drm/i915: Free batch pool when idle
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->slab, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 /**
1185 * __i915_wait_request - wait until execution of request has finished
1186 * @req: duh!
1187 * @reset_counter: reset sequence associated with the given request
1188 * @interruptible: do an interruptible wait (normally yes)
1189 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1190 *
1191 * Note: It is of utmost importance that the passed in seqno and reset_counter
1192 * values have been read by the caller in an smp safe manner. Where read-side
1193 * locks are involved, it is sufficient to read the reset_counter before
1194 * unlocking the lock that protects the seqno. For lockless tricks, the
1195 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1196 * inserted.
1197 *
1198 * Returns 0 if the request was found within the alloted time. Else returns the
1199 * errno with remaining time filled in timeout argument.
1200 */
1201 int __i915_wait_request(struct drm_i915_gem_request *req,
1202 unsigned reset_counter,
1203 bool interruptible,
1204 s64 *timeout,
1205 struct drm_i915_file_private *file_priv)
1206 {
1207 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1208 struct drm_device *dev = ring->dev;
1209 struct drm_i915_private *dev_priv = dev->dev_private;
1210 const bool irq_test_in_progress =
1211 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1212 DEFINE_WAIT(wait);
1213 unsigned long timeout_expire;
1214 s64 before, now;
1215 int ret;
1216
1217 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1218
1219 if (i915_gem_request_completed(req, true))
1220 return 0;
1221
1222 timeout_expire = timeout ?
1223 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1224
1225 if (INTEL_INFO(dev)->gen >= 6)
1226 gen6_rps_boost(dev_priv, file_priv);
1227
1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1229 return -ENODEV;
1230
1231 /* Record current time in case interrupted by signal, or wedged */
1232 trace_i915_gem_request_wait_begin(req);
1233 before = ktime_get_raw_ns();
1234 for (;;) {
1235 struct timer_list timer;
1236
1237 prepare_to_wait(&ring->irq_queue, &wait,
1238 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1239
1240 /* We need to check whether any gpu reset happened in between
1241 * the caller grabbing the seqno and now ... */
1242 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1243 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1244 * is truely gone. */
1245 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1246 if (ret == 0)
1247 ret = -EAGAIN;
1248 break;
1249 }
1250
1251 if (i915_gem_request_completed(req, false)) {
1252 ret = 0;
1253 break;
1254 }
1255
1256 if (interruptible && signal_pending(current)) {
1257 ret = -ERESTARTSYS;
1258 break;
1259 }
1260
1261 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1262 ret = -ETIME;
1263 break;
1264 }
1265
1266 timer.function = NULL;
1267 if (timeout || missed_irq(dev_priv, ring)) {
1268 unsigned long expire;
1269
1270 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1271 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1272 mod_timer(&timer, expire);
1273 }
1274
1275 io_schedule();
1276
1277 if (timer.function) {
1278 del_singleshot_timer_sync(&timer);
1279 destroy_timer_on_stack(&timer);
1280 }
1281 }
1282 now = ktime_get_raw_ns();
1283 trace_i915_gem_request_wait_end(req);
1284
1285 if (!irq_test_in_progress)
1286 ring->irq_put(ring);
1287
1288 finish_wait(&ring->irq_queue, &wait);
1289
1290 if (timeout) {
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
1304 }
1305
1306 return ret;
1307 }
1308
1309 /**
1310 * Waits for a request to be signaled, and cleans up the
1311 * request and object lists appropriately for that event.
1312 */
1313 int
1314 i915_wait_request(struct drm_i915_gem_request *req)
1315 {
1316 struct drm_device *dev;
1317 struct drm_i915_private *dev_priv;
1318 bool interruptible;
1319 unsigned reset_counter;
1320 int ret;
1321
1322 BUG_ON(req == NULL);
1323
1324 dev = req->ring->dev;
1325 dev_priv = dev->dev_private;
1326 interruptible = dev_priv->mm.interruptible;
1327
1328 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329
1330 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1331 if (ret)
1332 return ret;
1333
1334 ret = i915_gem_check_olr(req);
1335 if (ret)
1336 return ret;
1337
1338 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1339 i915_gem_request_reference(req);
1340 ret = __i915_wait_request(req, reset_counter,
1341 interruptible, NULL, NULL);
1342 i915_gem_request_unreference(req);
1343 return ret;
1344 }
1345
1346 static int
1347 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1348 {
1349 if (!obj->active)
1350 return 0;
1351
1352 /* Manually manage the write flush as we may have not yet
1353 * retired the buffer.
1354 *
1355 * Note that the last_write_req is always the earlier of
1356 * the two (read/write) requests, so if we haved successfully waited,
1357 * we know we have passed the last write.
1358 */
1359 i915_gem_request_assign(&obj->last_write_req, NULL);
1360
1361 return 0;
1362 }
1363
1364 /**
1365 * Ensures that all rendering to the object has completed and the object is
1366 * safe to unbind from the GTT or access from the CPU.
1367 */
1368 static __must_check int
1369 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1370 bool readonly)
1371 {
1372 struct drm_i915_gem_request *req;
1373 int ret;
1374
1375 req = readonly ? obj->last_write_req : obj->last_read_req;
1376 if (!req)
1377 return 0;
1378
1379 ret = i915_wait_request(req);
1380 if (ret)
1381 return ret;
1382
1383 return i915_gem_object_wait_rendering__tail(obj);
1384 }
1385
1386 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1387 * as the object state may change during this call.
1388 */
1389 static __must_check int
1390 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1391 struct drm_i915_file_private *file_priv,
1392 bool readonly)
1393 {
1394 struct drm_i915_gem_request *req;
1395 struct drm_device *dev = obj->base.dev;
1396 struct drm_i915_private *dev_priv = dev->dev_private;
1397 unsigned reset_counter;
1398 int ret;
1399
1400 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1401 BUG_ON(!dev_priv->mm.interruptible);
1402
1403 req = readonly ? obj->last_write_req : obj->last_read_req;
1404 if (!req)
1405 return 0;
1406
1407 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1408 if (ret)
1409 return ret;
1410
1411 ret = i915_gem_check_olr(req);
1412 if (ret)
1413 return ret;
1414
1415 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1416 i915_gem_request_reference(req);
1417 mutex_unlock(&dev->struct_mutex);
1418 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1419 mutex_lock(&dev->struct_mutex);
1420 i915_gem_request_unreference(req);
1421 if (ret)
1422 return ret;
1423
1424 return i915_gem_object_wait_rendering__tail(obj);
1425 }
1426
1427 /**
1428 * Called when user space prepares to use an object with the CPU, either
1429 * through the mmap ioctl's mapping or a GTT mapping.
1430 */
1431 int
1432 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1433 struct drm_file *file)
1434 {
1435 struct drm_i915_gem_set_domain *args = data;
1436 struct drm_i915_gem_object *obj;
1437 uint32_t read_domains = args->read_domains;
1438 uint32_t write_domain = args->write_domain;
1439 int ret;
1440
1441 /* Only handle setting domains to types used by the CPU. */
1442 if (write_domain & I915_GEM_GPU_DOMAINS)
1443 return -EINVAL;
1444
1445 if (read_domains & I915_GEM_GPU_DOMAINS)
1446 return -EINVAL;
1447
1448 /* Having something in the write domain implies it's in the read
1449 * domain, and only that read domain. Enforce that in the request.
1450 */
1451 if (write_domain != 0 && read_domains != write_domain)
1452 return -EINVAL;
1453
1454 ret = i915_mutex_lock_interruptible(dev);
1455 if (ret)
1456 return ret;
1457
1458 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1459 if (&obj->base == NULL) {
1460 ret = -ENOENT;
1461 goto unlock;
1462 }
1463
1464 /* Try to flush the object off the GPU without holding the lock.
1465 * We will repeat the flush holding the lock in the normal manner
1466 * to catch cases where we are gazumped.
1467 */
1468 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1469 file->driver_priv,
1470 !write_domain);
1471 if (ret)
1472 goto unref;
1473
1474 if (read_domains & I915_GEM_DOMAIN_GTT)
1475 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1476 else
1477 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1478
1479 unref:
1480 drm_gem_object_unreference(&obj->base);
1481 unlock:
1482 mutex_unlock(&dev->struct_mutex);
1483 return ret;
1484 }
1485
1486 /**
1487 * Called when user space has done writes to this buffer
1488 */
1489 int
1490 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1491 struct drm_file *file)
1492 {
1493 struct drm_i915_gem_sw_finish *args = data;
1494 struct drm_i915_gem_object *obj;
1495 int ret = 0;
1496
1497 ret = i915_mutex_lock_interruptible(dev);
1498 if (ret)
1499 return ret;
1500
1501 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1502 if (&obj->base == NULL) {
1503 ret = -ENOENT;
1504 goto unlock;
1505 }
1506
1507 /* Pinned buffers may be scanout, so flush the cache */
1508 if (obj->pin_display)
1509 i915_gem_object_flush_cpu_write_domain(obj);
1510
1511 drm_gem_object_unreference(&obj->base);
1512 unlock:
1513 mutex_unlock(&dev->struct_mutex);
1514 return ret;
1515 }
1516
1517 /**
1518 * Maps the contents of an object, returning the address it is mapped
1519 * into.
1520 *
1521 * While the mapping holds a reference on the contents of the object, it doesn't
1522 * imply a ref on the object itself.
1523 *
1524 * IMPORTANT:
1525 *
1526 * DRM driver writers who look a this function as an example for how to do GEM
1527 * mmap support, please don't implement mmap support like here. The modern way
1528 * to implement DRM mmap support is with an mmap offset ioctl (like
1529 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1530 * That way debug tooling like valgrind will understand what's going on, hiding
1531 * the mmap call in a driver private ioctl will break that. The i915 driver only
1532 * does cpu mmaps this way because we didn't know better.
1533 */
1534 int
1535 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1536 struct drm_file *file)
1537 {
1538 struct drm_i915_gem_mmap *args = data;
1539 struct drm_gem_object *obj;
1540 unsigned long addr;
1541
1542 if (args->flags & ~(I915_MMAP_WC))
1543 return -EINVAL;
1544
1545 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1546 return -ENODEV;
1547
1548 obj = drm_gem_object_lookup(dev, file, args->handle);
1549 if (obj == NULL)
1550 return -ENOENT;
1551
1552 /* prime objects have no backing filp to GEM mmap
1553 * pages from.
1554 */
1555 if (!obj->filp) {
1556 drm_gem_object_unreference_unlocked(obj);
1557 return -EINVAL;
1558 }
1559
1560 addr = vm_mmap(obj->filp, 0, args->size,
1561 PROT_READ | PROT_WRITE, MAP_SHARED,
1562 args->offset);
1563 if (args->flags & I915_MMAP_WC) {
1564 struct mm_struct *mm = current->mm;
1565 struct vm_area_struct *vma;
1566
1567 down_write(&mm->mmap_sem);
1568 vma = find_vma(mm, addr);
1569 if (vma)
1570 vma->vm_page_prot =
1571 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1572 else
1573 addr = -ENOMEM;
1574 up_write(&mm->mmap_sem);
1575 }
1576 drm_gem_object_unreference_unlocked(obj);
1577 if (IS_ERR((void *)addr))
1578 return addr;
1579
1580 args->addr_ptr = (uint64_t) addr;
1581
1582 return 0;
1583 }
1584
1585 /**
1586 * i915_gem_fault - fault a page into the GTT
1587 * vma: VMA in question
1588 * vmf: fault info
1589 *
1590 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1591 * from userspace. The fault handler takes care of binding the object to
1592 * the GTT (if needed), allocating and programming a fence register (again,
1593 * only if needed based on whether the old reg is still valid or the object
1594 * is tiled) and inserting a new PTE into the faulting process.
1595 *
1596 * Note that the faulting process may involve evicting existing objects
1597 * from the GTT and/or fence registers to make room. So performance may
1598 * suffer if the GTT working set is large or there are few fence registers
1599 * left.
1600 */
1601 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1602 {
1603 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1604 struct drm_device *dev = obj->base.dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 pgoff_t page_offset;
1607 unsigned long pfn;
1608 int ret = 0;
1609 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1610
1611 intel_runtime_pm_get(dev_priv);
1612
1613 /* We don't use vmf->pgoff since that has the fake offset */
1614 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1615 PAGE_SHIFT;
1616
1617 ret = i915_mutex_lock_interruptible(dev);
1618 if (ret)
1619 goto out;
1620
1621 trace_i915_gem_object_fault(obj, page_offset, true, write);
1622
1623 /* Try to flush the object off the GPU first without holding the lock.
1624 * Upon reacquiring the lock, we will perform our sanity checks and then
1625 * repeat the flush holding the lock in the normal manner to catch cases
1626 * where we are gazumped.
1627 */
1628 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1629 if (ret)
1630 goto unlock;
1631
1632 /* Access to snoopable pages through the GTT is incoherent. */
1633 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1634 ret = -EFAULT;
1635 goto unlock;
1636 }
1637
1638 /* Now bind it into the GTT if needed */
1639 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1640 if (ret)
1641 goto unlock;
1642
1643 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1644 if (ret)
1645 goto unpin;
1646
1647 ret = i915_gem_object_get_fence(obj);
1648 if (ret)
1649 goto unpin;
1650
1651 /* Finally, remap it using the new GTT offset */
1652 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1653 pfn >>= PAGE_SHIFT;
1654
1655 if (!obj->fault_mappable) {
1656 unsigned long size = min_t(unsigned long,
1657 vma->vm_end - vma->vm_start,
1658 obj->base.size);
1659 int i;
1660
1661 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1662 ret = vm_insert_pfn(vma,
1663 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1664 pfn + i);
1665 if (ret)
1666 break;
1667 }
1668
1669 obj->fault_mappable = true;
1670 } else
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vmf->virtual_address,
1673 pfn + page_offset);
1674 unpin:
1675 i915_gem_object_ggtt_unpin(obj);
1676 unlock:
1677 mutex_unlock(&dev->struct_mutex);
1678 out:
1679 switch (ret) {
1680 case -EIO:
1681 /*
1682 * We eat errors when the gpu is terminally wedged to avoid
1683 * userspace unduly crashing (gl has no provisions for mmaps to
1684 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1685 * and so needs to be reported.
1686 */
1687 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1688 ret = VM_FAULT_SIGBUS;
1689 break;
1690 }
1691 case -EAGAIN:
1692 /*
1693 * EAGAIN means the gpu is hung and we'll wait for the error
1694 * handler to reset everything when re-faulting in
1695 * i915_mutex_lock_interruptible.
