Merge tag 'imx-fixes-3.8' of git://git.linaro.org/people/shawnguo/linux-2.6 into...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
200 {
201 struct drm_i915_gem_object *obj;
202 int ret;
203 u32 handle;
204
205 size = roundup(size, PAGE_SIZE);
206 if (size == 0)
207 return -EINVAL;
208
209 /* Allocate the new object */
210 obj = i915_gem_alloc_object(dev, size);
211 if (obj == NULL)
212 return -ENOMEM;
213
214 ret = drm_gem_handle_create(file, &obj->base, &handle);
215 if (ret) {
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 kfree(obj);
219 return ret;
220 }
221
222 /* drop reference from allocate - handle holds it now */
223 drm_gem_object_unreference(&obj->base);
224 trace_i915_gem_object_create(obj);
225
226 *handle_p = handle;
227 return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234 {
235 /* have to work out size/pitch and return them */
236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245 {
246 return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250 * Creates a new mm object and returns a handle to it.
251 */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255 {
256 struct drm_i915_gem_create *args = data;
257
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 struct scatterlist *sg;
414 int i;
415
416 user_data = (char __user *) (uintptr_t) args->data_ptr;
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 struct page *page;
445
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
452 /* Operation in this page
453 *
454 * shmem_page_offset = offset within page in shmem file
455 * page_length = bytes to copy for this page
456 */
457 shmem_page_offset = offset_in_page(offset);
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
461
462 page = sg_page(sg);
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
471
472 hit_slowpath = 1;
473 mutex_unlock(&dev->struct_mutex);
474
475 if (!prefaulted) {
476 ret = fault_in_multipages_writeable(user_data, remain);
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
484
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
488
489 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492 mark_page_accessed(page);
493
494 if (ret)
495 goto out;
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 i915_gem_object_unpin_pages(obj);
504
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
510
511 return ret;
512 }
513
514 /**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 struct drm_file *file)
522 {
523 struct drm_i915_gem_pread *args = data;
524 struct drm_i915_gem_object *obj;
525 int ret = 0;
526
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
535 ret = i915_mutex_lock_interruptible(dev);
536 if (ret)
537 return ret;
538
539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 if (&obj->base == NULL) {
541 ret = -ENOENT;
542 goto unlock;
543 }
544
545 /* Bounds check source. */
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
548 ret = -EINVAL;
549 goto out;
550 }
551
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562 ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 void __iomem *vaddr_atomic;
582 void *vaddr;
583 unsigned long unwritten;
584
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 user_data, length);
590 io_mapping_unmap_atomic(vaddr_atomic);
591 return unwritten;
592 }
593
594 /**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
601 struct drm_i915_gem_pwrite *args,
602 struct drm_file *file)
603 {
604 drm_i915_private_t *dev_priv = dev->dev_private;
605 ssize_t remain;
606 loff_t offset, page_base;
607 char __user *user_data;
608 int page_offset, page_length, ret;
609
610 ret = i915_gem_object_pin(obj, 0, true, true);
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
624
625 offset = obj->gtt_offset + args->offset;
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
633 */
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
640 /* If we get a fault while copying data, then (presumably) our
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
643 */
644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
649
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
653 }
654
655 out_unpin:
656 i915_gem_object_unpin(obj);
657 out:
658 return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
671 {
672 char *vaddr;
673 int ret;
674
675 if (unlikely(page_do_bit17_swizzling))
676 return -EINVAL;
677
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
689
690 return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
701 {
702 char *vaddr;
703 int ret;
704
705 vaddr = kmap(page);
706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 user_data,
713 page_length);
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
722 kunmap(page);
723
724 return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
732 {
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int i;
742 struct scatterlist *sg;
743
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
746
747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
774 offset = args->offset;
775 obj->dirty = 1;
776
777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 struct page *page;
779 int partial_cacheline_write;
780
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
787 /* Operation in this page
788 *
789 * shmem_page_offset = offset within page in shmem file
790 * page_length = bytes to copy for this page
791 */
792 shmem_page_offset = offset_in_page(offset);
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
797
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
805 page = sg_page(sg);
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
815
816 hit_slowpath = 1;
817 mutex_unlock(&dev->struct_mutex);
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
822
823 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826 set_page_dirty(page);
827 mark_page_accessed(page);
828
829 if (ret)
830 goto out;
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out:
838 i915_gem_object_unpin_pages(obj);
839
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 i915_gem_chipset_flush(dev);
849 }
850 }
851
852 if (needs_clflush_after)
853 i915_gem_chipset_flush(dev);
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
930 }
931
932 if (ret == -EFAULT || ret == -ENOSPC)
933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936 drm_gem_object_unreference(&obj->base);
937 unlock:
938 mutex_unlock(&dev->struct_mutex);
939 return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945 {
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969 }
970
971 /*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987 }
988
989 /**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001 {
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068 }
1069
1070 /**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103 {
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136 {
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
1179 */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file)
1183 {
1184 struct drm_i915_gem_set_domain *args = data;
1185 struct drm_i915_gem_object *obj;
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
1188 int ret;
1189
1190 /* Only handle setting domains to types used by the CPU. */
1191 if (write_domain & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 if (read_domains & I915_GEM_GPU_DOMAINS)
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 return ret;
1206
1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 if (&obj->base == NULL) {
1209 ret = -ENOENT;
1210 goto unlock;
1211 }
1212
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
1230 } else {
1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 }
1233
1234 unref:
1235 drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239 }
1240
1241 /**
1242 * Called when user space has done writes to this buffer
1243 */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 struct drm_file *file)
1247 {
1248 struct drm_i915_gem_sw_finish *args = data;
1249 struct drm_i915_gem_object *obj;
1250 int ret = 0;
1251
1252 ret = i915_mutex_lock_interruptible(dev);
1253 if (ret)
1254 return ret;
1255
1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 if (&obj->base == NULL) {
1258 ret = -ENOENT;
1259 goto unlock;
1260 }
1261
1262 /* Pinned buffers may be scanout, so flush the cache */
1263 if (obj->pin_count)
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266 drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270 }
1271
1272 /**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 struct drm_file *file)
1282 {
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
1285 unsigned long addr;
1286
1287 obj = drm_gem_object_lookup(dev, file, args->handle);
1288 if (obj == NULL)
1289 return -ENOENT;
1290
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
1299 addr = vm_mmap(obj->filp, 0, args->size,
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
1302 drm_gem_object_unreference_unlocked(obj);
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
1331 drm_i915_private_t *dev_priv = dev->dev_private;
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
1344
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347 /* Now bind it into the GTT if needed */
1348 ret = i915_gem_object_pin(obj, 0, true, false);
1349 if (ret)
1350 goto unlock;
1351
1352 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353 if (ret)
1354 goto unpin;
1355
1356 ret = i915_gem_object_get_fence(obj);
1357 if (ret)
1358 goto unpin;
1359
1360 obj->fault_mappable = true;
1361
1362 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1363 page_offset;
1364
1365 /* Finally, remap it using the new GTT offset */
1366 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1367 unpin:
1368 i915_gem_object_unpin(obj);
1369 unlock:
1370 mutex_unlock(&dev->struct_mutex);
1371 out:
1372 switch (ret) {
1373 case -EIO:
1374 /* If this -EIO is due to a gpu hang, give the reset code a
1375 * chance to clean up the mess. Otherwise return the proper
1376 * SIGBUS. */
1377 if (!atomic_read(&dev_priv->mm.wedged))
1378 return VM_FAULT_SIGBUS;
1379 case -EAGAIN:
1380 /* Give the error handler a chance to run and move the
1381 * objects off the GPU active list. Next time we service the
1382 * fault, we should be able to transition the page into the
1383 * GTT without touching the GPU (and so avoid further
1384 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385 * with coherency, just lost writes.
1386 */
1387 set_need_resched();
1388 case 0:
1389 case -ERESTARTSYS:
1390 case -EINTR:
1391 case -EBUSY:
1392 /*
1393 * EBUSY is ok: this just means that another thread
1394 * already did the job.
1395 */
1396 return VM_FAULT_NOPAGE;
1397 case -ENOMEM:
1398 return VM_FAULT_OOM;
1399 case -ENOSPC:
1400 return VM_FAULT_SIGBUS;
1401 default:
1402 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1403 return VM_FAULT_SIGBUS;
1404 }
1405 }
1406
1407 /**
1408 * i915_gem_release_mmap - remove physical page mappings
1409 * @obj: obj in question
1410 *
1411 * Preserve the reservation of the mmapping with the DRM core code, but
1412 * relinquish ownership of the pages back to the system.
1413 *
1414 * It is vital that we remove the page mapping if we have mapped a tiled
1415 * object through the GTT and then lose the fence register due to
1416 * resource pressure. Similarly if the object has been moved out of the
1417 * aperture, than pages mapped into userspace must be revoked. Removing the
1418 * mapping will then trigger a page fault on the next user access, allowing
1419 * fixup by i915_gem_fault().
1420 */
1421 void
1422 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1423 {
1424 if (!obj->fault_mappable)
1425 return;
1426
1427 if (obj->base.dev->dev_mapping)
1428 unmap_mapping_range(obj->base.dev->dev_mapping,
1429 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430 obj->base.size, 1);
1431
1432 obj->fault_mappable = false;
1433 }
1434
1435 static uint32_t
1436 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1437 {
1438 uint32_t gtt_size;
1439
1440 if (INTEL_INFO(dev)->gen >= 4 ||
1441 tiling_mode == I915_TILING_NONE)
1442 return size;
1443
1444 /* Previous chips need a power-of-two fence region when tiling */
1445 if (INTEL_INFO(dev)->gen == 3)
1446 gtt_size = 1024*1024;
1447 else
1448 gtt_size = 512*1024;
1449
1450 while (gtt_size < size)
1451 gtt_size <<= 1;
1452
1453 return gtt_size;
1454 }
1455
1456 /**
1457 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458 * @obj: object to check
1459 *
1460 * Return the required GTT alignment for an object, taking into account
1461 * potential fence register mapping.
1462 */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_device *dev,
1465 uint32_t size,
1466 int tiling_mode)
1467 {
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 ||
1473 tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 /**
1484 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485 * unfenced object
1486 * @dev: the device
1487 * @size: size of the object
1488 * @tiling_mode: tiling mode of the object
1489 *
1490 * Return the required GTT alignment for an object, only taking into account
1491 * unfenced tiled surface requirements.
1492 */
1493 uint32_t
1494 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495 uint32_t size,
1496 int tiling_mode)
1497 {
1498 /*
1499 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502 tiling_mode == I915_TILING_NONE)
1503 return 4096;
1504
1505 /* Previous hardware however needs to be aligned to a power-of-two
1506 * tile height. The simplest method for determining this is to reuse
1507 * the power-of-tile object size.
1508 */
1509 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1510 }
1511
1512 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513 {
1514 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515 int ret;
1516
1517 if (obj->base.map_list.map)
1518 return 0;
1519
1520 dev_priv->mm.shrinker_no_lock_stealing = true;
1521
1522 ret = drm_gem_create_mmap_offset(&obj->base);
1523 if (ret != -ENOSPC)
1524 goto out;
1525
1526 /* Badly fragmented mmap space? The only way we can recover
1527 * space is by destroying unwanted objects. We can't randomly release
1528 * mmap_offsets as userspace expects them to be persistent for the
1529 * lifetime of the objects. The closest we can is to release the
1530 * offsets on purgeable objects by truncating it and marking it purged,
1531 * which prevents userspace from ever using that object again.
