Merge branch 'for-4.7-dw' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 spin_lock(&dev_priv->mm.object_stat_lock);
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
70 spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 spin_lock(&dev_priv->mm.object_stat_lock);
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
79 spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85 int ret;
86
87 if (!i915_reset_in_progress(error))
88 return 0;
89
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
95 ret = wait_event_interruptible_timeout(error->reset_queue,
96 !i915_reset_in_progress(error),
97 10*HZ);
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
102 return ret;
103 } else {
104 return 0;
105 }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 WARN_ON(i915_verify_lists(dev));
122 return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file)
128 {
129 struct drm_i915_private *dev_priv = to_i915(dev);
130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
131 struct drm_i915_gem_get_aperture *args = data;
132 struct i915_vma *vma;
133 size_t pinned;
134
135 pinned = 0;
136 mutex_lock(&dev->struct_mutex);
137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 if (vma->pin_count)
139 pinned += vma->node.size;
140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 if (vma->pin_count)
142 pinned += vma->node.size;
143 mutex_unlock(&dev->struct_mutex);
144
145 args->aper_size = ggtt->base.total;
146 args->aper_available_size = args->aper_size - pinned;
147
148 return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
159
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
176 put_page(page);
177 vaddr += PAGE_SIZE;
178 }
179
180 i915_gem_chipset_flush(obj->base.dev);
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
194
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
199 return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
210 if (WARN_ON(ret)) {
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222 char *vaddr = obj->phys_handle->vaddr;
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
240 mark_page_accessed(page);
241 put_page(page);
242 vaddr += PAGE_SIZE;
243 }
244 obj->dirty = 0;
245 }
246
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283 {
284 drm_dma_handle_t *phys;
285 int ret;
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
309 obj->phys_handle = phys;
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319 {
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = u64_to_user_ptr(args->data_ptr);
323 int ret = 0;
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
331
332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
347 }
348
349 drm_clflush_virt_range(vaddr, args->size);
350 i915_gem_chipset_flush(dev);
351
352 out:
353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354 return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366 kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
374 {
375 struct drm_i915_gem_object *obj;
376 int ret;
377 u32 handle;
378
379 size = roundup(size, PAGE_SIZE);
380 if (size == 0)
381 return -EINVAL;
382
383 /* Allocate the new object */
384 obj = i915_gem_alloc_object(dev, size);
385 if (obj == NULL)
386 return -ENOMEM;
387
388 ret = drm_gem_handle_create(file, &obj->base, &handle);
389 /* drop reference from allocate - handle holds it now */
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
393
394 *handle_p = handle;
395 return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402 {
403 /* have to work out size/pitch and return them */
404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
407 args->size, &args->handle);
408 }
409
410 /**
411 * Creates a new mm object and returns a handle to it.
412 */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416 {
417 struct drm_i915_gem_create *args = data;
418
419 return i915_gem_create(file, dev,
420 args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427 {
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
452 int length)
453 {
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473 }
474
475 /*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482 {
483 int ret;
484
485 *needs_clflush = 0;
486
487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519 char *vaddr;
520 int ret;
521
522 if (unlikely(page_do_bit17_swizzling))
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
534 return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540 {
541 if (unlikely(swizzled)) {
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
585 return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
593 {
594 char __user *user_data;
595 ssize_t remain;
596 loff_t offset;
597 int shmem_page_offset, page_length, ret = 0;
598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599 int prefaulted = 0;
600 int needs_clflush = 0;
601 struct sg_page_iter sg_iter;
602
603 user_data = u64_to_user_ptr(args->data_ptr);
604 remain = args->size;
605
606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 if (ret)
610 return ret;
611
612 offset = args->offset;
613
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
616 struct page *page = sg_page_iter_page(&sg_iter);
617
618 if (remain <= 0)
619 break;
620
621 /* Operation in this page
622 *
623 * shmem_page_offset = offset within page in shmem file
624 * page_length = bytes to copy for this page
625 */
626 shmem_page_offset = offset_in_page(offset);
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
630
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
639
640 mutex_unlock(&dev->struct_mutex);
641
642 if (likely(!i915.prefault_disable) && !prefaulted) {
643 ret = fault_in_multipages_writeable(user_data, remain);
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
651
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
655
656 mutex_lock(&dev->struct_mutex);
657
658 if (ret)
659 goto out;
660
661 next_page:
662 remain -= page_length;
663 user_data += page_length;
664 offset += page_length;
665 }
666
667 out:
668 i915_gem_object_unpin_pages(obj);
669
670 return ret;
671 }
672
673 /**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680 struct drm_file *file)
681 {
682 struct drm_i915_gem_pread *args = data;
683 struct drm_i915_gem_object *obj;
684 int ret = 0;
685
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
690 u64_to_user_ptr(args->data_ptr),
691 args->size))
692 return -EFAULT;
693
694 ret = i915_mutex_lock_interruptible(dev);
695 if (ret)
696 return ret;
697
698 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
699 if (&obj->base == NULL) {
700 ret = -ENOENT;
701 goto unlock;
702 }
703
704 /* Bounds check source. */
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
707 ret = -EINVAL;
708 goto out;
709 }
710
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721 ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724 drm_gem_object_unreference(&obj->base);
725 unlock:
726 mutex_unlock(&dev->struct_mutex);
727 return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731 * page faults in the source data
732 */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
739 {
740 void __iomem *vaddr_atomic;
741 void *vaddr;
742 unsigned long unwritten;
743
744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
748 user_data, length);
749 io_mapping_unmap_atomic(vaddr_atomic);
750 return unwritten;
751 }
752
753 /**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file)
762 {
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
765 ssize_t remain;
766 loff_t offset, page_base;
767 char __user *user_data;
768 int page_offset, page_length, ret;
769
770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
781
782 user_data = u64_to_user_ptr(args->data_ptr);
783 remain = args->size;
784
785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
802 /* If we get a fault while copying data, then (presumably) our
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
805 */
806 if (fast_user_write(ggtt->mappable, page_base,
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
809 goto out_flush;
810 }
811
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
815 }
816
817 out_flush:
818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820 i915_gem_object_ggtt_unpin(obj);
821 out:
822 return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
835 {
836 char *vaddr;
837 int ret;
838
839 if (unlikely(page_do_bit17_swizzling))
840 return -EINVAL;
841
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
852
853 return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
864 {
865 char *vaddr;
866 int ret;
867
868 vaddr = kmap(page);
869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 user_data,
876 page_length);
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
885 kunmap(page);
886
887 return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
895 {
896 ssize_t remain;
897 loff_t offset;
898 char __user *user_data;
899 int shmem_page_offset, page_length, ret = 0;
900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901 int hit_slowpath = 0;
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
904 struct sg_page_iter sg_iter;
905
906 user_data = u64_to_user_ptr(args->data_ptr);
907 remain = args->size;
908
909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
916 needs_clflush_after = cpu_write_needs_clflush(obj);
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
920 }
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
926
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933 i915_gem_object_pin_pages(obj);
934
935 offset = args->offset;
936 obj->dirty = 1;
937
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
940 struct page *page = sg_page_iter_page(&sg_iter);
941 int partial_cacheline_write;
942
943 if (remain <= 0)
944 break;
945
946 /* Operation in this page
947 *
948 * shmem_page_offset = offset within page in shmem file
949 * page_length = bytes to copy for this page
950 */
951 shmem_page_offset = offset_in_page(offset);
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
956
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
973
974 hit_slowpath = 1;
975 mutex_unlock(&dev->struct_mutex);
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
980
981 mutex_lock(&dev->struct_mutex);
982
983 if (ret)
984 goto out;
985
986 next_page:
987 remain -= page_length;
988 user_data += page_length;
989 offset += page_length;
990 }
991
992 out:
993 i915_gem_object_unpin_pages(obj);
994
995 if (hit_slowpath) {
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 if (i915_gem_clflush_object(obj, obj->pin_display))
1004 needs_clflush_after = true;
1005 }
1006 }
1007
1008 if (needs_clflush_after)
1009 i915_gem_chipset_flush(dev);
1010 else
1011 obj->cache_dirty = true;
1012
1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014 return ret;
1015 }
1016
1017 /**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024 struct drm_file *file)
1025 {
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 struct drm_i915_gem_pwrite *args = data;
1028 struct drm_i915_gem_object *obj;
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
1035 u64_to_user_ptr(args->data_ptr),
1036 args->size))
1037 return -EFAULT;
1038
1039 if (likely(!i915.prefault_disable)) {
1040 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
1045
1046 intel_runtime_pm_get(dev_priv);
1047
1048 ret = i915_mutex_lock_interruptible(dev);
1049 if (ret)
1050 goto put_rpm;
1051
1052 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053 if (&obj->base == NULL) {
1054 ret = -ENOENT;
1055 goto unlock;
1056 }
1057
1058 /* Bounds check destination. */
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
1061 ret = -EINVAL;
1062 goto out;
1063 }
1064
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075 ret = -EFAULT;
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
1089 }
1090
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
1097
1098 out:
1099 drm_gem_object_unreference(&obj->base);
1100 unlock:
1101 mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
1105 return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
1113
1114 if (__i915_reset_in_progress(reset_counter)) {
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
1120 return -EAGAIN;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128 wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132 struct intel_engine_cs *engine)
1133 {
1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171 unsigned long timeout;
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
1183
1184 if (req->engine->irq_refcount)
1185 return -EBUSY;
1186
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
1191 timeout = local_clock_us(&cpu) + 5;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(req, true))
1194 return 0;
1195
1196 if (signal_pending_state(state, current))
1197 break;
1198
1199 if (busywait_stop(timeout, cpu))
1200 break;
1201
1202 cpu_relax_lowlatency();
1203 }
1204
1205 if (i915_gem_request_completed(req, false))
1206 return 0;
1207
1208 return -EAGAIN;
1209 }
1210
1211 /**
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
1224 * Returns 0 if the request was found within the alloted time. Else returns the
1225 * errno with remaining time filled in timeout argument.
1226 */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228 bool interruptible,
1229 s64 *timeout,
1230 struct intel_rps_client *rps)
1231 {
1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233 struct drm_device *dev = engine->dev;
1234 struct drm_i915_private *dev_priv = dev->dev_private;
1235 const bool irq_test_in_progress =
1236 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238 DEFINE_WAIT(wait);
1239 unsigned long timeout_expire;
1240 s64 before = 0; /* Only to silence a compiler warning. */
1241 int ret;
1242
1243 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244
1245 if (list_empty(&req->list))
1246 return 0;
1247
1248 if (i915_gem_request_completed(req, true))
1249 return 0;
1250
1251 timeout_expire = 0;
1252 if (timeout) {
1253 if (WARN_ON(*timeout < 0))
1254 return -EINVAL;
1255
1256 if (*timeout == 0)
1257 return -ETIME;
1258
1259 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260
1261 /*
1262 * Record current time in case interrupted by signal, or wedged.
1263 */
1264 before = ktime_get_raw_ns();
1265 }
1266
1267 if (INTEL_INFO(dev_priv)->gen >= 6)
1268 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270 trace_i915_gem_request_wait_begin(req);
1271
1272 /* Optimistic spin for the next jiffie before touching IRQs */
1273 ret = __i915_spin_request(req, state);
1274 if (ret == 0)
1275 goto out;
1276
1277 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278 ret = -ENODEV;
1279 goto out;
1280 }
1281
1282 for (;;) {
1283 struct timer_list timer;
1284
1285 prepare_to_wait(&engine->irq_queue, &wait, state);
1286
1287 /* We need to check whether any gpu reset happened in between
1288 * the request being submitted and now. If a reset has occurred,
1289 * the request is effectively complete (we either are in the
1290 * process of or have discarded the rendering and completely
1291 * reset the GPU. The results of the request are lost and we
1292 * are free to continue on with the original operation.
1293 */
1294 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295 ret = 0;
1296 break;
1297 }
1298
1299 if (i915_gem_request_completed(req, false)) {
1300 ret = 0;
1301 break;
1302 }
1303
1304 if (signal_pending_state(state, current)) {
1305 ret = -ERESTARTSYS;
1306 break;
1307 }
1308
1309 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310 ret = -ETIME;
1311 break;
1312 }
1313
1314 timer.function = NULL;
1315 if (timeout || missed_irq(dev_priv, engine)) {
1316 unsigned long expire;
1317
1318 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320 mod_timer(&timer, expire);
1321 }
1322
1323 io_schedule();
1324
1325 if (timer.function) {
1326 del_singleshot_timer_sync(&timer);
1327 destroy_timer_on_stack(&timer);
1328 }
1329 }
1330 if (!irq_test_in_progress)
1331 engine->irq_put(engine);
1332
1333 finish_wait(&engine->irq_queue, &wait);
1334
1335 out:
1336 trace_i915_gem_request_wait_end(req);
1337
1338 if (timeout) {
1339 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340
1341 *timeout = tres < 0 ? 0 : tres;
1342
1343 /*
1344 * Apparently ktime isn't accurate enough and occasionally has a
1345 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346 * things up to make the test happy. We allow up to 1 jiffy.
1347 *
1348 * This is a regrssion from the timespec->ktime conversion.
1349 */
1350 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351 *timeout = 0;
1352 }
1353
1354 return ret;
1355 }
1356
1357 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358 struct drm_file *file)
1359 {
1360 struct drm_i915_file_private *file_priv;
1361
1362 WARN_ON(!req || !file || req->file_priv);
1363
1364 if (!req || !file)
1365 return -EINVAL;
1366
1367 if (req->file_priv)
1368 return -EINVAL;
1369
1370 file_priv = file->driver_priv;
1371
1372 spin_lock(&file_priv->mm.lock);
1373 req->file_priv = file_priv;
1374 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375 spin_unlock(&file_priv->mm.lock);
1376
1377 req->pid = get_pid(task_pid(current));
1378
1379 return 0;
1380 }
1381
1382 static inline void
1383 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384 {
1385 struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387 if (!file_priv)
1388 return;
1389
1390 spin_lock(&file_priv->mm.lock);
1391 list_del(&request->client_list);
1392 request->file_priv = NULL;
1393 spin_unlock(&file_priv->mm.lock);
1394
1395 put_pid(request->pid);
1396 request->pid = NULL;
1397 }
1398
1399 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400 {
1401 trace_i915_gem_request_retire(request);
1402
1403 /* We know the GPU must have read the request to have
1404 * sent us the seqno + interrupt, so use the position
1405 * of tail of the request to update the last known position
1406 * of the GPU head.
1407 *
1408 * Note this requires that we are always called in request
1409 * completion order.
1410 */
1411 request->ringbuf->last_retired_head = request->postfix;
1412
1413 list_del_init(&request->list);
1414 i915_gem_request_remove_from_client(request);
1415
1416 i915_gem_request_unreference(request);
1417 }
1418
1419 static void
1420 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421 {
1422 struct intel_engine_cs *engine = req->engine;
1423 struct drm_i915_gem_request *tmp;
1424
1425 lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427 if (list_empty(&req->list))
1428 return;
1429
1430 do {
1431 tmp = list_first_entry(&engine->request_list,
1432 typeof(*tmp), list);
1433
1434 i915_gem_request_retire(tmp);
1435 } while (tmp != req);
1436
1437 WARN_ON(i915_verify_lists(engine->dev));
1438 }
1439
1440 /**
1441 * Waits for a request to be signaled, and cleans up the
1442 * request and object lists appropriately for that event.
1443 */
1444 int
1445 i915_wait_request(struct drm_i915_gem_request *req)
1446 {
1447 struct drm_i915_private *dev_priv = req->i915;
1448 bool interruptible;
1449 int ret;
1450
1451 interruptible = dev_priv->mm.interruptible;
1452
1453 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1454
1455 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1456 if (ret)
1457 return ret;
1458
1459 __i915_gem_request_retire__upto(req);
1460 return 0;
1461 }
1462
1463 /**
1464 * Ensures that all rendering to the object has completed and the object is
1465 * safe to unbind from the GTT or access from the CPU.