1696 */
1697 case 0:
1698 case -ERESTARTSYS:
1699 case -EINTR:
1700 case -EBUSY:
1701 /*
1702 * EBUSY is ok: this just means that another thread
1703 * already did the job.
1704 */
1705 ret = VM_FAULT_NOPAGE;
1706 break;
1707 case -ENOMEM:
1708 ret = VM_FAULT_OOM;
1709 break;
1710 case -ENOSPC:
1711 case -EFAULT:
1712 ret = VM_FAULT_SIGBUS;
1713 break;
1714 default:
1715 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1716 ret = VM_FAULT_SIGBUS;
1717 break;
1718 }
1719
1720 intel_runtime_pm_put(dev_priv);
1721 return ret;
1722 }
1723
1724 /**
1725 * i915_gem_release_mmap - remove physical page mappings
1726 * @obj: obj in question
1727 *
1728 * Preserve the reservation of the mmapping with the DRM core code, but
1729 * relinquish ownership of the pages back to the system.
1730 *
1731 * It is vital that we remove the page mapping if we have mapped a tiled
1732 * object through the GTT and then lose the fence register due to
1733 * resource pressure. Similarly if the object has been moved out of the
1734 * aperture, than pages mapped into userspace must be revoked. Removing the
1735 * mapping will then trigger a page fault on the next user access, allowing
1736 * fixup by i915_gem_fault().
1737 */
1738 void
1739 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1740 {
1741 if (!obj->fault_mappable)
1742 return;
1743
1744 drm_vma_node_unmap(&obj->base.vma_node,
1745 obj->base.dev->anon_inode->i_mapping);
1746 obj->fault_mappable = false;
1747 }
1748
1749 void
1750 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1751 {
1752 struct drm_i915_gem_object *obj;
1753
1754 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1755 i915_gem_release_mmap(obj);
1756 }
1757
1758 uint32_t
1759 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1760 {
1761 uint32_t gtt_size;
1762
1763 if (INTEL_INFO(dev)->gen >= 4 ||
1764 tiling_mode == I915_TILING_NONE)
1765 return size;
1766
1767 /* Previous chips need a power-of-two fence region when tiling */
1768 if (INTEL_INFO(dev)->gen == 3)
1769 gtt_size = 1024*1024;
1770 else
1771 gtt_size = 512*1024;
1772
1773 while (gtt_size < size)
1774 gtt_size <<= 1;
1775
1776 return gtt_size;
1777 }
1778
1779 /**
1780 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1781 * @obj: object to check
1782 *
1783 * Return the required GTT alignment for an object, taking into account
1784 * potential fence register mapping.
1785 */
1786 uint32_t
1787 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1788 int tiling_mode, bool fenced)
1789 {
1790 /*
1791 * Minimum alignment is 4k (GTT page size), but might be greater
1792 * if a fence register is needed for the object.
1793 */
1794 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1795 tiling_mode == I915_TILING_NONE)
1796 return 4096;
1797
1798 /*
1799 * Previous chips need to be aligned to the size of the smallest
1800 * fence register that can contain the object.
1801 */
1802 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1803 }
1804
1805 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1806 {
1807 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1808 int ret;
1809
1810 if (drm_vma_node_has_offset(&obj->base.vma_node))
1811 return 0;
1812
1813 dev_priv->mm.shrinker_no_lock_stealing = true;
1814
1815 ret = drm_gem_create_mmap_offset(&obj->base);
1816 if (ret != -ENOSPC)
1817 goto out;
1818
1819 /* Badly fragmented mmap space? The only way we can recover
1820 * space is by destroying unwanted objects. We can't randomly release
1821 * mmap_offsets as userspace expects them to be persistent for the
1822 * lifetime of the objects. The closest we can is to release the
1823 * offsets on purgeable objects by truncating it and marking it purged,
1824 * which prevents userspace from ever using that object again.
1825 */
1826 i915_gem_shrink(dev_priv,
1827 obj->base.size >> PAGE_SHIFT,
1828 I915_SHRINK_BOUND |
1829 I915_SHRINK_UNBOUND |
1830 I915_SHRINK_PURGEABLE);
1831 ret = drm_gem_create_mmap_offset(&obj->base);
1832 if (ret != -ENOSPC)
1833 goto out;
1834
1835 i915_gem_shrink_all(dev_priv);
1836 ret = drm_gem_create_mmap_offset(&obj->base);
1837 out:
1838 dev_priv->mm.shrinker_no_lock_stealing = false;
1839
1840 return ret;
1841 }
1842
1843 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1844 {
1845 drm_gem_free_mmap_offset(&obj->base);
1846 }
1847
1848 int
1849 i915_gem_mmap_gtt(struct drm_file *file,
1850 struct drm_device *dev,
1851 uint32_t handle,
1852 uint64_t *offset)
1853 {
1854 struct drm_i915_private *dev_priv = dev->dev_private;
1855 struct drm_i915_gem_object *obj;
1856 int ret;
1857
1858 ret = i915_mutex_lock_interruptible(dev);
1859 if (ret)
1860 return ret;
1861
1862 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1863 if (&obj->base == NULL) {
1864 ret = -ENOENT;
1865 goto unlock;
1866 }
1867
1868 if (obj->base.size > dev_priv->gtt.mappable_end) {
1869 ret = -E2BIG;
1870 goto out;
1871 }
1872
1873 if (obj->madv != I915_MADV_WILLNEED) {
1874 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1875 ret = -EFAULT;
1876 goto out;
1877 }
1878
1879 ret = i915_gem_object_create_mmap_offset(obj);
1880 if (ret)
1881 goto out;
1882
1883 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1884
1885 out:
1886 drm_gem_object_unreference(&obj->base);
1887 unlock:
1888 mutex_unlock(&dev->struct_mutex);
1889 return ret;
1890 }
1891
1892 /**
1893 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1894 * @dev: DRM device
1895 * @data: GTT mapping ioctl data
1896 * @file: GEM object info
1897 *
1898 * Simply returns the fake offset to userspace so it can mmap it.
1899 * The mmap call will end up in drm_gem_mmap(), which will set things
1900 * up so we can get faults in the handler above.
1901 *
1902 * The fault handler will take care of binding the object into the GTT
1903 * (since it may have been evicted to make room for something), allocating
1904 * a fence register, and mapping the appropriate aperture address into
1905 * userspace.
1906 */
1907 int
1908 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1909 struct drm_file *file)
1910 {
1911 struct drm_i915_gem_mmap_gtt *args = data;
1912
1913 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1914 }
1915
1916 /* Immediately discard the backing storage */
1917 static void
1918 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1919 {
1920 i915_gem_object_free_mmap_offset(obj);
1921
1922 if (obj->base.filp == NULL)
1923 return;
1924
1925 /* Our goal here is to return as much of the memory as
1926 * is possible back to the system as we are called from OOM.
1927 * To do this we must instruct the shmfs to drop all of its
1928 * backing pages, *now*.
1929 */
1930 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1931 obj->madv = __I915_MADV_PURGED;
1932 }
1933
1934 /* Try to discard unwanted pages */
1935 static void
1936 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1937 {
1938 struct address_space *mapping;
1939
1940 switch (obj->madv) {
1941 case I915_MADV_DONTNEED:
1942 i915_gem_object_truncate(obj);
1943 case __I915_MADV_PURGED:
1944 return;
1945 }
1946
1947 if (obj->base.filp == NULL)
1948 return;
1949
1950 mapping = file_inode(obj->base.filp)->i_mapping,
1951 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1952 }
1953
1954 static void
1955 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1956 {
1957 struct sg_page_iter sg_iter;
1958 int ret;
1959
1960 BUG_ON(obj->madv == __I915_MADV_PURGED);
1961
1962 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1963 if (ret) {
1964 /* In the event of a disaster, abandon all caches and
1965 * hope for the best.
1966 */
1967 WARN_ON(ret != -EIO);
1968 i915_gem_clflush_object(obj, true);
1969 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1970 }
1971
1972 if (i915_gem_object_needs_bit17_swizzle(obj))
1973 i915_gem_object_save_bit_17_swizzle(obj);
1974
1975 if (obj->madv == I915_MADV_DONTNEED)
1976 obj->dirty = 0;
1977
1978 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1979 struct page *page = sg_page_iter_page(&sg_iter);
1980
1981 if (obj->dirty)
1982 set_page_dirty(page);
1983
1984 if (obj->madv == I915_MADV_WILLNEED)
1985 mark_page_accessed(page);
1986
1987 page_cache_release(page);
1988 }
1989 obj->dirty = 0;
1990
1991 sg_free_table(obj->pages);
1992 kfree(obj->pages);
1993 }
1994
1995 int
1996 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1997 {
1998 const struct drm_i915_gem_object_ops *ops = obj->ops;
1999
2000 if (obj->pages == NULL)
2001 return 0;
2002
2003 if (obj->pages_pin_count)
2004 return -EBUSY;
2005
2006 BUG_ON(i915_gem_obj_bound_any(obj));
2007
2008 /* ->put_pages might need to allocate memory for the bit17 swizzle
2009 * array, hence protect them from being reaped by removing them from gtt
2010 * lists early. */
2011 list_del(&obj->global_list);
2012
2013 ops->put_pages(obj);
2014 obj->pages = NULL;
2015
2016 i915_gem_object_invalidate(obj);
2017
2018 return 0;
2019 }
2020
2021 static int
2022 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2023 {
2024 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025 int page_count, i;
2026 struct address_space *mapping;
2027 struct sg_table *st;
2028 struct scatterlist *sg;
2029 struct sg_page_iter sg_iter;
2030 struct page *page;
2031 unsigned long last_pfn = 0; /* suppress gcc warning */
2032 gfp_t gfp;
2033
2034 /* Assert that the object is not currently in any GPU domain. As it
2035 * wasn't in the GTT, there shouldn't be any way it could have been in
2036 * a GPU cache
2037 */
2038 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2039 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2040
2041 st = kmalloc(sizeof(*st), GFP_KERNEL);
2042 if (st == NULL)
2043 return -ENOMEM;
2044
2045 page_count = obj->base.size / PAGE_SIZE;
2046 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2047 kfree(st);
2048 return -ENOMEM;
2049 }
2050
2051 /* Get the list of pages out of our struct file. They'll be pinned
2052 * at this point until we release them.
2053 *
2054 * Fail silently without starting the shrinker
2055 */
2056 mapping = file_inode(obj->base.filp)->i_mapping;
2057 gfp = mapping_gfp_mask(mapping);
2058 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2059 gfp &= ~(__GFP_IO | __GFP_WAIT);
2060 sg = st->sgl;
2061 st->nents = 0;
2062 for (i = 0; i < page_count; i++) {
2063 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2064 if (IS_ERR(page)) {
2065 i915_gem_shrink(dev_priv,
2066 page_count,
2067 I915_SHRINK_BOUND |
2068 I915_SHRINK_UNBOUND |
2069 I915_SHRINK_PURGEABLE);
2070 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2071 }
2072 if (IS_ERR(page)) {
2073 /* We've tried hard to allocate the memory by reaping
2074 * our own buffer, now let the real VM do its job and
2075 * go down in flames if truly OOM.
2076 */
2077 i915_gem_shrink_all(dev_priv);
2078 page = shmem_read_mapping_page(mapping, i);
2079 if (IS_ERR(page))
2080 goto err_pages;
2081 }
2082 #ifdef CONFIG_SWIOTLB
2083 if (swiotlb_nr_tbl()) {
2084 st->nents++;
2085 sg_set_page(sg, page, PAGE_SIZE, 0);
2086 sg = sg_next(sg);
2087 continue;
2088 }
2089 #endif
2090 if (!i || page_to_pfn(page) != last_pfn + 1) {
2091 if (i)
2092 sg = sg_next(sg);
2093 st->nents++;
2094 sg_set_page(sg, page, PAGE_SIZE, 0);
2095 } else {
2096 sg->length += PAGE_SIZE;
2097 }
2098 last_pfn = page_to_pfn(page);
2099
2100 /* Check that the i965g/gm workaround works. */
2101 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2102 }
2103 #ifdef CONFIG_SWIOTLB
2104 if (!swiotlb_nr_tbl())
2105 #endif
2106 sg_mark_end(sg);
2107 obj->pages = st;
2108
2109 if (i915_gem_object_needs_bit17_swizzle(obj))
2110 i915_gem_object_do_bit_17_swizzle(obj);
2111
2112 if (obj->tiling_mode != I915_TILING_NONE &&
2113 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2114 i915_gem_object_pin_pages(obj);
2115
2116 return 0;
2117
2118 err_pages:
2119 sg_mark_end(sg);
2120 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2121 page_cache_release(sg_page_iter_page(&sg_iter));
2122 sg_free_table(st);
2123 kfree(st);
2124
2125 /* shmemfs first checks if there is enough memory to allocate the page
2126 * and reports ENOSPC should there be insufficient, along with the usual
2127 * ENOMEM for a genuine allocation failure.
2128 *
2129 * We use ENOSPC in our driver to mean that we have run out of aperture
2130 * space and so want to translate the error from shmemfs back to our
2131 * usual understanding of ENOMEM.
2132 */
2133 if (PTR_ERR(page) == -ENOSPC)
2134 return -ENOMEM;
2135 else
2136 return PTR_ERR(page);
2137 }
2138
2139 /* Ensure that the associated pages are gathered from the backing storage
2140 * and pinned into our object. i915_gem_object_get_pages() may be called
2141 * multiple times before they are released by a single call to
2142 * i915_gem_object_put_pages() - once the pages are no longer referenced
2143 * either as a result of memory pressure (reaping pages under the shrinker)
2144 * or as the object is itself released.