1532 */
1533 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1534 ret = drm_gem_create_mmap_offset(&obj->base);
1535 if (ret != -ENOSPC)
1536 goto out;
1537
1538 i915_gem_shrink_all(dev_priv);
1539 ret = drm_gem_create_mmap_offset(&obj->base);
1540 out:
1541 dev_priv->mm.shrinker_no_lock_stealing = false;
1542
1543 return ret;
1544 }
1545
1546 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1547 {
1548 if (!obj->base.map_list.map)
1549 return;
1550
1551 drm_gem_free_mmap_offset(&obj->base);
1552 }
1553
1554 int
1555 i915_gem_mmap_gtt(struct drm_file *file,
1556 struct drm_device *dev,
1557 uint32_t handle,
1558 uint64_t *offset)
1559 {
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 struct drm_i915_gem_object *obj;
1562 int ret;
1563
1564 ret = i915_mutex_lock_interruptible(dev);
1565 if (ret)
1566 return ret;
1567
1568 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1569 if (&obj->base == NULL) {
1570 ret = -ENOENT;
1571 goto unlock;
1572 }
1573
1574 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1575 ret = -E2BIG;
1576 goto out;
1577 }
1578
1579 if (obj->madv != I915_MADV_WILLNEED) {
1580 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1581 ret = -EINVAL;
1582 goto out;
1583 }
1584
1585 ret = i915_gem_object_create_mmap_offset(obj);
1586 if (ret)
1587 goto out;
1588
1589 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1590
1591 out:
1592 drm_gem_object_unreference(&obj->base);
1593 unlock:
1594 mutex_unlock(&dev->struct_mutex);
1595 return ret;
1596 }
1597
1598 /**
1599 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1600 * @dev: DRM device
1601 * @data: GTT mapping ioctl data
1602 * @file: GEM object info
1603 *
1604 * Simply returns the fake offset to userspace so it can mmap it.
1605 * The mmap call will end up in drm_gem_mmap(), which will set things
1606 * up so we can get faults in the handler above.
1607 *
1608 * The fault handler will take care of binding the object into the GTT
1609 * (since it may have been evicted to make room for something), allocating
1610 * a fence register, and mapping the appropriate aperture address into
1611 * userspace.
1612 */
1613 int
1614 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1615 struct drm_file *file)
1616 {
1617 struct drm_i915_gem_mmap_gtt *args = data;
1618
1619 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1620 }
1621
1622 /* Immediately discard the backing storage */
1623 static void
1624 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1625 {
1626 struct inode *inode;
1627
1628 i915_gem_object_free_mmap_offset(obj);
1629
1630 if (obj->base.filp == NULL)
1631 return;
1632
1633 /* Our goal here is to return as much of the memory as
1634 * is possible back to the system as we are called from OOM.
1635 * To do this we must instruct the shmfs to drop all of its
1636 * backing pages, *now*.
1637 */
1638 inode = obj->base.filp->f_path.dentry->d_inode;
1639 shmem_truncate_range(inode, 0, (loff_t)-1);
1640
1641 obj->madv = __I915_MADV_PURGED;
1642 }
1643
1644 static inline int
1645 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1646 {
1647 return obj->madv == I915_MADV_DONTNEED;
1648 }
1649
1650 static void
1651 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1652 {
1653 int page_count = obj->base.size / PAGE_SIZE;
1654 struct scatterlist *sg;
1655 int ret, i;
1656
1657 BUG_ON(obj->madv == __I915_MADV_PURGED);
1658
1659 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1660 if (ret) {
1661 /* In the event of a disaster, abandon all caches and
1662 * hope for the best.
1663 */
1664 WARN_ON(ret != -EIO);
1665 i915_gem_clflush_object(obj);
1666 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1667 }
1668
1669 if (i915_gem_object_needs_bit17_swizzle(obj))
1670 i915_gem_object_save_bit_17_swizzle(obj);
1671
1672 if (obj->madv == I915_MADV_DONTNEED)
1673 obj->dirty = 0;
1674
1675 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1676 struct page *page = sg_page(sg);
1677
1678 if (obj->dirty)
1679 set_page_dirty(page);
1680
1681 if (obj->madv == I915_MADV_WILLNEED)
1682 mark_page_accessed(page);
1683
1684 page_cache_release(page);
1685 }
1686 obj->dirty = 0;
1687
1688 sg_free_table(obj->pages);
1689 kfree(obj->pages);
1690 }
1691
1692 static int
1693 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1694 {
1695 const struct drm_i915_gem_object_ops *ops = obj->ops;
1696
1697 if (obj->pages == NULL)
1698 return 0;
1699
1700 BUG_ON(obj->gtt_space);
1701
1702 if (obj->pages_pin_count)
1703 return -EBUSY;
1704
1705 /* ->put_pages might need to allocate memory for the bit17 swizzle
1706 * array, hence protect them from being reaped by removing them from gtt
1707 * lists early. */
1708 list_del(&obj->gtt_list);
1709
1710 ops->put_pages(obj);
1711 obj->pages = NULL;
1712
1713 if (i915_gem_object_is_purgeable(obj))
1714 i915_gem_object_truncate(obj);
1715
1716 return 0;
1717 }
1718
1719 static long
1720 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1721 {
1722 struct drm_i915_gem_object *obj, *next;
1723 long count = 0;
1724
1725 list_for_each_entry_safe(obj, next,
1726 &dev_priv->mm.unbound_list,
1727 gtt_list) {
1728 if (i915_gem_object_is_purgeable(obj) &&
1729 i915_gem_object_put_pages(obj) == 0) {
1730 count += obj->base.size >> PAGE_SHIFT;
1731 if (count >= target)
1732 return count;
1733 }
1734 }
1735
1736 list_for_each_entry_safe(obj, next,
1737 &dev_priv->mm.inactive_list,
1738 mm_list) {
1739 if (i915_gem_object_is_purgeable(obj) &&
1740 i915_gem_object_unbind(obj) == 0 &&
1741 i915_gem_object_put_pages(obj) == 0) {
1742 count += obj->base.size >> PAGE_SHIFT;
1743 if (count >= target)
1744 return count;
1745 }
1746 }
1747
1748 return count;
1749 }
1750
1751 static void
1752 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1753 {
1754 struct drm_i915_gem_object *obj, *next;
1755
1756 i915_gem_evict_everything(dev_priv->dev);
1757
1758 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1759 i915_gem_object_put_pages(obj);
1760 }
1761
1762 static int
1763 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1764 {
1765 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1766 int page_count, i;
1767 struct address_space *mapping;
1768 struct sg_table *st;
1769 struct scatterlist *sg;
1770 struct page *page;
1771 gfp_t gfp;
1772
1773 /* Assert that the object is not currently in any GPU domain. As it
1774 * wasn't in the GTT, there shouldn't be any way it could have been in
1775 * a GPU cache
1776 */
1777 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1778 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1779
1780 st = kmalloc(sizeof(*st), GFP_KERNEL);
1781 if (st == NULL)
1782 return -ENOMEM;
1783
1784 page_count = obj->base.size / PAGE_SIZE;
1785 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1786 sg_free_table(st);
1787 kfree(st);
1788 return -ENOMEM;
1789 }
1790
1791 /* Get the list of pages out of our struct file. They'll be pinned
1792 * at this point until we release them.
1793 *
1794 * Fail silently without starting the shrinker
1795 */
1796 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1797 gfp = mapping_gfp_mask(mapping);
1798 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1799 gfp &= ~(__GFP_IO | __GFP_WAIT);
1800 for_each_sg(st->sgl, sg, page_count, i) {
1801 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1802 if (IS_ERR(page)) {
1803 i915_gem_purge(dev_priv, page_count);
1804 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1805 }
1806 if (IS_ERR(page)) {
1807 /* We've tried hard to allocate the memory by reaping
1808 * our own buffer, now let the real VM do its job and
1809 * go down in flames if truly OOM.
1810 */
1811 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1812 gfp |= __GFP_IO | __GFP_WAIT;
1813
1814 i915_gem_shrink_all(dev_priv);
1815 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1816 if (IS_ERR(page))
1817 goto err_pages;
1818
1819 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1820 gfp &= ~(__GFP_IO | __GFP_WAIT);
1821 }
1822
1823 sg_set_page(sg, page, PAGE_SIZE, 0);
1824 }
1825
1826 obj->pages = st;
1827
1828 if (i915_gem_object_needs_bit17_swizzle(obj))
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833 err_pages:
1834 for_each_sg(st->sgl, sg, i, page_count)
1835 page_cache_release(sg_page(sg));
1836 sg_free_table(st);
1837 kfree(st);
1838 return PTR_ERR(page);
1839 }
1840
1841 /* Ensure that the associated pages are gathered from the backing storage
1842 * and pinned into our object. i915_gem_object_get_pages() may be called
1843 * multiple times before they are released by a single call to
1844 * i915_gem_object_put_pages() - once the pages are no longer referenced
1845 * either as a result of memory pressure (reaping pages under the shrinker)
1846 * or as the object is itself released.
1847 */
1848 int
1849 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1850 {
1851 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1852 const struct drm_i915_gem_object_ops *ops = obj->ops;
1853 int ret;
1854
1855 if (obj->pages)
1856 return 0;
1857
1858 BUG_ON(obj->pages_pin_count);
1859
1860 ret = ops->get_pages(obj);
1861 if (ret)
1862 return ret;
1863
1864 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1865 return 0;
1866 }
1867
1868 void
1869 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1870 struct intel_ring_buffer *ring)
1871 {
1872 struct drm_device *dev = obj->base.dev;
1873 struct drm_i915_private *dev_priv = dev->dev_private;
1874 u32 seqno = intel_ring_get_seqno(ring);
1875
1876 BUG_ON(ring == NULL);
1877 obj->ring = ring;
1878
1879 /* Add a reference if we're newly entering the active list. */
1880 if (!obj->active) {
1881 drm_gem_object_reference(&obj->base);
1882 obj->active = 1;
1883 }
1884
1885 /* Move from whatever list we were on to the tail of execution. */
1886 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1887 list_move_tail(&obj->ring_list, &ring->active_list);
1888
1889 obj->last_read_seqno = seqno;
1890
1891 if (obj->fenced_gpu_access) {
1892 obj->last_fenced_seqno = seqno;
1893
1894 /* Bump MRU to take account of the delayed flush */
1895 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1896 struct drm_i915_fence_reg *reg;
1897
1898 reg = &dev_priv->fence_regs[obj->fence_reg];
1899 list_move_tail(&reg->lru_list,
1900 &dev_priv->mm.fence_list);
1901 }
1902 }
1903 }
1904
1905 static void
1906 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1907 {
1908 struct drm_device *dev = obj->base.dev;
1909 struct drm_i915_private *dev_priv = dev->dev_private;
1910
1911 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1912 BUG_ON(!obj->active);
1913
1914 if (obj->pin_count) /* are we a framebuffer? */
1915 intel_mark_fb_idle(obj);
1916
1917 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1918
1919 list_del_init(&obj->ring_list);
1920 obj->ring = NULL;
1921
1922 obj->last_read_seqno = 0;
1923 obj->last_write_seqno = 0;
1924 obj->base.write_domain = 0;
1925
1926 obj->last_fenced_seqno = 0;
1927 obj->fenced_gpu_access = false;
1928
1929 obj->active = 0;
1930 drm_gem_object_unreference(&obj->base);
1931
1932 WARN_ON(i915_verify_lists(dev));
1933 }
1934
1935 static int
1936 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1937 {
1938 struct drm_i915_private *dev_priv = dev->dev_private;
1939 struct intel_ring_buffer *ring;
1940 int ret, i, j;
1941
1942 /* The hardware uses various monotonic 32-bit counters, if we
1943 * detect that they will wraparound we need to idle the GPU
1944 * and reset those counters.