1466 */
1467 int
1468 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1469 bool readonly)
1470 {
1471 int ret, i;
1472
1473 if (!obj->active)
1474 return 0;
1475
1476 if (readonly) {
1477 if (obj->last_write_req != NULL) {
1478 ret = i915_wait_request(obj->last_write_req);
1479 if (ret)
1480 return ret;
1481
1482 i = obj->last_write_req->engine->id;
1483 if (obj->last_read_req[i] == obj->last_write_req)
1484 i915_gem_object_retire__read(obj, i);
1485 else
1486 i915_gem_object_retire__write(obj);
1487 }
1488 } else {
1489 for (i = 0; i < I915_NUM_ENGINES; i++) {
1490 if (obj->last_read_req[i] == NULL)
1491 continue;
1492
1493 ret = i915_wait_request(obj->last_read_req[i]);
1494 if (ret)
1495 return ret;
1496
1497 i915_gem_object_retire__read(obj, i);
1498 }
1499 GEM_BUG_ON(obj->active);
1500 }
1501
1502 return 0;
1503 }
1504
1505 static void
1506 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1507 struct drm_i915_gem_request *req)
1508 {
1509 int ring = req->engine->id;
1510
1511 if (obj->last_read_req[ring] == req)
1512 i915_gem_object_retire__read(obj, ring);
1513 else if (obj->last_write_req == req)
1514 i915_gem_object_retire__write(obj);
1515
1516 __i915_gem_request_retire__upto(req);
1517 }
1518
1519 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1520 * as the object state may change during this call.
1521 */
1522 static __must_check int
1523 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1524 struct intel_rps_client *rps,
1525 bool readonly)
1526 {
1527 struct drm_device *dev = obj->base.dev;
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1530 int ret, i, n = 0;
1531
1532 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1533 BUG_ON(!dev_priv->mm.interruptible);
1534
1535 if (!obj->active)
1536 return 0;
1537
1538 if (readonly) {
1539 struct drm_i915_gem_request *req;
1540
1541 req = obj->last_write_req;
1542 if (req == NULL)
1543 return 0;
1544
1545 requests[n++] = i915_gem_request_reference(req);
1546 } else {
1547 for (i = 0; i < I915_NUM_ENGINES; i++) {
1548 struct drm_i915_gem_request *req;
1549
1550 req = obj->last_read_req[i];
1551 if (req == NULL)
1552 continue;
1553
1554 requests[n++] = i915_gem_request_reference(req);
1555 }
1556 }
1557
1558 mutex_unlock(&dev->struct_mutex);
1559 ret = 0;
1560 for (i = 0; ret == 0 && i < n; i++)
1561 ret = __i915_wait_request(requests[i], true, NULL, rps);
1562 mutex_lock(&dev->struct_mutex);
1563
1564 for (i = 0; i < n; i++) {
1565 if (ret == 0)
1566 i915_gem_object_retire_request(obj, requests[i]);
1567 i915_gem_request_unreference(requests[i]);
1568 }
1569
1570 return ret;
1571 }
1572
1573 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1574 {
1575 struct drm_i915_file_private *fpriv = file->driver_priv;
1576 return &fpriv->rps;
1577 }
1578
1579 /**
1580 * Called when user space prepares to use an object with the CPU, either
1581 * through the mmap ioctl's mapping or a GTT mapping.
1582 */
1583 int
1584 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1585 struct drm_file *file)
1586 {
1587 struct drm_i915_gem_set_domain *args = data;
1588 struct drm_i915_gem_object *obj;
1589 uint32_t read_domains = args->read_domains;
1590 uint32_t write_domain = args->write_domain;
1591 int ret;
1592
1593 /* Only handle setting domains to types used by the CPU. */
1594 if (write_domain & I915_GEM_GPU_DOMAINS)
1595 return -EINVAL;
1596
1597 if (read_domains & I915_GEM_GPU_DOMAINS)
1598 return -EINVAL;
1599
1600 /* Having something in the write domain implies it's in the read
1601 * domain, and only that read domain. Enforce that in the request.
1602 */
1603 if (write_domain != 0 && read_domains != write_domain)
1604 return -EINVAL;
1605
1606 ret = i915_mutex_lock_interruptible(dev);
1607 if (ret)
1608 return ret;
1609
1610 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1611 if (&obj->base == NULL) {
1612 ret = -ENOENT;
1613 goto unlock;
1614 }
1615
1616 /* Try to flush the object off the GPU without holding the lock.
1617 * We will repeat the flush holding the lock in the normal manner
1618 * to catch cases where we are gazumped.
1619 */
1620 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1621 to_rps_client(file),
1622 !write_domain);
1623 if (ret)
1624 goto unref;
1625
1626 if (read_domains & I915_GEM_DOMAIN_GTT)
1627 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1628 else
1629 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1630
1631 if (write_domain != 0)
1632 intel_fb_obj_invalidate(obj,
1633 write_domain == I915_GEM_DOMAIN_GTT ?
1634 ORIGIN_GTT : ORIGIN_CPU);
1635
1636 unref:
1637 drm_gem_object_unreference(&obj->base);
1638 unlock:
1639 mutex_unlock(&dev->struct_mutex);
1640 return ret;
1641 }
1642
1643 /**
1644 * Called when user space has done writes to this buffer
1645 */
1646 int
1647 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1648 struct drm_file *file)
1649 {
1650 struct drm_i915_gem_sw_finish *args = data;
1651 struct drm_i915_gem_object *obj;
1652 int ret = 0;
1653
1654 ret = i915_mutex_lock_interruptible(dev);
1655 if (ret)
1656 return ret;
1657
1658 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1659 if (&obj->base == NULL) {
1660 ret = -ENOENT;
1661 goto unlock;
1662 }
1663
1664 /* Pinned buffers may be scanout, so flush the cache */
1665 if (obj->pin_display)
1666 i915_gem_object_flush_cpu_write_domain(obj);
1667
1668 drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672 }
1673
1674 /**
1675 * Maps the contents of an object, returning the address it is mapped
1676 * into.
1677 *
1678 * While the mapping holds a reference on the contents of the object, it doesn't
1679 * imply a ref on the object itself.
1680 *
1681 * IMPORTANT:
1682 *
1683 * DRM driver writers who look a this function as an example for how to do GEM
1684 * mmap support, please don't implement mmap support like here. The modern way
1685 * to implement DRM mmap support is with an mmap offset ioctl (like
1686 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1687 * That way debug tooling like valgrind will understand what's going on, hiding
1688 * the mmap call in a driver private ioctl will break that. The i915 driver only
1689 * does cpu mmaps this way because we didn't know better.
1690 */
1691 int
1692 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1693 struct drm_file *file)
1694 {
1695 struct drm_i915_gem_mmap *args = data;
1696 struct drm_gem_object *obj;
1697 unsigned long addr;
1698
1699 if (args->flags & ~(I915_MMAP_WC))
1700 return -EINVAL;
1701
1702 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1703 return -ENODEV;
1704
1705 obj = drm_gem_object_lookup(file, args->handle);
1706 if (obj == NULL)
1707 return -ENOENT;
1708
1709 /* prime objects have no backing filp to GEM mmap
1710 * pages from.
1711 */
1712 if (!obj->filp) {
1713 drm_gem_object_unreference_unlocked(obj);
1714 return -EINVAL;
1715 }
1716
1717 addr = vm_mmap(obj->filp, 0, args->size,
1718 PROT_READ | PROT_WRITE, MAP_SHARED,
1719 args->offset);
1720 if (args->flags & I915_MMAP_WC) {
1721 struct mm_struct *mm = current->mm;
1722 struct vm_area_struct *vma;
1723
1724 down_write(&mm->mmap_sem);
1725 vma = find_vma(mm, addr);
1726 if (vma)
1727 vma->vm_page_prot =
1728 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1729 else
1730 addr = -ENOMEM;
1731 up_write(&mm->mmap_sem);
1732 }
1733 drm_gem_object_unreference_unlocked(obj);
1734 if (IS_ERR((void *)addr))
1735 return addr;
1736
1737 args->addr_ptr = (uint64_t) addr;
1738
1739 return 0;
1740 }
1741
1742 /**
1743 * i915_gem_fault - fault a page into the GTT
1744 * @vma: VMA in question
1745 * @vmf: fault info
1746 *
1747 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1748 * from userspace. The fault handler takes care of binding the object to
1749 * the GTT (if needed), allocating and programming a fence register (again,
1750 * only if needed based on whether the old reg is still valid or the object
1751 * is tiled) and inserting a new PTE into the faulting process.
1752 *
1753 * Note that the faulting process may involve evicting existing objects
1754 * from the GTT and/or fence registers to make room. So performance may
1755 * suffer if the GTT working set is large or there are few fence registers
1756 * left.
1757 */
1758 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1759 {
1760 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1761 struct drm_device *dev = obj->base.dev;
1762 struct drm_i915_private *dev_priv = to_i915(dev);
1763 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1764 struct i915_ggtt_view view = i915_ggtt_view_normal;
1765 pgoff_t page_offset;
1766 unsigned long pfn;
1767 int ret = 0;
1768 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1769
1770 intel_runtime_pm_get(dev_priv);
1771
1772 /* We don't use vmf->pgoff since that has the fake offset */
1773 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1774 PAGE_SHIFT;
1775
1776 ret = i915_mutex_lock_interruptible(dev);
1777 if (ret)
1778 goto out;
1779
1780 trace_i915_gem_object_fault(obj, page_offset, true, write);
1781
1782 /* Try to flush the object off the GPU first without holding the lock.
1783 * Upon reacquiring the lock, we will perform our sanity checks and then
1784 * repeat the flush holding the lock in the normal manner to catch cases
1785 * where we are gazumped.
1786 */
1787 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1788 if (ret)
1789 goto unlock;
1790
1791 /* Access to snoopable pages through the GTT is incoherent. */
1792 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1793 ret = -EFAULT;
1794 goto unlock;
1795 }
1796
1797 /* Use a partial view if the object is bigger than the aperture. */
1798 if (obj->base.size >= ggtt->mappable_end &&
1799 obj->tiling_mode == I915_TILING_NONE) {
1800 static const unsigned int chunk_size = 256; // 1 MiB
1801
1802 memset(&view, 0, sizeof(view));
1803 view.type = I915_GGTT_VIEW_PARTIAL;
1804 view.params.partial.offset = rounddown(page_offset, chunk_size);
1805 view.params.partial.size =
1806 min_t(unsigned int,
1807 chunk_size,
1808 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1809 view.params.partial.offset);
1810 }
1811
1812 /* Now pin it into the GTT if needed */
1813 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1814 if (ret)
1815 goto unlock;
1816
1817 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1818 if (ret)
1819 goto unpin;
1820
1821 ret = i915_gem_object_get_fence(obj);
1822 if (ret)
1823 goto unpin;
1824
1825 /* Finally, remap it using the new GTT offset */
1826 pfn = ggtt->mappable_base +
1827 i915_gem_obj_ggtt_offset_view(obj, &view);
1828 pfn >>= PAGE_SHIFT;
1829
1830 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1831 /* Overriding existing pages in partial view does not cause
1832 * us any trouble as TLBs are still valid because the fault
1833 * is due to userspace losing part of the mapping or never
1834 * having accessed it before (at this partials' range).
1835 */
1836 unsigned long base = vma->vm_start +
1837 (view.params.partial.offset << PAGE_SHIFT);
1838 unsigned int i;
1839
1840 for (i = 0; i < view.params.partial.size; i++) {
1841 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1842 if (ret)
1843 break;
1844 }
1845
1846 obj->fault_mappable = true;
1847 } else {
1848 if (!obj->fault_mappable) {
1849 unsigned long size = min_t(unsigned long,
1850 vma->vm_end - vma->vm_start,
1851 obj->base.size);
1852 int i;
1853
1854 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1855 ret = vm_insert_pfn(vma,
1856 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1857 pfn + i);
1858 if (ret)
1859 break;
1860 }
1861
1862 obj->fault_mappable = true;
1863 } else
1864 ret = vm_insert_pfn(vma,
1865 (unsigned long)vmf->virtual_address,
1866 pfn + page_offset);
1867 }
1868 unpin:
1869 i915_gem_object_ggtt_unpin_view(obj, &view);
1870 unlock:
1871 mutex_unlock(&dev->struct_mutex);
1872 out:
1873 switch (ret) {
1874 case -EIO:
1875 /*
1876 * We eat errors when the gpu is terminally wedged to avoid
1877 * userspace unduly crashing (gl has no provisions for mmaps to
1878 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1879 * and so needs to be reported.
1880 */
1881 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1882 ret = VM_FAULT_SIGBUS;
1883 break;
1884 }
1885 case -EAGAIN:
1886 /*
1887 * EAGAIN means the gpu is hung and we'll wait for the error
1888 * handler to reset everything when re-faulting in
1889 * i915_mutex_lock_interruptible.
1890 */
1891 case 0:
1892 case -ERESTARTSYS:
1893 case -EINTR:
1894 case -EBUSY:
1895 /*
1896 * EBUSY is ok: this just means that another thread
1897 * already did the job.
1898 */
1899 ret = VM_FAULT_NOPAGE;
1900 break;
1901 case -ENOMEM:
1902 ret = VM_FAULT_OOM;
1903 break;
1904 case -ENOSPC:
1905 case -EFAULT:
1906 ret = VM_FAULT_SIGBUS;
1907 break;
1908 default:
1909 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1910 ret = VM_FAULT_SIGBUS;
1911 break;
1912 }
1913
1914 intel_runtime_pm_put(dev_priv);
1915 return ret;
1916 }
1917
1918 /**
1919 * i915_gem_release_mmap - remove physical page mappings
1920 * @obj: obj in question
1921 *
1922 * Preserve the reservation of the mmapping with the DRM core code, but
1923 * relinquish ownership of the pages back to the system.
1924 *
1925 * It is vital that we remove the page mapping if we have mapped a tiled
1926 * object through the GTT and then lose the fence register due to
1927 * resource pressure. Similarly if the object has been moved out of the
1928 * aperture, than pages mapped into userspace must be revoked. Removing the
1929 * mapping will then trigger a page fault on the next user access, allowing
1930 * fixup by i915_gem_fault().
1931 */
1932 void
1933 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1934 {
1935 /* Serialisation between user GTT access and our code depends upon
1936 * revoking the CPU's PTE whilst the mutex is held. The next user
1937 * pagefault then has to wait until we release the mutex.
1938 */
1939 lockdep_assert_held(&obj->base.dev->struct_mutex);
1940
1941 if (!obj->fault_mappable)
1942 return;
1943
1944 drm_vma_node_unmap(&obj->base.vma_node,
1945 obj->base.dev->anon_inode->i_mapping);
1946
1947 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1948 * memory transactions from userspace before we return. The TLB
1949 * flushing implied above by changing the PTE above *should* be
1950 * sufficient, an extra barrier here just provides us with a bit
1951 * of paranoid documentation about our requirement to serialise
1952 * memory writes before touching registers / GSM.
1953 */
1954 wmb();
1955
1956 obj->fault_mappable = false;
1957 }
1958
1959 void
1960 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1961 {
1962 struct drm_i915_gem_object *obj;
1963
1964 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1965 i915_gem_release_mmap(obj);
1966 }
1967
1968 uint32_t
1969 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1970 {
1971 uint32_t gtt_size;
1972
1973 if (INTEL_INFO(dev)->gen >= 4 ||
1974 tiling_mode == I915_TILING_NONE)
1975 return size;
1976
1977 /* Previous chips need a power-of-two fence region when tiling */
1978 if (INTEL_INFO(dev)->gen == 3)
1979 gtt_size = 1024*1024;
1980 else
1981 gtt_size = 512*1024;
1982
1983 while (gtt_size < size)
1984 gtt_size <<= 1;
1985
1986 return gtt_size;
1987 }
1988
1989 /**
1990 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1991 * @obj: object to check
1992 *
1993 * Return the required GTT alignment for an object, taking into account
1994 * potential fence register mapping.
1995 */
1996 uint32_t
1997 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1998 int tiling_mode, bool fenced)
1999 {
2000 /*
2001 * Minimum alignment is 4k (GTT page size), but might be greater
2002 * if a fence register is needed for the object.
2003 */
2004 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2005 tiling_mode == I915_TILING_NONE)
2006 return 4096;
2007
2008 /*
2009 * Previous chips need to be aligned to the size of the smallest
2010 * fence register that can contain the object.
2011 */
2012 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2013 }
2014
2015 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2016 {
2017 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2018 int ret;
2019
2020 dev_priv->mm.shrinker_no_lock_stealing = true;
2021
2022 ret = drm_gem_create_mmap_offset(&obj->base);
2023 if (ret != -ENOSPC)
2024 goto out;
2025
2026 /* Badly fragmented mmap space? The only way we can recover
2027 * space is by destroying unwanted objects. We can't randomly release
2028 * mmap_offsets as userspace expects them to be persistent for the
2029 * lifetime of the objects. The closest we can is to release the
2030 * offsets on purgeable objects by truncating it and marking it purged,
2031 * which prevents userspace from ever using that object again.