2145 */
2146 int
2147 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2148 {
2149 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2150 const struct drm_i915_gem_object_ops *ops = obj->ops;
2151 int ret;
2152
2153 if (obj->pages)
2154 return 0;
2155
2156 if (obj->madv != I915_MADV_WILLNEED) {
2157 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2158 return -EFAULT;
2159 }
2160
2161 BUG_ON(obj->pages_pin_count);
2162
2163 ret = ops->get_pages(obj);
2164 if (ret)
2165 return ret;
2166
2167 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2168
2169 obj->get_page.sg = obj->pages->sgl;
2170 obj->get_page.last = 0;
2171
2172 return 0;
2173 }
2174
2175 static void
2176 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2177 struct intel_engine_cs *ring)
2178 {
2179 struct drm_i915_gem_request *req;
2180 struct intel_engine_cs *old_ring;
2181
2182 BUG_ON(ring == NULL);
2183
2184 req = intel_ring_get_request(ring);
2185 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2186
2187 if (old_ring != ring && obj->last_write_req) {
2188 /* Keep the request relative to the current ring */
2189 i915_gem_request_assign(&obj->last_write_req, req);
2190 }
2191
2192 /* Add a reference if we're newly entering the active list. */
2193 if (!obj->active) {
2194 drm_gem_object_reference(&obj->base);
2195 obj->active = 1;
2196 }
2197
2198 list_move_tail(&obj->ring_list, &ring->active_list);
2199
2200 i915_gem_request_assign(&obj->last_read_req, req);
2201 }
2202
2203 void i915_vma_move_to_active(struct i915_vma *vma,
2204 struct intel_engine_cs *ring)
2205 {
2206 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207 return i915_gem_object_move_to_active(vma->obj, ring);
2208 }
2209
2210 static void
2211 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212 {
2213 struct i915_vma *vma;
2214
2215 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2216 BUG_ON(!obj->active);
2217
2218 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2219 if (!list_empty(&vma->mm_list))
2220 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2221 }
2222
2223 intel_fb_obj_flush(obj, true);
2224
2225 list_del_init(&obj->ring_list);
2226
2227 i915_gem_request_assign(&obj->last_read_req, NULL);
2228 i915_gem_request_assign(&obj->last_write_req, NULL);
2229 obj->base.write_domain = 0;
2230
2231 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2232
2233 obj->active = 0;
2234 drm_gem_object_unreference(&obj->base);
2235
2236 WARN_ON(i915_verify_lists(dev));
2237 }
2238
2239 static void
2240 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2241 {
2242 if (obj->last_read_req == NULL)
2243 return;
2244
2245 if (i915_gem_request_completed(obj->last_read_req, true))
2246 i915_gem_object_move_to_inactive(obj);
2247 }
2248
2249 static int
2250 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2251 {
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 struct intel_engine_cs *ring;
2254 int ret, i, j;
2255
2256 /* Carefully retire all requests without writing to the rings */
2257 for_each_ring(ring, dev_priv, i) {
2258 ret = intel_ring_idle(ring);
2259 if (ret)
2260 return ret;
2261 }
2262 i915_gem_retire_requests(dev);
2263
2264 /* Finally reset hw state */
2265 for_each_ring(ring, dev_priv, i) {
2266 intel_ring_init_seqno(ring, seqno);
2267
2268 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2269 ring->semaphore.sync_seqno[j] = 0;
2270 }
2271
2272 return 0;
2273 }
2274
2275 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2276 {
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 int ret;
2279
2280 if (seqno == 0)
2281 return -EINVAL;
2282
2283 /* HWS page needs to be set less than what we
2284 * will inject to ring
2285 */
2286 ret = i915_gem_init_seqno(dev, seqno - 1);
2287 if (ret)
2288 return ret;
2289
2290 /* Carefully set the last_seqno value so that wrap
2291 * detection still works
2292 */
2293 dev_priv->next_seqno = seqno;
2294 dev_priv->last_seqno = seqno - 1;
2295 if (dev_priv->last_seqno == 0)
2296 dev_priv->last_seqno--;
2297
2298 return 0;
2299 }
2300
2301 int
2302 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2303 {
2304 struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306 /* reserve 0 for non-seqno */
2307 if (dev_priv->next_seqno == 0) {
2308 int ret = i915_gem_init_seqno(dev, 0);
2309 if (ret)
2310 return ret;
2311
2312 dev_priv->next_seqno = 1;
2313 }
2314
2315 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2316 return 0;
2317 }
2318
2319 int __i915_add_request(struct intel_engine_cs *ring,
2320 struct drm_file *file,
2321 struct drm_i915_gem_object *obj)
2322 {
2323 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2324 struct drm_i915_gem_request *request;
2325 struct intel_ringbuffer *ringbuf;
2326 u32 request_start;
2327 int ret;
2328
2329 request = ring->outstanding_lazy_request;
2330 if (WARN_ON(request == NULL))
2331 return -ENOMEM;
2332
2333 if (i915.enable_execlists) {
2334 ringbuf = request->ctx->engine[ring->id].ringbuf;
2335 } else
2336 ringbuf = ring->buffer;
2337
2338 request_start = intel_ring_get_tail(ringbuf);
2339 /*
2340 * Emit any outstanding flushes - execbuf can fail to emit the flush
2341 * after having emitted the batchbuffer command. Hence we need to fix
2342 * things up similar to emitting the lazy request. The difference here
2343 * is that the flush _must_ happen before the next request, no matter
2344 * what.
2345 */
2346 if (i915.enable_execlists) {
2347 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2348 if (ret)
2349 return ret;
2350 } else {
2351 ret = intel_ring_flush_all_caches(ring);
2352 if (ret)
2353 return ret;
2354 }
2355
2356 /* Record the position of the start of the request so that
2357 * should we detect the updated seqno part-way through the
2358 * GPU processing the request, we never over-estimate the
2359 * position of the head.
2360 */
2361 request->postfix = intel_ring_get_tail(ringbuf);
2362
2363 if (i915.enable_execlists) {
2364 ret = ring->emit_request(ringbuf, request);
2365 if (ret)
2366 return ret;
2367 } else {
2368 ret = ring->add_request(ring);
2369 if (ret)
2370 return ret;
2371 }
2372
2373 request->head = request_start;
2374 request->tail = intel_ring_get_tail(ringbuf);
2375
2376 /* Whilst this request exists, batch_obj will be on the
2377 * active_list, and so will hold the active reference. Only when this
2378 * request is retired will the the batch_obj be moved onto the
2379 * inactive_list and lose its active reference. Hence we do not need
2380 * to explicitly hold another reference here.
2381 */
2382 request->batch_obj = obj;
2383
2384 if (!i915.enable_execlists) {
2385 /* Hold a reference to the current context so that we can inspect
2386 * it later in case a hangcheck error event fires.
2387 */
2388 request->ctx = ring->last_context;
2389 if (request->ctx)
2390 i915_gem_context_reference(request->ctx);
2391 }
2392
2393 request->emitted_jiffies = jiffies;
2394 list_add_tail(&request->list, &ring->request_list);
2395 request->file_priv = NULL;
2396
2397 if (file) {
2398 struct drm_i915_file_private *file_priv = file->driver_priv;
2399
2400 spin_lock(&file_priv->mm.lock);
2401 request->file_priv = file_priv;
2402 list_add_tail(&request->client_list,
2403 &file_priv->mm.request_list);
2404 spin_unlock(&file_priv->mm.lock);
2405
2406 request->pid = get_pid(task_pid(current));
2407 }
2408
2409 trace_i915_gem_request_add(request);
2410 ring->outstanding_lazy_request = NULL;
2411
2412 i915_queue_hangcheck(ring->dev);
2413
2414 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2415 queue_delayed_work(dev_priv->wq,
2416 &dev_priv->mm.retire_work,
2417 round_jiffies_up_relative(HZ));
2418 intel_mark_busy(dev_priv->dev);
2419
2420 return 0;
2421 }
2422
2423 static inline void
2424 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2425 {
2426 struct drm_i915_file_private *file_priv = request->file_priv;
2427
2428 if (!file_priv)
2429 return;
2430
2431 spin_lock(&file_priv->mm.lock);
2432 list_del(&request->client_list);
2433 request->file_priv = NULL;
2434 spin_unlock(&file_priv->mm.lock);
2435 }
2436
2437 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2438 const struct intel_context *ctx)
2439 {
2440 unsigned long elapsed;
2441
2442 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2443
2444 if (ctx->hang_stats.banned)
2445 return true;
2446
2447 if (ctx->hang_stats.ban_period_seconds &&
2448 elapsed <= ctx->hang_stats.ban_period_seconds) {
2449 if (!i915_gem_context_is_default(ctx)) {
2450 DRM_DEBUG("context hanging too fast, banning!\n");
2451 return true;
2452 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2453 if (i915_stop_ring_allow_warn(dev_priv))
2454 DRM_ERROR("gpu hanging too fast, banning!\n");
2455 return true;
2456 }
2457 }
2458
2459 return false;
2460 }
2461
2462 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2463 struct intel_context *ctx,
2464 const bool guilty)
2465 {
2466 struct i915_ctx_hang_stats *hs;
2467
2468 if (WARN_ON(!ctx))
2469 return;
2470
2471 hs = &ctx->hang_stats;
2472
2473 if (guilty) {
2474 hs->banned = i915_context_is_banned(dev_priv, ctx);
2475 hs->batch_active++;
2476 hs->guilty_ts = get_seconds();
2477 } else {
2478 hs->batch_pending++;
2479 }
2480 }
2481
2482 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2483 {
2484 list_del(&request->list);
2485 i915_gem_request_remove_from_client(request);
2486
2487 put_pid(request->pid);
2488
2489 i915_gem_request_unreference(request);
2490 }
2491
2492 void i915_gem_request_free(struct kref *req_ref)
2493 {
2494 struct drm_i915_gem_request *req = container_of(req_ref,
2495 typeof(*req), ref);
2496 struct intel_context *ctx = req->ctx;
2497
2498 if (ctx) {
2499 if (i915.enable_execlists) {
2500 struct intel_engine_cs *ring = req->ring;
2501
2502 if (ctx != ring->default_context)
2503 intel_lr_context_unpin(ring, ctx);
2504 }
2505
2506 i915_gem_context_unreference(ctx);
2507 }
2508
2509 kfree(req);
2510 }
2511
2512 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2513 struct intel_context *ctx)
2514 {
2515 int ret;
2516 struct drm_i915_gem_request *request;
2517 struct drm_i915_private *dev_private = ring->dev->dev_private;
2518
2519 if (ring->outstanding_lazy_request)
2520 return 0;
2521
2522 request = kzalloc(sizeof(*request), GFP_KERNEL);
2523 if (request == NULL)
2524 return -ENOMEM;
2525
2526 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2527 if (ret) {
2528 kfree(request);
2529 return ret;
2530 }
2531
2532 kref_init(&request->ref);
2533 request->ring = ring;
2534 request->uniq = dev_private->request_uniq++;
2535
2536 if (i915.enable_execlists)
2537 ret = intel_logical_ring_alloc_request_extras(request, ctx);
2538 else
2539 ret = intel_ring_alloc_request_extras(request);
2540 if (ret) {
2541 kfree(request);
2542 return ret;
2543 }
2544
2545 ring->outstanding_lazy_request = request;
2546 return 0;
2547 }
2548
2549 struct drm_i915_gem_request *
2550 i915_gem_find_active_request(struct intel_engine_cs *ring)
2551 {
2552 struct drm_i915_gem_request *request;
2553
2554 list_for_each_entry(request, &ring->request_list, list) {
2555 if (i915_gem_request_completed(request, false))
2556 continue;
2557
2558 return request;
2559 }
2560
2561 return NULL;
2562 }
2563
2564 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2565 struct intel_engine_cs *ring)
2566 {
2567 struct drm_i915_gem_request *request;
2568 bool ring_hung;
2569
2570 request = i915_gem_find_active_request(ring);
2571
2572 if (request == NULL)
2573 return;
2574
2575 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2576
2577 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2578
2579 list_for_each_entry_continue(request, &ring->request_list, list)
2580 i915_set_reset_status(dev_priv, request->ctx, false);
2581 }
2582
2583 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2584 struct intel_engine_cs *ring)
2585 {
2586 while (!list_empty(&ring->active_list)) {
2587 struct drm_i915_gem_object *obj;
2588
2589 obj = list_first_entry(&ring->active_list,
2590 struct drm_i915_gem_object,
2591 ring_list);
2592
2593 i915_gem_object_move_to_inactive(obj);
2594 }
2595
2596 /*
2597 * Clear the execlists queue up before freeing the requests, as those
2598 * are the ones that keep the context and ringbuffer backing objects
2599 * pinned in place.
2600 */
2601 while (!list_empty(&ring->execlist_queue)) {
2602 struct drm_i915_gem_request *submit_req;
2603
2604 submit_req = list_first_entry(&ring->execlist_queue,
2605 struct drm_i915_gem_request,
2606 execlist_link);
2607 list_del(&submit_req->execlist_link);
2608 intel_runtime_pm_put(dev_priv);
2609
2610 if (submit_req->ctx != ring->default_context)
2611 intel_lr_context_unpin(ring, submit_req->ctx);
2612
2613 i915_gem_request_unreference(submit_req);
2614 }
2615
2616 /*
2617 * We must free the requests after all the corresponding objects have
2618 * been moved off active lists. Which is the same order as the normal
2619 * retire_requests function does. This is important if object hold
2620 * implicit references on things like e.g. ppgtt address spaces through
2621 * the request.
2622 */
2623 while (!list_empty(&ring->request_list)) {
2624 struct drm_i915_gem_request *request;
2625
2626 request = list_first_entry(&ring->request_list,
2627 struct drm_i915_gem_request,
2628 list);
2629
2630 i915_gem_free_request(request);
2631 }
2632
2633 /* This may not have been flushed before the reset, so clean it now */
2634 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2635 }
2636
2637 void i915_gem_restore_fences(struct drm_device *dev)
2638 {
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 int i;
2641
2642 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2643 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2644
2645 /*
2646 * Commit delayed tiling changes if we have an object still
2647 * attached to the fence, otherwise just clear the fence.
2648 */
2649 if (reg->obj) {
2650 i915_gem_object_update_fence(reg->obj, reg,
2651 reg->obj->tiling_mode);
2652 } else {
2653 i915_gem_write_fence(dev, i, NULL);
2654 }
2655 }
2656 }
2657
2658 void i915_gem_reset(struct drm_device *dev)
2659 {
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 struct intel_engine_cs *ring;
2662 int i;
2663
2664 /*
2665 * Before we free the objects from the requests, we need to inspect
2666 * them for finding the guilty party. As the requests only borrow
2667 * their reference to the objects, the inspection must be done first.
2668 */
2669 for_each_ring(ring, dev_priv, i)
2670 i915_gem_reset_ring_status(dev_priv, ring);
2671
2672 for_each_ring(ring, dev_priv, i)
2673 i915_gem_reset_ring_cleanup(dev_priv, ring);
2674
2675 i915_gem_context_reset(dev);
2676
2677 i915_gem_restore_fences(dev);
2678 }
2679
2680 /**
2681 * This function clears the request list as sequence numbers are passed.
2682 */
2683 void
2684 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2685 {
2686 if (list_empty(&ring->request_list))
2687 return;
2688
2689 WARN_ON(i915_verify_lists(ring->dev));
2690
2691 /* Retire requests first as we use it above for the early return.