1945 */
1946 ret = 0;
1947 for_each_ring(ring, dev_priv, i) {
1948 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1949 ret |= ring->sync_seqno[j] != 0;
1950 }
1951 if (ret == 0)
1952 return ret;
1953
1954 ret = i915_gpu_idle(dev);
1955 if (ret)
1956 return ret;
1957
1958 i915_gem_retire_requests(dev);
1959 for_each_ring(ring, dev_priv, i) {
1960 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1961 ring->sync_seqno[j] = 0;
1962 }
1963
1964 return 0;
1965 }
1966
1967 int
1968 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1969 {
1970 struct drm_i915_private *dev_priv = dev->dev_private;
1971
1972 /* reserve 0 for non-seqno */
1973 if (dev_priv->next_seqno == 0) {
1974 int ret = i915_gem_handle_seqno_wrap(dev);
1975 if (ret)
1976 return ret;
1977
1978 dev_priv->next_seqno = 1;
1979 }
1980
1981 *seqno = dev_priv->next_seqno++;
1982 return 0;
1983 }
1984
1985 int
1986 i915_add_request(struct intel_ring_buffer *ring,
1987 struct drm_file *file,
1988 u32 *out_seqno)
1989 {
1990 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1991 struct drm_i915_gem_request *request;
1992 u32 request_ring_position;
1993 int was_empty;
1994 int ret;
1995
1996 /*
1997 * Emit any outstanding flushes - execbuf can fail to emit the flush
1998 * after having emitted the batchbuffer command. Hence we need to fix
1999 * things up similar to emitting the lazy request. The difference here
2000 * is that the flush _must_ happen before the next request, no matter
2001 * what.
2002 */
2003 ret = intel_ring_flush_all_caches(ring);
2004 if (ret)
2005 return ret;
2006
2007 request = kmalloc(sizeof(*request), GFP_KERNEL);
2008 if (request == NULL)
2009 return -ENOMEM;
2010
2011
2012 /* Record the position of the start of the request so that
2013 * should we detect the updated seqno part-way through the
2014 * GPU processing the request, we never over-estimate the
2015 * position of the head.
2016 */
2017 request_ring_position = intel_ring_get_tail(ring);
2018
2019 ret = ring->add_request(ring);
2020 if (ret) {
2021 kfree(request);
2022 return ret;
2023 }
2024
2025 request->seqno = intel_ring_get_seqno(ring);
2026 request->ring = ring;
2027 request->tail = request_ring_position;
2028 request->emitted_jiffies = jiffies;
2029 was_empty = list_empty(&ring->request_list);
2030 list_add_tail(&request->list, &ring->request_list);
2031 request->file_priv = NULL;
2032
2033 if (file) {
2034 struct drm_i915_file_private *file_priv = file->driver_priv;
2035
2036 spin_lock(&file_priv->mm.lock);
2037 request->file_priv = file_priv;
2038 list_add_tail(&request->client_list,
2039 &file_priv->mm.request_list);
2040 spin_unlock(&file_priv->mm.lock);
2041 }
2042
2043 trace_i915_gem_request_add(ring, request->seqno);
2044 ring->outstanding_lazy_request = 0;
2045
2046 if (!dev_priv->mm.suspended) {
2047 if (i915_enable_hangcheck) {
2048 mod_timer(&dev_priv->hangcheck_timer,
2049 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2050 }
2051 if (was_empty) {
2052 queue_delayed_work(dev_priv->wq,
2053 &dev_priv->mm.retire_work,
2054 round_jiffies_up_relative(HZ));
2055 intel_mark_busy(dev_priv->dev);
2056 }
2057 }
2058
2059 if (out_seqno)
2060 *out_seqno = request->seqno;
2061 return 0;
2062 }
2063
2064 static inline void
2065 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2066 {
2067 struct drm_i915_file_private *file_priv = request->file_priv;
2068
2069 if (!file_priv)
2070 return;
2071
2072 spin_lock(&file_priv->mm.lock);
2073 if (request->file_priv) {
2074 list_del(&request->client_list);
2075 request->file_priv = NULL;
2076 }
2077 spin_unlock(&file_priv->mm.lock);
2078 }
2079
2080 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2081 struct intel_ring_buffer *ring)
2082 {
2083 while (!list_empty(&ring->request_list)) {
2084 struct drm_i915_gem_request *request;
2085
2086 request = list_first_entry(&ring->request_list,
2087 struct drm_i915_gem_request,
2088 list);
2089
2090 list_del(&request->list);
2091 i915_gem_request_remove_from_client(request);
2092 kfree(request);
2093 }
2094
2095 while (!list_empty(&ring->active_list)) {
2096 struct drm_i915_gem_object *obj;
2097
2098 obj = list_first_entry(&ring->active_list,
2099 struct drm_i915_gem_object,
2100 ring_list);
2101
2102 i915_gem_object_move_to_inactive(obj);
2103 }
2104 }
2105
2106 static void i915_gem_reset_fences(struct drm_device *dev)
2107 {
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 int i;
2110
2111 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2112 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2113
2114 i915_gem_write_fence(dev, i, NULL);
2115
2116 if (reg->obj)
2117 i915_gem_object_fence_lost(reg->obj);
2118
2119 reg->pin_count = 0;
2120 reg->obj = NULL;
2121 INIT_LIST_HEAD(&reg->lru_list);
2122 }
2123
2124 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2125 }
2126
2127 void i915_gem_reset(struct drm_device *dev)
2128 {
2129 struct drm_i915_private *dev_priv = dev->dev_private;
2130 struct drm_i915_gem_object *obj;
2131 struct intel_ring_buffer *ring;
2132 int i;
2133
2134 for_each_ring(ring, dev_priv, i)
2135 i915_gem_reset_ring_lists(dev_priv, ring);
2136
2137 /* Move everything out of the GPU domains to ensure we do any
2138 * necessary invalidation upon reuse.
2139 */
2140 list_for_each_entry(obj,
2141 &dev_priv->mm.inactive_list,
2142 mm_list)
2143 {
2144 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2145 }
2146
2147 /* The fence registers are invalidated so clear them out */
2148 i915_gem_reset_fences(dev);
2149 }
2150
2151 /**
2152 * This function clears the request list as sequence numbers are passed.
2153 */
2154 void
2155 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2156 {
2157 uint32_t seqno;
2158
2159 if (list_empty(&ring->request_list))
2160 return;
2161
2162 WARN_ON(i915_verify_lists(ring->dev));
2163
2164 seqno = ring->get_seqno(ring, true);
2165
2166 while (!list_empty(&ring->request_list)) {
2167 struct drm_i915_gem_request *request;
2168
2169 request = list_first_entry(&ring->request_list,
2170 struct drm_i915_gem_request,
2171 list);
2172
2173 if (!i915_seqno_passed(seqno, request->seqno))
2174 break;
2175
2176 trace_i915_gem_request_retire(ring, request->seqno);
2177 /* We know the GPU must have read the request to have
2178 * sent us the seqno + interrupt, so use the position
2179 * of tail of the request to update the last known position
2180 * of the GPU head.
2181 */
2182 ring->last_retired_head = request->tail;
2183
2184 list_del(&request->list);
2185 i915_gem_request_remove_from_client(request);
2186 kfree(request);
2187 }
2188
2189 /* Move any buffers on the active list that are no longer referenced
2190 * by the ringbuffer to the flushing/inactive lists as appropriate.
2191 */
2192 while (!list_empty(&ring->active_list)) {
2193 struct drm_i915_gem_object *obj;
2194
2195 obj = list_first_entry(&ring->active_list,
2196 struct drm_i915_gem_object,
2197 ring_list);
2198
2199 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2200 break;
2201
2202 i915_gem_object_move_to_inactive(obj);
2203 }
2204
2205 if (unlikely(ring->trace_irq_seqno &&
2206 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2207 ring->irq_put(ring);
2208 ring->trace_irq_seqno = 0;
2209 }
2210
2211 WARN_ON(i915_verify_lists(ring->dev));
2212 }
2213
2214 void
2215 i915_gem_retire_requests(struct drm_device *dev)
2216 {
2217 drm_i915_private_t *dev_priv = dev->dev_private;
2218 struct intel_ring_buffer *ring;
2219 int i;
2220
2221 for_each_ring(ring, dev_priv, i)
2222 i915_gem_retire_requests_ring(ring);
2223 }
2224
2225 static void
2226 i915_gem_retire_work_handler(struct work_struct *work)
2227 {
2228 drm_i915_private_t *dev_priv;
2229 struct drm_device *dev;
2230 struct intel_ring_buffer *ring;
2231 bool idle;
2232 int i;
2233
2234 dev_priv = container_of(work, drm_i915_private_t,
2235 mm.retire_work.work);
2236 dev = dev_priv->dev;
2237
2238 /* Come back later if the device is busy... */
2239 if (!mutex_trylock(&dev->struct_mutex)) {
2240 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2241 round_jiffies_up_relative(HZ));
2242 return;
2243 }
2244
2245 i915_gem_retire_requests(dev);
2246
2247 /* Send a periodic flush down the ring so we don't hold onto GEM
2248 * objects indefinitely.
2249 */
2250 idle = true;
2251 for_each_ring(ring, dev_priv, i) {
2252 if (ring->gpu_caches_dirty)
2253 i915_add_request(ring, NULL, NULL);
2254
2255 idle &= list_empty(&ring->request_list);
2256 }
2257
2258 if (!dev_priv->mm.suspended && !idle)
2259 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2260 round_jiffies_up_relative(HZ));
2261 if (idle)
2262 intel_mark_idle(dev);
2263
2264 mutex_unlock(&dev->struct_mutex);
2265 }
2266
2267 /**
2268 * Ensures that an object will eventually get non-busy by flushing any required
2269 * write domains, emitting any outstanding lazy request and retiring and
2270 * completed requests.
2271 */
2272 static int
2273 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2274 {
2275 int ret;
2276
2277 if (obj->active) {
2278 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2279 if (ret)
2280 return ret;
2281
2282 i915_gem_retire_requests_ring(obj->ring);
2283 }
2284
2285 return 0;
2286 }
2287
2288 /**
2289 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2290 * @DRM_IOCTL_ARGS: standard ioctl arguments
2291 *
2292 * Returns 0 if successful, else an error is returned with the remaining time in
2293 * the timeout parameter.
2294 * -ETIME: object is still busy after timeout
2295 * -ERESTARTSYS: signal interrupted the wait
2296 * -ENONENT: object doesn't exist
2297 * Also possible, but rare:
2298 * -EAGAIN: GPU wedged
2299 * -ENOMEM: damn
2300 * -ENODEV: Internal IRQ fail
2301 * -E?: The add request failed
2302 *
2303 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2304 * non-zero timeout parameter the wait ioctl will wait for the given number of
2305 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2306 * without holding struct_mutex the object may become re-busied before this
2307 * function completes. A similar but shorter * race condition exists in the busy
2308 * ioctl
2309 */
2310 int
2311 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2312 {
2313 struct drm_i915_gem_wait *args = data;
2314 struct drm_i915_gem_object *obj;
2315 struct intel_ring_buffer *ring = NULL;
2316 struct timespec timeout_stack, *timeout = NULL;
2317 u32 seqno = 0;
2318 int ret = 0;
2319
2320 if (args->timeout_ns >= 0) {
2321 timeout_stack = ns_to_timespec(args->timeout_ns);
2322 timeout = &timeout_stack;
2323 }
2324
2325 ret = i915_mutex_lock_interruptible(dev);
2326 if (ret)
2327 return ret;
2328
2329 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2330 if (&obj->base == NULL) {
2331 mutex_unlock(&dev->struct_mutex);
2332 return -ENOENT;
2333 }
2334
2335 /* Need to make sure the object gets inactive eventually. */
2336 ret = i915_gem_object_flush_active(obj);
2337 if (ret)
2338 goto out;
2339
2340 if (obj->active) {
2341 seqno = obj->last_read_seqno;
2342 ring = obj->ring;
2343 }
2344
2345 if (seqno == 0)
2346 goto out;
2347
2348 /* Do this after OLR check to make sure we make forward progress polling
2349 * on this IOCTL with a 0 timeout (like busy ioctl)
2350 */
2351 if (!args->timeout_ns) {
2352 ret = -ETIME;
2353 goto out;
2354 }
2355
2356 drm_gem_object_unreference(&obj->base);
2357 mutex_unlock(&dev->struct_mutex);
2358
2359 ret = __wait_seqno(ring, seqno, true, timeout);
2360 if (timeout) {
2361 WARN_ON(!timespec_valid(timeout));
2362 args->timeout_ns = timespec_to_ns(timeout);
2363 }
2364 return ret;
2365
2366 out:
2367 drm_gem_object_unreference(&obj->base);
2368 mutex_unlock(&dev->struct_mutex);
2369 return ret;
2370 }
2371
2372 /**
2373 * i915_gem_object_sync - sync an object to a ring.
