark_page_accessed(page);
2208
2209 page_cache_release(page);
2210 }
2211 obj->dirty = 0;
2212
2213 sg_free_table(obj->pages);
2214 kfree(obj->pages);
2215 }
2216
2217 int
2218 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219 {
2220 const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222 if (obj->pages == NULL)
2223 return 0;
2224
2225 if (obj->pages_pin_count)
2226 return -EBUSY;
2227
2228 BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230 /* ->put_pages might need to allocate memory for the bit17 swizzle
2231 * array, hence protect them from being reaped by removing them from gtt
2232 * lists early. */
2233 list_del(&obj->global_list);
2234
2235 ops->put_pages(obj);
2236 obj->pages = NULL;
2237
2238 i915_gem_object_invalidate(obj);
2239
2240 return 0;
2241 }
2242
2243 static int
2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 int page_count, i;
2248 struct address_space *mapping;
2249 struct sg_table *st;
2250 struct scatterlist *sg;
2251 struct sg_page_iter sg_iter;
2252 struct page *page;
2253 unsigned long last_pfn = 0; /* suppress gcc warning */
2254 int ret;
2255 gfp_t gfp;
2256
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
2268 page_count = obj->base.size / PAGE_SIZE;
2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270 kfree(st);
2271 return -ENOMEM;
2272 }
2273
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
2279 mapping = file_inode(obj->base.filp)->i_mapping;
2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
2299 i915_gem_shrink_all(dev_priv);
2300 page = shmem_read_mapping_page(mapping, i);
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
2303 goto err_pages;
2304 }
2305 }
2306 #ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313 #endif
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326 }
2327 #ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329 #endif
2330 sg_mark_end(sg);
2331 obj->pages = st;
2332
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
2337 if (i915_gem_object_needs_bit17_swizzle(obj))
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
2344 return 0;
2345
2346 err_pages:
2347 sg_mark_end(sg);
2348 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349 page_cache_release(sg_page_iter_page(&sg_iter));
2350 sg_free_table(st);
2351 kfree(st);
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
2365 }
2366
2367 /* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374 int
2375 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376 {
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2381 if (obj->pages)
2382 return 0;
2383
2384 if (obj->madv != I915_MADV_WILLNEED) {
2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386 return -EFAULT;
2387 }
2388
2389 BUG_ON(obj->pages_pin_count);
2390
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
2400 return 0;
2401 }
2402
2403 void i915_vma_move_to_active(struct i915_vma *vma,
2404 struct drm_i915_gem_request *req)
2405 {
2406 struct drm_i915_gem_object *obj = vma->obj;
2407 struct intel_engine_cs *engine;
2408
2409 engine = i915_gem_request_get_engine(req);
2410
2411 /* Add a reference if we're newly entering the active list. */
2412 if (obj->active == 0)
2413 drm_gem_object_reference(&obj->base);
2414 obj->active |= intel_engine_flag(engine);
2415
2416 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2417 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2418
2419 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420 }
2421
2422 static void
2423 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424 {
2425 RQ_BUG_ON(obj->last_write_req == NULL);
2426 RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2427
2428 i915_gem_request_assign(&obj->last_write_req, NULL);
2429 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430 }
2431
2432 static void
2433 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434 {
2435 struct i915_vma *vma;
2436
2437 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438 RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440 list_del_init(&obj->engine_list[ring]);
2441 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2444 i915_gem_object_retire__write(obj);
2445
2446 obj->active &= ~(1 << ring);
2447 if (obj->active)
2448 return;
2449
2450 /* Bump our place on the bound list to keep it roughly in LRU order
2451 * so that we don't steal from recently used but inactive objects
2452 * (unless we are forced to ofc!)
2453 */
2454 list_move_tail(&obj->global_list,
2455 &to_i915(obj->base.dev)->mm.bound_list);
2456
2457 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458 if (!list_empty(&vma->vm_link))
2459 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460 }
2461
2462 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463 drm_gem_object_unreference(&obj->base);
2464 }
2465
2466 static int
2467 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468 {
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 struct intel_engine_cs *engine;
2471 int ret, j;
2472
2473 /* Carefully retire all requests without writing to the rings */
2474 for_each_engine(engine, dev_priv) {
2475 ret = intel_engine_idle(engine);
2476 if (ret)
2477 return ret;
2478 }
2479 i915_gem_retire_requests(dev);
2480
2481 /* Finally reset hw state */
2482 for_each_engine(engine, dev_priv) {
2483 intel_ring_init_seqno(engine, seqno);
2484
2485 for (j = 0; j < ARRAY_SIZE(engine->semaphore.sync_seqno); j++)
2486 engine->semaphore.sync_seqno[j] = 0;
2487 }
2488
2489 return 0;
2490 }
2491
2492 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493 {
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 int ret;
2496
2497 if (seqno == 0)
2498 return -EINVAL;
2499
2500 /* HWS page needs to be set less than what we
2501 * will inject to ring
2502 */
2503 ret = i915_gem_init_seqno(dev, seqno - 1);
2504 if (ret)
2505 return ret;
2506
2507 /* Carefully set the last_seqno value so that wrap
2508 * detection still works
2509 */
2510 dev_priv->next_seqno = seqno;
2511 dev_priv->last_seqno = seqno - 1;
2512 if (dev_priv->last_seqno == 0)
2513 dev_priv->last_seqno--;
2514
2515 return 0;
2516 }
2517
2518 int
2519 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520 {
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523 /* reserve 0 for non-seqno */
2524 if (dev_priv->next_seqno == 0) {
2525 int ret = i915_gem_init_seqno(dev, 0);
2526 if (ret)
2527 return ret;
2528
2529 dev_priv->next_seqno = 1;
2530 }
2531
2532 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533 return 0;
2534 }
2535
2536 /*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541 void __i915_add_request(struct drm_i915_gem_request *request,
2542 struct drm_i915_gem_object *obj,
2543 bool flush_caches)
2544 {
2545 struct intel_engine_cs *engine;
2546 struct drm_i915_private *dev_priv;
2547 struct intel_ringbuffer *ringbuf;
2548 u32 request_start;
2549 int ret;
2550
2551 if (WARN_ON(request == NULL))
2552 return;
2553
2554 engine = request->engine;
2555 dev_priv = request->i915;
2556 ringbuf = request->ringbuf;
2557
2558 /*
2559 * To ensure that this call will not fail, space for its emissions
2560 * should already have been reserved in the ring buffer. Let the ring
2561 * know that it is time to use that space up.
2562 */
2563 intel_ring_reserved_space_use(ringbuf);
2564
2565 request_start = intel_ring_get_tail(ringbuf);
2566 /*
2567 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568 * after having emitted the batchbuffer command. Hence we need to fix
2569 * things up similar to emitting the lazy request. The difference here
2570 * is that the flush _must_ happen before the next request, no matter
2571 * what.
2572 */
2573 if (flush_caches) {
2574 if (i915.enable_execlists)
2575 ret = logical_ring_flush_all_caches(request);
2576 else
2577 ret = intel_ring_flush_all_caches(request);
2578 /* Not allowed to fail! */
2579 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580 }
2581
2582 /* Record the position of the start of the request so that
2583 * should we detect the updated seqno part-way through the
2584 * GPU processing the request, we never over-estimate the
2585 * position of the head.
2586 */
2587 request->postfix = intel_ring_get_tail(ringbuf);
2588
2589 if (i915.enable_execlists)
2590 ret = engine->emit_request(request);
2591 else {
2592 ret = engine->add_request(request);
2593
2594 request->tail = intel_ring_get_tail(ringbuf);
2595 }
2596 /* Not allowed to fail! */
2597 WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599 request->head = request_start;
2600
2601 /* Whilst this request exists, batch_obj will be on the
2602 * active_list, and so will hold the active reference. Only when this
2603 * request is retired will the the batch_obj be moved onto the
2604 * inactive_list and lose its active reference. Hence we do not need
2605 * to explicitly hold another reference here.
2606 */
2607 request->batch_obj = obj;
2608
2609 request->emitted_jiffies = jiffies;
2610 request->previous_seqno = engine->last_submitted_seqno;
2611 engine->last_submitted_seqno = request->seqno;
2612 list_add_tail(&request->list, &engine->request_list);
2613
2614 trace_i915_gem_request_add(request);
2615
2616 i915_queue_hangcheck(engine->dev);
2617
2618 queue_delayed_work(dev_priv->wq,
2619 &dev_priv->mm.retire_work,
2620 round_jiffies_up_relative(HZ));
2621 intel_mark_busy(dev_priv->dev);
2622
2623 /* Sanity check that the reserved size was large enough. */
2624 intel_ring_reserved_space_end(ringbuf);
2625 }
2626
2627 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628 const struct intel_context *ctx)
2629 {
2630 unsigned long elapsed;
2631
2632 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634 if (ctx->hang_stats.banned)
2635 return true;
2636
2637 if (ctx->hang_stats.ban_period_seconds &&
2638 elapsed <= ctx->hang_stats.ban_period_seconds) {
2639 if (!i915_gem_context_is_default(ctx)) {
2640 DRM_DEBUG("context hanging too fast, banning!\n");
2641 return true;
2642 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643 if (i915_stop_ring_allow_warn(dev_priv))
2644 DRM_ERROR("gpu hanging too fast, banning!\n");
2645 return true;
2646 }
2647 }
2648
2649 return false;
2650 }
2651
2652 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653 struct intel_context *ctx,
2654 const bool guilty)
2655 {
2656 struct i915_ctx_hang_stats *hs;
2657
2658 if (WARN_ON(!ctx))
2659 return;
2660
2661 hs = &ctx->hang_stats;
2662
2663 if (guilty) {
2664 hs->banned = i915_context_is_banned(dev_priv, ctx);
2665 hs->batch_active++;
2666 hs->guilty_ts = get_seconds();
2667 } else {
2668 hs->batch_pending++;
2669 }
2670 }
2671
2672 void i915_gem_request_free(struct kref *req_ref)
2673 {
2674 struct drm_i915_gem_request *req = container_of(req_ref,
2675 typeof(*req), ref);
2676 struct intel_context *ctx = req->ctx;
2677
2678 if (req->file_priv)
2679 i915_gem_request_remove_from_client(req);
2680
2681 if (ctx) {
2682 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683 intel_lr_context_unpin(ctx, req->engine);
2684
2685 i915_gem_context_unreference(ctx);
2686 }
2687
2688 kmem_cache_free(req->i915->requests, req);
2689 }
2690
2691 static inline int
2692 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2693 struct intel_context *ctx,
2694 struct drm_i915_gem_request **req_out)
2695 {
2696 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2697 struct drm_i915_gem_request *req;
2698 int ret;
2699
2700 if (!req_out)
2701 return -EINVAL;
2702
2703 *req_out = NULL;
2704
2705 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706 if (req == NULL)
2707 return -ENOMEM;
2708
2709 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2710 if (ret)
2711 goto err;
2712
2713 kref_init(&req->ref);
2714 req->i915 = dev_priv;
2715 req->engine = engine;
2716 req->ctx = ctx;
2717 i915_gem_context_reference(req->ctx);
2718
2719 if (i915.enable_execlists)
2720 ret = intel_logical_ring_alloc_request_extras(req);
2721 else
2722 ret = intel_ring_alloc_request_extras(req);
2723 if (ret) {
2724 i915_gem_context_unreference(req->ctx);
2725 goto err;
2726 }
2727
2728 /*
2729 * Reserve space in the ring buffer for all the commands required to
2730 * eventually emit this request. This is to guarantee that the
2731 * i915_add_request() call can't fail. Note that the reserve may need
2732 * to be redone if the request is not actually submitted straight
2733 * away, e.g. because a GPU scheduler has deferred it.