2692 * If we retire requests last, we may use a later seqno and so clear
2693 * the requests lists without clearing the active list, leading to
2694 * confusion.
2695 */
2696 while (!list_empty(&ring->request_list)) {
2697 struct drm_i915_gem_request *request;
2698
2699 request = list_first_entry(&ring->request_list,
2700 struct drm_i915_gem_request,
2701 list);
2702
2703 if (!i915_gem_request_completed(request, true))
2704 break;
2705
2706 trace_i915_gem_request_retire(request);
2707
2708 /* We know the GPU must have read the request to have
2709 * sent us the seqno + interrupt, so use the position
2710 * of tail of the request to update the last known position
2711 * of the GPU head.
2712 */
2713 request->ringbuf->last_retired_head = request->postfix;
2714
2715 i915_gem_free_request(request);
2716 }
2717
2718 /* Move any buffers on the active list that are no longer referenced
2719 * by the ringbuffer to the flushing/inactive lists as appropriate,
2720 * before we free the context associated with the requests.
2721 */
2722 while (!list_empty(&ring->active_list)) {
2723 struct drm_i915_gem_object *obj;
2724
2725 obj = list_first_entry(&ring->active_list,
2726 struct drm_i915_gem_object,
2727 ring_list);
2728
2729 if (!i915_gem_request_completed(obj->last_read_req, true))
2730 break;
2731
2732 i915_gem_object_move_to_inactive(obj);
2733 }
2734
2735 if (unlikely(ring->trace_irq_req &&
2736 i915_gem_request_completed(ring->trace_irq_req, true))) {
2737 ring->irq_put(ring);
2738 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2739 }
2740
2741 WARN_ON(i915_verify_lists(ring->dev));
2742 }
2743
2744 bool
2745 i915_gem_retire_requests(struct drm_device *dev)
2746 {
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 struct intel_engine_cs *ring;
2749 bool idle = true;
2750 int i;
2751
2752 for_each_ring(ring, dev_priv, i) {
2753 i915_gem_retire_requests_ring(ring);
2754 idle &= list_empty(&ring->request_list);
2755 if (i915.enable_execlists) {
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&ring->execlist_lock, flags);
2759 idle &= list_empty(&ring->execlist_queue);
2760 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2761
2762 intel_execlists_retire_requests(ring);
2763 }
2764 }
2765
2766 if (idle)
2767 mod_delayed_work(dev_priv->wq,
2768 &dev_priv->mm.idle_work,
2769 msecs_to_jiffies(100));
2770
2771 return idle;
2772 }
2773
2774 static void
2775 i915_gem_retire_work_handler(struct work_struct *work)
2776 {
2777 struct drm_i915_private *dev_priv =
2778 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2779 struct drm_device *dev = dev_priv->dev;
2780 bool idle;
2781
2782 /* Come back later if the device is busy... */
2783 idle = false;
2784 if (mutex_trylock(&dev->struct_mutex)) {
2785 idle = i915_gem_retire_requests(dev);
2786 mutex_unlock(&dev->struct_mutex);
2787 }
2788 if (!idle)
2789 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2790 round_jiffies_up_relative(HZ));
2791 }
2792
2793 static void
2794 i915_gem_idle_work_handler(struct work_struct *work)
2795 {
2796 struct drm_i915_private *dev_priv =
2797 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2798 struct drm_device *dev = dev_priv->dev;
2799
2800 intel_mark_idle(dev);
2801
2802 if (mutex_trylock(&dev->struct_mutex)) {
2803 struct intel_engine_cs *ring;
2804 int i;
2805
2806 for_each_ring(ring, dev_priv, i)
2807 i915_gem_batch_pool_fini(&ring->batch_pool);
2808
2809 mutex_unlock(&dev->struct_mutex);
2810 }
2811 }
2812
2813 /**
2814 * Ensures that an object will eventually get non-busy by flushing any required
2815 * write domains, emitting any outstanding lazy request and retiring and
2816 * completed requests.
2817 */
2818 static int
2819 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2820 {
2821 struct intel_engine_cs *ring;
2822 int ret;
2823
2824 if (obj->active) {
2825 ring = i915_gem_request_get_ring(obj->last_read_req);
2826
2827 ret = i915_gem_check_olr(obj->last_read_req);
2828 if (ret)
2829 return ret;
2830
2831 i915_gem_retire_requests_ring(ring);
2832 }
2833
2834 return 0;
2835 }
2836
2837 /**
2838 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2839 * @DRM_IOCTL_ARGS: standard ioctl arguments
2840 *
2841 * Returns 0 if successful, else an error is returned with the remaining time in
2842 * the timeout parameter.
2843 * -ETIME: object is still busy after timeout
2844 * -ERESTARTSYS: signal interrupted the wait
2845 * -ENONENT: object doesn't exist
2846 * Also possible, but rare:
2847 * -EAGAIN: GPU wedged
2848 * -ENOMEM: damn
2849 * -ENODEV: Internal IRQ fail
2850 * -E?: The add request failed
2851 *
2852 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2853 * non-zero timeout parameter the wait ioctl will wait for the given number of
2854 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2855 * without holding struct_mutex the object may become re-busied before this
2856 * function completes. A similar but shorter * race condition exists in the busy
2857 * ioctl
2858 */
2859 int
2860 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2861 {
2862 struct drm_i915_private *dev_priv = dev->dev_private;
2863 struct drm_i915_gem_wait *args = data;
2864 struct drm_i915_gem_object *obj;
2865 struct drm_i915_gem_request *req;
2866 unsigned reset_counter;
2867 int ret = 0;
2868
2869 if (args->flags != 0)
2870 return -EINVAL;
2871
2872 ret = i915_mutex_lock_interruptible(dev);
2873 if (ret)
2874 return ret;
2875
2876 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2877 if (&obj->base == NULL) {
2878 mutex_unlock(&dev->struct_mutex);
2879 return -ENOENT;
2880 }
2881
2882 /* Need to make sure the object gets inactive eventually. */
2883 ret = i915_gem_object_flush_active(obj);
2884 if (ret)
2885 goto out;
2886
2887 if (!obj->active || !obj->last_read_req)
2888 goto out;
2889
2890 req = obj->last_read_req;
2891
2892 /* Do this after OLR check to make sure we make forward progress polling
2893 * on this IOCTL with a timeout == 0 (like busy ioctl)
2894 */
2895 if (args->timeout_ns == 0) {
2896 ret = -ETIME;
2897 goto out;
2898 }
2899
2900 drm_gem_object_unreference(&obj->base);
2901 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2902 i915_gem_request_reference(req);
2903 mutex_unlock(&dev->struct_mutex);
2904
2905 ret = __i915_wait_request(req, reset_counter, true,
2906 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2907 file->driver_priv);
2908 i915_gem_request_unreference__unlocked(req);
2909 return ret;
2910
2911 out:
2912 drm_gem_object_unreference(&obj->base);
2913 mutex_unlock(&dev->struct_mutex);
2914 return ret;
2915 }
2916
2917 /**
2918 * i915_gem_object_sync - sync an object to a ring.
2919 *
2920 * @obj: object which may be in use on another ring.
2921 * @to: ring we wish to use the object on. May be NULL.
2922 *
2923 * This code is meant to abstract object synchronization with the GPU.
2924 * Calling with NULL implies synchronizing the object with the CPU
2925 * rather than a particular GPU ring.
2926 *
2927 * Returns 0 if successful, else propagates up the lower layer error.
2928 */
2929 int
2930 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2931 struct intel_engine_cs *to)
2932 {
2933 struct intel_engine_cs *from;
2934 u32 seqno;
2935 int ret, idx;
2936
2937 from = i915_gem_request_get_ring(obj->last_read_req);
2938
2939 if (from == NULL || to == from)
2940 return 0;
2941
2942 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2943 return i915_gem_object_wait_rendering(obj, false);
2944
2945 idx = intel_ring_sync_index(from, to);
2946
2947 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2948 /* Optimization: Avoid semaphore sync when we are sure we already
2949 * waited for an object with higher seqno */
2950 if (seqno <= from->semaphore.sync_seqno[idx])
2951 return 0;
2952
2953 ret = i915_gem_check_olr(obj->last_read_req);
2954 if (ret)
2955 return ret;
2956
2957 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2958 ret = to->semaphore.sync_to(to, from, seqno);
2959 if (!ret)
2960 /* We use last_read_req because sync_to()
2961 * might have just caused seqno wrap under
2962 * the radar.
2963 */
2964 from->semaphore.sync_seqno[idx] =
2965 i915_gem_request_get_seqno(obj->last_read_req);
2966
2967 return ret;
2968 }
2969
2970 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2971 {
2972 u32 old_write_domain, old_read_domains;
2973
2974 /* Force a pagefault for domain tracking on next user access */
2975 i915_gem_release_mmap(obj);
2976
2977 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2978 return;
2979
2980 /* Wait for any direct GTT access to complete */
2981 mb();
2982
2983 old_read_domains = obj->base.read_domains;
2984 old_write_domain = obj->base.write_domain;
2985
2986 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2987 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2988
2989 trace_i915_gem_object_change_domain(obj,
2990 old_read_domains,
2991 old_write_domain);
2992 }
2993
2994 int i915_vma_unbind(struct i915_vma *vma)
2995 {
2996 struct drm_i915_gem_object *obj = vma->obj;
2997 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2998 int ret;
2999
3000 if (list_empty(&vma->vma_link))
3001 return 0;
3002
3003 if (!drm_mm_node_allocated(&vma->node)) {
3004 i915_gem_vma_destroy(vma);
3005 return 0;
3006 }
3007
3008 if (vma->pin_count)
3009 return -EBUSY;
3010
3011 BUG_ON(obj->pages == NULL);
3012
3013 ret = i915_gem_object_finish_gpu(obj);
3014 if (ret)
3015 return ret;
3016 /* Continue on if we fail due to EIO, the GPU is hung so we
3017 * should be safe and we need to cleanup or else we might
3018 * cause memory corruption through use-after-free.
3019 */
3020
3021 if (i915_is_ggtt(vma->vm) &&
3022 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3023 i915_gem_object_finish_gtt(obj);
3024
3025 /* release the fence reg _after_ flushing */
3026 ret = i915_gem_object_put_fence(obj);
3027 if (ret)
3028 return ret;
3029 }
3030
3031 trace_i915_vma_unbind(vma);
3032
3033 vma->unbind_vma(vma);
3034
3035 list_del_init(&vma->mm_list);
3036 if (i915_is_ggtt(vma->vm)) {
3037 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3038 obj->map_and_fenceable = false;
3039 } else if (vma->ggtt_view.pages) {
3040 sg_free_table(vma->ggtt_view.pages);
3041 kfree(vma->ggtt_view.pages);
3042 vma->ggtt_view.pages = NULL;
3043 }
3044 }
3045
3046 drm_mm_remove_node(&vma->node);
3047 i915_gem_vma_destroy(vma);
3048
3049 /* Since the unbound list is global, only move to that list if
3050 * no more VMAs exist. */
3051 if (list_empty(&obj->vma_list)) {
3052 /* Throw away the active reference before
3053 * moving to the unbound list. */
3054 i915_gem_object_retire(obj);
3055
3056 i915_gem_gtt_finish_object(obj);
3057 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3058 }
3059
3060 /* And finally now the object is completely decoupled from this vma,
3061 * we can drop its hold on the backing storage and allow it to be
3062 * reaped by the shrinker.
3063 */
3064 i915_gem_object_unpin_pages(obj);
3065
3066 return 0;
3067 }
3068
3069 int i915_gpu_idle(struct drm_device *dev)
3070 {
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_engine_cs *ring;
3073 int ret, i;
3074
3075 /* Flush everything onto the inactive list. */
3076 for_each_ring(ring, dev_priv, i) {
3077 if (!i915.enable_execlists) {
3078 ret = i915_switch_context(ring, ring->default_context);
3079 if (ret)
3080 return ret;
3081 }
3082
3083 ret = intel_ring_idle(ring);
3084 if (ret)
3085 return ret;
3086 }
3087
3088 return 0;
3089 }
3090
3091 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3092 struct drm_i915_gem_object *obj)
3093 {
3094 struct drm_i915_private *dev_priv = dev->dev_private;
3095 int fence_reg;
3096 int fence_pitch_shift;
3097
3098 if (INTEL_INFO(dev)->gen >= 6) {
3099 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3100 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3101 } else {
3102 fence_reg = FENCE_REG_965_0;
3103 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3104 }
3105
3106 fence_reg += reg * 8;
3107
3108 /* To w/a incoherency with non-atomic 64-bit register updates,
3109 * we split the 64-bit update into two 32-bit writes. In order
3110 * for a partial fence not to be evaluated between writes, we
3111 * precede the update with write to turn off the fence register,
3112 * and only enable the fence as the last step.
3113 *
3114 * For extra levels of paranoia, we make sure each step lands
3115 * before applying the next step.