2374 *
2375 * @obj: object which may be in use on another ring.
2376 * @to: ring we wish to use the object on. May be NULL.
2377 *
2378 * This code is meant to abstract object synchronization with the GPU.
2379 * Calling with NULL implies synchronizing the object with the CPU
2380 * rather than a particular GPU ring.
2381 *
2382 * Returns 0 if successful, else propagates up the lower layer error.
2383 */
2384 int
2385 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2386 struct intel_ring_buffer *to)
2387 {
2388 struct intel_ring_buffer *from = obj->ring;
2389 u32 seqno;
2390 int ret, idx;
2391
2392 if (from == NULL || to == from)
2393 return 0;
2394
2395 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2396 return i915_gem_object_wait_rendering(obj, false);
2397
2398 idx = intel_ring_sync_index(from, to);
2399
2400 seqno = obj->last_read_seqno;
2401 if (seqno <= from->sync_seqno[idx])
2402 return 0;
2403
2404 ret = i915_gem_check_olr(obj->ring, seqno);
2405 if (ret)
2406 return ret;
2407
2408 ret = to->sync_to(to, from, seqno);
2409 if (!ret)
2410 /* We use last_read_seqno because sync_to()
2411 * might have just caused seqno wrap under
2412 * the radar.
2413 */
2414 from->sync_seqno[idx] = obj->last_read_seqno;
2415
2416 return ret;
2417 }
2418
2419 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2420 {
2421 u32 old_write_domain, old_read_domains;
2422
2423 /* Act a barrier for all accesses through the GTT */
2424 mb();
2425
2426 /* Force a pagefault for domain tracking on next user access */
2427 i915_gem_release_mmap(obj);
2428
2429 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2430 return;
2431
2432 old_read_domains = obj->base.read_domains;
2433 old_write_domain = obj->base.write_domain;
2434
2435 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2436 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2437
2438 trace_i915_gem_object_change_domain(obj,
2439 old_read_domains,
2440 old_write_domain);
2441 }
2442
2443 /**
2444 * Unbinds an object from the GTT aperture.
2445 */
2446 int
2447 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2448 {
2449 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2450 int ret = 0;
2451
2452 if (obj->gtt_space == NULL)
2453 return 0;
2454
2455 if (obj->pin_count)
2456 return -EBUSY;
2457
2458 BUG_ON(obj->pages == NULL);
2459
2460 ret = i915_gem_object_finish_gpu(obj);
2461 if (ret)
2462 return ret;
2463 /* Continue on if we fail due to EIO, the GPU is hung so we
2464 * should be safe and we need to cleanup or else we might
2465 * cause memory corruption through use-after-free.
2466 */
2467
2468 i915_gem_object_finish_gtt(obj);
2469
2470 /* release the fence reg _after_ flushing */
2471 ret = i915_gem_object_put_fence(obj);
2472 if (ret)
2473 return ret;
2474
2475 trace_i915_gem_object_unbind(obj);
2476
2477 if (obj->has_global_gtt_mapping)
2478 i915_gem_gtt_unbind_object(obj);
2479 if (obj->has_aliasing_ppgtt_mapping) {
2480 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2481 obj->has_aliasing_ppgtt_mapping = 0;
2482 }
2483 i915_gem_gtt_finish_object(obj);
2484
2485 list_del(&obj->mm_list);
2486 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2487 /* Avoid an unnecessary call to unbind on rebind. */
2488 obj->map_and_fenceable = true;
2489
2490 drm_mm_put_block(obj->gtt_space);
2491 obj->gtt_space = NULL;
2492 obj->gtt_offset = 0;
2493
2494 return 0;
2495 }
2496
2497 int i915_gpu_idle(struct drm_device *dev)
2498 {
2499 drm_i915_private_t *dev_priv = dev->dev_private;
2500 struct intel_ring_buffer *ring;
2501 int ret, i;
2502
2503 /* Flush everything onto the inactive list. */
2504 for_each_ring(ring, dev_priv, i) {
2505 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2506 if (ret)
2507 return ret;
2508
2509 ret = intel_ring_idle(ring);
2510 if (ret)
2511 return ret;
2512 }
2513
2514 return 0;
2515 }
2516
2517 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2518 struct drm_i915_gem_object *obj)
2519 {
2520 drm_i915_private_t *dev_priv = dev->dev_private;
2521 uint64_t val;
2522
2523 if (obj) {
2524 u32 size = obj->gtt_space->size;
2525
2526 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2527 0xfffff000) << 32;
2528 val |= obj->gtt_offset & 0xfffff000;
2529 val |= (uint64_t)((obj->stride / 128) - 1) <<
2530 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2531
2532 if (obj->tiling_mode == I915_TILING_Y)
2533 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2534 val |= I965_FENCE_REG_VALID;
2535 } else
2536 val = 0;
2537
2538 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2539 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2540 }
2541
2542 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2543 struct drm_i915_gem_object *obj)
2544 {
2545 drm_i915_private_t *dev_priv = dev->dev_private;
2546 uint64_t val;
2547
2548 if (obj) {
2549 u32 size = obj->gtt_space->size;
2550
2551 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2552 0xfffff000) << 32;
2553 val |= obj->gtt_offset & 0xfffff000;
2554 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2555 if (obj->tiling_mode == I915_TILING_Y)
2556 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2557 val |= I965_FENCE_REG_VALID;
2558 } else
2559 val = 0;
2560
2561 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2562 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2563 }
2564
2565 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2566 struct drm_i915_gem_object *obj)
2567 {
2568 drm_i915_private_t *dev_priv = dev->dev_private;
2569 u32 val;
2570
2571 if (obj) {
2572 u32 size = obj->gtt_space->size;
2573 int pitch_val;
2574 int tile_width;
2575
2576 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2577 (size & -size) != size ||
2578 (obj->gtt_offset & (size - 1)),
2579 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2580 obj->gtt_offset, obj->map_and_fenceable, size);
2581
2582 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2583 tile_width = 128;
2584 else
2585 tile_width = 512;
2586
2587 /* Note: pitch better be a power of two tile widths */
2588 pitch_val = obj->stride / tile_width;
2589 pitch_val = ffs(pitch_val) - 1;
2590
2591 val = obj->gtt_offset;
2592 if (obj->tiling_mode == I915_TILING_Y)
2593 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2594 val |= I915_FENCE_SIZE_BITS(size);
2595 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2596 val |= I830_FENCE_REG_VALID;
2597 } else
2598 val = 0;
2599
2600 if (reg < 8)
2601 reg = FENCE_REG_830_0 + reg * 4;
2602 else
2603 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2604
2605 I915_WRITE(reg, val);
2606 POSTING_READ(reg);
2607 }
2608
2609 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2610 struct drm_i915_gem_object *obj)
2611 {
2612 drm_i915_private_t *dev_priv = dev->dev_private;
2613 uint32_t val;
2614
2615 if (obj) {
2616 u32 size = obj->gtt_space->size;
2617 uint32_t pitch_val;
2618
2619 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2620 (size & -size) != size ||
2621 (obj->gtt_offset & (size - 1)),
2622 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2623 obj->gtt_offset, size);
2624
2625 pitch_val = obj->stride / 128;
2626 pitch_val = ffs(pitch_val) - 1;
2627
2628 val = obj->gtt_offset;
2629 if (obj->tiling_mode == I915_TILING_Y)
2630 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2631 val |= I830_FENCE_SIZE_BITS(size);
2632 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2633 val |= I830_FENCE_REG_VALID;
2634 } else
2635 val = 0;
2636
2637 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2638 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2639 }
2640
2641 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2642 struct drm_i915_gem_object *obj)
2643 {
2644 switch (INTEL_INFO(dev)->gen) {
2645 case 7:
2646 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2647 case 5:
2648 case 4: i965_write_fence_reg(dev, reg, obj); break;
2649 case 3: i915_write_fence_reg(dev, reg, obj); break;
2650 case 2: i830_write_fence_reg(dev, reg, obj); break;
2651 default: break;
2652 }
2653 }
2654
2655 static inline int fence_number(struct drm_i915_private *dev_priv,
2656 struct drm_i915_fence_reg *fence)
2657 {
2658 return fence - dev_priv->fence_regs;
2659 }
2660
2661 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2662 struct drm_i915_fence_reg *fence,
2663 bool enable)
2664 {
2665 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2666 int reg = fence_number(dev_priv, fence);
2667
2668 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2669
2670 if (enable) {
2671 obj->fence_reg = reg;
2672 fence->obj = obj;
2673 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2674 } else {
2675 obj->fence_reg = I915_FENCE_REG_NONE;
2676 fence->obj = NULL;
2677 list_del_init(&fence->lru_list);
2678 }
2679 }
2680
2681 static int
2682 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2683 {
2684 if (obj->last_fenced_seqno) {
2685 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2686 if (ret)
2687 return ret;
2688
2689 obj->last_fenced_seqno = 0;
2690 }
2691
2692 /* Ensure that all CPU reads are completed before installing a fence
2693 * and all writes before removing the fence.
2694 */
2695 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2696 mb();
2697
2698 obj->fenced_gpu_access = false;
2699 return 0;
2700 }
2701
2702 int
2703 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2704 {
2705 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2706 int ret;
2707
2708 ret = i915_gem_object_flush_fence(obj);
2709 if (ret)
2710 return ret;
2711
2712 if (obj->fence_reg == I915_FENCE_REG_NONE)
2713 return 0;
2714
2715 i915_gem_object_update_fence(obj,
2716 &dev_priv->fence_regs[obj->fence_reg],
2717 false);
2718 i915_gem_object_fence_lost(obj);
2719
2720 return 0;
2721 }
2722
2723 static struct drm_i915_fence_reg *
2724 i915_find_fence_reg(struct drm_device *dev)
2725 {
2726 struct drm_i915_private *dev_priv = dev->dev_private;
2727 struct drm_i915_fence_reg *reg, *avail;
2728 int i;
2729
2730 /* First try to find a free reg */
2731 avail = NULL;
2732 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2733 reg = &dev_priv->fence_regs[i];
2734 if (!reg->obj)
2735 return reg;
2736
2737 if (!reg->pin_count)
2738 avail = reg;
2739 }
2740
2741 if (avail == NULL)
2742 return NULL;
2743
2744 /* None available, try to steal one or wait for a user to finish */
2745 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2746 if (reg->pin_count)
2747 continue;
2748
2749 return reg;
2750 }
2751
2752 return NULL;
2753 }
2754
2755 /**
2756 * i915_gem_object_get_fence - set up fencing for an object
2757 * @obj: object to map through a fence reg
2758 *
2759 * When mapping objects through the GTT, userspace wants to be able to write
2760 * to them without having to worry about swizzling if the object is tiled.
2761 * This function walks the fence regs looking for a free one for @obj,
2762 * stealing one if it can't find any.