2734 */
2735 if (i915.enable_execlists)
2736 ret = intel_logical_ring_reserve_space(req);
2737 else
2738 ret = intel_ring_reserve_space(req);
2739 if (ret) {
2740 /*
2741 * At this point, the request is fully allocated even if not
2742 * fully prepared. Thus it can be cleaned up using the proper
2743 * free code.
2744 */
2745 i915_gem_request_cancel(req);
2746 return ret;
2747 }
2748
2749 *req_out = req;
2750 return 0;
2751
2752 err:
2753 kmem_cache_free(dev_priv->requests, req);
2754 return ret;
2755 }
2756
2757 /**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 * This can be NULL if the request is not directly related to
2763 * any specific user context, in which case this function will
2764 * choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769 struct drm_i915_gem_request *
2770 i915_gem_request_alloc(struct intel_engine_cs *engine,
2771 struct intel_context *ctx)
2772 {
2773 struct drm_i915_gem_request *req;
2774 int err;
2775
2776 if (ctx == NULL)
2777 ctx = to_i915(engine->dev)->kernel_context;
2778 err = __i915_gem_request_alloc(engine, ctx, &req);
2779 return err ? ERR_PTR(err) : req;
2780 }
2781
2782 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783 {
2784 intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786 i915_gem_request_unreference(req);
2787 }
2788
2789 struct drm_i915_gem_request *
2790 i915_gem_find_active_request(struct intel_engine_cs *engine)
2791 {
2792 struct drm_i915_gem_request *request;
2793
2794 list_for_each_entry(request, &engine->request_list, list) {
2795 if (i915_gem_request_completed(request, false))
2796 continue;
2797
2798 return request;
2799 }
2800
2801 return NULL;
2802 }
2803
2804 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2805 struct intel_engine_cs *engine)
2806 {
2807 struct drm_i915_gem_request *request;
2808 bool ring_hung;
2809
2810 request = i915_gem_find_active_request(engine);
2811
2812 if (request == NULL)
2813 return;
2814
2815 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819 list_for_each_entry_continue(request, &engine->request_list, list)
2820 i915_set_reset_status(dev_priv, request->ctx, false);
2821 }
2822
2823 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2824 struct intel_engine_cs *engine)
2825 {
2826 struct intel_ringbuffer *buffer;
2827
2828 while (!list_empty(&engine->active_list)) {
2829 struct drm_i915_gem_object *obj;
2830
2831 obj = list_first_entry(&engine->active_list,
2832 struct drm_i915_gem_object,
2833 engine_list[engine->id]);
2834
2835 i915_gem_object_retire__read(obj, engine->id);
2836 }
2837
2838 /*
2839 * Clear the execlists queue up before freeing the requests, as those
2840 * are the ones that keep the context and ringbuffer backing objects
2841 * pinned in place.
2842 */
2843
2844 if (i915.enable_execlists) {
2845 /* Ensure irq handler finishes or is cancelled. */
2846 tasklet_kill(&engine->irq_tasklet);
2847
2848 spin_lock_bh(&engine->execlist_lock);
2849 /* list_splice_tail_init checks for empty lists */
2850 list_splice_tail_init(&engine->execlist_queue,
2851 &engine->execlist_retired_req_list);
2852 spin_unlock_bh(&engine->execlist_lock);
2853
2854 intel_execlists_retire_requests(engine);
2855 }
2856
2857 /*
2858 * We must free the requests after all the corresponding objects have
2859 * been moved off active lists. Which is the same order as the normal
2860 * retire_requests function does. This is important if object hold
2861 * implicit references on things like e.g. ppgtt address spaces through
2862 * the request.
2863 */
2864 while (!list_empty(&engine->request_list)) {
2865 struct drm_i915_gem_request *request;
2866
2867 request = list_first_entry(&engine->request_list,
2868 struct drm_i915_gem_request,
2869 list);
2870
2871 i915_gem_request_retire(request);
2872 }
2873
2874 /* Having flushed all requests from all queues, we know that all
2875 * ringbuffers must now be empty. However, since we do not reclaim
2876 * all space when retiring the request (to prevent HEADs colliding
2877 * with rapid ringbuffer wraparound) the amount of available space
2878 * upon reset is less than when we start. Do one more pass over
2879 * all the ringbuffers to reset last_retired_head.
2880 */
2881 list_for_each_entry(buffer, &engine->buffers, link) {
2882 buffer->last_retired_head = buffer->tail;
2883 intel_ring_update_space(buffer);
2884 }
2885 }
2886
2887 void i915_gem_reset(struct drm_device *dev)
2888 {
2889 struct drm_i915_private *dev_priv = dev->dev_private;
2890 struct intel_engine_cs *engine;
2891
2892 /*
2893 * Before we free the objects from the requests, we need to inspect
2894 * them for finding the guilty party. As the requests only borrow
2895 * their reference to the objects, the inspection must be done first.
2896 */
2897 for_each_engine(engine, dev_priv)
2898 i915_gem_reset_engine_status(dev_priv, engine);
2899
2900 for_each_engine(engine, dev_priv)
2901 i915_gem_reset_engine_cleanup(dev_priv, engine);
2902
2903 i915_gem_context_reset(dev);
2904
2905 i915_gem_restore_fences(dev);
2906
2907 WARN_ON(i915_verify_lists(dev));
2908 }
2909
2910 /**
2911 * This function clears the request list as sequence numbers are passed.
2912 */
2913 void
2914 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2915 {
2916 WARN_ON(i915_verify_lists(engine->dev));
2917
2918 /* Retire requests first as we use it above for the early return.
2919 * If we retire requests last, we may use a later seqno and so clear
2920 * the requests lists without clearing the active list, leading to
2921 * confusion.
2922 */
2923 while (!list_empty(&engine->request_list)) {
2924 struct drm_i915_gem_request *request;
2925
2926 request = list_first_entry(&engine->request_list,
2927 struct drm_i915_gem_request,
2928 list);
2929
2930 if (!i915_gem_request_completed(request, true))
2931 break;
2932
2933 i915_gem_request_retire(request);
2934 }
2935
2936 /* Move any buffers on the active list that are no longer referenced
2937 * by the ringbuffer to the flushing/inactive lists as appropriate,
2938 * before we free the context associated with the requests.
2939 */
2940 while (!list_empty(&engine->active_list)) {
2941 struct drm_i915_gem_object *obj;
2942
2943 obj = list_first_entry(&engine->active_list,
2944 struct drm_i915_gem_object,
2945 engine_list[engine->id]);
2946
2947 if (!list_empty(&obj->last_read_req[engine->id]->list))
2948 break;
2949
2950 i915_gem_object_retire__read(obj, engine->id);
2951 }
2952
2953 if (unlikely(engine->trace_irq_req &&
2954 i915_gem_request_completed(engine->trace_irq_req, true))) {
2955 engine->irq_put(engine);
2956 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2957 }
2958
2959 WARN_ON(i915_verify_lists(engine->dev));
2960 }
2961
2962 bool
2963 i915_gem_retire_requests(struct drm_device *dev)
2964 {
2965 struct drm_i915_private *dev_priv = dev->dev_private;
2966 struct intel_engine_cs *engine;
2967 bool idle = true;
2968
2969 for_each_engine(engine, dev_priv) {
2970 i915_gem_retire_requests_ring(engine);
2971 idle &= list_empty(&engine->request_list);
2972 if (i915.enable_execlists) {
2973 spin_lock_bh(&engine->execlist_lock);
2974 idle &= list_empty(&engine->execlist_queue);
2975 spin_unlock_bh(&engine->execlist_lock);
2976
2977 intel_execlists_retire_requests(engine);
2978 }
2979 }
2980
2981 if (idle)
2982 mod_delayed_work(dev_priv->wq,
2983 &dev_priv->mm.idle_work,
2984 msecs_to_jiffies(100));
2985
2986 return idle;
2987 }
2988
2989 static void
2990 i915_gem_retire_work_handler(struct work_struct *work)
2991 {
2992 struct drm_i915_private *dev_priv =
2993 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994 struct drm_device *dev = dev_priv->dev;
2995 bool idle;
2996
2997 /* Come back later if the device is busy... */
2998 idle = false;
2999 if (mutex_trylock(&dev->struct_mutex)) {
3000 idle = i915_gem_retire_requests(dev);
3001 mutex_unlock(&dev->struct_mutex);
3002 }
3003 if (!idle)
3004 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3005 round_jiffies_up_relative(HZ));
3006 }
3007
3008 static void
3009 i915_gem_idle_work_handler(struct work_struct *work)
3010 {
3011 struct drm_i915_private *dev_priv =
3012 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013 struct drm_device *dev = dev_priv->dev;
3014 struct intel_engine_cs *engine;
3015
3016 for_each_engine(engine, dev_priv)
3017 if (!list_empty(&engine->request_list))
3018 return;
3019
3020 /* we probably should sync with hangcheck here, using cancel_work_sync.
3021 * Also locking seems to be fubar here, engine->request_list is protected
3022 * by dev->struct_mutex. */
3023
3024 intel_mark_idle(dev);
3025
3026 if (mutex_trylock(&dev->struct_mutex)) {
3027 for_each_engine(engine, dev_priv)
3028 i915_gem_batch_pool_fini(&engine->batch_pool);
3029
3030 mutex_unlock(&dev->struct_mutex);
3031 }
3032 }
3033
3034 /**
3035 * Ensures that an object will eventually get non-busy by flushing any required
3036 * write domains, emitting any outstanding lazy request and retiring and
3037 * completed requests.
3038 */
3039 static int
3040 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3041 {
3042 int i;
3043
3044 if (!obj->active)
3045 return 0;
3046
3047 for (i = 0; i < I915_NUM_ENGINES; i++) {
3048 struct drm_i915_gem_request *req;
3049
3050 req = obj->last_read_req[i];
3051 if (req == NULL)
3052 continue;
3053
3054 if (list_empty(&req->list))
3055 goto retire;
3056
3057 if (i915_gem_request_completed(req, true)) {
3058 __i915_gem_request_retire__upto(req);
3059 retire:
3060 i915_gem_object_retire__read(obj, i);
3061 }
3062 }
3063
3064 return 0;
3065 }
3066
3067 /**
3068 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3069 * @DRM_IOCTL_ARGS: standard ioctl arguments
3070 *
3071 * Returns 0 if successful, else an error is returned with the remaining time in
3072 * the timeout parameter.