3116 */
3117 I915_WRITE(fence_reg, 0);
3118 POSTING_READ(fence_reg);
3119
3120 if (obj) {
3121 u32 size = i915_gem_obj_ggtt_size(obj);
3122 uint64_t val;
3123
3124 /* Adjust fence size to match tiled area */
3125 if (obj->tiling_mode != I915_TILING_NONE) {
3126 uint32_t row_size = obj->stride *
3127 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3128 size = (size / row_size) * row_size;
3129 }
3130
3131 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3132 0xfffff000) << 32;
3133 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3134 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3135 if (obj->tiling_mode == I915_TILING_Y)
3136 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3137 val |= I965_FENCE_REG_VALID;
3138
3139 I915_WRITE(fence_reg + 4, val >> 32);
3140 POSTING_READ(fence_reg + 4);
3141
3142 I915_WRITE(fence_reg + 0, val);
3143 POSTING_READ(fence_reg);
3144 } else {
3145 I915_WRITE(fence_reg + 4, 0);
3146 POSTING_READ(fence_reg + 4);
3147 }
3148 }
3149
3150 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3151 struct drm_i915_gem_object *obj)
3152 {
3153 struct drm_i915_private *dev_priv = dev->dev_private;
3154 u32 val;
3155
3156 if (obj) {
3157 u32 size = i915_gem_obj_ggtt_size(obj);
3158 int pitch_val;
3159 int tile_width;
3160
3161 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3162 (size & -size) != size ||
3163 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3164 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3165 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3166
3167 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3168 tile_width = 128;
3169 else
3170 tile_width = 512;
3171
3172 /* Note: pitch better be a power of two tile widths */
3173 pitch_val = obj->stride / tile_width;
3174 pitch_val = ffs(pitch_val) - 1;
3175
3176 val = i915_gem_obj_ggtt_offset(obj);
3177 if (obj->tiling_mode == I915_TILING_Y)
3178 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3179 val |= I915_FENCE_SIZE_BITS(size);
3180 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3181 val |= I830_FENCE_REG_VALID;
3182 } else
3183 val = 0;
3184
3185 if (reg < 8)
3186 reg = FENCE_REG_830_0 + reg * 4;
3187 else
3188 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3189
3190 I915_WRITE(reg, val);
3191 POSTING_READ(reg);
3192 }
3193
3194 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3195 struct drm_i915_gem_object *obj)
3196 {
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 uint32_t val;
3199
3200 if (obj) {
3201 u32 size = i915_gem_obj_ggtt_size(obj);
3202 uint32_t pitch_val;
3203
3204 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3205 (size & -size) != size ||
3206 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3207 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3208 i915_gem_obj_ggtt_offset(obj), size);
3209
3210 pitch_val = obj->stride / 128;
3211 pitch_val = ffs(pitch_val) - 1;
3212
3213 val = i915_gem_obj_ggtt_offset(obj);
3214 if (obj->tiling_mode == I915_TILING_Y)
3215 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3216 val |= I830_FENCE_SIZE_BITS(size);
3217 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3218 val |= I830_FENCE_REG_VALID;
3219 } else
3220 val = 0;
3221
3222 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3223 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3224 }
3225
3226 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3227 {
3228 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3229 }
3230
3231 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3232 struct drm_i915_gem_object *obj)
3233 {
3234 struct drm_i915_private *dev_priv = dev->dev_private;
3235
3236 /* Ensure that all CPU reads are completed before installing a fence
3237 * and all writes before removing the fence.
3238 */
3239 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3240 mb();
3241
3242 WARN(obj && (!obj->stride || !obj->tiling_mode),
3243 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3244 obj->stride, obj->tiling_mode);
3245
3246 if (IS_GEN2(dev))
3247 i830_write_fence_reg(dev, reg, obj);
3248 else if (IS_GEN3(dev))
3249 i915_write_fence_reg(dev, reg, obj);
3250 else if (INTEL_INFO(dev)->gen >= 4)
3251 i965_write_fence_reg(dev, reg, obj);
3252
3253 /* And similarly be paranoid that no direct access to this region
3254 * is reordered to before the fence is installed.
3255 */
3256 if (i915_gem_object_needs_mb(obj))
3257 mb();
3258 }
3259
3260 static inline int fence_number(struct drm_i915_private *dev_priv,
3261 struct drm_i915_fence_reg *fence)
3262 {
3263 return fence - dev_priv->fence_regs;
3264 }
3265
3266 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3267 struct drm_i915_fence_reg *fence,
3268 bool enable)
3269 {
3270 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3271 int reg = fence_number(dev_priv, fence);
3272
3273 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3274
3275 if (enable) {
3276 obj->fence_reg = reg;
3277 fence->obj = obj;
3278 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3279 } else {
3280 obj->fence_reg = I915_FENCE_REG_NONE;
3281 fence->obj = NULL;
3282 list_del_init(&fence->lru_list);
3283 }
3284 obj->fence_dirty = false;
3285 }
3286
3287 static int
3288 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3289 {
3290 if (obj->last_fenced_req) {
3291 int ret = i915_wait_request(obj->last_fenced_req);
3292 if (ret)
3293 return ret;
3294
3295 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3296 }
3297
3298 return 0;
3299 }
3300
3301 int
3302 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3303 {
3304 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3305 struct drm_i915_fence_reg *fence;
3306 int ret;
3307
3308 ret = i915_gem_object_wait_fence(obj);
3309 if (ret)
3310 return ret;
3311
3312 if (obj->fence_reg == I915_FENCE_REG_NONE)
3313 return 0;
3314
3315 fence = &dev_priv->fence_regs[obj->fence_reg];
3316
3317 if (WARN_ON(fence->pin_count))
3318 return -EBUSY;
3319
3320 i915_gem_object_fence_lost(obj);
3321 i915_gem_object_update_fence(obj, fence, false);
3322
3323 return 0;
3324 }
3325
3326 static struct drm_i915_fence_reg *
3327 i915_find_fence_reg(struct drm_device *dev)
3328 {
3329 struct drm_i915_private *dev_priv = dev->dev_private;
3330 struct drm_i915_fence_reg *reg, *avail;
3331 int i;
3332
3333 /* First try to find a free reg */
3334 avail = NULL;
3335 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3336 reg = &dev_priv->fence_regs[i];
3337 if (!reg->obj)
3338 return reg;
3339
3340 if (!reg->pin_count)
3341 avail = reg;
3342 }
3343
3344 if (avail == NULL)
3345 goto deadlock;
3346
3347 /* None available, try to steal one or wait for a user to finish */
3348 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3349 if (reg->pin_count)
3350 continue;
3351
3352 return reg;
3353 }
3354
3355 deadlock:
3356 /* Wait for completion of pending flips which consume fences */
3357 if (intel_has_pending_fb_unpin(dev))
3358 return ERR_PTR(-EAGAIN);
3359
3360 return ERR_PTR(-EDEADLK);
3361 }
3362
3363 /**
3364 * i915_gem_object_get_fence - set up fencing for an object
3365 * @obj: object to map through a fence reg
3366 *
3367 * When mapping objects through the GTT, userspace wants to be able to write
3368 * to them without having to worry about swizzling if the object is tiled.
3369 * This function walks the fence regs looking for a free one for @obj,
3370 * stealing one if it can't find any.
3371 *
3372 * It then sets up the reg based on the object's properties: address, pitch
3373 * and tiling format.
3374 *
3375 * For an untiled surface, this removes any existing fence.
3376 */
3377 int
3378 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3379 {
3380 struct drm_device *dev = obj->base.dev;
3381 struct drm_i915_private *dev_priv = dev->dev_private;
3382 bool enable = obj->tiling_mode != I915_TILING_NONE;
3383 struct drm_i915_fence_reg *reg;
3384 int ret;
3385
3386 /* Have we updated the tiling parameters upon the object and so
3387 * will need to serialise the write to the associated fence register?
3388 */
3389 if (obj->fence_dirty) {
3390 ret = i915_gem_object_wait_fence(obj);
3391 if (ret)
3392 return ret;
3393 }
3394
3395 /* Just update our place in the LRU if our fence is getting reused. */
3396 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3397 reg = &dev_priv->fence_regs[obj->fence_reg];
3398 if (!obj->fence_dirty) {
3399 list_move_tail(&reg->lru_list,
3400 &dev_priv->mm.fence_list);
3401 return 0;
3402 }
3403 } else if (enable) {
3404 if (WARN_ON(!obj->map_and_fenceable))
3405 return -EINVAL;
3406
3407 reg = i915_find_fence_reg(dev);
3408 if (IS_ERR(reg))
3409 return PTR_ERR(reg);
3410
3411 if (reg->obj) {
3412 struct drm_i915_gem_object *old = reg->obj;
3413
3414 ret = i915_gem_object_wait_fence(old);
3415 if (ret)
3416 return ret;
3417
3418 i915_gem_object_fence_lost(old);
3419 }
3420 } else
3421 return 0;
3422
3423 i915_gem_object_update_fence(obj, reg, enable);
3424
3425 return 0;
3426 }
3427
3428 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3429 unsigned long cache_level)
3430 {
3431 struct drm_mm_node *gtt_space = &vma->node;
3432 struct drm_mm_node *other;
3433
3434 /*
3435 * On some machines we have to be careful when putting differing types
3436 * of snoopable memory together to avoid the prefetcher crossing memory
3437 * domains and dying. During vm initialisation, we decide whether or not
3438 * these constraints apply and set the drm_mm.color_adjust
3439 * appropriately.
3440 */
3441 if (vma->vm->mm.color_adjust == NULL)
3442 return true;
3443
3444 if (!drm_mm_node_allocated(gtt_space))
3445 return true;
3446
3447 if (list_empty(&gtt_space->node_list))
3448 return true;
3449
3450 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3451 if (other->allocated && !other->hole_follows && other->color != cache_level)
3452 return false;
3453
3454 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3455 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3456 return false;
3457
3458 return true;
3459 }
3460
3461 /**
3462 * Finds free space in the GTT aperture and binds the object there.
3463 */
3464 static struct i915_vma *
3465 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3466 struct i915_address_space *vm,
3467 const struct i915_ggtt_view *ggtt_view,
3468 unsigned alignment,
3469 uint64_t flags)
3470 {
3471 struct drm_device *dev = obj->base.dev;
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 u32 size, fence_size, fence_alignment, unfenced_alignment;
3474 unsigned long start =
3475 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3476 unsigned long end =
3477 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3478 struct i915_vma *vma;
3479 int ret;
3480
3481 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3482 return ERR_PTR(-EINVAL);
3483
3484 fence_size = i915_gem_get_gtt_size(dev,
3485 obj->base.size,
3486 obj->tiling_mode);
3487 fence_alignment = i915_gem_get_gtt_alignment(dev,
3488 obj->base.size,
3489 obj->tiling_mode, true);
3490 unfenced_alignment =
3491 i915_gem_get_gtt_alignment(dev,
3492 obj->base.size,
3493 obj->tiling_mode, false);
3494
3495 if (alignment == 0)
3496 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3497 unfenced_alignment;
3498 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3499 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3500 return ERR_PTR(-EINVAL);
3501 }
3502
3503 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3504
3505 /* If the object is bigger than the entire aperture, reject it early
3506 * before evicting everything in a vain attempt to find space.
3507 */
3508 if (obj->base.size > end) {
3509 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3510 obj->base.size,
3511 flags & PIN_MAPPABLE ? "mappable" : "total",
3512 end);
3513 return ERR_PTR(-E2BIG);
3514 }
3515
3516 ret = i915_gem_object_get_pages(obj);
3517 if (ret)
3518 return ERR_PTR(ret);
3519
3520 i915_gem_object_pin_pages(obj);
3521
3522 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3523 i915_gem_obj_lookup_or_create_vma(obj, vm);
3524
3525 if (IS_ERR(vma))
3526 goto err_unpin;
3527
3528 search_free:
3529 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3530 size, alignment,
3531 obj->cache_level,
3532 start, end,
3533 DRM_MM_SEARCH_DEFAULT,
3534 DRM_MM_CREATE_DEFAULT);
3535 if (ret) {
3536 ret = i915_gem_evict_something(dev, vm, size, alignment,
3537 obj->cache_level,
3538 start, end,
3539 flags);
3540 if (ret == 0)
3541 goto search_free;
3542
3543 goto err_free_vma;
3544 }
3545 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3546 ret = -EINVAL;
3547 goto err_remove_node;
3548 }
3549
3550 ret = i915_gem_gtt_prepare_object(obj);
3551 if (ret)
3552 goto err_remove_node;
3553
3554 /* allocate before insert / bind */
3555 if (vma->vm->allocate_va_range) {
3556 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3557 VM_TO_TRACE_NAME(vma->vm));
3558 ret = vma->vm->allocate_va_range(vma->vm,
3559 vma->node.start,
3560 vma->node.size);
3561 if (ret)
3562 goto err_remove_node;
3563 }
3564
3565 trace_i915_vma_bind(vma, flags);
3566 ret = i915_vma_bind(vma, obj->cache_level,
3567 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3568 if (ret)
3569 goto err_finish_gtt;
3570
3571 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3572 list_add_tail(&vma->mm_list, &vm->inactive_list);
3573
3574 return vma;
3575
3576 err_finish_gtt:
3577 i915_gem_gtt_finish_object(obj);
3578 err_remove_node:
3579 drm_mm_remove_node(&vma->node);
3580 err_free_vma:
3581 i915_gem_vma_destroy(vma);
3582 vma = ERR_PTR(ret);
3583 err_unpin:
3584 i915_gem_object_unpin_pages(obj);
3585 return vma;
3586 }
3587
3588 bool
3589 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3590 bool force)
3591 {
3592 /* If we don't have a page list set up, then we're not pinned
3593 * to GPU, and we can ignore the cache flush because it'll happen
3594 * again at bind time.
3595 */
3596 if (obj->pages == NULL)
3597 return false;
3598
3599 /*
3600 * Stolen memory is always coherent with the GPU as it is explicitly
3601 * marked as wc by the system, or the system is cache-coherent.
3602 */
3603 if (obj->stolen || obj->phys_handle)
3604 return false;
3605
3606 /* If the GPU is snooping the contents of the CPU cache,
3607 * we do not need to manually clear the CPU cache lines. However,
3608 * the caches are only snooped when the render cache is
3609 * flushed/invalidated. As we always have to emit invalidations
3610 * and flushes when moving into and out of the RENDER domain, correct
3611 * snooping behaviour occurs naturally as the result of our domain
3612 * tracking.
3613 */
3614 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3615 obj->cache_dirty = true;
3616 return false;
3617 }
3618
3619 trace_i915_gem_object_clflush(obj);
3620 drm_clflush_sg(obj->pages);
3621 obj->cache_dirty = false;
3622
3623 return true;
3624 }
3625
3626 /** Flushes the GTT write domain for the object if it's dirty. */
3627 static void
3628 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3629 {
3630 uint32_t old_write_domain;
3631
3632 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3633 return;
3634
3635 /* No actual flushing is required for the GTT write domain. Writes
3636 * to it immediately go to main memory as far as we know, so there's
3637 * no chipset flush. It also doesn't land in render cache.
3638 *
3639 * However, we do have to enforce the order so that all writes through
3640 * the GTT land before any writes to the device, such as updates to
3641 * the GATT itself.
3642 */
3643 wmb();
3644
3645 old_write_domain = obj->base.write_domain;
3646 obj->base.write_domain = 0;
3647
3648 intel_fb_obj_flush(obj, false);
3649
3650 trace_i915_gem_object_change_domain(obj,
3651 obj->base.read_domains,
3652 old_write_domain);
3653 }
3654
3655 /** Flushes the CPU write domain for the object if it's dirty. */
3656 static void
3657 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3658 {
3659 uint32_t old_write_domain;
3660
3661 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3662 return;
3663
3664 if (i915_gem_clflush_object(obj, obj->pin_display))
3665 i915_gem_chipset_flush(obj->base.dev);
3666
3667 old_write_domain = obj->base.write_domain;
3668 obj->base.write_domain = 0;
3669
3670 intel_fb_obj_flush(obj, false);
3671
3672 trace_i915_gem_object_change_domain(obj,
3673 obj->base.read_domains,
3674 old_write_domain);
3675 }
3676
3677 /**
3678 * Moves a single object to the GTT read, and possibly write domain.