2763 *
2764 * It then sets up the reg based on the object's properties: address, pitch
2765 * and tiling format.
2766 *
2767 * For an untiled surface, this removes any existing fence.
2768 */
2769 int
2770 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2771 {
2772 struct drm_device *dev = obj->base.dev;
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774 bool enable = obj->tiling_mode != I915_TILING_NONE;
2775 struct drm_i915_fence_reg *reg;
2776 int ret;
2777
2778 /* Have we updated the tiling parameters upon the object and so
2779 * will need to serialise the write to the associated fence register?
2780 */
2781 if (obj->fence_dirty) {
2782 ret = i915_gem_object_flush_fence(obj);
2783 if (ret)
2784 return ret;
2785 }
2786
2787 /* Just update our place in the LRU if our fence is getting reused. */
2788 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2789 reg = &dev_priv->fence_regs[obj->fence_reg];
2790 if (!obj->fence_dirty) {
2791 list_move_tail(&reg->lru_list,
2792 &dev_priv->mm.fence_list);
2793 return 0;
2794 }
2795 } else if (enable) {
2796 reg = i915_find_fence_reg(dev);
2797 if (reg == NULL)
2798 return -EDEADLK;
2799
2800 if (reg->obj) {
2801 struct drm_i915_gem_object *old = reg->obj;
2802
2803 ret = i915_gem_object_flush_fence(old);
2804 if (ret)
2805 return ret;
2806
2807 i915_gem_object_fence_lost(old);
2808 }
2809 } else
2810 return 0;
2811
2812 i915_gem_object_update_fence(obj, reg, enable);
2813 obj->fence_dirty = false;
2814
2815 return 0;
2816 }
2817
2818 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2819 struct drm_mm_node *gtt_space,
2820 unsigned long cache_level)
2821 {
2822 struct drm_mm_node *other;
2823
2824 /* On non-LLC machines we have to be careful when putting differing
2825 * types of snoopable memory together to avoid the prefetcher
2826 * crossing memory domains and dieing.
2827 */
2828 if (HAS_LLC(dev))
2829 return true;
2830
2831 if (gtt_space == NULL)
2832 return true;
2833
2834 if (list_empty(&gtt_space->node_list))
2835 return true;
2836
2837 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2838 if (other->allocated && !other->hole_follows && other->color != cache_level)
2839 return false;
2840
2841 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2842 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2843 return false;
2844
2845 return true;
2846 }
2847
2848 static void i915_gem_verify_gtt(struct drm_device *dev)
2849 {
2850 #if WATCH_GTT
2851 struct drm_i915_private *dev_priv = dev->dev_private;
2852 struct drm_i915_gem_object *obj;
2853 int err = 0;
2854
2855 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2856 if (obj->gtt_space == NULL) {
2857 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2858 err++;
2859 continue;
2860 }
2861
2862 if (obj->cache_level != obj->gtt_space->color) {
2863 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2864 obj->gtt_space->start,
2865 obj->gtt_space->start + obj->gtt_space->size,
2866 obj->cache_level,
2867 obj->gtt_space->color);
2868 err++;
2869 continue;
2870 }
2871
2872 if (!i915_gem_valid_gtt_space(dev,
2873 obj->gtt_space,
2874 obj->cache_level)) {
2875 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2876 obj->gtt_space->start,
2877 obj->gtt_space->start + obj->gtt_space->size,
2878 obj->cache_level);
2879 err++;
2880 continue;
2881 }
2882 }
2883
2884 WARN_ON(err);
2885 #endif
2886 }
2887
2888 /**
2889 * Finds free space in the GTT aperture and binds the object there.
2890 */
2891 static int
2892 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2893 unsigned alignment,
2894 bool map_and_fenceable,
2895 bool nonblocking)
2896 {
2897 struct drm_device *dev = obj->base.dev;
2898 drm_i915_private_t *dev_priv = dev->dev_private;
2899 struct drm_mm_node *node;
2900 u32 size, fence_size, fence_alignment, unfenced_alignment;
2901 bool mappable, fenceable;
2902 int ret;
2903
2904 if (obj->madv != I915_MADV_WILLNEED) {
2905 DRM_ERROR("Attempting to bind a purgeable object\n");
2906 return -EINVAL;
2907 }
2908
2909 fence_size = i915_gem_get_gtt_size(dev,
2910 obj->base.size,
2911 obj->tiling_mode);
2912 fence_alignment = i915_gem_get_gtt_alignment(dev,
2913 obj->base.size,
2914 obj->tiling_mode);
2915 unfenced_alignment =
2916 i915_gem_get_unfenced_gtt_alignment(dev,
2917 obj->base.size,
2918 obj->tiling_mode);
2919
2920 if (alignment == 0)
2921 alignment = map_and_fenceable ? fence_alignment :
2922 unfenced_alignment;
2923 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2924 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2925 return -EINVAL;
2926 }
2927
2928 size = map_and_fenceable ? fence_size : obj->base.size;
2929
2930 /* If the object is bigger than the entire aperture, reject it early
2931 * before evicting everything in a vain attempt to find space.
2932 */
2933 if (obj->base.size >
2934 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2935 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2936 return -E2BIG;
2937 }
2938
2939 ret = i915_gem_object_get_pages(obj);
2940 if (ret)
2941 return ret;
2942
2943 i915_gem_object_pin_pages(obj);
2944
2945 node = kzalloc(sizeof(*node), GFP_KERNEL);
2946 if (node == NULL) {
2947 i915_gem_object_unpin_pages(obj);
2948 return -ENOMEM;
2949 }
2950
2951 search_free:
2952 if (map_and_fenceable)
2953 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2954 size, alignment, obj->cache_level,
2955 0, dev_priv->mm.gtt_mappable_end);
2956 else
2957 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2958 size, alignment, obj->cache_level);
2959 if (ret) {
2960 ret = i915_gem_evict_something(dev, size, alignment,
2961 obj->cache_level,
2962 map_and_fenceable,
2963 nonblocking);
2964 if (ret == 0)
2965 goto search_free;
2966
2967 i915_gem_object_unpin_pages(obj);
2968 kfree(node);
2969 return ret;
2970 }
2971 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2972 i915_gem_object_unpin_pages(obj);
2973 drm_mm_put_block(node);
2974 return -EINVAL;
2975 }
2976
2977 ret = i915_gem_gtt_prepare_object(obj);
2978 if (ret) {
2979 i915_gem_object_unpin_pages(obj);
2980 drm_mm_put_block(node);
2981 return ret;
2982 }
2983
2984 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2985 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2986
2987 obj->gtt_space = node;
2988 obj->gtt_offset = node->start;
2989
2990 fenceable =
2991 node->size == fence_size &&
2992 (node->start & (fence_alignment - 1)) == 0;
2993
2994 mappable =
2995 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2996
2997 obj->map_and_fenceable = mappable && fenceable;
2998
2999 i915_gem_object_unpin_pages(obj);
3000 trace_i915_gem_object_bind(obj, map_and_fenceable);
3001 i915_gem_verify_gtt(dev);
3002 return 0;
3003 }
3004
3005 void
3006 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3007 {
3008 /* If we don't have a page list set up, then we're not pinned
3009 * to GPU, and we can ignore the cache flush because it'll happen
3010 * again at bind time.
3011 */
3012 if (obj->pages == NULL)
3013 return;
3014
3015 /* If the GPU is snooping the contents of the CPU cache,
3016 * we do not need to manually clear the CPU cache lines. However,
3017 * the caches are only snooped when the render cache is
3018 * flushed/invalidated. As we always have to emit invalidations
3019 * and flushes when moving into and out of the RENDER domain, correct
3020 * snooping behaviour occurs naturally as the result of our domain
3021 * tracking.
3022 */
3023 if (obj->cache_level != I915_CACHE_NONE)
3024 return;
3025
3026 trace_i915_gem_object_clflush(obj);
3027
3028 drm_clflush_sg(obj->pages);
3029 }
3030
3031 /** Flushes the GTT write domain for the object if it's dirty. */
3032 static void
3033 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3034 {
3035 uint32_t old_write_domain;
3036
3037 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3038 return;
3039
3040 /* No actual flushing is required for the GTT write domain. Writes
3041 * to it immediately go to main memory as far as we know, so there's
3042 * no chipset flush. It also doesn't land in render cache.
3043 *
3044 * However, we do have to enforce the order so that all writes through
3045 * the GTT land before any writes to the device, such as updates to
3046 * the GATT itself.
3047 */
3048 wmb();
3049
3050 old_write_domain = obj->base.write_domain;
3051 obj->base.write_domain = 0;
3052
3053 trace_i915_gem_object_change_domain(obj,
3054 obj->base.read_domains,
3055 old_write_domain);
3056 }
3057
3058 /** Flushes the CPU write domain for the object if it's dirty. */
3059 static void
3060 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3061 {
3062 uint32_t old_write_domain;
3063
3064 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3065 return;
3066
3067 i915_gem_clflush_object(obj);
3068 i915_gem_chipset_flush(obj->base.dev);
3069 old_write_domain = obj->base.write_domain;
3070 obj->base.write_domain = 0;
3071
3072 trace_i915_gem_object_change_domain(obj,
3073 obj->base.read_domains,
3074 old_write_domain);
3075 }
3076
3077 /**
3078 * Moves a single object to the GTT read, and possibly write domain.
3079 *
3080 * This function returns when the move is complete, including waiting on
3081 * flushes to occur.
3082 */
3083 int
3084 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3085 {
3086 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3087 uint32_t old_write_domain, old_read_domains;
3088 int ret;
3089
3090 /* Not valid to be called on unbound objects. */
3091 if (obj->gtt_space == NULL)
3092 return -EINVAL;
3093
3094 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3095 return 0;
3096
3097 ret = i915_gem_object_wait_rendering(obj, !write);
3098 if (ret)
3099 return ret;
3100
3101 i915_gem_object_flush_cpu_write_domain(obj);
3102
3103 old_write_domain = obj->base.write_domain;
3104 old_read_domains = obj->base.read_domains;
3105
3106 /* It should now be out of any other write domains, and we can update
3107 * the domain values for our changes.
3108 */
3109 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3110 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3111 if (write) {
3112 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3113 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3114 obj->dirty = 1;
3115 }
3116
3117 trace_i915_gem_object_change_domain(obj,
3118 old_read_domains,
3119 old_write_domain);
3120
3121 /* And bump the LRU for this access */
3122 if (i915_gem_object_is_inactive(obj))
3123 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3124
3125 return 0;
3126 }
3127
3128 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3129 enum i915_cache_level cache_level)
3130 {
3131 struct drm_device *dev = obj->base.dev;
3132 drm_i915_private_t *dev_priv = dev->dev_private;
3133 int ret;
3134
3135 if (obj->cache_level == cache_level)
3136 return 0;
3137
3138 if (obj->pin_count) {
3139 DRM_DEBUG("can not change the cache level of pinned objects\n");
3140 return -EBUSY;
3141 }
3142
3143 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3144 ret = i915_gem_object_unbind(obj);
3145 if (ret)
3146 return ret;
3147 }
3148
3149 if (obj->gtt_space) {
3150 ret = i915_gem_object_finish_gpu(obj);
3151 if (ret)
3152 return ret;
3153
3154 i915_gem_object_finish_gtt(obj);
3155
3156 /* Before SandyBridge, you could not use tiling or fence
3157 * registers with snooped memory, so relinquish any fences
3158 * currently pointing to our region in the aperture.