3073 * -ETIME: object is still busy after timeout
3074 * -ERESTARTSYS: signal interrupted the wait
3075 * -ENONENT: object doesn't exist
3076 * Also possible, but rare:
3077 * -EAGAIN: GPU wedged
3078 * -ENOMEM: damn
3079 * -ENODEV: Internal IRQ fail
3080 * -E?: The add request failed
3081 *
3082 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3083 * non-zero timeout parameter the wait ioctl will wait for the given number of
3084 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3085 * without holding struct_mutex the object may become re-busied before this
3086 * function completes. A similar but shorter * race condition exists in the busy
3087 * ioctl
3088 */
3089 int
3090 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3091 {
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 struct drm_i915_gem_wait *args = data;
3094 struct drm_i915_gem_object *obj;
3095 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3096 unsigned reset_counter;
3097 int i, n = 0;
3098 int ret;
3099
3100 if (args->flags != 0)
3101 return -EINVAL;
3102
3103 ret = i915_mutex_lock_interruptible(dev);
3104 if (ret)
3105 return ret;
3106
3107 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3108 if (&obj->base == NULL) {
3109 mutex_unlock(&dev->struct_mutex);
3110 return -ENOENT;
3111 }
3112
3113 /* Need to make sure the object gets inactive eventually. */
3114 ret = i915_gem_object_flush_active(obj);
3115 if (ret)
3116 goto out;
3117
3118 if (!obj->active)
3119 goto out;
3120
3121 /* Do this after OLR check to make sure we make forward progress polling
3122 * on this IOCTL with a timeout == 0 (like busy ioctl)
3123 */
3124 if (args->timeout_ns == 0) {
3125 ret = -ETIME;
3126 goto out;
3127 }
3128
3129 drm_gem_object_unreference(&obj->base);
3130 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3131
3132 for (i = 0; i < I915_NUM_ENGINES; i++) {
3133 if (obj->last_read_req[i] == NULL)
3134 continue;
3135
3136 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3137 }
3138
3139 mutex_unlock(&dev->struct_mutex);
3140
3141 for (i = 0; i < n; i++) {
3142 if (ret == 0)
3143 ret = __i915_wait_request(req[i], reset_counter, true,
3144 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3145 to_rps_client(file));
3146 i915_gem_request_unreference__unlocked(req[i]);
3147 }
3148 return ret;
3149
3150 out:
3151 drm_gem_object_unreference(&obj->base);
3152 mutex_unlock(&dev->struct_mutex);
3153 return ret;
3154 }
3155
3156 static int
3157 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3158 struct intel_engine_cs *to,
3159 struct drm_i915_gem_request *from_req,
3160 struct drm_i915_gem_request **to_req)
3161 {
3162 struct intel_engine_cs *from;
3163 int ret;
3164
3165 from = i915_gem_request_get_engine(from_req);
3166 if (to == from)
3167 return 0;
3168
3169 if (i915_gem_request_completed(from_req, true))
3170 return 0;
3171
3172 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3173 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3174 ret = __i915_wait_request(from_req,
3175 atomic_read(&i915->gpu_error.reset_counter),
3176 i915->mm.interruptible,
3177 NULL,
3178 &i915->rps.semaphores);
3179 if (ret)
3180 return ret;
3181
3182 i915_gem_object_retire_request(obj, from_req);
3183 } else {
3184 int idx = intel_ring_sync_index(from, to);
3185 u32 seqno = i915_gem_request_get_seqno(from_req);
3186
3187 WARN_ON(!to_req);
3188
3189 if (seqno <= from->semaphore.sync_seqno[idx])
3190 return 0;
3191
3192 if (*to_req == NULL) {
3193 struct drm_i915_gem_request *req;
3194
3195 req = i915_gem_request_alloc(to, NULL);
3196 if (IS_ERR(req))
3197 return PTR_ERR(req);
3198
3199 *to_req = req;
3200 }
3201
3202 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3203 ret = to->semaphore.sync_to(*to_req, from, seqno);
3204 if (ret)
3205 return ret;
3206
3207 /* We use last_read_req because sync_to()
3208 * might have just caused seqno wrap under
3209 * the radar.
3210 */
3211 from->semaphore.sync_seqno[idx] =
3212 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3213 }
3214
3215 return 0;
3216 }
3217
3218 /**
3219 * i915_gem_object_sync - sync an object to a ring.
3220 *
3221 * @obj: object which may be in use on another ring.
3222 * @to: ring we wish to use the object on. May be NULL.
3223 * @to_req: request we wish to use the object for. See below.
3224 * This will be allocated and returned if a request is
3225 * required but not passed in.
3226 *
3227 * This code is meant to abstract object synchronization with the GPU.
3228 * Calling with NULL implies synchronizing the object with the CPU
3229 * rather than a particular GPU ring. Conceptually we serialise writes
3230 * between engines inside the GPU. We only allow one engine to write
3231 * into a buffer at any time, but multiple readers. To ensure each has
3232 * a coherent view of memory, we must:
3233 *
3234 * - If there is an outstanding write request to the object, the new
3235 * request must wait for it to complete (either CPU or in hw, requests
3236 * on the same ring will be naturally ordered).
3237 *
3238 * - If we are a write request (pending_write_domain is set), the new
3239 * request must wait for outstanding read requests to complete.
3240 *
3241 * For CPU synchronisation (NULL to) no request is required. For syncing with
3242 * rings to_req must be non-NULL. However, a request does not have to be
3243 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3244 * request will be allocated automatically and returned through *to_req. Note
3245 * that it is not guaranteed that commands will be emitted (because the system
3246 * might already be idle). Hence there is no need to create a request that
3247 * might never have any work submitted. Note further that if a request is
3248 * returned in *to_req, it is the responsibility of the caller to submit
3249 * that request (after potentially adding more work to it).
3250 *
3251 * Returns 0 if successful, else propagates up the lower layer error.
3252 */
3253 int
3254 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3255 struct intel_engine_cs *to,
3256 struct drm_i915_gem_request **to_req)
3257 {
3258 const bool readonly = obj->base.pending_write_domain == 0;
3259 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3260 int ret, i, n;
3261
3262 if (!obj->active)
3263 return 0;
3264
3265 if (to == NULL)
3266 return i915_gem_object_wait_rendering(obj, readonly);
3267
3268 n = 0;
3269 if (readonly) {
3270 if (obj->last_write_req)
3271 req[n++] = obj->last_write_req;
3272 } else {
3273 for (i = 0; i < I915_NUM_ENGINES; i++)
3274 if (obj->last_read_req[i])
3275 req[n++] = obj->last_read_req[i];
3276 }
3277 for (i = 0; i < n; i++) {
3278 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3279 if (ret)
3280 return ret;
3281 }
3282
3283 return 0;
3284 }
3285
3286 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3287 {
3288 u32 old_write_domain, old_read_domains;
3289
3290 /* Force a pagefault for domain tracking on next user access */
3291 i915_gem_release_mmap(obj);
3292
3293 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3294 return;
3295
3296 /* Wait for any direct GTT access to complete */
3297 mb();
3298
3299 old_read_domains = obj->base.read_domains;
3300 old_write_domain = obj->base.write_domain;
3301
3302 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3303 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3304
3305 trace_i915_gem_object_change_domain(obj,
3306 old_read_domains,
3307 old_write_domain);
3308 }
3309
3310 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3311 {
3312 struct drm_i915_gem_object *obj = vma->obj;
3313 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3314 int ret;
3315
3316 if (list_empty(&vma->obj_link))
3317 return 0;
3318
3319 if (!drm_mm_node_allocated(&vma->node)) {
3320 i915_gem_vma_destroy(vma);
3321 return 0;
3322 }
3323
3324 if (vma->pin_count)
3325 return -EBUSY;
3326
3327 BUG_ON(obj->pages == NULL);
3328
3329 if (wait) {
3330 ret = i915_gem_object_wait_rendering(obj, false);
3331 if (ret)
3332 return ret;
3333 }
3334
3335 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3336 i915_gem_object_finish_gtt(obj);
3337
3338 /* release the fence reg _after_ flushing */
3339 ret = i915_gem_object_put_fence(obj);
3340 if (ret)
3341 return ret;
3342 }
3343
3344 trace_i915_vma_unbind(vma);
3345
3346 vma->vm->unbind_vma(vma);
3347 vma->bound = 0;
3348
3349 list_del_init(&vma->vm_link);
3350 if (vma->is_ggtt) {
3351 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3352 obj->map_and_fenceable = false;
3353 } else if (vma->ggtt_view.pages) {
3354 sg_free_table(vma->ggtt_view.pages);
3355 kfree(vma->ggtt_view.pages);
3356 }
3357 vma->ggtt_view.pages = NULL;
3358 }
3359
3360 drm_mm_remove_node(&vma->node);
3361 i915_gem_vma_destroy(vma);
3362
3363 /* Since the unbound list is global, only move to that list if
3364 * no more VMAs exist. */
3365 if (list_empty(&obj->vma_list))
3366 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3367
3368 /* And finally now the object is completely decoupled from this vma,
3369 * we can drop its hold on the backing storage and allow it to be
3370 * reaped by the shrinker.
3371 */
3372 i915_gem_object_unpin_pages(obj);
3373
3374 return 0;
3375 }
3376
3377 int i915_vma_unbind(struct i915_vma *vma)
3378 {
3379 return __i915_vma_unbind(vma, true);
3380 }
3381
3382 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3383 {
3384 return __i915_vma_unbind(vma, false);
3385 }
3386
3387 int i915_gpu_idle(struct drm_device *dev)
3388 {
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390 struct intel_engine_cs *engine;
3391 int ret;
3392
3393 /* Flush everything onto the inactive list. */
3394 for_each_engine(engine, dev_priv) {
3395 if (!i915.enable_execlists) {
3396 struct drm_i915_gem_request *req;
3397
3398 req = i915_gem_request_alloc(engine, NULL);
3399 if (IS_ERR(req))
3400 return PTR_ERR(req);
3401
3402 ret = i915_switch_context(req);
3403 if (ret) {
3404 i915_gem_request_cancel(req);
3405 return ret;
3406 }
3407
3408 i915_add_request_no_flush(req);
3409 }
3410
3411 ret = intel_engine_idle(engine);
3412 if (ret)
3413 return ret;
3414 }
3415
3416 WARN_ON(i915_verify_lists(dev));
3417 return 0;
3418 }
3419
3420 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3421 unsigned long cache_level)
3422 {
3423 struct drm_mm_node *gtt_space = &vma->node;
3424 struct drm_mm_node *other;
3425
3426 /*
3427 * On some machines we have to be careful when putting differing types
3428 * of snoopable memory together to avoid the prefetcher crossing memory
3429 * domains and dying. During vm initialisation, we decide whether or not
3430 * these constraints apply and set the drm_mm.color_adjust
3431 * appropriately.