2032 */
2033 i915_gem_shrink(dev_priv,
2034 obj->base.size >> PAGE_SHIFT,
2035 I915_SHRINK_BOUND |
2036 I915_SHRINK_UNBOUND |
2037 I915_SHRINK_PURGEABLE);
2038 ret = drm_gem_create_mmap_offset(&obj->base);
2039 if (ret != -ENOSPC)
2040 goto out;
2041
2042 i915_gem_shrink_all(dev_priv);
2043 ret = drm_gem_create_mmap_offset(&obj->base);
2044 out:
2045 dev_priv->mm.shrinker_no_lock_stealing = false;
2046
2047 return ret;
2048 }
2049
2050 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2051 {
2052 drm_gem_free_mmap_offset(&obj->base);
2053 }
2054
2055 int
2056 i915_gem_mmap_gtt(struct drm_file *file,
2057 struct drm_device *dev,
2058 uint32_t handle,
2059 uint64_t *offset)
2060 {
2061 struct drm_i915_gem_object *obj;
2062 int ret;
2063
2064 ret = i915_mutex_lock_interruptible(dev);
2065 if (ret)
2066 return ret;
2067
2068 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2069 if (&obj->base == NULL) {
2070 ret = -ENOENT;
2071 goto unlock;
2072 }
2073
2074 if (obj->madv != I915_MADV_WILLNEED) {
2075 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2076 ret = -EFAULT;
2077 goto out;
2078 }
2079
2080 ret = i915_gem_object_create_mmap_offset(obj);
2081 if (ret)
2082 goto out;
2083
2084 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2085
2086 out:
2087 drm_gem_object_unreference(&obj->base);
2088 unlock:
2089 mutex_unlock(&dev->struct_mutex);
2090 return ret;
2091 }
2092
2093 /**
2094 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2095 * @dev: DRM device
2096 * @data: GTT mapping ioctl data
2097 * @file: GEM object info
2098 *
2099 * Simply returns the fake offset to userspace so it can mmap it.
2100 * The mmap call will end up in drm_gem_mmap(), which will set things
2101 * up so we can get faults in the handler above.
2102 *
2103 * The fault handler will take care of binding the object into the GTT
2104 * (since it may have been evicted to make room for something), allocating
2105 * a fence register, and mapping the appropriate aperture address into
2106 * userspace.
2107 */
2108 int
2109 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2110 struct drm_file *file)
2111 {
2112 struct drm_i915_gem_mmap_gtt *args = data;
2113
2114 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2115 }
2116
2117 /* Immediately discard the backing storage */
2118 static void
2119 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2120 {
2121 i915_gem_object_free_mmap_offset(obj);
2122
2123 if (obj->base.filp == NULL)
2124 return;
2125
2126 /* Our goal here is to return as much of the memory as
2127 * is possible back to the system as we are called from OOM.
2128 * To do this we must instruct the shmfs to drop all of its
2129 * backing pages, *now*.
2130 */
2131 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2132 obj->madv = __I915_MADV_PURGED;
2133 }
2134
2135 /* Try to discard unwanted pages */
2136 static void
2137 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2138 {
2139 struct address_space *mapping;
2140
2141 switch (obj->madv) {
2142 case I915_MADV_DONTNEED:
2143 i915_gem_object_truncate(obj);
2144 case __I915_MADV_PURGED:
2145 return;
2146 }
2147
2148 if (obj->base.filp == NULL)
2149 return;
2150
2151 mapping = file_inode(obj->base.filp)->i_mapping,
2152 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2153 }
2154
2155 static void
2156 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2157 {
2158 struct sg_page_iter sg_iter;
2159 int ret;
2160
2161 BUG_ON(obj->madv == __I915_MADV_PURGED);
2162
2163 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2164 if (WARN_ON(ret)) {
2165 /* In the event of a disaster, abandon all caches and
2166 * hope for the best.
2167 */
2168 i915_gem_clflush_object(obj, true);
2169 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2170 }
2171
2172 i915_gem_gtt_finish_object(obj);
2173
2174 if (i915_gem_object_needs_bit17_swizzle(obj))
2175 i915_gem_object_save_bit_17_swizzle(obj);
2176
2177 if (obj->madv == I915_MADV_DONTNEED)
2178 obj->dirty = 0;
2179
2180 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2181 struct page *page = sg_page_iter_page(&sg_iter);
2182
2183 if (obj->dirty)
2184 set_page_dirty(page);
2185
2186 if (obj->madv == I915_MADV_WILLNEED)
2187 mark_page_accessed(page);
2188
2189 put_page(page);
2190 }
2191 obj->dirty = 0;
2192
2193 sg_free_table(obj->pages);
2194 kfree(obj->pages);
2195 }
2196
2197 int
2198 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2199 {
2200 const struct drm_i915_gem_object_ops *ops = obj->ops;
2201
2202 if (obj->pages == NULL)
2203 return 0;
2204
2205 if (obj->pages_pin_count)
2206 return -EBUSY;
2207
2208 BUG_ON(i915_gem_obj_bound_any(obj));
2209
2210 /* ->put_pages might need to allocate memory for the bit17 swizzle
2211 * array, hence protect them from being reaped by removing them from gtt
2212 * lists early. */
2213 list_del(&obj->global_list);
2214
2215 if (obj->mapping) {
2216 if (is_vmalloc_addr(obj->mapping))
2217 vunmap(obj->mapping);
2218 else
2219 kunmap(kmap_to_page(obj->mapping));
2220 obj->mapping = NULL;
2221 }
2222
2223 ops->put_pages(obj);
2224 obj->pages = NULL;
2225
2226 i915_gem_object_invalidate(obj);
2227
2228 return 0;
2229 }
2230
2231 static int
2232 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2233 {
2234 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2235 int page_count, i;
2236 struct address_space *mapping;
2237 struct sg_table *st;
2238 struct scatterlist *sg;
2239 struct sg_page_iter sg_iter;
2240 struct page *page;
2241 unsigned long last_pfn = 0; /* suppress gcc warning */
2242 int ret;
2243 gfp_t gfp;
2244
2245 /* Assert that the object is not currently in any GPU domain. As it
2246 * wasn't in the GTT, there shouldn't be any way it could have been in
2247 * a GPU cache
2248 */
2249 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2250 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2251
2252 st = kmalloc(sizeof(*st), GFP_KERNEL);
2253 if (st == NULL)
2254 return -ENOMEM;
2255
2256 page_count = obj->base.size / PAGE_SIZE;
2257 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2258 kfree(st);
2259 return -ENOMEM;
2260 }
2261
2262 /* Get the list of pages out of our struct file. They'll be pinned
2263 * at this point until we release them.
2264 *
2265 * Fail silently without starting the shrinker
2266 */
2267 mapping = file_inode(obj->base.filp)->i_mapping;
2268 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2269 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2270 sg = st->sgl;
2271 st->nents = 0;
2272 for (i = 0; i < page_count; i++) {
2273 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2274 if (IS_ERR(page)) {
2275 i915_gem_shrink(dev_priv,
2276 page_count,
2277 I915_SHRINK_BOUND |
2278 I915_SHRINK_UNBOUND |
2279 I915_SHRINK_PURGEABLE);
2280 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2281 }
2282 if (IS_ERR(page)) {
2283 /* We've tried hard to allocate the memory by reaping
2284 * our own buffer, now let the real VM do its job and
2285 * go down in flames if truly OOM.
2286 */
2287 i915_gem_shrink_all(dev_priv);
2288 page = shmem_read_mapping_page(mapping, i);
2289 if (IS_ERR(page)) {
2290 ret = PTR_ERR(page);
2291 goto err_pages;
2292 }
2293 }
2294 #ifdef CONFIG_SWIOTLB
2295 if (swiotlb_nr_tbl()) {
2296 st->nents++;
2297 sg_set_page(sg, page, PAGE_SIZE, 0);
2298 sg = sg_next(sg);
2299 continue;
2300 }
2301 #endif
2302 if (!i || page_to_pfn(page) != last_pfn + 1) {
2303 if (i)
2304 sg = sg_next(sg);
2305 st->nents++;
2306 sg_set_page(sg, page, PAGE_SIZE, 0);
2307 } else {
2308 sg->length += PAGE_SIZE;
2309 }
2310 last_pfn = page_to_pfn(page);
2311
2312 /* Check that the i965g/gm workaround works. */
2313 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2314 }
2315 #ifdef CONFIG_SWIOTLB
2316 if (!swiotlb_nr_tbl())
2317 #endif
2318 sg_mark_end(sg);
2319 obj->pages = st;
2320
2321 ret = i915_gem_gtt_prepare_object(obj);
2322 if (ret)
2323 goto err_pages;
2324
2325 if (i915_gem_object_needs_bit17_swizzle(obj))
2326 i915_gem_object_do_bit_17_swizzle(obj);
2327
2328 if (obj->tiling_mode != I915_TILING_NONE &&
2329 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2330 i915_gem_object_pin_pages(obj);
2331
2332 return 0;
2333
2334 err_pages:
2335 sg_mark_end(sg);
2336 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2337 put_page(sg_page_iter_page(&sg_iter));
2338 sg_free_table(st);
2339 kfree(st);
2340
2341 /* shmemfs first checks if there is enough memory to allocate the page
2342 * and reports ENOSPC should there be insufficient, along with the usual
2343 * ENOMEM for a genuine allocation failure.
2344 *
2345 * We use ENOSPC in our driver to mean that we have run out of aperture
2346 * space and so want to translate the error from shmemfs back to our
2347 * usual understanding of ENOMEM.
2348 */
2349 if (ret == -ENOSPC)
2350 ret = -ENOMEM;
2351
2352 return ret;
2353 }
2354
2355 /* Ensure that the associated pages are gathered from the backing storage
2356 * and pinned into our object. i915_gem_object_get_pages() may be called
2357 * multiple times before they are released by a single call to
2358 * i915_gem_object_put_pages() - once the pages are no longer referenced
2359 * either as a result of memory pressure (reaping pages under the shrinker)
2360 * or as the object is itself released.
2361 */
2362 int
2363 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2364 {
2365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2366 const struct drm_i915_gem_object_ops *ops = obj->ops;
2367 int ret;
2368
2369 if (obj->pages)
2370 return 0;
2371
2372 if (obj->madv != I915_MADV_WILLNEED) {
2373 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2374 return -EFAULT;
2375 }
2376
2377 BUG_ON(obj->pages_pin_count);
2378
2379 ret = ops->get_pages(obj);
2380 if (ret)
2381 return ret;
2382
2383 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2384
2385 obj->get_page.sg = obj->pages->sgl;
2386 obj->get_page.last = 0;
2387
2388 return 0;
2389 }
2390
2391 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2392 {
2393 int ret;
2394
2395 lockdep_assert_held(&obj->base.dev->struct_mutex);
2396
2397 ret = i915_gem_object_get_pages(obj);
2398 if (ret)
2399 return ERR_PTR(ret);
2400
2401 i915_gem_object_pin_pages(obj);
2402
2403 if (obj->mapping == NULL) {
2404 struct page **pages;
2405
2406 pages = NULL;
2407 if (obj->base.size == PAGE_SIZE)
2408 obj->mapping = kmap(sg_page(obj->pages->sgl));
2409 else
2410 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2411 sizeof(*pages),
2412 GFP_TEMPORARY);
2413 if (pages != NULL) {
2414 struct sg_page_iter sg_iter;
2415 int n;
2416
2417 n = 0;
2418 for_each_sg_page(obj->pages->sgl, &sg_iter,
2419 obj->pages->nents, 0)
2420 pages[n++] = sg_page_iter_page(&sg_iter);
2421
2422 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2423 drm_free_large(pages);
2424 }
2425 if (obj->mapping == NULL) {
2426 i915_gem_object_unpin_pages(obj);
2427 return ERR_PTR(-ENOMEM);
2428 }
2429 }
2430
2431 return obj->mapping;
2432 }
2433
2434 void i915_vma_move_to_active(struct i915_vma *vma,
2435 struct drm_i915_gem_request *req)
2436 {
2437 struct drm_i915_gem_object *obj = vma->obj;
2438 struct intel_engine_cs *engine;
2439
2440 engine = i915_gem_request_get_engine(req);
2441
2442 /* Add a reference if we're newly entering the active list. */
2443 if (obj->active == 0)
2444 drm_gem_object_reference(&obj->base);
2445 obj->active |= intel_engine_flag(engine);
2446
2447 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2448 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2449
2450 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2451 }
2452
2453 static void
2454 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2455 {
2456 GEM_BUG_ON(obj->last_write_req == NULL);
2457 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2458
2459 i915_gem_request_assign(&obj->last_write_req, NULL);
2460 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2461 }
2462
2463 static void
2464 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2465 {
2466 struct i915_vma *vma;
2467
2468 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2469 GEM_BUG_ON(!(obj->active & (1 << ring)));
2470
2471 list_del_init(&obj->engine_list[ring]);
2472 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2473
2474 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2475 i915_gem_object_retire__write(obj);
2476
2477 obj->active &= ~(1 << ring);
2478 if (obj->active)
2479 return;
2480
2481 /* Bump our place on the bound list to keep it roughly in LRU order
2482 * so that we don't steal from recently used but inactive objects
2483 * (unless we are forced to ofc!)
2484 */
2485 list_move_tail(&obj->global_list,
2486 &to_i915(obj->base.dev)->mm.bound_list);
2487
2488 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2489 if (!list_empty(&vma->vm_link))
2490 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2491 }
2492
2493 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2494 drm_gem_object_unreference(&obj->base);
2495 }
2496
2497 static int
2498 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2499 {
2500 struct drm_i915_private *dev_priv = dev->dev_private;
2501 struct intel_engine_cs *engine;
2502 int ret;
2503
2504 /* Carefully retire all requests without writing to the rings */
2505 for_each_engine(engine, dev_priv) {
2506 ret = intel_engine_idle(engine);
2507 if (ret)
2508 return ret;
2509 }
2510 i915_gem_retire_requests(dev);
2511
2512 /* Finally reset hw state */
2513 for_each_engine(engine, dev_priv)
2514 intel_ring_init_seqno(engine, seqno);
2515
2516 return 0;
2517 }
2518
2519 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2520 {
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522 int ret;
2523
2524 if (seqno == 0)
2525 return -EINVAL;
2526
2527 /* HWS page needs to be set less than what we
2528 * will inject to ring
2529 */
2530 ret = i915_gem_init_seqno(dev, seqno - 1);
2531 if (ret)
2532 return ret;
2533
2534 /* Carefully set the last_seqno value so that wrap
2535 * detection still works
2536 */
2537 dev_priv->next_seqno = seqno;
2538 dev_priv->last_seqno = seqno - 1;
2539 if (dev_priv->last_seqno == 0)
2540 dev_priv->last_seqno--;
2541
2542 return 0;
2543 }
2544
2545 int
2546 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2547 {
2548 struct drm_i915_private *dev_priv = dev->dev_private;
2549
2550 /* reserve 0 for non-seqno */
2551 if (dev_priv->next_seqno == 0) {
2552 int ret = i915_gem_init_seqno(dev, 0);
2553 if (ret)
2554 return ret;
2555
2556 dev_priv->next_seqno = 1;
2557 }
2558
2559 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2560 return 0;
2561 }
2562
2563 /*
2564 * NB: This function is not allowed to fail. Doing so would mean the the
2565 * request is not being tracked for completion but the work itself is
2566 * going to happen on the hardware. This would be a Bad Thing(tm).
2567 */
2568 void __i915_add_request(struct drm_i915_gem_request *request,
2569 struct drm_i915_gem_object *obj,
2570 bool flush_caches)
2571 {
2572 struct intel_engine_cs *engine;
2573 struct drm_i915_private *dev_priv;
2574 struct intel_ringbuffer *ringbuf;
2575 u32 request_start;
2576 int ret;
2577
2578 if (WARN_ON(request == NULL))
2579 return;
2580
2581 engine = request->engine;
2582 dev_priv = request->i915;
2583 ringbuf = request->ringbuf;
2584
2585 /*
2586 * To ensure that this call will not fail, space for its emissions
2587 * should already have been reserved in the ring buffer. Let the ring
2588 * know that it is time to use that space up.
2589 */
2590 intel_ring_reserved_space_use(ringbuf);
2591
2592 request_start = intel_ring_get_tail(ringbuf);
2593 /*
2594 * Emit any outstanding flushes - execbuf can fail to emit the flush
2595 * after having emitted the batchbuffer command. Hence we need to fix
2596 * things up similar to emitting the lazy request. The difference here
2597 * is that the flush _must_ happen before the next request, no matter
2598 * what.