3159 */
3160 if (INTEL_INFO(dev)->gen < 6) {
3161 ret = i915_gem_object_put_fence(obj);
3162 if (ret)
3163 return ret;
3164 }
3165
3166 if (obj->has_global_gtt_mapping)
3167 i915_gem_gtt_bind_object(obj, cache_level);
3168 if (obj->has_aliasing_ppgtt_mapping)
3169 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3170 obj, cache_level);
3171
3172 obj->gtt_space->color = cache_level;
3173 }
3174
3175 if (cache_level == I915_CACHE_NONE) {
3176 u32 old_read_domains, old_write_domain;
3177
3178 /* If we're coming from LLC cached, then we haven't
3179 * actually been tracking whether the data is in the
3180 * CPU cache or not, since we only allow one bit set
3181 * in obj->write_domain and have been skipping the clflushes.
3182 * Just set it to the CPU cache for now.
3183 */
3184 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3185 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3186
3187 old_read_domains = obj->base.read_domains;
3188 old_write_domain = obj->base.write_domain;
3189
3190 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3191 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3192
3193 trace_i915_gem_object_change_domain(obj,
3194 old_read_domains,
3195 old_write_domain);
3196 }
3197
3198 obj->cache_level = cache_level;
3199 i915_gem_verify_gtt(dev);
3200 return 0;
3201 }
3202
3203 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3204 struct drm_file *file)
3205 {
3206 struct drm_i915_gem_caching *args = data;
3207 struct drm_i915_gem_object *obj;
3208 int ret;
3209
3210 ret = i915_mutex_lock_interruptible(dev);
3211 if (ret)
3212 return ret;
3213
3214 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3215 if (&obj->base == NULL) {
3216 ret = -ENOENT;
3217 goto unlock;
3218 }
3219
3220 args->caching = obj->cache_level != I915_CACHE_NONE;
3221
3222 drm_gem_object_unreference(&obj->base);
3223 unlock:
3224 mutex_unlock(&dev->struct_mutex);
3225 return ret;
3226 }
3227
3228 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3229 struct drm_file *file)
3230 {
3231 struct drm_i915_gem_caching *args = data;
3232 struct drm_i915_gem_object *obj;
3233 enum i915_cache_level level;
3234 int ret;
3235
3236 switch (args->caching) {
3237 case I915_CACHING_NONE:
3238 level = I915_CACHE_NONE;
3239 break;
3240 case I915_CACHING_CACHED:
3241 level = I915_CACHE_LLC;
3242 break;
3243 default:
3244 return -EINVAL;
3245 }
3246
3247 ret = i915_mutex_lock_interruptible(dev);
3248 if (ret)
3249 return ret;
3250
3251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3252 if (&obj->base == NULL) {
3253 ret = -ENOENT;
3254 goto unlock;
3255 }
3256
3257 ret = i915_gem_object_set_cache_level(obj, level);
3258
3259 drm_gem_object_unreference(&obj->base);
3260 unlock:
3261 mutex_unlock(&dev->struct_mutex);
3262 return ret;
3263 }
3264
3265 /*
3266 * Prepare buffer for display plane (scanout, cursors, etc).
3267 * Can be called from an uninterruptible phase (modesetting) and allows
3268 * any flushes to be pipelined (for pageflips).
3269 */
3270 int
3271 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3272 u32 alignment,
3273 struct intel_ring_buffer *pipelined)
3274 {
3275 u32 old_read_domains, old_write_domain;
3276 int ret;
3277
3278 if (pipelined != obj->ring) {
3279 ret = i915_gem_object_sync(obj, pipelined);
3280 if (ret)
3281 return ret;
3282 }
3283
3284 /* The display engine is not coherent with the LLC cache on gen6. As
3285 * a result, we make sure that the pinning that is about to occur is
3286 * done with uncached PTEs. This is lowest common denominator for all
3287 * chipsets.
3288 *
3289 * However for gen6+, we could do better by using the GFDT bit instead
3290 * of uncaching, which would allow us to flush all the LLC-cached data
3291 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3292 */
3293 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3294 if (ret)
3295 return ret;
3296
3297 /* As the user may map the buffer once pinned in the display plane
3298 * (e.g. libkms for the bootup splash), we have to ensure that we
3299 * always use map_and_fenceable for all scanout buffers.
3300 */
3301 ret = i915_gem_object_pin(obj, alignment, true, false);
3302 if (ret)
3303 return ret;
3304
3305 i915_gem_object_flush_cpu_write_domain(obj);
3306
3307 old_write_domain = obj->base.write_domain;
3308 old_read_domains = obj->base.read_domains;
3309
3310 /* It should now be out of any other write domains, and we can update
3311 * the domain values for our changes.
3312 */
3313 obj->base.write_domain = 0;
3314 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3315
3316 trace_i915_gem_object_change_domain(obj,
3317 old_read_domains,
3318 old_write_domain);
3319
3320 return 0;
3321 }
3322
3323 int
3324 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3325 {
3326 int ret;
3327
3328 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3329 return 0;
3330
3331 ret = i915_gem_object_wait_rendering(obj, false);
3332 if (ret)
3333 return ret;
3334
3335 /* Ensure that we invalidate the GPU's caches and TLBs. */
3336 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3337 return 0;
3338 }
3339
3340 /**
3341 * Moves a single object to the CPU read, and possibly write domain.
3342 *
3343 * This function returns when the move is complete, including waiting on
3344 * flushes to occur.
3345 */
3346 int
3347 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3348 {
3349 uint32_t old_write_domain, old_read_domains;
3350 int ret;
3351
3352 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3353 return 0;
3354
3355 ret = i915_gem_object_wait_rendering(obj, !write);
3356 if (ret)
3357 return ret;
3358
3359 i915_gem_object_flush_gtt_write_domain(obj);
3360
3361 old_write_domain = obj->base.write_domain;
3362 old_read_domains = obj->base.read_domains;
3363
3364 /* Flush the CPU cache if it's still invalid. */
3365 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3366 i915_gem_clflush_object(obj);
3367
3368 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3369 }
3370
3371 /* It should now be out of any other write domains, and we can update
3372 * the domain values for our changes.
3373 */
3374 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3375
3376 /* If we're writing through the CPU, then the GPU read domains will
3377 * need to be invalidated at next use.
3378 */
3379 if (write) {
3380 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3381 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3382 }
3383
3384 trace_i915_gem_object_change_domain(obj,
3385 old_read_domains,
3386 old_write_domain);
3387
3388 return 0;
3389 }
3390
3391 /* Throttle our rendering by waiting until the ring has completed our requests
3392 * emitted over 20 msec ago.
3393 *
3394 * Note that if we were to use the current jiffies each time around the loop,
3395 * we wouldn't escape the function with any frames outstanding if the time to
3396 * render a frame was over 20ms.
3397 *
3398 * This should get us reasonable parallelism between CPU and GPU but also
3399 * relatively low latency when blocking on a particular request to finish.
3400 */
3401 static int
3402 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3403 {
3404 struct drm_i915_private *dev_priv = dev->dev_private;
3405 struct drm_i915_file_private *file_priv = file->driver_priv;
3406 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3407 struct drm_i915_gem_request *request;
3408 struct intel_ring_buffer *ring = NULL;
3409 u32 seqno = 0;
3410 int ret;
3411
3412 if (atomic_read(&dev_priv->mm.wedged))
3413 return -EIO;
3414
3415 spin_lock(&file_priv->mm.lock);
3416 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3417 if (time_after_eq(request->emitted_jiffies, recent_enough))
3418 break;
3419
3420 ring = request->ring;
3421 seqno = request->seqno;
3422 }
3423 spin_unlock(&file_priv->mm.lock);
3424
3425 if (seqno == 0)
3426 return 0;
3427
3428 ret = __wait_seqno(ring, seqno, true, NULL);
3429 if (ret == 0)
3430 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3431
3432 return ret;
3433 }
3434
3435 int
3436 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3437 uint32_t alignment,
3438 bool map_and_fenceable,
3439 bool nonblocking)
3440 {
3441 int ret;
3442
3443 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3444 return -EBUSY;
3445
3446 if (obj->gtt_space != NULL) {
3447 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3448 (map_and_fenceable && !obj->map_and_fenceable)) {
3449 WARN(obj->pin_count,
3450 "bo is already pinned with incorrect alignment:"
3451 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3452 " obj->map_and_fenceable=%d\n",
3453 obj->gtt_offset, alignment,
3454 map_and_fenceable,
3455 obj->map_and_fenceable);
3456 ret = i915_gem_object_unbind(obj);
3457 if (ret)
3458 return ret;
3459 }
3460 }
3461
3462 if (obj->gtt_space == NULL) {
3463 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3464
3465 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3466 map_and_fenceable,
3467 nonblocking);
3468 if (ret)
3469 return ret;
3470
3471 if (!dev_priv->mm.aliasing_ppgtt)
3472 i915_gem_gtt_bind_object(obj, obj->cache_level);
3473 }
3474
3475 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3476 i915_gem_gtt_bind_object(obj, obj->cache_level);
3477
3478 obj->pin_count++;
3479 obj->pin_mappable |= map_and_fenceable;
3480
3481 return 0;
3482 }
3483
3484 void
3485 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3486 {
3487 BUG_ON(obj->pin_count == 0);
3488 BUG_ON(obj->gtt_space == NULL);
3489
3490 if (--obj->pin_count == 0)
3491 obj->pin_mappable = false;
3492 }
3493
3494 int
3495 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3496 struct drm_file *file)
3497 {
3498 struct drm_i915_gem_pin *args = data;
3499 struct drm_i915_gem_object *obj;
3500 int ret;
3501
3502 ret = i915_mutex_lock_interruptible(dev);
3503 if (ret)
3504 return ret;
3505
3506 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3507 if (&obj->base == NULL) {
3508 ret = -ENOENT;
3509 goto unlock;
3510 }
3511
3512 if (obj->madv != I915_MADV_WILLNEED) {
3513 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3514 ret = -EINVAL;
3515 goto out;
3516 }
3517
3518 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3519 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3520 args->handle);
3521 ret = -EINVAL;
3522 goto out;
3523 }
3524
3525 obj->user_pin_count++;
3526 obj->pin_filp = file;
3527 if (obj->user_pin_count == 1) {
3528 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3529 if (ret)
3530 goto out;
3531 }
3532
3533 /* XXX - flush the CPU caches for pinned objects
3534 * as the X server doesn't manage domains yet
3535 */
3536 i915_gem_object_flush_cpu_write_domain(obj);
3537 args->offset = obj->gtt_offset;
3538 out:
3539 drm_gem_object_unreference(&obj->base);
3540 unlock:
3541 mutex_unlock(&dev->struct_mutex);
3542 return ret;
3543 }
3544
3545 int
3546 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3547 struct drm_file *file)
3548 {
3549 struct drm_i915_gem_pin *args = data;
3550 struct drm_i915_gem_object *obj;
3551 int ret;
3552
3553 ret = i915_mutex_lock_interruptible(dev);
3554 if (ret)
3555 return ret;
3556
3557 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3558 if (&obj->base == NULL) {
3559 ret = -ENOENT;
3560 goto unlock;
3561 }
3562
3563 if (obj->pin_filp != file) {
3564 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3565 args->handle);
3566 ret = -EINVAL;
3567 goto out;
3568 }
3569 obj->user_pin_count--;
3570 if (obj->user_pin_count == 0) {
3571 obj->pin_filp = NULL;
3572 i915_gem_object_unpin(obj);
3573 }
3574
3575 out:
3576 drm_gem_object_unreference(&obj->base);
3577 unlock:
3578 mutex_unlock(&dev->struct_mutex);
3579 return ret;
3580 }
3581
3582 int
3583 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3584 struct drm_file *file)
3585 {
3586 struct drm_i915_gem_busy *args = data;
3587 struct drm_i915_gem_object *obj;
3588 int ret;
3589
3590 ret = i915_mutex_lock_interruptible(dev);
3591 if (ret)
3592 return ret;
3593
3594 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3595 if (&obj->base == NULL) {
3596 ret = -ENOENT;
3597 goto unlock;
3598 }
3599
3600 /* Count all active objects as busy, even if they are currently not used
3601 * by the gpu. Users of this interface expect objects to eventually
3602 * become non-busy without any further actions, therefore emit any
3603 * necessary flushes here.