3432 */
3433 if (vma->vm->mm.color_adjust == NULL)
3434 return true;
3435
3436 if (!drm_mm_node_allocated(gtt_space))
3437 return true;
3438
3439 if (list_empty(&gtt_space->node_list))
3440 return true;
3441
3442 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3443 if (other->allocated && !other->hole_follows && other->color != cache_level)
3444 return false;
3445
3446 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3447 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3448 return false;
3449
3450 return true;
3451 }
3452
3453 /**
3454 * Finds free space in the GTT aperture and binds the object or a view of it
3455 * there.
3456 */
3457 static struct i915_vma *
3458 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3459 struct i915_address_space *vm,
3460 const struct i915_ggtt_view *ggtt_view,
3461 unsigned alignment,
3462 uint64_t flags)
3463 {
3464 struct drm_device *dev = obj->base.dev;
3465 struct drm_i915_private *dev_priv = to_i915(dev);
3466 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3467 u32 fence_alignment, unfenced_alignment;
3468 u32 search_flag, alloc_flag;
3469 u64 start, end;
3470 u64 size, fence_size;
3471 struct i915_vma *vma;
3472 int ret;
3473
3474 if (i915_is_ggtt(vm)) {
3475 u32 view_size;
3476
3477 if (WARN_ON(!ggtt_view))
3478 return ERR_PTR(-EINVAL);
3479
3480 view_size = i915_ggtt_view_size(obj, ggtt_view);
3481
3482 fence_size = i915_gem_get_gtt_size(dev,
3483 view_size,
3484 obj->tiling_mode);
3485 fence_alignment = i915_gem_get_gtt_alignment(dev,
3486 view_size,
3487 obj->tiling_mode,
3488 true);
3489 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3490 view_size,
3491 obj->tiling_mode,
3492 false);
3493 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3494 } else {
3495 fence_size = i915_gem_get_gtt_size(dev,
3496 obj->base.size,
3497 obj->tiling_mode);
3498 fence_alignment = i915_gem_get_gtt_alignment(dev,
3499 obj->base.size,
3500 obj->tiling_mode,
3501 true);
3502 unfenced_alignment =
3503 i915_gem_get_gtt_alignment(dev,
3504 obj->base.size,
3505 obj->tiling_mode,
3506 false);
3507 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3508 }
3509
3510 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3511 end = vm->total;
3512 if (flags & PIN_MAPPABLE)
3513 end = min_t(u64, end, ggtt->mappable_end);
3514 if (flags & PIN_ZONE_4G)
3515 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3516
3517 if (alignment == 0)
3518 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3519 unfenced_alignment;
3520 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3521 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3522 ggtt_view ? ggtt_view->type : 0,
3523 alignment);
3524 return ERR_PTR(-EINVAL);
3525 }
3526
3527 /* If binding the object/GGTT view requires more space than the entire
3528 * aperture has, reject it early before evicting everything in a vain
3529 * attempt to find space.
3530 */
3531 if (size > end) {
3532 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3533 ggtt_view ? ggtt_view->type : 0,
3534 size,
3535 flags & PIN_MAPPABLE ? "mappable" : "total",
3536 end);
3537 return ERR_PTR(-E2BIG);
3538 }
3539
3540 ret = i915_gem_object_get_pages(obj);
3541 if (ret)
3542 return ERR_PTR(ret);
3543
3544 i915_gem_object_pin_pages(obj);
3545
3546 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3547 i915_gem_obj_lookup_or_create_vma(obj, vm);
3548
3549 if (IS_ERR(vma))
3550 goto err_unpin;
3551
3552 if (flags & PIN_OFFSET_FIXED) {
3553 uint64_t offset = flags & PIN_OFFSET_MASK;
3554
3555 if (offset & (alignment - 1) || offset + size > end) {
3556 ret = -EINVAL;
3557 goto err_free_vma;
3558 }
3559 vma->node.start = offset;
3560 vma->node.size = size;
3561 vma->node.color = obj->cache_level;
3562 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3563 if (ret) {
3564 ret = i915_gem_evict_for_vma(vma);
3565 if (ret == 0)
3566 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3567 }
3568 if (ret)
3569 goto err_free_vma;
3570 } else {
3571 if (flags & PIN_HIGH) {
3572 search_flag = DRM_MM_SEARCH_BELOW;
3573 alloc_flag = DRM_MM_CREATE_TOP;
3574 } else {
3575 search_flag = DRM_MM_SEARCH_DEFAULT;
3576 alloc_flag = DRM_MM_CREATE_DEFAULT;
3577 }
3578
3579 search_free:
3580 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3581 size, alignment,
3582 obj->cache_level,
3583 start, end,
3584 search_flag,
3585 alloc_flag);
3586 if (ret) {
3587 ret = i915_gem_evict_something(dev, vm, size, alignment,
3588 obj->cache_level,
3589 start, end,
3590 flags);
3591 if (ret == 0)
3592 goto search_free;
3593
3594 goto err_free_vma;
3595 }
3596 }
3597 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3598 ret = -EINVAL;
3599 goto err_remove_node;
3600 }
3601
3602 trace_i915_vma_bind(vma, flags);
3603 ret = i915_vma_bind(vma, obj->cache_level, flags);
3604 if (ret)
3605 goto err_remove_node;
3606
3607 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3608 list_add_tail(&vma->vm_link, &vm->inactive_list);
3609
3610 return vma;
3611
3612 err_remove_node:
3613 drm_mm_remove_node(&vma->node);
3614 err_free_vma:
3615 i915_gem_vma_destroy(vma);
3616 vma = ERR_PTR(ret);
3617 err_unpin:
3618 i915_gem_object_unpin_pages(obj);
3619 return vma;
3620 }
3621
3622 bool
3623 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3624 bool force)
3625 {
3626 /* If we don't have a page list set up, then we're not pinned
3627 * to GPU, and we can ignore the cache flush because it'll happen
3628 * again at bind time.
3629 */
3630 if (obj->pages == NULL)
3631 return false;
3632
3633 /*
3634 * Stolen memory is always coherent with the GPU as it is explicitly
3635 * marked as wc by the system, or the system is cache-coherent.
3636 */
3637 if (obj->stolen || obj->phys_handle)
3638 return false;
3639
3640 /* If the GPU is snooping the contents of the CPU cache,
3641 * we do not need to manually clear the CPU cache lines. However,
3642 * the caches are only snooped when the render cache is
3643 * flushed/invalidated. As we always have to emit invalidations
3644 * and flushes when moving into and out of the RENDER domain, correct
3645 * snooping behaviour occurs naturally as the result of our domain
3646 * tracking.
3647 */
3648 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3649 obj->cache_dirty = true;
3650 return false;
3651 }
3652
3653 trace_i915_gem_object_clflush(obj);
3654 drm_clflush_sg(obj->pages);
3655 obj->cache_dirty = false;
3656
3657 return true;
3658 }
3659
3660 /** Flushes the GTT write domain for the object if it's dirty. */
3661 static void
3662 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3663 {
3664 uint32_t old_write_domain;
3665
3666 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3667 return;
3668
3669 /* No actual flushing is required for the GTT write domain. Writes
3670 * to it immediately go to main memory as far as we know, so there's
3671 * no chipset flush. It also doesn't land in render cache.
3672 *
3673 * However, we do have to enforce the order so that all writes through
3674 * the GTT land before any writes to the device, such as updates to
3675 * the GATT itself.
3676 */
3677 wmb();
3678
3679 old_write_domain = obj->base.write_domain;
3680 obj->base.write_domain = 0;
3681
3682 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3683
3684 trace_i915_gem_object_change_domain(obj,
3685 obj->base.read_domains,
3686 old_write_domain);
3687 }
3688
3689 /** Flushes the CPU write domain for the object if it's dirty. */
3690 static void
3691 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3692 {
3693 uint32_t old_write_domain;
3694
3695 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3696 return;
3697
3698 if (i915_gem_clflush_object(obj, obj->pin_display))
3699 i915_gem_chipset_flush(obj->base.dev);
3700
3701 old_write_domain = obj->base.write_domain;
3702 obj->base.write_domain = 0;
3703
3704 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3705
3706 trace_i915_gem_object_change_domain(obj,
3707 obj->base.read_domains,
3708 old_write_domain);
3709 }
3710
3711 /**
3712 * Moves a single object to the GTT read, and possibly write domain.
3713 *
3714 * This function returns when the move is complete, including waiting on
3715 * flushes to occur.
3716 */
3717 int
3718 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3719 {
3720 struct drm_device *dev = obj->base.dev;
3721 struct drm_i915_private *dev_priv = to_i915(dev);
3722 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3723 uint32_t old_write_domain, old_read_domains;
3724 struct i915_vma *vma;
3725 int ret;
3726
3727 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728 return 0;
3729
3730 ret = i915_gem_object_wait_rendering(obj, !write);
3731 if (ret)
3732 return ret;
3733
3734 /* Flush and acquire obj->pages so that we are coherent through
3735 * direct access in memory with previous cached writes through
3736 * shmemfs and that our cache domain tracking remains valid.
3737 * For example, if the obj->filp was moved to swap without us
3738 * being notified and releasing the pages, we would mistakenly
3739 * continue to assume that the obj remained out of the CPU cached
3740 * domain.
3741 */
3742 ret = i915_gem_object_get_pages(obj);
3743 if (ret)
3744 return ret;
3745
3746 i915_gem_object_flush_cpu_write_domain(obj);
3747
3748 /* Serialise direct access to this object with the barriers for
3749 * coherent writes from the GPU, by effectively invalidating the
3750 * GTT domain upon first access.
3751 */
3752 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753 mb();
3754
3755 old_write_domain = obj->base.write_domain;
3756 old_read_domains = obj->base.read_domains;
3757
3758 /* It should now be out of any other write domains, and we can update
3759 * the domain values for our changes.
3760 */
3761 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763 if (write) {
3764 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766 obj->dirty = 1;
3767 }
3768
3769 trace_i915_gem_object_change_domain(obj,
3770 old_read_domains,
3771 old_write_domain);
3772
3773 /* And bump the LRU for this access */
3774 vma = i915_gem_obj_to_ggtt(obj);
3775 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776 list_move_tail(&vma->vm_link,
3777 &ggtt->base.inactive_list);
3778
3779 return 0;
3780 }
3781
3782 /**
3783 * Changes the cache-level of an object across all VMA.
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796 enum i915_cache_level cache_level)
3797 {
3798 struct drm_device *dev = obj->base.dev;
3799 struct i915_vma *vma, *next;
3800 bool bound = false;
3801 int ret = 0;
3802
3803 if (obj->cache_level == cache_level)
3804 goto out;
3805
3806 /* Inspect the list of currently bound VMA and unbind any that would
3807 * be invalid given the new cache-level. This is principally to
3808 * catch the issue of the CS prefetch crossing page boundaries and
3809 * reading an invalid PTE on older architectures.