2599 */
2600 if (flush_caches) {
2601 if (i915.enable_execlists)
2602 ret = logical_ring_flush_all_caches(request);
2603 else
2604 ret = intel_ring_flush_all_caches(request);
2605 /* Not allowed to fail! */
2606 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2607 }
2608
2609 trace_i915_gem_request_add(request);
2610
2611 request->head = request_start;
2612
2613 /* Whilst this request exists, batch_obj will be on the
2614 * active_list, and so will hold the active reference. Only when this
2615 * request is retired will the the batch_obj be moved onto the
2616 * inactive_list and lose its active reference. Hence we do not need
2617 * to explicitly hold another reference here.
2618 */
2619 request->batch_obj = obj;
2620
2621 /* Seal the request and mark it as pending execution. Note that
2622 * we may inspect this state, without holding any locks, during
2623 * hangcheck. Hence we apply the barrier to ensure that we do not
2624 * see a more recent value in the hws than we are tracking.
2625 */
2626 request->emitted_jiffies = jiffies;
2627 request->previous_seqno = engine->last_submitted_seqno;
2628 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2629 list_add_tail(&request->list, &engine->request_list);
2630
2631 /* Record the position of the start of the request so that
2632 * should we detect the updated seqno part-way through the
2633 * GPU processing the request, we never over-estimate the
2634 * position of the head.
2635 */
2636 request->postfix = intel_ring_get_tail(ringbuf);
2637
2638 if (i915.enable_execlists)
2639 ret = engine->emit_request(request);
2640 else {
2641 ret = engine->add_request(request);
2642
2643 request->tail = intel_ring_get_tail(ringbuf);
2644 }
2645 /* Not allowed to fail! */
2646 WARN(ret, "emit|add_request failed: %d!\n", ret);
2647
2648 i915_queue_hangcheck(engine->dev);
2649
2650 queue_delayed_work(dev_priv->wq,
2651 &dev_priv->mm.retire_work,
2652 round_jiffies_up_relative(HZ));
2653 intel_mark_busy(dev_priv->dev);
2654
2655 /* Sanity check that the reserved size was large enough. */
2656 intel_ring_reserved_space_end(ringbuf);
2657 }
2658
2659 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2660 const struct intel_context *ctx)
2661 {
2662 unsigned long elapsed;
2663
2664 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2665
2666 if (ctx->hang_stats.banned)
2667 return true;
2668
2669 if (ctx->hang_stats.ban_period_seconds &&
2670 elapsed <= ctx->hang_stats.ban_period_seconds) {
2671 if (!i915_gem_context_is_default(ctx)) {
2672 DRM_DEBUG("context hanging too fast, banning!\n");
2673 return true;
2674 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2675 if (i915_stop_ring_allow_warn(dev_priv))
2676 DRM_ERROR("gpu hanging too fast, banning!\n");
2677 return true;
2678 }
2679 }
2680
2681 return false;
2682 }
2683
2684 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2685 struct intel_context *ctx,
2686 const bool guilty)
2687 {
2688 struct i915_ctx_hang_stats *hs;
2689
2690 if (WARN_ON(!ctx))
2691 return;
2692
2693 hs = &ctx->hang_stats;
2694
2695 if (guilty) {
2696 hs->banned = i915_context_is_banned(dev_priv, ctx);
2697 hs->batch_active++;
2698 hs->guilty_ts = get_seconds();
2699 } else {
2700 hs->batch_pending++;
2701 }
2702 }
2703
2704 void i915_gem_request_free(struct kref *req_ref)
2705 {
2706 struct drm_i915_gem_request *req = container_of(req_ref,
2707 typeof(*req), ref);
2708 struct intel_context *ctx = req->ctx;
2709
2710 if (req->file_priv)
2711 i915_gem_request_remove_from_client(req);
2712
2713 if (ctx) {
2714 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2715 intel_lr_context_unpin(ctx, req->engine);
2716
2717 i915_gem_context_unreference(ctx);
2718 }
2719
2720 kmem_cache_free(req->i915->requests, req);
2721 }
2722
2723 static inline int
2724 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2725 struct intel_context *ctx,
2726 struct drm_i915_gem_request **req_out)
2727 {
2728 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2729 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2730 struct drm_i915_gem_request *req;
2731 int ret;
2732
2733 if (!req_out)
2734 return -EINVAL;
2735
2736 *req_out = NULL;
2737
2738 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2739 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2740 * and restart.
2741 */
2742 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2743 if (ret)
2744 return ret;
2745
2746 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2747 if (req == NULL)
2748 return -ENOMEM;
2749
2750 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2751 if (ret)
2752 goto err;
2753
2754 kref_init(&req->ref);
2755 req->i915 = dev_priv;
2756 req->engine = engine;
2757 req->reset_counter = reset_counter;
2758 req->ctx = ctx;
2759 i915_gem_context_reference(req->ctx);
2760
2761 if (i915.enable_execlists)
2762 ret = intel_logical_ring_alloc_request_extras(req);
2763 else
2764 ret = intel_ring_alloc_request_extras(req);
2765 if (ret) {
2766 i915_gem_context_unreference(req->ctx);
2767 goto err;
2768 }
2769
2770 /*
2771 * Reserve space in the ring buffer for all the commands required to
2772 * eventually emit this request. This is to guarantee that the
2773 * i915_add_request() call can't fail. Note that the reserve may need
2774 * to be redone if the request is not actually submitted straight
2775 * away, e.g. because a GPU scheduler has deferred it.
2776 */
2777 if (i915.enable_execlists)
2778 ret = intel_logical_ring_reserve_space(req);
2779 else
2780 ret = intel_ring_reserve_space(req);
2781 if (ret) {
2782 /*
2783 * At this point, the request is fully allocated even if not
2784 * fully prepared. Thus it can be cleaned up using the proper
2785 * free code.
2786 */
2787 intel_ring_reserved_space_cancel(req->ringbuf);
2788 i915_gem_request_unreference(req);
2789 return ret;
2790 }
2791
2792 *req_out = req;
2793 return 0;
2794
2795 err:
2796 kmem_cache_free(dev_priv->requests, req);
2797 return ret;
2798 }
2799
2800 /**
2801 * i915_gem_request_alloc - allocate a request structure
2802 *
2803 * @engine: engine that we wish to issue the request on.
2804 * @ctx: context that the request will be associated with.
2805 * This can be NULL if the request is not directly related to
2806 * any specific user context, in which case this function will
2807 * choose an appropriate context to use.
2808 *
2809 * Returns a pointer to the allocated request if successful,
2810 * or an error code if not.
2811 */
2812 struct drm_i915_gem_request *
2813 i915_gem_request_alloc(struct intel_engine_cs *engine,
2814 struct intel_context *ctx)
2815 {
2816 struct drm_i915_gem_request *req;
2817 int err;
2818
2819 if (ctx == NULL)
2820 ctx = to_i915(engine->dev)->kernel_context;
2821 err = __i915_gem_request_alloc(engine, ctx, &req);
2822 return err ? ERR_PTR(err) : req;
2823 }
2824
2825 struct drm_i915_gem_request *
2826 i915_gem_find_active_request(struct intel_engine_cs *engine)
2827 {
2828 struct drm_i915_gem_request *request;
2829
2830 list_for_each_entry(request, &engine->request_list, list) {
2831 if (i915_gem_request_completed(request, false))
2832 continue;
2833
2834 return request;
2835 }
2836
2837 return NULL;
2838 }
2839
2840 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2841 struct intel_engine_cs *engine)
2842 {
2843 struct drm_i915_gem_request *request;
2844 bool ring_hung;
2845
2846 request = i915_gem_find_active_request(engine);
2847
2848 if (request == NULL)
2849 return;
2850
2851 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2852
2853 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2854
2855 list_for_each_entry_continue(request, &engine->request_list, list)
2856 i915_set_reset_status(dev_priv, request->ctx, false);
2857 }
2858
2859 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2860 struct intel_engine_cs *engine)
2861 {
2862 struct intel_ringbuffer *buffer;
2863
2864 while (!list_empty(&engine->active_list)) {
2865 struct drm_i915_gem_object *obj;
2866
2867 obj = list_first_entry(&engine->active_list,
2868 struct drm_i915_gem_object,
2869 engine_list[engine->id]);
2870
2871 i915_gem_object_retire__read(obj, engine->id);
2872 }
2873
2874 /*
2875 * Clear the execlists queue up before freeing the requests, as those
2876 * are the ones that keep the context and ringbuffer backing objects
2877 * pinned in place.
2878 */
2879
2880 if (i915.enable_execlists) {
2881 /* Ensure irq handler finishes or is cancelled. */
2882 tasklet_kill(&engine->irq_tasklet);
2883
2884 spin_lock_bh(&engine->execlist_lock);
2885 /* list_splice_tail_init checks for empty lists */
2886 list_splice_tail_init(&engine->execlist_queue,
2887 &engine->execlist_retired_req_list);
2888 spin_unlock_bh(&engine->execlist_lock);
2889
2890 intel_execlists_retire_requests(engine);
2891 }
2892
2893 /*
2894 * We must free the requests after all the corresponding objects have
2895 * been moved off active lists. Which is the same order as the normal
2896 * retire_requests function does. This is important if object hold
2897 * implicit references on things like e.g. ppgtt address spaces through
2898 * the request.
2899 */
2900 while (!list_empty(&engine->request_list)) {
2901 struct drm_i915_gem_request *request;
2902
2903 request = list_first_entry(&engine->request_list,
2904 struct drm_i915_gem_request,
2905 list);
2906
2907 i915_gem_request_retire(request);
2908 }
2909
2910 /* Having flushed all requests from all queues, we know that all
2911 * ringbuffers must now be empty. However, since we do not reclaim
2912 * all space when retiring the request (to prevent HEADs colliding
2913 * with rapid ringbuffer wraparound) the amount of available space
2914 * upon reset is less than when we start. Do one more pass over
2915 * all the ringbuffers to reset last_retired_head.
2916 */
2917 list_for_each_entry(buffer, &engine->buffers, link) {
2918 buffer->last_retired_head = buffer->tail;
2919 intel_ring_update_space(buffer);
2920 }
2921
2922 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2923 }
2924
2925 void i915_gem_reset(struct drm_device *dev)
2926 {
2927 struct drm_i915_private *dev_priv = dev->dev_private;
2928 struct intel_engine_cs *engine;
2929
2930 /*
2931 * Before we free the objects from the requests, we need to inspect
2932 * them for finding the guilty party. As the requests only borrow
2933 * their reference to the objects, the inspection must be done first.
2934 */
2935 for_each_engine(engine, dev_priv)
2936 i915_gem_reset_engine_status(dev_priv, engine);
2937
2938 for_each_engine(engine, dev_priv)
2939 i915_gem_reset_engine_cleanup(dev_priv, engine);
2940
2941 i915_gem_context_reset(dev);
2942
2943 i915_gem_restore_fences(dev);
2944
2945 WARN_ON(i915_verify_lists(dev));
2946 }
2947
2948 /**
2949 * This function clears the request list as sequence numbers are passed.
2950 */
2951 void
2952 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2953 {
2954 WARN_ON(i915_verify_lists(engine->dev));
2955
2956 /* Retire requests first as we use it above for the early return.
2957 * If we retire requests last, we may use a later seqno and so clear
2958 * the requests lists without clearing the active list, leading to
2959 * confusion.
2960 */
2961 while (!list_empty(&engine->request_list)) {
2962 struct drm_i915_gem_request *request;
2963
2964 request = list_first_entry(&engine->request_list,
2965 struct drm_i915_gem_request,
2966 list);
2967
2968 if (!i915_gem_request_completed(request, true))
2969 break;
2970
2971 i915_gem_request_retire(request);
2972 }
2973
2974 /* Move any buffers on the active list that are no longer referenced
2975 * by the ringbuffer to the flushing/inactive lists as appropriate,
2976 * before we free the context associated with the requests.
2977 */
2978 while (!list_empty(&engine->active_list)) {
2979 struct drm_i915_gem_object *obj;
2980
2981 obj = list_first_entry(&engine->active_list,
2982 struct drm_i915_gem_object,
2983 engine_list[engine->id]);
2984
2985 if (!list_empty(&obj->last_read_req[engine->id]->list))
2986 break;
2987
2988 i915_gem_object_retire__read(obj, engine->id);
2989 }
2990
2991 if (unlikely(engine->trace_irq_req &&
2992 i915_gem_request_completed(engine->trace_irq_req, true))) {
2993 engine->irq_put(engine);
2994 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2995 }
2996
2997 WARN_ON(i915_verify_lists(engine->dev));
2998 }
2999
3000 bool
3001 i915_gem_retire_requests(struct drm_device *dev)
3002 {
3003 struct drm_i915_private *dev_priv = dev->dev_private;
3004 struct intel_engine_cs *engine;
3005 bool idle = true;
3006
3007 for_each_engine(engine, dev_priv) {
3008 i915_gem_retire_requests_ring(engine);
3009 idle &= list_empty(&engine->request_list);
3010 if (i915.enable_execlists) {
3011 spin_lock_bh(&engine->execlist_lock);
3012 idle &= list_empty(&engine->execlist_queue);
3013 spin_unlock_bh(&engine->execlist_lock);
3014
3015 intel_execlists_retire_requests(engine);
3016 }
3017 }
3018
3019 if (idle)
3020 mod_delayed_work(dev_priv->wq,
3021 &dev_priv->mm.idle_work,
3022 msecs_to_jiffies(100));
3023
3024 return idle;
3025 }
3026
3027 static void
3028 i915_gem_retire_work_handler(struct work_struct *work)
3029 {
3030 struct drm_i915_private *dev_priv =
3031 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3032 struct drm_device *dev = dev_priv->dev;
3033 bool idle;
3034
3035 /* Come back later if the device is busy... */
3036 idle = false;
3037 if (mutex_trylock(&dev->struct_mutex)) {
3038 idle = i915_gem_retire_requests(dev);
3039 mutex_unlock(&dev->struct_mutex);
3040 }
3041 if (!idle)
3042 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3043 round_jiffies_up_relative(HZ));
3044 }
3045
3046 static void
3047 i915_gem_idle_work_handler(struct work_struct *work)
3048 {
3049 struct drm_i915_private *dev_priv =
3050 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3051 struct drm_device *dev = dev_priv->dev;
3052 struct intel_engine_cs *engine;
3053
3054 for_each_engine(engine, dev_priv)
3055 if (!list_empty(&engine->request_list))
3056 return;
3057
3058 /* we probably should sync with hangcheck here, using cancel_work_sync.
3059 * Also locking seems to be fubar here, engine->request_list is protected
3060 * by dev->struct_mutex. */
3061
3062 intel_mark_idle(dev);
3063
3064 if (mutex_trylock(&dev->struct_mutex)) {
3065 for_each_engine(engine, dev_priv)
3066 i915_gem_batch_pool_fini(&engine->batch_pool);
3067
3068 mutex_unlock(&dev->struct_mutex);
3069 }
3070 }
3071
3072 /**
3073 * Ensures that an object will eventually get non-busy by flushing any required
3074 * write domains, emitting any outstanding lazy request and retiring and
3075 * completed requests.
3076 */
3077 static int
3078 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3079 {
3080 int i;
3081
3082 if (!obj->active)
3083 return 0;
3084
3085 for (i = 0; i < I915_NUM_ENGINES; i++) {
3086 struct drm_i915_gem_request *req;
3087
3088 req = obj->last_read_req[i];
3089 if (req == NULL)
3090 continue;
3091
3092 if (list_empty(&req->list))
3093 goto retire;
3094
3095 if (i915_gem_request_completed(req, true)) {
3096 __i915_gem_request_retire__upto(req);
3097 retire:
3098 i915_gem_object_retire__read(obj, i);
3099 }
3100 }
3101
3102 return 0;
3103 }
3104
3105 /**
3106 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3107 * @DRM_IOCTL_ARGS: standard ioctl arguments
3108 *
3109 * Returns 0 if successful, else an error is returned with the remaining time in
3110 * the timeout parameter.