3604 */
3605 ret = i915_gem_object_flush_active(obj);
3606
3607 args->busy = obj->active;
3608 if (obj->ring) {
3609 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3610 args->busy |= intel_ring_flag(obj->ring) << 16;
3611 }
3612
3613 drm_gem_object_unreference(&obj->base);
3614 unlock:
3615 mutex_unlock(&dev->struct_mutex);
3616 return ret;
3617 }
3618
3619 int
3620 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3621 struct drm_file *file_priv)
3622 {
3623 return i915_gem_ring_throttle(dev, file_priv);
3624 }
3625
3626 int
3627 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3628 struct drm_file *file_priv)
3629 {
3630 struct drm_i915_gem_madvise *args = data;
3631 struct drm_i915_gem_object *obj;
3632 int ret;
3633
3634 switch (args->madv) {
3635 case I915_MADV_DONTNEED:
3636 case I915_MADV_WILLNEED:
3637 break;
3638 default:
3639 return -EINVAL;
3640 }
3641
3642 ret = i915_mutex_lock_interruptible(dev);
3643 if (ret)
3644 return ret;
3645
3646 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3647 if (&obj->base == NULL) {
3648 ret = -ENOENT;
3649 goto unlock;
3650 }
3651
3652 if (obj->pin_count) {
3653 ret = -EINVAL;
3654 goto out;
3655 }
3656
3657 if (obj->madv != __I915_MADV_PURGED)
3658 obj->madv = args->madv;
3659
3660 /* if the object is no longer attached, discard its backing storage */
3661 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3662 i915_gem_object_truncate(obj);
3663
3664 args->retained = obj->madv != __I915_MADV_PURGED;
3665
3666 out:
3667 drm_gem_object_unreference(&obj->base);
3668 unlock:
3669 mutex_unlock(&dev->struct_mutex);
3670 return ret;
3671 }
3672
3673 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3674 const struct drm_i915_gem_object_ops *ops)
3675 {
3676 INIT_LIST_HEAD(&obj->mm_list);
3677 INIT_LIST_HEAD(&obj->gtt_list);
3678 INIT_LIST_HEAD(&obj->ring_list);
3679 INIT_LIST_HEAD(&obj->exec_list);
3680
3681 obj->ops = ops;
3682
3683 obj->fence_reg = I915_FENCE_REG_NONE;
3684 obj->madv = I915_MADV_WILLNEED;
3685 /* Avoid an unnecessary call to unbind on the first bind. */
3686 obj->map_and_fenceable = true;
3687
3688 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3689 }
3690
3691 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3692 .get_pages = i915_gem_object_get_pages_gtt,
3693 .put_pages = i915_gem_object_put_pages_gtt,
3694 };
3695
3696 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3697 size_t size)
3698 {
3699 struct drm_i915_gem_object *obj;
3700 struct address_space *mapping;
3701 u32 mask;
3702
3703 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3704 if (obj == NULL)
3705 return NULL;
3706
3707 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3708 kfree(obj);
3709 return NULL;
3710 }
3711
3712 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3713 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3714 /* 965gm cannot relocate objects above 4GiB. */
3715 mask &= ~__GFP_HIGHMEM;
3716 mask |= __GFP_DMA32;
3717 }
3718
3719 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3720 mapping_set_gfp_mask(mapping, mask);
3721
3722 i915_gem_object_init(obj, &i915_gem_object_ops);
3723
3724 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3725 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3726
3727 if (HAS_LLC(dev)) {
3728 /* On some devices, we can have the GPU use the LLC (the CPU
3729 * cache) for about a 10% performance improvement
3730 * compared to uncached. Graphics requests other than
3731 * display scanout are coherent with the CPU in
3732 * accessing this cache. This means in this mode we
3733 * don't need to clflush on the CPU side, and on the
3734 * GPU side we only need to flush internal caches to
3735 * get data visible to the CPU.
3736 *
3737 * However, we maintain the display planes as UC, and so
3738 * need to rebind when first used as such.
3739 */
3740 obj->cache_level = I915_CACHE_LLC;
3741 } else
3742 obj->cache_level = I915_CACHE_NONE;
3743
3744 return obj;
3745 }
3746
3747 int i915_gem_init_object(struct drm_gem_object *obj)
3748 {
3749 BUG();
3750
3751 return 0;
3752 }
3753
3754 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3755 {
3756 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3757 struct drm_device *dev = obj->base.dev;
3758 drm_i915_private_t *dev_priv = dev->dev_private;
3759
3760 trace_i915_gem_object_destroy(obj);
3761
3762 if (obj->phys_obj)
3763 i915_gem_detach_phys_object(dev, obj);
3764
3765 obj->pin_count = 0;
3766 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3767 bool was_interruptible;
3768
3769 was_interruptible = dev_priv->mm.interruptible;
3770 dev_priv->mm.interruptible = false;
3771
3772 WARN_ON(i915_gem_object_unbind(obj));
3773
3774 dev_priv->mm.interruptible = was_interruptible;
3775 }
3776
3777 obj->pages_pin_count = 0;
3778 i915_gem_object_put_pages(obj);
3779 i915_gem_object_free_mmap_offset(obj);
3780
3781 BUG_ON(obj->pages);
3782
3783 if (obj->base.import_attach)
3784 drm_prime_gem_destroy(&obj->base, NULL);
3785
3786 drm_gem_object_release(&obj->base);
3787 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3788
3789 kfree(obj->bit_17);
3790 kfree(obj);
3791 }
3792
3793 int
3794 i915_gem_idle(struct drm_device *dev)
3795 {
3796 drm_i915_private_t *dev_priv = dev->dev_private;
3797 int ret;
3798
3799 mutex_lock(&dev->struct_mutex);
3800
3801 if (dev_priv->mm.suspended) {
3802 mutex_unlock(&dev->struct_mutex);
3803 return 0;
3804 }
3805
3806 ret = i915_gpu_idle(dev);
3807 if (ret) {
3808 mutex_unlock(&dev->struct_mutex);
3809 return ret;
3810 }
3811 i915_gem_retire_requests(dev);
3812
3813 /* Under UMS, be paranoid and evict. */
3814 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3815 i915_gem_evict_everything(dev);
3816
3817 i915_gem_reset_fences(dev);
3818
3819 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3820 * We need to replace this with a semaphore, or something.
3821 * And not confound mm.suspended!
3822 */
3823 dev_priv->mm.suspended = 1;
3824 del_timer_sync(&dev_priv->hangcheck_timer);
3825
3826 i915_kernel_lost_context(dev);
3827 i915_gem_cleanup_ringbuffer(dev);
3828
3829 mutex_unlock(&dev->struct_mutex);
3830
3831 /* Cancel the retire work handler, which should be idle now. */
3832 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3833
3834 return 0;
3835 }
3836
3837 void i915_gem_l3_remap(struct drm_device *dev)
3838 {
3839 drm_i915_private_t *dev_priv = dev->dev_private;
3840 u32 misccpctl;
3841 int i;
3842
3843 if (!IS_IVYBRIDGE(dev))
3844 return;
3845
3846 if (!dev_priv->l3_parity.remap_info)
3847 return;
3848
3849 misccpctl = I915_READ(GEN7_MISCCPCTL);
3850 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3851 POSTING_READ(GEN7_MISCCPCTL);
3852
3853 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3854 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3855 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3856 DRM_DEBUG("0x%x was already programmed to %x\n",
3857 GEN7_L3LOG_BASE + i, remap);
3858 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3859 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3860 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3861 }
3862
3863 /* Make sure all the writes land before disabling dop clock gating */
3864 POSTING_READ(GEN7_L3LOG_BASE);
3865
3866 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3867 }
3868
3869 void i915_gem_init_swizzling(struct drm_device *dev)
3870 {
3871 drm_i915_private_t *dev_priv = dev->dev_private;
3872
3873 if (INTEL_INFO(dev)->gen < 5 ||
3874 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3875 return;
3876
3877 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3878 DISP_TILE_SURFACE_SWIZZLING);
3879
3880 if (IS_GEN5(dev))
3881 return;
3882
3883 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3884 if (IS_GEN6(dev))
3885 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3886 else
3887 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3888 }
3889
3890 static bool
3891 intel_enable_blt(struct drm_device *dev)
3892 {
3893 if (!HAS_BLT(dev))
3894 return false;
3895
3896 /* The blitter was dysfunctional on early prototypes */
3897 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3898 DRM_INFO("BLT not supported on this pre-production hardware;"
3899 " graphics performance will be degraded.\n");
3900 return false;
3901 }
3902
3903 return true;
3904 }
3905
3906 int
3907 i915_gem_init_hw(struct drm_device *dev)
3908 {
3909 drm_i915_private_t *dev_priv = dev->dev_private;
3910 int ret;
3911
3912 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3913 return -EIO;
3914
3915 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3916 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3917
3918 i915_gem_l3_remap(dev);
3919
3920 i915_gem_init_swizzling(dev);
3921
3922 ret = intel_init_render_ring_buffer(dev);
3923 if (ret)
3924 return ret;
3925
3926 if (HAS_BSD(dev)) {
3927 ret = intel_init_bsd_ring_buffer(dev);
3928 if (ret)
3929 goto cleanup_render_ring;
3930 }
3931
3932 if (intel_enable_blt(dev)) {
3933 ret = intel_init_blt_ring_buffer(dev);
3934 if (ret)
3935 goto cleanup_bsd_ring;
3936 }
3937
3938 dev_priv->next_seqno = 1;
3939
3940 /*
3941 * XXX: There was some w/a described somewhere suggesting loading
3942 * contexts before PPGTT.
3943 */
3944 i915_gem_context_init(dev);
3945 i915_gem_init_ppgtt(dev);
3946
3947 return 0;
3948
3949 cleanup_bsd_ring:
3950 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3951 cleanup_render_ring:
3952 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3953 return ret;
3954 }
3955
3956 static bool
3957 intel_enable_ppgtt(struct drm_device *dev)
3958 {
3959 if (i915_enable_ppgtt >= 0)
3960 return i915_enable_ppgtt;
3961
3962 #ifdef CONFIG_INTEL_IOMMU
3963 /* Disable ppgtt on SNB if VT-d is on. */
3964 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3965 return false;
3966 #endif
3967
3968 return true;
3969 }
3970
3971 int i915_gem_init(struct drm_device *dev)
3972 {
3973 struct drm_i915_private *dev_priv = dev->dev_private;
3974 unsigned long gtt_size, mappable_size;
3975 int ret;
3976
3977 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3978 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3979
3980 mutex_lock(&dev->struct_mutex);
3981 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3982 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3983 * aperture accordingly when using aliasing ppgtt. */
3984 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3985
3986 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3987
3988 ret = i915_gem_init_aliasing_ppgtt(dev);
3989 if (ret) {
3990 mutex_unlock(&dev->struct_mutex);
3991 return ret;
3992 }
3993 } else {
3994 /* Let GEM Manage all of the aperture.
3995 *
3996 * However, leave one page at the end still bound to the scratch
3997 * page. There are a number of places where the hardware
3998 * apparently prefetches past the end of the object, and we've
3999 * seen multiple hangs with the GPU head pointer stuck in a
4000 * batchbuffer bound at the last page of the aperture. One page
4001 * should be enough to keep any prefetching inside of the
4002 * aperture.