3810 */
3811 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3812 if (!drm_mm_node_allocated(&vma->node))
3813 continue;
3814
3815 if (vma->pin_count) {
3816 DRM_DEBUG("can not change the cache level of pinned objects\n");
3817 return -EBUSY;
3818 }
3819
3820 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821 ret = i915_vma_unbind(vma);
3822 if (ret)
3823 return ret;
3824 } else
3825 bound = true;
3826 }
3827
3828 /* We can reuse the existing drm_mm nodes but need to change the
3829 * cache-level on the PTE. We could simply unbind them all and
3830 * rebind with the correct cache-level on next use. However since
3831 * we already have a valid slot, dma mapping, pages etc, we may as
3832 * rewrite the PTE in the belief that doing so tramples upon less
3833 * state and so involves less work.
3834 */
3835 if (bound) {
3836 /* Before we change the PTE, the GPU must not be accessing it.
3837 * If we wait upon the object, we know that all the bound
3838 * VMA are no longer active.
3839 */
3840 ret = i915_gem_object_wait_rendering(obj, false);
3841 if (ret)
3842 return ret;
3843
3844 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3845 /* Access to snoopable pages through the GTT is
3846 * incoherent and on some machines causes a hard
3847 * lockup. Relinquish the CPU mmaping to force
3848 * userspace to refault in the pages and we can
3849 * then double check if the GTT mapping is still
3850 * valid for that pointer access.
3851 */
3852 i915_gem_release_mmap(obj);
3853
3854 /* As we no longer need a fence for GTT access,
3855 * we can relinquish it now (and so prevent having
3856 * to steal a fence from someone else on the next
3857 * fence request). Note GPU activity would have
3858 * dropped the fence as all snoopable access is
3859 * supposed to be linear.
3860 */
3861 ret = i915_gem_object_put_fence(obj);
3862 if (ret)
3863 return ret;
3864 } else {
3865 /* We either have incoherent backing store and
3866 * so no GTT access or the architecture is fully
3867 * coherent. In such cases, existing GTT mmaps
3868 * ignore the cache bit in the PTE and we can
3869 * rewrite it without confusing the GPU or having
3870 * to force userspace to fault back in its mmaps.
3871 */
3872 }
3873
3874 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875 if (!drm_mm_node_allocated(&vma->node))
3876 continue;
3877
3878 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879 if (ret)
3880 return ret;
3881 }
3882 }
3883
3884 list_for_each_entry(vma, &obj->vma_list, obj_link)
3885 vma->node.color = cache_level;
3886 obj->cache_level = cache_level;
3887
3888 out:
3889 /* Flush the dirty CPU caches to the backing storage so that the
3890 * object is now coherent at its new cache level (with respect
3891 * to the access domain).
3892 */
3893 if (obj->cache_dirty &&
3894 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895 cpu_write_needs_clflush(obj)) {
3896 if (i915_gem_clflush_object(obj, true))
3897 i915_gem_chipset_flush(obj->base.dev);
3898 }
3899
3900 return 0;
3901 }
3902
3903 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904 struct drm_file *file)
3905 {
3906 struct drm_i915_gem_caching *args = data;
3907 struct drm_i915_gem_object *obj;
3908
3909 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910 if (&obj->base == NULL)
3911 return -ENOENT;
3912
3913 switch (obj->cache_level) {
3914 case I915_CACHE_LLC:
3915 case I915_CACHE_L3_LLC:
3916 args->caching = I915_CACHING_CACHED;
3917 break;
3918
3919 case I915_CACHE_WT:
3920 args->caching = I915_CACHING_DISPLAY;
3921 break;
3922
3923 default:
3924 args->caching = I915_CACHING_NONE;
3925 break;
3926 }
3927
3928 drm_gem_object_unreference_unlocked(&obj->base);
3929 return 0;
3930 }
3931
3932 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933 struct drm_file *file)
3934 {
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 struct drm_i915_gem_caching *args = data;
3937 struct drm_i915_gem_object *obj;
3938 enum i915_cache_level level;
3939 int ret;
3940
3941 switch (args->caching) {
3942 case I915_CACHING_NONE:
3943 level = I915_CACHE_NONE;
3944 break;
3945 case I915_CACHING_CACHED:
3946 /*
3947 * Due to a HW issue on BXT A stepping, GPU stores via a
3948 * snooped mapping may leave stale data in a corresponding CPU
3949 * cacheline, whereas normally such cachelines would get
3950 * invalidated.
3951 */
3952 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3953 return -ENODEV;
3954
3955 level = I915_CACHE_LLC;
3956 break;
3957 case I915_CACHING_DISPLAY:
3958 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959 break;
3960 default:
3961 return -EINVAL;
3962 }
3963
3964 intel_runtime_pm_get(dev_priv);
3965
3966 ret = i915_mutex_lock_interruptible(dev);
3967 if (ret)
3968 goto rpm_put;
3969
3970 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971 if (&obj->base == NULL) {
3972 ret = -ENOENT;
3973 goto unlock;
3974 }
3975
3976 ret = i915_gem_object_set_cache_level(obj, level);
3977
3978 drm_gem_object_unreference(&obj->base);
3979 unlock:
3980 mutex_unlock(&dev->struct_mutex);
3981 rpm_put:
3982 intel_runtime_pm_put(dev_priv);
3983
3984 return ret;
3985 }
3986
3987 /*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
3991 */
3992 int
3993 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994 u32 alignment,
3995 const struct i915_ggtt_view *view)
3996 {
3997 u32 old_read_domains, old_write_domain;
3998 int ret;
3999
4000 /* Mark the pin_display early so that we account for the
4001 * display coherency whilst setting up the cache domains.
4002 */
4003 obj->pin_display++;
4004
4005 /* The display engine is not coherent with the LLC cache on gen6. As
4006 * a result, we make sure that the pinning that is about to occur is
4007 * done with uncached PTEs. This is lowest common denominator for all
4008 * chipsets.
4009 *
4010 * However for gen6+, we could do better by using the GFDT bit instead
4011 * of uncaching, which would allow us to flush all the LLC-cached data
4012 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013 */
4014 ret = i915_gem_object_set_cache_level(obj,
4015 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016 if (ret)
4017 goto err_unpin_display;
4018
4019 /* As the user may map the buffer once pinned in the display plane
4020 * (e.g. libkms for the bootup splash), we have to ensure that we
4021 * always use map_and_fenceable for all scanout buffers.
4022 */
4023 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024 view->type == I915_GGTT_VIEW_NORMAL ?
4025 PIN_MAPPABLE : 0);
4026 if (ret)
4027 goto err_unpin_display;
4028
4029 i915_gem_object_flush_cpu_write_domain(obj);
4030
4031 old_write_domain = obj->base.write_domain;
4032 old_read_domains = obj->base.read_domains;
4033
4034 /* It should now be out of any other write domains, and we can update
4035 * the domain values for our changes.
4036 */
4037 obj->base.write_domain = 0;
4038 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040 trace_i915_gem_object_change_domain(obj,
4041 old_read_domains,
4042 old_write_domain);
4043
4044 return 0;
4045
4046 err_unpin_display:
4047 obj->pin_display--;
4048 return ret;
4049 }
4050
4051 void
4052 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053 const struct i915_ggtt_view *view)
4054 {
4055 if (WARN_ON(obj->pin_display == 0))
4056 return;
4057
4058 i915_gem_object_ggtt_unpin_view(obj, view);
4059
4060 obj->pin_display--;
4061 }
4062
4063 /**
4064 * Moves a single object to the CPU read, and possibly write domain.
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069 int
4070 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071 {
4072 uint32_t old_write_domain, old_read_domains;
4073 int ret;
4074
4075 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076 return 0;
4077
4078 ret = i915_gem_object_wait_rendering(obj, !write);
4079 if (ret)
4080 return ret;
4081
4082 i915_gem_object_flush_gtt_write_domain(obj);
4083
4084 old_write_domain = obj->base.write_domain;
4085 old_read_domains = obj->base.read_domains;
4086
4087 /* Flush the CPU cache if it's still invalid. */
4088 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089 i915_gem_clflush_object(obj, false);
4090
4091 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092 }
4093
4094 /* It should now be out of any other write domains, and we can update
4095 * the domain values for our changes.
4096 */
4097 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099 /* If we're writing through the CPU, then the GPU read domains will
4100 * need to be invalidated at next use.
4101 */
4102 if (write) {
4103 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105 }
4106
4107 trace_i915_gem_object_change_domain(obj,
4108 old_read_domains,
4109 old_write_domain);
4110
4111 return 0;
4112 }
4113
4114 /* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124 static int
4125 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126 {
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128 struct drm_i915_file_private *file_priv = file->driver_priv;
4129 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130 struct drm_i915_gem_request *request, *target = NULL;
4131 unsigned reset_counter;
4132 int ret;
4133
4134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135 if (ret)
4136 return ret;
4137
4138 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139 if (ret)
4140 return ret;
4141
4142 spin_lock(&file_priv->mm.lock);
4143 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144 if (time_after_eq(request->emitted_jiffies, recent_enough))
4145 break;
4146
4147 /*
4148 * Note that the request might not have been submitted yet.
4149 * In which case emitted_jiffies will be zero.