3111 * -ETIME: object is still busy after timeout
3112 * -ERESTARTSYS: signal interrupted the wait
3113 * -ENONENT: object doesn't exist
3114 * Also possible, but rare:
3115 * -EAGAIN: GPU wedged
3116 * -ENOMEM: damn
3117 * -ENODEV: Internal IRQ fail
3118 * -E?: The add request failed
3119 *
3120 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3121 * non-zero timeout parameter the wait ioctl will wait for the given number of
3122 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3123 * without holding struct_mutex the object may become re-busied before this
3124 * function completes. A similar but shorter * race condition exists in the busy
3125 * ioctl
3126 */
3127 int
3128 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3129 {
3130 struct drm_i915_gem_wait *args = data;
3131 struct drm_i915_gem_object *obj;
3132 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3133 int i, n = 0;
3134 int ret;
3135
3136 if (args->flags != 0)
3137 return -EINVAL;
3138
3139 ret = i915_mutex_lock_interruptible(dev);
3140 if (ret)
3141 return ret;
3142
3143 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3144 if (&obj->base == NULL) {
3145 mutex_unlock(&dev->struct_mutex);
3146 return -ENOENT;
3147 }
3148
3149 /* Need to make sure the object gets inactive eventually. */
3150 ret = i915_gem_object_flush_active(obj);
3151 if (ret)
3152 goto out;
3153
3154 if (!obj->active)
3155 goto out;
3156
3157 /* Do this after OLR check to make sure we make forward progress polling
3158 * on this IOCTL with a timeout == 0 (like busy ioctl)
3159 */
3160 if (args->timeout_ns == 0) {
3161 ret = -ETIME;
3162 goto out;
3163 }
3164
3165 drm_gem_object_unreference(&obj->base);
3166
3167 for (i = 0; i < I915_NUM_ENGINES; i++) {
3168 if (obj->last_read_req[i] == NULL)
3169 continue;
3170
3171 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3172 }
3173
3174 mutex_unlock(&dev->struct_mutex);
3175
3176 for (i = 0; i < n; i++) {
3177 if (ret == 0)
3178 ret = __i915_wait_request(req[i], true,
3179 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3180 to_rps_client(file));
3181 i915_gem_request_unreference__unlocked(req[i]);
3182 }
3183 return ret;
3184
3185 out:
3186 drm_gem_object_unreference(&obj->base);
3187 mutex_unlock(&dev->struct_mutex);
3188 return ret;
3189 }
3190
3191 static int
3192 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3193 struct intel_engine_cs *to,
3194 struct drm_i915_gem_request *from_req,
3195 struct drm_i915_gem_request **to_req)
3196 {
3197 struct intel_engine_cs *from;
3198 int ret;
3199
3200 from = i915_gem_request_get_engine(from_req);
3201 if (to == from)
3202 return 0;
3203
3204 if (i915_gem_request_completed(from_req, true))
3205 return 0;
3206
3207 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3208 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3209 ret = __i915_wait_request(from_req,
3210 i915->mm.interruptible,
3211 NULL,
3212 &i915->rps.semaphores);
3213 if (ret)
3214 return ret;
3215
3216 i915_gem_object_retire_request(obj, from_req);
3217 } else {
3218 int idx = intel_ring_sync_index(from, to);
3219 u32 seqno = i915_gem_request_get_seqno(from_req);
3220
3221 WARN_ON(!to_req);
3222
3223 if (seqno <= from->semaphore.sync_seqno[idx])
3224 return 0;
3225
3226 if (*to_req == NULL) {
3227 struct drm_i915_gem_request *req;
3228
3229 req = i915_gem_request_alloc(to, NULL);
3230 if (IS_ERR(req))
3231 return PTR_ERR(req);
3232
3233 *to_req = req;
3234 }
3235
3236 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3237 ret = to->semaphore.sync_to(*to_req, from, seqno);
3238 if (ret)
3239 return ret;
3240
3241 /* We use last_read_req because sync_to()
3242 * might have just caused seqno wrap under
3243 * the radar.
3244 */
3245 from->semaphore.sync_seqno[idx] =
3246 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3247 }
3248
3249 return 0;
3250 }
3251
3252 /**
3253 * i915_gem_object_sync - sync an object to a ring.
3254 *
3255 * @obj: object which may be in use on another ring.
3256 * @to: ring we wish to use the object on. May be NULL.
3257 * @to_req: request we wish to use the object for. See below.
3258 * This will be allocated and returned if a request is
3259 * required but not passed in.
3260 *
3261 * This code is meant to abstract object synchronization with the GPU.
3262 * Calling with NULL implies synchronizing the object with the CPU
3263 * rather than a particular GPU ring. Conceptually we serialise writes
3264 * between engines inside the GPU. We only allow one engine to write
3265 * into a buffer at any time, but multiple readers. To ensure each has
3266 * a coherent view of memory, we must:
3267 *
3268 * - If there is an outstanding write request to the object, the new
3269 * request must wait for it to complete (either CPU or in hw, requests
3270 * on the same ring will be naturally ordered).
3271 *
3272 * - If we are a write request (pending_write_domain is set), the new
3273 * request must wait for outstanding read requests to complete.
3274 *
3275 * For CPU synchronisation (NULL to) no request is required. For syncing with
3276 * rings to_req must be non-NULL. However, a request does not have to be
3277 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3278 * request will be allocated automatically and returned through *to_req. Note
3279 * that it is not guaranteed that commands will be emitted (because the system
3280 * might already be idle). Hence there is no need to create a request that
3281 * might never have any work submitted. Note further that if a request is
3282 * returned in *to_req, it is the responsibility of the caller to submit
3283 * that request (after potentially adding more work to it).
3284 *
3285 * Returns 0 if successful, else propagates up the lower layer error.
3286 */
3287 int
3288 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3289 struct intel_engine_cs *to,
3290 struct drm_i915_gem_request **to_req)
3291 {
3292 const bool readonly = obj->base.pending_write_domain == 0;
3293 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3294 int ret, i, n;
3295
3296 if (!obj->active)
3297 return 0;
3298
3299 if (to == NULL)
3300 return i915_gem_object_wait_rendering(obj, readonly);
3301
3302 n = 0;
3303 if (readonly) {
3304 if (obj->last_write_req)
3305 req[n++] = obj->last_write_req;
3306 } else {
3307 for (i = 0; i < I915_NUM_ENGINES; i++)
3308 if (obj->last_read_req[i])
3309 req[n++] = obj->last_read_req[i];
3310 }
3311 for (i = 0; i < n; i++) {
3312 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3313 if (ret)
3314 return ret;
3315 }
3316
3317 return 0;
3318 }
3319
3320 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3321 {
3322 u32 old_write_domain, old_read_domains;
3323
3324 /* Force a pagefault for domain tracking on next user access */
3325 i915_gem_release_mmap(obj);
3326
3327 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3328 return;
3329
3330 old_read_domains = obj->base.read_domains;
3331 old_write_domain = obj->base.write_domain;
3332
3333 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3334 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3335
3336 trace_i915_gem_object_change_domain(obj,
3337 old_read_domains,
3338 old_write_domain);
3339 }
3340
3341 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3342 {
3343 struct drm_i915_gem_object *obj = vma->obj;
3344 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3345 int ret;
3346
3347 if (list_empty(&vma->obj_link))
3348 return 0;
3349
3350 if (!drm_mm_node_allocated(&vma->node)) {
3351 i915_gem_vma_destroy(vma);
3352 return 0;
3353 }
3354
3355 if (vma->pin_count)
3356 return -EBUSY;
3357
3358 BUG_ON(obj->pages == NULL);
3359
3360 if (wait) {
3361 ret = i915_gem_object_wait_rendering(obj, false);
3362 if (ret)
3363 return ret;
3364 }
3365
3366 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3367 i915_gem_object_finish_gtt(obj);
3368
3369 /* release the fence reg _after_ flushing */
3370 ret = i915_gem_object_put_fence(obj);
3371 if (ret)
3372 return ret;
3373 }
3374
3375 trace_i915_vma_unbind(vma);
3376
3377 vma->vm->unbind_vma(vma);
3378 vma->bound = 0;
3379
3380 list_del_init(&vma->vm_link);
3381 if (vma->is_ggtt) {
3382 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3383 obj->map_and_fenceable = false;
3384 } else if (vma->ggtt_view.pages) {
3385 sg_free_table(vma->ggtt_view.pages);
3386 kfree(vma->ggtt_view.pages);
3387 }
3388 vma->ggtt_view.pages = NULL;
3389 }
3390
3391 drm_mm_remove_node(&vma->node);
3392 i915_gem_vma_destroy(vma);
3393
3394 /* Since the unbound list is global, only move to that list if
3395 * no more VMAs exist. */
3396 if (list_empty(&obj->vma_list))
3397 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3398
3399 /* And finally now the object is completely decoupled from this vma,
3400 * we can drop its hold on the backing storage and allow it to be
3401 * reaped by the shrinker.
3402 */
3403 i915_gem_object_unpin_pages(obj);
3404
3405 return 0;
3406 }
3407
3408 int i915_vma_unbind(struct i915_vma *vma)
3409 {
3410 return __i915_vma_unbind(vma, true);
3411 }
3412
3413 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3414 {
3415 return __i915_vma_unbind(vma, false);
3416 }
3417
3418 int i915_gpu_idle(struct drm_device *dev)
3419 {
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 struct intel_engine_cs *engine;
3422 int ret;
3423
3424 /* Flush everything onto the inactive list. */
3425 for_each_engine(engine, dev_priv) {
3426 if (!i915.enable_execlists) {
3427 struct drm_i915_gem_request *req;
3428
3429 req = i915_gem_request_alloc(engine, NULL);
3430 if (IS_ERR(req))
3431 return PTR_ERR(req);
3432
3433 ret = i915_switch_context(req);
3434 i915_add_request_no_flush(req);
3435 if (ret)
3436 return ret;
3437 }
3438
3439 ret = intel_engine_idle(engine);
3440 if (ret)
3441 return ret;
3442 }
3443
3444 WARN_ON(i915_verify_lists(dev));
3445 return 0;
3446 }
3447
3448 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3449 unsigned long cache_level)
3450 {
3451 struct drm_mm_node *gtt_space = &vma->node;
3452 struct drm_mm_node *other;
3453
3454 /*
3455 * On some machines we have to be careful when putting differing types
3456 * of snoopable memory together to avoid the prefetcher crossing memory
3457 * domains and dying. During vm initialisation, we decide whether or not
3458 * these constraints apply and set the drm_mm.color_adjust
3459 * appropriately.
3460 */
3461 if (vma->vm->mm.color_adjust == NULL)
3462 return true;
3463
3464 if (!drm_mm_node_allocated(gtt_space))
3465 return true;
3466
3467 if (list_empty(&gtt_space->node_list))
3468 return true;
3469
3470 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3471 if (other->allocated && !other->hole_follows && other->color != cache_level)
3472 return false;
3473
3474 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3475 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3476 return false;
3477
3478 return true;
3479 }
3480
3481 /**
3482 * Finds free space in the GTT aperture and binds the object or a view of it
3483 * there.
3484 */
3485 static struct i915_vma *
3486 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3487 struct i915_address_space *vm,
3488 const struct i915_ggtt_view *ggtt_view,
3489 unsigned alignment,
3490 uint64_t flags)
3491 {
3492 struct drm_device *dev = obj->base.dev;
3493 struct drm_i915_private *dev_priv = to_i915(dev);
3494 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3495 u32 fence_alignment, unfenced_alignment;
3496 u32 search_flag, alloc_flag;
3497 u64 start, end;
3498 u64 size, fence_size;
3499 struct i915_vma *vma;
3500 int ret;
3501
3502 if (i915_is_ggtt(vm)) {
3503 u32 view_size;
3504
3505 if (WARN_ON(!ggtt_view))
3506 return ERR_PTR(-EINVAL);
3507
3508 view_size = i915_ggtt_view_size(obj, ggtt_view);
3509
3510 fence_size = i915_gem_get_gtt_size(dev,
3511 view_size,
3512 obj->tiling_mode);
3513 fence_alignment = i915_gem_get_gtt_alignment(dev,
3514 view_size,
3515 obj->tiling_mode,
3516 true);
3517 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3518 view_size,
3519 obj->tiling_mode,
3520 false);
3521 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3522 } else {
3523 fence_size = i915_gem_get_gtt_size(dev,
3524 obj->base.size,
3525 obj->tiling_mode);
3526 fence_alignment = i915_gem_get_gtt_alignment(dev,
3527 obj->base.size,
3528 obj->tiling_mode,
3529 true);
3530 unfenced_alignment =
3531 i915_gem_get_gtt_alignment(dev,
3532 obj->base.size,
3533 obj->tiling_mode,
3534 false);
3535 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3536 }
3537
3538 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3539 end = vm->total;
3540 if (flags & PIN_MAPPABLE)
3541 end = min_t(u64, end, ggtt->mappable_end);
3542 if (flags & PIN_ZONE_4G)
3543 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3544
3545 if (alignment == 0)
3546 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3547 unfenced_alignment;
3548 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3549 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3550 ggtt_view ? ggtt_view->type : 0,
3551 alignment);
3552 return ERR_PTR(-EINVAL);
3553 }
3554
3555 /* If binding the object/GGTT view requires more space than the entire
3556 * aperture has, reject it early before evicting everything in a vain
3557 * attempt to find space.
3558 */
3559 if (size > end) {
3560 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3561 ggtt_view ? ggtt_view->type : 0,
3562 size,
3563 flags & PIN_MAPPABLE ? "mappable" : "total",
3564 end);
3565 return ERR_PTR(-E2BIG);
3566 }
3567
3568 ret = i915_gem_object_get_pages(obj);
3569 if (ret)
3570 return ERR_PTR(ret);
3571
3572 i915_gem_object_pin_pages(obj);
3573
3574 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3575 i915_gem_obj_lookup_or_create_vma(obj, vm);
3576
3577 if (IS_ERR(vma))
3578 goto err_unpin;
3579
3580 if (flags & PIN_OFFSET_FIXED) {
3581 uint64_t offset = flags & PIN_OFFSET_MASK;
3582
3583 if (offset & (alignment - 1) || offset + size > end) {
3584 ret = -EINVAL;
3585 goto err_free_vma;
3586 }
3587 vma->node.start = offset;
3588 vma->node.size = size;
3589 vma->node.color = obj->cache_level;
3590 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3591 if (ret) {
3592 ret = i915_gem_evict_for_vma(vma);
3593 if (ret == 0)
3594 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3595 }
3596 if (ret)
3597 goto err_free_vma;
3598 } else {
3599 if (flags & PIN_HIGH) {
3600 search_flag = DRM_MM_SEARCH_BELOW;
3601 alloc_flag = DRM_MM_CREATE_TOP;
3602 } else {
3603 search_flag = DRM_MM_SEARCH_DEFAULT;
3604 alloc_flag = DRM_MM_CREATE_DEFAULT;
3605 }
3606
3607 search_free:
3608 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3609 size, alignment,
3610 obj->cache_level,
3611 start, end,
3612 search_flag,
3613 alloc_flag);
3614 if (ret) {
3615 ret = i915_gem_evict_something(dev, vm, size, alignment,
3616 obj->cache_level,
3617 start, end,
3618 flags);
3619 if (ret == 0)
3620 goto search_free;
3621
3622 goto err_free_vma;
3623 }
3624 }
3625 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3626 ret = -EINVAL;
3627 goto err_remove_node;
3628 }
3629
3630 trace_i915_vma_bind(vma, flags);
3631 ret = i915_vma_bind(vma, obj->cache_level, flags);
3632 if (ret)
3633 goto err_remove_node;
3634
3635 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3636 list_add_tail(&vma->vm_link, &vm->inactive_list);
3637
3638 return vma;
3639
3640 err_remove_node:
3641 drm_mm_remove_node(&vma->node);
3642 err_free_vma:
3643 i915_gem_vma_destroy(vma);
3644 vma = ERR_PTR(ret);
3645 err_unpin:
3646 i915_gem_object_unpin_pages(obj);
3647 return vma;
3648 }
3649
3650 bool
3651 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3652 bool force)
3653 {
3654 /* If we don't have a page list set up, then we're not pinned
3655 * to GPU, and we can ignore the cache flush because it'll happen
3656 * again at bind time.
3657 */
3658 if (obj->pages == NULL)
3659 return false;
3660
3661 /*
3662 * Stolen memory is always coherent with the GPU as it is explicitly
3663 * marked as wc by the system, or the system is cache-coherent.
3664 */
3665 if (obj->stolen || obj->phys_handle)
3666 return false;
3667
3668 /* If the GPU is snooping the contents of the CPU cache,
3669 * we do not need to manually clear the CPU cache lines. However,
3670 * the caches are only snooped when the render cache is
3671 * flushed/invalidated. As we always have to emit invalidations
3672 * and flushes when moving into and out of the RENDER domain, correct
3673 * snooping behaviour occurs naturally as the result of our domain
3674 * tracking.