4003 */
4004 i915_gem_init_global_gtt(dev, 0, mappable_size,
4005 gtt_size);
4006 }
4007
4008 ret = i915_gem_init_hw(dev);
4009 mutex_unlock(&dev->struct_mutex);
4010 if (ret) {
4011 i915_gem_cleanup_aliasing_ppgtt(dev);
4012 return ret;
4013 }
4014
4015 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4016 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4017 dev_priv->dri1.allow_batchbuffer = 1;
4018 return 0;
4019 }
4020
4021 void
4022 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4023 {
4024 drm_i915_private_t *dev_priv = dev->dev_private;
4025 struct intel_ring_buffer *ring;
4026 int i;
4027
4028 for_each_ring(ring, dev_priv, i)
4029 intel_cleanup_ring_buffer(ring);
4030 }
4031
4032 int
4033 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4034 struct drm_file *file_priv)
4035 {
4036 drm_i915_private_t *dev_priv = dev->dev_private;
4037 int ret;
4038
4039 if (drm_core_check_feature(dev, DRIVER_MODESET))
4040 return 0;
4041
4042 if (atomic_read(&dev_priv->mm.wedged)) {
4043 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4044 atomic_set(&dev_priv->mm.wedged, 0);
4045 }
4046
4047 mutex_lock(&dev->struct_mutex);
4048 dev_priv->mm.suspended = 0;
4049
4050 ret = i915_gem_init_hw(dev);
4051 if (ret != 0) {
4052 mutex_unlock(&dev->struct_mutex);
4053 return ret;
4054 }
4055
4056 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4057 mutex_unlock(&dev->struct_mutex);
4058
4059 ret = drm_irq_install(dev);
4060 if (ret)
4061 goto cleanup_ringbuffer;
4062
4063 return 0;
4064
4065 cleanup_ringbuffer:
4066 mutex_lock(&dev->struct_mutex);
4067 i915_gem_cleanup_ringbuffer(dev);
4068 dev_priv->mm.suspended = 1;
4069 mutex_unlock(&dev->struct_mutex);
4070
4071 return ret;
4072 }
4073
4074 int
4075 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4076 struct drm_file *file_priv)
4077 {
4078 if (drm_core_check_feature(dev, DRIVER_MODESET))
4079 return 0;
4080
4081 drm_irq_uninstall(dev);
4082 return i915_gem_idle(dev);
4083 }
4084
4085 void
4086 i915_gem_lastclose(struct drm_device *dev)
4087 {
4088 int ret;
4089
4090 if (drm_core_check_feature(dev, DRIVER_MODESET))
4091 return;
4092
4093 ret = i915_gem_idle(dev);
4094 if (ret)
4095 DRM_ERROR("failed to idle hardware: %d\n", ret);
4096 }
4097
4098 static void
4099 init_ring_lists(struct intel_ring_buffer *ring)
4100 {
4101 INIT_LIST_HEAD(&ring->active_list);
4102 INIT_LIST_HEAD(&ring->request_list);
4103 }
4104
4105 void
4106 i915_gem_load(struct drm_device *dev)
4107 {
4108 int i;
4109 drm_i915_private_t *dev_priv = dev->dev_private;
4110
4111 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4112 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4113 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4114 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4115 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4116 for (i = 0; i < I915_NUM_RINGS; i++)
4117 init_ring_lists(&dev_priv->ring[i]);
4118 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4119 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4120 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4121 i915_gem_retire_work_handler);
4122 init_completion(&dev_priv->error_completion);
4123
4124 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4125 if (IS_GEN3(dev)) {
4126 I915_WRITE(MI_ARB_STATE,
4127 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4128 }
4129
4130 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4131
4132 /* Old X drivers will take 0-2 for front, back, depth buffers */
4133 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4134 dev_priv->fence_reg_start = 3;
4135
4136 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4137 dev_priv->num_fence_regs = 16;
4138 else
4139 dev_priv->num_fence_regs = 8;
4140
4141 /* Initialize fence registers to zero */
4142 i915_gem_reset_fences(dev);
4143
4144 i915_gem_detect_bit_6_swizzle(dev);
4145 init_waitqueue_head(&dev_priv->pending_flip_queue);
4146
4147 dev_priv->mm.interruptible = true;
4148
4149 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4150 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4151 register_shrinker(&dev_priv->mm.inactive_shrinker);
4152 }
4153
4154 /*
4155 * Create a physically contiguous memory object for this object
4156 * e.g. for cursor + overlay regs
4157 */
4158 static int i915_gem_init_phys_object(struct drm_device *dev,
4159 int id, int size, int align)
4160 {
4161 drm_i915_private_t *dev_priv = dev->dev_private;
4162 struct drm_i915_gem_phys_object *phys_obj;
4163 int ret;
4164
4165 if (dev_priv->mm.phys_objs[id - 1] || !size)
4166 return 0;
4167
4168 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4169 if (!phys_obj)
4170 return -ENOMEM;
4171
4172 phys_obj->id = id;
4173
4174 phys_obj->handle = drm_pci_alloc(dev, size, align);
4175 if (!phys_obj->handle) {
4176 ret = -ENOMEM;
4177 goto kfree_obj;
4178 }
4179 #ifdef CONFIG_X86
4180 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4181 #endif
4182
4183 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4184
4185 return 0;
4186 kfree_obj:
4187 kfree(phys_obj);
4188 return ret;
4189 }
4190
4191 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4192 {
4193 drm_i915_private_t *dev_priv = dev->dev_private;
4194 struct drm_i915_gem_phys_object *phys_obj;
4195
4196 if (!dev_priv->mm.phys_objs[id - 1])
4197 return;
4198
4199 phys_obj = dev_priv->mm.phys_objs[id - 1];
4200 if (phys_obj->cur_obj) {
4201 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4202 }
4203
4204 #ifdef CONFIG_X86
4205 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4206 #endif
4207 drm_pci_free(dev, phys_obj->handle);
4208 kfree(phys_obj);
4209 dev_priv->mm.phys_objs[id - 1] = NULL;
4210 }
4211
4212 void i915_gem_free_all_phys_object(struct drm_device *dev)
4213 {
4214 int i;
4215
4216 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4217 i915_gem_free_phys_object(dev, i);
4218 }
4219
4220 void i915_gem_detach_phys_object(struct drm_device *dev,
4221 struct drm_i915_gem_object *obj)
4222 {
4223 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4224 char *vaddr;
4225 int i;
4226 int page_count;
4227
4228 if (!obj->phys_obj)
4229 return;
4230 vaddr = obj->phys_obj->handle->vaddr;
4231
4232 page_count = obj->base.size / PAGE_SIZE;
4233 for (i = 0; i < page_count; i++) {
4234 struct page *page = shmem_read_mapping_page(mapping, i);
4235 if (!IS_ERR(page)) {
4236 char *dst = kmap_atomic(page);
4237 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4238 kunmap_atomic(dst);
4239
4240 drm_clflush_pages(&page, 1);
4241
4242 set_page_dirty(page);
4243 mark_page_accessed(page);
4244 page_cache_release(page);
4245 }
4246 }
4247 i915_gem_chipset_flush(dev);
4248
4249 obj->phys_obj->cur_obj = NULL;
4250 obj->phys_obj = NULL;
4251 }
4252
4253 int
4254 i915_gem_attach_phys_object(struct drm_device *dev,
4255 struct drm_i915_gem_object *obj,
4256 int id,
4257 int align)
4258 {
4259 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4260 drm_i915_private_t *dev_priv = dev->dev_private;
4261 int ret = 0;
4262 int page_count;
4263 int i;
4264
4265 if (id > I915_MAX_PHYS_OBJECT)
4266 return -EINVAL;
4267
4268 if (obj->phys_obj) {
4269 if (obj->phys_obj->id == id)
4270 return 0;
4271 i915_gem_detach_phys_object(dev, obj);
4272 }
4273
4274 /* create a new object */
4275 if (!dev_priv->mm.phys_objs[id - 1]) {
4276 ret = i915_gem_init_phys_object(dev, id,
4277 obj->base.size, align);
4278 if (ret) {
4279 DRM_ERROR("failed to init phys object %d size: %zu\n",
4280 id, obj->base.size);
4281 return ret;
4282 }
4283 }
4284
4285 /* bind to the object */
4286 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4287 obj->phys_obj->cur_obj = obj;
4288
4289 page_count = obj->base.size / PAGE_SIZE;
4290
4291 for (i = 0; i < page_count; i++) {
4292 struct page *page;
4293 char *dst, *src;
4294
4295 page = shmem_read_mapping_page(mapping, i);
4296 if (IS_ERR(page))
4297 return PTR_ERR(page);
4298
4299 src = kmap_atomic(page);
4300 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4301 memcpy(dst, src, PAGE_SIZE);
4302 kunmap_atomic(src);
4303
4304 mark_page_accessed(page);
4305 page_cache_release(page);
4306 }
4307
4308 return 0;
4309 }
4310
4311 static int
4312 i915_gem_phys_pwrite(struct drm_device *dev,
4313 struct drm_i915_gem_object *obj,
4314 struct drm_i915_gem_pwrite *args,
4315 struct drm_file *file_priv)
4316 {
4317 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4318 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4319
4320 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4321 unsigned long unwritten;
4322
4323 /* The physical object once assigned is fixed for the lifetime
4324 * of the obj, so we can safely drop the lock and continue
4325 * to access vaddr.
4326 */
4327 mutex_unlock(&dev->struct_mutex);
4328 unwritten = copy_from_user(vaddr, user_data, args->size);
4329 mutex_lock(&dev->struct_mutex);
4330 if (unwritten)
4331 return -EFAULT;
4332 }
4333
4334 i915_gem_chipset_flush(dev);
4335 return 0;
4336 }
4337
4338 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4339 {
4340 struct drm_i915_file_private *file_priv = file->driver_priv;
4341
4342 /* Clean up our request list when the client is going away, so that
4343 * later retire_requests won't dereference our soon-to-be-gone
4344 * file_priv.
4345 */
4346 spin_lock(&file_priv->mm.lock);
4347 while (!list_empty(&file_priv->mm.request_list)) {
4348 struct drm_i915_gem_request *request;
4349
4350 request = list_first_entry(&file_priv->mm.request_list,
4351 struct drm_i915_gem_request,
4352 client_list);
4353 list_del(&request->client_list);
4354 request->file_priv = NULL;
4355 }
4356 spin_unlock(&file_priv->mm.lock);
4357 }
4358
4359 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4360 {
4361 if (!mutex_is_locked(mutex))
4362 return false;
4363
4364 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4365 return mutex->owner == task;
4366 #else
4367 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4368 return false;
4369 #endif
4370 }
4371
4372 static int
4373 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4374 {
4375 struct drm_i915_private *dev_priv =
4376 container_of(shrinker,
4377 struct drm_i915_private,
4378 mm.inactive_shrinker);
4379 struct drm_device *dev = dev_priv->dev;
4380 struct drm_i915_gem_object *obj;
4381 int nr_to_scan = sc->nr_to_scan;
4382 bool unlock = true;
4383 int cnt;
4384
4385 if (!mutex_trylock(&dev->struct_mutex)) {
4386 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4387 return 0;
4388
4389 if (dev_priv->mm.shrinker_no_lock_stealing)
4390 return 0;
4391
4392 unlock = false;
4393 }
4394
4395 if (nr_to_scan) {
4396 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4397 if (nr_to_scan > 0)
4398 i915_gem_shrink_all(dev_priv);
4399 }
4400
4401 cnt = 0;
4402 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4403 if (obj->pages_pin_count == 0)
4404 cnt += obj->base.size >> PAGE_SHIFT;
4405 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4406 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4407 cnt += obj->base.size >> PAGE_SHIFT;
4408
4409 if (unlock)
4410 mutex_unlock(&dev->struct_mutex);
4411 return cnt;
4412 }
This page took 0.117989 seconds and 6 git commands to generate.