4150 */
4151 if (!request->emitted_jiffies)
4152 continue;
4153
4154 target = request;
4155 }
4156 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157 if (target)
4158 i915_gem_request_reference(target);
4159 spin_unlock(&file_priv->mm.lock);
4160
4161 if (target == NULL)
4162 return 0;
4163
4164 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165 if (ret == 0)
4166 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168 i915_gem_request_unreference__unlocked(target);
4169
4170 return ret;
4171 }
4172
4173 static bool
4174 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4175 {
4176 struct drm_i915_gem_object *obj = vma->obj;
4177
4178 if (alignment &&
4179 vma->node.start & (alignment - 1))
4180 return true;
4181
4182 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183 return true;
4184
4185 if (flags & PIN_OFFSET_BIAS &&
4186 vma->node.start < (flags & PIN_OFFSET_MASK))
4187 return true;
4188
4189 if (flags & PIN_OFFSET_FIXED &&
4190 vma->node.start != (flags & PIN_OFFSET_MASK))
4191 return true;
4192
4193 return false;
4194 }
4195
4196 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197 {
4198 struct drm_i915_gem_object *obj = vma->obj;
4199 bool mappable, fenceable;
4200 u32 fence_size, fence_alignment;
4201
4202 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203 obj->base.size,
4204 obj->tiling_mode);
4205 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206 obj->base.size,
4207 obj->tiling_mode,
4208 true);
4209
4210 fenceable = (vma->node.size == fence_size &&
4211 (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213 mappable = (vma->node.start + fence_size <=
4214 to_i915(obj->base.dev)->ggtt.mappable_end);
4215
4216 obj->map_and_fenceable = mappable && fenceable;
4217 }
4218
4219 static int
4220 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221 struct i915_address_space *vm,
4222 const struct i915_ggtt_view *ggtt_view,
4223 uint32_t alignment,
4224 uint64_t flags)
4225 {
4226 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227 struct i915_vma *vma;
4228 unsigned bound;
4229 int ret;
4230
4231 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232 return -ENODEV;
4233
4234 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235 return -EINVAL;
4236
4237 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238 return -EINVAL;
4239
4240 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241 return -EINVAL;
4242
4243 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244 i915_gem_obj_to_vma(obj, vm);
4245
4246 if (vma) {
4247 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4248 return -EBUSY;
4249
4250 if (i915_vma_misplaced(vma, alignment, flags)) {
4251 WARN(vma->pin_count,
4252 "bo is already pinned in %s with incorrect alignment:"
4253 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4254 " obj->map_and_fenceable=%d\n",
4255 ggtt_view ? "ggtt" : "ppgtt",
4256 upper_32_bits(vma->node.start),
4257 lower_32_bits(vma->node.start),
4258 alignment,
4259 !!(flags & PIN_MAPPABLE),
4260 obj->map_and_fenceable);
4261 ret = i915_vma_unbind(vma);
4262 if (ret)
4263 return ret;
4264
4265 vma = NULL;
4266 }
4267 }
4268
4269 bound = vma ? vma->bound : 0;
4270 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4271 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4272 flags);
4273 if (IS_ERR(vma))
4274 return PTR_ERR(vma);
4275 } else {
4276 ret = i915_vma_bind(vma, obj->cache_level, flags);
4277 if (ret)
4278 return ret;
4279 }
4280
4281 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4282 (bound ^ vma->bound) & GLOBAL_BIND) {
4283 __i915_vma_set_map_and_fenceable(vma);
4284 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4285 }
4286
4287 vma->pin_count++;
4288 return 0;
4289 }
4290
4291 int
4292 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4293 struct i915_address_space *vm,
4294 uint32_t alignment,
4295 uint64_t flags)
4296 {
4297 return i915_gem_object_do_pin(obj, vm,
4298 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4299 alignment, flags);
4300 }
4301
4302 int
4303 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4304 const struct i915_ggtt_view *view,
4305 uint32_t alignment,
4306 uint64_t flags)
4307 {
4308 struct drm_device *dev = obj->base.dev;
4309 struct drm_i915_private *dev_priv = to_i915(dev);
4310 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4311
4312 BUG_ON(!view);
4313
4314 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4315 alignment, flags | PIN_GLOBAL);
4316 }
4317
4318 void
4319 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320 const struct i915_ggtt_view *view)
4321 {
4322 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4323
4324 BUG_ON(!vma);
4325 WARN_ON(vma->pin_count == 0);
4326 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4327
4328 --vma->pin_count;
4329 }
4330
4331 int
4332 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333 struct drm_file *file)
4334 {
4335 struct drm_i915_gem_busy *args = data;
4336 struct drm_i915_gem_object *obj;
4337 int ret;
4338
4339 ret = i915_mutex_lock_interruptible(dev);
4340 if (ret)
4341 return ret;
4342
4343 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344 if (&obj->base == NULL) {
4345 ret = -ENOENT;
4346 goto unlock;
4347 }
4348
4349 /* Count all active objects as busy, even if they are currently not used
4350 * by the gpu. Users of this interface expect objects to eventually
4351 * become non-busy without any further actions, therefore emit any
4352 * necessary flushes here.
4353 */
4354 ret = i915_gem_object_flush_active(obj);
4355 if (ret)
4356 goto unref;
4357
4358 args->busy = 0;
4359 if (obj->active) {
4360 int i;
4361
4362 for (i = 0; i < I915_NUM_ENGINES; i++) {
4363 struct drm_i915_gem_request *req;
4364
4365 req = obj->last_read_req[i];
4366 if (req)
4367 args->busy |= 1 << (16 + req->engine->exec_id);
4368 }
4369 if (obj->last_write_req)
4370 args->busy |= obj->last_write_req->engine->exec_id;
4371 }
4372
4373 unref:
4374 drm_gem_object_unreference(&obj->base);
4375 unlock:
4376 mutex_unlock(&dev->struct_mutex);
4377 return ret;
4378 }
4379
4380 int
4381 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382 struct drm_file *file_priv)
4383 {
4384 return i915_gem_ring_throttle(dev, file_priv);
4385 }
4386
4387 int
4388 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389 struct drm_file *file_priv)
4390 {
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392 struct drm_i915_gem_madvise *args = data;
4393 struct drm_i915_gem_object *obj;
4394 int ret;
4395
4396 switch (args->madv) {
4397 case I915_MADV_DONTNEED:
4398 case I915_MADV_WILLNEED:
4399 break;
4400 default:
4401 return -EINVAL;
4402 }
4403
4404 ret = i915_mutex_lock_interruptible(dev);
4405 if (ret)
4406 return ret;
4407
4408 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409 if (&obj->base == NULL) {
4410 ret = -ENOENT;
4411 goto unlock;
4412 }
4413
4414 if (i915_gem_obj_is_pinned(obj)) {
4415 ret = -EINVAL;
4416 goto out;
4417 }
4418
4419 if (obj->pages &&
4420 obj->tiling_mode != I915_TILING_NONE &&
4421 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422 if (obj->madv == I915_MADV_WILLNEED)
4423 i915_gem_object_unpin_pages(obj);
4424 if (args->madv == I915_MADV_WILLNEED)
4425 i915_gem_object_pin_pages(obj);
4426 }
4427
4428 if (obj->madv != __I915_MADV_PURGED)
4429 obj->madv = args->madv;
4430
4431 /* if the object is no longer attached, discard its backing storage */
4432 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4433 i915_gem_object_truncate(obj);
4434
4435 args->retained = obj->madv != __I915_MADV_PURGED;
4436
4437 out:
4438 drm_gem_object_unreference(&obj->base);
4439 unlock:
4440 mutex_unlock(&dev->struct_mutex);
4441 return ret;
4442 }
4443
4444 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445 const struct drm_i915_gem_object_ops *ops)
4446 {
4447 int i;
4448
4449 INIT_LIST_HEAD(&obj->global_list);
4450 for (i = 0; i < I915_NUM_ENGINES; i++)
4451 INIT_LIST_HEAD(&obj->engine_list[i]);
4452 INIT_LIST_HEAD(&obj->obj_exec_link);
4453 INIT_LIST_HEAD(&obj->vma_list);
4454 INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456 obj->ops = ops;
4457
4458 obj->fence_reg = I915_FENCE_REG_NONE;
4459 obj->madv = I915_MADV_WILLNEED;
4460
4461 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462 }
4463
4464 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4466 .get_pages = i915_gem_object_get_pages_gtt,
4467 .put_pages = i915_gem_object_put_pages_gtt,
4468 };
4469
4470 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471 size_t size)
4472 {
4473 struct drm_i915_gem_object *obj;
4474 struct address_space *mapping;
4475 gfp_t mask;
4476
4477 obj = i915_gem_object_alloc(dev);
4478 if (obj == NULL)
4479 return NULL;
4480
4481 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482 i915_gem_object_free(obj);
4483 return NULL;
4484 }
4485
4486 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488 /* 965gm cannot relocate objects above 4GiB. */
4489 mask &= ~__GFP_HIGHMEM;
4490 mask |= __GFP_DMA32;
4491 }
4492
4493 mapping = file_inode(obj->base.filp)->i_mapping;
4494 mapping_set_gfp_mask(mapping, mask);
4495
4496 i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501 if (HAS_LLC(dev)) {
4502 /* On some devices, we can have the GPU use the LLC (the CPU
4503 * cache) for about a 10% performance improvement
4504 * compared to uncached. Graphics requests other than
4505 * display scanout are coherent with the CPU in
4506 * accessing this cache. This means in this mode we
4507 * don't need to clflush on the CPU side, and on the
4508 * GPU side we only need to flush internal caches to
4509 * get data visible to the CPU.
4510 *
4511 * However, we maintain the display planes as UC, and so
4512 * need to rebind when first used as such.
4513 */
4514 obj->cache_level = I915_CACHE_LLC;
4515 } else
4516 obj->cache_level = I915_CACHE_NONE;
4517
4518 trace_i915_gem_object_create(obj);
4519
4520 return obj;
4521 }
4522
4523 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524 {
4525 /* If we are the last user of the backing storage (be it shmemfs
4526 * pages or stolen etc), we know that the pages are going to be
4527 * immediately released. In this case, we can then skip copying
4528 * back the contents from the GPU.
4529 */
4530
4531 if (obj->madv != I915_MADV_WILLNEED)
4532 return false;
4533
4534 if (obj->base.filp == NULL)
4535 return true;
4536
4537 /* At first glance, this looks racy, but then again so would be
4538 * userspace racing mmap against close. However, the first external
4539 * reference to the filp can only be obtained through the
4540 * i915_gem_mmap_ioctl() which safeguards us against the user
4541 * acquiring such a reference whilst we are in the middle of
4542 * freeing the object.