3679 *
3680 * This function returns when the move is complete, including waiting on
3681 * flushes to occur.
3682 */
3683 int
3684 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3685 {
3686 uint32_t old_write_domain, old_read_domains;
3687 struct i915_vma *vma;
3688 int ret;
3689
3690 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3691 return 0;
3692
3693 ret = i915_gem_object_wait_rendering(obj, !write);
3694 if (ret)
3695 return ret;
3696
3697 i915_gem_object_retire(obj);
3698
3699 /* Flush and acquire obj->pages so that we are coherent through
3700 * direct access in memory with previous cached writes through
3701 * shmemfs and that our cache domain tracking remains valid.
3702 * For example, if the obj->filp was moved to swap without us
3703 * being notified and releasing the pages, we would mistakenly
3704 * continue to assume that the obj remained out of the CPU cached
3705 * domain.
3706 */
3707 ret = i915_gem_object_get_pages(obj);
3708 if (ret)
3709 return ret;
3710
3711 i915_gem_object_flush_cpu_write_domain(obj);
3712
3713 /* Serialise direct access to this object with the barriers for
3714 * coherent writes from the GPU, by effectively invalidating the
3715 * GTT domain upon first access.
3716 */
3717 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3718 mb();
3719
3720 old_write_domain = obj->base.write_domain;
3721 old_read_domains = obj->base.read_domains;
3722
3723 /* It should now be out of any other write domains, and we can update
3724 * the domain values for our changes.
3725 */
3726 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3727 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3728 if (write) {
3729 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3730 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3731 obj->dirty = 1;
3732 }
3733
3734 if (write)
3735 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3736
3737 trace_i915_gem_object_change_domain(obj,
3738 old_read_domains,
3739 old_write_domain);
3740
3741 /* And bump the LRU for this access */
3742 vma = i915_gem_obj_to_ggtt(obj);
3743 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3744 list_move_tail(&vma->mm_list,
3745 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3746
3747 return 0;
3748 }
3749
3750 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3751 enum i915_cache_level cache_level)
3752 {
3753 struct drm_device *dev = obj->base.dev;
3754 struct i915_vma *vma, *next;
3755 int ret;
3756
3757 if (obj->cache_level == cache_level)
3758 return 0;
3759
3760 if (i915_gem_obj_is_pinned(obj)) {
3761 DRM_DEBUG("can not change the cache level of pinned objects\n");
3762 return -EBUSY;
3763 }
3764
3765 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3766 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3767 ret = i915_vma_unbind(vma);
3768 if (ret)
3769 return ret;
3770 }
3771 }
3772
3773 if (i915_gem_obj_bound_any(obj)) {
3774 ret = i915_gem_object_finish_gpu(obj);
3775 if (ret)
3776 return ret;
3777
3778 i915_gem_object_finish_gtt(obj);
3779
3780 /* Before SandyBridge, you could not use tiling or fence
3781 * registers with snooped memory, so relinquish any fences
3782 * currently pointing to our region in the aperture.
3783 */
3784 if (INTEL_INFO(dev)->gen < 6) {
3785 ret = i915_gem_object_put_fence(obj);
3786 if (ret)
3787 return ret;
3788 }
3789
3790 list_for_each_entry(vma, &obj->vma_list, vma_link)
3791 if (drm_mm_node_allocated(&vma->node)) {
3792 ret = i915_vma_bind(vma, cache_level,
3793 vma->bound & GLOBAL_BIND);
3794 if (ret)
3795 return ret;
3796 }
3797 }
3798
3799 list_for_each_entry(vma, &obj->vma_list, vma_link)
3800 vma->node.color = cache_level;
3801 obj->cache_level = cache_level;
3802
3803 if (obj->cache_dirty &&
3804 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3805 cpu_write_needs_clflush(obj)) {
3806 if (i915_gem_clflush_object(obj, true))
3807 i915_gem_chipset_flush(obj->base.dev);
3808 }
3809
3810 return 0;
3811 }
3812
3813 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3814 struct drm_file *file)
3815 {
3816 struct drm_i915_gem_caching *args = data;
3817 struct drm_i915_gem_object *obj;
3818 int ret;
3819
3820 ret = i915_mutex_lock_interruptible(dev);
3821 if (ret)
3822 return ret;
3823
3824 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3825 if (&obj->base == NULL) {
3826 ret = -ENOENT;
3827 goto unlock;
3828 }
3829
3830 switch (obj->cache_level) {
3831 case I915_CACHE_LLC:
3832 case I915_CACHE_L3_LLC:
3833 args->caching = I915_CACHING_CACHED;
3834 break;
3835
3836 case I915_CACHE_WT:
3837 args->caching = I915_CACHING_DISPLAY;
3838 break;
3839
3840 default:
3841 args->caching = I915_CACHING_NONE;
3842 break;
3843 }
3844
3845 drm_gem_object_unreference(&obj->base);
3846 unlock:
3847 mutex_unlock(&dev->struct_mutex);
3848 return ret;
3849 }
3850
3851 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3852 struct drm_file *file)
3853 {
3854 struct drm_i915_gem_caching *args = data;
3855 struct drm_i915_gem_object *obj;
3856 enum i915_cache_level level;
3857 int ret;
3858
3859 switch (args->caching) {
3860 case I915_CACHING_NONE:
3861 level = I915_CACHE_NONE;
3862 break;
3863 case I915_CACHING_CACHED:
3864 level = I915_CACHE_LLC;
3865 break;
3866 case I915_CACHING_DISPLAY:
3867 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3868 break;
3869 default:
3870 return -EINVAL;
3871 }
3872
3873 ret = i915_mutex_lock_interruptible(dev);
3874 if (ret)
3875 return ret;
3876
3877 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3878 if (&obj->base == NULL) {
3879 ret = -ENOENT;
3880 goto unlock;
3881 }
3882
3883 ret = i915_gem_object_set_cache_level(obj, level);
3884
3885 drm_gem_object_unreference(&obj->base);
3886 unlock:
3887 mutex_unlock(&dev->struct_mutex);
3888 return ret;
3889 }
3890
3891 static bool is_pin_display(struct drm_i915_gem_object *obj)
3892 {
3893 struct i915_vma *vma;
3894
3895 vma = i915_gem_obj_to_ggtt(obj);
3896 if (!vma)
3897 return false;
3898
3899 /* There are 2 sources that pin objects:
3900 * 1. The display engine (scanouts, sprites, cursors);
3901 * 2. Reservations for execbuffer;
3902 *
3903 * We can ignore reservations as we hold the struct_mutex and
3904 * are only called outside of the reservation path.
3905 */
3906 return vma->pin_count;
3907 }
3908
3909 /*
3910 * Prepare buffer for display plane (scanout, cursors, etc).
3911 * Can be called from an uninterruptible phase (modesetting) and allows
3912 * any flushes to be pipelined (for pageflips).
3913 */
3914 int
3915 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3916 u32 alignment,
3917 struct intel_engine_cs *pipelined,
3918 const struct i915_ggtt_view *view)
3919 {
3920 u32 old_read_domains, old_write_domain;
3921 bool was_pin_display;
3922 int ret;
3923
3924 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3925 ret = i915_gem_object_sync(obj, pipelined);
3926 if (ret)
3927 return ret;
3928 }
3929
3930 /* Mark the pin_display early so that we account for the
3931 * display coherency whilst setting up the cache domains.
3932 */
3933 was_pin_display = obj->pin_display;
3934 obj->pin_display = true;
3935
3936 /* The display engine is not coherent with the LLC cache on gen6. As
3937 * a result, we make sure that the pinning that is about to occur is
3938 * done with uncached PTEs. This is lowest common denominator for all
3939 * chipsets.
3940 *
3941 * However for gen6+, we could do better by using the GFDT bit instead
3942 * of uncaching, which would allow us to flush all the LLC-cached data
3943 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3944 */
3945 ret = i915_gem_object_set_cache_level(obj,
3946 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3947 if (ret)
3948 goto err_unpin_display;
3949
3950 /* As the user may map the buffer once pinned in the display plane
3951 * (e.g. libkms for the bootup splash), we have to ensure that we
3952 * always use map_and_fenceable for all scanout buffers.
3953 */
3954 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3955 view->type == I915_GGTT_VIEW_NORMAL ?
3956 PIN_MAPPABLE : 0);
3957 if (ret)
3958 goto err_unpin_display;
3959
3960 i915_gem_object_flush_cpu_write_domain(obj);
3961
3962 old_write_domain = obj->base.write_domain;
3963 old_read_domains = obj->base.read_domains;
3964
3965 /* It should now be out of any other write domains, and we can update
3966 * the domain values for our changes.
3967 */
3968 obj->base.write_domain = 0;
3969 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3970
3971 trace_i915_gem_object_change_domain(obj,
3972 old_read_domains,
3973 old_write_domain);
3974
3975 return 0;
3976
3977 err_unpin_display:
3978 WARN_ON(was_pin_display != is_pin_display(obj));
3979 obj->pin_display = was_pin_display;
3980 return ret;
3981 }
3982
3983 void
3984 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3985 const struct i915_ggtt_view *view)
3986 {
3987 i915_gem_object_ggtt_unpin_view(obj, view);
3988
3989 obj->pin_display = is_pin_display(obj);
3990 }
3991
3992 int
3993 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3994 {
3995 int ret;
3996
3997 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3998 return 0;
3999
4000 ret = i915_gem_object_wait_rendering(obj, false);
4001 if (ret)
4002 return ret;
4003
4004 /* Ensure that we invalidate the GPU's caches and TLBs. */
4005 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4006 return 0;
4007 }
4008
4009 /**
4010 * Moves a single object to the CPU read, and possibly write domain.
4011 *
4012 * This function returns when the move is complete, including waiting on
4013 * flushes to occur.
4014 */
4015 int
4016 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4017 {
4018 uint32_t old_write_domain, old_read_domains;
4019 int ret;
4020
4021 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4022 return 0;
4023
4024 ret = i915_gem_object_wait_rendering(obj, !write);
4025 if (ret)
4026 return ret;
4027
4028 i915_gem_object_retire(obj);
4029 i915_gem_object_flush_gtt_write_domain(obj);
4030
4031 old_write_domain = obj->base.write_domain;
4032 old_read_domains = obj->base.read_domains;
4033
4034 /* Flush the CPU cache if it's still invalid. */
4035 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4036 i915_gem_clflush_object(obj, false);
4037
4038 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4039 }
4040
4041 /* It should now be out of any other write domains, and we can update
4042 * the domain values for our changes.
4043 */
4044 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4045
4046 /* If we're writing through the CPU, then the GPU read domains will
4047 * need to be invalidated at next use.
4048 */
4049 if (write) {
4050 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4051 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4052 }
4053
4054 if (write)
4055 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4056
4057 trace_i915_gem_object_change_domain(obj,
4058 old_read_domains,
4059 old_write_domain);
4060
4061 return 0;
4062 }
4063
4064 /* Throttle our rendering by waiting until the ring has completed our requests
4065 * emitted over 20 msec ago.
4066 *
4067 * Note that if we were to use the current jiffies each time around the loop,
4068 * we wouldn't escape the function with any frames outstanding if the time to
4069 * render a frame was over 20ms.
4070 *
4071 * This should get us reasonable parallelism between CPU and GPU but also
4072 * relatively low latency when blocking on a particular request to finish.
4073 */
4074 static int
4075 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4076 {
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4078 struct drm_i915_file_private *file_priv = file->driver_priv;
4079 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4080 struct drm_i915_gem_request *request, *target = NULL;
4081 unsigned reset_counter;
4082 int ret;
4083
4084 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4085 if (ret)
4086 return ret;
4087
4088 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4089 if (ret)
4090 return ret;
4091
4092 spin_lock(&file_priv->mm.lock);
4093 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4094 if (time_after_eq(request->emitted_jiffies, recent_enough))
4095 break;
4096
4097 target = request;
4098 }
4099 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4100 if (target)
4101 i915_gem_request_reference(target);
4102 spin_unlock(&file_priv->mm.lock);
4103
4104 if (target == NULL)
4105 return 0;
4106
4107 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4108 if (ret == 0)
4109 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4110
4111 i915_gem_request_unreference__unlocked(target);
4112
4113 return ret;
4114 }
4115
4116 static bool
4117 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4118 {
4119 struct drm_i915_gem_object *obj = vma->obj;
4120
4121 if (alignment &&
4122 vma->node.start & (alignment - 1))
4123 return true;
4124
4125 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4126 return true;
4127
4128 if (flags & PIN_OFFSET_BIAS &&
4129 vma->node.start < (flags & PIN_OFFSET_MASK))
4130 return true;
4131
4132 return false;
4133 }
4134
4135 static int
4136 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4137 struct i915_address_space *vm,
4138 const struct i915_ggtt_view *ggtt_view,
4139 uint32_t alignment,
4140 uint64_t flags)
4141 {
4142 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4143 struct i915_vma *vma;
4144 unsigned bound;
4145 int ret;
4146
4147 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4148 return -ENODEV;
4149
4150 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4151 return -EINVAL;
4152
4153 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4154 return -EINVAL;
4155
4156 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4157 return -EINVAL;
4158
4159 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4160 i915_gem_obj_to_vma(obj, vm);
4161
4162 if (IS_ERR(vma))
4163 return PTR_ERR(vma);
4164
4165 if (vma) {
4166 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4167 return -EBUSY;
4168
4169 if (i915_vma_misplaced(vma, alignment, flags)) {
4170 unsigned long offset;
4171 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4172 i915_gem_obj_offset(obj, vm);
4173 WARN(vma->pin_count,
4174 "bo is already pinned in %s with incorrect alignment:"
4175 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4176 " obj->map_and_fenceable=%d\n",
4177 ggtt_view ? "ggtt" : "ppgtt",
4178 offset,
4179 alignment,
4180 !!(flags & PIN_MAPPABLE),
4181 obj->map_and_fenceable);
4182 ret = i915_vma_unbind(vma);
4183 if (ret)
4184 return ret;
4185
4186 vma = NULL;
4187 }
4188 }
4189
4190 bound = vma ? vma->bound : 0;
4191 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4192 /* In true PPGTT, bind has possibly changed PDEs, which
4193 * means we must do a context switch before the GPU can
4194 * accurately read some of the VMAs.