3675 */
3676 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3677 obj->cache_dirty = true;
3678 return false;
3679 }
3680
3681 trace_i915_gem_object_clflush(obj);
3682 drm_clflush_sg(obj->pages);
3683 obj->cache_dirty = false;
3684
3685 return true;
3686 }
3687
3688 /** Flushes the GTT write domain for the object if it's dirty. */
3689 static void
3690 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3691 {
3692 uint32_t old_write_domain;
3693
3694 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3695 return;
3696
3697 /* No actual flushing is required for the GTT write domain. Writes
3698 * to it immediately go to main memory as far as we know, so there's
3699 * no chipset flush. It also doesn't land in render cache.
3700 *
3701 * However, we do have to enforce the order so that all writes through
3702 * the GTT land before any writes to the device, such as updates to
3703 * the GATT itself.
3704 */
3705 wmb();
3706
3707 old_write_domain = obj->base.write_domain;
3708 obj->base.write_domain = 0;
3709
3710 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3711
3712 trace_i915_gem_object_change_domain(obj,
3713 obj->base.read_domains,
3714 old_write_domain);
3715 }
3716
3717 /** Flushes the CPU write domain for the object if it's dirty. */
3718 static void
3719 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3720 {
3721 uint32_t old_write_domain;
3722
3723 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3724 return;
3725
3726 if (i915_gem_clflush_object(obj, obj->pin_display))
3727 i915_gem_chipset_flush(obj->base.dev);
3728
3729 old_write_domain = obj->base.write_domain;
3730 obj->base.write_domain = 0;
3731
3732 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3733
3734 trace_i915_gem_object_change_domain(obj,
3735 obj->base.read_domains,
3736 old_write_domain);
3737 }
3738
3739 /**
3740 * Moves a single object to the GTT read, and possibly write domain.
3741 *
3742 * This function returns when the move is complete, including waiting on
3743 * flushes to occur.
3744 */
3745 int
3746 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3747 {
3748 struct drm_device *dev = obj->base.dev;
3749 struct drm_i915_private *dev_priv = to_i915(dev);
3750 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3751 uint32_t old_write_domain, old_read_domains;
3752 struct i915_vma *vma;
3753 int ret;
3754
3755 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3756 return 0;
3757
3758 ret = i915_gem_object_wait_rendering(obj, !write);
3759 if (ret)
3760 return ret;
3761
3762 /* Flush and acquire obj->pages so that we are coherent through
3763 * direct access in memory with previous cached writes through
3764 * shmemfs and that our cache domain tracking remains valid.
3765 * For example, if the obj->filp was moved to swap without us
3766 * being notified and releasing the pages, we would mistakenly
3767 * continue to assume that the obj remained out of the CPU cached
3768 * domain.
3769 */
3770 ret = i915_gem_object_get_pages(obj);
3771 if (ret)
3772 return ret;
3773
3774 i915_gem_object_flush_cpu_write_domain(obj);
3775
3776 /* Serialise direct access to this object with the barriers for
3777 * coherent writes from the GPU, by effectively invalidating the
3778 * GTT domain upon first access.
3779 */
3780 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3781 mb();
3782
3783 old_write_domain = obj->base.write_domain;
3784 old_read_domains = obj->base.read_domains;
3785
3786 /* It should now be out of any other write domains, and we can update
3787 * the domain values for our changes.
3788 */
3789 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3790 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3791 if (write) {
3792 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3793 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3794 obj->dirty = 1;
3795 }
3796
3797 trace_i915_gem_object_change_domain(obj,
3798 old_read_domains,
3799 old_write_domain);
3800
3801 /* And bump the LRU for this access */
3802 vma = i915_gem_obj_to_ggtt(obj);
3803 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3804 list_move_tail(&vma->vm_link,
3805 &ggtt->base.inactive_list);
3806
3807 return 0;
3808 }
3809
3810 /**
3811 * Changes the cache-level of an object across all VMA.
3812 *
3813 * After this function returns, the object will be in the new cache-level
3814 * across all GTT and the contents of the backing storage will be coherent,
3815 * with respect to the new cache-level. In order to keep the backing storage
3816 * coherent for all users, we only allow a single cache level to be set
3817 * globally on the object and prevent it from being changed whilst the
3818 * hardware is reading from the object. That is if the object is currently
3819 * on the scanout it will be set to uncached (or equivalent display
3820 * cache coherency) and all non-MOCS GPU access will also be uncached so
3821 * that all direct access to the scanout remains coherent.
3822 */
3823 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3824 enum i915_cache_level cache_level)
3825 {
3826 struct drm_device *dev = obj->base.dev;
3827 struct i915_vma *vma, *next;
3828 bool bound = false;
3829 int ret = 0;
3830
3831 if (obj->cache_level == cache_level)
3832 goto out;
3833
3834 /* Inspect the list of currently bound VMA and unbind any that would
3835 * be invalid given the new cache-level. This is principally to
3836 * catch the issue of the CS prefetch crossing page boundaries and
3837 * reading an invalid PTE on older architectures.
3838 */
3839 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3840 if (!drm_mm_node_allocated(&vma->node))
3841 continue;
3842
3843 if (vma->pin_count) {
3844 DRM_DEBUG("can not change the cache level of pinned objects\n");
3845 return -EBUSY;
3846 }
3847
3848 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3849 ret = i915_vma_unbind(vma);
3850 if (ret)
3851 return ret;
3852 } else
3853 bound = true;
3854 }
3855
3856 /* We can reuse the existing drm_mm nodes but need to change the
3857 * cache-level on the PTE. We could simply unbind them all and
3858 * rebind with the correct cache-level on next use. However since
3859 * we already have a valid slot, dma mapping, pages etc, we may as
3860 * rewrite the PTE in the belief that doing so tramples upon less
3861 * state and so involves less work.
3862 */
3863 if (bound) {
3864 /* Before we change the PTE, the GPU must not be accessing it.
3865 * If we wait upon the object, we know that all the bound
3866 * VMA are no longer active.
3867 */
3868 ret = i915_gem_object_wait_rendering(obj, false);
3869 if (ret)
3870 return ret;
3871
3872 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3873 /* Access to snoopable pages through the GTT is
3874 * incoherent and on some machines causes a hard
3875 * lockup. Relinquish the CPU mmaping to force
3876 * userspace to refault in the pages and we can
3877 * then double check if the GTT mapping is still
3878 * valid for that pointer access.
3879 */
3880 i915_gem_release_mmap(obj);
3881
3882 /* As we no longer need a fence for GTT access,
3883 * we can relinquish it now (and so prevent having
3884 * to steal a fence from someone else on the next
3885 * fence request). Note GPU activity would have
3886 * dropped the fence as all snoopable access is
3887 * supposed to be linear.
3888 */
3889 ret = i915_gem_object_put_fence(obj);
3890 if (ret)
3891 return ret;
3892 } else {
3893 /* We either have incoherent backing store and
3894 * so no GTT access or the architecture is fully
3895 * coherent. In such cases, existing GTT mmaps
3896 * ignore the cache bit in the PTE and we can
3897 * rewrite it without confusing the GPU or having
3898 * to force userspace to fault back in its mmaps.
3899 */
3900 }
3901
3902 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3903 if (!drm_mm_node_allocated(&vma->node))
3904 continue;
3905
3906 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3907 if (ret)
3908 return ret;
3909 }
3910 }
3911
3912 list_for_each_entry(vma, &obj->vma_list, obj_link)
3913 vma->node.color = cache_level;
3914 obj->cache_level = cache_level;
3915
3916 out:
3917 /* Flush the dirty CPU caches to the backing storage so that the
3918 * object is now coherent at its new cache level (with respect
3919 * to the access domain).
3920 */
3921 if (obj->cache_dirty &&
3922 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3923 cpu_write_needs_clflush(obj)) {
3924 if (i915_gem_clflush_object(obj, true))
3925 i915_gem_chipset_flush(obj->base.dev);
3926 }
3927
3928 return 0;
3929 }
3930
3931 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3932 struct drm_file *file)
3933 {
3934 struct drm_i915_gem_caching *args = data;
3935 struct drm_i915_gem_object *obj;
3936
3937 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3938 if (&obj->base == NULL)
3939 return -ENOENT;
3940
3941 switch (obj->cache_level) {
3942 case I915_CACHE_LLC:
3943 case I915_CACHE_L3_LLC:
3944 args->caching = I915_CACHING_CACHED;
3945 break;
3946
3947 case I915_CACHE_WT:
3948 args->caching = I915_CACHING_DISPLAY;
3949 break;
3950
3951 default:
3952 args->caching = I915_CACHING_NONE;
3953 break;
3954 }
3955
3956 drm_gem_object_unreference_unlocked(&obj->base);
3957 return 0;
3958 }
3959
3960 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3961 struct drm_file *file)
3962 {
3963 struct drm_i915_private *dev_priv = dev->dev_private;
3964 struct drm_i915_gem_caching *args = data;
3965 struct drm_i915_gem_object *obj;
3966 enum i915_cache_level level;
3967 int ret;
3968
3969 switch (args->caching) {
3970 case I915_CACHING_NONE:
3971 level = I915_CACHE_NONE;
3972 break;
3973 case I915_CACHING_CACHED:
3974 /*
3975 * Due to a HW issue on BXT A stepping, GPU stores via a
3976 * snooped mapping may leave stale data in a corresponding CPU
3977 * cacheline, whereas normally such cachelines would get
3978 * invalidated.
3979 */
3980 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3981 return -ENODEV;
3982
3983 level = I915_CACHE_LLC;
3984 break;
3985 case I915_CACHING_DISPLAY:
3986 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3987 break;
3988 default:
3989 return -EINVAL;
3990 }
3991
3992 intel_runtime_pm_get(dev_priv);
3993
3994 ret = i915_mutex_lock_interruptible(dev);
3995 if (ret)
3996 goto rpm_put;
3997
3998 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3999 if (&obj->base == NULL) {
4000 ret = -ENOENT;
4001 goto unlock;
4002 }
4003
4004 ret = i915_gem_object_set_cache_level(obj, level);
4005
4006 drm_gem_object_unreference(&obj->base);
4007 unlock:
4008 mutex_unlock(&dev->struct_mutex);
4009 rpm_put:
4010 intel_runtime_pm_put(dev_priv);
4011
4012 return ret;
4013 }
4014
4015 /*
4016 * Prepare buffer for display plane (scanout, cursors, etc).
4017 * Can be called from an uninterruptible phase (modesetting) and allows
4018 * any flushes to be pipelined (for pageflips).
4019 */
4020 int
4021 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4022 u32 alignment,
4023 const struct i915_ggtt_view *view)
4024 {
4025 u32 old_read_domains, old_write_domain;
4026 int ret;
4027
4028 /* Mark the pin_display early so that we account for the
4029 * display coherency whilst setting up the cache domains.
4030 */
4031 obj->pin_display++;
4032
4033 /* The display engine is not coherent with the LLC cache on gen6. As
4034 * a result, we make sure that the pinning that is about to occur is
4035 * done with uncached PTEs. This is lowest common denominator for all
4036 * chipsets.
4037 *
4038 * However for gen6+, we could do better by using the GFDT bit instead
4039 * of uncaching, which would allow us to flush all the LLC-cached data
4040 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4041 */
4042 ret = i915_gem_object_set_cache_level(obj,
4043 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4044 if (ret)
4045 goto err_unpin_display;
4046
4047 /* As the user may map the buffer once pinned in the display plane
4048 * (e.g. libkms for the bootup splash), we have to ensure that we
4049 * always use map_and_fenceable for all scanout buffers.
4050 */
4051 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4052 view->type == I915_GGTT_VIEW_NORMAL ?
4053 PIN_MAPPABLE : 0);
4054 if (ret)
4055 goto err_unpin_display;
4056
4057 i915_gem_object_flush_cpu_write_domain(obj);
4058
4059 old_write_domain = obj->base.write_domain;
4060 old_read_domains = obj->base.read_domains;
4061
4062 /* It should now be out of any other write domains, and we can update
4063 * the domain values for our changes.
4064 */
4065 obj->base.write_domain = 0;
4066 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4067
4068 trace_i915_gem_object_change_domain(obj,
4069 old_read_domains,
4070 old_write_domain);
4071
4072 return 0;
4073
4074 err_unpin_display:
4075 obj->pin_display--;
4076 return ret;
4077 }
4078
4079 void
4080 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4081 const struct i915_ggtt_view *view)
4082 {
4083 if (WARN_ON(obj->pin_display == 0))
4084 return;
4085
4086 i915_gem_object_ggtt_unpin_view(obj, view);
4087
4088 obj->pin_display--;
4089 }
4090
4091 /**
4092 * Moves a single object to the CPU read, and possibly write domain.
4093 *
4094 * This function returns when the move is complete, including waiting on
4095 * flushes to occur.
4096 */
4097 int
4098 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4099 {
4100 uint32_t old_write_domain, old_read_domains;
4101 int ret;
4102
4103 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4104 return 0;
4105
4106 ret = i915_gem_object_wait_rendering(obj, !write);
4107 if (ret)
4108 return ret;
4109
4110 i915_gem_object_flush_gtt_write_domain(obj);
4111
4112 old_write_domain = obj->base.write_domain;
4113 old_read_domains = obj->base.read_domains;
4114
4115 /* Flush the CPU cache if it's still invalid. */
4116 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4117 i915_gem_clflush_object(obj, false);
4118
4119 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4120 }
4121
4122 /* It should now be out of any other write domains, and we can update
4123 * the domain values for our changes.
4124 */
4125 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4126
4127 /* If we're writing through the CPU, then the GPU read domains will
4128 * need to be invalidated at next use.
4129 */
4130 if (write) {
4131 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4132 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4133 }
4134
4135 trace_i915_gem_object_change_domain(obj,
4136 old_read_domains,
4137 old_write_domain);
4138
4139 return 0;
4140 }
4141
4142 /* Throttle our rendering by waiting until the ring has completed our requests
4143 * emitted over 20 msec ago.
4144 *
4145 * Note that if we were to use the current jiffies each time around the loop,
4146 * we wouldn't escape the function with any frames outstanding if the time to
4147 * render a frame was over 20ms.
4148 *
4149 * This should get us reasonable parallelism between CPU and GPU but also
4150 * relatively low latency when blocking on a particular request to finish.
4151 */
4152 static int
4153 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4154 {
4155 struct drm_i915_private *dev_priv = dev->dev_private;
4156 struct drm_i915_file_private *file_priv = file->driver_priv;
4157 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4158 struct drm_i915_gem_request *request, *target = NULL;
4159 int ret;
4160
4161 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4162 if (ret)
4163 return ret;
4164
4165 /* ABI: return -EIO if already wedged */
4166 if (i915_terminally_wedged(&dev_priv->gpu_error))
4167 return -EIO;
4168
4169 spin_lock(&file_priv->mm.lock);
4170 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4171 if (time_after_eq(request->emitted_jiffies, recent_enough))
4172 break;
4173
4174 /*
4175 * Note that the request might not have been submitted yet.
4176 * In which case emitted_jiffies will be zero.