4543 */
4544 return atomic_long_read(&obj->base.filp->f_count) == 1;
4545 }
4546
4547 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548 {
4549 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550 struct drm_device *dev = obj->base.dev;
4551 struct drm_i915_private *dev_priv = dev->dev_private;
4552 struct i915_vma *vma, *next;
4553
4554 intel_runtime_pm_get(dev_priv);
4555
4556 trace_i915_gem_object_destroy(obj);
4557
4558 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559 int ret;
4560
4561 vma->pin_count = 0;
4562 ret = i915_vma_unbind(vma);
4563 if (WARN_ON(ret == -ERESTARTSYS)) {
4564 bool was_interruptible;
4565
4566 was_interruptible = dev_priv->mm.interruptible;
4567 dev_priv->mm.interruptible = false;
4568
4569 WARN_ON(i915_vma_unbind(vma));
4570
4571 dev_priv->mm.interruptible = was_interruptible;
4572 }
4573 }
4574
4575 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576 * before progressing. */
4577 if (obj->stolen)
4578 i915_gem_object_unpin_pages(obj);
4579
4580 WARN_ON(obj->frontbuffer_bits);
4581
4582 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584 obj->tiling_mode != I915_TILING_NONE)
4585 i915_gem_object_unpin_pages(obj);
4586
4587 if (WARN_ON(obj->pages_pin_count))
4588 obj->pages_pin_count = 0;
4589 if (discard_backing_storage(obj))
4590 obj->madv = I915_MADV_DONTNEED;
4591 i915_gem_object_put_pages(obj);
4592 i915_gem_object_free_mmap_offset(obj);
4593
4594 BUG_ON(obj->pages);
4595
4596 if (obj->base.import_attach)
4597 drm_prime_gem_destroy(&obj->base, NULL);
4598
4599 if (obj->ops->release)
4600 obj->ops->release(obj);
4601
4602 drm_gem_object_release(&obj->base);
4603 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4604
4605 kfree(obj->bit_17);
4606 i915_gem_object_free(obj);
4607
4608 intel_runtime_pm_put(dev_priv);
4609 }
4610
4611 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612 struct i915_address_space *vm)
4613 {
4614 struct i915_vma *vma;
4615 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617 vma->vm == vm)
4618 return vma;
4619 }
4620 return NULL;
4621 }
4622
4623 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624 const struct i915_ggtt_view *view)
4625 {
4626 struct drm_device *dev = obj->base.dev;
4627 struct drm_i915_private *dev_priv = to_i915(dev);
4628 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4629 struct i915_vma *vma;
4630
4631 BUG_ON(!view);
4632
4633 list_for_each_entry(vma, &obj->vma_list, obj_link)
4634 if (vma->vm == &ggtt->base &&
4635 i915_ggtt_view_equal(&vma->ggtt_view, view))
4636 return vma;
4637 return NULL;
4638 }
4639
4640 void i915_gem_vma_destroy(struct i915_vma *vma)
4641 {
4642 WARN_ON(vma->node.allocated);
4643
4644 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4645 if (!list_empty(&vma->exec_list))
4646 return;
4647
4648 if (!vma->is_ggtt)
4649 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4650
4651 list_del(&vma->obj_link);
4652
4653 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4654 }
4655
4656 static void
4657 i915_gem_stop_engines(struct drm_device *dev)
4658 {
4659 struct drm_i915_private *dev_priv = dev->dev_private;
4660 struct intel_engine_cs *engine;
4661
4662 for_each_engine(engine, dev_priv)
4663 dev_priv->gt.stop_engine(engine);
4664 }
4665
4666 int
4667 i915_gem_suspend(struct drm_device *dev)
4668 {
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670 int ret = 0;
4671
4672 mutex_lock(&dev->struct_mutex);
4673 ret = i915_gpu_idle(dev);
4674 if (ret)
4675 goto err;
4676
4677 i915_gem_retire_requests(dev);
4678
4679 i915_gem_stop_engines(dev);
4680 mutex_unlock(&dev->struct_mutex);
4681
4682 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684 flush_delayed_work(&dev_priv->mm.idle_work);
4685
4686 /* Assert that we sucessfully flushed all the work and
4687 * reset the GPU back to its idle, low power state.
4688 */
4689 WARN_ON(dev_priv->mm.busy);
4690
4691 return 0;
4692
4693 err:
4694 mutex_unlock(&dev->struct_mutex);
4695 return ret;
4696 }
4697
4698 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699 {
4700 struct intel_engine_cs *engine = req->engine;
4701 struct drm_device *dev = engine->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704 int i, ret;
4705
4706 if (!HAS_L3_DPF(dev) || !remap_info)
4707 return 0;
4708
4709 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710 if (ret)
4711 return ret;
4712
4713 /*
4714 * Note: We do not worry about the concurrent register cacheline hang
4715 * here because no other code should access these registers other than
4716 * at initialization time.
4717 */
4718 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4720 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4721 intel_ring_emit(engine, remap_info[i]);
4722 }
4723
4724 intel_ring_advance(engine);
4725
4726 return ret;
4727 }
4728
4729 void i915_gem_init_swizzling(struct drm_device *dev)
4730 {
4731 struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733 if (INTEL_INFO(dev)->gen < 5 ||
4734 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735 return;
4736
4737 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738 DISP_TILE_SURFACE_SWIZZLING);
4739
4740 if (IS_GEN5(dev))
4741 return;
4742
4743 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744 if (IS_GEN6(dev))
4745 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746 else if (IS_GEN7(dev))
4747 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748 else if (IS_GEN8(dev))
4749 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750 else
4751 BUG();
4752 }
4753
4754 static void init_unused_ring(struct drm_device *dev, u32 base)
4755 {
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758 I915_WRITE(RING_CTL(base), 0);
4759 I915_WRITE(RING_HEAD(base), 0);
4760 I915_WRITE(RING_TAIL(base), 0);
4761 I915_WRITE(RING_START(base), 0);
4762 }
4763
4764 static void init_unused_rings(struct drm_device *dev)
4765 {
4766 if (IS_I830(dev)) {
4767 init_unused_ring(dev, PRB1_BASE);
4768 init_unused_ring(dev, SRB0_BASE);
4769 init_unused_ring(dev, SRB1_BASE);
4770 init_unused_ring(dev, SRB2_BASE);
4771 init_unused_ring(dev, SRB3_BASE);
4772 } else if (IS_GEN2(dev)) {
4773 init_unused_ring(dev, SRB0_BASE);
4774 init_unused_ring(dev, SRB1_BASE);
4775 } else if (IS_GEN3(dev)) {
4776 init_unused_ring(dev, PRB1_BASE);
4777 init_unused_ring(dev, PRB2_BASE);
4778 }
4779 }
4780
4781 int i915_gem_init_engines(struct drm_device *dev)
4782 {
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 int ret;
4785
4786 ret = intel_init_render_ring_buffer(dev);
4787 if (ret)
4788 return ret;
4789
4790 if (HAS_BSD(dev)) {
4791 ret = intel_init_bsd_ring_buffer(dev);
4792 if (ret)
4793 goto cleanup_render_ring;
4794 }
4795
4796 if (HAS_BLT(dev)) {
4797 ret = intel_init_blt_ring_buffer(dev);
4798 if (ret)
4799 goto cleanup_bsd_ring;
4800 }
4801
4802 if (HAS_VEBOX(dev)) {
4803 ret = intel_init_vebox_ring_buffer(dev);
4804 if (ret)
4805 goto cleanup_blt_ring;
4806 }
4807
4808 if (HAS_BSD2(dev)) {
4809 ret = intel_init_bsd2_ring_buffer(dev);
4810 if (ret)
4811 goto cleanup_vebox_ring;
4812 }
4813
4814 return 0;
4815
4816 cleanup_vebox_ring:
4817 intel_cleanup_engine(&dev_priv->engine[VECS]);
4818 cleanup_blt_ring:
4819 intel_cleanup_engine(&dev_priv->engine[BCS]);
4820 cleanup_bsd_ring:
4821 intel_cleanup_engine(&dev_priv->engine[VCS]);
4822 cleanup_render_ring:
4823 intel_cleanup_engine(&dev_priv->engine[RCS]);
4824
4825 return ret;
4826 }
4827
4828 int
4829 i915_gem_init_hw(struct drm_device *dev)
4830 {
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 struct intel_engine_cs *engine;
4833 int ret, j;
4834
4835 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836 return -EIO;
4837
4838 /* Double layer security blanket, see i915_gem_init() */
4839 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841 if (dev_priv->ellc_size)
4842 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844 if (IS_HASWELL(dev))
4845 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848 if (HAS_PCH_NOP(dev)) {
4849 if (IS_IVYBRIDGE(dev)) {
4850 u32 temp = I915_READ(GEN7_MSG_CTL);
4851 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852 I915_WRITE(GEN7_MSG_CTL, temp);
4853 } else if (INTEL_INFO(dev)->gen >= 7) {
4854 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857 }
4858 }
4859
4860 i915_gem_init_swizzling(dev);
4861
4862 /*
4863 * At least 830 can leave some of the unused rings
4864 * "active" (ie. head != tail) after resume which
4865 * will prevent c3 entry. Makes sure all unused rings
4866 * are totally idle.
4867 */
4868 init_unused_rings(dev);
4869
4870 BUG_ON(!dev_priv->kernel_context);
4871
4872 ret = i915_ppgtt_init_hw(dev);
4873 if (ret) {
4874 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875 goto out;
4876 }
4877
4878 /* Need to do basic initialisation of all rings first: */
4879 for_each_engine(engine, dev_priv) {
4880 ret = engine->init_hw(engine);
4881 if (ret)
4882 goto out;
4883 }
4884
4885 /* We can't enable contexts until all firmware is loaded */
4886 if (HAS_GUC_UCODE(dev)) {
4887 ret = intel_guc_ucode_load(dev);
4888 if (ret) {
4889 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890 ret = -EIO;
4891 goto out;
4892 }
4893 }
4894
4895 /*
4896 * Increment the next seqno by 0x100 so we have a visible break
4897 * on re-initialisation
4898 */
4899 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900 if (ret)
4901 goto out;
4902
4903 /* Now it is safe to go back round and do everything else: */
4904 for_each_engine(engine, dev_priv) {
4905 struct drm_i915_gem_request *req;
4906
4907 req = i915_gem_request_alloc(engine, NULL);
4908 if (IS_ERR(req)) {
4909 ret = PTR_ERR(req);
4910 i915_gem_cleanup_engines(dev);
4911 goto out;
4912 }
4913
4914 if (engine->id == RCS) {
4915 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916 i915_gem_l3_remap(req, j);
4917 }
4918
4919 ret = i915_ppgtt_init_ring(req);
4920 if (ret && ret != -EIO) {
4921 DRM_ERROR("PPGTT enable %s failed %d\n",
4922 engine->name, ret);
4923 i915_gem_request_cancel(req);
4924 i915_gem_cleanup_engines(dev);
4925 goto out;
4926 }
4927
4928 ret = i915_gem_context_enable(req);
4929 if (ret && ret != -EIO) {
4930 DRM_ERROR("Context enable %s failed %d\n",
4931 engine->name, ret);
4932 i915_gem_request_cancel(req);
4933 i915_gem_cleanup_engines(dev);
4934 goto out;
4935 }
4936
4937 i915_add_request_no_flush(req);
4938 }
4939
4940 out:
4941 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4942 return ret;
4943 }
4944
4945 int i915_gem_init(struct drm_device *dev)
4946 {
4947 struct drm_i915_private *dev_priv = dev->dev_private;
4948 int ret;
4949
4950 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4951 i915.enable_execlists);
4952
4953 mutex_lock(&dev->struct_mutex);
4954
4955 if (!i915.enable_execlists) {
4956 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4957 dev_priv->gt.init_engines = i915_gem_init_engines;
4958 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4959 dev_priv->gt.stop_engine = intel_stop_engine;
4960 } else {
4961 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4962 dev_priv->gt.init_engines = intel_logical_rings_init;
4963 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4964 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4965 }
4966
4967 /* This is just a security blanket to placate dragons.
4968 * On some systems, we very sporadically observe that the first TLBs
4969 * used by the CS may be stale, despite us poking the TLB reset. If
4970 * we hold the forcewake during initialisation these problems
4971 * just magically go away.
4972 */
4973 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4974
4975 ret = i915_gem_init_userptr(dev);
4976 if (ret)
4977 goto out_unlock;
4978
4979 i915_gem_init_ggtt(dev);
4980
4981 ret = i915_gem_context_init(dev);
4982 if (ret)
4983 goto out_unlock;
4984
4985 ret = dev_priv->gt.init_engines(dev);
4986 if (ret)
4987 goto out_unlock;
4988
4989 ret = i915_gem_init_hw(dev);
4990 if (ret == -EIO) {
4991 /* Allow ring initialisation to fail by marking the GPU as
4992 * wedged. But we only want to do this where the GPU is angry,
4993 * for all other failure, such as an allocation failure, bail.