4195 */
4196 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4197 flags);
4198 if (IS_ERR(vma))
4199 return PTR_ERR(vma);
4200 }
4201
4202 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4203 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4204 if (ret)
4205 return ret;
4206 }
4207
4208 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4209 bool mappable, fenceable;
4210 u32 fence_size, fence_alignment;
4211
4212 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4213 obj->base.size,
4214 obj->tiling_mode);
4215 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4216 obj->base.size,
4217 obj->tiling_mode,
4218 true);
4219
4220 fenceable = (vma->node.size == fence_size &&
4221 (vma->node.start & (fence_alignment - 1)) == 0);
4222
4223 mappable = (vma->node.start + fence_size <=
4224 dev_priv->gtt.mappable_end);
4225
4226 obj->map_and_fenceable = mappable && fenceable;
4227 }
4228
4229 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4230
4231 vma->pin_count++;
4232 if (flags & PIN_MAPPABLE)
4233 obj->pin_mappable |= true;
4234
4235 return 0;
4236 }
4237
4238 int
4239 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4240 struct i915_address_space *vm,
4241 uint32_t alignment,
4242 uint64_t flags)
4243 {
4244 return i915_gem_object_do_pin(obj, vm,
4245 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4246 alignment, flags);
4247 }
4248
4249 int
4250 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4251 const struct i915_ggtt_view *view,
4252 uint32_t alignment,
4253 uint64_t flags)
4254 {
4255 if (WARN_ONCE(!view, "no view specified"))
4256 return -EINVAL;
4257
4258 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4259 alignment, flags | PIN_GLOBAL);
4260 }
4261
4262 void
4263 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4264 const struct i915_ggtt_view *view)
4265 {
4266 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4267
4268 BUG_ON(!vma);
4269 WARN_ON(vma->pin_count == 0);
4270 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4271
4272 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4273 obj->pin_mappable = false;
4274 }
4275
4276 bool
4277 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4278 {
4279 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4280 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4281 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4282
4283 WARN_ON(!ggtt_vma ||
4284 dev_priv->fence_regs[obj->fence_reg].pin_count >
4285 ggtt_vma->pin_count);
4286 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4287 return true;
4288 } else
4289 return false;
4290 }
4291
4292 void
4293 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4294 {
4295 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4296 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4297 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4298 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4299 }
4300 }
4301
4302 int
4303 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4304 struct drm_file *file)
4305 {
4306 struct drm_i915_gem_busy *args = data;
4307 struct drm_i915_gem_object *obj;
4308 int ret;
4309
4310 ret = i915_mutex_lock_interruptible(dev);
4311 if (ret)
4312 return ret;
4313
4314 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4315 if (&obj->base == NULL) {
4316 ret = -ENOENT;
4317 goto unlock;
4318 }
4319
4320 /* Count all active objects as busy, even if they are currently not used
4321 * by the gpu. Users of this interface expect objects to eventually
4322 * become non-busy without any further actions, therefore emit any
4323 * necessary flushes here.
4324 */
4325 ret = i915_gem_object_flush_active(obj);
4326
4327 args->busy = obj->active;
4328 if (obj->last_read_req) {
4329 struct intel_engine_cs *ring;
4330 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4331 ring = i915_gem_request_get_ring(obj->last_read_req);
4332 args->busy |= intel_ring_flag(ring) << 16;
4333 }
4334
4335 drm_gem_object_unreference(&obj->base);
4336 unlock:
4337 mutex_unlock(&dev->struct_mutex);
4338 return ret;
4339 }
4340
4341 int
4342 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4343 struct drm_file *file_priv)
4344 {
4345 return i915_gem_ring_throttle(dev, file_priv);
4346 }
4347
4348 int
4349 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4350 struct drm_file *file_priv)
4351 {
4352 struct drm_i915_private *dev_priv = dev->dev_private;
4353 struct drm_i915_gem_madvise *args = data;
4354 struct drm_i915_gem_object *obj;
4355 int ret;
4356
4357 switch (args->madv) {
4358 case I915_MADV_DONTNEED:
4359 case I915_MADV_WILLNEED:
4360 break;
4361 default:
4362 return -EINVAL;
4363 }
4364
4365 ret = i915_mutex_lock_interruptible(dev);
4366 if (ret)
4367 return ret;
4368
4369 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4370 if (&obj->base == NULL) {
4371 ret = -ENOENT;
4372 goto unlock;
4373 }
4374
4375 if (i915_gem_obj_is_pinned(obj)) {
4376 ret = -EINVAL;
4377 goto out;
4378 }
4379
4380 if (obj->pages &&
4381 obj->tiling_mode != I915_TILING_NONE &&
4382 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4383 if (obj->madv == I915_MADV_WILLNEED)
4384 i915_gem_object_unpin_pages(obj);
4385 if (args->madv == I915_MADV_WILLNEED)
4386 i915_gem_object_pin_pages(obj);
4387 }
4388
4389 if (obj->madv != __I915_MADV_PURGED)
4390 obj->madv = args->madv;
4391
4392 /* if the object is no longer attached, discard its backing storage */
4393 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4394 i915_gem_object_truncate(obj);
4395
4396 args->retained = obj->madv != __I915_MADV_PURGED;
4397
4398 out:
4399 drm_gem_object_unreference(&obj->base);
4400 unlock:
4401 mutex_unlock(&dev->struct_mutex);
4402 return ret;
4403 }
4404
4405 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4406 const struct drm_i915_gem_object_ops *ops)
4407 {
4408 INIT_LIST_HEAD(&obj->global_list);
4409 INIT_LIST_HEAD(&obj->ring_list);
4410 INIT_LIST_HEAD(&obj->obj_exec_link);
4411 INIT_LIST_HEAD(&obj->vma_list);
4412 INIT_LIST_HEAD(&obj->batch_pool_list);
4413
4414 obj->ops = ops;
4415
4416 obj->fence_reg = I915_FENCE_REG_NONE;
4417 obj->madv = I915_MADV_WILLNEED;
4418
4419 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4420 }
4421
4422 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4423 .get_pages = i915_gem_object_get_pages_gtt,
4424 .put_pages = i915_gem_object_put_pages_gtt,
4425 };
4426
4427 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4428 size_t size)
4429 {
4430 struct drm_i915_gem_object *obj;
4431 struct address_space *mapping;
4432 gfp_t mask;
4433
4434 obj = i915_gem_object_alloc(dev);
4435 if (obj == NULL)
4436 return NULL;
4437
4438 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4439 i915_gem_object_free(obj);
4440 return NULL;
4441 }
4442
4443 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4444 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4445 /* 965gm cannot relocate objects above 4GiB. */
4446 mask &= ~__GFP_HIGHMEM;
4447 mask |= __GFP_DMA32;
4448 }
4449
4450 mapping = file_inode(obj->base.filp)->i_mapping;
4451 mapping_set_gfp_mask(mapping, mask);
4452
4453 i915_gem_object_init(obj, &i915_gem_object_ops);
4454
4455 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4456 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4457
4458 if (HAS_LLC(dev)) {
4459 /* On some devices, we can have the GPU use the LLC (the CPU
4460 * cache) for about a 10% performance improvement
4461 * compared to uncached. Graphics requests other than
4462 * display scanout are coherent with the CPU in
4463 * accessing this cache. This means in this mode we
4464 * don't need to clflush on the CPU side, and on the
4465 * GPU side we only need to flush internal caches to
4466 * get data visible to the CPU.
4467 *
4468 * However, we maintain the display planes as UC, and so
4469 * need to rebind when first used as such.
4470 */
4471 obj->cache_level = I915_CACHE_LLC;
4472 } else
4473 obj->cache_level = I915_CACHE_NONE;
4474
4475 trace_i915_gem_object_create(obj);
4476
4477 return obj;
4478 }
4479
4480 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4481 {
4482 /* If we are the last user of the backing storage (be it shmemfs
4483 * pages or stolen etc), we know that the pages are going to be
4484 * immediately released. In this case, we can then skip copying
4485 * back the contents from the GPU.
4486 */
4487
4488 if (obj->madv != I915_MADV_WILLNEED)
4489 return false;
4490
4491 if (obj->base.filp == NULL)
4492 return true;
4493
4494 /* At first glance, this looks racy, but then again so would be
4495 * userspace racing mmap against close. However, the first external
4496 * reference to the filp can only be obtained through the
4497 * i915_gem_mmap_ioctl() which safeguards us against the user
4498 * acquiring such a reference whilst we are in the middle of
4499 * freeing the object.
4500 */
4501 return atomic_long_read(&obj->base.filp->f_count) == 1;
4502 }
4503
4504 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4505 {
4506 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4507 struct drm_device *dev = obj->base.dev;
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509 struct i915_vma *vma, *next;
4510
4511 intel_runtime_pm_get(dev_priv);
4512
4513 trace_i915_gem_object_destroy(obj);
4514
4515 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4516 int ret;
4517
4518 vma->pin_count = 0;
4519 ret = i915_vma_unbind(vma);
4520 if (WARN_ON(ret == -ERESTARTSYS)) {
4521 bool was_interruptible;
4522
4523 was_interruptible = dev_priv->mm.interruptible;
4524 dev_priv->mm.interruptible = false;
4525
4526 WARN_ON(i915_vma_unbind(vma));
4527
4528 dev_priv->mm.interruptible = was_interruptible;
4529 }
4530 }
4531
4532 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4533 * before progressing. */
4534 if (obj->stolen)
4535 i915_gem_object_unpin_pages(obj);
4536
4537 WARN_ON(obj->frontbuffer_bits);
4538
4539 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4540 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4541 obj->tiling_mode != I915_TILING_NONE)
4542 i915_gem_object_unpin_pages(obj);
4543
4544 if (WARN_ON(obj->pages_pin_count))
4545 obj->pages_pin_count = 0;
4546 if (discard_backing_storage(obj))
4547 obj->madv = I915_MADV_DONTNEED;
4548 i915_gem_object_put_pages(obj);
4549 i915_gem_object_free_mmap_offset(obj);
4550
4551 BUG_ON(obj->pages);
4552
4553 if (obj->base.import_attach)
4554 drm_prime_gem_destroy(&obj->base, NULL);
4555
4556 if (obj->ops->release)
4557 obj->ops->release(obj);
4558
4559 drm_gem_object_release(&obj->base);
4560 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4561
4562 kfree(obj->bit_17);
4563 i915_gem_object_free(obj);
4564
4565 intel_runtime_pm_put(dev_priv);
4566 }
4567
4568 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4569 struct i915_address_space *vm)
4570 {
4571 struct i915_vma *vma;
4572 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4573 if (i915_is_ggtt(vma->vm) &&
4574 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4575 continue;
4576 if (vma->vm == vm)
4577 return vma;
4578 }
4579 return NULL;
4580 }
4581
4582 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4583 const struct i915_ggtt_view *view)
4584 {
4585 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4586 struct i915_vma *vma;
4587
4588 if (WARN_ONCE(!view, "no view specified"))
4589 return ERR_PTR(-EINVAL);
4590
4591 list_for_each_entry(vma, &obj->vma_list, vma_link)
4592 if (vma->vm == ggtt &&
4593 i915_ggtt_view_equal(&vma->ggtt_view, view))
4594 return vma;
4595 return NULL;
4596 }
4597
4598 void i915_gem_vma_destroy(struct i915_vma *vma)
4599 {
4600 struct i915_address_space *vm = NULL;
4601 WARN_ON(vma->node.allocated);
4602
4603 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4604 if (!list_empty(&vma->exec_list))
4605 return;
4606
4607 vm = vma->vm;
4608
4609 if (!i915_is_ggtt(vm))
4610 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4611
4612 list_del(&vma->vma_link);
4613
4614 kfree(vma);
4615 }
4616
4617 static void
4618 i915_gem_stop_ringbuffers(struct drm_device *dev)
4619 {
4620 struct drm_i915_private *dev_priv = dev->dev_private;
4621 struct intel_engine_cs *ring;
4622 int i;
4623
4624 for_each_ring(ring, dev_priv, i)
4625 dev_priv->gt.stop_ring(ring);
4626 }
4627
4628 int
4629 i915_gem_suspend(struct drm_device *dev)
4630 {
4631 struct drm_i915_private *dev_priv = dev->dev_private;
4632 int ret = 0;
4633
4634 mutex_lock(&dev->struct_mutex);
4635 ret = i915_gpu_idle(dev);
4636 if (ret)
4637 goto err;
4638
4639 i915_gem_retire_requests(dev);
4640
4641 i915_gem_stop_ringbuffers(dev);
4642 mutex_unlock(&dev->struct_mutex);
4643
4644 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4645 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4646 flush_delayed_work(&dev_priv->mm.idle_work);
4647
4648 /* Assert that we sucessfully flushed all the work and
4649 * reset the GPU back to its idle, low power state.
4650 */
4651 WARN_ON(dev_priv->mm.busy);
4652
4653 return 0;
4654
4655 err:
4656 mutex_unlock(&dev->struct_mutex);
4657 return ret;
4658 }
4659
4660 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4661 {
4662 struct drm_device *dev = ring->dev;
4663 struct drm_i915_private *dev_priv = dev->dev_private;
4664 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4665 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4666 int i, ret;
4667
4668 if (!HAS_L3_DPF(dev) || !remap_info)
4669 return 0;
4670
4671 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4672 if (ret)
4673 return ret;
4674
4675 /*
4676 * Note: We do not worry about the concurrent register cacheline hang
4677 * here because no other code should access these registers other than
4678 * at initialization time.