4177 */
4178 if (!request->emitted_jiffies)
4179 continue;
4180
4181 target = request;
4182 }
4183 if (target)
4184 i915_gem_request_reference(target);
4185 spin_unlock(&file_priv->mm.lock);
4186
4187 if (target == NULL)
4188 return 0;
4189
4190 ret = __i915_wait_request(target, true, NULL, NULL);
4191 if (ret == 0)
4192 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4193
4194 i915_gem_request_unreference__unlocked(target);
4195
4196 return ret;
4197 }
4198
4199 static bool
4200 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4201 {
4202 struct drm_i915_gem_object *obj = vma->obj;
4203
4204 if (alignment &&
4205 vma->node.start & (alignment - 1))
4206 return true;
4207
4208 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4209 return true;
4210
4211 if (flags & PIN_OFFSET_BIAS &&
4212 vma->node.start < (flags & PIN_OFFSET_MASK))
4213 return true;
4214
4215 if (flags & PIN_OFFSET_FIXED &&
4216 vma->node.start != (flags & PIN_OFFSET_MASK))
4217 return true;
4218
4219 return false;
4220 }
4221
4222 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4223 {
4224 struct drm_i915_gem_object *obj = vma->obj;
4225 bool mappable, fenceable;
4226 u32 fence_size, fence_alignment;
4227
4228 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4229 obj->base.size,
4230 obj->tiling_mode);
4231 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4232 obj->base.size,
4233 obj->tiling_mode,
4234 true);
4235
4236 fenceable = (vma->node.size == fence_size &&
4237 (vma->node.start & (fence_alignment - 1)) == 0);
4238
4239 mappable = (vma->node.start + fence_size <=
4240 to_i915(obj->base.dev)->ggtt.mappable_end);
4241
4242 obj->map_and_fenceable = mappable && fenceable;
4243 }
4244
4245 static int
4246 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4247 struct i915_address_space *vm,
4248 const struct i915_ggtt_view *ggtt_view,
4249 uint32_t alignment,
4250 uint64_t flags)
4251 {
4252 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4253 struct i915_vma *vma;
4254 unsigned bound;
4255 int ret;
4256
4257 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4258 return -ENODEV;
4259
4260 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4261 return -EINVAL;
4262
4263 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4264 return -EINVAL;
4265
4266 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4267 return -EINVAL;
4268
4269 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4270 i915_gem_obj_to_vma(obj, vm);
4271
4272 if (vma) {
4273 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4274 return -EBUSY;
4275
4276 if (i915_vma_misplaced(vma, alignment, flags)) {
4277 WARN(vma->pin_count,
4278 "bo is already pinned in %s with incorrect alignment:"
4279 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4280 " obj->map_and_fenceable=%d\n",
4281 ggtt_view ? "ggtt" : "ppgtt",
4282 upper_32_bits(vma->node.start),
4283 lower_32_bits(vma->node.start),
4284 alignment,
4285 !!(flags & PIN_MAPPABLE),
4286 obj->map_and_fenceable);
4287 ret = i915_vma_unbind(vma);
4288 if (ret)
4289 return ret;
4290
4291 vma = NULL;
4292 }
4293 }
4294
4295 bound = vma ? vma->bound : 0;
4296 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4297 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4298 flags);
4299 if (IS_ERR(vma))
4300 return PTR_ERR(vma);
4301 } else {
4302 ret = i915_vma_bind(vma, obj->cache_level, flags);
4303 if (ret)
4304 return ret;
4305 }
4306
4307 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4308 (bound ^ vma->bound) & GLOBAL_BIND) {
4309 __i915_vma_set_map_and_fenceable(vma);
4310 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4311 }
4312
4313 vma->pin_count++;
4314 return 0;
4315 }
4316
4317 int
4318 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4319 struct i915_address_space *vm,
4320 uint32_t alignment,
4321 uint64_t flags)
4322 {
4323 return i915_gem_object_do_pin(obj, vm,
4324 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4325 alignment, flags);
4326 }
4327
4328 int
4329 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4330 const struct i915_ggtt_view *view,
4331 uint32_t alignment,
4332 uint64_t flags)
4333 {
4334 struct drm_device *dev = obj->base.dev;
4335 struct drm_i915_private *dev_priv = to_i915(dev);
4336 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4337
4338 BUG_ON(!view);
4339
4340 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4341 alignment, flags | PIN_GLOBAL);
4342 }
4343
4344 void
4345 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4346 const struct i915_ggtt_view *view)
4347 {
4348 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4349
4350 WARN_ON(vma->pin_count == 0);
4351 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4352
4353 --vma->pin_count;
4354 }
4355
4356 int
4357 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4358 struct drm_file *file)
4359 {
4360 struct drm_i915_gem_busy *args = data;
4361 struct drm_i915_gem_object *obj;
4362 int ret;
4363
4364 ret = i915_mutex_lock_interruptible(dev);
4365 if (ret)
4366 return ret;
4367
4368 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4369 if (&obj->base == NULL) {
4370 ret = -ENOENT;
4371 goto unlock;
4372 }
4373
4374 /* Count all active objects as busy, even if they are currently not used
4375 * by the gpu. Users of this interface expect objects to eventually
4376 * become non-busy without any further actions, therefore emit any
4377 * necessary flushes here.
4378 */
4379 ret = i915_gem_object_flush_active(obj);
4380 if (ret)
4381 goto unref;
4382
4383 args->busy = 0;
4384 if (obj->active) {
4385 int i;
4386
4387 for (i = 0; i < I915_NUM_ENGINES; i++) {
4388 struct drm_i915_gem_request *req;
4389
4390 req = obj->last_read_req[i];
4391 if (req)
4392 args->busy |= 1 << (16 + req->engine->exec_id);
4393 }
4394 if (obj->last_write_req)
4395 args->busy |= obj->last_write_req->engine->exec_id;
4396 }
4397
4398 unref:
4399 drm_gem_object_unreference(&obj->base);
4400 unlock:
4401 mutex_unlock(&dev->struct_mutex);
4402 return ret;
4403 }
4404
4405 int
4406 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4407 struct drm_file *file_priv)
4408 {
4409 return i915_gem_ring_throttle(dev, file_priv);
4410 }
4411
4412 int
4413 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4414 struct drm_file *file_priv)
4415 {
4416 struct drm_i915_private *dev_priv = dev->dev_private;
4417 struct drm_i915_gem_madvise *args = data;
4418 struct drm_i915_gem_object *obj;
4419 int ret;
4420
4421 switch (args->madv) {
4422 case I915_MADV_DONTNEED:
4423 case I915_MADV_WILLNEED:
4424 break;
4425 default:
4426 return -EINVAL;
4427 }
4428
4429 ret = i915_mutex_lock_interruptible(dev);
4430 if (ret)
4431 return ret;
4432
4433 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4434 if (&obj->base == NULL) {
4435 ret = -ENOENT;
4436 goto unlock;
4437 }
4438
4439 if (i915_gem_obj_is_pinned(obj)) {
4440 ret = -EINVAL;
4441 goto out;
4442 }
4443
4444 if (obj->pages &&
4445 obj->tiling_mode != I915_TILING_NONE &&
4446 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4447 if (obj->madv == I915_MADV_WILLNEED)
4448 i915_gem_object_unpin_pages(obj);
4449 if (args->madv == I915_MADV_WILLNEED)
4450 i915_gem_object_pin_pages(obj);
4451 }
4452
4453 if (obj->madv != __I915_MADV_PURGED)
4454 obj->madv = args->madv;
4455
4456 /* if the object is no longer attached, discard its backing storage */
4457 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4458 i915_gem_object_truncate(obj);
4459
4460 args->retained = obj->madv != __I915_MADV_PURGED;
4461
4462 out:
4463 drm_gem_object_unreference(&obj->base);
4464 unlock:
4465 mutex_unlock(&dev->struct_mutex);
4466 return ret;
4467 }
4468
4469 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4470 const struct drm_i915_gem_object_ops *ops)
4471 {
4472 int i;
4473
4474 INIT_LIST_HEAD(&obj->global_list);
4475 for (i = 0; i < I915_NUM_ENGINES; i++)
4476 INIT_LIST_HEAD(&obj->engine_list[i]);
4477 INIT_LIST_HEAD(&obj->obj_exec_link);
4478 INIT_LIST_HEAD(&obj->vma_list);
4479 INIT_LIST_HEAD(&obj->batch_pool_link);
4480
4481 obj->ops = ops;
4482
4483 obj->fence_reg = I915_FENCE_REG_NONE;
4484 obj->madv = I915_MADV_WILLNEED;
4485
4486 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4487 }
4488
4489 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4490 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4491 .get_pages = i915_gem_object_get_pages_gtt,
4492 .put_pages = i915_gem_object_put_pages_gtt,
4493 };
4494
4495 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4496 size_t size)
4497 {
4498 struct drm_i915_gem_object *obj;
4499 struct address_space *mapping;
4500 gfp_t mask;
4501
4502 obj = i915_gem_object_alloc(dev);
4503 if (obj == NULL)
4504 return NULL;
4505
4506 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4507 i915_gem_object_free(obj);
4508 return NULL;
4509 }
4510
4511 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4512 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4513 /* 965gm cannot relocate objects above 4GiB. */
4514 mask &= ~__GFP_HIGHMEM;
4515 mask |= __GFP_DMA32;
4516 }
4517
4518 mapping = file_inode(obj->base.filp)->i_mapping;
4519 mapping_set_gfp_mask(mapping, mask);
4520
4521 i915_gem_object_init(obj, &i915_gem_object_ops);
4522
4523 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4524 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4525
4526 if (HAS_LLC(dev)) {
4527 /* On some devices, we can have the GPU use the LLC (the CPU
4528 * cache) for about a 10% performance improvement
4529 * compared to uncached. Graphics requests other than
4530 * display scanout are coherent with the CPU in
4531 * accessing this cache. This means in this mode we
4532 * don't need to clflush on the CPU side, and on the
4533 * GPU side we only need to flush internal caches to
4534 * get data visible to the CPU.
4535 *
4536 * However, we maintain the display planes as UC, and so
4537 * need to rebind when first used as such.
4538 */
4539 obj->cache_level = I915_CACHE_LLC;
4540 } else
4541 obj->cache_level = I915_CACHE_NONE;
4542
4543 trace_i915_gem_object_create(obj);
4544
4545 return obj;
4546 }
4547
4548 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4549 {
4550 /* If we are the last user of the backing storage (be it shmemfs
4551 * pages or stolen etc), we know that the pages are going to be
4552 * immediately released. In this case, we can then skip copying
4553 * back the contents from the GPU.
4554 */
4555
4556 if (obj->madv != I915_MADV_WILLNEED)
4557 return false;
4558
4559 if (obj->base.filp == NULL)
4560 return true;
4561
4562 /* At first glance, this looks racy, but then again so would be
4563 * userspace racing mmap against close. However, the first external
4564 * reference to the filp can only be obtained through the
4565 * i915_gem_mmap_ioctl() which safeguards us against the user
4566 * acquiring such a reference whilst we are in the middle of
4567 * freeing the object.
4568 */
4569 return atomic_long_read(&obj->base.filp->f_count) == 1;
4570 }
4571
4572 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4573 {
4574 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4575 struct drm_device *dev = obj->base.dev;
4576 struct drm_i915_private *dev_priv = dev->dev_private;
4577 struct i915_vma *vma, *next;
4578
4579 intel_runtime_pm_get(dev_priv);
4580
4581 trace_i915_gem_object_destroy(obj);
4582
4583 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4584 int ret;
4585
4586 vma->pin_count = 0;
4587 ret = i915_vma_unbind(vma);
4588 if (WARN_ON(ret == -ERESTARTSYS)) {
4589 bool was_interruptible;
4590
4591 was_interruptible = dev_priv->mm.interruptible;
4592 dev_priv->mm.interruptible = false;
4593
4594 WARN_ON(i915_vma_unbind(vma));
4595
4596 dev_priv->mm.interruptible = was_interruptible;
4597 }
4598 }
4599
4600 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4601 * before progressing. */
4602 if (obj->stolen)
4603 i915_gem_object_unpin_pages(obj);
4604
4605 WARN_ON(obj->frontbuffer_bits);
4606
4607 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4608 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4609 obj->tiling_mode != I915_TILING_NONE)
4610 i915_gem_object_unpin_pages(obj);
4611
4612 if (WARN_ON(obj->pages_pin_count))
4613 obj->pages_pin_count = 0;
4614 if (discard_backing_storage(obj))
4615 obj->madv = I915_MADV_DONTNEED;
4616 i915_gem_object_put_pages(obj);
4617 i915_gem_object_free_mmap_offset(obj);
4618
4619 BUG_ON(obj->pages);
4620
4621 if (obj->base.import_attach)
4622 drm_prime_gem_destroy(&obj->base, NULL);
4623
4624 if (obj->ops->release)
4625 obj->ops->release(obj);
4626
4627 drm_gem_object_release(&obj->base);
4628 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4629
4630 kfree(obj->bit_17);
4631 i915_gem_object_free(obj);
4632
4633 intel_runtime_pm_put(dev_priv);
4634 }
4635
4636 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4637 struct i915_address_space *vm)
4638 {
4639 struct i915_vma *vma;
4640 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4641 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4642 vma->vm == vm)
4643 return vma;
4644 }
4645 return NULL;
4646 }
4647
4648 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4649 const struct i915_ggtt_view *view)
4650 {
4651 struct drm_device *dev = obj->base.dev;
4652 struct drm_i915_private *dev_priv = to_i915(dev);
4653 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4654 struct i915_vma *vma;
4655
4656 BUG_ON(!view);
4657
4658 list_for_each_entry(vma, &obj->vma_list, obj_link)
4659 if (vma->vm == &ggtt->base &&
4660 i915_ggtt_view_equal(&vma->ggtt_view, view))
4661 return vma;
4662 return NULL;
4663 }
4664
4665 void i915_gem_vma_destroy(struct i915_vma *vma)
4666 {
4667 WARN_ON(vma->node.allocated);
4668
4669 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4670 if (!list_empty(&vma->exec_list))
4671 return;
4672
4673 if (!vma->is_ggtt)
4674 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4675
4676 list_del(&vma->obj_link);
4677
4678 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4679 }
4680
4681 static void
4682 i915_gem_stop_engines(struct drm_device *dev)
4683 {
4684 struct drm_i915_private *dev_priv = dev->dev_private;
4685 struct intel_engine_cs *engine;
4686
4687 for_each_engine(engine, dev_priv)
4688 dev_priv->gt.stop_engine(engine);
4689 }
4690
4691 int
4692 i915_gem_suspend(struct drm_device *dev)
4693 {
4694 struct drm_i915_private *dev_priv = dev->dev_private;
4695 int ret = 0;
4696
4697 mutex_lock(&dev->struct_mutex);
4698 ret = i915_gpu_idle(dev);
4699 if (ret)
4700 goto err;
4701
4702 i915_gem_retire_requests(dev);
4703
4704 i915_gem_stop_engines(dev);
4705 mutex_unlock(&dev->struct_mutex);
4706
4707 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4708 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4709 flush_delayed_work(&dev_priv->mm.idle_work);
4710
4711 /* Assert that we sucessfully flushed all the work and
4712 * reset the GPU back to its idle, low power state.
4713 */
4714 WARN_ON(dev_priv->mm.busy);
4715
4716 return 0;
4717
4718 err:
4719 mutex_unlock(&dev->struct_mutex);
4720 return ret;
4721 }
4722
4723 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4724 {
4725 struct intel_engine_cs *engine = req->engine;
4726 struct drm_device *dev = engine->dev;
4727 struct drm_i915_private *dev_priv = dev->dev_private;
4728 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4729 int i, ret;
4730
4731 if (!HAS_L3_DPF(dev) || !remap_info)
4732 return 0;
4733
4734 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4735 if (ret)
4736 return ret;
4737
4738 /*
4739 * Note: We do not worry about the concurrent register cacheline hang
4740 * here because no other code should access these registers other than
4741 * at initialization time.