4994 */
4995 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4996 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4997 ret = 0;
4998 }
4999
5000 out_unlock:
5001 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5002 mutex_unlock(&dev->struct_mutex);
5003
5004 return ret;
5005 }
5006
5007 void
5008 i915_gem_cleanup_engines(struct drm_device *dev)
5009 {
5010 struct drm_i915_private *dev_priv = dev->dev_private;
5011 struct intel_engine_cs *engine;
5012
5013 for_each_engine(engine, dev_priv)
5014 dev_priv->gt.cleanup_engine(engine);
5015
5016 if (i915.enable_execlists)
5017 /*
5018 * Neither the BIOS, ourselves or any other kernel
5019 * expects the system to be in execlists mode on startup,
5020 * so we need to reset the GPU back to legacy mode.
5021 */
5022 intel_gpu_reset(dev, ALL_ENGINES);
5023 }
5024
5025 static void
5026 init_engine_lists(struct intel_engine_cs *engine)
5027 {
5028 INIT_LIST_HEAD(&engine->active_list);
5029 INIT_LIST_HEAD(&engine->request_list);
5030 }
5031
5032 void
5033 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5034 {
5035 struct drm_device *dev = dev_priv->dev;
5036
5037 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5038 !IS_CHERRYVIEW(dev_priv))
5039 dev_priv->num_fence_regs = 32;
5040 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5041 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5042 dev_priv->num_fence_regs = 16;
5043 else
5044 dev_priv->num_fence_regs = 8;
5045
5046 if (intel_vgpu_active(dev))
5047 dev_priv->num_fence_regs =
5048 I915_READ(vgtif_reg(avail_rs.fence_num));
5049
5050 /* Initialize fence registers to zero */
5051 i915_gem_restore_fences(dev);
5052
5053 i915_gem_detect_bit_6_swizzle(dev);
5054 }
5055
5056 void
5057 i915_gem_load_init(struct drm_device *dev)
5058 {
5059 struct drm_i915_private *dev_priv = dev->dev_private;
5060 int i;
5061
5062 dev_priv->objects =
5063 kmem_cache_create("i915_gem_object",
5064 sizeof(struct drm_i915_gem_object), 0,
5065 SLAB_HWCACHE_ALIGN,
5066 NULL);
5067 dev_priv->vmas =
5068 kmem_cache_create("i915_gem_vma",
5069 sizeof(struct i915_vma), 0,
5070 SLAB_HWCACHE_ALIGN,
5071 NULL);
5072 dev_priv->requests =
5073 kmem_cache_create("i915_gem_request",
5074 sizeof(struct drm_i915_gem_request), 0,
5075 SLAB_HWCACHE_ALIGN,
5076 NULL);
5077
5078 INIT_LIST_HEAD(&dev_priv->vm_list);
5079 INIT_LIST_HEAD(&dev_priv->context_list);
5080 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5081 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5082 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5083 for (i = 0; i < I915_NUM_ENGINES; i++)
5084 init_engine_lists(&dev_priv->engine[i]);
5085 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5086 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5087 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5088 i915_gem_retire_work_handler);
5089 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5090 i915_gem_idle_work_handler);
5091 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5092
5093 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5094
5095 /*
5096 * Set initial sequence number for requests.
5097 * Using this number allows the wraparound to happen early,
5098 * catching any obvious problems.
5099 */
5100 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5101 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5102
5103 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5104
5105 init_waitqueue_head(&dev_priv->pending_flip_queue);
5106
5107 dev_priv->mm.interruptible = true;
5108
5109 mutex_init(&dev_priv->fb_tracking.lock);
5110 }
5111
5112 void i915_gem_load_cleanup(struct drm_device *dev)
5113 {
5114 struct drm_i915_private *dev_priv = to_i915(dev);
5115
5116 kmem_cache_destroy(dev_priv->requests);
5117 kmem_cache_destroy(dev_priv->vmas);
5118 kmem_cache_destroy(dev_priv->objects);
5119 }
5120
5121 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5122 {
5123 struct drm_i915_file_private *file_priv = file->driver_priv;
5124
5125 /* Clean up our request list when the client is going away, so that
5126 * later retire_requests won't dereference our soon-to-be-gone
5127 * file_priv.
5128 */
5129 spin_lock(&file_priv->mm.lock);
5130 while (!list_empty(&file_priv->mm.request_list)) {
5131 struct drm_i915_gem_request *request;
5132
5133 request = list_first_entry(&file_priv->mm.request_list,
5134 struct drm_i915_gem_request,
5135 client_list);
5136 list_del(&request->client_list);
5137 request->file_priv = NULL;
5138 }
5139 spin_unlock(&file_priv->mm.lock);
5140
5141 if (!list_empty(&file_priv->rps.link)) {
5142 spin_lock(&to_i915(dev)->rps.client_lock);
5143 list_del(&file_priv->rps.link);
5144 spin_unlock(&to_i915(dev)->rps.client_lock);
5145 }
5146 }
5147
5148 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5149 {
5150 struct drm_i915_file_private *file_priv;
5151 int ret;
5152
5153 DRM_DEBUG_DRIVER("\n");
5154
5155 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5156 if (!file_priv)
5157 return -ENOMEM;
5158
5159 file->driver_priv = file_priv;
5160 file_priv->dev_priv = dev->dev_private;
5161 file_priv->file = file;
5162 INIT_LIST_HEAD(&file_priv->rps.link);
5163
5164 spin_lock_init(&file_priv->mm.lock);
5165 INIT_LIST_HEAD(&file_priv->mm.request_list);
5166
5167 file_priv->bsd_ring = -1;
5168
5169 ret = i915_gem_context_open(dev, file);
5170 if (ret)
5171 kfree(file_priv);
5172
5173 return ret;
5174 }
5175
5176 /**
5177 * i915_gem_track_fb - update frontbuffer tracking
5178 * @old: current GEM buffer for the frontbuffer slots
5179 * @new: new GEM buffer for the frontbuffer slots
5180 * @frontbuffer_bits: bitmask of frontbuffer slots
5181 *
5182 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5183 * from @old and setting them in @new. Both @old and @new can be NULL.
5184 */
5185 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5186 struct drm_i915_gem_object *new,
5187 unsigned frontbuffer_bits)
5188 {
5189 if (old) {
5190 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5191 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5192 old->frontbuffer_bits &= ~frontbuffer_bits;
5193 }
5194
5195 if (new) {
5196 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5197 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5198 new->frontbuffer_bits |= frontbuffer_bits;
5199 }
5200 }
5201
5202 /* All the new VM stuff */
5203 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5204 struct i915_address_space *vm)
5205 {
5206 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5207 struct i915_vma *vma;
5208
5209 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5210
5211 list_for_each_entry(vma, &o->vma_list, obj_link) {
5212 if (vma->is_ggtt &&
5213 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5214 continue;
5215 if (vma->vm == vm)
5216 return vma->node.start;
5217 }
5218
5219 WARN(1, "%s vma for this object not found.\n",
5220 i915_is_ggtt(vm) ? "global" : "ppgtt");
5221 return -1;
5222 }
5223
5224 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5225 const struct i915_ggtt_view *view)
5226 {
5227 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5228 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5229 struct i915_vma *vma;
5230
5231 list_for_each_entry(vma, &o->vma_list, obj_link)
5232 if (vma->vm == &ggtt->base &&
5233 i915_ggtt_view_equal(&vma->ggtt_view, view))
5234 return vma->node.start;
5235
5236 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5237 return -1;
5238 }
5239
5240 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5241 struct i915_address_space *vm)
5242 {
5243 struct i915_vma *vma;
5244
5245 list_for_each_entry(vma, &o->vma_list, obj_link) {
5246 if (vma->is_ggtt &&
5247 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5248 continue;
5249 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5250 return true;
5251 }
5252
5253 return false;
5254 }
5255
5256 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5257 const struct i915_ggtt_view *view)
5258 {
5259 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5260 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5261 struct i915_vma *vma;
5262
5263 list_for_each_entry(vma, &o->vma_list, obj_link)
5264 if (vma->vm == &ggtt->base &&
5265 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5266 drm_mm_node_allocated(&vma->node))
5267 return true;
5268
5269 return false;
5270 }
5271
5272 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5273 {
5274 struct i915_vma *vma;
5275
5276 list_for_each_entry(vma, &o->vma_list, obj_link)
5277 if (drm_mm_node_allocated(&vma->node))
5278 return true;
5279
5280 return false;
5281 }
5282
5283 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5284 struct i915_address_space *vm)
5285 {
5286 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5287 struct i915_vma *vma;
5288
5289 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5290
5291 BUG_ON(list_empty(&o->vma_list));
5292
5293 list_for_each_entry(vma, &o->vma_list, obj_link) {
5294 if (vma->is_ggtt &&
5295 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5296 continue;
5297 if (vma->vm == vm)
5298 return vma->node.size;
5299 }
5300 return 0;
5301 }
5302
5303 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5304 {
5305 struct i915_vma *vma;
5306 list_for_each_entry(vma, &obj->vma_list, obj_link)
5307 if (vma->pin_count > 0)
5308 return true;
5309
5310 return false;
5311 }
5312
5313 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5314 struct page *
5315 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5316 {
5317 struct page *page;
5318
5319 /* Only default objects have per-page dirty tracking */
5320 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5321 return NULL;
5322
5323 page = i915_gem_object_get_page(obj, n);
5324 set_page_dirty(page);
5325 return page;
5326 }
5327
5328 /* Allocate a new GEM object and fill it with the supplied data */
5329 struct drm_i915_gem_object *
5330 i915_gem_object_create_from_data(struct drm_device *dev,
5331 const void *data, size_t size)
5332 {
5333 struct drm_i915_gem_object *obj;
5334 struct sg_table *sg;
5335 size_t bytes;
5336 int ret;
5337
5338 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5339 if (IS_ERR_OR_NULL(obj))
5340 return obj;
5341
5342 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5343 if (ret)
5344 goto fail;
5345
5346 ret = i915_gem_object_get_pages(obj);
5347 if (ret)
5348 goto fail;
5349
5350 i915_gem_object_pin_pages(obj);
5351 sg = obj->pages;
5352 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5353 obj->dirty = 1; /* Backing store is now out of date */
5354 i915_gem_object_unpin_pages(obj);
5355
5356 if (WARN_ON(bytes != size)) {
5357 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5358 ret = -EFAULT;
5359 goto fail;
5360 }
5361
5362 return obj;
5363
5364 fail:
5365 drm_gem_object_unreference(&obj->base);
5366 return ERR_PTR(ret);
5367 }
This page took 0.204813 seconds and 6 git commands to generate.