4679 */
4680 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4681 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4682 intel_ring_emit(ring, reg_base + i);
4683 intel_ring_emit(ring, remap_info[i/4]);
4684 }
4685
4686 intel_ring_advance(ring);
4687
4688 return ret;
4689 }
4690
4691 void i915_gem_init_swizzling(struct drm_device *dev)
4692 {
4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694
4695 if (INTEL_INFO(dev)->gen < 5 ||
4696 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4697 return;
4698
4699 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4700 DISP_TILE_SURFACE_SWIZZLING);
4701
4702 if (IS_GEN5(dev))
4703 return;
4704
4705 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4706 if (IS_GEN6(dev))
4707 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4708 else if (IS_GEN7(dev))
4709 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4710 else if (IS_GEN8(dev))
4711 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4712 else
4713 BUG();
4714 }
4715
4716 static bool
4717 intel_enable_blt(struct drm_device *dev)
4718 {
4719 if (!HAS_BLT(dev))
4720 return false;
4721
4722 /* The blitter was dysfunctional on early prototypes */
4723 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4724 DRM_INFO("BLT not supported on this pre-production hardware;"
4725 " graphics performance will be degraded.\n");
4726 return false;
4727 }
4728
4729 return true;
4730 }
4731
4732 static void init_unused_ring(struct drm_device *dev, u32 base)
4733 {
4734 struct drm_i915_private *dev_priv = dev->dev_private;
4735
4736 I915_WRITE(RING_CTL(base), 0);
4737 I915_WRITE(RING_HEAD(base), 0);
4738 I915_WRITE(RING_TAIL(base), 0);
4739 I915_WRITE(RING_START(base), 0);
4740 }
4741
4742 static void init_unused_rings(struct drm_device *dev)
4743 {
4744 if (IS_I830(dev)) {
4745 init_unused_ring(dev, PRB1_BASE);
4746 init_unused_ring(dev, SRB0_BASE);
4747 init_unused_ring(dev, SRB1_BASE);
4748 init_unused_ring(dev, SRB2_BASE);
4749 init_unused_ring(dev, SRB3_BASE);
4750 } else if (IS_GEN2(dev)) {
4751 init_unused_ring(dev, SRB0_BASE);
4752 init_unused_ring(dev, SRB1_BASE);
4753 } else if (IS_GEN3(dev)) {
4754 init_unused_ring(dev, PRB1_BASE);
4755 init_unused_ring(dev, PRB2_BASE);
4756 }
4757 }
4758
4759 int i915_gem_init_rings(struct drm_device *dev)
4760 {
4761 struct drm_i915_private *dev_priv = dev->dev_private;
4762 int ret;
4763
4764 ret = intel_init_render_ring_buffer(dev);
4765 if (ret)
4766 return ret;
4767
4768 if (HAS_BSD(dev)) {
4769 ret = intel_init_bsd_ring_buffer(dev);
4770 if (ret)
4771 goto cleanup_render_ring;
4772 }
4773
4774 if (intel_enable_blt(dev)) {
4775 ret = intel_init_blt_ring_buffer(dev);
4776 if (ret)
4777 goto cleanup_bsd_ring;
4778 }
4779
4780 if (HAS_VEBOX(dev)) {
4781 ret = intel_init_vebox_ring_buffer(dev);
4782 if (ret)
4783 goto cleanup_blt_ring;
4784 }
4785
4786 if (HAS_BSD2(dev)) {
4787 ret = intel_init_bsd2_ring_buffer(dev);
4788 if (ret)
4789 goto cleanup_vebox_ring;
4790 }
4791
4792 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4793 if (ret)
4794 goto cleanup_bsd2_ring;
4795
4796 return 0;
4797
4798 cleanup_bsd2_ring:
4799 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4800 cleanup_vebox_ring:
4801 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4802 cleanup_blt_ring:
4803 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4804 cleanup_bsd_ring:
4805 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4806 cleanup_render_ring:
4807 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4808
4809 return ret;
4810 }
4811
4812 int
4813 i915_gem_init_hw(struct drm_device *dev)
4814 {
4815 struct drm_i915_private *dev_priv = dev->dev_private;
4816 struct intel_engine_cs *ring;
4817 int ret, i;
4818
4819 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4820 return -EIO;
4821
4822 /* Double layer security blanket, see i915_gem_init() */
4823 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4824
4825 if (dev_priv->ellc_size)
4826 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4827
4828 if (IS_HASWELL(dev))
4829 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4830 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4831
4832 if (HAS_PCH_NOP(dev)) {
4833 if (IS_IVYBRIDGE(dev)) {
4834 u32 temp = I915_READ(GEN7_MSG_CTL);
4835 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4836 I915_WRITE(GEN7_MSG_CTL, temp);
4837 } else if (INTEL_INFO(dev)->gen >= 7) {
4838 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4839 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4840 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4841 }
4842 }
4843
4844 i915_gem_init_swizzling(dev);
4845
4846 /*
4847 * At least 830 can leave some of the unused rings
4848 * "active" (ie. head != tail) after resume which
4849 * will prevent c3 entry. Makes sure all unused rings
4850 * are totally idle.
4851 */
4852 init_unused_rings(dev);
4853
4854 for_each_ring(ring, dev_priv, i) {
4855 ret = ring->init_hw(ring);
4856 if (ret)
4857 goto out;
4858 }
4859
4860 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4861 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4862
4863 ret = i915_ppgtt_init_hw(dev);
4864 if (ret && ret != -EIO) {
4865 DRM_ERROR("PPGTT enable failed %d\n", ret);
4866 i915_gem_cleanup_ringbuffer(dev);
4867 }
4868
4869 ret = i915_gem_context_enable(dev_priv);
4870 if (ret && ret != -EIO) {
4871 DRM_ERROR("Context enable failed %d\n", ret);
4872 i915_gem_cleanup_ringbuffer(dev);
4873
4874 goto out;
4875 }
4876
4877 out:
4878 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4879 return ret;
4880 }
4881
4882 int i915_gem_init(struct drm_device *dev)
4883 {
4884 struct drm_i915_private *dev_priv = dev->dev_private;
4885 int ret;
4886
4887 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4888 i915.enable_execlists);
4889
4890 mutex_lock(&dev->struct_mutex);
4891
4892 if (IS_VALLEYVIEW(dev)) {
4893 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4894 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4895 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4896 VLV_GTLC_ALLOWWAKEACK), 10))
4897 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4898 }
4899
4900 if (!i915.enable_execlists) {
4901 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4902 dev_priv->gt.init_rings = i915_gem_init_rings;
4903 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4904 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4905 } else {
4906 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4907 dev_priv->gt.init_rings = intel_logical_rings_init;
4908 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4909 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4910 }
4911
4912 /* This is just a security blanket to placate dragons.
4913 * On some systems, we very sporadically observe that the first TLBs
4914 * used by the CS may be stale, despite us poking the TLB reset. If
4915 * we hold the forcewake during initialisation these problems
4916 * just magically go away.
4917 */
4918 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4919
4920 ret = i915_gem_init_userptr(dev);
4921 if (ret)
4922 goto out_unlock;
4923
4924 i915_gem_init_global_gtt(dev);
4925
4926 ret = i915_gem_context_init(dev);
4927 if (ret)
4928 goto out_unlock;
4929
4930 ret = dev_priv->gt.init_rings(dev);
4931 if (ret)
4932 goto out_unlock;
4933
4934 ret = i915_gem_init_hw(dev);
4935 if (ret == -EIO) {
4936 /* Allow ring initialisation to fail by marking the GPU as
4937 * wedged. But we only want to do this where the GPU is angry,
4938 * for all other failure, such as an allocation failure, bail.
4939 */
4940 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4941 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4942 ret = 0;
4943 }
4944
4945 out_unlock:
4946 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4947 mutex_unlock(&dev->struct_mutex);
4948
4949 return ret;
4950 }
4951
4952 void
4953 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4954 {
4955 struct drm_i915_private *dev_priv = dev->dev_private;
4956 struct intel_engine_cs *ring;
4957 int i;
4958
4959 for_each_ring(ring, dev_priv, i)
4960 dev_priv->gt.cleanup_ring(ring);
4961 }
4962
4963 static void
4964 init_ring_lists(struct intel_engine_cs *ring)
4965 {
4966 INIT_LIST_HEAD(&ring->active_list);
4967 INIT_LIST_HEAD(&ring->request_list);
4968 }
4969
4970 void i915_init_vm(struct drm_i915_private *dev_priv,
4971 struct i915_address_space *vm)
4972 {
4973 if (!i915_is_ggtt(vm))
4974 drm_mm_init(&vm->mm, vm->start, vm->total);
4975 vm->dev = dev_priv->dev;
4976 INIT_LIST_HEAD(&vm->active_list);
4977 INIT_LIST_HEAD(&vm->inactive_list);
4978 INIT_LIST_HEAD(&vm->global_link);
4979 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4980 }
4981
4982 void
4983 i915_gem_load(struct drm_device *dev)
4984 {
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4986 int i;
4987
4988 dev_priv->slab =
4989 kmem_cache_create("i915_gem_object",
4990 sizeof(struct drm_i915_gem_object), 0,
4991 SLAB_HWCACHE_ALIGN,
4992 NULL);
4993
4994 INIT_LIST_HEAD(&dev_priv->vm_list);
4995 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4996
4997 INIT_LIST_HEAD(&dev_priv->context_list);
4998 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4999 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5000 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5001 for (i = 0; i < I915_NUM_RINGS; i++)
5002 init_ring_lists(&dev_priv->ring[i]);
5003 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5004 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5005 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5006 i915_gem_retire_work_handler);
5007 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5008 i915_gem_idle_work_handler);
5009 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5010
5011 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5012
5013 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5014 dev_priv->num_fence_regs = 32;
5015 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5016 dev_priv->num_fence_regs = 16;
5017 else
5018 dev_priv->num_fence_regs = 8;
5019
5020 if (intel_vgpu_active(dev))
5021 dev_priv->num_fence_regs =
5022 I915_READ(vgtif_reg(avail_rs.fence_num));
5023
5024 /* Initialize fence registers to zero */
5025 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5026 i915_gem_restore_fences(dev);
5027
5028 i915_gem_detect_bit_6_swizzle(dev);
5029 init_waitqueue_head(&dev_priv->pending_flip_queue);
5030
5031 dev_priv->mm.interruptible = true;
5032
5033 i915_gem_shrinker_init(dev_priv);
5034
5035 mutex_init(&dev_priv->fb_tracking.lock);
5036 }
5037
5038 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5039 {
5040 struct drm_i915_file_private *file_priv = file->driver_priv;
5041
5042 /* Clean up our request list when the client is going away, so that
5043 * later retire_requests won't dereference our soon-to-be-gone
5044 * file_priv.
5045 */
5046 spin_lock(&file_priv->mm.lock);
5047 while (!list_empty(&file_priv->mm.request_list)) {
5048 struct drm_i915_gem_request *request;
5049
5050 request = list_first_entry(&file_priv->mm.request_list,
5051 struct drm_i915_gem_request,
5052 client_list);
5053 list_del(&request->client_list);
5054 request->file_priv = NULL;
5055 }
5056 spin_unlock(&file_priv->mm.lock);
5057
5058 if (!list_empty(&file_priv->rps_boost)) {
5059 mutex_lock(&to_i915(dev)->rps.hw_lock);
5060 list_del(&file_priv->rps_boost);
5061 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5062 }
5063 }
5064
5065 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5066 {
5067 struct drm_i915_file_private *file_priv;
5068 int ret;
5069
5070 DRM_DEBUG_DRIVER("\n");
5071
5072 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5073 if (!file_priv)
5074 return -ENOMEM;
5075
5076 file->driver_priv = file_priv;
5077 file_priv->dev_priv = dev->dev_private;
5078 file_priv->file = file;
5079 INIT_LIST_HEAD(&file_priv->rps_boost);
5080
5081 spin_lock_init(&file_priv->mm.lock);
5082 INIT_LIST_HEAD(&file_priv->mm.request_list);
5083
5084 ret = i915_gem_context_open(dev, file);
5085 if (ret)
5086 kfree(file_priv);
5087
5088 return ret;
5089 }
5090
5091 /**
5092 * i915_gem_track_fb - update frontbuffer tracking
5093 * old: current GEM buffer for the frontbuffer slots
5094 * new: new GEM buffer for the frontbuffer slots
5095 * frontbuffer_bits: bitmask of frontbuffer slots
5096 *
5097 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5098 * from @old and setting them in @new. Both @old and @new can be NULL.
5099 */
5100 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5101 struct drm_i915_gem_object *new,
5102 unsigned frontbuffer_bits)
5103 {
5104 if (old) {
5105 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5106 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5107 old->frontbuffer_bits &= ~frontbuffer_bits;
5108 }
5109
5110 if (new) {
5111 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5112 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5113 new->frontbuffer_bits |= frontbuffer_bits;
5114 }
5115 }
5116
5117 /* All the new VM stuff */
5118 unsigned long
5119 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5120 struct i915_address_space *vm)
5121 {
5122 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5123 struct i915_vma *vma;
5124
5125 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5126
5127 list_for_each_entry(vma, &o->vma_list, vma_link) {
5128 if (i915_is_ggtt(vma->vm) &&
5129 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5130 continue;
5131 if (vma->vm == vm)
5132 return vma->node.start;
5133 }
5134
5135 WARN(1, "%s vma for this object not found.\n",
5136 i915_is_ggtt(vm) ? "global" : "ppgtt");
5137 return -1;
5138 }
5139
5140 unsigned long
5141 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5142 const struct i915_ggtt_view *view)
5143 {
5144 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5145 struct i915_vma *vma;
5146
5147 list_for_each_entry(vma, &o->vma_list, vma_link)
5148 if (vma->vm == ggtt &&
5149 i915_ggtt_view_equal(&vma->ggtt_view, view))
5150 return vma->node.start;
5151
5152 WARN(1, "global vma for this object not found.\n");
5153 return -1;
5154 }
5155
5156 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5157 struct i915_address_space *vm)
5158 {
5159 struct i915_vma *vma;
5160
5161 list_for_each_entry(vma, &o->vma_list, vma_link) {
5162 if (i915_is_ggtt(vma->vm) &&
5163 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5164 continue;
5165 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5166 return true;
5167 }
5168
5169 return false;
5170 }
5171
5172 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5173 const struct i915_ggtt_view *view)
5174 {
5175 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5176 struct i915_vma *vma;
5177
5178 list_for_each_entry(vma, &o->vma_list, vma_link)
5179 if (vma->vm == ggtt &&
5180 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5181 drm_mm_node_allocated(&vma->node))
5182 return true;
5183
5184 return false;
5185 }
5186
5187 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5188 {
5189 struct i915_vma *vma;
5190
5191 list_for_each_entry(vma, &o->vma_list, vma_link)
5192 if (drm_mm_node_allocated(&vma->node))
5193 return true;
5194
5195 return false;
5196 }
5197
5198 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5199 struct i915_address_space *vm)
5200 {
5201 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5202 struct i915_vma *vma;
5203
5204 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5205
5206 BUG_ON(list_empty(&o->vma_list));
5207
5208 list_for_each_entry(vma, &o->vma_list, vma_link) {
5209 if (i915_is_ggtt(vma->vm) &&
5210 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5211 continue;
5212 if (vma->vm == vm)
5213 return vma->node.size;
5214 }
5215 return 0;
5216 }
5217
5218 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5219 {
5220 struct i915_vma *vma;
5221 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5222 if (i915_is_ggtt(vma->vm) &&
5223 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5224 continue;
5225 if (vma->pin_count > 0)
5226 return true;
5227 }
5228 return false;
5229 }
5230
This page took 0.154392 seconds and 6 git commands to generate.