4742 */
4743 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4744 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4745 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4746 intel_ring_emit(engine, remap_info[i]);
4747 }
4748
4749 intel_ring_advance(engine);
4750
4751 return ret;
4752 }
4753
4754 void i915_gem_init_swizzling(struct drm_device *dev)
4755 {
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758 if (INTEL_INFO(dev)->gen < 5 ||
4759 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4760 return;
4761
4762 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4763 DISP_TILE_SURFACE_SWIZZLING);
4764
4765 if (IS_GEN5(dev))
4766 return;
4767
4768 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4769 if (IS_GEN6(dev))
4770 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4771 else if (IS_GEN7(dev))
4772 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4773 else if (IS_GEN8(dev))
4774 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4775 else
4776 BUG();
4777 }
4778
4779 static void init_unused_ring(struct drm_device *dev, u32 base)
4780 {
4781 struct drm_i915_private *dev_priv = dev->dev_private;
4782
4783 I915_WRITE(RING_CTL(base), 0);
4784 I915_WRITE(RING_HEAD(base), 0);
4785 I915_WRITE(RING_TAIL(base), 0);
4786 I915_WRITE(RING_START(base), 0);
4787 }
4788
4789 static void init_unused_rings(struct drm_device *dev)
4790 {
4791 if (IS_I830(dev)) {
4792 init_unused_ring(dev, PRB1_BASE);
4793 init_unused_ring(dev, SRB0_BASE);
4794 init_unused_ring(dev, SRB1_BASE);
4795 init_unused_ring(dev, SRB2_BASE);
4796 init_unused_ring(dev, SRB3_BASE);
4797 } else if (IS_GEN2(dev)) {
4798 init_unused_ring(dev, SRB0_BASE);
4799 init_unused_ring(dev, SRB1_BASE);
4800 } else if (IS_GEN3(dev)) {
4801 init_unused_ring(dev, PRB1_BASE);
4802 init_unused_ring(dev, PRB2_BASE);
4803 }
4804 }
4805
4806 int i915_gem_init_engines(struct drm_device *dev)
4807 {
4808 struct drm_i915_private *dev_priv = dev->dev_private;
4809 int ret;
4810
4811 ret = intel_init_render_ring_buffer(dev);
4812 if (ret)
4813 return ret;
4814
4815 if (HAS_BSD(dev)) {
4816 ret = intel_init_bsd_ring_buffer(dev);
4817 if (ret)
4818 goto cleanup_render_ring;
4819 }
4820
4821 if (HAS_BLT(dev)) {
4822 ret = intel_init_blt_ring_buffer(dev);
4823 if (ret)
4824 goto cleanup_bsd_ring;
4825 }
4826
4827 if (HAS_VEBOX(dev)) {
4828 ret = intel_init_vebox_ring_buffer(dev);
4829 if (ret)
4830 goto cleanup_blt_ring;
4831 }
4832
4833 if (HAS_BSD2(dev)) {
4834 ret = intel_init_bsd2_ring_buffer(dev);
4835 if (ret)
4836 goto cleanup_vebox_ring;
4837 }
4838
4839 return 0;
4840
4841 cleanup_vebox_ring:
4842 intel_cleanup_engine(&dev_priv->engine[VECS]);
4843 cleanup_blt_ring:
4844 intel_cleanup_engine(&dev_priv->engine[BCS]);
4845 cleanup_bsd_ring:
4846 intel_cleanup_engine(&dev_priv->engine[VCS]);
4847 cleanup_render_ring:
4848 intel_cleanup_engine(&dev_priv->engine[RCS]);
4849
4850 return ret;
4851 }
4852
4853 int
4854 i915_gem_init_hw(struct drm_device *dev)
4855 {
4856 struct drm_i915_private *dev_priv = dev->dev_private;
4857 struct intel_engine_cs *engine;
4858 int ret, j;
4859
4860 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4861 return -EIO;
4862
4863 /* Double layer security blanket, see i915_gem_init() */
4864 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4865
4866 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4867 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4868
4869 if (IS_HASWELL(dev))
4870 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4871 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4872
4873 if (HAS_PCH_NOP(dev)) {
4874 if (IS_IVYBRIDGE(dev)) {
4875 u32 temp = I915_READ(GEN7_MSG_CTL);
4876 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4877 I915_WRITE(GEN7_MSG_CTL, temp);
4878 } else if (INTEL_INFO(dev)->gen >= 7) {
4879 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4880 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4881 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4882 }
4883 }
4884
4885 i915_gem_init_swizzling(dev);
4886
4887 /*
4888 * At least 830 can leave some of the unused rings
4889 * "active" (ie. head != tail) after resume which
4890 * will prevent c3 entry. Makes sure all unused rings
4891 * are totally idle.
4892 */
4893 init_unused_rings(dev);
4894
4895 BUG_ON(!dev_priv->kernel_context);
4896
4897 ret = i915_ppgtt_init_hw(dev);
4898 if (ret) {
4899 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4900 goto out;
4901 }
4902
4903 /* Need to do basic initialisation of all rings first: */
4904 for_each_engine(engine, dev_priv) {
4905 ret = engine->init_hw(engine);
4906 if (ret)
4907 goto out;
4908 }
4909
4910 intel_mocs_init_l3cc_table(dev);
4911
4912 /* We can't enable contexts until all firmware is loaded */
4913 if (HAS_GUC_UCODE(dev)) {
4914 ret = intel_guc_ucode_load(dev);
4915 if (ret) {
4916 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4917 ret = -EIO;
4918 goto out;
4919 }
4920 }
4921
4922 /*
4923 * Increment the next seqno by 0x100 so we have a visible break
4924 * on re-initialisation
4925 */
4926 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4927 if (ret)
4928 goto out;
4929
4930 /* Now it is safe to go back round and do everything else: */
4931 for_each_engine(engine, dev_priv) {
4932 struct drm_i915_gem_request *req;
4933
4934 req = i915_gem_request_alloc(engine, NULL);
4935 if (IS_ERR(req)) {
4936 ret = PTR_ERR(req);
4937 break;
4938 }
4939
4940 if (engine->id == RCS) {
4941 for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4942 ret = i915_gem_l3_remap(req, j);
4943 if (ret)
4944 goto err_request;
4945 }
4946 }
4947
4948 ret = i915_ppgtt_init_ring(req);
4949 if (ret)
4950 goto err_request;
4951
4952 ret = i915_gem_context_enable(req);
4953 if (ret)
4954 goto err_request;
4955
4956 err_request:
4957 i915_add_request_no_flush(req);
4958 if (ret) {
4959 DRM_ERROR("Failed to enable %s, error=%d\n",
4960 engine->name, ret);
4961 i915_gem_cleanup_engines(dev);
4962 break;
4963 }
4964 }
4965
4966 out:
4967 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4968 return ret;
4969 }
4970
4971 int i915_gem_init(struct drm_device *dev)
4972 {
4973 struct drm_i915_private *dev_priv = dev->dev_private;
4974 int ret;
4975
4976 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4977 i915.enable_execlists);
4978
4979 mutex_lock(&dev->struct_mutex);
4980
4981 if (!i915.enable_execlists) {
4982 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4983 dev_priv->gt.init_engines = i915_gem_init_engines;
4984 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4985 dev_priv->gt.stop_engine = intel_stop_engine;
4986 } else {
4987 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4988 dev_priv->gt.init_engines = intel_logical_rings_init;
4989 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4990 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4991 }
4992
4993 /* This is just a security blanket to placate dragons.
4994 * On some systems, we very sporadically observe that the first TLBs
4995 * used by the CS may be stale, despite us poking the TLB reset. If
4996 * we hold the forcewake during initialisation these problems
4997 * just magically go away.
4998 */
4999 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5000
5001 ret = i915_gem_init_userptr(dev);
5002 if (ret)
5003 goto out_unlock;
5004
5005 i915_gem_init_ggtt(dev);
5006
5007 ret = i915_gem_context_init(dev);
5008 if (ret)
5009 goto out_unlock;
5010
5011 ret = dev_priv->gt.init_engines(dev);
5012 if (ret)
5013 goto out_unlock;
5014
5015 ret = i915_gem_init_hw(dev);
5016 if (ret == -EIO) {
5017 /* Allow ring initialisation to fail by marking the GPU as
5018 * wedged. But we only want to do this where the GPU is angry,
5019 * for all other failure, such as an allocation failure, bail.
5020 */
5021 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5022 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5023 ret = 0;
5024 }
5025
5026 out_unlock:
5027 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028 mutex_unlock(&dev->struct_mutex);
5029
5030 return ret;
5031 }
5032
5033 void
5034 i915_gem_cleanup_engines(struct drm_device *dev)
5035 {
5036 struct drm_i915_private *dev_priv = dev->dev_private;
5037 struct intel_engine_cs *engine;
5038
5039 for_each_engine(engine, dev_priv)
5040 dev_priv->gt.cleanup_engine(engine);
5041
5042 if (i915.enable_execlists)
5043 /*
5044 * Neither the BIOS, ourselves or any other kernel
5045 * expects the system to be in execlists mode on startup,
5046 * so we need to reset the GPU back to legacy mode.
5047 */
5048 intel_gpu_reset(dev, ALL_ENGINES);
5049 }
5050
5051 static void
5052 init_engine_lists(struct intel_engine_cs *engine)
5053 {
5054 INIT_LIST_HEAD(&engine->active_list);
5055 INIT_LIST_HEAD(&engine->request_list);
5056 }
5057
5058 void
5059 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5060 {
5061 struct drm_device *dev = dev_priv->dev;
5062
5063 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5064 !IS_CHERRYVIEW(dev_priv))
5065 dev_priv->num_fence_regs = 32;
5066 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5067 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5068 dev_priv->num_fence_regs = 16;
5069 else
5070 dev_priv->num_fence_regs = 8;
5071
5072 if (intel_vgpu_active(dev))
5073 dev_priv->num_fence_regs =
5074 I915_READ(vgtif_reg(avail_rs.fence_num));
5075
5076 /* Initialize fence registers to zero */
5077 i915_gem_restore_fences(dev);
5078
5079 i915_gem_detect_bit_6_swizzle(dev);
5080 }
5081
5082 void
5083 i915_gem_load_init(struct drm_device *dev)
5084 {
5085 struct drm_i915_private *dev_priv = dev->dev_private;
5086 int i;
5087
5088 dev_priv->objects =
5089 kmem_cache_create("i915_gem_object",
5090 sizeof(struct drm_i915_gem_object), 0,
5091 SLAB_HWCACHE_ALIGN,
5092 NULL);
5093 dev_priv->vmas =
5094 kmem_cache_create("i915_gem_vma",
5095 sizeof(struct i915_vma), 0,
5096 SLAB_HWCACHE_ALIGN,
5097 NULL);
5098 dev_priv->requests =
5099 kmem_cache_create("i915_gem_request",
5100 sizeof(struct drm_i915_gem_request), 0,
5101 SLAB_HWCACHE_ALIGN,
5102 NULL);
5103
5104 INIT_LIST_HEAD(&dev_priv->vm_list);
5105 INIT_LIST_HEAD(&dev_priv->context_list);
5106 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5107 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5108 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5109 for (i = 0; i < I915_NUM_ENGINES; i++)
5110 init_engine_lists(&dev_priv->engine[i]);
5111 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5112 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5113 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5114 i915_gem_retire_work_handler);
5115 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5116 i915_gem_idle_work_handler);
5117 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5118
5119 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5120
5121 /*
5122 * Set initial sequence number for requests.
5123 * Using this number allows the wraparound to happen early,
5124 * catching any obvious problems.
5125 */
5126 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5127 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5128
5129 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5130
5131 init_waitqueue_head(&dev_priv->pending_flip_queue);
5132
5133 dev_priv->mm.interruptible = true;
5134
5135 mutex_init(&dev_priv->fb_tracking.lock);
5136 }
5137
5138 void i915_gem_load_cleanup(struct drm_device *dev)
5139 {
5140 struct drm_i915_private *dev_priv = to_i915(dev);
5141
5142 kmem_cache_destroy(dev_priv->requests);
5143 kmem_cache_destroy(dev_priv->vmas);
5144 kmem_cache_destroy(dev_priv->objects);
5145 }
5146
5147 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5148 {
5149 struct drm_i915_file_private *file_priv = file->driver_priv;
5150
5151 /* Clean up our request list when the client is going away, so that
5152 * later retire_requests won't dereference our soon-to-be-gone
5153 * file_priv.
5154 */
5155 spin_lock(&file_priv->mm.lock);
5156 while (!list_empty(&file_priv->mm.request_list)) {
5157 struct drm_i915_gem_request *request;
5158
5159 request = list_first_entry(&file_priv->mm.request_list,
5160 struct drm_i915_gem_request,
5161 client_list);
5162 list_del(&request->client_list);
5163 request->file_priv = NULL;
5164 }
5165 spin_unlock(&file_priv->mm.lock);
5166
5167 if (!list_empty(&file_priv->rps.link)) {
5168 spin_lock(&to_i915(dev)->rps.client_lock);
5169 list_del(&file_priv->rps.link);
5170 spin_unlock(&to_i915(dev)->rps.client_lock);
5171 }
5172 }
5173
5174 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5175 {
5176 struct drm_i915_file_private *file_priv;
5177 int ret;
5178
5179 DRM_DEBUG_DRIVER("\n");
5180
5181 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5182 if (!file_priv)
5183 return -ENOMEM;
5184
5185 file->driver_priv = file_priv;
5186 file_priv->dev_priv = dev->dev_private;
5187 file_priv->file = file;
5188 INIT_LIST_HEAD(&file_priv->rps.link);
5189
5190 spin_lock_init(&file_priv->mm.lock);
5191 INIT_LIST_HEAD(&file_priv->mm.request_list);
5192
5193 file_priv->bsd_ring = -1;
5194
5195 ret = i915_gem_context_open(dev, file);
5196 if (ret)
5197 kfree(file_priv);
5198
5199 return ret;
5200 }
5201
5202 /**
5203 * i915_gem_track_fb - update frontbuffer tracking
5204 * @old: current GEM buffer for the frontbuffer slots
5205 * @new: new GEM buffer for the frontbuffer slots
5206 * @frontbuffer_bits: bitmask of frontbuffer slots
5207 *
5208 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5209 * from @old and setting them in @new. Both @old and @new can be NULL.
5210 */
5211 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5212 struct drm_i915_gem_object *new,
5213 unsigned frontbuffer_bits)
5214 {
5215 if (old) {
5216 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5217 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5218 old->frontbuffer_bits &= ~frontbuffer_bits;
5219 }
5220
5221 if (new) {
5222 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5223 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5224 new->frontbuffer_bits |= frontbuffer_bits;
5225 }
5226 }
5227
5228 /* All the new VM stuff */
5229 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5230 struct i915_address_space *vm)
5231 {
5232 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5233 struct i915_vma *vma;
5234
5235 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5236
5237 list_for_each_entry(vma, &o->vma_list, obj_link) {
5238 if (vma->is_ggtt &&
5239 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5240 continue;
5241 if (vma->vm == vm)
5242 return vma->node.start;
5243 }
5244
5245 WARN(1, "%s vma for this object not found.\n",
5246 i915_is_ggtt(vm) ? "global" : "ppgtt");
5247 return -1;
5248 }
5249
5250 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5251 const struct i915_ggtt_view *view)
5252 {
5253 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5254 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5255 struct i915_vma *vma;
5256
5257 list_for_each_entry(vma, &o->vma_list, obj_link)
5258 if (vma->vm == &ggtt->base &&
5259 i915_ggtt_view_equal(&vma->ggtt_view, view))
5260 return vma->node.start;
5261
5262 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5263 return -1;
5264 }
5265
5266 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5267 struct i915_address_space *vm)
5268 {
5269 struct i915_vma *vma;
5270
5271 list_for_each_entry(vma, &o->vma_list, obj_link) {
5272 if (vma->is_ggtt &&
5273 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5274 continue;
5275 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5276 return true;
5277 }
5278
5279 return false;
5280 }
5281
5282 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5283 const struct i915_ggtt_view *view)
5284 {
5285 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5286 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5287 struct i915_vma *vma;
5288
5289 list_for_each_entry(vma, &o->vma_list, obj_link)
5290 if (vma->vm == &ggtt->base &&
5291 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5292 drm_mm_node_allocated(&vma->node))
5293 return true;
5294
5295 return false;
5296 }
5297
5298 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5299 {
5300 struct i915_vma *vma;
5301
5302 list_for_each_entry(vma, &o->vma_list, obj_link)
5303 if (drm_mm_node_allocated(&vma->node))
5304 return true;
5305
5306 return false;
5307 }
5308
5309 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5310 struct i915_address_space *vm)
5311 {
5312 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5313 struct i915_vma *vma;
5314
5315 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5316
5317 BUG_ON(list_empty(&o->vma_list));
5318
5319 list_for_each_entry(vma, &o->vma_list, obj_link) {
5320 if (vma->is_ggtt &&
5321 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5322 continue;
5323 if (vma->vm == vm)
5324 return vma->node.size;
5325 }
5326 return 0;
5327 }
5328
5329 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5330 {
5331 struct i915_vma *vma;
5332 list_for_each_entry(vma, &obj->vma_list, obj_link)
5333 if (vma->pin_count > 0)
5334 return true;
5335
5336 return false;
5337 }
5338
5339 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5340 struct page *
5341 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5342 {
5343 struct page *page;
5344
5345 /* Only default objects have per-page dirty tracking */
5346 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5347 return NULL;
5348
5349 page = i915_gem_object_get_page(obj, n);
5350 set_page_dirty(page);
5351 return page;
5352 }
5353
5354 /* Allocate a new GEM object and fill it with the supplied data */
5355 struct drm_i915_gem_object *
5356 i915_gem_object_create_from_data(struct drm_device *dev,
5357 const void *data, size_t size)
5358 {
5359 struct drm_i915_gem_object *obj;
5360 struct sg_table *sg;
5361 size_t bytes;
5362 int ret;
5363
5364 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5365 if (IS_ERR_OR_NULL(obj))
5366 return obj;
5367
5368 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5369 if (ret)
5370 goto fail;
5371
5372 ret = i915_gem_object_get_pages(obj);
5373 if (ret)
5374 goto fail;
5375
5376 i915_gem_object_pin_pages(obj);
5377 sg = obj->pages;
5378 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5379 obj->dirty = 1; /* Backing store is now out of date */
5380 i915_gem_object_unpin_pages(obj);
5381
5382 if (WARN_ON(bytes != size)) {
5383 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5384 ret = -EFAULT;
5385 goto fail;
5386 }
5387
5388 return obj;
5389
5390 fail:
5391 drm_gem_object_unreference(&obj->base);
5392 return ERR_PTR(ret);
5393 }
This page took 0.134866 seconds and 6 git commands to generate.